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ABSTRACT

This thesis presents a framework for the specification and compilation of modules in a
system that uses different synchronization paradigms. These timed systems are described
by using timed handshaking expansions (HSE) and a standard hardware description
language, namely VHDL. Synthesizable subsets of these languages are defined to include
constructs for describing timing behaviors, as well as, sequencing, concurrency, choice and
looping. A new formal semantic model, timed event/level structures, is used to define the
behaviors specified by the synthesizable subsets. A compiler is developed to translate the
HSE and VHDL specifications to timed event /level structures. This compiler is integrated
into ATACS, a synthesis tool for timed circuits. Finally we demonstrate our methodology

on a practical example, an asynchronous implementation of the Maxlist algorithm.
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CHAPTER 1

INTRODUCTION

With clock speeds approaching 1 GHz, designers are beginning to abandon purely
synchronous design. Techniques such as “Self-Reseting Logic” and “Opportunistic Time
Borrowing,” where signals are not locally synchronized with the clock, are used today
by designers to achieve performance not feasible with purely synchronous technology.
Designers at HAL/Fujitsu use self-timed design methods to speedup their on-chip divider,
and Intel has investigated using asynchronous circuits to speedup the instruction length
decoder for the x86 architecture. This is because asynchronous circuits have several poten-
tial advantages. An asynchronous circuit is one which performs synchronization without
a global clock. Therefore, skew in synchronization signals can be ignored, and the extra
circuitry for clock drivers and buffers is not necessary. In asynchronous circuits, the speed
of the circuit is allowed to change dynamically, so the performance is governed by the
average-case delay instead of worst-case delay. The delay of asynchronous circuits can vary
significantly over different processing runs, supply voltages, and operating temperatures,
but asynchronous circuits can adapt to those variations and can operate correctly under
all variations and simply speed up or slow down, as necessary. In an asynchronous system,
components can be interfaced without the difficulties associated with synchronizing clocks
in a synchronous system. Also, when a faster component becomes available, it can be
easily inserted into the system without requiring any other changes to the system resulting
in an overall system performance improvement. Asynchronous circuits can also lower
system power requirements because asynchronous circuits reduce synchronization power
by not requiring additional clock drivers and buffers to limit clock skew. They can also
automatically power down unused components. Finally, asynchronous circuits can make
efficient use of a dynamic power supply.

Unfortunately, wide application of asynchronous circuits is limited by several problems.
Due to the lack of CAD tools that address the complex timing issues involved, the bulk of

the design using such techniques is being done manually, which limits their application to



a very small part of the design. Asynchronous circuits must also avoid hazards. A hazard
is a spurious signal transition, or glitch. While hazards can be ignored in a synchronous
design as they are filtered out by the clock signal, any hazards in an asynchronous design
can potentially lead to a malfunction. Therefore, careful design is necessary to avoid
hazards in an asynchronous design which often leads to a significant increase in circuit
area. Asynchronous circuits have difficulties in interfacing with existing synchronous
designs, and may not be suitable for semicustom design because many asynchronous
designs require the use of special complex-gates. Asynchronous design may also be
unreliable because many asynchronous circuit designers play tricks and make assumptions
which must be checked with simulation. However, simulation is not perfect so unreliable
designs can be produced. Therefore, formalization and automation of these techniques

will allow larger parts of future designs to take advantage of their benefits.

1.1 Specification and Synthesis Methodologies

The first step in any synthesis method is to specify what is to be designed. Many
methods have been proposed for the specification of asynchronous designs. Some, how-
ever, are restricted to the signal transition level, such as I-nets [17], signal transition
graphs [7] [16], change diagrams [26], asynchronous finite-state machines [9] [22] [28], and
state graphs [1]. Some languages do exist which abstract the behavior of the design, but
they use non-standard languages such as communicating sequential processes (CSP) [14],
Occam [5], and Tangram [4]. Each of these specification methods is also designed for a
particular design style and synthesis methodology. Furthermore, none of these methods
allows timed systems to be easily specified.

Almost all commercial design tools for the simulation and synthesis of synchronous
digital systems employ standard hardware description languages (such as Verilog and
VHDL) and abide by common specification practices. This makes designs (and designers)
easily portable among tools. We wish to take advantage of this excellent repertoire
of already existing tools and knowledge. This approach promises to provide a dual
advantage. First, it saves tool development time and effort. Second, using existing
HDL and tools that are already familiar to designers enables easier migration into, and
assimilation of, the new design technology. It allows designers to think in familiar terms,
rather than having to go through difficult training and even a complete brainwash, when

new specification methods and tools are radically different.



Therefore, the purpose of this thesis is to develop a methodology that guides the
designer in the specification of timed systems using a standard HDL, namely VHDL, in a
manner that is independent of design style and synchronization method. The synthesiz-
able subset of the language has been refined and a methodology for the specification of
timed systems has been developed. A new semantic model, timed event/level structures
(TEL) [2] is used to define the behavior specified in VHDL. A new compiler has been
developed to translate the VHDL specifications into the TEL structures. This compiler
has been integrated into the CAD tool ATACS, which accepts the output of the compiler
and synthesizes a timed circuit. Figure 1.1 shows the relationship between the compiler

and ATACS.

1.2 Outline of Thesis

This thesis is organized as follows. Chapter 1 serves as a general introduction. Chapter
2 describes timed handshaking expansions (HSE), which are derived from Martin’s CSP
language [14], and how a synthesizable subset of VHDL can be used to model those
timed HSE constructs and behaviors. Chapter 3 describes timed event/level structures,
the semantic model used to describe behavior in timed HSE and VHDL, and introduces
the automatic procedures to interpret our timed HSE and VHDL specifications with this
new semantic model. Chapter 4 gives examples to show the promise of this specification
method by demonstrating how complex designs can be modeled and synthesized. Chapter

5 gives our conclusions and ideas for future research.

ATACS
_ nthesis circuits
VHDL | | compiler | TEL =ynth
specs structures engine

Figure 1.1. The overview of ATACS.



CHAPTER 2

SPECIFICATION OF TIMED SYSTEMS

This chapter describes the syntax rules of timed HSE, which is a subset of Martin’s
CSP language [14], and the synthesizable subset of VHDL. Both languages include con-

structs for describing timing behaviors, sequencing, concurrency, choice and looping.

2.1 Timed Handshaking Expansions
The behavior of a model is defined by a module in timed handshaking expansions
(HSE). Each module consists of one or several processes describing the operations of
the model. The processes execute in parallel. Besides the processes, there are also
declarations that define variables used by the processes. The syntax of a module is shown

as follows:

module_declaration =
module name;
declarations
processes
endmodule

declarations =
delay name = delays;
| mode name = {[initial_value|, [delays]};

(..

mode = input | output;

The declaration part includes delay declarations and interface declarations. The delay
declarations define delay variables. These delay variables are then used to specify the

rising and falling delays of signals. Examples of such delay variables are shown below:

delay envdelay = <10, 40; 15, 50>;
delay gatedelay = <0, 20>;



The first declaration creates a delay variable with two pairs of delays. The first pair
specifies the range of time in which a signal is allowed to change from ’0’ to '1’. The
second pair specifies the range of time in which a signal is allowed to change from ’1’ to
'0’. For example, a signal s with a delay specified by delay variable envdelay is initially
07, if at time O there is a request to change s to ’1’, this transition occurs at any time z
from 10 to 40 time units. After s stays 1’ for n time units, there is a request to change
it to ’0’, this transition occurs at any time from z+n+15 to z+n+50. This example is
illustrated in Figure 2.1. Note that the second delay variable has only one pair of delays.
In this case, both rising and falling delays have the same values.

The interface declarations define the inputs and outputs of a module. When declaring
the input and output signals, we can also assign the signals with initial values and delays.

The following shows an example of an input signal declaration:
input result = {true, envdelay}

Both the initial value and delay are optional. The default value of the initial value is
false. The default value of the delay is zero to infinity.
The behavior of a module is described by processes which execute in parallel. A

process has the following form:
process label; process_body endprocess

The process_body may contain actions, selection commands, and repetition commands.
The actions are used to assign values to the output signals. In our subset, signals can
only take two values: true and false. When an output signal z is assigned with true or
false, it is denoted by z+ or z—, respectively.

There are two structures to control the flow of a process. They are selections and

repetitions. A selection command has the following form:

n

time

0 10 X 40 X+n x+n+15 X+n+50

Figure 2.1. A delay definition example.



where G through G, are boolean expressions, S7 through S, are arbitrary program parts
(G, is called a “guard”, and G; — S; is called a “guarded command”). When a process
executes a selection command, all guards in that selection command are evaluated first.
If one of the guards G, is true, then S; following that guard is executed. There is a
special form of selection commands, [G], which stands for [G — skip], and is used to
suspend the execution of a process until G evaluates to true.

A repetition command has the following form:
#[S]

where S is an arbitrary program part. x[S] stands for *[true — S], and causes S to be

executed forever. This is usually used to define a reactive process:

When executing this command, the process waits until one of the guards is true, then
executes the program part following that guard, and repeats. Another type of repetition

construct is shown below:

The operation of this construct is similar to that of the selection construct defined above
except that after a guarded command followed by a ’+’ is executed, the control loops back
to the beginning of the construct and the construct executes again.

To make a process run as expected, two arbitrary program parts may be composed
with three operators: the sequential operator (;); the concurrent operator (||); and the
choice operator (]). S1;52 says that Sy can start executing only after the execution of S;
completes. S; || Sy says that S; and Sy execute in parallel. Sy | Sy says that either Sy or
Sy can execute, but not both. Figure 2.2 shows a complete example for a scsi controller

written in timed HSE.

2.2 Specification of Timed Systems in VHDL
This section introduces a subset of VHDL to specify timed systems. The reason we
define a subset of VHDL is that VHDL is a huge and complex language containing many
features that cannot be synthesized and all VHDL design tools can only synthesize a

subset of it. For example, SYNOPSYS does not allow wait statements within a process on



module scsi;

delay gatedelay = (0,5);
delay envdelay = (20,50);

input ack = {true, envdelay};
input go = {false, envdelay};
output req = {true, gatedelay};
output rdy = {false, gatedelay};

process scsictrl;
*[ req-; rdy+; [go]; rdy-; [ack]; req+; [go & ack] ]
endprocess

process ackenv;
*[ [ req]; ack-; [req; ack+ |
endprocess

process goenv;

*[ [rdy]; go+; [ rdy]; go- |
endprocess

endmodule

Figure 2.2. A complete timed HSE example for a scsi controller.

any signals other than the clock. Compared with timed HSE, VHDL is more expressive
because it allows the specification of circuits hierarchically. In the following several

subsections, all features in the synthesizable subset are introduced.

2.2.1 Entities and Architecture Bodies

The description of a VLSI circuit can be divided into two parts: the external view and
the internal view. The external view describes the interface between the internal structure
and the outside world. It specifies the number and types of the input and output signals.
The internal view describes how the circuit implements its function. In VHDL, the entity
declaration describes the external interface, and one or more architecture bodies describe
alternative internal implementations.

The syntax rules for entities and architecture bodies are shown in Figure 2.3. The
identifier in an entity declaration names the module so that it can be referred to later.
The port clause, which is optional, names each of the ports, which together form the

interface to the entity. The ports can be thought of as being analogous to the pins of a



entity_declaration =
entity identifier is
[ port (interface_list); |
end [ entity | [ identifier |;

interface_list =
(identifier {, ...} : [ mode | type [ := expression | ) {; ...}

mode = in | out | inout

architecture_body =
architecture identifier of entity_name is
declarations
begin
concurrent_statements
end [architecture] [identifier];

Figure 2.3. The syntax rules for entities and architecture bodies.

circuit. Each port of an entity has a type, which specifies the kind of information that
can be communicated. In this subset, the allowed data types are bit and std_logic. Each
port also has a mode which specifies whether information flows into or out from the entity
through the port.

The example shown in Figure 2.4 describes an entity named SPDOR, with two input
ports and one output port, and all of them are a single bit. The output port outl is
declared with a mode of inout so that the information on this port can be both sensed
or driven by the module SPDOR.

The internal operation of a module is described by an architecture body. In general, an
architecture body applies some operations to the values on input ports, generating values
to be assigned to output ports. The operations can be described either by processes,
which contain sequential statements operating on values, or by a collection of components
representing subcircuits, or by both. The identifier in an architecture body names a
particular architecture body, and the entity name specifies which module is described
by this architecture body. A single entity may have one or several different architecture

bodies. The declarations in an architecture body are declarations needed to implement

entity SPDOR is
port (inl, in2: in std_logic; outl : inout std_logic);
end SPDOR;

Figure 2.4. The entity and port declarations for an OR gate.



the operations. The items may include many kinds of declarations, but only signal
declarations and component declarations are allowed for synthesis. The statements in
the architecture body execute concurrently. In our synthesizable subset of VHDL, only

process statements and component instantiation statements are allowed for synthesis.

2.2.2 Signal and Component Declarations
When the operation of an architecture body requires generation of intermediate values,
internal signals are needed. Before these signals are used, they must be declared through
signal declarations. The syntax for a signal declaration is shown in Figure 2.5. The
declaration simply names each signal, specifies its type and optionally includes an initial
value for all signals declared by the declaration. The following shows an example of how

a signal is declared:
signal z : std_logic := '0’;

After the declaration, those signals can be used by the following concurrent statements in
the architecture body. An important point that should be pointed out is that the ports
of the entity are also visible inside the architecture body and are used in the same way
as signals.

For synthesis of timed systems, it is necessary to know how an environment can behave.
The signals are used to connect the environment to the circuit being designed. Since only
the signals connected to the outputs of the circuit can be synthesized, the command
— — @ is used to indicate which signals are connected to the outputs of the circuit being
designed, and which are not. This command is used only at the highest level which
contains concurrent statements for the circuit and its environment, and is ignored by the

simulator.

signal_declaration =
signal identifier {, ...} : type [:= expression];

component_declaration =
component identifier [is]
[ port( interface_list); |
end [component] [identifier];

Figure 2.5. The syntax rules for signal and component declarations.
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When designing a large and complicated system, a hierarchical approach is a good
way to attack the difficulty and complexity. In this subset, component declarations and
component instantiation statements are used for hierarchical design. Component instanti-
ation statements are introduced in a later section. The syntax of component declarations
is shown in Figure 2.5. Similar to entity declarations, a component declaration simply
specifies the external interface to the component. Figure 2.6 shows a simple example of
how a component is declared. The declaration defines a component type that represents

a flipflop with clock clk, clear clr and data inputs d, and a data output g¢.

component flipflop is
port( clk, clr, b: in bit, ¢ : out bit);
end flipflop;

Figure 2.6. An example component declaration.

2.2.3 Concurrent Statements

Concurrent statements in an architecture body describe a module’s operations, and
are executed in parallel. In our synthesizable subset, the allowed concurrent statements
are process statements, which contain sequential statements operating on signal values,
and component instantiation statements representing subcircuits. The syntax rules for
process and component instantiation statements are shown in Figure 2.7.

The process label identifies the process. An optional sensitivity list may be included
in a process after the keyword process, but only processes without sensitivity lists are

allowed in our synthesizable subset. The declarations in a process statement may contain

process_statement =
[process_label:]
process |[is]
declarations
begin
sequential statements
end process [process_label];

component_instantiation_statement =
[instantiation_label:]
[component] component_name
[port map (association_list)];

Figure 2.7. The syntax rules for concurrent statements.
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many declarative items, but only signal declarations are allowed for synthesis. The
sequential statements form the process body and can include wait, signal assignment,
if, and loop statements. These statements are introduced in the next section.

If a component declaration defines a kind of module, then a component instantiation
statement specifies a usage of such a module in a design. The syntax rules show that
we may simply name a component declared in the architecture body and provide actual
signals to connect it to the ports. The label is necessary to identify the component
instance. Figure 2.8 shows the block diagram of the scsi controller. Its corresponding
structural VHDL code is shown in Figure 2.9. It consists of three components: scsictrl,
goenv, and ackenv. Four internal signals are declared to connect these three components
together. The entity declaration of the scsi controller is shown on the top of Figure 2.9.
Since the circuit has no input and output signals, there is no port declaration in the entity.
Since the internal signals req, rdy connect to the outputs of the circuit scsicitrl, they are
specified by the command '— — @ out’, and the other two are specified by the command
'— — @ in’. Note that all we have done here is to specify the structure of this level of the

design hierarchy, without having indicated how these components are implemented.

2.2.4 Sequential Statements
As mentioned in the previous section, a process body may contain sequential state-
ments. It is so called sequential because when the process is activated, it starts executing
from the first sequential statement and continues until it reaches the last one. It then
starts again from the first one. This would be an infinite loop, and is desirable in electronic
circuits because circuits typically operate continuously until the power is shut down.
Many kinds of sequential statements can be contained in a process. In our synthe-

sizable subset, only wait statements, signal assignment statements, if statements, and

4 ™\ 4 N\ Y
go go ack ack
goenv scsictrl ackenv
rdy rdy req reg
I 1 | 2 | 3

A —_ J/ - —_ J )

Figure 2.8. The block diagram of the scsi controller.
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entity scsi is
end scsi;

architecture structural of scsi is

component scsictrl is
port (go, ack : in std_logic; req, rdy : out std_logic);
end component scsictrl;

component goenv is
port (rdy : in std_logic; go : out std_logic);
end component goenv;

component ackenv is
port (req : in std_logic; ack : out std_logic);
end component ackenv;

signal go, ack : std_logic; — — @ in
signal req, rdy : std_logic; — — @ out
begin

1.1 : component goenv
port map (rdy, go);

1.2 : component scsictrl
port map (go, ack, req, rdy);

1.2 : component ackenv
port map (req, ack);
end architecture structural;

Figure 2.9. Structural VHDL code of the scsi controller.

loop statements are allowed for synthesis. The syntax rules for sequential statements are
shown in Figure 2.10.

The wait statements are used to specify when processes respond to changes of signal
values. In VHDL semantics, processes would be infinite loops. If wait statements are
included in a process, the process execution will be suspended until the relevant boolean

conditions in the wait statements are satisfied. For example, the wait statement
wait until req = '1’;

causes the executing process to suspend until the value of the signal req changes to '1’.

The condition expression is tested while the process is suspended to determine whether
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wait_statement =
[label:] wait [until boolean_expression];

signal_assignment_statement =
[label:] signal_name < (value_expression [after time_expression]){, ...}

if_statement =
if boolean_expression then
sequential statements
elsif boolean_expression then
sequential statements
else

sequential statements
end if;

loop_statement =
[while boolean_expression] loop
sequential statements
end loop;

Figure 2.10. The syntax rules for sequential statements.

to resume the process. However, even if the condition is true when the wait statement is
executed, the process still suspends until the appropriate signals change and the condition
becomes true again. Thus, the wait statement is called “event-sensitive.” To just test if
a condition is true, ignoring whether there is an event, an if statement is put before the
wait statement. If the condition is true, the wait statement is skipped. Otherwise, the

process suspends until the condition is true. An example is shown as follows:

if req = '0’ then
wait until req = ’1’;
end if;

Signal assignment statements are used to schedule events on signals and change the
values of the signals after some delay. There are two events associated with each signal
s in a specification. The event s <= ‘0’ denotes that signal s is changed from a high to
low value, and the event s <= ‘1’ denotes that signal s is changed from a low to high
value. The delay may be supplied by a function which takes two parameters. These two
parameters specify the lower and upper bounds associated with this signal transition.
The lower bounds are nonnegative integers, and the upper bounds are an integer greater

than or equal to the lower bounds. An example is shown as follows:
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z <= ‘0" after delay(99,109);

The delay may also be specified by a single time value, which defines a bounded delay
from the value to oco. Finally, the delay may be unspecified. In this case, the lower
and upper bounds for the signal transition are 0 and oo, respectively. Since real values
can be expressed as rationals within any required accuracy, restricting the bounds to
be integers does not limit the expressiveness in practice. Since there are only a finite
number of timing parameters, if any are rational, we can multiply all of them by the
least common denominator. For simulation, this delay function returns a random delay
value between these bounds. For synthesis, the timed circuit that we generate must be
synthesized in such a way to guarantee that it operates correctly given that the delay
for this event always falls in these bounds. The timing analysis algorithms and synthesis
algorithms necessary to generate such timed circuits have been the subject of numerous
papers [19, 20, 18, 3].

Finding these timing constraints, or the delay bounds to associate with the transitions
on these signals is not a trivial task. The timing constraints for input signal transitions
can usually be determined from interface specifications or datapath delay estimates. The
timing constraints for output signal transitions, however, present a “chicken and egg
problem,” since the timing constraints cannot be known until the circuit is synthesized,
but the circuit cannot be synthesized without giving the timing constraints. The tradi-
tional delay-insensitive or speed-independent approaches to asynchronous design assume
no timing information. In other words, they assume that delays can be anywhere from
0 to co. This conservative assumption can often lead to unnecessarily complex circuit
implementations, and limits the designs that can be produced. It is quite reasonable,
however, to expect an automatic analysis of the given gate library to produce a safe
estimate of the maximum delay for the gates in the library to be used, and by making
some assumptions about the complexity of the synthesized logic, this can be used to
set the upper bound of the timing constraint for each output signal transition. The
lower bound of the timing constraint should usually be set to a very low value since
optimizations could potentially reduce the gate to nothing more than a wire. After the
circuit is generated, it must be back-annotated with timing information from the gate
library and verified to be correct which is the subject of a previous paper [23] and outside
the scope of this thesis.

The if statements are used to select certain sequential statements to execute depending
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on a set of input conditions. The boolean expressions after the keyword if are the
conditions that are used to control whether or not the statements after the keyword
then are executed. If the condition evaluates to true, the statements are executed. If
none of these conditions evaluates to true, the statements following the else are executed.

For example:

if sel =1’ then
result < '1’;
else
result < ’0’;
end if;

Loop statements are used to describe repetitively executed structures. There are
several different forms of loop statements in VHDL. Our synthesizable subset supports
infinite loops and while loops. While loop statements test conditions before each iteration.
If the condition is true, iteration proceeds. If it is false, the loop is terminated. The syntax
of loop statements is shown in Figure 2.10.

Figure 2.11 shows a complete example including several wait and signal assignment
statements, and an if-then-elsif clause. The basic operation of a SPDOR gate is as follows:
when either inl or in2 goes high, outl goes high which causes = to go low after some
delay which will reset outl to low. Therefore, outl is a pulse, and correct operation of
this circuit is very dependent on timing. This circuit is not directly synchronized by a
clock, though the data it receives and generates may be latched by a clock elsewhere
in the design. Such self-synchronizing circuits are typical of the types of timed circuits
currently in use today.

An if-then-elsif clause may also be used to specify nondeterministic choice made by the
environment. In this case, the if-then-elsif clause must be proceeded by an assignment to
a random variable which is tested in the if-then-elsif clause to simulate random behavior
by the SPDOR’s environment. As an example, consider the environment architecture
shown in Figure 2.12. In this example, the variable z is used to get a random value of 1
or 2, and based on this value, it causes the environment to select to send in! or in2, but
not both. For synthesis of timed systems, it is necessary to know how an environment
can behave. While this requires more information than is typically needed for traditional
cloud of logic synchronous synthesis, this additional information can lead to additional

reductions in circuit complexity. For simulation, this environment architecture serves as a
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entity SPDOR is

port (inl, in2: in std_logic, outl : inout std_logic);
end SPDOR;
architecture SPDOR of OR is

signal z : std_logic := ‘1’;

begin
circuit : process
begin
wait until inf = ‘1’ or in2 = ‘1’;
if (in1 = ‘1’) then
outl <= ‘1" after delay(201,221);
wait until outl = ‘1;
z <= ‘0" after delay(99,109);
wait until z = ‘0’;
outl <= ‘0" after delay(199,219);
wait until outl = ‘0’;
z <= ‘1" after delay(101,111);
wait until z = ‘1’;
elsif (in2 = ‘1’) then
outl <= ‘1" after delay(101,111);
wait until outl = ‘1;
z <= ‘0" after delay(49,59);
wait until z = ‘0’;
outl <= ‘0" after delay(99,119);
wait until outl = ‘0’;
z <= ‘1" after delay(51,56);
wait until z = ‘1’;
end if;
end process;
end SPDOR;

Figure 2.11. The complete example for SPDOR.

testbench which provides nondeterministic input behavior for the circuit being designed.
We believe that this coupled with the random delay function will lead to finding more
bugs during simulation. Due to their highly-sequential nature, bugs in timed systems
may only exhibit themselves for unusual delay and environment behavior which is often
missed in deterministic simulations. For example, a bug may only be present when one
signal is asserted after its maximum delay and another is asserted after its minimum
delay. Another example is that a bug may only show up if the environment does two inl

events in a row, but you may have only been simulating alternating inl and in2 events.
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entity SPDOR_ENV is
port (out! : in std_logic, in, in2: inout std_logic);
end SPDOR_ENV;
architecture BEHAVIOR of SPDOR_ENV is
variable z : integer;
begin
environment : process
begin
z := random(2);
if (z=1) then
inl <= ‘1" after delay(500,550);
wait until in1 = ‘1’;
inl <= ‘0" after delay(269,299);
wait until in1 = ‘0’;
elsif (z = 2) then
in2 <= ‘1’ after delay(500,550);
wait until in2 = ‘1’;
in2 <= ‘0" after delay(269,299);
wait until in2 = ‘0’;
end if;
end process;
end BEHAVIOR;

Figure 2.12. The complete example for the SPDOR’s environment.

2.2.5 A Design Package to Simulate
Nondeterministic Behavior

To simulate nondeterministic environment and delay behavior, a VHDL design package
is developed. The package, shown in Figure 2.13, is used for simulation and ignored by
synthesis. It includes two functions. The first function, random (number), is a random
number generator. It takes an integer number as a parameter, and returns a number
between 1 and number. The second function, delay (1,u), takes two integer numbers [
and u, and returns a number with type of ¢ime between [ and u. A simulation of SPDOR

using this package and SYNOPSYS is shown in Figure 2.14.



package nondeterminism is
function random(number:integer) return integer;
function delay(l,u: integer) return time;

end nondeterminism;

package body nondeterminism is
function random(number:integer) return integer is
begin
return((RAND mod number)+1);
end random;

function delay(l,u: integer) return time is
variable randel : time;
variable numi,iter : integer;
begin
randel := 0 ns;
iter := random(u — [ + 1) + [ - 1;
for i in 1 to iter loop
randel := randel + 1 ns;
end loop;
return randel;
end delay;
end nondeterminism;

Figure 2.13. A design package for nondeterministic behavior.
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Figure 2.14. A nondeterministic SYNOPSYS simulation of the SPDOR.
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CHAPTER 3

COMPILATION

This chapter describes the compilation procedures that are used to translate timed
HSE and VHDL specifications into TEL structures. First, we describe TEL structures.
Then, we describe composition and renaming rules of TEL structures. Finally, we describe

the compilation procedures to interpret timed HSE and VHDL specifications.

3.1 Timed Event/Level Structures

In order to define the behaviors specified by a model in our synthesizable subset
of VHDL, we use timed event/level (TEL) structures, a variant of Myers’ timed event-
rule structures [18] with a boolean condition added to each rule in the rule set. Event
structures were introduced by Winskel [27], and timing has been added to them in several
ways. Subrahmanyam added timing to event structures using temporal assertions [24].
Burns introduced timing in a deterministic version, the event-rule (ER) system, in which
causality is represented using a set of rules, and a single delay value is associated with each
rule [6]. Myers introduced timed ER structures that extend ER systems with bounded
timing constraints and add conflicts from event structures to model nondeterministic
behavior (namely, environmental choice). Timed event/level structures, which are first
introduced in [2] by Belluomini, extend timed ER structures by associating a boolean
expression with each rule.

TEL structures are composed of a set of signals (N), a set of atomic actions (A), a set
of events (E), a set of rules (R), and a symmetric conflict relation (#). In timed systems,
the signal set N contains all input, output, and internal signals. The atomic action set A
contains a rising transition and a falling transition, denoted by z+ and x— respectively,
for each signal z in the signal set N. There is a special kind of action: dummy action,
denoted by '$’. The dummy actions do not cause any signal transitions in a system.
They are treated as program pointers to indicate how far a process has reached. The

occurrence of an action is an event, and it is denoted (a,i) where a is the action and 4
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is an occurrence index for the action. The first instance of this action has 7+ = 0, and 3
increments with each subsequent instance. The event is a dummy event if it is an instance
of a dummy action.

The rule set R is used to represent a causal dependence between two events. Each rule
of the form (e, f,1, u,b) is composed of an enabling event e, an enabled event f, a bounded
timing constraint (I, u), and a sum-of-product boolean expression over the signals in the
signal set V. Informally, a rule states that the enabled event cannot occur until the rule is
satisfied and the boolean expression b evaluates to true. The bounded timing constraint
places a lower and upper bound on the timing of a rule. A rule is said to be satisfied if at
least [ time units has passed since the enabling event e fired. A rule is said to be expired if
at least u time units has passed since the enabling event e fired. Again ignoring conflict,
an event cannot occur until all rules enabling it are satisfied and the boolean expressions
associated with those rules are true. This causality requirement is termed conjunctive.
An event must always occur before every rule enabling it has expired. Since an event may
be enabled by multiple rules, it is possible that the difference in time between the enabled
event and some enabling events exceed the upper bound of their timing constraints, but
not for all enabling events. These timing constraints are the same as maz constraints [15]
and type 2 arcs [25].

The conflict relation is added to model disjunctive behavior and choice. When two
events e and €' are in conflict (denoted e#¢'), this specifies that either e can occur or €
can occur, but not both. Taking the conflict relation into account, if two rules have the
same enabled event and conflicting enabling events, then only one of the two mutually
exclusive enabling events needs to occur to cause the enabled event. This models a form
of disjunctive causality. Choice is modeled when two rules have the same enabling event

and conflicting enabled events. In this case, only one of the enabled events can occur.

The timed event/level structure is defined below in which N = {0,1,2,3,...}:

Definition 3.1.1 A timed event/level structure is S = (N, A, E, R, #) where
1. N s the set of signals;
2. A is the set of atomic actions;
3. EC Ax N is the set of events;
4. RCEXEXN x (NU{oc}) x (b:{0, I}N — {0,1}) is the set of rules;
5. # C E x E is the conflict relation.
Events are labeled using the function L : E — A.
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Figure 3.1(a) shows an example that expresses the conjunctive causality. In this TEL
structure, z— cannot occur until boolean expression (a) and (b V ¢) are true, and both
events £+ and y+ occur. Figure 3.1(b) expresses a conflict, that is, either y+ or z— can
occur, but not both. Figure 3.1(c) shows the TEL structure of an AND gate. The event
c— can fire when ¢+ has fired for at least 1 time unit but not over 4 time units, and the
boolean expression (—a V —b) is true. The event ¢+ can fire when ¢— has fired for at least

2 time units but not over 6 time units, and the boolean expression (a A b) is true.

3.2 Composition and Renaming of
TEL Structures

Each process in a timed HSE specification or a VHDL specification is made up of a
sequence of sequential constructs that are composed on operators specifying sequencing,
concurrency, and choice. Therefore, we need to define a means of composing two TEL
structures. To facilitate this composition, two sets are added temporarily to the TEL
structure: first and last. Each element z of the first set is of the form: =z = (e, [, u, b), where
e is an event from the event set E, (I,u) is a timing constraint that is associated with e,
and b is a boolean expression associated with e. The last set is simply a subset of the event
set. These sets are not part of the final TEL structure and are simply information that
must be recorded during the decomposition phase in order to allow the TEL structures to
be composed correctly. Intuitively, the first set indicates which events are the first to occur
in a TEL structure, and the last set indicates which events are the last to occur. Each
event in the first set is also associated with a timing constraint and a boolean expression
to indicate under what condition these events can occur. The composition of two TEL
structures S = (No, Ao, Fo, Ro, #0, firsty, lastg) and S1 = (N1, A1, E1, Ry, #1, firsty, lasty)
(i.e., So op S1 where op € {;,|,|}) is defined as follows:

Conjunctive (ﬁnﬂ 'ZC_t AND gate

(@) (b) (c)

Figure 3.1. Examples of TEL structures.
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N = NyUN;
A = AgUA
E = EyUE
R = RyURyU{{(x,y.e,y.l,y.u,yb) | z € lasty Ny € firsty Nop= ;}
# = F#HoU# 1 U{(e,€) | (e€ BN € By nop=|)}
first = if (firsty = 0V (lasty = O A last; = 0) V op = || V op = |) then first, U first,
else first,
last = if (first; =0 Viasty =0V op= |V op =) then lasty U last, else last,

The sets of signals, actions, and events are simply merged. The rule set is similarly
combined, but in the case in which op = ; new rules are added from the last events in
So (i.e., the events in the set lasty) to the first events in S; (i.e., the events in the set
first;). These rules have the timing constraint and boolean condition associated with the
first events. The conflict set is also merged, and if op = | then every event in S is set
to conflict with every event in Sj. Finally, new first and last sets are created. If the
structures are being composed in parallel or in conflict, or both lasty and last; are empty,
the sets are created by simply taking the union of the sets from each structure. If the
structures are being composed in sequence, then in most cases the first set equals first,,
and the last set equals last;. The exception is if first, is empty then the first set equals
firsty, and if either first; or last; is empty then the last set is the union of the two last
sets from the two structures.

Since a process is repetitive, the TEL structure describing its behavior is infinite. Due
to its repetitive nature, however, this infinite behavior can be described with a finite
model by adding an additional set of rules R’ and an additional set of conflicts #'. A
loop set is also added temporarily to keep track of the last events before control loops
back. When a TEL structure is created, these sets are all initialized to the empty set. To

generate these sets, the composition operator is modified as follows:
R = RyUR|U{(z,y.ey.l,yu,yb) |z loop, Ny € first, Nop= ;}
#I
loop = if (op= |V op =) then loop, U loop, else ()

#oU#L U {(e,€) | (e € loop, A€’ € lastg Nop= ;)}

The R’ set is found by first taking the union of the corresponding sets from the structures

that are being composed, and then when op = ;, new rules are added from events in the



23

loopg set to the first; set which creates a loop in the structure. Also, if op = ; then the
events in lasty are set to conflict with the events in loop;. As for the loop set, the events
in the loop sets from the structures being composed in parallel or in conflict are simply
merged and initialized to the empty set when composed in sequence. When control loops
back, all events in the last set are moved into the loop set.

Before defining the infinite behavior of the TEL structure, we first introduce the
renaming rules for TEL structures. When composing structures sequentially or in conflict,
multiple occurrences of events with the same name are not allowed. Therefore, before
doing the composition, we first resolve any name clashes using the function rename which
takes two structures and returns the second structure with event names changed such that
they do not clash with event names in the first structure. The function rename(Sy, S1)

is defined as follows:

N =N
A = A
E = {rename(Ey,e) | e € Er}
R = {(rename(Ey,e), rename(Ey, f),l,u,b) | {e, f,l,u,b) € Ry}
R' = {(rename(Ey,e), rename(Ey, f),l,u,b) | {e, f,1,u,b) € R}}
# = {(rename(Ey,e), rename(Eq,¢€')) | e#e'}
#' = {(rename(Ey,e), rename(Ey,€')) | e#t'e'}
first = {rename(Ey,e) | e € first,}
last = {rename(Ey,e) | e € last;}
loop = {rename(Ey,e) | e € loop,}

The function rename is overloaded above to take a set of events F and a single event

(a,1), and it renames (a, i) if there is a name clash with an event in the set E as follows:

rename(E, (a,1)) = if (Vk(a,k) € E) then (a,i) else (a,i + j)

where (a,j — 1) € ENA(a,j) € E.

For a TEL structure of the form Sy = (No, Ao, Eo, Ro, #0, Rj), #4), we inductively

define its infinite behavior as follows:

Si = loop(Sy, Sp||rename(Sy, Si_1))
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where the function loop(Sy, S1) is defined as follows:

R = Rl U{<e7 rename(Eo,f),l,u,b) | <67f7l7u7b> € RB}

# = 1 U{(e,rename(Ey,¢€')) | e#oe'}.

3.3 Compiling Timed HSE into TEL Structures

In order to interpret the behavior of a model specified in timed HSE, we translate it
to a timed event/level (TEL) structure. We first describe how to interpret nonrepetitive
constructs, then we describe how to interpret repetitive constructs.

To interpret nonrepetitive constructs, we define the function CTEL which takes a HSE
specification and returns a TEL structure of the form: S = (N, A, E, R, #, first, last). For
simplicity, the R’, #' and loop sets are not listed because they are used only for the
repetitive constructs. This function iteratively decomposes the HSE specification into
single actions and guards that are composed on the operators (; for sequencing, || for

concurrency, and | for conflict), and it is defined as follows:

CTEL(p;q) = CTEL(p); rename(CTEL(p), CTEL(q)),

CTEL(pllq) = CTEL(p)|CTEL(q),

CTEL(p|q) = CTEL(p) | rename(CTEL(p), CTEL(q)),

CTEL([G]) = ({s(G)},{8},{(5,0)},0,0,{((8,0),(0,0), G)}.{(5,0)})

)
CTEL(a+) = ({a},{a+},{(a+,0)},0,0,{((a+,0),
CTEL((I‘*) = <{(l},{(l*},{((l*,O)},@,w,{(((L*,O),

a+),true)}, {(a+,0)})

D(
D(a—), true)}, {(a—,0)})

The first rule simply states that the TEL structure for p and ¢ with a ’;” between them
is obtained by finding the TEL structures for p and ¢ separately, renaming the TEL
structure for ¢, if necessary, and composing these TEL structures using the sequencing
operator (;). The second rule states that the TEL structure for p and ¢ with a’||” between
them is obtained by finding the TEL structures for p and ¢ separately, and composing
these TEL structures using the parallel operator (||). The third rule states that the TEL
structure for p and ¢ with a ’|” between them is obtained by finding the TEL structures
for p and ¢ separately, and composing these TEL structures using the conflict operator
(). The next three rules are for generating TEL structures for a single guard and a single
action. The TEL structure for a guard consists of the signals in the support set of the

boolean expression (i.e. s(G)), the dummy action $, and a dummy event ($,0). The
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first and last sets are initialized to include the dummy event, and the boolean expression
associated with the dummy event in the first set is set to the boolean expression indicated
in the guard. Since this event does not cause a signal transition, its timing constraint is
(0,0). Next, if the input to the function is a single action, the function returns a TEL
structure with a single signal, a single action, a single event, and both the first and last
sets initialized to include that event, and the timing constraint of the event, for example
a+, in the first set is given by the function D(a+) which returns the bounded delay
declared for that signal. The TEL structures of a single guard [b] and a single action a+
are shown in Figure 3.2 (a) and (b). Note that in Figure 3.2 (a) there is no enabling
event, which means the TEL structure contains no rules, and simply stores the boolean
expression in the first set.

For a guarded command [G — 5], since the program part S cannot execute until the

guard (G evaluates to true, it is interpreted as
CTEL(|G — S]) = CTEL(|G];S)

The TEL structure for an example guarded command [b — a+] is shown in Figure 3.2.
When composing TEL structures, we try to minimize the number of dummy events. In
this case, since the last event in the TEL structure for the guard [b] is a dummy event,
and the first event in the TEL structure for the action a+ is a signal event with a boolean
expression true, the dummy event can be canceled without changing the meaning of the
command by replacing the boolean expression of the first event in the TEL structure for

the action a+ by the boolean expression in the guard.

For a selection construct (G — S1 | ... | G, — §,], the process containing
<b> <true> <b>

($0) (ar)  (a+)

(@) (b) (©)

Figure 3.2. TEL structures for a guard [b], an action a+ and a guarded command
b — a+].
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it suspends until one G; evaluates to true, then S; executes. Each guarded command is
interpreted similarly. Then, the TEL structures for all guarded commands are composed

in conflict. Therefore, the TEL structure for a selection is defined as follows:

T1 == CTEL([Gl]Sl)
T, = T | rename(T,,CTEL([G2];S2))

result = T,_1 | rename(T,,_1,CTEL([Gy]; Sn))

The resulting TEL structure is shown in Figure 3.3. In this case, all sets in the TEL
structures are simply merged, and their events are set to conflict.

To interpret loop constructs, we define two functions. The function mv takes a TEL
structure, and moves its last set to the loop set. The function make_loop also takes a TEL
structure, and makes new rules from the loop set to the first set. Its definition is shown
in Figure 3.4.

There are two kinds of loop constructs in timed HSE: repetitive commands and infinite
loops. The infinite loop, *[S], where S is an arbitrary program part, is easy to interpret.
The TEL structure of S is created first, then it is made to loop back to form an infinite

loop. The creation of a TEL structure for an infinite loop is defined as follows:

make _loop (mv(CTEL(S)))

<G1l> <Gn>

SLE#..#5nE

Figure 3.3. The TEL structure for a [G1 — S1|...|Gn — Sy].
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TEL make_loop(TEL S){
t = Slast
S.last = ()
s =258
Slast = t
return S

}

Figure 3.4. The definition of the function make_loop.

Another looping construct is the selective repetition command shown as follows:

This construct suspends the process until one of guards GG; eveluates to true, then the
following program part S; executes. If the S; has a ’+’ following it, the control loops back
to the beginning of the construct. Otherwise, the control moves to the next command. To
interpret this construct, a TEL structure for each guarded command is created. Assume
there is a '’ following S,, the function mv is called to move the last set of the TEL
structure for G, — S, to its loop set. Then, the TEL structures for guarded commands
are composed in conflict, and the function make_loop is called to make loops. The creation

of a TEL structure for a selective repetition command is shown as follows:

T, = CTEL([Gl —>Sl])
T, = T\ | rename(T),CTEL([Gy — S2)))

T, = Th-1|rename(T,_1,mv(CTEL([G, — Sy])))

result = make_loop(T,)

An example TEL structure is shown in Figure 3.5.
For a module with multiple processes, its TEL structure is formed by composing all

processes in parallel, i.e.,

CTEL(R...P,) = CTEL(PR)|...||CTEL(P,).

3.4 Compiling VHDL Specifications into
TEL Structures

In order to interpret the behavior of a model described in our synthesizable subset of

VHDL, we translate it to a TEL structure. First, each process within each architecture is
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SILE#..#SnE

Figure 3.5. The TEL structure for (G — Si|... |G, — Sp; *].

iteratively decomposed until it is made up of only signal assignment statements and simple
wait statements. A simple wait statement is one which is composed of an expression that
includes only a single sum-of-products boolean condition. This section first describes
a method to interpret a sequence of sequential statements which is then extended to

interpret concurrent statements.

3.4.1 Interpretation of Sequential Statements
We first interpret each process within each architecture ignoring repetition. Repetition
is addressed in the next subsection. To interpret a nonrepetitive process, we define the
function VTEL which takes a VHDL specification and returns a TEL structure of the
form: S = (N, A, E, R, #, first,last). This function iteratively decomposes the VHDL
specification into signal assignment statements and wait statements that are composed
on the operators (; for sequencing, || for concurrency, and | for conflict), and it is defined

as follows:

VTEL(p; = VTEL(p); rename(VTEL(p), VTEL(q))

VTEL(wait until b) = VTEL([b))

{s(b)},{8}.{(5,0)},0,0,{(($,0),0,0,b)},{(3,0)})
{a},{a+},{(a+,0)},0,0,{((a+,0),1,u, true)}, d)
{a}.{a—},{(a—,0)},0,0,{((a—,0),l,u, true)},0)
0,0,0,0,0,0,0)

VTEL([)

q)

)

)

VTEL(a <" 1" after delay(l,u)) =

VTEL(a <" 0" after delay(/,u))
nt)

(
(
(
(

VTEL(z =
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The first rule in the definition states that the structure for two sequential statements
p; q is obtained by finding the TEL structures for p and ¢, renaming the events in the
structure for ¢, if necessary, and composing these structures using the sequencing operator
(;). The next four rules are for generating TEL structures for a single wait and a signal
assignment statement. First, if the input to the function is a single wait statement, the
function returns a structure which consists of the signals in the support set of the boolean
expression (i.e. s(b)), a dummy action §, and a dummy event ($,0). The first and the
last set are initialized to include that dummy event ($,0), and the boolean expression
associated with the dummy event in the first set is set to the boolean condition indicated
in the wait statement. Since this dummy event does not cause a signal transition, its
timing constraint is (0,0). If the input to the function is a signal assignment statement,
the function returns a structure with a single signal, a single action, a single event, and
the first set is initialized to include that event along with the lower and upper bound
specified by the delay function and the boolean expression true. Note that this event
is not put in the last set, because completion of signal assignments is not waited for by
following statements in VHDL. Finally, if the input to the function is a test of a variable,
the function returns an empty structure. These tests are on random variables and appear
in the if-then-elsif clauses in the environment.

In order to generate the structure for an if statement which has the following form:
if b then p end if;

a TEL structure is obtained for wait until b, and it is composed sequentially with a
renamed version of the TEL structure for p. And also a TEL structure is obtained for
wait until —b to define the exit condition of the if statement. These two TEL structures
are composed in conflict. The generation of the TEL structure for an if-then clause is

defined as follow:
VTEL([b]; p) | rename(VTEL([b]; p), VT EL([-b]))
Similarly, the creation of an if-then-else clause which has the following form
if b then p else g end if;

is defined as

VTEL([b]; p) | rename(VTEL([b]; p), VT EL([-b]; q))
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In order to generate the structure for an if statement which has the following form:
if b1 then p; elsif by then ps else p3 end if;

A TEL structure for the if-then branch is generated similarly as described above, and
composed in conflict with one that checks if the expression is false. If there is an elsif-then
clause, a TEL structure is created for the elsif-then clause, and composed in conflict with
one that checks if the expression in the elsif-then clause is false. If there is an else clause,
its TEL structure is composed sequentially with the second TEL structure of the elsif-then
clause. Finally, the TEL structure for the elsif-then-else clause is composed sequentially
with the second TEL structure for the if-then branch. The creation of the TEL structure

for an if-then-elsif-else clause is defined as follows:

T

VTEL([bs]; p2) | rename(VTEL([bs); pa), VT EL([=ba]; p3))-
result = VTEL([bi];p1) | rename(VTEL([b1]; p1), VT EL(|-b1]; T));

Figure 3.6 shows the graphical representation of the TEL structures for a signal
assignment, a wait and an individual if statement. Figure 3.7 shows the graphical
representation of the TEL structure for an if-then-elsif-else statement.

The generation of TEL structures for infinite loops is described in the first section of
this chapter. In this section, we describe how to interpret a while loop. Interpreting a
while statement is a little different from interpreting an infinite loop. Given a while loop,
we first create an entry condition TEL structure and an exit condition TEL structure.

The entry condition TEL structure is the TEL structure for a wait statement with a

- )

<~p> <pb>
<b>
(at) (0
$0 #at

a<='"1
after delay(l,u)  wait until b if b thena<="1

(@) (b) (©)

Figure 3.6. TEL structures for a wait, signal assignment and if statement.
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<~p1>

<b1>

<b2> <~b2>

if bl then P1 PLE#P2.E#P3E
elsif b2then P2 PLE #$/0

ese P3

Figure 3.7. The TEL structure for an if-then-elsif statement.

boolean condition which is the same as that of while loop condition. This TEL structure
is composed with that of the loop body sequentially and the function mwv is called for the
result. This is not complete because of the lack of an exit condition. The exit condition
TEL structure is the TEL structure for a wait statement with a boolean condition that
is opposite to the condition of the while loop. The exit TEL structure indicates when the
while loop terminates. Since a while loop is either in the loop or terminated, the exit TEL
structure and the above incomplete while loop TEL structure are composed in conflict.

Then the function make_loop is called to make a loop. For a while loop statement:
while b loop p end loop;
the creation of the TEL structure for it is defined as follows:

Ty = mu(VTEL([b];p))

T

VT EL(|-b]) | rename(VTEL([-b]),T1)

result = make_loop(Ty)

The graphical view of the TEL structure for a while loop is shown in Figure 3.8.
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<b> <b>

<b> <~p>

while b loop p end loop

Figure 3.8. The TEL structure of a while loop.

3.4.2 Interpretation of Concurrent Statements

Component instantiation statements and process statements are the concurrent state-
ments allowed in this subset. To interpret a component instantiation statement, the
compiler first searches for an entity with the same name as the component name, and
creates a TEL structure for it. This TEL structure is then returned to the component
instantiation statement, and all signal names in the TEL structure are replaced by actual
signal names in the statement. The operation of a process is an infinite loop, thus, after
TEL structures for all sequential statements in the process are created and composed,
the function make_loop is called to make it an infinite loop.

In order to obtain the TEL structure for a complete model, it is now simply a matter of
composing all the individual processes P; and component instantiation statements within

each architecture in parallel, i.e.,

TEL(P,...P,) = TEL(R)|...|TEL(P,).



CHAPTER 4

EXAMPLES

A compiler from timed HSE and our synthesizable subset of VHDL to TEL structures
using the procedure described in the previous chapter has been incorporated into the
timed circuit design tool ATACS. The compiler recognizes the entire VHDL-93 language,
but it only synthesizes the subset described in this thesis. This chapter describes the
specification and design of two examples. The first example is the sbuf controller from
the HP Post Office [8] benchmark suite. The second example is the controller for our

asynchronous implementation of the Maxlist algorithm [21].

4.1 Sbuf Controller

The Sbuf controller is used to manage the transfer of packets between a sender and
a receiver. First, the receiver sets req to high, which requests a line to be sent from the
sender. Then, the sender sends the line and raises sendline. When the receiver reads
the line, it acknowledges the sender by raising ackline. Then, the sender lowers sendline,
and the receiver responds by lowering ackline. This protocol continues until the receiver
chooses to terminate it. To terminate the packet transfer, the receiver sets done high
sometime after the falling transition of sendline but before it raises ackline again. When
the sender detects that done has risen, it lowers sendline and also raises ack, indicating it
has detected that the packet transfer is over. The receiver then lowers req, ackline, and
done in parallel and the sender, in response to this, lowers ack. The corresponding timed
HSE code for the sbuf body and its environment is shown in Figure 4.1.

The TEL structure for the Sbuf body generated by ATACS is shown in Figure 4.2. Note
that there is a circle across some lines, that means those lines have the same boolean
condition associated with them. The rest of this section describes the details of how the
TEL structure is generated from the timed HSE code.

The compiler scans and decomposes the HSE code until it finds the basic language

constructs. It first recognizes [req] and sendline+ and generates the TEL structures,



module sbuf;
delay d = (2,5);

input req = { false, d };
input ackline = { false, d };
input done = { true, d };
output ack = { false, d };
output sendline = { true, d };

process sbufbodys;
«[[req]; sendline+;

[—done A ackline — sendline—;[—ackline]; sendline+; *

| done A ackline — (ack + ||sendline—); [—req A —ackline A —done|; ack—;]]
endprocess

process env;
x[req+; [sendlinel; ackline+;
[—sendline — (done + ||ackline—); [sendline]; ackline+;
[—sendline A ack]; (req — ||ackline — ||done—); [-ack]
|-sendline — ackline—; [sendlinel; ackline4; x

]
]

endprocess
endmodule

Figure 4.1. The timed HSE code for the sbuf controller.

<~done & ackline>

sendline-/0

<~ackline>

sendline+/1

<~done
& ackline>

<regq> ) <done & ackline>

[ack+/@ [sendnne/lj

<~req & <~req &
~done & ~done &
~ackline> ~ackline>
/0

ack-

Figure 4.2. The TEL structure for the body of the sbuf controller.
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) ) )

<reg> <true> <req>

( $/0) (sendline+/0)  (sendline+/0)

(a) (b) (©)

Figure 4.3. The TEL structure for [reql; sendline+.

shown in Figure 4.3 (a) and (b). Figure 4.3 (c) shows the composition of the TEL
structures shown in (a) and (b) with a sequencing operator ’; .

Now the compiler tries to generate the TEL structure for the selection construct
following the first sendline+. There are two guarded commands in the selection. As
noticed, there is a s’ sign following the first guarded command. It says that after this
guarded command is executed, the control loops back to the beginning of the selection
command. For the first guarded command, the TEL structures for the guard and the
program part are generated similarly, shown in Figure 4.4 (a) and (b), respectively. Those
two TEL structures are composed sequentially as shown Figure 4.4 (¢). Because after the
execution of that guarded command, the selection command will start from the beginning,
the function mv is called to move the event sendline+/2 into the loop set as described in
the last chapter. This event is used to make a loop back to the beginning of the command.

For the second guarded command, the guard is interpreted similarly. In the program part

<~done
D L e

& ackline>
sendline-/0 sendline-/0
<~ackline>

<~ackline>

(6) ©

Figure 4.4. —done A ackline — sendline—;[—ackline]; sendline+; *.

<~done
& ackline>

(50
(@)
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following the guard, there are two actions executed in parallel, the TEL structures for
the two actions are generated separately, and then composed concurrently. The TEL
structures for the second guard and the program part following the second guard are
shown in Figure 4.5 (a) and (b), respectively. These two TEL structures are composed
sequentially to form the TEL structure for the second guarded command, which is shown
in Figure 4.5 (¢). Now we have the TEL structures for both guarded commands, they are
composed in conflict to form the TEL structure for the selection construct. Composing
TEL structures in conflict is similar to composing them concurrently, all sets in them are
simply merged, except that conflicts are generated when composing in conflict. Note that
the function rename is called to resolve the name clashes. Since there are two occurrences
of sendline—, the occurrence index of the sendline— in the second guarded command is
changed to 1. And also we know if the first command executes, the control loops back to
the beginning of the selection command. Therefore, the function make_loop is called for
the selection command to make a loop back to the beginning of the command. Ignoring
conflicts here, the TEL structure for the selection command is shown in Figure 4.6.

The nonrepetitive TEL structures for the process are shown in Figure 4.3 (c¢) and
Figure 4.6, respectively. Composing them sequentially forms the nonrepetitive TEL
structure for the process. The TEL structure of the process is shown in Figure 4.7.
Finally, the function mv is called to the event ack — /1 to the loop set, and the function
make_loop is called to make a loop back to the beginning of the process. The result is

shown in Figure 4.2.

K <done & <done &
kli .
D [aCk"‘/ @ [sendl [ ne/O] aKiIne ackline>

(ack+/0  (sendline-/0 )
<done_ & <~req & <~req & <~req &
ackline> ~done & ~done & —done & <~req &
~ackline> ~ackline> ~ackline> ~done &

~ackli
(%0 e
(@) (b) (©

Figure 4.5. done A ackline — (ack+| sendline—); [-req A —ackline A —done]; ack—.



37

() (sendlinet/0) ()

<~done & <done &
ackline> > ackline>

C Dl
C/) N =\

(sendline-/1)

(sendline-/0 )
<~req & ~req &
<~ackline> ~done & ~done &
~ackline> ~ackline>

Figure 4.6. The TEL structure for the selection construct.

-

<~done & ackline>

<regp> (sendline-/0 )\ <~done&
: ackline>
(sendline+/0)  <~ackline>
sendline+/1
C ) <done & ackline>
N
(sendline-/1)
<~req & ~req &
~done & ~done &
~ackline> ~ackline>

Figure 4.7. The TEL structure for the nonrepetitive process.
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4.2 The Maxlist

Many signal and image processing algorithms require the calculation of a running
minimum or maximum over a sliding data window. For example, in a normalized least-
mean-square (NLMS) adaptation algorithm given in [10], the filter coefficient which is
chosen to be modified is the one which is associated with the input sample with the
largest absolute value in the window of samples currently in the filter.

In [12], an efficient algorithm is presented for such calculations. This algorithm stores
data elements in a pruned list. The data elements which are stored are those which are
currently or have the potential of becoming the maximum or minimum within the sliding
data window. This pruned list can be substantially smaller than the actual size of the
sliding window.

We specified and implemented an asynchronous architecture for the MAXLIST algo-
rithm. We have designed and simulated it in VHDL on a large set of correlated random
data samples. Our results show a wide variation in delay due to both data-dependencies
and operating conditions. We compare our asynchronous design with an existing syn-
chronous design and the best possible synchronous design with an architecture comparable

to ours.

4.2.1 Algorithm

The MAXLIST algorithm generates the pruned list of potential maxima (or minima)
as follows. When a new element arrives, it firsts checks to see if an element already on
the list has fallen out of the sliding window. If it has, it is removed from the list. Next, it
searches the list until it finds the smallest element which is larger than the new element.
It adds the new element after this one, and it removes all smaller elements since they will
never become the maximum across the window.

An example (courtesy of [12]) is shown in Figure 4.8. In this example, the sliding
window is 6 elements long. Initially, element 3 is in the list because it is the maximum,
and element 6 is in the list because it is a potential maximum. Elements 1 and 2 are
dominated by element 3 since it is larger and appears later in the list. Elements 4 and
5 are dominated by element 6. At time 1, the window shifts, and element 7 is added to
the list. At time 2, the window shifts again, element 8 is added, and since it dominates
6 and 7, they are removed from the list. At time 3, element 3 slides out of the window,

and element 9 is added, dominating element 8.
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MMMT MMMT

| 1] 2] 3] 4] 5] 6] 7] 8] 9 | 1] 2| 3f 4] 5] 6] 7] 8] o]

t=2 =3

Figure 4.8. Example of the MAXLIST algorithm.

By construction, the elements in the list are ordered by size and age. The head of
the list is always the maximum and always the oldest element. The remaining elements
have the potential to become a maximum as larger, older elements fall out of the sliding
window.

In hardware, the pruned list must be of fixed size. If this size is less than the window
size, it is possible that the running maximum or minimum may be in error. In [12], it is
shown that the average size of the pruned list for random data goes like In(n) where n is
the size of the window. Since small errors can usually be tolerated in signal and image

processing algorithms, the list size is usually chosen to be slightly larger than [n(n).

4.2.2 Architecture
In our asynchronous architecture, we have chosen to compute the maximum over a
sliding window of 256 elements with a list size of 8 elements, where each element is
represented as an 8-bit value. It is relatively straightforward to adapt our architecture to
minimum calculations and to different size windows and lists.
One important architecture decision is how to search the list to find the location

where a new element should be inserted. Our initial architecture began the search at the
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beginning of the list (i.e., the current maximum element) and worked towards the end.
It was brought to our attention that this may result in more comparisons than necessary
[11]. As shown in Figures 4.9 and 4.10, by starting the search at the end of the list
(i.e., the smallest potential maximum or newest element) and searching backwards, the
average number of comparisons is reduced from 5.5 to only 1.4.

Our architecture, depicted in Figure 4.11, is composed of seven main parts: an input
latch, a counter, a FIFO, two comparators, an output latch, and a controller. In each

data cycle, the following events occur:

1. When the request signal goes high, the data is latched, and the counter is incre-

mented.

2. The current count and the position of the maximum are compared. If they are equal,

the maximum has fallen out of the window, and it is shifted out of the FIFO.

3. The new data element is compared with each element in the list beginning with the

most recently added element until the insertion position has been found.
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Figure 4.9. Distribution of forward comparisons.
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Figure 4.10. Distribution of backward comparisons.

4. The new data element is placed in the location of the oldest element that it is greater
than or equal to. If it is smaller than all elements in the list, it is placed in the first

empty location. If the list is full, the element is discarded.

5. The maximum data element and its position are output, and the acknowledge signal

is asserted.

4.2.3 Implementation

The major blocks that must be implemented in our asynchronous MAXLIST archi-
tecture are the FIFO, two comparators, and the controller. The structure of the FIFO is
shown in Figure 4.12. The FIFO must be able to shift data when the element at the head
of the list has left the data window, put data on the CMP bus for the search through
the list, and accept inserted data at arbitrary locations while clearing all subsequent
locations. The information stored in the FIFO is composed of three parts: a Full/Empty
bit, the position (i.e., the count when the data arrived), and the data itself.
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Figure 4.11. Overall block diagram.
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Figure 4.12. Block diagram of the FIFO.



43

The comparator is composed of eight 1-bit comparators as shown in Figure 4.13. It
is started with a request to the highest order bit. Each bit of the comparator returns
whether ai is greater than (gt), less than (/f), or equal (eg) to bi. Only one of the three
outputs can be asserted at any time. For the compare equals block, gt and It are combined
by an or gate to generate not equal (neq), so neq is returned when any bit returns gt or
It, otherwise, eq is returned. For the compare greater equals block, gt and eq are combined
by an or gate to generate greater than or equal (ge), ge is returned for g¢ and less than
(1) is returned for It. If the two bits are equal, the next bit is compared. Finally, if the
last bit returns eq, then ge is also returned for the compare greater equals block. This
block is highly data-dependent as the comparison may complete at varying times. The
asynchronous design methodology takes advantage of this data-dependency to produce a
more efficient architecture.

The last important block is the controller. This block is split into ten separate control

blocks as shown in Figure 4.14. The main block accepts the request when a new datum

req
ar—= = 1t7 gt7 —
b7 eq/ gt6 —
) OR —=qgt
a6 —= —= 0t6 gto—=
—= [t6
b6 —=
H eq6
® It7—
o
° It6—
\L i OR —=1t
a0 —= —= lgtO [t0—
—— |t0

Figure 4.13. Block diagram of a comparator.
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Figure 4.14. Block diagram of the controller.

is ready and sends the acknowledge when the current maximum has been determined,
controls the input latches, output latches, and the counter. It also coordinates the shift
and insert control blocks. The shift block is called much like a subroutine in software.
When called, it handles the control signals related to the counter and maximum position
comparison, and it executes the FIFO shift when the comparison determines that they
are equal. The ins7 block is called to check if the new datum can be inserted in the last
location. If it can, the ins7 block asks the ins6 block to check, etc. until one block cannot
accept the data. At that point, a signal is sent back to tell the previous block the data
should be inserted in the list position that it controls. That block inserts the data in the
list position that it controls, and it forwards an acknowledgement through the ins blocks

to its left to the main block.

4.2.4 Results
We implemented our architecture in VHDL and simulated it for 100,000 correlated
random data elements. The data were generated by filtering pseudo-random Gaussian
white noise by a single-pole filter, and the output is then scaled and quantized to an 8-bit
value. Due to the asynchronous nature of our architecture, it is able to take advantage of

data-dependent delay variations. The sources for data-dependent delay variations are in
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the counter, each comparator, and the number of elements in the FIFO. These variations
result in an extremely variable data delay cycle as shown in Figure 4.15 which depicts a
histogram of the delay to accept a new datum and output the current maximum. Over
the course of the 100,000 elements, our minimum delay was as small as 29 gate delays and
our maximum was as large as 161 gate delays. The average delay is 58.6 gate delays with
a standard deviation of 17.3. As mentioned earlier, since the list size is much smaller
than the window size, elements may need to be discarded. This event happened 8925
times, but never did the dropped element become a maximum in the sliding window.
One advantage of asynchronous design is the ability of an asynchronous design to
adapt to operating conditions. The delay of a transistor in a VLSI design can vary
significantly depending on the quality of the process run, the operating temperature,
and the supply voltage. In a synchronous design, this variation is taken into account
by adding a substantial margin to the clock cycle to guarantee that the chip operates
correctly even in the most adverse circumstances. In reality, a chip typically comes from

an average processing run and runs much cooler and at a higher supply voltage than in
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Figure 4.15. Data cycle delay distribution (fixed).
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the worst-case. The speed of an asynchronous design adapts to the current operating
conditions. We took this fact into account in the simulation by replacing all fixed delay
parameters by delay parameters which are randomly generated each cycle within a delay
bound from the worst-case down to 50 percent of the worst-case. Our simulation results
using these bounded delays are shown in Figure 4.16. The average delay improves to 43.9
gate delays with a standard deviation of 13. The minimum and maximum delays also

improve to 18.9 and 122.2 gate delays, respectively.

4.2.5 Comparison
We compared our results with several synchronous implementations of the MAXLIST
algorithm that were designed as class projects at the University of Utah. The best
implementation designed by Julsgaard and Xu [13] had a clock frequency of 75 MHz for
a 1.2um CMOS process, and it required 6 +2X cycles to accept a new datum and output
the current maximum where X is the number of comparisons required. On average,

they need 1.4 comparisons, or 117ns. Assuming a 0.5ns gate delay for this process, this
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Figure 4.16. Data cycle delay distribution (bounded).
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synchronous design requires on average 234 gate delays per data cycle.

In order to draw a fairer comparison, we examine the performance of a hypothetical
synchronous design which uses the same architecture as our asynchronous design. For
each data element in a synchronous design, one cycle would be required to latch the data
and increment the counter. Another cycle is needed to perform the position comparison
to see if a shift is necessary. If a shift is necessary, a clock cycle would be needed to
perform it. Next, a minimum of two cycles are needed for each comparison that is going
to be performed to find the location in which to insert the data into the FIFO. One is
needed to determine and obtain the next element to be compared against, and the second
is to perform the comparison. After the position is determined, one cycle is needed to
insert the element. Finally, one cycle is required to output the current maximum. Putting

it all together, we get the following:
data cycle delay = 4+ p(shift) + 2 - avg(cmp)

In the 100,000 data samples, the list needs to be shifted only 227 times, so p(shift)
is negligible. Using 1.4 as the average number of compares, the approximate average
data cycle delay in a synchronous design would be about 6.8 cycles. The counter and
comparator would require at least one gate delay per bit and at least two more for control
and latching data in and out. Thus, the fastest possible clock cycle time would be at least
10 gate delays. Using a 10 gate delay cycle time, the synchronous design would require
on average 68 gate delays per data cycle. Therefore, our asynchronous design is at least
14 percent faster considering only data-dependent delay variations and fixed delays, and
at least 35 percent faster when operating conditions are also considered using bounded
delays.

If we are given a fixed throughput requirement, this speed improvement can be turned
into improved power performance by lowering the supply voltage. For example, to get
the same performance as the best synchronous design at 5 volts, our asynchronous design
can be run at 3.2 volts. This leads to a 59 percent savings in power, since power scales

as the square of the voltage.

4.2.6 Compilation
Since our compiler synthesizes a subset of VHDL, only the controller block, which is

shown in Figure 4.14, is synthesized. First, the main block is considered. Its VHDL code
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is shown Figure 4.17. The parameters in a delay function models half a gate delay and a
gate delay, respectively. For simplicity, only the architecture body is shown.

The main block first waits until a request signal req is high, which means the datum
is ready. Then, main block set regin and regenter to high to read the datum into the
datapath block and to increase the counter by 1. After the above actions complete, it
requests the shift block to check if it is necessary to shift the FIFO block. After the shift
completes, the insert block is called to check if the new datum can be inserted into the
FIFO block. Its TEL structure is shown in Figure 4.18. As noted, the graph displays
how the signal assignments are handled differently in VHDL and HSE. In HSE, when a
signal assignment statement is executed, the statement following it can be executed only
after the event defined in the previous signal assignment statement is scheduled and fired.
However, in VHDL, when a signal assignment statement is executed, the event is put into
a event queue, and will be fired after some delay. It does not affect the execution of the
following statements.

The shift block is used to control whether to shift the FIFO block. When this block
is called, it first requests the equality comparator to compare the new datum with the

first element in the FIFO block. If they are equal, it controls the FIFO block to do the

process

begin
wait until req = ’1’;
reqin < 17 after delay(5, 10);
reqcnter < ’17 after delay(5, 10);
wait until ackin = 1’ and ackcenter = 17
shiftreq < 17 after delay(5, 10);
reqin < 0’ after delay(5, 10);
reqenter < 07 after delay(5, 10);
wait until shiftack = '1’;
reqins < 1’ after delay(5, 10);
shiftreq < 0’ after delay(5, 10);
wait until ackins = ’0’;
reqout < ’17 after delay(5, 10);
reqins < 0’ after delay(5, 10);
wait until ackout = ’1’;
ack < 1’ after delay(5, 10);
reqout < 0 after delay(5, 10);
wait until req = ’0’;
ack < ’0" after delay(5, 10);

end process;

Figure 4.17. The VHDL code of main block.
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ackin & ackenter>
<ackin & ackcnter>

reqout-/1 .
<ackins> <ackin & ackcnter> reqcnter-/1

<shiftack>

<shiftack>

<shiftack>

regins-/1

Figure 4.18. The TEL structure for the main block.

shift. When the shift is done, it acknowledges the main block. Its VHDL code is shown
in Figure 4.19. Its TEL structure is shown in Figure 4.20.

The description of insert block is given in the previous subsection. Because of its
complexity, both its VHDL code and TEL structure are too big to fit in a single page, so

they are not shown.



o0

process
begin
wait until req = ’1;
cmp < 1’ after delay(5, 10);
wait on eq, neq;
if (eq = ’1” and neq = ’0’) then
shift < 17 after delay(5, 10);
cmp < 0 after delay(5, 10);
wait until over = ’1;
ack < 1’ after delay(5, 10);
shift < ’0’ after delay(5, 10);
wait until req = ’0’;
ack < '0’ after delay(5, 10);
elsif (eq = ’0” and neq = '1’) then
cmp < 0’ after delay(5, 10);
ack < 17 after delay(5, 10);
wait until req = ’0’;
ack < '0" after delay(5, 10);
end if;
end process;

Figure 4.19. The VHDL code of shift block

<(eq & neq) | (~eq & ~neq)>

<reg>

<~ra:]>

Figure 4.20. The TEL structure for the shift block.



CHAPTER 5

CONCLUSION

Asynchronous designs have attracted a lot of attention recently because of their
advantages, but their wide application is limited due to their disadvantages. There are
many existing specification and synthesis methodologies, some are graph-based, the others
are language-based. Each of them is limited to a particular design style and synthesis
methodology, and none of these methods allows timed systems to be easily specified.

To take advantage of the benefits of asynchronous designs, we have presented a
framework for the specification of timed circuits which is independent of design style and
synthesis method, and allows timing to be specified easily. We have refined VHDL to a
synthesizable subset which includes constructs to specify circuit hierarchy and behavior.
We described the syntax rules for timed HSE and our synthesizable subset of VHDL
in Chapter 2. To use VHDL, we have developed a package to allow simulation of
nondeterministic environment and delay behavior. This allows us to have a uniform
method of specification for both simulation and synthesis. We use a new semantic model,
timed event/level (TEL) structures to define the behavior specified by timed HSE and our
synthesizable subset of VHDL, and show how TEL structures can be applied to formally
define the semantics of timed HSE and our synthesizable subset of VHDL. We developed
a compiler to translate the timed HSE and VHDL specifications into TEL structures,
which are then fed to the rest of ATACS to synthesize timed circuit implementations.
We also implemented a DSP algorithm, MAXLIST, using our methods. The simulation
shows that our implementation outperforms comparable synchronous counterparts. We
also showed the VHDL specification and compilation results of its controller.

In the future, we plan to extend the synthesizable subset of VHDL and improve the
compiler to accept more language constructs so that larger and more complex design
examples can be specified and synthesized. We also plan to find an approach to implement
CSP communication actions in VHDL, thus, to allow designers to specify models at a

higher and more abstract level, and also make it easy to translate from CSP specifications
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to VHDL specifications, or vice versa. We then plan to develop an automatic tool to do
the translation between CSP specifications and VHDL specifications. By doing so, CSP

specifications can be simulated with a simulator which simulates VHDL specifications.
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