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Abstract

Synthetic Biology is an emerging discipline which uses engineering principles to

shape biological behavior. The Synthetic Biology Open Language (SBOL) is a stan-

dard for describing biological constructs which enables engineering workflows that

previous formats, such as GenBank and FASTA, could not. SynBioHub is an online

repository for storing and sharing genetic designs. It uses the SBOL standard and

an RDF triplestore to store designs, as well as supporting file attachment and exter-

nal links. Several research efforts in synthetic biology have adopted SynBioHub and

SBOL. These research efforts have revealed key areas for improvement in SynBioHub.

Improving user sharing and permissioning is a primary target for improvement. The

existing system has basic support for sharing with different privilege levels. Unfortu-

nately, its architecture makes it difficult to extend and improve. Due to this difficulty,

many features which would make SynBioHub more collaborative have not been im-

plemented. This work aims to make synthetic biology more collaborative by providing

a better foundation for experimentation and innovation in user sharing and permission-

ing. The existing authentication and authorization (auth) system is not centralized; it

mixes concerns between page rendering and permissions management. The new sys-

tem separates auth into its own software layer, separate entirely from page rendering.

This new layer is itself split into separate authentication and authorization steps. New

feature development and refinement will be made easier by the strong separations be-

tween the different components of SynBioHub.
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ABSTRACT

Synthetic Biology is an emerging discipline which uses engineering principles to shape

biological behavior. The Synthetic Biology Open Language (SBOL) is a standard for de-

scribing biological constructs which enables engineering workflows that previous formats,

such as GenBank and FASTA, could not. SynBioHub is an online repository for storing

and sharing genetic designs. It uses the SBOL standard and an RDF triplestore to store

designs, as well as supporting file attachment and external links. Several research efforts

in synthetic biology have adopted SynBioHub and SBOL. These research efforts have

revealed key areas for improvement in SynBioHub.

Improving user sharing and permissioning is a primary target for improvement. The

existing system has basic support for sharing with different privilege levels. Unfortunately,

its architecture makes it difficult to extend and improve. Due to this difficulty, many fea-

tures which would make SynBioHub more collaborative have not been implemented. This

work aims to make synthetic biology more collaborative by providing a better foundation

for experimentation and innovation in user sharing and permissioning.

The existing authentication and authorization (auth) system is not centralized; it mixes

concerns between page rendering and permissions management. The new system sep-

arates auth into its own software layer, separate entirely from page rendering. This new

layer is itself split into separate authentication and authorization steps. New feature devel-

opment and refinement will be made easier by the strong separations between the different

components of SynBioHub.
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CHAPTER 1

INTRODUCTION

1.1 Synthetic Biology
Synthetic biology is a research discipline which applies engineering techniques to bio-

logical designs to produce novel behavior [5]. One way to produce this novel behavior

is through the design of genetic circuits. Instead of using electrons and semiconductors to

represent information, a genetic circuit uses DNA, proteins, and small molecules. The cel-

lular mechanisms of protein synthesis, chemical activity, and genetic regulation arise from

the interactions of these components and produce a behavior. One example of a circuit is

the genetic toggle switch [8]. The genetic toggle switch represents a single bit of digital

memory which can be toggled by manipulating extracellular concentrations of specific

small molecules, and its current state is represented by a fluorescent protein. To create

the toggle switch, a small DNA fragment which contained the necessary components was

synthesized and inserted into a cell.

The genetic circuit model is extremely useful because many techniques from electronic

circuit design can serve as springboards for biological behavior [17]. For example, asyn-

chronous circuit design involves the creation of systems which allow for communication

and computation without a global clock regulating the exchange of information [15]. This

paradigm is applicable to biology because of the difficulty of creating a biological clock

with well-timed cycles that can communicate with all parts of a biological system. Another

important concept borrowed from electronic design is that of decoupling abstract behav-

ior from concrete implementation. This means that a designer begins with a high-level

description of their desired functionality, and then works from a library of parts with

known behavior to implement it. In electronic design, this functionality can be specified

in a descriptive language such as Verilog, and the implementation can be automatically
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generated by different design tools [14, 16, 25, 28]. Though this level of design automation

is not yet present in the synthetic biology space, several efforts are currently under way

to reach it. Libraries of parts are being developed and characterized, so that they can be

automatically selected according to a specification [18]. Biological contexts, such as specific

bacteria or even cell-free environments, are being characterized and standardized so that

they can be used as platforms for engineered circuits with minimized interference. Tools

are being developed which apply techniques such as technology mapping and logical

synthesis to biological contexts [25]. Finally, data standards are being developed to enable

portable and powerful expression of biological designs at all stages of the design workflow

[22].

1.2 Synthetic Biology Open Language
Often, synthetic biology involves the synthesis of genetic sequences according to de-

signed specifications [19]. These specifications are currently encoded in a wide variety of

formats [13]. Figure 1.1 on the following page describes some of these formats and the

information they contain.

The simplest format, FASTA, simply encodes a sequence alongside a simple textual

comment. The sequence is typically a DNA nucleotide sequence, but FASTA has support

for RNA and protein sequences. A related format, FASTQ, allows for the inclusion of

quality information for each element of the sequence. Since FASTA and FASTQ do not

allow for annotating a sequence with specific functional information, it is not particularly

well-suited to synthetic biology, which relies heavily on selecting and integrating parts

based on their function.

Another popular format, GenBank, is also based around DNA sequences. Unlike FASTA,

GenBank allows for the communication of significantly more information about the se-

quence, including annotating specific regions with their function. Unfortunately, GenBank

is not a data standard. There is no single canonical resource to determine what a ’GenBank

file’ should and should not contain, or how common features should be described. This

leads to the proliferation of several different ’dialects’ of GenBank, which makes commu-

nicating between tools a complex problem. Each tool must be able to ingest and export

their ’dialect’ of GenBank, as well as any other ’dialects’ they wish to communicate with.



3

TATAATAGGATT GATTACAGGGTTAGC CTGATTACAGG ATGGCAGCCT

TATAATAGGATT GATTACAGGGTTAGC CTGATTACAGG ATGGCAGCCT

PromoterRBS CDS Terminator RBS CDS TerminatorPromoter

TATAATAGGATTCCGCAATGGATTACAGGGTTAGCAAATGGCAGCCTGATTACAGGGTTAGCAAATGGCAGCCT

FASTA

GenBank

SBOL 1

SBOL 2

TATAATAGGATTCCGCAATGGATTACAGGGTTAGCAAATGGCAGCCTGATTACAGGGTTAGCAAATGGCAGCCT

Figure 1.1. A comparison of standards for biological data. FASTA can express raw se-
quences. GenBank can annotate sequences with functional information. SBOL 1 allows for
abstraction and composition. SBOL 2 allows for description of the functional interactions
with non-DNA components.

Finally, GenBank is hampered by its fundamental link to the DNA sequence. Engineering

design typically involves defining a high-level function, which is then implemented by

searching through libraries of building-block parts with known functionality and inter-

faces. This means that a synthetic biologist may wish to communicate information about

designs which have not been fully implemented. GenBank is fundamentally unable to

communicate about these designs, so it is also a poor platform for synthetic biology.

Since the existing formats for representing genetic designs are inadequate, the Syn-

thetic Biology Open Lanugage (SBOL) was developed [2, 6, 7, 22, 23]. The Synthetic Biology

Open Language is a data standard. This means that there is a document describing in

precise detail what comprises valid SBOL and how common elements should be described.
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SBOL supports many useful engineering workflows, such as visualizing designs [3, 20] and

combinatorial designs [21]. SBOL version 1 supports only structural information, while

SBOL version 2 supports both structual and functional information. There are also several

software libraries for interacting with data encoded in SBOL [1, 11, 27]

1.2.1 Resource Description Framework

SBOL leverages the Resource Description Framework (RDF) to describe data [12]. This

means that any set of SBOL data is represented as a graph, with nodes identified by

Uniform Resource Identifiers (URIs). Nodes are directionally linked by predicates. The source

node in a link is the subject. The sink node in a link is the object. Predicates are, themselves,

objects and may link to other nodes which provide more information about the predicate.

A subject-predicate-object group is called a triple. For this reason, databases which store

RDF data are often called triplestores.

1.2.2 Data Model

SBOL has a complex data model, which describes the structure of SBOL data on a higher

level than raw triples. The data model defines several classes, each of which represents

a type of data and contain both fields and links to other classes. The specifics of the

SBOL data model are not pertinent to this work, but there are a few pieces of information

which are necessary to understand. A subset of the classes defined in the SBOL data model

are top-level classes, meaning that they can stand on their own as a piece of information.

Other classes must be linked to at least one top-level class, they do not carry meaning

on their own. One of these top-level classes is Collection, which represents a group of

other top-levels. Some other common top-level classes are ComponentDefinition and

ModuleDefinition, which represent structural and functional units. These top-levels are

commonly referred to as parts or modules.

1.3 SynBioHub
SynBioHub is an application which allows for the storage and sharing of designs en-

coded in SBOL [9, 10]. SynBioHub is developed in collaboration with the University of

Utah and Newcastle University. It is composed of many different components which

interact in a variety of ways. Figure 1.2 on page 6 gives a high-level view of SynBioHub’s
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architecture. Designed as a web application, the various components which make up

SynBioHub can reside on one or many web servers. Most users interact with the core

SynBioHub application, at the center of the figure, which is written in JavaScript using

node.js. This SynBioHub core relies on a few components. User, session, and some config-

uration data is stored in a SQL database managed by SQLite, top right. The SynBioHub

core communicates with the SQL database using the Sequelize.js library. When SBOL data

are uploaded, they are processed by the SBOL processor (top center), which is written

in Java. The SynBioHub core communicates with the SBOL processor using JSON sent

over the processor’s standard input and output channels. SBOL data stored in SynBioHub

are saved in the RDF triplestore Virtuoso, bottom left. Virtuoso is third-party software

developed by OpenLink Software, and SynBioHub uses version 7.2. SynBioHub and

Virtuoso communicate over an HTTP interface. Optionally, SynBioHub’s search can be

improved by using SBOLExplorer (left middle) [26]. SBOLExplorer provides an HTTP

API for searching, directly interacts with Virtuoso to ingest data to search, and stored

information in ElasticSearch (top left).

SynBioHub can be installed on a web server for private use and there is a reference

instance maintained for public use (Figure 1.3 on page 7). Several research efforts, such

as the Living Computing Project and DARPA SD2 have integrated SynBioHub into their

research workflows. Though it is proving useful in these environments, they have exposed

several areas of weakness which merit additional work.

One particular pain point is around sharing and permissions. Because SynBioHub is

designed to be used by a research group, a single instance typically has many users. These

users often need to collaborate, sharing parts, editing them, and publishing them, and

SynBioHub currently has limited capabilities in these areas [24]. SynBioHub currently

has functionality to grant unlimited, irrevocable read-only access to a part, or revocable

ownership of a part. These are useful, but do not represent the full scope of what is useful

for collaboration. Additionally, new features such as user groups are frequently requested.

Sharing and permissions are currently managed in several places. Some of these are small

functions which modify or audit requests before they are rendered. A significant amount

of the functionality is in the same places as pages are rendered. Because there are many

different pages, which are rendered by different functions, modifying the behavior of each
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SynBioHub Core

SBOL Processor

SBOL Explorer

ElasticSearch
SQLite

Virtuoso
User Browser

Software Library
SynBioHub Serve

r

Figure 1.2. A block diagram of SynBioHub’s architecture. The majority of the figure
represents one or many servers configured to run SynBioHub’s components. The bottom
right shows different users (software tools or researchers) interacting with the components.

one is time-consuming and error-prone. This has led to very slow iteration on existing

functionality, and completely hampered adding new functionality.

1.4 Web Applications
SynBioHub is a web application. This means that it appears to users as a web site with

dynamically generated content. The content is generated by the SynBioHub application in

response to Hypertext Transfer Protocol (HTTP) requests.

1.4.1 HTTP Requests and Responses

HTTP is the standard protocol for serving web pages on the Internet [4]. An HTTP

client will send a request to a server, which returns a response. An HTTP request is made

to a server and contains several pieces of information. First, it will specify the specific
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Figure 1.3. The SynBioHub homepage. This is from synbiohub.org, the reference instance.

function to be invoked or information requested by use of the path, which specifies a

specific HTTP endpoint. Additionally, a request can contain several HTTP headers which can

specify many things, such as the types of information the client can handle, authentication

information from the client, or how a response should be encoded. Finally, a request can

contain parameters either encoded in the URL (for GET requests) or in the body of the

request (for POST requests).

When a server receives a request, it will generate a response. The response will have

an HTTP status code, which is a numerical code with a defined meaning. Codes range from

100-599, with each group of 100 representing a broad category. The 100s are informational

codes, 200s are successful responses, 300s result in redirection, 400s mean that there was

some client error, and 500s mean there was some server error. The response can also

contain HTTP headers, much like the request. Finally, the response will contain a body,

which indicates the result of performing the request.

1.4.2 Middleware

Because processing HTTP requests is often a multi-step process, many web applications

use the middleware design to separate concerns. A middleware is a piece of code which
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Request

Later 
processing 

steps

Reject
with
error

Middleware Layer

Figure 1.4. A prototypical example of middleware. A request comes in and is inspected by
the middleware. This can involve annotating the request with additional data and sending
it on to later processing steps, or rejecting the request.

is designed to perform a single function on an HTTP request. Typically, middleware is

regarded as separate from the core logic of a web application. Figure 1.4 on the current

page shows a prototypical example of how a middleware functions.

When a request reaches a middleware, it is inspected. The middleware can decide that

the request should not be allowed to continue for some reason, and send an HTTP response

indicating this to the client. In the normal case, however, the middleware will modify the

request in some way (such as annotating it with additional data) and then pass it to the

next handler. This handler may be another middleware, or it may be the core response

logic for the request.

1.5 Security
A primary concern with modifying how sharing works on SynBioHub is the security

of uploaded parts. Since things uploaded to SynBioHub often represent active research, it

is important that they are not improperly accessed.

1.5.1 Authentication

Frequently, the actions that someone can perform on a part (viewing it, editing it,

sharing it) depend on who they are. Thus, the first step in an access control pipeline
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is often authentication. Authentication is the proccess of identifying someone based on

some credential they provide. Frequently, this is a username and password, though there

are a few ways which a user can authenticate. Authentication typically involves cross-

referencing the provided credential with some known information (a user database, for

example). Any new information linked to the credential is then provided to the rest of the

pipeline.

1.5.2 Authorization

The next step in the pipeline is authorization. This involves verifying that the authen-

ticated user is able to perform the function they are attempting. They may be authorized

because of who they are (they are manipulating an object they own) or because of rights

afforded to them (manipulating an object shared with them). Authorization has levels; it

is possible to be authorized to view something, but not edit it. These levels are typically

referred to as privileges.

1.5.3 Sharing

Sharing is the act of changing another user’s authorization on an object. Sharing inher-

ently includes a notion of permissions. For example, you can share an object with another

user by giving them access to view it.

1.6 Contributions
This thesis draws inspiration from common tools such as Google Docs to create a

more powerful model for sharing and permissions on SynBioHub. Additionally, users

such as the SD2 research effort were consulted to ascertain which parts of the existing

model are causing collaborative friction. Once the target behavior was understood, it

was implemented in SynBioHub. Existing authentication and authorization functionality

are consolidated to a single location the the SynBioHub source tree. Much of the page

rendering routines are simplified based on the assumption that the authorization concern

is separated from the rendering concern. Finally, to validate the usefulness of this work,

new sharing modes are added. These included augmenting share links to allow them to

grant custom permissions, as well as granular sharing on a per-user basis.



10

1.7 Overview
Chapter 2 describes the current state of SynBioHub’s auth system. Implementation de-

tails for both authentication and authorization, as well as the current system’s limitations,

are discussed. chapter 3 details the proposed new system. Each element discussed in

chapter 2 is re-examined, and its role and implementation for the new system are defined.

Chapter 4 is an analysis of the system’s ability to replace its predecessor, as well as its

extensibility for new use cases.



CHAPTER 2

EXISTING AUTHENTICATION AND

AUTHORIZATION

The existing authorization and authentication (together called auth) system is distributed

across SynBioHub. While many of the authentication functions are somewhat neatly sepa-

rated from the rest of the code, most of the authorization checking is embedded in routines

to render pages. This makes changing the authorization behavior of SynBioHub difficult.

As a second-order effect, because authentication and authorization are closely linked, the

changes that can be made in authentication are also limited.

Figure 2.1 on the following page provides an overview of the current authentication

system. Users are authenticated using small middleware functions, and then most access

control is done in the page rendering routines.

2.1 Authentication
SynBioHub uses three main methods to authenticate users. They can be authenticated

based on basic credentials, user tokens, or user sessions.

2.1.1 Basic Credentials

Basic credentials are a username and password. Both user tokens and user sessions

rely on an initial authentication using basic credentials. This method of authentication

involves sending a username and password to the login endpoint. The login code hashes

the password with a secret string, and then queries the SQL database for users which

match the username and password hash. If any are found, that user is then authenticated.

If the login request is sent over a browser, SynBioHub creates a new session. The

session has some metadata, including which user is authenticated for that session. The

metadata is stored in the SQL database, and a random key for the session is generated.

The key is sent back to the user to use as authentication for future requests.
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requireAdminrequireUser

Request
with user token

Request
with session

express-session authenticate

Request
with user dataRequest

Figure 2.1. A block diagram of the current auth system. If authentication data is part of
either a request’s session or its headers, they go through the express-session middleware
or authenticate function, respectively. Authenticated requests and requests with no
authentication data are then sent on to the page rendering routines, optionally via the
requireUser or requireAdmin functions. Checking to ensure the request is properly
authorized happens in these functions as well as embedded in the page rendering routines.

If the login request is sent programmatically, the Accept HTTP header must have type

text/plain, and SynBioHub instead responds with the authenticated user’s token. The

user token is valid for the lifetime of that SynBioHub, and can be used to authenticate

future requests.

2.1.2 User Tokens

To authenticate a request using a session token, the token obtained from basic authen-

tication should be included in the X-authorization HTTP header. SynBioHub inspects
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requests for this header, and if it is included, it looks up the token in an in-memory struc-

ture. If the token is valid, and associated with a user, that user is successfully authenticated

for the request.

2.1.3 Sessions

Sessions are primarily handled by the express-session library. The library looks

in the Cookie HTTP header for a session key. The session key is then matched in the

SQL database to find session data. This session data can include information about an

authenticated user. If so, the user is then authenticated for the remainder of the request.

2.2 Authorization
Once a user’s request has been authenticated, its authorization should be checked.

There are a few different types of authorization checks that can be performed. There

are two main categories of checks: SBOL-related checks, and SynBioHub-related checks.

SBOL-related checks are performed on requests which interact with SBOL data, and in-

volve checking graph permissions, validating share links, and checking for ownership.

SynBioHub-related checks are performed on requests which have SynBioHub-related func-

tionality, such as modifying instance settings. There is one type of interaction which does

not neatly fit into one classification or another: in order to make a part publicly accessible,

both an SBOL-related check and a SynBioHub-related check are performed.

2.2.1 Public and Private Graphs

SynBioHub segments SBOL data uploaded to SynBioHub into different graphs. These

graphs are the default method for managing access control on individual SBOL items.

Figure 2.2 on the next page shows how graphs are presented to the user in SynBioHub.

The public graph contains parts which are viewable by any user, including unau-

thenticated users simply browsing a SynBioHub. Parts in the public graph are typically

uploaded by a user, and then curated and moved to the public graph by a different user

known as a curator. Generally, parts contained in the public graph cannot be changed,

though there are a few fields which can be. These fields can only be edited by the part’s

owner, which is generally the original uploader.

Each user has their own graph, and they have complete access to the parts in their
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Figure 2.2. SynBioHub’s interface for viewing a user’s submissions. Constructs residing in
their private graph are shown on the left. Constructs that have been moved to the public
graph are shown on the right.

graph. When a request attempts to interact with a part in a private graph, the owner of the

private graph and the request’s authenticated user are compared. If they do not match, the

request is not authorized to proceed.

When a user uploads new SBOL, it is deposited into their graph, and they are added

as an owner. The part can then be modified, replaced, and shared with other users. When

a user is ready for a curator to move their part into the public graph, they must share the

part with the curator. The curator can then move the part into the public graph.

2.2.2 Ownership

To give a user editing privileges on a part, they must be added as an owner of the part.

From a part page, a user can navigate to the page show in Figure 2.3 on the following page

to add an owner. This operation adds a triple to the SBOL top level for the part which links

it to the new owner via the ownedBy predicate.

When a user has been given access to a part, they can view it using the Shared with Me

page shown in Figure 2.4 on the next page. To find all parts shared with a user, SynBioHub

looks through all user graphs for triples with the ownedBy predicate and the desired user

as a subject. These parts are rendered in the shown view, so they can be accessed by the
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Figure 2.3. SynBioHub’s current interface for granting ownership permissions to a user.
This view is accessed from a button on the part page.

Figure 2.4. SynBioHub’s interface for viewing parts which you have been given ownership
of. This view is accessed by clicking the ’Shared with Me’ button in the top navigation bar.

user.

When a user owns a part, they can perform any modifications as if the part is contained

in their private graph. This includes modifying, deleting, and sharing the part. Ownership

can be revoked, but there is no way to give read-only or other reduced access to a specific
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Figure 2.5. SynBioHub’s current interface for displaying share links. This view is accessed
via a button on the part page.

user.

2.2.3 Share Links

Share links are modified URLs that include a hash which grants read-only access to a

part. Each part page has a button which generates the dialog seen in Figure 2.5 on this

page containing the share link.

These share links are useful, but have a few problems. First, since information about

a part on SynBioHub is spread across many pages, it is important that all the links on a

page work. This means that the rendering function must know if the page was accessed

via a share link, and replace all the regular links with share links in the rendered page.

Additionally, the share link hash is generated from the URI of the part which is shared.

This means that it is impossible to change or invalidate the share link, so once a link has

been shared, this access can never be revoked. Finally, share links only offer read-only

access to a part. There is no way to change the privilege of a share link.

2.2.4 Non-SBOL Authorization

Some requests do not involve SBOL data. One category is requests having to do with

administrating a SynBioHub. These can involve changing instance settings, registering the

instance with the Web of Registries, and administering users. Another is curating parts,

only some users have the necessary privileges to move parts into the public graph. Finally,

some pages are only viewable to logged in users, like the profile modification page. These

authorizations are checked by the requireAdmin, requireCurator, and requireUser func-

tions, respectively, as shown in Figure 2.1 on page 12. These functions are fairly simple:

they check whether a request has an authenticated user, and if it does, they inspect it for

the admin or curator flags.



CHAPTER 3

NEW AUTHENTICATION AND

AUTHORIZATION

The new auth system is, to a first approximation, a refactor of the existing system to

properly separate concerns between page rendering and authorization. The new autho-

rization functionality, combined with slightly modified versions of the existing authen-

tication, are the proposed auth system. Figure 3.1 on the following page shows a flow

diagram for how requests are processed in the new system. The primary change is that all

requests transit through a new authorization middleware before ultimately arriving at the

page rendering routines. This ’single pane of glass’ approach allows for easier modification

of authorization behavior.

3.1 Authentication
Authentication in the new module largely works the same way, but the functionality

has been pulled out of the app.js file and into the auth source tree.

3.1.1 Basic Credentials

Looking up the username and password hash in the SQL database remains the same.

3.1.2 User Tokens

User tokens are still stored in an in-memory data structure. This means they do not

persist between restarts of SynBioHub. Instead of creating a single token for each user as

they log in, multiple tokens can correspond to a single user. Tokens can be invalidated or

expire after a certain timeframe or number of uses. This means that tokens can be issues

for single accessions, or only for short time frames, which is better for interacting with

applications. For example, if a user would like to give a third-party application to their

parts to edit, this gives them finer control over how the application can access their graph.
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requireAdminrequireUser

Request
with user token

Request
with session

express-session authenticate

Request
with user dataRequest

authorize

Figure 3.1. A block diagram for the new auth system. The authentication step remains
the same, though the authentication routine is modified in the new authentication system.
Now, however, all requests go through a single authorization step before being passed
further down the line. This authorization step serves as a single pane of glass which all
requests must pass through.

3.1.3 Sessions

Sessions remain largely the same between the old and new systems, in both they are

managed by a third-party library. The primary difference is that a single session may

have multiple authenticated users. This is because privileges for new-style share links are

accorded to virtual users. One session may have zero or one complete users authenticated,
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Figure 3.2. The new interface for managing a construct’s sharing. Users and anonymous
share links are shown separately, and each can be revoked.

and any number of virtual users.

3.1.4 Share Links

The most significant change to authentication in the new auth system is the new share

links. Old-style share links worked by hashing a part URI with a secret string, which was

then inserted into the URL. This meant that the access could never be revoked, because

the URI of a part never changed. The new-style share links can authenticate additional

users into a session. These ’virtual users’ have access to the part for which the share link

corresponds. This is done by searching the SQL database’s new Alias for the share token

in the link. An Alias entry contains information about the share link’s virtual user, and the

part it grants access to. The virtual user is authenticated into the session, and the request

is redirected to the part’s rendering routine.

3.2 Authorization
Authorization represents most of the new code in this work. Figure 3.2 on the current

page shows the new interface created for managing who is authorized to access a part.

This is accessible for any part, and allows an owner to grant privileges to other specific

users or generate share links which can grant privileges to anyone.

To support the new authorization scheme, an Auth table is added to the database. This

table contains information about additionals rights afforded to users. When a user is given
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some rights to an object, they are also given rights recursively to any objects which are

accessible from the root object. Each URI to which a user is granted access is given a row

in the Auth table, which also contains the user ID granted access, the level of privilege

granted, and how the privilege was granted. For example, if access is given to an object

because it is a child of another object, that is how the privilege was granted. This means

that the Auth table holds representations of permission trees, one tree each time a user is

given access to an object.

3.2.1 Public and Private Graphs

Public and private graph accession defaults are the same as the previous auth system.

Now, when a request for a part passes through the authorize step, a few checks are per-

formed.

For parts in the public graph, the default permission is assumed to be read. The Auth

table is queried for any rows which contain both the URI of the part and a user ID which is

added to the request in an authentication step. If any are found, the strongest permission

is selected, and added to the request. The request is then passed to the page rendering

code, which uses the permission in its rendering.

For parts in the private graph, the default permission is assumed to be none. The first

check performed is if the user who owns the private graph is authenticated on the request.

If so, the owner permission is added to the request, which is passed to the rendering code.

If not, the Auth table is queried for any rows which give a user on the request access to the

part. If any are found, the strongest permission is selected, added to the request, and the

page is rendered. If none are found, the authorize module replies with a 404 Not Found

error, to prevent leaking information about parts in the private graphs.

3.2.2 Ownership

Ownership is implicit for parts in a user’s own private graph, but the new sharing

interface shown in Figure 3.2 on the preceding page allows a user to grant permissions

to other specific users. Unlike the previous system, these ’ownership’ permissions do not

imply complete access to the part. As shown in Figure 3.3 on the next page, the specific

privileges accorded to the user are now configurable.

When a user is granted ownership over the part, a new authorization tree is created
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Figure 3.3. The proposed workflow for sharing with a specific user. This step now allows
selection of the permission level to grant to this user.

using that part as the root. This authorization tree has a node for each child object of the

root, and their children recursively. Each node has the same permissions as the root, the

URI of the object, and a reference to its parent. Each node corresponds to a single row in

the Auth table.

3.2.3 Share Links

Share links operate on a different model in the new system. Old-style share links verify

their authenticity by providing a hash of the part’s URI with a secret string. This means

that the share link never changes, and can never be revoked. Additionally, only one share

link can exist for a part.

The new system allows for both a privilege level and a reason to be associated with a

share link using the interface shown in Figure 3.4 on the following page. Because the share

links are not associated with an actual user in the same way an ownership is, this given

reason is used to remind why the share link was generated.

When a share link is created, first a ’virtual user’ is created. Then, an authorization tree

is created granting the chosen permission to virtual user for the object and its children. The

authorization tree is saved in the Auth table. Finally, a random token is generated. This
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Figure 3.4. The proposed first step in generating a share link. This step now allows for
description of the share link’s purpose to allow for future management, as well as selection
of the permission level to grant those who use the share link.

Figure 3.5. The proposed second step in generating a share link. The generated link is
unique each time one is generated and encodes information about the permissions granted
with the share link.

token is saved in the Alias table, alongside the ID of the virtual user and the URI for the

root part of the authorization tree. The token is used to construct the share link, which is

then given to the user as shown in Figure 3.5 on the current page.

When a user accesses a part via the share link, the token is used to find the ID of the vir-

tual user and the destination part URI in the Alias table. The virtual user is authenticated

into the session, and the request is redirected to the destination part. Since the virtual user

has some privilege to the part, the request completes successfully.

3.2.4 Non-SBOL Authorization

Non-SBOL authorizations have remained completely unchanged. A future work item

could be to refactor them in with the rest of the authorization code.



CHAPTER 4

VERIFICATION AND VALIDATION

The work of this thesis has two main criteria to satisfy. First, no main functionality

should be lost from the existing auth system. This is the verification criterion; it indicates

that the new auth model is at least as powerful as the old one. The second criterion,

validation, is that the new system is easier to extend than the old one.

4.1 Verifying the Auth System
Verification of the auth system was mostly done manually. The existing SynBioHub

integration tests are run against SynBioHub to check that some normal use cases were

unchanged. The rest of the verification was done by comparing old functionality to new,

stepping through the workflows, and ensuring that the behavior remained unchanged.

Table 4.1 on this page shows how the new system fulfills the same purposes as the old

system.

One regression in the new system is that share links do not have the same versatility as

in the previous system. Because a share link gave access to all pages accessible from the

shared page, accessing a child or related page was simple. One such child page could be

the endpoint for downloading GenBank given an SBOL part. The share link itself could be

Table 4.1. Comparing old to new functionality in the auth systems. Each piece of old
functionality has an analogue in the new system which is at least as powerful.

Functionality Old System New System
Share links Irrevocable read-only access

to anonymous user
Revocable access to anony-
mous with configurable per-
mission level

Ownership Revocable, complete access to
specific user

Revocable access to specific
user with configurable per-
mission level
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modified or appended to in order to view a child page. Because the new system is slightly

more complex, access to child pages is not guaranteed. Additionally, the token in a share

link is now derived from the virtual user for the share link, not from the shared construct.

These facts together mean that derived pages can no longer be accessed by modifying the

share link. A user who wishes to access derived pages must use the session token they

are given upon authenticating with the share link. For those who access SynBioHub in a

browser, this is automatically handled by modern browsers. For those who interact with

SynBioHub using tha API, this introduces some extra complexity as they have to manage

sessions.

4.2 Validating the Auth System
The old auth system was really two: share links and ownership. Both were handled

mostly separately from each other, but integrated with page rendering. The new system

works from the assumption that both systems were ultimately built with the same goals

in mind, which is part of the motivation for uniting them with a common backend. Ad-

ditionally, this means that making changes to the common backend enables them for both

share links and ownership. This leads to a slightly different framing of the new system:

anonymous and specified user permissions.

The two functionalities of the old system are available in the new system, and were

able to be easily extended in the new one. They were so simple to add that they were in

the first revision of the new auth system. In fact, it would have been more complex to

introduce the same restrictions as the old system. This provides evidence that one of the

more ephemeral goals of the new auth system, extensibility, has been satisfied.



CHAPTER 5

SUMMARY AND DISCUSSION

5.1 Summary
This work was motivated by the desire to extend SynBioHub’s existing auth system.

Issues with the current system were identified. These include feature deficits as well

as structural issues which made modifying the current behavior difficult. To address

these problems, a new auth system was developed. This involved defining a new model

for authorization, implementing that model, and redesigning portions of SynBioHub to

properly separate concerns. The new system was verified by ensuring that there was

minimal feature loss in the migration to the new system. The value of the work was

validated by extending the new system to allow for granular privilege selection within

the existing share link/owner features.

5.2 Availability of Work
SynBioHub is available on GitHub at https://github.com/SynBioHub/synbiohub. The

majority of the work in this thesis is embodied in pull request #1019. The reference instance

of SynBioHub can be accessed at https://synbiohub.org.

5.3 Future Work
Immediately upon completing the new auth module, several avenues for future work

are unblocked.

One feature request which will likely take immediate priority is groups. For several

years, the ability to have group ownership and sharing of objects has been an open feature

request. One way that this could be implemented is by extending the virtual user concept

to include groups as a virtual user. When a user is authenticated, so would be all virtual

users corresponding to their groups. These virtual users might be slightly more powerful
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than those used in share links, as they could have their own graphs to which parts can be

submitted.

Another feature could be federated authentication for SynBioHubs. Because SynBio-

Hubs can federate with each other via the Web of Registries, it is common to interact with

multiple different instances while browsing. It would be useful to have some way of tying

users between SynBioHubs together, so that privileges could be managed across the entire

ecosystem.

The work of this thesis represents a step forward in SynBioHub’s extensibility, and will

unblock development of several features which are key to collaboration. This collabora-

tion will hopefully decrease the friction of performing standards-based synthetic biology

research, leading to new and exciting research developments.
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