
SPECIFICATION AND COMPILATION OFTIMED SYSTEMS
byHao Zheng

A thesis submitted to the faculty ofThe University of Utahin partial ful�llment of the requirements for the degree of
Master of Science

Department of Electrical EngineeringThe University of UtahJune 1998

Copyright c Hao Zheng 1998All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOLSUPERVISORY COMMITTEE APPROVALof a thesis submitted byHao Zheng
This thesis has been read by each member of the following supervisory committee andby majority vote has been found to be satisfactory.

Chair: Chris J. Myers
Erik Brunvand
Christian Schlegel

THE UNIVERSITY OF UTAH GRADUATE SCHOOLFINAL READING APPROVAL
To the Graduate Council of the University of Utah:I have read the thesis of Hao Zheng in its �nal form and havefound that (1) its format, citations, and bibliographic style are consistent and acceptable;(2) its illustrative materials including �gures, tables, and charts are in place; and (3) the�nal manuscript is satisfactory to the Supervisory Committee and is ready for submissionto The Graduate School.Date Chris J. MyersChair, Supervisory Committee

Approved for the Major Department
Om P. GandhiChair/DeanApproved for the Graduate Council
Ann W. HartDean of The Graduate School

ABSTRACTThis thesis presents a framework for the speci�cation and compilation of modules in asystem that uses di�erent synchronization paradigms. These timed systems are describedby using timed handshaking expansions (HSE) and a standard hardware descriptionlanguage, namely VHDL. Synthesizable subsets of these languages are de�ned to includeconstructs for describing timing behaviors, as well as, sequencing, concurrency, choice andlooping. A new formal semantic model, timed event/level structures, is used to de�ne thebehaviors speci�ed by the synthesizable subsets. A compiler is developed to translate theHSE and VHDL speci�cations to timed event/level structures. This compiler is integratedinto ATACS, a synthesis tool for timed circuits. Finally we demonstrate our methodologyon a practical example, an asynchronous implementation of the Maxlist algorithm.

For my family.

CONTENTSABSTRACT : ivLIST OF FIGURES : viiiACKNOWLEDGEMENTS : xCHAPTERS1. INTRODUCTION : 11.1 Speci�cation and Synthesis Methodologies . 21.2 Outline of Thesis . 32. SPECIFICATION OF TIMED SYSTEMS : 42.1 Timed Handshaking Expansions . 42.2 Speci�cation of Timed Systems in VHDL . 62.2.1 Entities and Architecture Bodies . 72.2.2 Signal and Component Declarations . 92.2.3 Concurrent Statements . 102.2.4 Sequential Statements . 112.2.5 A Design Package to SimulateNondeterministic Behavior . 173. COMPILATION : 193.1 Timed Event/Level Structures . 193.2 Composition and Renaming ofTEL Structures . 213.3 Compiling Timed HSE into TEL Structures . 243.4 Compiling VHDL Speci�cations intoTEL Structures . 273.4.1 Interpretation of Sequential Statements . 283.4.2 Interpretation of Concurrent Statements . 324. EXAMPLES : 334.1 Sbuf Controller . 334.2 The Maxlist . 384.2.1 Algorithm . 384.2.2 Architecture . 394.2.3 Implementation . 414.2.4 Results . 444.2.5 Comparison . 464.2.6 Compilation . 47

5. CONCLUSION : 51REFERENCES : 53

vii

LIST OF FIGURES1.1 The overview of ATACS. 32.1 A delay de�nition example. 52.2 A complete timed HSE example for a scsi controller. 72.3 The syntax rules for entities and architecture bodies. 82.4 The entity and port declarations for an OR gate. 82.5 The syntax rules for signal and component declarations. 92.6 An example component declaration. 102.7 The syntax rules for concurrent statements. 102.8 The block diagram of the scsi controller. 112.9 Structural VHDL code of the scsi controller. 122.10 The syntax rules for sequential statements. 132.11 The complete example for SPDOR. 162.12 The complete example for the SPDOR's environment. 172.13 A design package for nondeterministic behavior. 182.14 A nondeterministic SYNOPSYS simulation of the SPDOR. 183.1 Examples of TEL structures. 213.2 TEL structures for a guard [b], an action a+ and a guarded command [b! a+]. 253.3 The TEL structure for a [G1 ! S1j : : : jGn ! Sn]. 263.4 The de�nition of the function make loop. 273.5 The TEL structure for [G1 ! S1j : : : jGn ! Sn; �]. 283.6 TEL structures for a wait, signal assignment and if statement. 303.7 The TEL structure for an if-then-elsif statement. 313.8 The TEL structure of a while loop. 324.1 The timed HSE code for the sbuf controller. 344.2 The TEL structure for the body of the sbuf controller. 344.3 The TEL structure for [req]; sendline+. 354.4 :done ^ ackline ! sendline�; [:ackline]; sendline+; �. 354.5 done ^ ackline ! (ack+ksendline�); [:req ^ :ackline ^ :done]; ack�. 36

4.6 The TEL structure for the selection construct. 374.7 The TEL structure for the nonrepetitive process. 374.8 Example of the MAXLIST algorithm. 394.9 Distribution of forward comparisons. 404.10 Distribution of backward comparisons. 414.11 Overall block diagram. 424.12 Block diagram of the FIFO. 424.13 Block diagram of a comparator. 434.14 Block diagram of the controller. 444.15 Data cycle delay distribution (�xed). 454.16 Data cycle delay distribution (bounded). 464.17 The VHDL code of main block. 484.18 The TEL structure for the main block. 494.19 The VHDL code of shift block . 504.20 The TEL structure for the shift block. 50

ix

ACKNOWLEDGEMENTSI would like to express gratitude to my supervisor, Professor Chris Myers, for in-troducing me into the exciting and challenging asynchronous design �eld, and for hisconstant guidance, support, and encouragement throughout my entire research presentedin this dissertation. I would like to thank Professor Erik Brunvand and Professor ChristianSchlegel for their helpful comments on this dissertation, and for serving on my supervisioncommittee.During my years at the University of Utah, I received a lot of help from people. Iwould like to thank Wendy Belluomini, Robert Thacker, Eric Mercer, Brandon Bachman,and Chris Krieger for their technical support. I would also like to thank Doris Marks forher administrative help throughout the years.Especially, I would like to express my gratitude to my family for their great help andlots of invaluable advice.This research was supported by a grant from Intel Corporation and NSF CAREERaward MIP-9625014.

CHAPTER 1INTRODUCTIONWith clock speeds approaching 1 GHz, designers are beginning to abandon purelysynchronous design. Techniques such as \Self-Reseting Logic" and \Opportunistic TimeBorrowing," where signals are not locally synchronized with the clock, are used todayby designers to achieve performance not feasible with purely synchronous technology.Designers at HAL/Fujitsu use self-timed design methods to speedup their on-chip divider,and Intel has investigated using asynchronous circuits to speedup the instruction lengthdecoder for the x86 architecture. This is because asynchronous circuits have several poten-tial advantages. An asynchronous circuit is one which performs synchronization withouta global clock. Therefore, skew in synchronization signals can be ignored, and the extracircuitry for clock drivers and bu�ers is not necessary. In asynchronous circuits, the speedof the circuit is allowed to change dynamically, so the performance is governed by theaverage-case delay instead of worst-case delay. The delay of asynchronous circuits can varysigni�cantly over di�erent processing runs, supply voltages, and operating temperatures,but asynchronous circuits can adapt to those variations and can operate correctly underall variations and simply speed up or slow down, as necessary. In an asynchronous system,components can be interfaced without the di�culties associated with synchronizing clocksin a synchronous system. Also, when a faster component becomes available, it can beeasily inserted into the system without requiring any other changes to the system resultingin an overall system performance improvement. Asynchronous circuits can also lowersystem power requirements because asynchronous circuits reduce synchronization powerby not requiring additional clock drivers and bu�ers to limit clock skew. They can alsoautomatically power down unused components. Finally, asynchronous circuits can makee�cient use of a dynamic power supply.Unfortunately, wide application of asynchronous circuits is limited by several problems.Due to the lack of CAD tools that address the complex timing issues involved, the bulk ofthe design using such techniques is being done manually, which limits their application to

2a very small part of the design. Asynchronous circuits must also avoid hazards. A hazardis a spurious signal transition, or glitch. While hazards can be ignored in a synchronousdesign as they are �ltered out by the clock signal, any hazards in an asynchronous designcan potentially lead to a malfunction. Therefore, careful design is necessary to avoidhazards in an asynchronous design which often leads to a signi�cant increase in circuitarea. Asynchronous circuits have di�culties in interfacing with existing synchronousdesigns, and may not be suitable for semicustom design because many asynchronousdesigns require the use of special complex-gates. Asynchronous design may also beunreliable because many asynchronous circuit designers play tricks and make assumptionswhich must be checked with simulation. However, simulation is not perfect so unreliabledesigns can be produced. Therefore, formalization and automation of these techniqueswill allow larger parts of future designs to take advantage of their bene�ts.1.1 Speci�cation and Synthesis MethodologiesThe �rst step in any synthesis method is to specify what is to be designed. Manymethods have been proposed for the speci�cation of asynchronous designs. Some, how-ever, are restricted to the signal transition level, such as I-nets [17], signal transitiongraphs [7] [16], change diagrams [26], asynchronous �nite-state machines [9] [22] [28], andstate graphs [1]. Some languages do exist which abstract the behavior of the design, butthey use non-standard languages such as communicating sequential processes (CSP) [14],Occam [5], and Tangram [4]. Each of these speci�cation methods is also designed for aparticular design style and synthesis methodology. Furthermore, none of these methodsallows timed systems to be easily speci�ed.Almost all commercial design tools for the simulation and synthesis of synchronousdigital systems employ standard hardware description languages (such as Verilog andVHDL) and abide by common speci�cation practices. This makes designs (and designers)easily portable among tools. We wish to take advantage of this excellent repertoireof already existing tools and knowledge. This approach promises to provide a dualadvantage. First, it saves tool development time and e�ort. Second, using existingHDL and tools that are already familiar to designers enables easier migration into, andassimilation of, the new design technology. It allows designers to think in familiar terms,rather than having to go through di�cult training and even a complete brainwash, whennew speci�cation methods and tools are radically di�erent.

3Therefore, the purpose of this thesis is to develop a methodology that guides thedesigner in the speci�cation of timed systems using a standard HDL, namely VHDL, in amanner that is independent of design style and synchronization method. The synthesiz-able subset of the language has been re�ned and a methodology for the speci�cation oftimed systems has been developed. A new semantic model, timed event/level structures(TEL) [2] is used to de�ne the behavior speci�ed in VHDL. A new compiler has beendeveloped to translate the VHDL speci�cations into the TEL structures. This compilerhas been integrated into the CAD tool ATACS, which accepts the output of the compilerand synthesizes a timed circuit. Figure 1.1 shows the relationship between the compilerand ATACS. 1.2 Outline of ThesisThis thesis is organized as follows. Chapter 1 serves as a general introduction. Chapter2 describes timed handshaking expansions (HSE), which are derived from Martin's CSPlanguage [14], and how a synthesizable subset of VHDL can be used to model thosetimed HSE constructs and behaviors. Chapter 3 describes timed event/level structures,the semantic model used to describe behavior in timed HSE and VHDL, and introducesthe automatic procedures to interpret our timed HSE and VHDL speci�cations with thisnew semantic model. Chapter 4 gives examples to show the promise of this speci�cationmethod by demonstrating how complex designs can be modeled and synthesized. Chapter5 gives our conclusions and ideas for future research.
Compiler

Synthesis

engine
VHDL circuits

structures

TEL

specs

ATACS

Figure 1.1. The overview of ATACS.

CHAPTER 2SPECIFICATION OF TIMED SYSTEMSThis chapter describes the syntax rules of timed HSE, which is a subset of Martin'sCSP language [14], and the synthesizable subset of VHDL. Both languages include con-structs for describing timing behaviors, sequencing, concurrency, choice and looping.2.1 Timed Handshaking ExpansionsThe behavior of a model is de�ned by a module in timed handshaking expansions(HSE). Each module consists of one or several processes describing the operations ofthe model. The processes execute in parallel. Besides the processes, there are alsodeclarations that de�ne variables used by the processes. The syntax of a module is shownas follows: module declaration)module name;declarationsprocessesendmoduledeclarations)delay name = delays;j mode name = f[initial value], [delays]g;f, . . . gmode) input j output;The declaration part includes delay declarations and interface declarations. The delaydeclarations de�ne delay variables. These delay variables are then used to specify therising and falling delays of signals. Examples of such delay variables are shown below:delay envdelay = <10, 40; 15, 50>;delay gatedelay = <0, 20>;

5The �rst declaration creates a delay variable with two pairs of delays. The �rst pairspeci�es the range of time in which a signal is allowed to change from '0' to '1'. Thesecond pair speci�es the range of time in which a signal is allowed to change from '1' to'0'. For example, a signal s with a delay speci�ed by delay variable envdelay is initially'0', if at time 0 there is a request to change s to '1', this transition occurs at any time xfrom 10 to 40 time units. After s stays '1' for n time units, there is a request to changeit to '0', this transition occurs at any time from x+n+15 to x+n+50. This example isillustrated in Figure 2.1. Note that the second delay variable has only one pair of delays.In this case, both rising and falling delays have the same values.The interface declarations de�ne the inputs and outputs of a module. When declaringthe input and output signals, we can also assign the signals with initial values and delays.The following shows an example of an input signal declaration:input result = ftrue, envdelaygBoth the initial value and delay are optional. The default value of the initial value isfalse. The default value of the delay is zero to in�nity.The behavior of a module is described by processes which execute in parallel. Aprocess has the following form:process label; process body endprocessThe process body may contain actions, selection commands, and repetition commands.The actions are used to assign values to the output signals. In our subset, signals canonly take two values: true and false. When an output signal x is assigned with true orfalse, it is denoted by x+ or x�, respectively.There are two structures to control the ow of a process. They are selections andrepetitions. A selection command has the following form:[G1 ! S1 j : : : j Gn ! Sn]
time

0 10 40

n

x+nx x+n+15 x+n+50Figure 2.1. A delay de�nition example.

6where G1 through Gn are boolean expressions, S1 through Sn are arbitrary program parts(Gi is called a \guard", and Gi ! Si is called a \guarded command"). When a processexecutes a selection command, all guards in that selection command are evaluated �rst.If one of the guards Gi is true, then Si following that guard is executed. There is aspecial form of selection commands, [G], which stands for [G ! skip], and is used tosuspend the execution of a process until G evaluates to true.A repetition command has the following form:�[S]where S is an arbitrary program part. �[S] stands for �[true ! S], and causes S to beexecuted forever. This is usually used to de�ne a reactive process:�[[G1 ! S1 j : : : j Gn ! Sn]]When executing this command, the process waits until one of the guards is true, thenexecutes the program part following that guard, and repeats. Another type of repetitionconstruct is shown below: [G1 ! S1 j : : : j Gn ! Sn; �]The operation of this construct is similar to that of the selection construct de�ned aboveexcept that after a guarded command followed by a '�' is executed, the control loops backto the beginning of the construct and the construct executes again.To make a process run as expected, two arbitrary program parts may be composedwith three operators: the sequential operator (;); the concurrent operator (k); and thechoice operator (j). S1;S2 says that S2 can start executing only after the execution of S1completes. S1 k S2 says that S1 and S2 execute in parallel. S1 j S2 says that either S1 orS2 can execute, but not both. Figure 2.2 shows a complete example for a scsi controllerwritten in timed HSE.2.2 Speci�cation of Timed Systems in VHDLThis section introduces a subset of VHDL to specify timed systems. The reason wede�ne a subset of VHDL is that VHDL is a huge and complex language containing manyfeatures that cannot be synthesized and all VHDL design tools can only synthesize asubset of it. For example, SYNOPSYS does not allow wait statements within a process on

7module scsi;delay gatedelay = h0,5i;delay envdelay = h20,50i;input ack = ftrue, envdelayg;input go = ffalse, envdelayg;output req = ftrue, gatedelayg;output rdy = ffalse, gatedelayg;process scsictrl;*[req-; rdy+; [go]; rdy-; [ack]; req+; [go & ack]]endprocessprocess ackenv;*[[req]; ack-; [req]; ack+]endprocessprocess goenv;*[[rdy]; go+; [rdy]; go-]endprocessendmoduleFigure 2.2. A complete timed HSE example for a scsi controller.any signals other than the clock. Compared with timed HSE, VHDL is more expressivebecause it allows the speci�cation of circuits hierarchically. In the following severalsubsections, all features in the synthesizable subset are introduced.2.2.1 Entities and Architecture BodiesThe description of a VLSI circuit can be divided into two parts: the external view andthe internal view. The external view describes the interface between the internal structureand the outside world. It speci�es the number and types of the input and output signals.The internal view describes how the circuit implements its function. In VHDL, the entitydeclaration describes the external interface, and one or more architecture bodies describealternative internal implementations.The syntax rules for entities and architecture bodies are shown in Figure 2.3. Theidenti�er in an entity declaration names the module so that it can be referred to later.The port clause, which is optional, names each of the ports, which together form theinterface to the entity. The ports can be thought of as being analogous to the pins of a

8entity declaration)entity identi�er is[port (interface list);]end [entity] [identi�er];interface list)(identi�er f, . . . g : [mode] type [:= expression]) f; . . . gmode) in j out j inoutarchitecture body)architecture identi�er of entity name isdeclarationsbegin concurrent statementsend [architecture] [identi�er];Figure 2.3. The syntax rules for entities and architecture bodies.circuit. Each port of an entity has a type, which speci�es the kind of information thatcan be communicated. In this subset, the allowed data types are bit and std logic. Eachport also has a mode which speci�es whether information ows into or out from the entitythrough the port.The example shown in Figure 2.4 describes an entity named SPDOR, with two inputports and one output port, and all of them are a single bit. The output port out1 isdeclared with a mode of inout so that the information on this port can be both sensedor driven by the module SPDOR.The internal operation of a module is described by an architecture body. In general, anarchitecture body applies some operations to the values on input ports, generating valuesto be assigned to output ports. The operations can be described either by processes,which contain sequential statements operating on values, or by a collection of componentsrepresenting subcircuits, or by both. The identi�er in an architecture body names aparticular architecture body, and the entity name speci�es which module is describedby this architecture body. A single entity may have one or several di�erent architecturebodies. The declarations in an architecture body are declarations needed to implemententity SPDOR isport (in1, in2 : in std logic; out1 : inout std logic);end SPDOR;Figure 2.4. The entity and port declarations for an OR gate.

9the operations. The items may include many kinds of declarations, but only signaldeclarations and component declarations are allowed for synthesis. The statements inthe architecture body execute concurrently. In our synthesizable subset of VHDL, onlyprocess statements and component instantiation statements are allowed for synthesis.2.2.2 Signal and Component DeclarationsWhen the operation of an architecture body requires generation of intermediate values,internal signals are needed. Before these signals are used, they must be declared throughsignal declarations. The syntax for a signal declaration is shown in Figure 2.5. Thedeclaration simply names each signal, speci�es its type and optionally includes an initialvalue for all signals declared by the declaration. The following shows an example of howa signal is declared: signal x : std logic := '0';After the declaration, those signals can be used by the following concurrent statements inthe architecture body. An important point that should be pointed out is that the portsof the entity are also visible inside the architecture body and are used in the same wayas signals.For synthesis of timed systems, it is necessary to know how an environment can behave.The signals are used to connect the environment to the circuit being designed. Since onlythe signals connected to the outputs of the circuit can be synthesized, the command��@ is used to indicate which signals are connected to the outputs of the circuit beingdesigned, and which are not. This command is used only at the highest level whichcontains concurrent statements for the circuit and its environment, and is ignored by thesimulator.signal declaration)signal identi�er f, . . . g : type [:= expression];component declaration)component identi�er [is][port(interface list);]end [component] [identi�er];Figure 2.5. The syntax rules for signal and component declarations.

10When designing a large and complicated system, a hierarchical approach is a goodway to attack the di�culty and complexity. In this subset, component declarations andcomponent instantiation statements are used for hierarchical design. Component instanti-ation statements are introduced in a later section. The syntax of component declarationsis shown in Figure 2.5. Similar to entity declarations, a component declaration simplyspeci�es the external interface to the component. Figure 2.6 shows a simple example ofhow a component is declared. The declaration de�nes a component type that representsa ipop with clock clk, clear clr and data inputs d, and a data output q.component ipop isport(clk, clr, b : in bit, q : out bit);end ipop;Figure 2.6. An example component declaration.2.2.3 Concurrent StatementsConcurrent statements in an architecture body describe a module's operations, andare executed in parallel. In our synthesizable subset, the allowed concurrent statementsare process statements, which contain sequential statements operating on signal values,and component instantiation statements representing subcircuits. The syntax rules forprocess and component instantiation statements are shown in Figure 2.7.The process label identi�es the process. An optional sensitivity list may be includedin a process after the keyword process, but only processes without sensitivity lists areallowed in our synthesizable subset. The declarations in a process statement may containprocess statement)[process label:]process [is]declarationsbegin sequential statementsend process [process label];component instantiation statement)[instantiation label:][component] component name[port map (association list)];Figure 2.7. The syntax rules for concurrent statements.

11many declarative items, but only signal declarations are allowed for synthesis. Thesequential statements form the process body and can include wait, signal assignment,if, and loop statements. These statements are introduced in the next section.If a component declaration de�nes a kind of module, then a component instantiationstatement speci�es a usage of such a module in a design. The syntax rules show thatwe may simply name a component declared in the architecture body and provide actualsignals to connect it to the ports. The label is necessary to identify the componentinstance. Figure 2.8 shows the block diagram of the scsi controller. Its correspondingstructural VHDL code is shown in Figure 2.9. It consists of three components: scsictrl,goenv, and ackenv. Four internal signals are declared to connect these three componentstogether. The entity declaration of the scsi controller is shown on the top of Figure 2.9.Since the circuit has no input and output signals, there is no port declaration in the entity.Since the internal signals req, rdy connect to the outputs of the circuit scsictrl, they arespeci�ed by the command '��@ out', and the other two are speci�ed by the command'��@ in'. Note that all we have done here is to specify the structure of this level of thedesign hierarchy, without having indicated how these components are implemented.2.2.4 Sequential StatementsAs mentioned in the previous section, a process body may contain sequential state-ments. It is so called sequential because when the process is activated, it starts executingfrom the �rst sequential statement and continues until it reaches the last one. It thenstarts again from the �rst one. This would be an in�nite loop, and is desirable in electroniccircuits because circuits typically operate continuously until the power is shut down.Many kinds of sequential statements can be contained in a process. In our synthe-sizable subset, only wait statements, signal assignment statements, if statements, and
scsictrl

rdy

go ack

req

goenv

rdy

go ack

req

ackenv

 I_1 I_2 I_3Figure 2.8. The block diagram of the scsi controller.

12entity scsi isend scsi;architecture structural of scsi iscomponent scsictrl isport (go, ack : in std logic; req, rdy : out std logic);end component scsictrl;component goenv isport (rdy : in std logic; go : out std logic);end component goenv;component ackenv isport (req : in std logic; ack : out std logic);end component ackenv;signal go, ack : std logic; ��@ insignal req, rdy : std logic; ��@ outbeginI 1 : component goenvport map (rdy, go);I 2 : component scsictrlport map (go, ack, req, rdy);I 2 : component ackenvport map (req, ack);end architecture structural;Figure 2.9. Structural VHDL code of the scsi controller.loop statements are allowed for synthesis. The syntax rules for sequential statements areshown in Figure 2.10.The wait statements are used to specify when processes respond to changes of signalvalues. In VHDL semantics, processes would be in�nite loops. If wait statements areincluded in a process, the process execution will be suspended until the relevant booleanconditions in the wait statements are satis�ed. For example, the wait statementwait until req = '1';causes the executing process to suspend until the value of the signal req changes to '1'.The condition expression is tested while the process is suspended to determine whether

13wait statement)[label:] wait [until boolean expression];signal assignment statement)[label:] signal name ((value expression [after time expression])f, . . . gif statement)if boolean expression thensequential statementselsif boolean expression thensequential statementselse sequential statementsend if;loop statement)[while boolean expression] loopsequential statementsend loop;Figure 2.10. The syntax rules for sequential statements.to resume the process. However, even if the condition is true when the wait statement isexecuted, the process still suspends until the appropriate signals change and the conditionbecomes true again. Thus, the wait statement is called \event-sensitive." To just test ifa condition is true, ignoring whether there is an event, an if statement is put before thewait statement. If the condition is true, the wait statement is skipped. Otherwise, theprocess suspends until the condition is true. An example is shown as follows:if req = '0' thenwait until req = '1';end if;Signal assignment statements are used to schedule events on signals and change thevalues of the signals after some delay. There are two events associated with each signals in a speci�cation. The event s (`0' denotes that signal s is changed from a high tolow value, and the event s (`1' denotes that signal s is changed from a low to highvalue. The delay may be supplied by a function which takes two parameters. These twoparameters specify the lower and upper bounds associated with this signal transition.The lower bounds are nonnegative integers, and the upper bounds are an integer greaterthan or equal to the lower bounds. An example is shown as follows:

14x <= `0' after delay(99,109);The delay may also be speci�ed by a single time value, which de�nes a bounded delayfrom the value to 1. Finally, the delay may be unspeci�ed. In this case, the lowerand upper bounds for the signal transition are 0 and 1, respectively. Since real valuescan be expressed as rationals within any required accuracy, restricting the bounds tobe integers does not limit the expressiveness in practice. Since there are only a �nitenumber of timing parameters, if any are rational, we can multiply all of them by theleast common denominator. For simulation, this delay function returns a random delayvalue between these bounds. For synthesis, the timed circuit that we generate must besynthesized in such a way to guarantee that it operates correctly given that the delayfor this event always falls in these bounds. The timing analysis algorithms and synthesisalgorithms necessary to generate such timed circuits have been the subject of numerouspapers [19, 20, 18, 3].Finding these timing constraints, or the delay bounds to associate with the transitionson these signals is not a trivial task. The timing constraints for input signal transitionscan usually be determined from interface speci�cations or datapath delay estimates. Thetiming constraints for output signal transitions, however, present a \chicken and eggproblem," since the timing constraints cannot be known until the circuit is synthesized,but the circuit cannot be synthesized without giving the timing constraints. The tradi-tional delay-insensitive or speed-independent approaches to asynchronous design assumeno timing information. In other words, they assume that delays can be anywhere from0 to 1. This conservative assumption can often lead to unnecessarily complex circuitimplementations, and limits the designs that can be produced. It is quite reasonable,however, to expect an automatic analysis of the given gate library to produce a safeestimate of the maximum delay for the gates in the library to be used, and by makingsome assumptions about the complexity of the synthesized logic, this can be used toset the upper bound of the timing constraint for each output signal transition. Thelower bound of the timing constraint should usually be set to a very low value sinceoptimizations could potentially reduce the gate to nothing more than a wire. After thecircuit is generated, it must be back-annotated with timing information from the gatelibrary and veri�ed to be correct which is the subject of a previous paper [23] and outsidethe scope of this thesis.The if statements are used to select certain sequential statements to execute depending

15on a set of input conditions. The boolean expressions after the keyword if are theconditions that are used to control whether or not the statements after the keywordthen are executed. If the condition evaluates to true, the statements are executed. Ifnone of these conditions evaluates to true, the statements following the else are executed.For example: if sel = '1' thenresult ('1';else result ('0';end if;Loop statements are used to describe repetitively executed structures. There areseveral di�erent forms of loop statements in VHDL. Our synthesizable subset supportsin�nite loops and while loops. While loop statements test conditions before each iteration.If the condition is true, iteration proceeds. If it is false, the loop is terminated. The syntaxof loop statements is shown in Figure 2.10.Figure 2.11 shows a complete example including several wait and signal assignmentstatements, and an if-then-elsif clause. The basic operation of a SPDOR gate is as follows:when either in1 or in2 goes high, out1 goes high which causes x to go low after somedelay which will reset out1 to low. Therefore, out1 is a pulse, and correct operation ofthis circuit is very dependent on timing. This circuit is not directly synchronized by aclock, though the data it receives and generates may be latched by a clock elsewherein the design. Such self-synchronizing circuits are typical of the types of timed circuitscurrently in use today.An if-then-elsif clause may also be used to specify nondeterministic choice made by theenvironment. In this case, the if-then-elsif clause must be proceeded by an assignment toa random variable which is tested in the if-then-elsif clause to simulate random behaviorby the SPDOR's environment. As an example, consider the environment architectureshown in Figure 2.12. In this example, the variable z is used to get a random value of 1or 2, and based on this value, it causes the environment to select to send in1 or in2, butnot both. For synthesis of timed systems, it is necessary to know how an environmentcan behave. While this requires more information than is typically needed for traditionalcloud of logic synchronous synthesis, this additional information can lead to additionalreductions in circuit complexity. For simulation, this environment architecture serves as a

16entity SPDOR isport (in1, in2 : in std logic, out1 : inout std logic);end SPDOR;architecture SPDOR of OR issignal x : std logic := `1';begincircuit : processbeginwait until in1 = `1' or in2 = `1';if (in1 = `1') thenout1 <= `1' after delay(201,221);wait until out1 = `1';x <= `0' after delay(99,109);wait until x = `0';out1 <= `0' after delay(199,219);wait until out1 = `0';x <= `1' after delay(101,111);wait until x = `1';elsif (in2 = `1') thenout1 <= `1' after delay(101,111);wait until out1 = `1';x <= `0' after delay(49,59);wait until x = `0';out1 <= `0' after delay(99,119);wait until out1 = `0';x <= `1' after delay(51,56);wait until x = `1';end if;end process;end SPDOR;Figure 2.11. The complete example for SPDOR.testbench which provides nondeterministic input behavior for the circuit being designed.We believe that this coupled with the random delay function will lead to �nding morebugs during simulation. Due to their highly-sequential nature, bugs in timed systemsmay only exhibit themselves for unusual delay and environment behavior which is oftenmissed in deterministic simulations. For example, a bug may only be present when onesignal is asserted after its maximum delay and another is asserted after its minimumdelay. Another example is that a bug may only show up if the environment does two in1events in a row, but you may have only been simulating alternating in1 and in2 events.

17entity SPDOR ENV isport (out1 : in std logic, in1, in2 : inout std logic);end SPDOR ENV;architecture BEHAVIOR of SPDOR ENV isvariable z : integer;beginenvironment : processbeginz := random(2);if (z = 1) thenin1 <= `1' after delay(500,550);wait until in1 = `1';in1 <= `0' after delay(269,299);wait until in1 = `0';elsif (z = 2) thenin2 <= `1' after delay(500,550);wait until in2 = `1';in2 <= `0' after delay(269,299);wait until in2 = `0';end if;end process;end BEHAVIOR;Figure 2.12. The complete example for the SPDOR's environment.2.2.5 A Design Package to SimulateNondeterministic BehaviorTo simulate nondeterministic environment and delay behavior, a VHDL design packageis developed. The package, shown in Figure 2.13, is used for simulation and ignored bysynthesis. It includes two functions. The �rst function, random (number), is a randomnumber generator. It takes an integer number as a parameter, and returns a numberbetween 1 and number. The second function, delay (l,u), takes two integer numbers land u, and returns a number with type of time between l and u. A simulation of SPDORusing this package and SYNOPSYS is shown in Figure 2.14.

18
package nondeterminism isfunction random(number:integer) return integer;function delay(l,u: integer) return time;end nondeterminism;package body nondeterminism isfunction random(number:integer) return integer isbeginreturn((RAND mod number)+1);end random;function delay(l,u: integer) return time isvariable randel : time;variable num,iter : integer;beginrandel := 0 ns;iter := random(u� l + 1) + l - 1;for i in 1 to iter looprandel := randel + 1 ns;end loop;return randel;end delay;end nondeterminism;Figure 2.13. A design package for nondeterministic behavior.

Figure 2.14. A nondeterministic SYNOPSYS simulation of the SPDOR.

CHAPTER 3COMPILATIONThis chapter describes the compilation procedures that are used to translate timedHSE and VHDL speci�cations into TEL structures. First, we describe TEL structures.Then, we describe composition and renaming rules of TEL structures. Finally, we describethe compilation procedures to interpret timed HSE and VHDL speci�cations.3.1 Timed Event/Level StructuresIn order to de�ne the behaviors speci�ed by a model in our synthesizable subsetof VHDL, we use timed event/level (TEL) structures, a variant of Myers' timed event-rule structures [18] with a boolean condition added to each rule in the rule set. Eventstructures were introduced by Winskel [27], and timing has been added to them in severalways. Subrahmanyam added timing to event structures using temporal assertions [24].Burns introduced timing in a deterministic version, the event-rule (ER) system, in whichcausality is represented using a set of rules, and a single delay value is associated with eachrule [6]. Myers introduced timed ER structures that extend ER systems with boundedtiming constraints and add conicts from event structures to model nondeterministicbehavior (namely, environmental choice). Timed event/level structures, which are �rstintroduced in [2] by Belluomini, extend timed ER structures by associating a booleanexpression with each rule.TEL structures are composed of a set of signals (N), a set of atomic actions (A), a setof events (E), a set of rules (R), and a symmetric conict relation (#). In timed systems,the signal set N contains all input, output, and internal signals. The atomic action set Acontains a rising transition and a falling transition, denoted by x+ and x� respectively,for each signal x in the signal set N . There is a special kind of action: dummy action,denoted by '$'. The dummy actions do not cause any signal transitions in a system.They are treated as program pointers to indicate how far a process has reached. Theoccurrence of an action is an event, and it is denoted (a; i) where a is the action and i

20is an occurrence index for the action. The �rst instance of this action has i = 0, and iincrements with each subsequent instance. The event is a dummy event if it is an instanceof a dummy action.The rule set R is used to represent a causal dependence between two events. Each ruleof the form he; f; l; u; bi is composed of an enabling event e, an enabled event f , a boundedtiming constraint hl; ui, and a sum-of-product boolean expression over the signals in thesignal set N . Informally, a rule states that the enabled event cannot occur until the rule issatis�ed and the boolean expression b evaluates to true. The bounded timing constraintplaces a lower and upper bound on the timing of a rule. A rule is said to be satis�ed if atleast l time units has passed since the enabling event e �red. A rule is said to be expired ifat least u time units has passed since the enabling event e �red. Again ignoring conict,an event cannot occur until all rules enabling it are satis�ed and the boolean expressionsassociated with those rules are true. This causality requirement is termed conjunctive.An event must always occur before every rule enabling it has expired. Since an event maybe enabled by multiple rules, it is possible that the di�erence in time between the enabledevent and some enabling events exceed the upper bound of their timing constraints, butnot for all enabling events. These timing constraints are the same as max constraints [15]and type 2 arcs [25].The conict relation is added to model disjunctive behavior and choice. When twoevents e and e0 are in conict (denoted e#e0), this speci�es that either e can occur or e0can occur, but not both. Taking the conict relation into account, if two rules have thesame enabled event and conicting enabling events, then only one of the two mutuallyexclusive enabling events needs to occur to cause the enabled event. This models a formof disjunctive causality. Choice is modeled when two rules have the same enabling eventand conicting enabled events. In this case, only one of the enabled events can occur.The timed event/level structure is de�ned below in which N = f0; 1; 2; 3; : : :g:De�nition 3.1.1 A timed event/level structure is S = hN;A;E;R;#i where1. N is the set of signals;2. A is the set of atomic actions;3. E � A�N is the set of events;4. R � E �E �N � (N [f1g) � (b : f0; 1gN ! f0; 1g) is the set of rules;5. # � E �E is the conict relation.Events are labeled using the function L : E ! A.

21Figure 3.1(a) shows an example that expresses the conjunctive causality. In this TELstructure, z� cannot occur until boolean expression hai and hb _ ci are true, and bothevents x+ and y+ occur. Figure 3.1(b) expresses a conict, that is, either y+ or z� canoccur, but not both. Figure 3.1(c) shows the TEL structure of an AND gate. The eventc� can �re when c+ has �red for at least 1 time unit but not over 4 time units, and theboolean expression h:a_:bi is true. The event c+ can �re when c� has �red for at least2 time units but not over 6 time units, and the boolean expression ha ^ bi is true.3.2 Composition and Renaming ofTEL StructuresEach process in a timed HSE speci�cation or a VHDL speci�cation is made up of asequence of sequential constructs that are composed on operators specifying sequencing,concurrency, and choice. Therefore, we need to de�ne a means of composing two TELstructures. To facilitate this composition, two sets are added temporarily to the TELstructure: �rst and last. Each element x of the �rst set is of the form: x = he; l; u; bi, wheree is an event from the event set E, hl; ui is a timing constraint that is associated with e,and b is a boolean expression associated with e. The last set is simply a subset of the eventset. These sets are not part of the �nal TEL structure and are simply information thatmust be recorded during the decomposition phase in order to allow the TEL structures tobe composed correctly. Intuitively, the �rst set indicates which events are the �rst to occurin a TEL structure, and the last set indicates which events are the last to occur. Eachevent in the �rst set is also associated with a timing constraint and a boolean expressionto indicate under what condition these events can occur. The composition of two TELstructures S0 = hN0; A0; E0; R0;#0;�rst0; last0i and S1 = hN1; A1; E1; R1;#1;�rst1; last1i(i.e., S0 op S1 where op 2 f; ; k; jg) is de�ned as follows:
z-

x+ y+

<b | c>
[8,12]

<a>
[3,10]

Conjunctive

(a)

c+

c-

<~a | ~b>
[1,4]

<a & b>
[2,6]

AND gate

(c)

x-

y+ z-

[2,4]
<a & b> <~c>

[2,6]

y+ # z-
Conflict

(b)Figure 3.1. Examples of TEL structures.

22N = N0 [N1A = A0 [A1E = E0 [E1R = R0 [R1 [fhx; y:e; y:l; y:u; y:bi j x 2 last0 ^ y 2 �rst1 ^ op = ; g# = #0 [#1 [f(e; e0) j (e 2 E0 ^ e0 2 E1 ^ op = j)g�rst = if (�rst0 = ; _ (last0 = ; ^ last1 = ;) _ op = k _ op = j) then �rst0 [�rst1else �rst0last = if (�rst1 = ; _ last1 = ; _ op = k _ op = j) then last0 [last1 else last1The sets of signals, actions, and events are simply merged. The rule set is similarlycombined, but in the case in which op = ; new rules are added from the last events inS0 (i.e., the events in the set last0) to the �rst events in S1 (i.e., the events in the set�rst1). These rules have the timing constraint and boolean condition associated with the�rst events. The conict set is also merged, and if op = j then every event in S0 is setto conict with every event in S1. Finally, new �rst and last sets are created. If thestructures are being composed in parallel or in conict, or both last0 and last1 are empty,the sets are created by simply taking the union of the sets from each structure. If thestructures are being composed in sequence, then in most cases the �rst set equals �rst0,and the last set equals last1. The exception is if �rst0 is empty then the �rst set equals�rst1, and if either �rst1 or last1 is empty then the last set is the union of the two lastsets from the two structures.Since a process is repetitive, the TEL structure describing its behavior is in�nite. Dueto its repetitive nature, however, this in�nite behavior can be described with a �nitemodel by adding an additional set of rules R0 and an additional set of conicts #0. Aloop set is also added temporarily to keep track of the last events before control loopsback. When a TEL structure is created, these sets are all initialized to the empty set. Togenerate these sets, the composition operator is modi�ed as follows:R0 = R00 [R01 [fhx; y:e; y:l; y:u; y:bi j x 2 loop0 ^ y 2 �rst1 ^ op = ; g#0 = #00 [#01 [f(e; e0) j (e 2 loop1 ^ e0 2 last0 ^ op = ;)gloop = if (op = k _ op = j) then loop0 [loop1 else ;The R0 set is found by �rst taking the union of the corresponding sets from the structuresthat are being composed, and then when op = ;, new rules are added from events in the

23loop0 set to the �rst1 set which creates a loop in the structure. Also, if op = ; then theevents in last0 are set to conict with the events in loop1. As for the loop set, the eventsin the loop sets from the structures being composed in parallel or in conict are simplymerged and initialized to the empty set when composed in sequence. When control loopsback, all events in the last set are moved into the loop set.Before de�ning the in�nite behavior of the TEL structure, we �rst introduce therenaming rules for TEL structures. When composing structures sequentially or in conict,multiple occurrences of events with the same name are not allowed. Therefore, beforedoing the composition, we �rst resolve any name clashes using the function rename whichtakes two structures and returns the second structure with event names changed such thatthey do not clash with event names in the �rst structure. The function rename(S0; S1)is de�ned as follows:N = N1A = A1E = frename(E0; e) j e 2 E1gR = fhrename(E0; e); rename(E0; f); l; u; bi j he; f; l; u; bi 2 R1gR0 = fhrename(E0; e); rename(E0; f); l; u; bi j he; f; l; u; bi 2 R01g# = f(rename(E0; e); rename(E0; e0)) j e#e0g#0 = f(rename(E0; e); rename(E0; e0)) j e#0e0g�rst = frename(E0; e) j e 2 �rst1glast = frename(E0; e) j e 2 last1gloop = frename(E0; e) j e 2 loop1gThe function rename is overloaded above to take a set of events E and a single event(a; i), and it renames (a; i) if there is a name clash with an event in the set E as follows:rename(E; (a; i)) = if (8k(a; k) 62 E) then (a; i) else (a; i+ j)where (a; j � 1) 2 E ^ (a; j) 62 E:For a TEL structure of the form S0 = hN0; A0; E0; R0;#0; R00;#00i, we inductivelyde�ne its in�nite behavior as follows:Si = loop(S0; S0krename(S0; Si�1))

24where the function loop(S0; S1) is de�ned as follows:R = R1 [fhe; rename(E0; f); l; u; bi j he; f; l; u; bi 2 R00g# = #1 [f(e; rename(E0; e0)) j e#00e0g:3.3 Compiling Timed HSE into TEL StructuresIn order to interpret the behavior of a model speci�ed in timed HSE, we translate itto a timed event/level (TEL) structure. We �rst describe how to interpret nonrepetitiveconstructs, then we describe how to interpret repetitive constructs.To interpret nonrepetitive constructs, we de�ne the function CTEL which takes a HSEspeci�cation and returns a TEL structure of the form: S = hN;A;E;R;#;�rst; lasti. Forsimplicity, the R0, #0 and loop sets are not listed because they are used only for therepetitive constructs. This function iteratively decomposes the HSE speci�cation intosingle actions and guards that are composed on the operators (; for sequencing, k forconcurrency, and j for conict), and it is de�ned as follows:CTEL(p; q) = CTEL(p); rename(CTEL(p);CTEL(q));CTEL(pkq) = CTEL(p)kCTEL(q);CTEL(p j q) = CTEL(p) j rename(CTEL(p), CTEL(q));CTEL([G]) = hfs(G)g; f$g; f($; 0)g; ;; ;; fh($; 0); (0; 0);Gig; f($; 0)giCTEL(a+) = hfag; fa+g; f(a+; 0)g; ;; ;; fh(a+; 0);D(a+); trueig; f(a+; 0)giCTEL(a�) = hfag; fa�g; f(a�; 0)g; ;; ;; fh(a�; 0);D(a�); trueig; f(a�; 0)giThe �rst rule simply states that the TEL structure for p and q with a ';' between themis obtained by �nding the TEL structures for p and q separately, renaming the TELstructure for q, if necessary, and composing these TEL structures using the sequencingoperator (;). The second rule states that the TEL structure for p and q with a 'k' betweenthem is obtained by �nding the TEL structures for p and q separately, and composingthese TEL structures using the parallel operator (k). The third rule states that the TELstructure for p and q with a 'j' between them is obtained by �nding the TEL structuresfor p and q separately, and composing these TEL structures using the conict operator(j). The next three rules are for generating TEL structures for a single guard and a singleaction. The TEL structure for a guard consists of the signals in the support set of theboolean expression (i.e. s(G)), the dummy action $, and a dummy event ($,0). The

25�rst and last sets are initialized to include the dummy event, and the boolean expressionassociated with the dummy event in the �rst set is set to the boolean expression indicatedin the guard. Since this event does not cause a signal transition, its timing constraint ish0; 0i. Next, if the input to the function is a single action, the function returns a TELstructure with a single signal, a single action, a single event, and both the �rst and lastsets initialized to include that event, and the timing constraint of the event, for examplea+, in the �rst set is given by the function D(a+) which returns the bounded delaydeclared for that signal. The TEL structures of a single guard [b] and a single action a+are shown in Figure 3.2 (a) and (b). Note that in Figure 3.2 (a) there is no enablingevent, which means the TEL structure contains no rules, and simply stores the booleanexpression in the �rst set.For a guarded command [G ! S], since the program part S cannot execute until theguard G evaluates to true, it is interpreted asCTEL([G! S]) = CTEL([G];S)The TEL structure for an example guarded command [b ! a+] is shown in Figure 3.2.When composing TEL structures, we try to minimize the number of dummy events. Inthis case, since the last event in the TEL structure for the guard [b] is a dummy event,and the �rst event in the TEL structure for the action a+ is a signal event with a booleanexpression true, the dummy event can be canceled without changing the meaning of thecommand by replacing the boolean expression of the �rst event in the TEL structure forthe action a+ by the boolean expression in the guard.For a selection construct [G1 ! S1 j : : : j Gn ! Sn], the process containing
a+ a+

(a)

$/0

(c)(b)

<true>

Figure 3.2. TEL structures for a guard [b], an action a+ and a guarded command[b! a+].

26it suspends until one Gi evaluates to true, then Si executes. Each guarded command isinterpreted similarly. Then, the TEL structures for all guarded commands are composedin conict. Therefore, the TEL structure for a selection is de�ned as follows:T1 = CTEL([G1];S1)T2 = T1 j rename(T1; CTEL([G2];S2)): : :result = Tn�1 j rename(Tn�1; CTEL([Gn];Sn))The resulting TEL structure is shown in Figure 3.3. In this case, all sets in the TELstructures are simply merged, and their events are set to conict.To interpret loop constructs, we de�ne two functions. The function mv takes a TELstructure, and moves its last set to the loop set. The function make loop also takes a TELstructure, and makes new rules from the loop set to the �rst set. Its de�nition is shownin Figure 3.4.There are two kinds of loop constructs in timed HSE: repetitive commands and in�niteloops. The in�nite loop, �[S], where S is an arbitrary program part, is easy to interpret.The TEL structure of S is created �rst, then it is made to loop back to form an in�niteloop. The creation of a TEL structure for an in�nite loop is de�ned as follows:make loop(mv(CTEL(S)))

S1 Sn

S1.E # ... # Sn.E

. . .
<G1> <Gn>

Figure 3.3. The TEL structure for a [G1 ! S1j : : : jGn ! Sn].

27TEL make loop(TEL S)ft = S:lastS:last = ;S = S;SS:last = treturn SgFigure 3.4. The de�nition of the function make loop.Another looping construct is the selective repetition command shown as follows:[G1 ! S1 j : : : j Gn ! Sn; �]This construct suspends the process until one of guards Gi eveluates to true, then thefollowing program part Si executes. If the Si has a '�' following it, the control loops backto the beginning of the construct. Otherwise, the control moves to the next command. Tointerpret this construct, a TEL structure for each guarded command is created. Assumethere is a '�' following Sn, the function mv is called to move the last set of the TELstructure for Gn ! Sn to its loop set. Then, the TEL structures for guarded commandsare composed in conict, and the functionmake loop is called to make loops. The creationof a TEL structure for a selective repetition command is shown as follows:T1 = CTEL([G1 ! S1])T2 = T1 j rename(T1; CTEL([G2 ! S2])): : :Tn = Tn�1 j rename(Tn�1;mv (CTEL([Gn ! Sn])))result = make loop(Tn)An example TEL structure is shown in Figure 3.5.For a module with multiple processes, its TEL structure is formed by composing allprocesses in parallel, i.e.,CTEL(P0 : : : Pn) = CTEL(P0)k : : : kCTEL(Pn):3.4 Compiling VHDL Speci�cations intoTEL StructuresIn order to interpret the behavior of a model described in our synthesizable subset ofVHDL, we translate it to a TEL structure. First, each process within each architecture is

28

S1 . . .

<G1> <Gn>

Sn

<Gn>
<G1>

S1.E # ... # Sn.EFigure 3.5. The TEL structure for [G1 ! S1j : : : jGn ! Sn; �].iteratively decomposed until it is made up of only signal assignment statements and simplewait statements. A simple wait statement is one which is composed of an expression thatincludes only a single sum-of-products boolean condition. This section �rst describesa method to interpret a sequence of sequential statements which is then extended tointerpret concurrent statements.3.4.1 Interpretation of Sequential StatementsWe �rst interpret each process within each architecture ignoring repetition. Repetitionis addressed in the next subsection. To interpret a nonrepetitive process, we de�ne thefunction VTEL which takes a VHDL speci�cation and returns a TEL structure of theform: S = hN;A;E;R;#;�rst; lasti. This function iteratively decomposes the VHDLspeci�cation into signal assignment statements and wait statements that are composedon the operators (; for sequencing, k for concurrency, and j for conict), and it is de�nedas follows: VTEL(p; q) = VTEL(p); rename(VTEL(p);VTEL(q))VTEL(wait until b) = VTEL([b])VTEL([b]) = hfs(b)g; f$g; f($; 0)g; ;; ;; fh($; 0); 0; 0; big; f($; 0)giVTEL(a(0 10 after delay(l,u)) = hfag; fa+g; f(a+; 0)g; ;; ;; fh(a+; 0); l; u; trueig; ;iVTEL(a(0 00 after delay(l,u)) = hfag; fa�g; f(a�; 0)g; ;; ;; fh(a�; 0); l; u; trueig; ;iVTEL(z = int) = h;; ;; ;; ;; ;; ;; ;i

29The �rst rule in the de�nition states that the structure for two sequential statementsp; q is obtained by �nding the TEL structures for p and q, renaming the events in thestructure for q, if necessary, and composing these structures using the sequencing operator(;). The next four rules are for generating TEL structures for a single wait and a signalassignment statement. First, if the input to the function is a single wait statement, thefunction returns a structure which consists of the signals in the support set of the booleanexpression (i.e. s(b)), a dummy action $, and a dummy event ($,0). The �rst and thelast set are initialized to include that dummy event ($; 0), and the boolean expressionassociated with the dummy event in the �rst set is set to the boolean condition indicatedin the wait statement. Since this dummy event does not cause a signal transition, itstiming constraint is h0; 0i. If the input to the function is a signal assignment statement,the function returns a structure with a single signal, a single action, a single event, andthe �rst set is initialized to include that event along with the lower and upper boundspeci�ed by the delay function and the boolean expression true. Note that this eventis not put in the last set, because completion of signal assignments is not waited for byfollowing statements in VHDL. Finally, if the input to the function is a test of a variable,the function returns an empty structure. These tests are on random variables and appearin the if-then-elsif clauses in the environment.In order to generate the structure for an if statement which has the following form:if b then p end if;a TEL structure is obtained for wait until b, and it is composed sequentially with arenamed version of the TEL structure for p. And also a TEL structure is obtained forwait until :b to de�ne the exit condition of the if statement. These two TEL structuresare composed in conict. The generation of the TEL structure for an if-then clause isde�ned as follow: V TEL([b]; p) j rename(V TEL([b]; p); V TEL([:b]))Similarly, the creation of an if-then-else clause which has the following formif b then p else q end if;is de�ned as V TEL([b]; p) j rename(V TEL([b]; p); V TEL([:b]; q))

30In order to generate the structure for an if statement which has the following form:if b1 then p1 elsif b2 then p2 else p3 end if;A TEL structure for the if-then branch is generated similarly as described above, andcomposed in conict with one that checks if the expression is false. If there is an elsif-thenclause, a TEL structure is created for the elsif-then clause, and composed in conict withone that checks if the expression in the elsif-then clause is false. If there is an else clause,its TEL structure is composed sequentially with the second TEL structure of the elsif-thenclause. Finally, the TEL structure for the elsif-then-else clause is composed sequentiallywith the second TEL structure for the if-then branch. The creation of the TEL structurefor an if-then-elsif-else clause is de�ned as follows:T = V TEL([b2]; p2) j rename(V TEL([b2]; p2); V TEL([:b2]; p3)):result = V TEL([b1]; p1) j rename(V TEL([b1]; p1); V TEL([:b1];T));Figure 3.6 shows the graphical representation of the TEL structures for a signalassignment, a wait and an individual if statement. Figure 3.7 shows the graphicalrepresentation of the TEL structure for an if-then-elsif-else statement.The generation of TEL structures for in�nite loops is described in the �rst section ofthis chapter. In this section, we describe how to interpret a while loop. Interpreting awhile statement is a little di�erent from interpreting an in�nite loop. Given a while loop,we �rst create an entry condition TEL structure and an exit condition TEL structure.The entry condition TEL structure is the TEL structure for a wait statement with a

wait until b

$/0a+

b then a <= ’1’if

a+$/0

delay(l,u)after

(c)(a) (b)

$/0 #

<~b>

a <= ’1’
a+

Figure 3.6. TEL structures for a wait, signal assignment and if statement.

31

P1

<~b1>

<b1>

<b2>

P2
P3

<~b2>

$/0

P1.E # P2.E # P3.Eif b1 then P1
elsif
else

b2 then
P3

P2 P1.E # $/0Figure 3.7. The TEL structure for an if-then-elsif statement.boolean condition which is the same as that of while loop condition. This TEL structureis composed with that of the loop body sequentially and the function mv is called for theresult. This is not complete because of the lack of an exit condition. The exit conditionTEL structure is the TEL structure for a wait statement with a boolean condition thatis opposite to the condition of the while loop. The exit TEL structure indicates when thewhile loop terminates. Since a while loop is either in the loop or terminated, the exit TELstructure and the above incomplete while loop TEL structure are composed in conict.Then the function make loop is called to make a loop. For a while loop statement:while b loop p end loop;the creation of the TEL structure for it is de�ned as follows:T1 = mv(V TEL([b]; p))T2 = VTEL([:b]) j rename(V TEL([:b]); T1)result = make loop(T2)The graphical view of the TEL structure for a while loop is shown in Figure 3.8.

32

while b loop p end loop

p

<~b>

$/0

 <~b>

Figure 3.8. The TEL structure of a while loop.3.4.2 Interpretation of Concurrent StatementsComponent instantiation statements and process statements are the concurrent state-ments allowed in this subset. To interpret a component instantiation statement, thecompiler �rst searches for an entity with the same name as the component name, andcreates a TEL structure for it. This TEL structure is then returned to the componentinstantiation statement, and all signal names in the TEL structure are replaced by actualsignal names in the statement. The operation of a process is an in�nite loop, thus, afterTEL structures for all sequential statements in the process are created and composed,the function make loop is called to make it an in�nite loop.In order to obtain the TEL structure for a complete model, it is now simply a matter ofcomposing all the individual processes Pi and component instantiation statements withineach architecture in parallel, i.e.,TEL(P0 : : : Pn) = TEL(P0)k : : : kTEL(Pn):

CHAPTER 4EXAMPLESA compiler from timed HSE and our synthesizable subset of VHDL to TEL structuresusing the procedure described in the previous chapter has been incorporated into thetimed circuit design tool ATACS. The compiler recognizes the entire VHDL-93 language,but it only synthesizes the subset described in this thesis. This chapter describes thespeci�cation and design of two examples. The �rst example is the sbuf controller fromthe HP Post O�ce [8] benchmark suite. The second example is the controller for ourasynchronous implementation of the Maxlist algorithm [21].4.1 Sbuf ControllerThe Sbuf controller is used to manage the transfer of packets between a sender anda receiver. First, the receiver sets req to high, which requests a line to be sent from thesender. Then, the sender sends the line and raises sendline. When the receiver readsthe line, it acknowledges the sender by raising ackline. Then, the sender lowers sendline,and the receiver responds by lowering ackline. This protocol continues until the receiverchooses to terminate it. To terminate the packet transfer, the receiver sets done highsometime after the falling transition of sendline but before it raises ackline again. Whenthe sender detects that done has risen, it lowers sendline and also raises ack, indicating ithas detected that the packet transfer is over. The receiver then lowers req, ackline, anddone in parallel and the sender, in response to this, lowers ack. The corresponding timedHSE code for the sbuf body and its environment is shown in Figure 4.1.The TEL structure for the Sbuf body generated by ATACS is shown in Figure 4.2. Notethat there is a circle across some lines, that means those lines have the same booleancondition associated with them. The rest of this section describes the details of how theTEL structure is generated from the timed HSE code.The compiler scans and decomposes the HSE code until it �nds the basic languageconstructs. It �rst recognizes [req] and sendline+ and generates the TEL structures,

34module sbuf;delay d = h2,5i;input req = f false, d g;input ackline = f false, d g;input done = f true, d g;output ack = f false, d g;output sendline = f true, d g;process sbufbody;�[[req]; sendline+;[:done ^ ackline! sendline�; [:ackline]; sendline+; �j done ^ ackline ! (ack + ksendline�); [:req ^ :ackline ^ :done]; ack�;]]endprocessprocess env;�[req+; [sendline]; ackline+;[:sendline! (done+ kackline�); [sendline]; ackline+;[:sendline ^ ack]; (req � kackline� kdone�); [:ack]j:sendline! ackline�; [sendline]; ackline+; �]]endprocessendmodule Figure 4.1. The timed HSE code for the sbuf controller.
<~done
 & ackline>

<~req &
 ~done &
 ~ackline>

<~req &
 ~done &
 ~ackline>

<req>

<~done & ackline>

<~ackline>

<done & ackline>

sendline+/0

ack+/0

ack-/0

sendline-/1

sendline+/1

sendline-/0

Figure 4.2. The TEL structure for the body of the sbuf controller.

35
$/0 sendline+/0 sendline+/0

(a) (c)(b)

<req> <req><true>

Figure 4.3. The TEL structure for [req]; sendline+.shown in Figure 4.3 (a) and (b). Figure 4.3 (c) shows the composition of the TELstructures shown in (a) and (b) with a sequencing operator ';'.Now the compiler tries to generate the TEL structure for the selection constructfollowing the �rst sendline+. There are two guarded commands in the selection. Asnoticed, there is a '�' sign following the �rst guarded command. It says that after thisguarded command is executed, the control loops back to the beginning of the selectioncommand. For the �rst guarded command, the TEL structures for the guard and theprogram part are generated similarly, shown in Figure 4.4 (a) and (b), respectively. Thosetwo TEL structures are composed sequentially as shown Figure 4.4 (c). Because after theexecution of that guarded command, the selection command will start from the beginning,the function mv is called to move the event sendline+/2 into the loop set as described inthe last chapter. This event is used to make a loop back to the beginning of the command.For the second guarded command, the guard is interpreted similarly. In the program part
<~done
 & ackline>

sendline-/0

sendline+/0

sendline-/0

sendline+/0

(c)
(a)

(b)

<~ackline><~ackline>
$/0

<~done
 & ackline>

<true>

Figure 4.4. :done ^ ackline ! sendline�; [:ackline]; sendline+; �.

36following the guard, there are two actions executed in parallel, the TEL structures forthe two actions are generated separately, and then composed concurrently. The TELstructures for the second guard and the program part following the second guard areshown in Figure 4.5 (a) and (b), respectively. These two TEL structures are composedsequentially to form the TEL structure for the second guarded command, which is shownin Figure 4.5 (c). Now we have the TEL structures for both guarded commands, they arecomposed in conict to form the TEL structure for the selection construct. ComposingTEL structures in conict is similar to composing them concurrently, all sets in them aresimply merged, except that conicts are generated when composing in conict. Note thatthe function rename is called to resolve the name clashes. Since there are two occurrencesof sendline�, the occurrence index of the sendline� in the second guarded command ischanged to 1. And also we know if the �rst command executes, the control loops back tothe beginning of the selection command. Therefore, the function make loop is called forthe selection command to make a loop back to the beginning of the command. Ignoringconicts here, the TEL structure for the selection command is shown in Figure 4.6.The nonrepetitive TEL structures for the process are shown in Figure 4.3 (c) andFigure 4.6, respectively. Composing them sequentially forms the nonrepetitive TELstructure for the process. The TEL structure of the process is shown in Figure 4.7.Finally, the function mv is called to the event ack � =1 to the loop set, and the functionmake loop is called to make a loop back to the beginning of the process. The result isshown in Figure 4.2.
<done &
 ackline>

<~req &
 ~done &
 ~ackline>

<~req &
 ~done &
 ~ackline>

<done &
 ackline>

<done &
 ackline>

<~req &
 ~done &
 ~ackline>

<~req &
 ~done &
 ~ackline>

ack+/0 sendline-/0

ack-/0

ack+/0 sendline-/0

ack-/0

(a) (c)(b)

$/0Figure 4.5. done ^ ackline ! (ack+ksendline�); [:req ^ :ackline ^ :done]; ack�.

37

<~req &
 ~done &
 ~ackline>

<done &
 ackline>

<~req &
 ~done &
 ~ackline>

sendline-/0

<~done &
 ackline>

sendline+/0

ack+/0 sendline-/1

ack-/0

<~ackline>

Figure 4.6. The TEL structure for the selection construct.

sendline-/1

<~req &
 ~done &
 ~ackline>

<~req &
 ~done &
 ~ackline>

<~done &
 ackline>

<~done & ackline>

<~ackline>

<req>

<done & ackline>

ack+/0

ack-/0

sendline+/1

sendline-/0

sendline+/0

Figure 4.7. The TEL structure for the nonrepetitive process.

384.2 The MaxlistMany signal and image processing algorithms require the calculation of a runningminimum or maximum over a sliding data window. For example, in a normalized least-mean-square (NLMS) adaptation algorithm given in [10], the �lter coe�cient which ischosen to be modi�ed is the one which is associated with the input sample with thelargest absolute value in the window of samples currently in the �lter.In [12], an e�cient algorithm is presented for such calculations. This algorithm storesdata elements in a pruned list. The data elements which are stored are those which arecurrently or have the potential of becoming the maximum or minimum within the slidingdata window. This pruned list can be substantially smaller than the actual size of thesliding window.We speci�ed and implemented an asynchronous architecture for the MAXLIST algo-rithm. We have designed and simulated it in VHDL on a large set of correlated randomdata samples. Our results show a wide variation in delay due to both data-dependenciesand operating conditions. We compare our asynchronous design with an existing syn-chronous design and the best possible synchronous design with an architecture comparableto ours. 4.2.1 AlgorithmThe MAXLIST algorithm generates the pruned list of potential maxima (or minima)as follows. When a new element arrives, it �rsts checks to see if an element already onthe list has fallen out of the sliding window. If it has, it is removed from the list. Next, itsearches the list until it �nds the smallest element which is larger than the new element.It adds the new element after this one, and it removes all smaller elements since they willnever become the maximum across the window.An example (courtesy of [12]) is shown in Figure 4.8. In this example, the slidingwindow is 6 elements long. Initially, element 3 is in the list because it is the maximum,and element 6 is in the list because it is a potential maximum. Elements 1 and 2 aredominated by element 3 since it is larger and appears later in the list. Elements 4 and5 are dominated by element 6. At time 1, the window shifts, and element 7 is added tothe list. At time 2, the window shifts again, element 8 is added, and since it dominates6 and 7, they are removed from the list. At time 3, element 3 slides out of the window,and element 9 is added, dominating element 8.

39

t=0 t=1

t=2 t=3

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9Figure 4.8. Example of the MAXLIST algorithm.By construction, the elements in the list are ordered by size and age. The head ofthe list is always the maximum and always the oldest element. The remaining elementshave the potential to become a maximum as larger, older elements fall out of the slidingwindow.In hardware, the pruned list must be of �xed size. If this size is less than the windowsize, it is possible that the running maximum or minimum may be in error. In [12], it isshown that the average size of the pruned list for random data goes like ln(n) where n isthe size of the window. Since small errors can usually be tolerated in signal and imageprocessing algorithms, the list size is usually chosen to be slightly larger than ln(n).4.2.2 ArchitectureIn our asynchronous architecture, we have chosen to compute the maximum over asliding window of 256 elements with a list size of 8 elements, where each element isrepresented as an 8-bit value. It is relatively straightforward to adapt our architecture tominimum calculations and to di�erent size windows and lists.One important architecture decision is how to search the list to �nd the locationwhere a new element should be inserted. Our initial architecture began the search at the

40beginning of the list (i.e., the current maximum element) and worked towards the end.It was brought to our attention that this may result in more comparisons than necessary[11]. As shown in Figures 4.9 and 4.10, by starting the search at the end of the list(i.e., the smallest potential maximum or newest element) and searching backwards, theaverage number of comparisons is reduced from 5.5 to only 1.4.Our architecture, depicted in Figure 4.11, is composed of seven main parts: an inputlatch, a counter, a FIFO, two comparators, an output latch, and a controller. In eachdata cycle, the following events occur:1. When the request signal goes high, the data is latched, and the counter is incre-mented.2. The current count and the position of the maximum are compared. If they are equal,the maximum has fallen out of the window, and it is shifted out of the FIFO.3. The new data element is compared with each element in the list beginning with themost recently added element until the insertion position has been found.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Comparisons

O
cc

ur
re

nc
es

Figure 4.9. Distribution of forward comparisons.

41

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8
x 10

4

Comparisons

O
cc

ur
re

nc
es

Figure 4.10. Distribution of backward comparisons.4. The new data element is placed in the location of the oldest element that it is greaterthan or equal to. If it is smaller than all elements in the list, it is placed in the �rstempty location. If the list is full, the element is discarded.5. The maximum data element and its position are output, and the acknowledge signalis asserted. 4.2.3 ImplementationThe major blocks that must be implemented in our asynchronous MAXLIST archi-tecture are the FIFO, two comparators, and the controller. The structure of the FIFO isshown in Figure 4.12. The FIFO must be able to shift data when the element at the headof the list has left the data window, put data on the CMP bus for the search throughthe list, and accept inserted data at arbitrary locations while clearing all subsequentlocations. The information stored in the FIFO is composed of three parts: a Full/Emptybit, the position (i.e., the count when the data arrived), and the data itself.

42

LATCH LATCHFIFO

CONTROLLER

COUNTER
EQUALS

COMPARE

EQUALS

GREATER

COMPARE

Req Ack

PosMax

DataOut

Data

Data

DataIn Figure 4.11. Overall block diagram.
F/E F/E F/E

DATADATADATA

POS POS POS

CMP

Data

POS

NEXTMAX

Figure 4.12. Block diagram of the FIFO.

43The comparator is composed of eight 1-bit comparators as shown in Figure 4.13. Itis started with a request to the highest order bit. Each bit of the comparator returnswhether ai is greater than (gt), less than (lt), or equal (eq) to bi. Only one of the threeoutputs can be asserted at any time. For the compare equals block, gt and lt are combinedby an or gate to generate not equal (neq), so neq is returned when any bit returns gt orlt, otherwise, eq is returned. For the compare greater equals block, gt and eq are combinedby an or gate to generate greater than or equal (ge), ge is returned for gt and less than(lt) is returned for lt. If the two bits are equal, the next bit is compared. Finally, if thelast bit returns eq, then ge is also returned for the compare greater equals block. Thisblock is highly data-dependent as the comparison may complete at varying times. Theasynchronous design methodology takes advantage of this data-dependency to produce amore e�cient architecture.The last important block is the controller. This block is split into ten separate controlblocks as shown in Figure 4.14. The main block accepts the request when a new datum

...

lt7

lt6

lt0

ltOR

...

lt0

lt6

lt7
gt7

gt6

gt0

req

a7

b7

a6

a0

b0

b6

eq7

eq6

OR

gt6

gt0

gt7

gt

eqFigure 4.13. Block diagram of a comparator.

44
Main

Shift

Ack

Req

Counter(output)
Latch

Latch
(input)

INS7

Datapath

Datapath Datapath Datapath

INS0INS6

Figure 4.14. Block diagram of the controller.is ready and sends the acknowledge when the current maximum has been determined,controls the input latches, output latches, and the counter. It also coordinates the shiftand insert control blocks. The shift block is called much like a subroutine in software.When called, it handles the control signals related to the counter and maximum positioncomparison, and it executes the FIFO shift when the comparison determines that theyare equal. The ins7 block is called to check if the new datum can be inserted in the lastlocation. If it can, the ins7 block asks the ins6 block to check, etc. until one block cannotaccept the data. At that point, a signal is sent back to tell the previous block the datashould be inserted in the list position that it controls. That block inserts the data in thelist position that it controls, and it forwards an acknowledgement through the ins blocksto its left to the main block. 4.2.4 ResultsWe implemented our architecture in VHDL and simulated it for 100,000 correlatedrandom data elements. The data were generated by �ltering pseudo-random Gaussianwhite noise by a single-pole �lter, and the output is then scaled and quantized to an 8-bitvalue. Due to the asynchronous nature of our architecture, it is able to take advantage ofdata-dependent delay variations. The sources for data-dependent delay variations are in

45the counter, each comparator, and the number of elements in the FIFO. These variationsresult in an extremely variable data delay cycle as shown in Figure 4.15 which depicts ahistogram of the delay to accept a new datum and output the current maximum. Overthe course of the 100,000 elements, our minimum delay was as small as 29 gate delays andour maximum was as large as 161 gate delays. The average delay is 58.6 gate delays witha standard deviation of 17.3. As mentioned earlier, since the list size is much smallerthan the window size, elements may need to be discarded. This event happened 8925times, but never did the dropped element become a maximum in the sliding window.One advantage of asynchronous design is the ability of an asynchronous design toadapt to operating conditions. The delay of a transistor in a VLSI design can varysigni�cantly depending on the quality of the process run, the operating temperature,and the supply voltage. In a synchronous design, this variation is taken into accountby adding a substantial margin to the clock cycle to guarantee that the chip operatescorrectly even in the most adverse circumstances. In reality, a chip typically comes froman average processing run and runs much cooler and at a higher supply voltage than in

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

6000

7000

8000

Gate delays

O
cc

ur
re

nc
es

Figure 4.15. Data cycle delay distribution (�xed).

46the worst-case. The speed of an asynchronous design adapts to the current operatingconditions. We took this fact into account in the simulation by replacing all �xed delayparameters by delay parameters which are randomly generated each cycle within a delaybound from the worst-case down to 50 percent of the worst-case. Our simulation resultsusing these bounded delays are shown in Figure 4.16. The average delay improves to 43.9gate delays with a standard deviation of 13. The minimum and maximum delays alsoimprove to 18.9 and 122.2 gate delays, respectively.4.2.5 ComparisonWe compared our results with several synchronous implementations of the MAXLISTalgorithm that were designed as class projects at the University of Utah. The bestimplementation designed by Julsgaard and Xu [13] had a clock frequency of 75 MHz fora 1:2�m CMOS process, and it required 6+2X cycles to accept a new datum and outputthe current maximum where X is the number of comparisons required. On average,they need 1.4 comparisons, or 117ns. Assuming a 0:5ns gate delay for this process, this

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

6000

7000

8000

Gate delays

O
cc

ur
re

nc
es

Figure 4.16. Data cycle delay distribution (bounded).

47synchronous design requires on average 234 gate delays per data cycle.In order to draw a fairer comparison, we examine the performance of a hypotheticalsynchronous design which uses the same architecture as our asynchronous design. Foreach data element in a synchronous design, one cycle would be required to latch the dataand increment the counter. Another cycle is needed to perform the position comparisonto see if a shift is necessary. If a shift is necessary, a clock cycle would be needed toperform it. Next, a minimum of two cycles are needed for each comparison that is goingto be performed to �nd the location in which to insert the data into the FIFO. One isneeded to determine and obtain the next element to be compared against, and the secondis to perform the comparison. After the position is determined, one cycle is needed toinsert the element. Finally, one cycle is required to output the current maximum. Puttingit all together, we get the following:data cycle delay = 4 + p(shift) + 2 � avg(cmp)In the 100,000 data samples, the list needs to be shifted only 227 times, so p(shift)is negligible. Using 1:4 as the average number of compares, the approximate averagedata cycle delay in a synchronous design would be about 6:8 cycles. The counter andcomparator would require at least one gate delay per bit and at least two more for controland latching data in and out. Thus, the fastest possible clock cycle time would be at least10 gate delays. Using a 10 gate delay cycle time, the synchronous design would requireon average 68 gate delays per data cycle. Therefore, our asynchronous design is at least14 percent faster considering only data-dependent delay variations and �xed delays, andat least 35 percent faster when operating conditions are also considered using boundeddelays.If we are given a �xed throughput requirement, this speed improvement can be turnedinto improved power performance by lowering the supply voltage. For example, to getthe same performance as the best synchronous design at 5 volts, our asynchronous designcan be run at 3.2 volts. This leads to a 59 percent savings in power, since power scalesas the square of the voltage. 4.2.6 CompilationSince our compiler synthesizes a subset of VHDL, only the controller block, which isshown in Figure 4.14, is synthesized. First, the main block is considered. Its VHDL code

48is shown Figure 4.17. The parameters in a delay function models half a gate delay and agate delay, respectively. For simplicity, only the architecture body is shown.The main block �rst waits until a request signal req is high, which means the datumis ready. Then, main block set reqin and reqcnter to high to read the datum into thedatapath block and to increase the counter by 1. After the above actions complete, itrequests the shift block to check if it is necessary to shift the FIFO block. After the shiftcompletes, the insert block is called to check if the new datum can be inserted into theFIFO block. Its TEL structure is shown in Figure 4.18. As noted, the graph displayshow the signal assignments are handled di�erently in VHDL and HSE. In HSE, when asignal assignment statement is executed, the statement following it can be executed onlyafter the event de�ned in the previous signal assignment statement is scheduled and �red.However, in VHDL, when a signal assignment statement is executed, the event is put intoa event queue, and will be �red after some delay. It does not a�ect the execution of thefollowing statements.The shift block is used to control whether to shift the FIFO block. When this blockis called, it �rst requests the equality comparator to compare the new datum with the�rst element in the FIFO block. If they are equal, it controls the FIFO block to do theprocessbeginwait until req = '1';reqin ('1' after delay(5, 10);reqcnter ('1' after delay(5, 10);wait until ackin = '1' and ackcnter = '1';shiftreq ('1' after delay(5, 10);reqin ('0' after delay(5, 10);reqcnter ('0' after delay(5, 10);wait until shiftack = '1';reqins ('1' after delay(5, 10);shiftreq ('0' after delay(5, 10);wait until ackins = '0';reqout ('1' after delay(5, 10);reqins ('0' after delay(5, 10);wait until ackout = '1';ack ('1' after delay(5, 10);reqout ('0' after delay(5, 10);wait until req = '0';ack ('0' after delay(5, 10);end process;Figure 4.17. The VHDL code of main block.

49
$5

$4

$2

$0

$3

$1

ack-/1

reqout-/1

ack+/1

reqout+/1

reqins-/1 shiftreq-/1

reqins+/1

reqin+/1

reqcnter+/1

shiftreq+/1

reqin-/1

reqcnter-/1<ackin & ackcnter>

<req>

<req>

<req>

<ackin & ackcnter>

<ackin & ackcnter>

<shiftack>

<shiftack><shiftack>

<ackins>

<ackins>

<ackins>

<ackout>

<ackout>

<~req>

<~req>

Figure 4.18. The TEL structure for the main block.shift. When the shift is done, it acknowledges the main block. Its VHDL code is shownin Figure 4.19. Its TEL structure is shown in Figure 4.20.The description of insert block is given in the previous subsection. Because of itscomplexity, both its VHDL code and TEL structure are too big to �t in a single page, sothey are not shown.

50processbeginwait until req = '1';cmp ('1' after delay(5, 10);wait on eq, neq;if (eq = '1' and neq = '0') thenshift ('1' after delay(5, 10);cmp ('0' after delay(5, 10);wait until over = '1';ack ('1' after delay(5, 10);shift ('0' after delay(5, 10);wait until req = '0';ack ('0' after delay(5, 10);elsif (eq = '0' and neq = '1') thencmp ('0' after delay(5, 10);ack ('1' after delay(5, 10);wait until req = '0';ack ('0' after delay(5, 10);end if;end process;Figure 4.19. The VHDL code of shift block
$2 $3

ack+/2

ack+/1

shift-/1

cmp-/1

shift+/1

$4

$5

$6

$9

ack-/1 ack-/2

cmp-/2

$0cmp+/1

$10

<req>

<req>
<req>

<eq & ~neq>

<eq & ~neq>

<over>
<over>

<over>

<~req>

<~eq & neq>

<~eq & neq>

<~req>

<~req>

<~req>

<(eq & neq) | (~eq & ~neq)>

<req>

<~eq & neq>
<eq & ~neq>

Figure 4.20. The TEL structure for the shift block.

CHAPTER 5CONCLUSIONAsynchronous designs have attracted a lot of attention recently because of theiradvantages, but their wide application is limited due to their disadvantages. There aremany existing speci�cation and synthesis methodologies, some are graph-based, the othersare language-based. Each of them is limited to a particular design style and synthesismethodology, and none of these methods allows timed systems to be easily speci�ed.To take advantage of the bene�ts of asynchronous designs, we have presented aframework for the speci�cation of timed circuits which is independent of design style andsynthesis method, and allows timing to be speci�ed easily. We have re�ned VHDL to asynthesizable subset which includes constructs to specify circuit hierarchy and behavior.We described the syntax rules for timed HSE and our synthesizable subset of VHDLin Chapter 2. To use VHDL, we have developed a package to allow simulation ofnondeterministic environment and delay behavior. This allows us to have a uniformmethod of speci�cation for both simulation and synthesis. We use a new semantic model,timed event/level (TEL) structures to de�ne the behavior speci�ed by timed HSE and oursynthesizable subset of VHDL, and show how TEL structures can be applied to formallyde�ne the semantics of timed HSE and our synthesizable subset of VHDL. We developeda compiler to translate the timed HSE and VHDL speci�cations into TEL structures,which are then fed to the rest of ATACS to synthesize timed circuit implementations.We also implemented a DSP algorithm, MAXLIST, using our methods. The simulationshows that our implementation outperforms comparable synchronous counterparts. Wealso showed the VHDL speci�cation and compilation results of its controller.In the future, we plan to extend the synthesizable subset of VHDL and improve thecompiler to accept more language constructs so that larger and more complex designexamples can be speci�ed and synthesized. We also plan to �nd an approach to implementCSP communication actions in VHDL, thus, to allow designers to specify models at ahigher and more abstract level, and also make it easy to translate from CSP speci�cations

52to VHDL speci�cations, or vice versa. We then plan to develop an automatic tool to dothe translation between CSP speci�cations and VHDL speci�cations. By doing so, CSPspeci�cations can be simulated with a simulator which simulates VHDL speci�cations.

REFERENCES[1] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng, Automatic synthesis of gate-level speed-independent circuits, Tech. Rep. CSL-TR-94-648, Stanford University,Novermber 1994.[2] W. Belluomini and C. J. Myers, Timed event/level structures. In collection ofpapers from TAU'97.[3] W. Belluomini and C. J. Myers, E�cient timing analysis algorithms for timedstate space exploration, in Proc. International Symposium on Advanced Research inAsynchronous Circuits and Systems, IEEE Computer Society Press, Apr. 1997.[4] K. v. Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, TheVLSI-programming language Tangram and its translation into handshake circuits, inProc. European Conference on Design Automation (EDAC), 1991, pp. 384{389.[5] E. Brunvand, Translating Concurrent Communicating Programs into Asyn-chronous Circuits, PhD thesis, Carnegie Mellon University, 1991.[6] S. M. Burns, Performance Analysis and Optimization of Asynchronous Circuits,PhD thesis, California Institute of Technology, 1991.[7] T.-A. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-theoretic Speci�ca-tions, PhD thesis, Massachusetts Institute of Technology, 1987.[8] B. Coates, A. Davis, and K. Stevens, The Post O�ce experience: Designing alarge asynchronous chip, Integration, the VLSI journal, 15 (1993), pp. 341{366.[9] A. Davis, B. Coates, and K. Stevens, The Post O�ce experience: Designinga large asynchronous chip, in Proceedings of the Twenty-Sixth Annual HawaiiInternational Conference on System Sciences, IEEE Computer Science Press, 1993,pp. 409{418.[10] S. C. Douglas, A family of normalized LMS algorithms, IEEE Signal ProcessingLetters, 1 (1994), pp. 49{51.[11] , Private communications, 1996.[12] , Running max/min calculation using a pruned ordered list, IEEE Transactionson Signal Processing, 44 (1996), pp. 2872{2877.[13] K. Julsgaard and Z. Xu, A VLSI implementation of the MAXLIST algorithm.Project report for CS/EE 542, University of Utah, 1995.[14] A. J. Martin, Programming in VLSI: from communicating processes to delay-

54insensitive VLSI circuits, in UT Year of Programming Institute on ConcurrentProgramming, C. Hoare, ed., Addison-Wesley, 1990.[15] K. McMillan and D. L. Dill, Algorithms for interface timing veri�cation, inInternational Conference on Computer Design, ICCD-1992, IEEE Computer SocietyPress, 1992.[16] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messershmitt, Automaticsynthesis of asynchronous circuits from high-level speci�cations, IEEE Transactionson Computer-Aided Design, 8 (1989), pp. 1185{1205.[17] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger, Synthesis of delay-insensitive modules, in 1985 Chapel Hill Conference on Very Large Scale Integration,H. Fuchs, ed., Computer Science Press, Inc., 1985, pp. 67{86.[18] C. J. Myers, Computer-Aided Synthesis and Veri�cation of Gate-Level TimedCircuits, PhD thesis, Stanford University, 1995.[19] C. J. Myers and T. H.-Y. Meng, Synthesis of timed asynchronous circuits, IEEETransactions on VLSI Systems, 1 (1993), pp. 106{119.[20] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, Automatic synthesis of gate-level timed circuits with choice, in 16th Conference on Advanced Research in VLSI,IEEE Computer Society Press, 1995, pp. 42{58.[21] C. J. Myers and H. Zheng, An asynchronous implementation of the maxlistalgorithm, in International Conferences on Acoustics, Speech, and Signal Processing,vol. 1, April 1997, pp. 647{650.[22] S. M. Nowick, Automatic Synthesis of Burst-Mode Asynchronous Controllers, PhDthesis, Stanford University, Department of Computer Science, 1993.[23] T. G. Rokicki and C. J. Myers, Automatic veri�caton of timed circuits, inInternational Conference on Computer-Aided Veri�cation, Springer-Verlag, 1994,pp. 468{480.[24] P. Subrahmanyam, What's in a timing discipline? considerations in the spec-i�cation and synthesis of systems with interacting asynchronous and synchronouscomponents, in Hardware Speci�cation, Veri�cation and Synthesis: MathematicalAspects, Springer-Verlag, 1990.[25] P. Vanbekbergen, G. Goossens, and H. de Man, Speci�cation and analysis oftiming constraints in signal transition graphs, in Proceedings of the European DesignAutomation Conference, 1992.[26] V. I. Varshavsky, ed., Self-Timed Control of Concurrent Processes: The Designof Aperiodic Logical Circuits in Computers and Discrete Systems, Kluwer AcademicPublishers, Dordrecht, The Netherlands, 1990.[27] G. Winskel, An introduction to event structures, in Linear Time, Branching Timeand Partial Order in Logics and Models for Concurrency. Noordwijkerhout, Norway,

55June 1988.[28] K. Y. Yun, Synthesis of Asynchronous Controllers for Heterogeneous Systems, PhDthesis, Stanford University, 1994.

