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ABSTRACTIn order to inrease performane, iruit designers are beginning to use more aggressivetimed iruit designs instead of traditional synhronous stati logi designs. Reentdesign examples have shown that signi�ant performane gains are ahieved when theseaggressive iruit styles are used. Corret operation of these aggressive iruit styles isritially dependent on timing, and in industry they are typially designed by hand. Tosynthesize and verify timed iruits, the reahable state spae of the iruit under thetiming onstraints needs to be explored. However, omplete state spae exploration is anexponential problem. State spae explosion limits timed iruit designs to small sizes.This dissertation presents a new automati abstration approah whih enables mod-ular design of large sale timed iruits. It attaks the state spae explosion problemby avoiding the generation of a at state spae for the design. Instead, it partitions adesign into bloks with manageable sizes, and performs synthesis and veri�ation proesson eah of them. The results for the bloks are integrated as the solution to the wholedesign. This dissertation presents a series of theorems that supports modular synthesisand veri�ation. The onepts of safe abstration and transformations are also desribed.This dissertation presents tehniques to partition a design and safe net redutions tosimplify the omplexity when designing eah blok. Results show that design proessesusing this method are orders of magnitude more eÆient in design time and memoryusage.
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CHAPTER 1INTRODUCTIONCurrent VLSI iruits are getting faster and more omplex. In order to ontinueto produe iruits of inreasing speed, designers are moving away from pure statisynhronous designs to more aggressive timed iruit design styles. Generally, timediruits are a lass of iruits that are optimized using expliit, bounded timing infor-mation throughout the design proess. Using timed iruits enables designs to ahievehigh performane and low power onsumption. One example is the Intel RAPPIDinstrution length deoder for a Pentium II instrution set [71℄. The RAPPID design is anasynhronous implementation. It runs 3 times faster while dissipating only half the powerof the synhronous implementation on the same proess. The performane gain is derivedfrom a highly timed asynhronous design. The seond example is the self-resetting anddelayed-reset domino iruits widely used in a gigahertz researh miroproessor (guTS) atIBM [41℄. The guTS miroproessor is the �rst miroproessor that runs over 1 Gigahertzon a 0:25�m CMOS proess available in 1997. The performane gain is derived from ahighly timed synhronous implementation. There are many timing assumptions made inboth examples, and the orret operation of the examples are heavily dependent uponwhether the timing onstraints are satis�ed. Therefore, extensive timing analysis andveri�ation is neessary during the design proess. Unfortunately, these new iruit stylesannot be eÆiently and aurately synthesized, analyzed, and veri�ed using traditionalstati timing analysis methods. This lak of eÆient analysis tools is one of the reasonsfor the lak of mainstream aeptane of these design styles.Most synthesis and veri�ation methods require omplete state spae explorationwhih is an exponential problem. One ommon problem often enountered in statespae exploration is the state explosion problem, whih limits the size and omplexityof timed iruit designs. There exist many methods to deal with state explosion. Inthis dissertation, a divide-and-onquer approah is proposed. This approah partitionsa design into bloks, eah of whih has a onstrained interfae. Eah blok is designed



2individually, and the integration of the results of all bloks gives the solution for thewhole design. During design of eah blok, abstration is applied to remove the irrelevantinformation to redue the omplexity of designing eah blok. In this way, a design witha large exponential state spae is onverted to a set of designs with small exponentialstate spae. This approah not only substantially redues the omputational ost ofsynthesis and veri�ation, but also solves large and omplex design problems that annotbe handled before.The �rst setion of this hapter gives an overview of timed iruit design methodologiesand the design ow of ATACS, our timed iruit design tool. The seond setion gives anoverview of the previous work on spei�ation and veri�ation of timed iruits, andthe methods to deal with the state explosion problem inherent in the synthesis andveri�ation of large designs. The last two setions give the ontributions and outline ofthis dissertation.1.1 Design Flow for Timed CiruitsDesigning a timed iruit involves the steps of spei�ation, ompilation, analysis,synthesis, and veri�ation. Figure 1.1 shows the design ow for our timed iruit designtool ATACS. In ATACS, the design of timed iruits begins with a spei�ation of iruitbehavior in a hardware desription language inluding VHDL, timed handshaking expan-sions (THSE) [63, 86℄, asynhronous �nite state mahines (AFSM) [42, 32, 84℄, and signaltransition graphs (STG) [28℄. These spei�ation methods are able to desribe sequening,onurreny, and hoie. Moreover, they support bounded timing information whih isused to optimize the iruit implementations during various design stages. The timingparameters an ome from the simulation of similar designs; or designers an make anytiming assumptions that they think reasonable for the iruits. The timing parametersan be either bounded or unbounded.The step of ompilation translates the spei�ation of a timed iruit to a timedevent/level struture (TEL) [10℄. A TEL struture is a new data struture for desribingboth event and level ausality and timing behavior. The ompilation step inludes stepsto deompose a spei�ation into basi events. These events are then translated to simpleTEL strutures whih are omposed together in sequene, in parallel, and in onit asditated by the struture in the spei�ation.The timing analysis algorithms suh as the one shown in [65, 9, 10, 55℄ are applied



3
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Figure 1.1. Design ow for timed iruit design.to a TEL struture to �nd the reahable state spae of the system. This step beginswith an initial timed state whih inludes the set of all enabled ausal relationships (orrules), the values of all signal wires, and timing relationships between all rules. From thistimed state, all possible next timed states an be determined by �ring the enabled rules.From these states, subsequent timed states are determined reursively. As timed statesare found, they are stored to form a state graph. State spae exploration is exponentialin the size of the design, and timing makes it even more omplex. On the other hand,timing information an help to identify states whih are not reahable by the system,thus reduing the total number of states leading to an optimized logi implementation.After the state spae is generated, logi synthesis is applied to extrat exitation



4and quiesent regions from the state graph for eah output signal. For eah exitationregion, logi equations are found that implement the region in a hazard-free manner. Toaomplish this, orretness onditions are used to determine in whih states the logimust evaluate to true, an evaluate to true, and must not evaluate to true. At this step,the implementation is largely tehnology independent. The logi equations may use gatesthat are either ineÆient or non-existing. The step of tehnology mapping takes a set oflogi equations and a gate library and determines a gate netlist to implement the logiequations.One the �nal iruit implementation is available, veri�ation is applied to the iruitagainst the spei�ation to show that the synthesized iruit is a reliable implementationof the spei�ation [6℄. The atual timing behavior of the implementation also needs tobe veri�ed that it is onsistent with the spei�ation.The step of performane analysis is also applied to the spei�ation and the synthesizediruit annotated with delay distribution information [54℄. It is based on Monte-Carloand Markov hain analysis, and an �nd steady-state probability distributions. Fromthese distributions, the relative importane of every pin-to-pin delay in the iruit an bedetermined to show performane of the timed iruit implementation and pinpoint areaswhere optimization an lead to signi�ant improvements in performanes.1.2 Related WorkAll timing onstraints of a timed iruit need to be heked to guarantee orretoperation. Therefore, veri�ation plays a ritial role in timed iruit design. However,veri�ation is not the only way to assure orretness An alternative is to design orretiruits in the �rst plae. This requires orret synthesis. The key to the suessful designof timed iruits and espeially timed asynhronous iruits is a omplete state spaeexploration. The major hallenge of synthesis and veri�ation is state spae explosion.This problem happens in a system with many omponents that interat with eah otheror systems that have data strutures that an assume many di�erent values, suh as thedata path of a iruit. In suh ases, the number of global states an be enormous. Therehas been a lot of suessful work developed to deal with suh a problem. This setiongives an overview of the work to address the state explosion problem.



51.2.1 Ciruit Spei�ation ApproahesTo automate the synthesis and veri�ation of timed iruits, they need to be spei�edin a hardware desription language. The expense and quality of the design of timediruits depends on the type of spei�ations that are supported. In general, more exibleand expressive spei�ations allow the synthesis of faster and more omplex iruits, butmake the design proess harder. More restrited spei�ations make the design proesseasier, but the derived iruits may be slow and redundant. Moreover, the spei�ationmethod needs to provide an easy way to speify omplex two-sided timing informationneeded for timed iruit design.In general, the spei�ation of timed systems an be loosely lassi�ed into two groups:those that use language-based spei�ations and those that use graph-based spei�ations.These two di�erent groups require di�erent design methods, and may generate di�erentiruit implementations. The languages that are used to speify iruits inlude CSP[48℄, Oam [21℄, Tangram [13, 12℄, and VHDL [86℄. Language-based approahes, suhas those proposed by van Berkel [79℄ and Brunvand [22℄, often diretly map languageonstruts to library bloks using syntax-direted translation. The advantage of theseapproahes is the ability to desribe large omplex systems hierarhially and ombatthe state explosion problem by mapping language onstruts diretly into �xed iruitmodules. However, these approahes do not allow timing information to be spei�ed,and the resulting iruits may be slow and redundant sine optimizations are not alwaysvisible at suh a high-level or are diÆult to apply during syntax-direted translation.Another approah proposed by Martin in [48℄ translates a spei�ation program into aself-timed iruit through a series of semanti preserving transformations. However, itdoes not support timing spei�ation and needs a lot of human intervention to worke�etively.Graph-based approahes often speify iruit behavior in a lower level. It an oftenprodue very eÆient and fast iruits sine timing information an be used to optimizethe implementations. Graph-based methods inlude Petri Nets or STGs [28℄, I-nets [57℄,hange diagrams [81℄, asynhronous �nite state mahines [42, 32, 84℄, and state graphs[60℄. These methods often require omplete state spae exploration to �nd all reahablestates in a design. Therefore, the state spae explodes quikly as the omplexity and sizeof the designs grow. Sine spei�ations in these approahes are at the signal transitionlevel, writing the spei�ation is tedious and error prone for large designs.



6Sine hardware desription languages are useful to organize large omplex designshierarhially, and timing analysis and synthesis algorithms are more easily applied tographial representations, the spei�ation method used in our synthesis and veri�ationtool ATACS is a ombination of language-based and graph-based approahes. The toolaepts VHDL or THSE desriptions [86℄ as well as AFSMs and STGs. Instead of syn-thesizing iruits diretly from these desriptions, ATACS ompiles them into a graphialrepresentation, the TEL struture. Then, timing analysis algorithms are applied to �ndthe reahable state spae of the system, whih is used to derive the iruit implementation.1.2.2 SynthesisThere exist some systemati tehniques for the design of timed iruits. In [17℄,Borriello desribes a method whih uses timing information in the design of transduers,interfaes between synhronous and asynhronous iruits. In [46℄, Lavagno develops asynthesis tehnique whih uses methods similar to Chu [28℄ and Meng [53℄ to derive aomplex gate-level implementation whih is then mapped to a gate library using syn-hronous tehnology mapping tehniques. In both methods, timing analysis is appliedafter synthesis to verify that the implementation is hazard-free. If hazards are deteted,delay elements are added to avoid them, degrading the reliability and performane of theimplementation. In [63, 64℄, myers �rst applied timed state spae exploration to timediruit synthesis. In his method, unreahable states of a design are eliminated basedon the spei�ed timing information. Therefore, this method produes optimized timediruits. In [44℄, a diret synthesis method is proposed whih synthesizes timed iruitsdiretly from STGs. This method does not su�er from the state explosion problem sineit does not explore the state spae of the designs. The synthesized timed iruits usingthis method have nearly the same area ompared with the results derived using othersynthesis methods. However, this method an only be applied to a restrited lass offree-hoie STGs limiting its appliability. Furthermore, it an result in path explosionin the preedene graph derived for synthesis.1.2.3 Veri�ationThe purpose of veri�ation is to give the designers on�dene that resulting iruitsoperate orretly. Therefore, the most ruial issue in veri�ation is the de�nition oforretness. In general, orretness is de�ned by two di�erent approahes. One approahis model heking [29℄. This approah explores the state spae exhaustively and heks



7if the spei�ed properties are satis�ed in every state. Another one is to hek theonformane of the implementation to a spei�ation [34℄. Veri�ation needs to show thatthe implementation exeeds the minimum requirements stated in the spei�ation. Theseapproahes raise another issue whih is what properties need to be modeled and veri�ed.Traditionally, there are two important properties to be modeled: safety properties andliveness properties. A safety property asserts that \nothing bad happens". A livenessproperty asserts that \something good happens". In the veri�ation of a timed iruit,it is also important to verify timing properties in a spei�ation.One approah to iruit veri�ation is model heking for �nite state onurrentsystem. It heks whether a model of the behavior of the iruit satis�es a spei�ationwritten as logial formulas. Most work in model heking is based on temporal logi[30, 36℄. In general, a temporal logi is a propositional or �rst-order logi augmentedwith temporal modal operators whih an assert how the behavior of the system evolvesover time. Bugs have been disovered in several asynhronous iruits using this approah,and the modi�ed designs have been shown orret [20, 56℄. Although model heking hasthe advantage of being automated, it an only deal with small designs beause the globalstate graph needs to be onstruted before it an be heked and the state graph for largeiruits an be very large.Reahability analysis is widely used in protool veri�ation [16, 85℄. It onstruts aglobal state graph of a �nite state system, then inspets the graph for errors. Veri�ationusing this approah heks the satisfation of properties in eah state: safety, absene ofdeadlok, liveness, timing onstraints for timed iruits, and so on. The meaningfulness ofthese properties depends on the interpretation of the formal model being used and on theappliation. Reahability analysis annot handle arbitrary liveness properties, beause itdoes not onsider in�nite behavior.In [34℄, Dill desribes a hierarhial veri�ation approah based on onformane hek-ing using trae theory. In this approah, the iruit behavior is spei�ed at di�erent levelsof abstration. Spei�ations at one level of abstration are treated as the desriptions ofimplementations at the higher levels of abstration. If an implementation onforms to aspei�ation, the implementation an safely replae the spei�ation in any ontext whilepreserving orretness of the spei�ation. In this hierarhial veri�ation approah, ir-relevant implementation details an be suppressed in moving from one level of abstrationto the next. Therefore, it an greatly redue the omputational omplexity of veri�ation.



8Dill's approah an only be applied to speed-independent iruits. Veri�ation methodsbased on timed trae theory are desribed in [25, 70, 83, 87℄.1.2.4 Timed State Spae ExplorationBoth synthesis and veri�ation of timed iruits require omplete timed state spaeexploration. The state spae an be found by exhaustively �ring all events in a system.Sine the growth of the reahable state spae is highly dependent upon the representationof timing information, how to model timing behavior is a ruial issue in timed state spaeexploration.There are two models to represent timing behavior of a system: disrete time andontinuous time. In disrete time model [24, 18℄, time is broken into diretizationonstants, and timers in the system an only advane in multiples of a disretizationonstant. Timing analysis using the disrete model is simpler and impliit methods anbe applied to improve performane. The disretization onstant needs to be set smallenough to guarantee exat exploration of the state spae. However, this an ause thestate spae to explode if the delay ranges are large [70℄.In the ontinuous time model, timers in the system an take on any value betweentheir lower bounds and upper bounds. A ontinuous time state spae needs to be dividedinto equivalene lasses, otherwise, the state spae is in�nite. All timing behaviorswithin an equivalene lass must lead to the same state and do not need to be exploredseparately. Therefore, the size of equivalenes should be as large as possible to reduethe number of timed states. In the region approah [1℄, timed states with the sameintegral lok values and a partiular linear ordering of the frational values of the loksare equivalent. Although this approah eliminates the need to disretize time, the statespae an explode if the delay ranges are large. Another approah to ontinuous timeis to represent the equivalene lasses as onvex polyhedra alled zones [33, 15, 47, 2℄.The zones are represented by sets of linear inequalities (also know as di�erene boundmatries or DBMs). Although its worst omplexity is worse than the disrete-time orregion approahes, the zone approah often generates larger equivalene lasses resultingin smaller state spaes when verifying real iruits. However, the number of zones anexplode in highly onurrent systems. The reason for this explosion in the number ofzones is that every possible sequene of onurrent events results in a di�erent zone,even though these sequenes result in the same untimed state. To solve this problem, a



9POSET algorithm [65, 69℄ is proposed to onsider partial ordered sets of events ratherthan the linear sequenes. This algorithm an redue the number of zones substantially.Belluomini extended the POSET algorithm to TEL strutures and applied it to bothsynhronous and asynhronous designs [7, 6, 9℄. In [55℄, Merer desribed an enhanedversion of the POSET method.1.2.5 State Spae RedutionThere exist many tehniques and methods to deal with the state explosion problem.In [44℄, a diret synthesis method is presented where timed iruits are diretly derivedfrom signal transition graphs. It does not su�er from state spae explosion at all sine itdoes not explore state spae. However, the lass of spei�ations that an be handled islimited, and a similar approah annot easily be applied to veri�ation.In systems with a large state spae, expliit representations for the state graph anost too muh memory to be pratial for realisti systems. In [26, 52℄, a symbolirepresentation for the state graph is presented. This symboli representation is based onan ordered binary deision diagram [23℄. It represents logi funtions whih express tran-sition relations between states. OBDDs provide a anonial form for boolean funtionswhih is substantially more ompat, and very eÆient algorithms have been developed formanipulating them. In [76℄, an impliit method using multiterminal BDDs was desribed.Beause the symboli representation aptures some of the regularity in the state spae ofiruits, it an represent systems with an extremely large number of states [52℄. Althoughimpliit methods are able to represent systems with large state spaes, the exponentialomplexity of veri�ation is still a serious problem.In a onurrent system, suh as an asynhronous iruit, di�erent proesses mayperform independently without any synhronizations. Events exeuted onurrently oftenlead to the same state. The exeution of onurrent events is represented by an inter-leaving sequene where the events are arbitrarily ordered with respet to one another.Most veri�ation approahes explore all possible interleaving sequenes whih an resultin an extremely large state spae. In [37℄, a suessful tehnique based on partial orderredution is presented to redue the number of states by onsidering only a subset ofthe possible interleavings between events whih is relevant to the property to be veri�ed.Stubborn sets [78℄ and unfolding [50℄ are based on a similar idea. These tehniques aretargeted spei�ally at veri�ation, beause synthesis requires the information of the



10omplete state spae. In [83℄, the partial order redution approah is extended to timedsystems. 1.2.6 AbstrationAlthough the state redution tehniques in the last setion are suessful on some largesystems, many realisti systems are still too large to be handled. To redue the omplexityinurred by state exploration, abstration is neessary. In [4, 5, 68℄, safe approximations ofinternal signal behavior are presented to redue the state spae under onsideration, butthese methods su�er exponential omplexity in the number of memory elements. In VIS[19℄, non-determinism is used to abstrat the behavior of some iruit signals. It is oftentoo onservative, and an introdue unreahable states whih may exhibit hazards. In [67℄,a model heker is proposed based on hierarhial reative mahines. By taking advantageof the hierarhy information, it only traks ative variables so that the state spae isredued and veri�ation time is improved. This approah, however, is best suited forsoftware whih has a more sequential nature. In [59℄, an abstration tehnique is proposedfor validation overage analysis and automati test generation. It removes all datapathelements whih do not a�et the ontrol ow and groups the equivalent transitionstogether, thus resulting in a dramati redution in the state spae. It is diÆult, however,to distinguish the ontrol from the datapath without help from the designers. In [45℄,an abstration approah for the design of speed-independent asynhronous iruits fromhange diagrams is desribed. In this approah, eah subiruit is designed individually,and they are then reombined to produe the �nal iruit. This approah, however, doesnot address timing issues. In [66℄, Namjoshi and Kurshan desribe an algorithm whihonstruts a �nite state \abstrat" program from a possibly in�nite state \onrete"program by means of a syntati program transformation. It an be applied to in�nitestate programs or programs with large data paths, and it allows other redution methodsto be applied for model heking. However, the iterative transformation may not �nish.In [39℄, a divide-and-onquer method for synthesis of asynhronous iruits is desribed.This method breaks the state graph for a given problem into a number of simpler modularsubgraphs for eah output. Eah modular subgraph is solved individually. The result ofthese small subgraphs are then integrated together ontributing to the solution to thegiven problem. Although this makes synthesis and veri�ation easier, the quality of the�nal solution may depend on the order in whih the outputs are proessed. Also, this



11method generates a omplete state graph before it breaks the state graph, whih is highlyundesirable for large omplex designs. In [11℄, Belluomini desribed the veri�ation ofdomino iruits using ATACS. She found out that verifying at iruits even of a moderatesize is too diÆult to be done by ATACS, but with some hand abstration, the veri�ationis ompleted quikly. Although doing abstration by hand is possible, it requires anexpert user and methods must be developed to hek that the abstrations are a reliablemodel of the underlying behavior. This is the major motivation of this researh.1.3 ContributionsThis dissertation presents an automati abstration tehnique that is used to addressstate explosion problem in large designs. In timed iruit synthesis and veri�ation, anenvironment needs to be provided to de�ne the input behavior that the iruit musthandle and output that the iruit should produe. During state spae exploration, allstates inluding the states of the environment need to be found. Sine the funtion of anenvironment is to de�ne the interfae behavior for the iruit, the internal states of theenvironment have no impat on the bahavior of the iruit as long as the ommuniationbetween the iruit and its environment remains the same. Based on the this observation,the internal details of the environment an be abstrated away, and the state spae of theiruit and its environment an be redued substantially.When designing a iruit whose state spae is too large to be represented, the divide-and-onquer method has to be used. In ATACS, a large iruit is partitioned into smallerbloks. For eah blok, the rest of bloks in the iruit and the environment for the wholeiruit beome the environment for the blok. After the partitioning, the blok and itsenvironment ontain the same amount of information that needs to be onsidered duringstate spae exploration as before. From the above disussion, it is known that the internalstates of the environment an be abstrated away. By using strutural information, theinternal details of the environment for the blok an be identi�ed and removed. After theenvironment is simpli�ed, eah blok is synthesized or veri�ed. This proess is applied toall bloks in the iruit. One the results for all bloks are available, they are integratedtogether to form the solution to the whole iruit. This idea an be illustrated by anexample shown in Figure 1.2. In Figure 1.2(a), a iruit has four omponents, eah hasonstrained interfae. Suppose we would like to design omponent M2, omponents M1,M3, M4 and the environment for the whole iruit E together beome the environment
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M2E_M2 ()Figure 1.2. Illustration of modular design using abstration.for M2 as shown in Figure 1.2(b). Sine M2 has a onstrained interfae, the environmentfor M2, E M2, ontains internal signals whose behavior has no impat on M2. Afterabstrating those signals away from the environment E M2 as shown in Figure 1.2(),the omplexity for designing M2 an be substantially redued. The same proess an berepeated for M1, M3 and M4. Although this approah does not solve the exponential



13omplexity inherent in the state spae exploration, it improves the speed and memoryusage of the design proess by onverting a large exponential problem into a set of smallexponential sub-problems with a just little overhead for abstration. This dissertation alsogives theorems that prove the orretness of the design using our abstration tehnique.This abstration tehnique is implemented in a ompiler [86℄ frontend to our timed iruitdesign tool ATACS and are applied to several examples. The results show that the designproess with our abstration tehnique is not only orders of magnitude faster and morememory eÆient, but also suessful on orders of magnitude more omplex designs thanan be designed without using it.There are three major ontributions of this dissertation. The �rst ontribution is thetheorems that give the theoretial support for the modular synthesis and veri�ation oftimed iruits using the abstration tehniques presented in this dissertation. The modu-lar synthesis theorem asserts that if eah blok of a system is synthesized orretly with anabstrated version of the given environment, the omposition of the results for all bloksis the orret solution to the whole system. Similarly, the modular veri�ation theoremasserts that if eah blok of a system is veri�ed orretly with an abstrated version of thegiven environment, the whole system is also orret. The suessful appliation of thesetheorems is supported by safe transformations that redue the omplexity of a designwhile preserving its behavior.The seond ontribution is the abstration tehnique that is applied to the TELstrutures. Sine the state spae of a design grows exponentially in size of a design,it is easier to use a divide-and-onquer approah to solve a omplex design problem. Theabstration presented in this dissertation an aid designers to partition a iruit intobloks with manageable sizes, hoose a blok for synthesis and veri�ation, group the restof bloks and the environment for the whole iruit together as the environment for theseleted blok, and then identify the don't-are information for the blok using spei�edhierarhial information.The third ontribution of this dissertation is the safe net redutions and redundantrule heks used by abstration to remove the identi�ed don't-are information in theenvironment while preserving the behavioral semantis of the blok. These tehniquesredue the design omplexity of the blok by removing the part of the environmentspei�ation whih does not a�et the operation of the blok. These tehniques havebeen proved to be safe aording to the de�nition of safe transformations. Combination



14of abstration and safe transformations an make the design proess muh faster andmore memory eÆient than designing the at system.1.4 Dissertation OutlineThis dissertation is organized as follows: Chapter 2 gives an overview of the spe-i�ation method used in ATACS and its behavioral semantis. In ATACS, spei�ationsin VHDL or THSE are ompiled to TEL strutures to speify the iruit behavior, andtimed trae theory is used as the semantis. This hapter serves as the groundwork forthe rest of this dissertation.Chapter 3 de�nes the orretness of synthesis and veri�ation, and safe transforma-tions. This hapter also presents hierarhial synthesis and veri�ation theorems whihare mathematially proved. The signi�ane of these theorems is that any design proessusing the abstration in this dissertation is orret.Chapter 4 desribes the abstration tehniques. After a blok is hosen for synthesis orveri�ation, this hapter desribes how abstration identi�es the don't-are informationfor the blok by taking advantage of the strutural information given in a spei�ation.The abstration tehnique for TEL strutures with levels is di�erent from that for TELstrutures without levels. In this hapter, safe abstration is de�ned to handle levels.Sine the don't-are information does not a�et the behavior of the blok, it isneessary to remove it to redue the omplexity of designing the blok. Chapter 5desribes several safe net redution tehniques that remove the don't-are informationwhile preserving the behavioral semantis of the blok. Chapter 6 desribes tehniquesto unover and remove redundant rules in a TEL struture.Chapter 7 gives experimental results using the tehniques presented in this disserta-tion. The omparison between the abstration tehnique and the traditional at designapproah is also given in this hapter.Chapter 8 summarizes this dissertation, and disusses the future work and the nees-sary improvement on our abstration tehnique.



CHAPTER 2CIRCUIT SPECIFICATIONS ANDSEMANTICSSpei�ation methods of timed iruits an be loosely divided into two groups: hard-ware desription language (HDL) methods and graphial representations. HDL spe-i�ations are expressive in desribing large and omplex systems with a modular andhierarhial struture, while graphial representations are preferred during timing analysisand synthesis. Therefore, ombining the two approahes provides an easy way to desribelarge and omplex systems while the ommon timing analysis and synthesis algorithmsan still be applied to optimize the iruit implementations. In [86℄, a new ompilerfrontend to ATACS is desribed. This ompiler aepts inputs in VHDL or THSE, andompiles them into a graphial representation, the timed event/level (TEL) struture [8℄.The behavioral semantis of a TEL struture is de�ned by using trae theory [34℄. Inthis hapter, the �rst setion gives an overview of the spei�ation languages, namely,THSE and the synthesizable subset of VHDL. TEL strutures are desribed in the nextsetion. The third setion gives a brief overview of the ompilation proedure from a timedspei�ation to a TEL struture. The fourth setion desribes the behavioral semantisof TEL strutures, namely, timed trae theory. The last setion desribes how to derivea trae struture from a TEL struture.2.1 Timed Spei�ationsThe �rst step in any design method is to speify what is to be built. This setion givesan overview of the syntax of THSE and a synthesizable subset of VHDL. Both languagesallow a bounded timing onstraint assoiated with eah signal transition.2.1.1 Timed Handshaking ExpansionsA system an be spei�ed struturally, behaviorally, or in a mixed manner. In TimedHandshaking Expansion (THSE), modules are the basi omplete strutures to speify



16module ) module ID; delarations stmts endmoduledelarations ) delarations sigdel j sigdelsigdel ) type ID = finitial; delayg;stmts ) stmts stmt j stmtstmt ) mpt stmt j proess j gate j onstraintmpt stmt ) ID ID(asso list)asso list ) asso list; ID => ID j ID => IDproess ) proess ID; ommands endproessinitial ) true j falsedelay ) hINT; INT; INT; INTi j hINT; INTiommands ) ommands ; mnd j ommands k mnd j mndmnd ) ation j seletion j repetitionFigure 2.1. Modules, signal delarations, omponents and proesses.a system. The syntax of a subset of THSE is shown Figure 2.1. A module is omposedof two parts: a set of signal delarations and a set of onurrent statements exeuting inparallel. Eah delaration onsists of a type (either input or output), a signal name,an initial value (either true or false), and a bounded delay assoiated with transitionson that signal. A delay is given in a form: hlr; ur; lf ; uf i where lr and ur are the lowerand upper bounds on a rising transition and lf and uf are the lower and upper boundson a falling transition. If the delay is given in a form: hlr; uri, the delays are equal onrising and falling transitions. The lower bounds are non-negative integers and the upperbounds are an integer greater than or equal to the lower bound or 1.There are four kinds of onurrent statements: proesses, gates, onstraints, andomponent statements. Proesses are used to speify the behavior of a system. A proessonsists a set of ommands. The ommands in the body of a proess inlude ations,seletion ommands, and repetition ommands. Commands an be exeuted in sequene(denoted C1;C2) or in parallel (denoted C1 k C2). The ations are used to assign valuesto the output signals. Signals an only take two values: true and false. There are twoations assoiated with eah signal x: x+ denotes that signal x hanges from a low tohigh value, and x� denotes that x hanges from a high to low value. The language alsoinludes a skip ation that does nothing and terminates immediately.Seletions and repetitions are used to ontrol the ow of proesses. A seletionommand has the following form:



17[G1 ! S1 j � � � j Gn ! Sn℄where G1 through Gn are boolean expressions, S1 through Sn are sequenes of ommands(Gi is alled a \guard", and Gi ! Si is alled a \guarded ommand"). The guard Giof a guarded ommand is a boolean expression over a set of ations or signal values. Theations in this expression an be omposed onjuntively (denoted e1 & � � � & en) inwhih the expression evaluates to true when all ations in the set has ourred. Mutuallyexlusive ations an be omposed disjuntively (denoted e1 j � � � j en) in whih theexpression evaluates to true when exatly one ation in the set has ourred. The guardmay inlude a ombination of onjuntive and disjuntive lauses. The guard an alsobe a skip ation whih evaluates to true immediately. If the expression is omposedof signal values, s or :s, the guard evaluates to true when the signal s is high or low,respetively. Signals in the expression an also be omposed onjuntively, disjuntively,or in a ombination of both. A guard an simply be true. There is a subtle di�erenebetween a guard omposed of ations and a guard omposed of levels disjuntively. Ifomposed of levels disjuntively, the expression evaluates to true when one or more levelsevaluate to true. Signal levels in a disjuntive expression are not mutually exlusive whileations must be. For example, the guard ommand [a+ j b+! +℄ spei�es that + anour only after either a+ or b+ has ourred, but not both, while the guard ommand[a j b! +℄ spei�es that + an our after the value of either a or b, or both are high.When a proess exeutes a seletion ommand, all guards in that seletion ommandare evaluated �rst. If one of the guards, Gi, is true, then a sequene of ommands, Si,following that guard is exeuted. If multiple guards evaluate to true, only one guard ishosen nondeterministially. There is a speial form of seletion ommand, [G℄, whihstands for [G ! skip℄, and is used to suspend the exeution of a proess until G evaluatesto true.A repetition ommand has the following form:�[G1 ! S1 j � � � j Gn ! Sn℄During exeution, one of the guarded ommands is hosen for exeution, then the ontrolloops bak to the beginning of this ommand. If none of the guards evaluates to true, theexeution of this ommand terminates and the ontrol goes to the next ommand. Thereis a shorthand of this repetition ommand: �[S℄ that stands for �[true ! S℄ where S is



18module emptystage;input xtin;input xfin;input akin;output xt = fh100; 200ig;output xf = fh100; 200ig;output ak = ftrue; h100; 200ig;proess datastage;�[[xtin+! xt+ j xfin+! xf+℄ : [akin�℄ :[xtin� ! xt� j xfin�! xf�℄ : [akin+℄℄endproessproess akstage;�[[xt+ j xf+℄ : ak� : [xt� j xf�℄ : ak+℄endproessendmoduleFigure 2.2. The THSE ode for a single empty STARI stage.a sequene of ommands. This ommand auses S to be exeuted forever. This is usuallyused to de�ne a reative proess:�[[G1 ! S1 j : : : j Gn ! Sn℄℄When exeuting this ommand, the proess waits until one of the guards is true, thenexeutes the ommands following that guard, and repeats. Another type of repetitiononstrut is shown below: [G1 ! S1 j : : : j Gn ! Sn; �℄The operation of this onstrut is similar to that of the seletion de�ned above exeptthat after a guarded ommand followed by a '�' is exeuted, the ontrol loops bak to thebeginning of the seletion ommand. Otherwise, the ontrol goes to the next ommand.Figure 2.2 shows an example to illustrate how to use the language onstruts to speifya iruit. The module in the example spei�es that the iruit has three input signals andthree output signals. It also ontains two proesses to de�ne the behavior of the iruit.Besides proesses, a module an also ontain a set of gate and onstraint statements.Gates are used to desribe the behavior of a system at the gate-level. A gate statementhas the following form: gate ID;G1 ! x+G2 ! x�endgate



19module emptystage;input xtin;input xfin;input akin;output xt = fh100; 200ig;output xf = fh100; 200ig;output ak = ftrue; h100; 200ig;gate t;akin & � xtin! xt+� akin & � xtin! xt�endgategate f ;akin & xfin! xf+� akin & � xfin! xf�endgategate ak;xt j xf ! ak�� xt & � xf ! ak+endgateendmoduleFigure 2.3. The gate-level THSE ode for a single empty STARI stage.G1 and G2 are boolean expressions over a set of signal values. G1 and G2 de�nes theonditions when signal x an go high and low, respetively. Figure 2.3 shows the gate-levelspei�ation for the iruit shown in Figure 2.2. A gate statement is de�ned for eahoutput signal. For example, in gate statement t, signal xt goes high when the value ofakin is high and value of xtin is low. xt goes low when the value of both akin and xtinis low.Constraint statements are used to de�ne timing properties among signals that are usedfor veri�ation. A onstraint statement has the following form:onstraint ID;G! hINT; INTi ationendonstraintG an be a single ation or a boolean expression over a set of signal values. The twointegers de�ne a lower and upper bound when a signal event is required to our afteranother event has ourred or the boolean expression of G has evaluated to true. Thesetwo integers are optional. In suh ase, they are assumed to be 0 and 1.The omponent statements are used to speify the interonnetion of the omponents,and provide a way to modulize the design and to manage the design omplexity. This



20module stari;input lk = fh1200; 1200ig;input ak3 = ftrue; h0; 100ig;input x0t = fh0; 100ig;input x0f = fh0; 100ig;efstage stage1(xtin => x0t; xfin => x0f; akin => ak2;xt => x1t; xf => x1f; ak => ak1);fullstage stage2(xtin => x1t; xfin => x1f; akin => ak3;xt => x2t; xf => x2f; ak => ak2);proess lk;�[lk+; lk�℄endproessproess left;�[[lk+℄ : [skip! x0t+; [lk�/1℄; x0t�jskip! x0f+; [lk�/1℄; x0f�℄℄ :endproessproess right;�[[lk+℄ : ak3� : [lk�℄ : ak3+℄ :endproessonstraint notfull1;ak1 +�! x0t+endonstraintonstraint notfull2;ak1 +�! x0f+endonstraintonstraint notempty1;x2t+�! ak3�endonstraintonstraint notempty2;x2f +�! ak3�endonstraintendmodule Figure 2.4. The THSE ode for a 2-stage STARI.language onstrut is new sine [86℄. A omponent is an instane of a module. Aomponent statement onsists of a label, a type (i.e. module name) and an assoiation listwhih onnets the inputs and outputs of the omponent to the signals in the module. Aomponent statement renames the signals delared in the omponent to the orrespondingsignals in the assoiation list. The assoiation list of a omponent statement onsists ofall input signals and a subset of output signals delared in the orresponding module.The output signals not on the assoiation list are internal to the module.Figure 2.4 shows the THSE spei�ation for a iruit that onsists of 2 stages. There



21are two omponents in the module that spei�es the struture of the iruit. The twoproesses speify the environment of the iruit. The onstraints speify the timingproperties that this iruit must satisfy. For example, onstraint ak1+! x0t+ spei�esthat signal x0t an go high only after ak1 goes high. If this onstraint is not sati�ed,the iruit is not orret.2.1.2 A Synthesizable Subset of VHDLThe omplete VHDL language ontains many ompliated language onstruts thatare not synthesizable in ATACS. This setion introdues a synthesizable subset of VHDLto speify timed iruits.The desription of a system an be divided into two parts: the external view and theinternal view. The external view desribes the interfae between the internal strutureand the outside world. It spei�es the number and types of the input and output signals.The internal view desribes how the iruit implements its funtion. In VHDL, an entitydesribes the external interfae, and one or more arhiteture bodies desribe alternativeinternal implementations.The syntax rules for entities and arhiteture bodies are shown in Figure 2.5. Theidenti�er in an entity delaration names the module so that it an be referred to later.The port lause, whih is optional, names eah of the ports, whih together form theinterfae to the entity. The ports an be thought of as being analogous to the pins of airuit. Eah port of an entity has a type, whih spei�es the kind of information thatan be ommuniated. In this subset, the allowed data types are bit and std logi. Eahport also has a mode whih spei�es whether information ows into or out of the entitythrough the port. If the mode of a port is in, it means that the port an only read theinformation. If the mode is out, it means that the port an only output the informationgenerated by the iruit. If the mode is inout, it means that the information an be bothread and output by the port.The internal operation of a module is desribed by an arhiteture body. In general, anarhiteture body applies some operations to the values on input ports, generating valuesto be assigned to output ports. The operations an be desribed either by proesses,whih ontain sequential statements operating on values, or by a olletion of omponentsrepresenting subiruits, or by both. The identi�er in an arhiteture body names apartiular arhiteture body, and the entity name spei�es whih module is desribed bythis arhiteture body. A single entity may have one or more di�erent arhiteture bodies.



22entity delaration ) entity ID is[port(interfae list); ℄end [entity ℄ [ID℄;interfae list ) (IDf; : : :g : [mode℄ type [:= expression℄)f; : : :gmode ) in j out j inoutarhiteture body ) arhiteture ID of entity ID isdelarationsbeginonurrent stmtsend [arhiteture℄ [ID℄;delarations ) signal delarations j omponent delarationsonurrent stmts ) proess stmt j omponent stmtFigure 2.5. The syntax rules for entities and arhiteture bodies.The delarations in an arhiteture body inlude signals and omponent delarations. Thestatements in the arhiteture body exeute onurrently. In this synthesizable subset,proess statements and omponent instantiation statements are allowed in an arhiteturebody.The syntax for signal and omponent delarations is shown in Figure 2.6. The signaldelarations are used to speify signals used in an arhiteture and their attributes. Eahsignal delaration onsists of a set of signal names, their data type, and an optionalinitial value. Signals delared in the entity of an arhiteture are also visible inside thearhiteture body and are used in the same way as signals delared in the arhiteture.To synthesize a timed iruit, it is neessary to know how its environment behaves.The signals that onnet the outputs of the environment to the inputs of the iruit arenot synthesized. These signals are labeled by attahing a symbol \���in" at the end ofthe delarations of those signals. This symbol is reognized by the ATACS synthesis enginebut ignored by the simulator. This symbol is only used in the top level that ontains thespei�ations for the whole iruit and the environment.When designing a large and ompliated system, a hierarhial approah is a goodway to attak omplexity. In this VHDL subset, omponent delarations and omponentinstantiation statements are used for hierarhial design. The syntax of omponent de-larations is shown in Figure 2.6. Similar to entity delarations, a omponent delarationsimply spei�es the external interfae to the omponent.



23signal delarations ) signal ID f; � � �g : type [:= expression℄;omponent delaration ) omponent ID [is℄port(interfae list);end [omponent℄ [ID℄;Figure 2.6. The syntax rules for signal and omponent delarations.omponent stmt ) [instantiation label :℄[omponent℄ omponent nameportmap (assoiation list);proess stmt ) [proess label :℄ proess [is℄variable delarationsbeginsequential stmtsend proess [proess label℄;Figure 2.7. The syntax rules for onurrent statements.Conurrent statements in an arhiteture body are exeuted in parallel. A proessspei�es the behavior of a system, and a omponent instantiation statement spei�es theinteronnetion between a subiruit and the rest of the arhiteture body. The syntaxrules for proess and omponent instantiation statements are shown in Figure 2.7.If a omponent is used in an arhiteture, it must be delared �rst, and instantiatedby a omponent instantiation statement. A omponent instantiation statement spei�esa usage of suh a module in a design. The syntax rules show that we may simply namea omponent delared in the arhiteture body and provide atual signals to onnet itto the ports in the entity. When the statement is used, all signals in the omponentare renamed to the orresponding atual signals in the assoiation list. The label isneessary to identify the omponent instane. A proess statement onsists of a set ofvariable delarations and sequentially exeuted statements. The variable delarations ina proess speify attributes of variables. Variable are only used in the proesses speifyingnondeterministi behavior of an environment. They are not synthesizable in ATACS. Aproess ontains a set of sequential statements inluding guard, assign, if, and while loopstatements. When the proess is ativated, it starts exeuting from the �rst sequential



24sequential stmts ) sequential stmts; stmtstmt ) if stmt j loop stmt j guard j assignif stmt ) if boolean expression thensequential stmtselsif boolean expression thensequential stmtselsesequential stmtsendif ;loop stmt ) while boolean expression loopsequential stmtsendloop;guard ) guard (G1; G2);j guard or (G1; � � � ; G2);j guard and (G1; � � � ; G2);assign ) assign(assign stmtf; � � �g);assign stmt ) ID; expression; INT; INTFigure 2.8. The syntax rules for sequential statements.statement and ontinues until it reahes the last one. It then starts again from the�rst one. This would be an in�nite loop, and is desirable in eletroni iruits beauseiruits typially operate ontinuously until the power is shut down. The syntax rules forsequential statements are shown in Figure 2.8.An if statement onsists of a set of if branhes and an else branh. Eah if branh on-tains a boolean expression over a set of signal values and a set of sequential statements. Ifone of expressions evaluates to true, the following statements are exeuted. If expressionsof multiple branhes evaluate to true, the �rst branh in the statement is hosen. If noneof the expressions evaluates to true, the statements in the else branh are exeuted. Awhile loop statement is used to desribe a piee of repetitively exeuted program. A whileloop statement onsists of a boolean expression and a set of sequential statements. Ifthe expression evaluates to true, the statements in the while loop statement are exeutedrepetitively until the expression evaluates to false. The expression an simply be a truethat auses the while loop statement to exeute in�nitely.Guard and assign are two proedures that ome from the handshake pakage devel-



25oped for ATACS. The proedure guard(s; v) takes a signal, s, and a value, v, and stallsa proess until the signal s has taken the value v. The VHDL ode that implementsguard(s; v) is as follows: if (s /= v) thenwait until s = v;endifIn VHDL, a wait statement stalls the proess until the expression s = v beomes true.However, if the expression is true when the wait is exeuted, the proess stalls untilthe expression goes false and beomes true again. This an ause a system to deadlok.To address this problem, the expression is heked before the exeution of the waitstatement to make sure that the wait is ignored if the expression is true. The proedureguard or(s1; v1; s2; v2; � � �) takes a set of signals and values and stalls a proess until somesignal si has taken value vi. Similarly, the proedure guard and(s1; v1; s2; v2; � � �) takesa set of signals and values and stalls a proess until all signals si have taken value vi.The proedure assign(s; v; l; u) takes a signal, s, a value, v, a lower bound of delay, l,and an upper bound of delay, u, and hanges the value of the signal s to v after after arandom delay between l and u. This is a truly sequential statement in that the statementfollowing an assign proedure an exeute only after the signal event reated by theassign proedure has ourred. The assign proedure also allows parallel assignments.For example, assign(s1; v1; l1; u1; s2; v2; l2; u2) hanges the values of s1 and s2 to v1 andv2 in parallel. 2.2 Timed Event/Level StruturesTimed event/level (TEL) strutures are a variant of Myers' timed event-rule (ER)strutures [63℄ with a boolean ondition added to eah rule in the rule set. Eventstrutures were introdued by Winskel [82℄, and timing has been added to them in severalways. Subrahmanyam added timing to event strutures using temporal assertions [72℄.Burns introdued timing in a deterministi version, the event-rule (ER) system, in whihausality is represented using a set of rules, and a single delay value is assoiated with eahrule [27℄. Myers introdued timed ER strutures that extend ER systems with boundedtiming onstraints and add onits from event strutures to model nondeterministibehavior (namely, environmental hoie). TEL strutures, introdued by Belluomini [8℄,extend timed ER strutures by assoiating a boolean expression with eah rule.



26The formal de�nition of a TEL struture is given below in whih N = f0; 1; 2; 3; : : :g:De�nition 2.2.1 A timed event/level struture is N = h�; A;E;R;#; S0i where1. � is the set of signals;2. A � �� f+;�g is the set of atomi ations;3. E � A�N [ f$g is the set of events;4. R � E �E �N � (N [ f1g) � z : f0; 1gN ! f0; 1g) is the set of rules;5. # � E �E is the onit relation;6. S0 = f0; 1gN �R� (R! Q) is the initial state.A TEL struture an also be expressed as a direted yli graph where the nodes in thegraph are the orresponding events in the TEL, and the edges are the rules in the rule setof the TEL. Eah edge is labeled by a timing onstraint and level for the orrespondingrule. Also in this dissertation, an edge may be labeled by a unique identi�er that is usedto represent the orresponding rule in the explaination. The desription of onits isgiven later in this setion.In timed systems, the signal set, �, ontains all input, output, and internal wires inthe spei�ation. The atomi ation set, A, ontains a rising transition and a fallingtransition for eah signal x 2 �, denoted by x+ and x�, respetively. The ourrene ofan ation is an event, and it is denoted (a; i) where a is the ation and i is an ourreneindex for the ation. The �rst instane of this ation has i = 0, and i inrements with eahsubsequent instane. There is also a speial kind of events: a sequening event startingwith '$'. Sequening events do not represent any signal value hanges in a system. Theyare plae holders for timing information and boolean level evaluations. In the early stageof the VHDL ompiler development [86℄, the introdution of sequening events is for theonveniene of ompilation. During abstration, sequening events are reated to replaethe don't-are events in a system. The don't-are events are de�ned in a later hapter.Sine sequening events ause no signal value hange in a system, they should be removed,whenever possible, to redue the omplexity of the design problem to be solved. Removalof sequening events is a ruial step for abstration to be suessful, as desribed in alater hapter.The rule set, R, is used to represent a ausal dependene between two events. Eah ruleof the form he; f; l; u; zi is omposed of an enabling event e 2 E, an enabled event f 2 E,a bounded timing onstraint hl; ui where l 2 N and u 2 N [ 1, and a sum-of-produt
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fFigure 2.9. An example of onjuntive ausality.boolean expression z over the signals in the signal set N . Note that z is not shown in a ruleif the value of z is true. Given a rule r = he; f; l; u; zi, enabling(r) = e, enabled(r) = f ,lower(r) = l, upper(r) = u and level(r) = z. For an event e 2 E, the preset ofe (denoted �e) is the set of rules where e is the enabled event (i.e., enabled(r) = efor all r 2 �e), and the postset of e (denoted e�) is the set of rules where e is theenabling event (i.e., enabling(r) = e for all r 2 e�). The size of the preset of an evente (denoted size(�e)) is the number of rules in �e. Similarly, the size of the postset ofan event e (denoted size(e�)) is the number of rules in e�. For an event e 2 E, theenabling set of e is the set of events that are the enabling events of the rules in thepreset of e (i.e., enabling set(e) = ft = enabling(r) j r 2 �eg), and the enabled setof e is the set of events that are the enabled events of the rules in the postset of e (i.e.,enabled set(e) = ft = enabled(r) j r 2 e�g). A rule r is enabled if enabling(r) has�red and level(r) evaluates to true in the urrent state. A timer is assigned to eahrule when it beomes enabled. timer(r) is initialized to zero when r is enabled. Alltimers of enabled rules inrease uniformly. The bounded timing onstraint hl; ui plaesa lower and upper bound on the timing of a rule. A rule r is said to be satis�ed if ris enabled and timer(r) � lower(r). A rule r is said to be expired if r is enabled andtimer(r) � upper(r). Ignoring onits, an event e annot our until r is satis�ed forall r 2 �e. This ausality requirement is termed onjuntive. An event e must always�re before every r 2 �e is expired. Sine an event may be enabled by multiple rules, it ispossible that the di�erene in time between the enabled event and some enabling eventsexeed the upper bound of their timing onstraints, but not for all enabling events. Thesetiming onstraints are the same as max onstraints [51℄ and type 2 ars [80℄. Figure 2.9shows an example that expresses this onjuntive ausality where  is enabled by tworules r1 and r2. Given a rule r = he; f; l; u; zi, EFT(f  r) and LFT(f  r) indiate theearliest and latest �ring time of f deided by r, and they are de�ned as follows:EFT(f  r) = tr + l and LFT(f  r) = tr + u
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l1 u1[ , ] l2 u2[ , ](a) (b)Figure 2.10. Examples of onit plaes for disjuntive ausality and onit outputs.where tr is the time when r beomes enabled. If an event f is enabled by multiplerules, for example, r1 = ha; f; l1; u1; z1i and r2 = hb; f; l2; u2; z2i, EFT(f  r1; r2) andLFT(f  r1; r2) are the earliest and latest �ring time of f deided by r1 and r2, and theyare de�ned as follows:EFT(f  r1; r2) = max(tr1 + l1; tr2 + l2)LFT(f  r1; r2) = max(tr2 + u1; tr2 + u2)where tr1 and tr2 are the times when r1 and r2 beome enabled.There are two possible semantis onerning the enabling of a rule. In one semantis,referred to as non-disabling semantis, one a rule beomes enabled, it annot lose itsenabling due to a hange in the state. In the other semantis, referred to as disablingsemantis, a rule an beome enabled and then lose its enabling. This an our whenanother event �res, resulting in a state where the boolean funtion is no longer true.A single spei�ation an inlude rules with both types of semantis. Non-disablingsemantis are typially used to speify environment behavior and disabling semantis aretypially used to speify logi gates. For the purposes of veri�ation, the disabling ofa boolean expression on a disabling rule is assumed to orrespond to a failure, sine itorresponds to a glith on the input to a gate.The onit relation in # is added to model disjuntive behavior and hoie. Whentwo events e and e0 are in onit (denoted e#e0), this spei�es that either e an our ore0 an our, but not both. Taking the onit relation into aount, if two rules have thesame enabled event and oniting enabling events, then only one of the two mutuallyexlusive enabling events needs to our to ause the enabled event. This models a form



29of disjuntive ausality. Choie is modeled when two rules have the same enabling eventand oniting enabled events. In this ase, only one of the enabled events an our.Figure 2.10 shows an example of disjuntive ausality and an example of hoie. Theirles in the �gure, similar to the plaes in Petri nets, are onit plaes whih representonits among events. The events in the preset and postset of a plae are in onit. Theonit plaes are just for notational onveniene. If it is impossible to display onitsusing onit plaes, we label the onits using text in �gures. The onept of onitplaes an be extended to single rules. We say that a single rule has a onit plaeimpliitly. For example, if an event e has two rules in its preset, and their enabling eventsare in onit, then there is only one onit plae in the preset of e. If the enablingevents of the rules are not in onit, we say that there are two onit plaes in thepreset of e. This onept is used when analyzing safe net redutions in Chapter 5.If an event e is enabled by multiple rules and there are onits in enabling set(�e),we de�ne a onit-free set fs(�e) to be the maximum subset of �e suh that there is noonits among the enabling events of the rules in fs(�e). �e an be divided into severaldi�erent onit-free sets. Firing e requires that all rules in a onit-free set are satis�ed.EFT and LFT an be extended to reet the onits, orrespondingly. Suppose an evente is enabled by r1 = ha; e; l1; u1; z1i, r2 = hb; e; l2; u2; z2i, and r3 = h; e; l3; u4; z4i. Also,a and  are in onit. Therefore, e has two onit-free sets in its preset: fs1(�e) =fr1; r2g and fs2(�e) = fr2; r3g. EFT(f  r1; r2; r3) and LFT(f  r1; r2; r3) are de�nedas follows: EFT(y  r1; r2; r3) = � max(tr1 + l1; tr2 + l2) if a and b �remax(tr2 + l2; tr3 + l3) if b and  �reLFT(y  r1; r2; r3) = � max(tr1 + u1; tr2 + u2) if a and b �remax(tr2 + u2; tr3 + u3) if b and  �rewhere tr1 , tr2 , and tr3 are the time of when r1, r2, and r3 beome satis�ed.A state S of a TEL struture N is a three-tuple hs;M; timeri, where s = f0; 1g� is thestate bitvetor of logi values of all signals inN ,M is the marking, and timer is a funtionR ! Q. A marking M � R where all rules r 2 M are marked. S0 = hs0;M0; timer0i isthe initial state of N , where the signal values in the initial bitvetor s0 are determined inthe spei�ation, the initial markingM0 ontains all rules whih are initially enabled, andtimer0(r) = 0 for all r 2 R. An event e is enabled to �re in a state S if a fs(�e) � Mand r is satis�ed for all r 2 fs(�e). enabled(S) is the set of all events whih are enabledto �re in the state S. The states of N hange if either time passes or an event �res. In
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[2,5] [3,10]<z>CFigure 2.11. Example of a onstraint rulestate S = hs;M; timeri, time � an pass if for eah e 2 enabled(S), there is at least oner 2 �e suh that timer(r) + � � upper(r). The state resulting from passing time � in Sis S0 = hs0;M 0; timer0i, where1. s0 = s,2. timer0(r) = timer(r) + � for all r 2M 0.If e 2 enabled(S) where S = hs;M; timeri, �ring e leads the system to the next state.After �ring e, the state hanges to S0 = hs0;M 0; timer0i, where1. s0 = s after the orresponding signal value in s is hanged,2. M 0 = (M � �e) [ e�, and3. timer0(r) = 0 for all r 2 e�.A TEL struture, N , is safe if every rule in N has at most one token in any reahablemarking. In a marking M , if a rule r has a token, we say that r 2M . If r does not havea token, r 62M . The safeness of N an be expressed as follows:(M � �e) \ e� = ;A TEL struture, N , is live if from every reahable marking, there exists a sequene ofevents suh that any event an �re.Timing properties of a system are spei�ed using a set of onstraint rules: C � E �E � N � (N [ f1g) � (b : f0; 1gN ! f0; 1g). These onstraint rules are similar to theonstraint plaes desribed by Rokiki in [69℄. Constraint rules never atually enable anevent to �re. Instead, the onstraint rules are heked eah time an event �res in a state.Failures aused by onstraint rules arise due to following three onditions:1. There exists a onstraint rule r 2 �e suh that r 62M when �ring e.2. timer(r) is not satis�ed for any onstraint rule r 2 �e when �ring e.3. timer(r) is expired for any onstraint rule r 2 �e before �ring e.
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Figure 2.12. The TEL struture of a single stage STARI.Figure 2.11 shows a TEL struture fragment whih ontains a onstraint rule. Thisrule requires that the TEL struture must meet a number of requirements. The �rstrequirement is that  must �re no more than 10 time units after the rule hb; ; 3; 10; zibeomes enabled. If  an ever �re later than this, the age of the onstraint rule exeedsits upper bound and auses a failure. The next requirement is that b must �re at least3 time units before  �res, and the level z must be high at least 3 time units before �res. These onditions are neessary in order for the onstraint rule to be satis�ed when �res. If the onstraint rule is disabling, then the rule would also require that z remainshigh from the time it rises to the time that  �res. This single onstraint rule spei�esa rather omplex set of requirements. Constraint rules, espeially when ombined withthe ability to speify sequening events, provide a reasonably powerful way in whih todesribe the behavior to be veri�ed.2.3 Translating Timed Spei�ations to TEL StruturesThis setion introdues the basi onepts of translating a timed spei�ation to aTEL struture. The details of the translation proedure an be found in [86℄.During translation, a timed spei�ation in HSE is deomposed to ations. A TEL
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Figure 2.13. The TEL struture of a gate-level single stage STARI.struture is reated for eah ation. The TEL strutures for the ations are omposed inparallel, in onit, or in sequene depending on whether they are are exeuted in parallel,in onit, or in sequene. For the ations in the boolean expression of a guard, theirTEL strutures are omposed in parallel if these ations are omposed onjuntivelyin the expression, or their TEL strutures are omposed in onit if the ations areomposed disjuntively in the expression. For a guarded ommand, the TEL struturesof the guard and the ommand are omposed in sequene in that the ommand is exeutedafter the ations in the guard have ourred. If a proess is repetitive, the TEL struturesfor the ations exeuted last in the proess are omposed with the TEL strutures forthe ations exeuted �rst in the proess in sequene to desribe the repetitive feature.Sine all proesses in a module operate in parallel, their TEL strutures are omposed inparallel. If a module is instantiated in another module through a omponent statement,all signals in the instantiated module are renamed to the atual signals in the assoiationlist, then the renamed TEL struture for the alled module is omposed in parallel withthe TEL strutures for proesses and other omponent statements in the alling module.For a onstraint statement, it is diretly translated to a onstraint rule as de�ned in thelast setion. A gate is also diretly translated to orresponding rules. Figure 2.12 showsthe fragment of the TEL struture translated from the THSE ode for the 2-stage STARIshown in the �rst setion of this hapter. This fragment of TEL struture orresponds toa single empty stage of the STARI shown in Figure 2.2 that is instantiated in the 2-stageSTARI. Figure 2.13 shows the TEL struture for the single empty stage STARI in thegate-level THSE shown in Figure 2.3.



33A similar proedure is also applied to translate a timed spei�ation in VHDL to aTEL struture. The spei�ation is deomposed to assigns and guards. Eah branhof an if statement an be regarded as a guarded ommand in HSE and is equivalentlydeomposed as a guard proedure that interprets the boolean expression following if anda set of sequential statements. A TEL struture is reated for eah guard and assignproedure, then TEL strutures for sequential statements are omposed in sequene. Foran if statement, A TEL struture is reated for eah branh by reating a TEL for theboolean expression and a TEL for the set of sequential statements in the branh andomposing these two TELs in sequene. Then, the TELs for all branhes are omposedin onit to reet that only one of them an be hosen. If an if statement has an elselause, the boolean expression of the lause is impliitly the negation of the onjuntiveomposition of all boolean expressions in the leading if lauses. The TEL for the elsean be reated similarly. For a while statementwhile b loop CMD endloop;where b is the boolean expression and CMD is a set of sequential statements. This whilestatement an be regarded as the following guarded ommand in THSE:[:b ! skip j b ! CMD; �℄;so the TEL for a while statement an be reated in the same as for the above guardedommand in THSE. Then, the TELs for all proesses are omposed in parallel. If thearhiteture body ontains a omponent instantiation statement, the signals in the TELfor the omponent are renamed to the atual signals in the assoiation list, then therenamed TEL struture for the omponent is omposed with the TEL strutures forproesses and other omponent instantiation statements in the arhiteture body inparallel. 2.4 Timed Trae theoryThe semanti behavior for TEL strutures is de�ned using timed trae theory [83℄.This setion provides a brief overview of timed trae theory whih provides the neessarymathematis for the proofs in the later hapters. Trae theory was �rst applied to theveri�ation of speed-independent iruits by Dill [35℄. Later, timing was added so thattrae theory an be applied to the veri�ation of timed iruits [25, 83℄.



34A timed trae, x, for a iruit is a �nite or in�nite sequene of timed events (i.e.,x = e0e1 : : :). Eah timed event is of the form ei = (wi; ti) where w is a wire name in theiruit, whih represents a logi value hange on that wire, and t is a rational numberindiating when that hange happens. A timed trae must also satisfy the following twoproperties:� Monotoniity: ti � ti+1 for all i � 0, and� Progress: if x is in�nite then for any time t there exists an i suh that ti > t.Monotoniity states that time an only advane forward, and progress states that thereis no limit on how long time an pass.The following shows two useful operations on timed traes. Given a trae x = e1e2:::and a set of signals, D, the funtion del(D)(x) is de�ned reursively as follows:del(D)(x) = e1y if w1 62 Ddel(D)(x) = y if w1 2 Dwhere y = del(D)(e2e3:::) and e1 = (w1; t1). This funtion deletes all events of a traewhose wire names are in D. For example, given a trae t = abdbda, del(fa; g)(t) =bdbd. It is extended naturally to sets of traes. Given a set of traes, X, the funtioninverse delete del�1(D)(X) is the set fx0 j del(D)(x0) 2 Xg. This funtion returns the setof traes whih would be in X if all events with wire names in D are deleted. Intuitively,if x is a trae not ontaining symbols from D, del�1(D)(x) is the set of all traes thatan be generated by inserting events in D at any time into x. Some useful properties ofthese two funtions are listed below:del(D)(X) = ; , X = ; (2.1)del(D)(del�1(D0)(X)) = del�1(D0)(del(D)(X)) when D \D0 = ; (2.2)del(D)(del�1(D)(X)) = X (2.3)del(D)(X \X 0) � del(D)(X) \ del(D)(X 0) (2.4)A pre�x-losed trae struture T is a four-tuple hI;O; S; F i. I is a set of input wires,and O is a set of output wires where I\O = ;. A = I[O is the alphabet of the struture.S is the suess set whih ontains all suessful traes of a system. F is the failure set



35whih ontains all failure traes of a system. P = S[F is the set of all possible traes of asystem. The set S is pre�x-losed, that means if a trae t is a suess, all pre�xes of t arealso suesses. A trae struture must be reeptive, meaning that PI � P . Intuitively,this means a iruit annot prevent the environment from sending an input.Composition (k) ombines two iruits into a single iruit. Composition of two traestrutures T = hI;O; S; F i and T 0 = hI 0; O0; S0; F 0i is de�ned when O \ O0 = ;. Toompose two trae strutures, the alphabets of both trae strutures must �rst be madethe same by adding new inputs as neessary to eah struture. Inverse delete is extendedto trae strutures for this step as follows:del�1(D)(T ) = hI [D;O;del�1(D)(S);del�1(D)(F )i (2.5)This is de�ned only when D \A = ;.After the two alphabets of the two strutures are made to math, we need to �nd thetraes that are onsistent with the two strutures. The intersetion of these two traestrutures is de�ned as follows:T \ T 0 = hI \ I 0; O [O0; S \ S0; (F \ P 0) [ (P \ F 0)i (2.6)This is de�ned only when A = A0 and O \ O0 = ;. From this de�nition, a suess traein the omposite must be a suess trae in both omponents. A failure trae in theomposite is a possible trae that is a failure trae in either omponent. The possibletraes for the omposite are P \ P 0.Composition an now be de�ned as follows:T k T 0 = del�1(A0 �A)(T ) \ del�1(A�A0)(T 0) (2.7)In the following hapters, fT; T 0g is also used to indiate the omposition of T and T 0.Another useful operation is hide whih is used to make some wires internal to theiruit so that they an no longer be onneted to other wires. Formally, given a traestruture T , hide(D)(T) is de�ned when D � O. hide(D)(T ) is de�ned as follow:hide(D)(T ) = hI;O �D;del(D)(S);del(D)(F )i (2.8)whereD is the set of wires to be hidden. Figure 2.14 shows a iruit with two omponents,and signals  and d onnet the two omponents and are also outputs. Hiding signalseÆiently and orretly is the key goal of abstration. Figure 2.15 shows the result of
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Figure 2.14. Blok diagram of a iruit with two omponents.
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Figure 2.15. Signals  and d are hidden.hiding the signals  and d in Figure 2.14. Hiding signals eÆiently and orretly is thekey goal of abstration.A trae struture is failure-free if its failure set is empty. Given two trae strutures,T and T 0, we say T onforms to T 0 (denoted T � T 0) if I = I 0; O = O0, and for allenvironments E, if E k T 0 is failure-free, so is E k T . Intuitively, if a system using T 0annot fail, neither an a system using T .The following lemma gives a simple suÆient ondition to determine onformanebetween two trae strutures.Lemma 2.4.1 T � T 0 if I = I 0; O = O0; F � F 0; and P � P 0:The ondition F � F 0 assures that if the environment does not ause a failure in T 0, itdoes not ause a failure in T . The ondition P � P 0 assures that if T 0 does not ause a



37failure in the environment, T does not ause one.The next lemma shows that if T onforms to T 0, this onformane is maintained inany environment.Lemma 2.4.2 If T � T 0 and T 00 is any trae struture, then T k T 00 � T 0 k T 00.Proofs of these lemmas an be found in [35℄.The following example is a C-element to illustrate how the trae struture modelsa iruit behavior. A C-element is very useful in asynhronous designs. It is typiallyused to signal the ompletion of several onurrent omputations. The output value ofa C-element remains onstant until all of its inputs are equal to the omplement of theoutput; the output then hanges to its omplement after some delay. Figure 2.16 showsa two-input C-element and the state graph whih an aept the S and F sets of theorresponding trae struture.The states of the state graph are all possible logial valuations for all signals in airuit and an additional state alled a failure state. A stable state is a state in whih thevalue of the boolean funtion of the iruit is the same as the atual value of the outputwire. An unstable state is a state in whih they are not the same. In the state graph ofthe C-element, The initial values of the wires are either ab = 000 or ab = 111. State 1,2, and 3 are stable states, and state 4 is an unstable state.A hazard ours if the value of a boolean funtion hanges and then reverts to itsoriginal value without waiting for the atual output of the gate to hange. In a C-element,hanges in the inputs are restrited so that when all inputs are equal to the omplementof the output, they must remain onstant until the output hanges. Input transitionsthat violate this restrition may ause hazards on an output, and lead the iruit to thefailure state, F .2.5 From a TEL to a Trae StrutureBoth TEL strutures and trae theory an be used to model the iruit behavior. Thissetion gives a brief desription of how to derive the orresponding trae struture froma TEL struture.After a system is modeled by a TEL struture, the state spae of the system an befound by exhaustively �ring all events in the system, and reahability analysis is used tostudy the behavior of the system. Firing an event leads the system to another state. Firinga sequene of events results in a sequene of states. A state Sj is said to be reahable from



38another state Si if there exists a sequene of event �rings that hanges Si to Sj. A �ringsequene or a run an be expressed as � = S0 e1! S1 e2! S2 e3! : : : en! Sn, where S0 is theinitial state, and Si+1 is obtained from Si by passing some time and then �ring ei+1. If anevent en+1 �res at the end of a �ring sequene �, a new �ring sequene �0 = � en+1�! Sn+1.Therefore, a �ring sequene is pre�x-losed. Let timei(�) be the sum of time passed whenthe system reahes the state Si from the initial state S0 through the �ring sequene �. Itis true that time0(�) = 0 and timei+1(�) = timei(�) + � where tmin � � � tmax, wheretfsi = max(flower(r) j r 2Mi and r 2 fsi(�ei+1)g)tmin = min(ftfsi j for all fsi(�ei+1) � �ei+1g)tmax = max(fupper(r) j r 2Mi for r 2 �ei+1g)Therefore, a run � produes a timed trae(t1; time1(�)) (t2; time2(�)) � � �Sine a timed system produes the timed traes by reahability analysis, the behaviorof a timed system an also be studied using timed trae theory. A funtion trae(N)is de�ned to return a trae struture whih ontains the set of all possible timed traesprodued by a TEL struture N . This funtion uniquely onnets a TEL struture and itsorresponding timed trae struture together. The following is the de�nition of trae(N).De�nition 2.5.1 Funtion trae(N) takes a TEL struture N , and returns a traestruture T = hI;O; P i where
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Figure 2.16. A C-element and its state graph.



391. I is the set of input signals in N ;2. O is the set of output and internal signals in N ;3. P is the set of all possible timed traes produed by N .



CHAPTER 3MODULAR SYNTHESIS ANDVERIFICATIONThe purpose of synthesis is to generate the orret iruit implementation from agiven spei�ation, and that of veri�ation is to determine whether the given iruitorretly implements its spei�ation. Therefore, the obvious question is how to de�neorretness. In general, the orretness of a iruit an be derived in two ways. First,we an hek properties of the iruit, and if all the properties are satis�ed, the iruitis laimed to be orret. Seond, the orretness of the iruit an be de�ned relativeto its spei�ation. If the spei�ation is guaranteed to be orret, then the iruit isalso orret. Again, the orretness of the spei�ation is determined by whether ertainproperties are satis�ed. Now, the question is what properties should be heked to assertthe orretness. Properties an be lassi�ed as either safety or liveness properties. Ingeneral, a safety property is a ondition on �nite omputations while a liveness propertyis a ondition on the inde�nite future. Liveness properties annot be veri�ed easily.Many methods either do not verify liveness properties, or do so in a limited way. Intimed iruits, all timing onstraints also need to be heked. In ATACS, general livenessproperties are not heked. Instead, iruits are heked if they an deadlok. Timing isanother important issue in the synthesis and veri�ation of timed iruits design. Evenwhen timing information is designed in from the beginning, it is neessary to verify thatthe physial implementation meets the requirements of the spei�ation. These propertiesand timing onstraints are heked during timed state spae exploration to guarantee thatthe synthesized iruit or the iruit to be veri�ed is orret. In this way, veri�ationin ATACS is similar to model heking. This hapter desribes the properties and thetiming onstraints to satisfy the orretness requirement. The safe transformations whihpreserve these properties are desribed next. In the last two setions, the theorems formodular synthesis and veri�ation are desribed. These theorems are proved using traetheory.
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Figure 3.1. An example of deadlok.3.1 De�nition of CorretnessThis setion de�nes the orretness of iruits. Informally, a orret iruit keeps doingthings as expeted. There are two onditions for a orret iruits: it must produe theexpeted outputs for the given inputs; and the outputs must be produed in �nite delayafter the inputs are given. The �rst ondition desribes a safety property and the seondone desribes a liveness property. The expeted outputs are determined by the funtionof the iruit and the inputs. Also, the output signals annot ontain glithes that areunexpeted pulses on signal wires, and an ause the iruit either to malfuntion orfail. A iruit that may produe glithes on its output wires is hazardous. A orretasynhronous iruit must be hazard-free. A orret iruit must also produe outputsin a �nite delay. It is obvious that a iruit is useless if it does not produe any outputs.For timed iruits, we also impose timing properties on their orretness. For example,we want a iruit to produe an output event b+ between 5 and 10 time units after aninput event a+ has ourred. The iruit is not orret if it produes a b+ beyond thattiming bound after a+.In ATACS, the behavior of iruits is modeled by TEL strutures. The �rst requirementis that TEL strutures must be safe. Also, iruits must be hazard-free. In Chapter 2, itis desribed that a hazard appears when a signal is enabled by a disabling rule, but theenabling ondition is lost before the signal transition fully ompletes. This an result ineither the signal transition not being produed, or a glith. Any trae that leads to thissituation an ause the iruit to fail. General liveness properties annot be modeled inATACS. Instead, orret iruits must not deadlok, a limited liveness property. Deadlokis the state where the iruit an halt for an in�nite period of time and no outputs an



42ever be produed. Deadlok ours when �ring a signal, for example a, depends on someother signal events whih then depend on the �ring of a. This situation is illustrated inFigure 3.1. Another very illustrative and interesting example of deadlok an be foundin a law passed by the Kansas legislature early in this entury. It said, in part, \Whentwo trains approah eah other at a rossing, both shall ome to a full stop and neithershall start up again until the other has gone." During state spae exploration, a stateausing deadlok is found if the enabled rules in the urrent state are not enough to �rean event. In other words, the enabled event set of a deadlok state is empty. Timingproperties of timed iruits are de�ned by onstraint rules as desribed in Chapter 2 andmust be satis�ed. Traes ausing any onstraint rule violations are failures. In summary,the above onditions that ause failures are shown in the following de�nition.De�nition 3.1.1 Suppose � is a suess trae that leads S0 of a TEL struture N to Sn.Firing e 2 E leads Sn to Sn+1. �e is a failure trae if one of the following onditionshold:1. (Mn � �e) \ e� 6= ;.2. �ring e auses a disabling rule r 2Mn to be disabled.3. enabled(Sn+1) = ;.4. There exists a onstraint rule r 2 �e suh that r 62Mn when �ring e.5. timer(r) is not satis�ed for any onstraint rule r 2 �e when �ring e.6. timer(r) is expired for any onstraint rule r 2 �e before �ring e.The �rst ondition asserts that the TEL struture must be safe. The seond onditionasserts that �ring an event must not ause an enabled disabling rule to be disabled. Thethird ondition de�nes deadlok. The last three onditions asserts that �ring an eventauses a failure if any timing requirement is violated.These onditions ompletely desribe the failure set F of a trae struture. Duringstate spae exploration and timing analysis, all these onditions are heked, and a failuretrae is generated whenever a �ring satis�es one of the above onditions. The proedurethat performes these heks is alled fail. For example, given a TEL struture T , PT isthe set of all possible traes produed by T , fail(PT ) returns a subset of PT where thetraes are failures. F = fail(PT ) where F is the failure set of trae(T ).



43As desribed in the �rst hapter, an environment is neessary to de�ne the interfaebehavior of a iruit in the timed iruit design. It is essential for synthesis and veri�ationto know how the iruit behaves and how it interats with its environment. The internaldetails of the environment have no impat on the iruit. For modular synthesis andveri�ation to sueed, the de�nition of fail(P ) must satisfy two requirements. The�rst requirement asserts that during synthesis and veri�ation of timed iruits, only thebehavior of the iruit is heked, and the internal behavior of the environment whihis not visible to the synthesis and veri�ation is not heked. In other words, internalfailures of the environment do not ause the iruit to fail. The seond requirement assertsthat if the relation between the possible trae sets of two trae strutures is inlusive,this relation is preserved between their orresponding failure sets returned by fail. Thesetwo properties are given formally below. Suppose C is the trae struture de�ning thebehavior of a iruit, E is the trae struture of the environment desribing the inputbehavior for C, and XE is the set of internal signals of E. In the following equations, P1is the possible trae set of fC;Eg and P2 is the possible trae set of fC;hide(XE)(E)g.del(XE)(fail(P1)) = fail(P2) (3.1)fail(P1) � fail(P2) if P1 � P2 (3.2)3.2 De�nitions of Safe TransformationsIn the design of a timed system, an environment must be provided. An environmenthas two funtions. First, it de�nes and supplies the input behavior whih the systemmust be able to proess for orret operation. Seond, the outputs of the system must notause the environment to fail. In other words, a orret system operating in the spei�edenvironment does not ause any failure. Desribed in trae theory, fail(PfC;Eg) = ; whereC is a orret iruit and E is the spei�ed environment desribed as trae strutures.If the system operates in another environment, E0, that produes a superset of timedtraes of E, and if fail(PfC;E0g) = ;, it is true that fail(PfC;Eg) = ;. This is a diretresult of Equation 3.2 in the last setion. This result is very useful in that if a givenenvironment, E, is omplex, it an be transformed to a simpler one, E0, as long as itprodues a superset of timed traes. For synthesis, the resulting iruit may ontain aredundant part to deal with the extra behavior introdued by transformations, but thesynthesized iruit de�nitely works orretly in the originally spei�ed environment thatsupplies a subset of inputs that the synthesized iruit is able to proess. For veri�ation,



44if a system is veri�ed with E0 without any failure, we an assert that the system isalso failure-free with E. However, verifying a system with a transformed environmentmay result in a false negative answer. A false negative is that the violating states (i.e.states where an error has been deteted) are found when verifying a system with thetransformed environment, but these violating states may not be reahable if the systemis veri�ed with the originally spei�ed environment. This approah never results in afalse positive answer where the system is veri�ed failure-free with E0 while veri�ationwould detet violating states in the system with E. A false positive would happen only ifthe transformations redue the behavior of the environment so that the violating statesof the system may not be reahable during veri�ation. If false negatives happen rarely,transformations an substantially redue the omplexity of the environment.In the above disussion, transformations must satisfy one requirement: the environ-ment after transformations must produe a superset of timed traes that are produedby the originally spei�ed environment. Suh transformations are de�ned to be safe.Given an environment, E, the one derived through a series of safe transformations isreferred to as the \abstrated" environment of E. The following is the de�nition of safetransformations.De�nition 3.2.1 (Safe Transformations) A system is desribed by a TEL strutureN . N 0 is derived by applying a transformation on N . Suppose PN and PN 0 are sets ofpossible timed traes produed by N and N 0, respetively. If PN � PN 0, the transformationis safe.As desribed in the last setion, internal signals of the environment an be removedfor synthesis and veri�ation as long as the interfae behavior of the environment withthe internal signals is preserved. Abstration onverts internal signals of the environmentinto sequening events. Then safe transformations are applied to remove sequeningevents from TELs under two onditions. First, removal of a sequening event must notredue the spei�ed untimed behavior of the environment. Seond, the timing informationarried by the environment must be preserved in a onservative fashion. This an also bedesribed by trae theory. Suppose NE is the TEL struture desribing the behavior ofthe environment, and TE is its orresponding trae struture. The interfae behavior ofTE is desribed by del(D)(PE), where D is the set of signals internal to the environment,and PE is the set of possible timed traes. In the abstrated environment, the internal



45signals, D, are removed from NE to obtain the trae struture TA = trae(abs(D)(NE))where the funtion abs(D)(NE) returns a TEL N 0E where the signals in D are abstratedaway from NE using safe transformations. Let X1 and X2 be the untimed trae setsprodued by abs(D)(NE) and NE, respetively. To preserve the interfae behavior, asafe transformation must satisfy that del(D)(X2) � X1. Sine timing information ispreserved onservatively, it is true that del(D)(PE) � PA, where D ontains the internalsignals of the environment to be removed and PA is the possible trae set of TA.Calulating the interfae behavior of an environment an be onduted by state spaeexploration to generate all possible timed traes and then applying funtion del to removeall internal signals from the possible timed traes. However, state spae explorationis an exponential problem, whih is omputationally unfeasible for large systems. In-stead, internal signals are removed from TEL strutures using safe transformations beforestate spae exploration, and the possible timed traes produed by the abstrated TELstruture inlude the spei�ed interfae behavior. The following lemma proves that theunabstrated environment onforms to the abstrated environment if only the interfaebehavior is onsidered. This onformation is used to prove the theorems of modularsynthesis and veri�ation in the next setion.Lemma 3.2.1 A system is desribed by a TEL struture, N , its orresponding traestruture is T , O is the set of all output signals in N , and D � O. If the funtionabs(D)(N) uses only safe transformations, then hide(D)(T ) � trae(abs(D)(N)).Proof: Let P and P 0 be the possible trae sets of hide(D)(T ) and trae(abs(D)(N)),respetively. From the de�nition of safe transformations, we have P � P 0. From prop-erty 3.2, we have fail(P ) � fail(P 0). Therefore, from Lemma 2.4.1, we have hide(D)(T ) �trae(abs(D)(N)). 23.3 Modular Synthesis and Veri�ationGiven a spei�ation, we an design the entire at iruit at one time. This approahonly works well for small iruits. When the iruit gets large and omplex, divide-and-onquer approah is neessary. By partitioning a iruit into bloks, eah with onstrainedomplexity, the design proess an �nish muh faster by designing eah blok individuallyfor all bloks. The improvement in the speed of the design proess omes from that allirrelevant details to the blok being designed is removed and the total information under



46onsideration during the design proess is substantially redued. When a blok is hosento be veri�ed or synthesized, the rest of the iruit beomes its environment. As desribedin Setion 2, internal signals of the environment belong to those irrelevant details andneed to be removed to simplify the design problem. In the following two setions, a seriesof theorems is formulated and proved that modular synthesis and veri�ation are orret.3.3.1 Modular Synthesis TheoremsBefore giving the theorem for modular synthesis, it is neessary to de�ne orretsynthesis. In ATACS, the behavior of a iruit is de�ned in a spei�ation with an environ-ment to speify the operating environment of the iruit. A state graph is generated byexploring the timed state spae of the iruit. If no error is found, an implementation isderived from the state graph. The synthesized iruit operates orretly in the spei�edenvironment. The orretly synthesized iruit onsists of two parts of behavior. First,the iruit implements a partial set of behavior de�ned in the spei�ation. Seond, extrabehavior may be introdued during synthesis to simplify the iruit impllementation. Theextra behavior is produed for the inputs not de�ned in the environment. Sine the inputsfor the extra behavior are not de�ned in the environment, the iruit does produe theextra behavior when operating in the environment. The de�nition of orret synthesis isgiven as follows.De�nition 3.3.1 (Corret Synthesis) B and E are the iruit and its environmentspei�ations, respetively. If C is the iruit implementation orretly synthesized fromfB, Eg, it is true that fail(PfC;Eg) = ; (3.3)PfC;Eg � PfB;Eg (3.4)As desribed above, the internal signals of an environment an be abstrated away. Theresulting environment has the same or more interfae behavior. Hene, the iruit workingin the environment after abstration needs to be able to aept the newly introduedbehavior. It is obvious that the synthesized iruit still operates orretly given a subset ofthe input that it an handle. The following lemma asserts that a iruit synthesized from aspei�ation with the abstrated environment still operates orretly in the unabstratedenvironment.



47Lemma 3.3.1 B and E are the iruit and environment spei�ations, respetively. XEis the set of internal signals of E. C 0 is the iruit implementation synthesized orretlyfrom T = fB;abs(XE)(E)g. Let T 0 = fC 0; Eg, it is true that fail(PT 0) = ;.Proof: First, let P1 be the set of possible traes of fC 0;abs(XE)(E)g, and P2 be theset of possible traes of fC 0;hide(XE)(E)g. Sine C 0 is orretly synthesized from fB,abs(XE)(E)g, therefore fail(P1) = ; (3.5)From Lemma 3.2.1 and 2.4.2, we havefC 0;hide(XE)(E)g � fC 0;abs(XE)(E)g (3.6)Therefore, fail(P2) = ; (3.7)From Property 3.1, we have del(XE)(fail(PT 0) = ; (3.8)And from Property 2.1, we have fail(PT 0) = ; (3.9)2 An alternative to at synthesis is to synthesize the iruit blok by blok. When ablok is hosen to synthesize, the rest of the iruit is treated as its environment. Whenthe results of all omponents are available, they are integrated together to determine thesolution to the whole design. This idea is formulated in the following lemma.Lemma 3.3.2 A system fB1; B2g has two omponents: B1 and B2. C1 and C2 arethe iruits orretly synthesized from B1 and B2 with B2 and B1 as the orrespondingenvironment. It is true that fail(PfC1;C2g) = ;.Proof: Sine C1 is the iruit orretly synthesized from B1 with B2 as its environment,its behavior an be expressed as follows:PC1 = P1 [ P 01 (3.10)and P1 � PB1 and P 01 \ PB2 = ; where PB1 and PB2 are the sets of possible traes of B1and B2, respetively. Similarly, the behavior of C2 an be expressed as follows:PC2 = P2 [ P 02 (3.11)



48and P2 � PB2 and P 02 \ PB1 = ;. The possible traes of fC1; C2g isPfC1;C2g = PC1 \ PC2 (3.12)Substitute Equation 3.10 and Equation 3.11 into Equation 3.12 and we havePfC1 ;C2g = (P1 \ P2) [ (P1 \ P 02) [ (P 01 \ P2) [ (P 01 \ P 02) (3.13)Sine fail(PfC1;B2g) = ;PfC1;B2g = (P1 \ PB2) [ (P 01 \ PB2)we have fail(P1 \ PB2) = ;Sine P2 � PB2 , fail(P1 \ P2) = ;. And also sine P1 � PB1 , P 01 \ PB2 = ;, andPB1 \ P 02 = ;, we have P1 \ P 02 = ; and P 01 \ P2 = ;Therefore, fail(PfC1;C2g) = fail(P 01 \ P 02)P 01 and P 02 are the traes produed by C1 and C2 for the inputs not de�ned in theirorresponding environments. The inputs to C1 are the outputs from C2, and the inputsto C2 are the outputs from C1. C1 annot produe P 01 until C2 produes outputs de�nedby P 02, and the same for C2. Sine both C1 and C2 must wait for eah other mutuallyto produe a trae in P 01 or P 02, C1 and C2 an never produe P 01 and P 02. Therefore,P 01 \ P 02 = ;, and from Property 2.1, we havefail(PfC1;C2g) = ;2 Combining the above two theorems, we an derive an important theorem of modularsynthesis. This theorem asserts that eah blok is synthesized with its orrespondingenvironment of whih internal signals are abstrated away, the integration of the resultsfor all bloks is still the orret solution for the whole design. The theorem is shown asfollows:



49Theorem 3.3.1 A system fB1; B2g has two omponents: B1 and B2. XB1 and XB2are sets of internal signals of B1 and B2, respetively. C1 and C2 are the iruitsorretly synthesized from fB1,abs(XB2)(B2)g and fabs(XB1)(B1),B2g. It is true thatfail(PfC1;C2g) = ;.Proof: Sine C1 is the iruit orretly synthesized from fB1, abs(XB2)(B2)g, we havefail(PfC1;abs(XB2 )(B2)g) = ; (3.14)From Lemma 3.3.1, we have fail(PfC1;B2g) = ; (3.15)Similarly, we have fail(PfB1 ;C2g) = ; (3.16)From the above two equations, C1 and C2 an also be thought of as iruits orretlysynthesized fromB1 and B2 withB2 andB1 as the orresponding environment. Therefore,aording to Lemma 3.3.2 , we havefail(PfC1;C2g) = ; (3.17)2This lemma is extended to a system with a number of omponents more than 2.3.3.2 Modular Veri�ation TheoremsGiven a iruit M onsisting of two bloks M1 = fI1; O1; P1g and M2 = fI2; O2; P2g,the omposition M1 k M2 de�nes the behavior of M . P1 and P2 are the possible traesets of M1 and M2, respetively. X1 and X2 are the set of internal signals of M1 and M2,respetively. The omposition of M1 and M2 is de�ned when the following onditions aresatis�ed. O1 \O2 = �X1 = O1 � I2X2 = O2 � I1X1 \X2 = �To verify M , we an verify M1 and M2, separately. If both are orret, M is alsoorret. When verifying one blok, the other one behaves like the environment for the



50former one. Therefore, the internal signals of the later one needs to be removed and theresult of the veri�ation is not a�eted. If a di�erent blok is hosen, a similar proess isapplied to its environment. This is formulated in the following theorem.Theorem 3.3.2 Let X1 and X2 be internal signal sets of M1 and M2, respetively. IfM1 k hide(X2)(M2) is failure-free, and hide(X1)(M1) k M2 is failure-free, then M =M1 kM2 is failure-free.Proof: First, the failure set of M1 kM2 is(del�1(X2)(fail(P1)) \ del�1(X1)(P2)) [ (del�1(X1)(fail(P2)) \ del�1(X2)(P1))Suppose M1 k hide(X2)(M2) is failure-free. That means its failure set(fail(P1) \ del�1(X1)(del(X2)(P2))) [ (P1 \ del�1(X1)(fail(del(X2)(P2)))) = � (3.18)Therefore, fail(P1) \ del�1(X1)(del(X2)(P2)) = � (3.19)P1 \ del�1(X1)(fail(del(X2)(P2))) = � (3.20)From Property 2.3, Equation 3.19 an be transformed as follows:del(X2)(del�1(X2)(fail(P1))) \ del�1(X1)(del(X2)(P2)) = �From Property 2.2,del(X2)(del�1(X2)(fail(P1))) \ del(X2)(del�1(X1)(P2)) = �From Property 2.4,del(X2)(del�1(X2)(fail(P1)) \ del�1(X1)(P2))� del(X2)(del�1(X2)(fail(P1))) \ del(X2)(del�1(X1)(P2)) = �Therefore, del(X2)(del�1(X2)(fail(P1)) \ del�1(X1)(P2)) = �Finally, from Property 2.1,del�1(X2)(fail(P1)) \ del�1(X1)(P2) = � (3.21)



51Similarly, suppose M2 k hide(X1)(M1) is failure-free. Thus, its failure setfail(P2) \ del�1(X2)del(X1)(P1)) [ (P2 \ del�1(X2)(fail(del(X1)P1))) = �fail(P2) \ del�1(X2)del(X1)(P1)) = � (3.22)(P2 \ del�1(X2)(fail(del(X1)P1))) = �By applying the same steps above to Equation 3.20, we an derive thatdel�1(X1)(fail(P2)) \ del�1(X2)(P1) = � (3.23)The union of Equations 3.21 and 3.23 is the failure set of M1 k M2. Sine bothEquation 3.21 and 3.23 are empty, the failure set of M1 kM2 is empty. 2This theorem is naturally extended to a iruit onsisting of more than two bloks.Calulation of P is an exponential problem. Instead, we an apply abstration andsafe transformations to its orresponding TEL struture to remove internal signals, thenthe state spae is explored to generate the new trae struture. Suppose N is a TELstruture and T is the orresponding trae struture. From Lemma 3.3.1 we know thathide(D)(T ) onforms to trae(abs(D)(N)). Suppose N1 and N2 are the TEL struturesfor M1 and M2, respetively. Therefore, ombined with Lemma 2.4.2, we know M1 khide(X2)(M2) onforms toM1 k trae(abs(X2)(N2)) and hide(X1)(M1) kM2 onformstrae(abs(X1)(N1)) kM2. From above the onlusion, we show another very importanttheorem.Theorem 3.3.3 Let X1 and X2 be internal signal sets of M1 and M2, respetively. IfM1 k trae(abs(X2)(N2)) is failure-free, and trae(abs(X1)(N1)) k M2 is failure-free,then M =M1 kM2 is failure-free.Proof: From Lemma 3.2.1, we havehide(X1)(M1) � trae(abs(X1)(N1))hide(X2)(M2) � trae(abs(X2)(N2))From Lemma 2.4.2, we havehide(X1)(M1) k M2 � trae(abs(X1)(N1)) k M2M1 k hide(X2)(M2) �M1 k trae(abs(X2)(N2))



52Sine trae(abs(X1)(N1)) k M2 and M1 k trae(abs(X2)(N2)) are failure-free, thenhide(X1)(M1) k M2 and M1 k hide(X2)(M2) are also failure-free. From Theorem 3.3.2,M1 k M2 is failure-free. 2



CHAPTER 4ABSTRACTIONSynthesis and veri�ation of timed systems are typially based on a omplete statespae exploration. The state spae an be derived by exhaustively �ring all possibletransition sequenes in the system. The number of states grows exponentially as theomplexity of the design grows in terms of the number of signals in the design. Therefore,synthesis and veri�ation of large and omplex systems is diÆult or even impossiblebeause of state explosion. In order to onstrain the omputational omplexity, it isneessary to suppress ertain details of the design while keeping the important systemproperties. While synthesizing or verifying a iruit, an environment needs to be providedto desribe the input behavior for the iruit. The environment is also viewed as atestbenh whih supplies inputs to the iruit, and determine whether the output isexpeted. From the iruit's viewpoint, only the ommuniations between the interfaesof the iruit and the environment has impat on the orretness of the iruit. Therefore,all behavior onerning the internal signals of the environment an be abstrated away.During abstration, the interfae behavior of the environment needs to remain the sameor be extended onservatively. The environment after abstration is referred to as theabstrated environment, and the one before abstration is referred to as the unabstratedenvironment. It has been proven that if the iruit operates orretly in the abstratedenvironment, it also operates orretly in the unabstrated environment.The environment for the whole system is referred to as the system environment. Inpratie, the system environment is usually designed very simply, typially ontainingno internal signals. Therefore, there is not muh abstration needed. In general, alarge and omplex system is not spei�ed by a lump of delarations and statements.Instead, it often has a well de�ned struture and is organized in a number of omponents.Eah omponent groups relative funtions of the system and has a onstrained interfae,therefore, onstrained size and omplexity. The operation of a omponent depends onthe onditions of the surrounding omponents. Therefore, the rest of the omponents



54and system environment an be treated as the environment for the omponent, whih isreferred to as the blok environment. Sine the omponent has a limited interfae, theblok environment may ontain a lot of internal signals. After these internal signals areabstrated away, the total number of signals under onsideration an be muh smallerthan the number of signals in the whole system and the size of the state spae anbe dramatially redued ompared with the whole design. The abstration approahdesribed in this dissertation does not hange the exponential omplexity of state spaeexploration. Instead, with a little overhead it onverts a big exponential problem into aset of small exponential problems.The abstration approah in this dissertation operates as two steps. First, the TELstruture for the whole system is found. If a omponent is hosen for synthesis orveri�ation, then, the interfae signals of the seleted omponent are found and the signalsnot in the interfae signals are internal signals of the blok environment and all events onthe internal signals are onverted into sequening events. This step is alled abstration.Seond, these sequening events are abstrated away using safe net redutions. Thishapter desribes how abstration is applied to TEL strutures without levels in the �rstsetion and ones with levels in the following setion. The safe net redutions are desribedin the next hapter.
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tFigure 4.2. Organization of the TEL for the orresponding spei�ation.4.1 Abstration for TEL Strutures Without LevelsIn ATACS, the spei�ation of a iruit is typially omposed of a number of pro-esses de�ning its behavior and a number of omponents de�ning its struture, and eahomponent has a similar struture. The omponents in the lowest level onsist of onlyproesses. The struture of a spei�ation an be viewed as a tree shown in Figure 4.1.The irle with a T inside is the root node of the tree representing the spei�ation onthe top level. The irles with 'C' inside indiate the spei�ations of the omponentson the di�erent levels. The squares with 'P ' inside are the spei�ations for proesses.The node for a omponent an ontain a set of pointers to the other omponents thatare used in this omponent. During ompilation, the spei�ation is deomposed intoproesses, eah proess is ompiled to a TEL struture, then the TEL strutures of theproesses in the same omponent are omposed in parallel. If the omponent ontains anumber of other omponents, pointers in the ontaining omponent are assigned to pointto those omponents. After ompilation, these TEL strutures are also organized as atree shown in Figure 4.2. Now, a omponent ontains a TEL struture that is the parallelomposition of the TELs for all proesses in this omponent and a set of pointers to thenodes of the omponents that are inluded in this omponent.In the tree, the node for a omponent also ontains a list of signals that onsists ofinterfae signals and internal signals of the omponent. This signal list is referred to as



56Algorithm 4.1.1 (Find the TEL from the tree)hTELstruture, interfae listi TEL(root, label)fif(root.label==label)interfae list = root.interfae list;result.TELstruture=NULL;result=ompose(result.TELstruture, root.t);foreah(pointer p in root to another node)ftmp = TEL(p, label);result.interfae list = tmp.interfae list;result=ompose(result.TELstruture, tmp.TELstruture);greturn result;g Figure 4.3. Find the TEL for the whole design from the TEL tree.Algorithm 4.1.2 (Change internal signal events to sequening events)replae event(TELstruture, interfae list)fif(interfae list is empty)return;foreah(e 2 TELstruture.E)if(the signal of e 62 interfae list)replae e with a sequening event;g Figure 4.4. Replae internal signal events with sequening events.the interfae list. Eah omponent has two sets of signals: input set and output set. Inputset onsists of all signals onneted to the omponent's input ports. Output set onsists ofall output signals to whih the omponent's output ports onnet and all internal signalsof the omponent. The reason to inlude a omponent's internal signals in the output setis that the these signals are neessary during synthesis and veri�ation, and we do notwant them to be abstrated away during abstration as determined by these two sets ofsignals. The union of these two sets forms the interfae list that is the superset of theunion of inputs and outputs of the omponent.A proedure shown in Figure 4.3 is used to �nd the TEL struture for the whole design.This proedure takes two arguments: a pointer to the root of the tree of TEL struturesand a label of a omponent. The label indiates whih omponent in the system is seleted.This proedure returns a pair. The �rst element of the pair is the TEL struture found for
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t0 t1Figure 4.6. The organization of the TEL for a 2-stage FIFO.the whole system and the seond element of the pair is the interfae list of the omponentseleted by the label. This proedure traverses the tree from the root and omposes allTEL strutures it �nds in parallel. In the meantime, it ompares the label argument withthe label stored in the nodes for the omponents. If the label argument mathes the labelstored in the node for a omponent, the interfae list in that node is returned along withthe TEL struture for the whole system. The label argument is optional, that means noomponent is hosen and the system is designed all at one. In suh a ase, the returnedinterfae list is empty. After the TEL struture for the whole system and the interfaelist of the hosen omponent are available, a renaming proedure shown in Figure 4.4 isused to replae the events on the internal signals to sequening events. This proeduretakes two arguments: a TEL struture and an interfae list of the hosen omponent, andit replaes all events in the TEL whose signals are not in the interfae list to sequeningevents.The following �gures illustrate how abstration works. Figure 4.5 is the blok diagramof a 2-stage FIFO. This FIFO onsists of two omponents that are the same single�fo stage and two testbenh proesses serving as the environment for the omponents.Figure 4.6 shows the organization of the TELs for the testbenh and omponents. Inthe �gure, node testbenh stores the TEL for the testbenh proesses as shown in Fig-ure 4.7(a). Node �fo0 stores the instantiated TEL t0 for a single �fo stage as shown inFigure 4.7(b) and the interfae list (ak(0); req(1) : in; req(0); ak(1) : out). Similarly,
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59node �fo1 stores the instantiated TEL t1 for a single �fo stage as shown in Figure 4.7()and the interfae list (ak(1); req(2) : in; req(1); ak(2) : out). For simpliity, the rulesin the TELs without labeled timing have the timing onstraint [90,100℄. Suppose wewant to design �fo0 �rst. The abstration proedure goes through the tree storing theTELs starting at root FIFO and omposes the TELs in parallel. When the node �fo0 isreahed, the interfae list stored in that node is returned. The omposition of the TELsfor the FIFO is shown in Figure 4.8. Next, the abstration proedure hanges all eventswhose signals are not in the returned interfae list to sequening events. The signalsnot in the interfae list of �fo0 are req(2) and ak(2), that are the internal signals ofthe environment for �fo0. After abstration is done, the TEL for the �fo0 is shown inFigure 4.9 where the events on req(2) and ak(2) are hanged to sequening events.4.2 Abstration for TEL Strutures With LevelsThe result of the ompilation of a spei�ation to a TEL with levels is still organizedas a tree as shown in Figure 4.2. Now the internal signals of the environment an appearboth on events and in levels. The events on the these internal signal an still be abstratedaway using the algorithms desribed in the last setion. However, these internal signals inthe levels must also be removed beause the de�nition for their values has been abstratedaway. Sine the internal signals do not partiipate in the boolean evaluation of the newlevels, the new levels evaluate to true at a di�erent time than the previous ones. Thissetion analyzes the hange of the semantis of the TEL strutures after removing theinternal signals of the environment in levels, and how to ompensate for the hange.It is desribed in the last hapter that an event t is enabled to �re when all rules inthe preset of t are satis�ed. A rule is satis�ed if the enabling event of the rule has �redand the level of the rule evaluates to true, and time has passed the lower bound of thetiming onstraint of the rule sine then. The level of a rule is a sum-of-produt booleanexpression. For example, a rule r = hx; y; l; u; zi where z = ab + d. z beomes truewhen either both a and b swith to high or both  and d swith to high. Suppose a and are internal signals of the environment, the level turns into z0 = b + d after removinga and , and it beomes true when either b or d swithes to high. The rule r beomesr0 = hx; y; l; u; z0i. Sine it is possible that when z0 evaluates to true is di�erent thanwhen z does, r and r0 may beome satis�ed at a di�erent time, that results in a hangeof the �ring time of the enabled event y. Also, sine the enabling ondition of y has



60hanged after some signals are removed from the level, the timed traes produed by thesystem may be hanged. In the last hapter, a transformation is de�ned to be safe ifit preserves the system's behavior onservatively in terms of timed traes. This oneptan be applied to abstration similarly. If removing internal signals from a level doesnot redue the untimed traes of the system and the spei�ed �ring time of an event ispreserved after the level of its enabling rule is hanged, removing the internal signals fromthe level is de�ned as a safe abstration. This de�nition is formulated as follows:De�nition 4.2.1 (Safe Abstration) Suppose there exists a rule r = hx; y; l; u; zi in aTEL struture N . After abstrating some signals away from z, r beomes r0 = hx; y; l0; u0; z0iand N beomes N 0. Let T and T0 be the ranges of �ring time of y deided by r and r0,respetively. The abstration is safe if N 0 produes a superset of untimed traes of N andT0 is a superset of T.Aording to the de�nition, a safe abstration must not redue the untimed traesprodued by the system. How the untimed traes are preserved after the level of a rule ishanged? Suppose there exists a rule r = hx; y; l; u; zi where z = ab and b is the signal thatneeds to be removed. To preserve the untimed traes, b in the level z must be replaedby true. This results in z0 = a. In the system, N , ontaining r, y an �re only after x,a, and b have �red. While in the system N 0 ontaining r0, y an �re after x and a have�red. b may or may not �re before �ring y so N 0 produes a superset of untimed traesof N . Now suppose z = a + b and b is the signal that needs to be removed. Again, b inthe level z must be replaed by true to preserve the untimed traes so z0 = true. On theother hand, if b is simply removed and z0 = a, this results in a loss of the untimed traesprodued by N . The reason is explained as follows. In the new rule r0 = hx; y; l; u; z0iwhere z0 = a, y an �re after x and a have �red, while �ring both x and b annot ause yto �re beause z0 annot evaluate to true. However, this �ring sequene is allowed by therule r = hx; y; l; u; zi where z = a + b. In summary, if a signal is removed from a level,this signal is replaed by true. This idea an be extended to a level that onsists of asum-of-produt boolean expression. If all signals in a produt term need to be removed,then the level simply beomes true based on the disussion for the level that onsists ofa sum boolean expression.Next, it is neessary to study how to preserve the timing of the rule after the levelof the rule has hanged. To preserve the timing, the timing onstraint of a rule with



61the level hanged an be always hanged to [l;1℄. However, this adjustment may betoo onservative to be useful. Before we proeed to analyze the adjustment of timingonstraints of rules in a re�ned way, minimum and maximum �ring separation time needsto be de�ned. Firing separation time of a pair of events is the range of the di�erene ofthe �ring times between these two events. The minimum �ring separation time (denotedby min st) is the lower bound of that range, and the maximum �ring separation time(denoted by max st) is the upper bound of that range. For two events a and b,min st(a; b) = min(tb � ta) and max st(a; b) =max(tb � ta)where ta and tb are the orresponding �ring time of a and b. min st(a; b) and max st(a; b)an be positive or negative. A positive value indiates that a �res before b. The �ringseparation time an be used to indiate the �ring time of an event relative to anotherevent if the �ring time of the latter one is known.To simplify the disussion, levels with a single produt term are analyzed, then levelswith a sum expression, and last levels with a sum-of-produts expression. Supposer = hx; y; l; u; zi where the level z = ab. min st and max st an be used to indiatewhen a level beomes true relative to an event e by �nding the separation times be-tween the events that make the level beome true and e. For example, in the aboverule r, z beomes true when both a and b swith to high, therefore, z beomes truemax(min st(x; a); min st(x; b)) time units after x has �red. If both min st(x; a) � 0 andmin st(x; b) � 0, it indiates that both a and b �re before x does so z evaluates to truebefore x �res. y an �re after x has �red and time has passed l time units sine then.If either min st(x; a) > 0 or min st(x; b) > 0, y �res after z beomes true and time haspassed l time units sine then beause z evaluates to true after x has �red. A similaranalysis an be applied if min st is replaed with max st, and a similar result an bederived. Therefore, the EFT(y  r) and LFT(y  r) are de�ned as follows:EFT(y  r) = max(tx +max(min st(x; a); min st(x; b)) + l; tx + l);LFT(y  r) = max(tx +max(max st(x; a); max st(x; b)) + u; tx + u);where tx is the �ring time of x.Figure 4.10 shows six ases of timing relations between a and b. The horizontal barsindiate the timing ranges that event a or b �res. From the �gure, it is obvious that thenew level z0 after removing either a or b from z beomes true at the same time or sooner
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t1 2t t3 t4(e) (f)Figure 4.10. Timing relations of two events a and b.than z. This means that y may �re sooner than spei�ed. For example, if a is removedfrom z, then EFT(y  r0) = max(tx + min st(x; b) + l; tx + l)LFT(y  r0) = max(tx + max st(x; b) + u; tx + u)where r0 = hx; y; l; u; z0i and z0 = b. If min st(x; a) > min st(x; b) and max st(x; a) >max st(x; b), then EFT(y  r0) < EFT(y  r) and LFT(y  r0) < LFT(y  r). Thesame result an be derived if b is removed from z. Obviously, the the range of �ring timeof y may hange due to the removal of either a or b, therefore, this abstration is notsafe. To preserve the spei�ed timing behavior of y, it is neessary to ompensate forthe loss of onstraint from removing either a or b by adding a delay to EFT(y  r0) andLFT(y  r0) so that EFT(y  r0) � EFT(y  r) and LFT(y  r0) � LFT(y  r). In thease of removing a, the following equation must be satis�ed to preserve the same timingbehavior of y. EFT(y  r0) = max(tx + min st(x; b) + l +�min; tx + l)LFT(y  r0) = max(tx + max st(x; b) + u+�max; tx + u)
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Figure 4.11. The speial ase of the level with a produt always being false.where �min � max(min st(x; a)� min st(x; b); 0)�max � max(max st(x; a)� max st(x; b); 0)In the ase of removing b, a similar result an be derived. The above disussion is basedon the fat that part of the signals in a level are removed. If the whole produt term isremoved, the range of �ring time of y deided by r is as follows:EFT(y  r0) = tx + l +�minLFT(y  r0) = tx + u+�maxwhere �min = max(min st(x; a); min st(x; b); 0)�max = max(max st(x; a); max st(x; b); 0)It is obvious that EFT(y  r0) = EFT(y  r) and LFT(y  r0) = LFT(y  r). Therefore,l0 and u0 are de�ned as follows as z is hanged to z0:l0 = l +�min and u0 = u+�max (4.1)where �min and �max are de�ned above. If 0 and 1 are assigned to �min and �max,this abstration is safe.However, it should be noted that there is a speial ase where either a or b beomestrue and then beomes false before the other one beomes true as shown in Figure 4.11.It translates to the level z always false. If z is abstrated as desribed above, the levelmay obtain a hane to beome true, and the rule with suh a level may atually �rethe enabled event. This may hange the untimed semantis of the rule. For the aboveanalysis to be orret, it is neessary to determine if the following equation is true.max st(x;:a) � min st(x; b) or max st(x;:b) � min st(x; a) (4.2)If Equation 4.2 is true, z is hanged to false; otherwise, z is abstrated and the timingonstraints of the rule are modi�ed as desribed above.



64Now, suppose r = hx; y; l; u; zi where z = a + b. z beomes true when either a orb swith to high. Therefore, z beomes true min(min st(x; a); min st(x; b)) time unitsafter x has �red if both min st(x; a) � 0 and min st(x; b) � 0. The EFT(y  r) andLFT(y  r) are de�ned as follows:EFT(y  r) = max(tx +min(min st(x; a); min st(x; b)) + l; tx + l)LFT(y  r) = max(tx +max(max st(x; a); max st(x; b)) + u; tx + u)where tx is the �ring time of x.Sine removing a signal in a sum boolean expression results in a level with true,EFT(y  r0) = tx + l and LFT(y  r0) = tx + uIt is obvious that y �res sooner in the new rule. To make LFT(y  r) � LFT(y  r)0 andEFT(y  r) � EFT(y  r)0, the delay of the new rule must be adjusted as follows:l0 = l +�minu0 = u+�maxwhere �min = max(min(min st(x; a); min st(x; b)); 0)�max = max(max st(x; a); max st(x; b); 0)We have desribed a proess how to abstrat signals away from a level with a produtor sum term. This proess an be similarly applied to a level with a sum-of-produtexpression. If all signals in a produt term are internal signals, the whole produt termneeds to be removed resulting in a new level true. The timing onstraint of the rule withthe level needs to be adjusted in the same way as the abstration for a level with a sumexpression. On the other hand, if some signals in a produt term are abstrated away,the timing onstraint of the rule with the level needs to be adjusted in the same way asthe abstration for a level with a produt expression.It is shown from the above analysis that the key to safe abstration for levels isthe knowledge of minimum and maximum separation times between two events in thesystem. However, �nding minimum and maximum separation times is as hard as statespae exploration whih is an exponential problem. This results in a hiken-and-egg



65situation. The purpose of abstration is to redue the omplexity of the problem underonsideration thus reduing the ost of state spae exploration. If an approximationalgorithm is available to �nd onservative minimum and maximum separation times, theabstration an still be safe.



CHAPTER 5SAFE NET REDUCTIONSWhile analyzing a iruit, ertain details need to be suppressed to onstrain omputa-tional omplexity. When the iruit is represented by a graph, this requires transformationof the graph to remove some nodes and adjaent edges while preserving the importantsystem properties. There exists a lot of researh work on simplifying Petri nets. Suzuhiand Murata [73, 74℄ presented a method of stepwise re�nement of transitions and plaesinto subnets. They show a suÆient ondition that suh subnets must satisfy, whih aredependent on the struture and initial marking of the net. The resulting net has the sameliveness and safety properties as that of the original net. However, this re�nement proesshas to be repeated every time the initial marking is hanged. This makes automatingthe re�nement diÆult. Berthelot [14℄ presented several transformations that dependonly on the struture of the net. In [62, 43, 61℄, several transformations for markedgraphs that are Petri nets without onits are presented. These transformations utplaes and transitions in the graph while preserving liveness and safety. However, thesetransformations an only be applied to an untimed marked graph that has no hoies andthe timing issue is not addressed.Chapter 4 desribes how to identify internal signals in an environment and onvertevents on those signals into sequening events, and also disusses the safe abstration ofsignals in levels. The sequening events need to be removed before state spae explorationstarts to redue the omputational omplexity. This hapter desribes net redutiontehniques that remove the sequening events from TEL strutures safely. As de�ned inChapter 3, a safe transformation must preserve the behavior of the system onservatively,or it may hide some design errors that may possibly be unovered after the design isompleted. The system's behavior is determined by the timed traes that it an generate.Therefore, it is required that the system after safe redutions must produe a superset oftimed traes that are produed by the system before the redutions. To prove a redutionto be safe, we �rst show that the TEL strutures after the redutions do not redue the
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c(a) (b)Figure 5.1. A ase of Redution 1.untimed trae set; seond, we show that the redutions preserve the timing onservatively.If these two requirements are satis�ed, it guarantees that the TEL struture after saferedutions produes a superset of timed traes that an be produed by the originalone. This hapter desribes net redution tehniques that remove sequening events withdi�erent topologies in TEL strutures. These redutions have been proved to be safeaording to the de�nition of safe transformations given in Chapter 3. We �rst presentsimple redutions applied to TEL strutures with no levels and no onits. Next, wedisuss how onits a�et safe redutions and how to extend these redutions to TELstrutures ontaining hoies. In the last setion, we desribe the extensions of redutionsto TEL strutures with levels.5.1 Safe Redutions for Conit-Free TEL StruturesThis setion desribes �ve safe net redutions for TEL strutures without onits andlevels. These redutions remove sequening events from nets with di�erent topologies.Redution 1 is used when a TEL struture, N , ontains a sequening event, $, wheresize($�) = 1 as shown in the example in Figure 5.1(a). In this ase, size(�$) = 2. A newTEL struture, N 0, is derived from N by applying Redution 1 removing the sequeningevent and all rules in its preset and postset from N . Then, for eah ri = hei; $; li; uii 2 �$and rj = h$; ej ; lj ; uji 2 $�, a new rule r is reated as follows: r = hei; ej ; li + lj ; ui + uji.For the TEL struture shown in Figure 5.1(a), the new TEL struture after the sequeningevent is removed is shown in Figure 5.1(b). This redution preserves the system's behaviorexatly in that the timed trae set produed by N 0 is the same as that produed by N .



68Redution 1 is naturally extended to sequening events, $, where size(�$) > 2. Thisredution uts the number of events and rules in a TEL by 1. To prove a redution to besafe in the rest of the hapter, we �rst show that the untimed trae set produed by theTEL after the redution inludes that produed by the TEL before the redution. Then,we show that the timing of the events enabled by the sequening events are preservedonservatively in that they are the only events a�eted by the redution. Lemma 5.1.1asserts that Redution 1 is safe.Redution 1 (For TEL strutures without onits and levels) If there exists asequening event $ in a TEL struture N where size($�) = 1, a new TEL struture N 0an be derived from N as follows:� E0 = E � f$g,� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji.Lemma 5.1.1 Redution 1 is a safe transformation.Proof: Consider the TEL N shown in Figure 5.1(a) and the abstrated TEL N 0 shownFigure 5.1(b). There are two possible untimed traes produed by N : fab$, ba$g. Thesemap to the traes fab, bag produed by N 0, so the �rst ondition is satis�ed. Next,we must show that the set of timed traes produed by N 0 ontains all the timed traesprodued by N with the sequening event deleted. Consider a timed trae x = e1e2 : : : inwhih ei = (a; ta), ej = (b; tb), ek = ($; t$), and el = (; t) with i < k, j < k, and k < l.The value of t$ falls in the following range:maxfta + l1; tb + l2g � t$ � maxfta + u1; tb + u2g (5.1)The value of t omes from the range:t$ + l3 � t � t$ + u3: (5.2)Substituting Equation 5.1 into Equation 5.2 yields:maxfta + l1; tb + l2g+ l3 � t � maxfta + u1; tb + u2g+ u3: (5.3)In the abstrated TEL N 0, the value of t omes from the range:maxfta + l1 + l3; tb + l2 + l3g � t � maxfta + u1 + u3; tb + u2 + u3g:
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(a) (b)Figure 5.2. A ase of Redution 2.This is equivalent to Equation 5.3, so the range of values for t before and after abstrationare equal. This means that the abstrated TEL N 0 produes the same timed traes asthe unabstrated TEL, N . The same result an be obtained if the above analysis isapplied to a sequening event $ where size(�$) > 2. Aording to the de�nition of safetransformation, Redution 1 for TEL struture without onits is safe. 2Redution 2 is applied to a TEL struture N when it ontains a sequening event$ where size(�$) = 1 as one ase shown in Figure 5.2(a). In this ase, size($�) = 2.Similar to Redution 1, Redution 2 removes the sequening event $ and all rules in itspreset and postset. Then, for eah ri = hei; $; li; uii 2 �$ and rj = h$; ej ; lj ; uji 2 $�, anew rule r = hei; ej ; li + lj; ui + uji is added to N . This redution results in a new TELstruture, N 0. For the TEL struture shown in Figure 5.2(a), the new TEL struture afterthe sequening event is removed is shown in Figure 5.2(b). This redution is naturallyextended to sequening events $ where size($�) > 2. This redution uts the numberof events and rules in a TEL by 1. It needs to be pointed out that extra interleavingsnot seen before the redution are reated. In the ase shown in Figure 5.2, after theredution, N 0 ould generate a trae (a; ta)(b; ta + l1 + l2)(; ta + u1 + u3), where ta iswhen a �res. This trae is impossible in the system before the redution. Redution 2 isde�ned and proved to be safe in the following de�nition and lemma.Redution 2 (For TEL strutures without onits and levels) If there exists asequening event $ in a TEL struture N where size(�$) = 1, a new TEL struture N 0an be derived from N as follows:



70� E0 = E � f$g,� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji.Lemma 5.1.2 Redution 2 is a safe transformation.Proof: Consider the TEL N shown in Figure 5.2(a) and the abstrated TEL N 0 shownFigure 5.2(b). There are two possible untimed traes produed by N : fa$b, a$bg. Thesemap to the untimed traes fab, abg produed by N 0, so the �rst ondition is satis�ed.Next, we must show that the timed traes produed by N 0 ontains all the timed traesprodued by N with the sequening event deleted. Consider a timed trae x = e1e2 : : : inwhih ei = (a; ta), ej = ($; t$), ek = (b; tb), and el = (; t) with i < j, j < k, and j < l.The value of tb falls in the following range:ta + l1 + l2 � tb � ta + u1 + u2: (5.4)The value of t omes from the range:tb + l3 � u2 � t � tb + u3 � l2: (5.5)After redution, the value of tb an still be drawn from Equation 5.4, but the value of tomes from the range:tb + (l1 + l3)� (u1 + u2) � t � tb + (u1 + u3)� (l1 + l2):This an be rewritten as follows:tb + (l3 � u2) + (l1 � u1) � t � tb + (u3 � l2) + (u1 � l1):Sine l1�u1 � 0 and u1� l1 � 0, the range of values for t after abstration is a supersetof those before abstration. This means that the abstrated TEL N 0 produes a supersetof traes of the unabstrated net N . The same result an be obtained if the above analysisis applied to a sequening event $ where size($�) > 2. Aording to the de�nition ofsafe transformation, Redution 2 is safe. 2It seems to be natural to ombine Redution 1 and 2 to form a new redution on asequening event where size(�$) � 2 and size($�) � 2. Tehnially, this new redutionis safe aording to the de�nition of safe transformations. However, this redution an
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Figure 5.6. Unroll the self loop rule.in the �rst exeution yle. Timing is hanged instead of being preserved onservatively,so Redution 1 and 2 annot be used in these situations.A more ompliated redution is when a self loop appears on a sequening event. Anexample is shown in Figure 5.5(a). Self loops must be removed before the other saferedutions an be used. This redution hanges the upper bound of the delay on eahrule in the preset of the sequening event to the maximum of the original upper boundand the upper bound of the self loop rule. The lower bounds remain the same. Thisensures that no matter when the last instane of the sequening event ourred, the selfloop rule would be expired when the other rules in the preset beome expired. This makesthe self loop redundant. The new TEL struture is shown in Figure 5.5(b). Redution 3is de�ned and proved to be safe in the following de�nition and lemma.Redution 3 (Remove self loops in TELs without onits and levels) If there



73exists a sequening event $ in a TEL struture N where a rule r = h$; $; l2; u2i exists inboth �$ and $�. A new TEL struture N 0 an be derived from N as follows:� E0 = E � f$g,� R0 = R� frg,� upper(ri) = max(ui; u2) for all ri 2 �$.Lemma 5.1.3 Redution 3 is a safe transformation.Proof: Consider the TEL N shown in Figure 5.5(a) and the abstrated TEL N 0 shownin Figure 5.5(b). It is obvious that N and N 0 produe the same untimed traes. Next, wemust show that the timed traes produed by N 0 ontains all the timed traes produedby N . Consider a timed trae x = e1e2 : : : in whih ei = ($; t�1$ ), ej = (a; ta), ek = ($; t$),and el = (b; tb), with i < j < k < l. The value of t$ falls in the following range:maxfta + l1; t�1$ + l2g � t$ � maxfta + u1; t�1$ + u2g (5.6)where t�1$ represents the �ring time of the previous $ event. Figure 5.5(a) is redrawn inFigure 5.6 to show this relationship where $0 is the last $ event. In N 0, the value of t$falls in the following range:ta + l1 � t$ � ta +maxfu1; u2g (5.7)Sine x � maxfx; yg for any values of x and y, this means that ta+l1 � maxfta+l1; t�1$ +l2g. Sine ta � t�1$ , this means that ta+maxfu1; u2g � maxfta+u1; t�1$ +u2g. Therefore,the range of values for t$ after abstration is a superset of those before abstration. Thismeans that the abstrated net N 0 produes a superset of traes of N . The same result anbe obtained if the above analysis is applied to a sequening event $ where size(�$) > 2and size($�) > 2. Aording to the de�nition of safe transformation, Redution 3 is safe.2 After removal of the self loop, the TEL struture an be redued to one of the asesshown above and the sequening event an be removed using either Redution 1 or 2, asdesribed above. For the example shown in Figure 5.5(a), after Redution 3, Redution1 an be applied to remove $ and the �nal result is shown in Figure 5.5().The �rst three redutions deal with a single sequening event based on the sizes ofits preset and postset. They do not hek the graphial strutures of its neighbors and
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(a) (b)Figure 5.7. A ase of Redution 4.how the sequening event relates to them. The next two redutions �ll this gap by�rst heking the graphial strutures of a group of sequening events. If they have asimilar struture in a ertain way, then all but one of them an be removed. Redution4 is applied to a TEL struture N when it ontains two sequening events $1 and $2where enabled set($1) = enabled set($2) as in the ase shown in Figure 5.7(a). InFigure 5.7(a),  is enabled by $1 and $2 whih are enabled by a and b, respetively.This TEL struture an be regarded as  is enabled by a and b indiretly. Anotherway to view this situation is to treat this TEL struture as a blak box whih hastwo inputs a and b, and one output .  ours after both a and b have ourred.Redution 4 merges $1 and $2 to $ and rules in their presets and postsets. Assumeenabling set($1) \ enabling set($2) = ;, Redution 4 uts one sequening event andthe number of size($1�) rules from the TEL. When merging two rules from the postsetsof $1 and $2, respetively, the minimum of the lower bounds of the timing onstraints ofthese two rules is assigned to the lower bound of the new rule, and the maximum of theupper bounds of the timing onstraints of these two rules is assigned to the upper boundof the new rule. In this way, the range of �ring time of the events in the enabled set($1)and enabled set($2) is preserved in the abstrated TEL struture, whih produes asuperset of timed traes of the unabstrated TEL struture. This result is proven in thefollowing lemma. Redution 4 is naturally extended to any number of sequening eventsthat have the same set of enabled events.Redution 4 (Merge sequening events with the same enabled set) If there ex-ist two sequening events $1 and $2 in a TEL struture N where enabled set($1) =



75enabled set($2), a new TEL struture N 0 an be derived from N as follows:� E0 = E � f$1; $2g [ f$g,� for eah ri = hei; $1; li; uii 2 �$1 and rj = hej ; $2; lj ; uji 2 �$2, they are hanged tor0i = hei; $; li; uii and r0j = hej ; $; lj ; uji� R0 = (R�frm; rng)[frg where rm = h$1; ; lm; umi 2 $1�, rn = h$2; ; ln; uni 2 $2�,and r = h$; ;min(lm; ln);max(um; un)i.Lemma 5.1.4 Redution 4 is a safe transformation.Proof: Consider the TEL struture N shown in Figure 5.7(a), it produes four possibleuntimed traes: fab$1$2; ba$1$2; ab$2$1; ba$2$1, a$1b$2, b$2a$1g. The untimedtrae set produed by the abstrated TEL struture N 0 has two traes: fab$; ba$g. Itis obvious that N and N 0 have the same untimed traes after all sequening events inthe untimed traes are deleted, so the �rst ondition is satis�ed. Next, we must showthat the timed traes produed by N 0 ontains all the timed traes produed by N withall sequening events deleted. Consider a timed trae x = e1e2 : : : where ei = (a; ta),ej = (b; tb), ek = ($1; t$1), el = ($2; t$2) and em = (; t) with i < k, j < l, and k < m,l < m. The value of t$1 and t$2 fall in the following ranges:ta + l1 � t$1 � ta + u1 (5.8)tb + l2 � t$2 � tb + u2 (5.9)The value of t omes from the range:maxft$1 + l3; t$2 + l4g � t � maxft$1 + u3; t$2 + u4g (5.10)Substituting Equation 5.8 and 5.9 into Equation 5.10 yields:maxfta + l1 + l3; tb + l2 + l4g � t � maxfta + u1 + u3; tb + u2 + u4g (5.11)In the abstrated TEL struture, N 0, the value of t$ and t ome from the ranges:maxfta + l1; tb + l2g � t$ � maxfta + u1; tb + u2g: (5.12)t$ +minfl3; l4g � t0 � t$ +maxfu3; u4g: (5.13)Substituting Equation 5.12 into Equation 5.13 yields:maxfta + l1 +minfl3; l4g; tb + l2 +minfl3; l4gg � t0
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(a) (b)Figure 5.8. A ase of Redution 5.� maxfta + u1 +maxfu3; u4g; tb + u2 +maxfu3; u4ggSine a � minfa; bg and a � maxfa; bg, the following two equations are true:maxfta + l1 +minfl3; l4g; tb + l2 +minfl3; l4gg �maxfta + l1 + l3; tb + l2 + l4ggmaxfta + u1 + u3; tb + u2 + u4g � maxfta + u1 +maxfu3; u4g; tb + u2 +maxfu3; u4ggThe range of values for t0 in N 0 is a superset of t in N . This means that the abstratedTEL struture N 0 produes a superset of timed traes of the unabstrated TEL strutureN . The same result an be obtained if the above analysis is applied to sequening eventswhere the sizes of their presets and postsets are greater than 2. Aording to the de�nitionof safe transformation, Reudtion 4 is safe. 2Redution 5 is alled when two sequening events have the same set of enabling events.One ase is shown in Figure 5.8(a) where $1 and $2 have the same enabling event. Similarto Redution 4, Redution 5 merges these two sequening events. The enabling events ofall rules in their postsets are merged together. For two rules oming from the presets of$1 and $2 respetively, sine the sequening events are merged into a single sequeningevent, they are merged together to form a new rule. The minimum of the lower bounds ofthe timing onstraints of these two rules is assigned to the lower bound of the new rule,and the maximum of the upper bounds of the timing onstraints of these two rules isassigned to the upper bound of the new rule. The abstrated TEL struture for the oneshown in Figure 5.8(a) is shown Figure 5.8(b). In this way, the range of �ring time of theevents in the enabled set($1) and enabled set($2) is preserved in the abstrated TEL



77struture, whih produes a superset of timed traes of the unabstrated TEL struture.This result is proven in the following lemma. Similar to Redution 4, if $1 and $2 enableno ommon events, Redution 5 uts one sequening event and size(�$1) rules from theTEL. Redution 5 is naturally extended to any number of sequening events that havethe same enabling set of events.Redution 5 (Merge sequening events with the same enabling set) If there ex-ist two sequening events $1 and $2 in a TEL struture N where enabling set($1) =enabling set($2), a new TEL struture N 0 an be derived from N as follows:� E0 = E � f$1; $2g [ f$g,� for eah rule ri = h$1; ei; li; uii 2 $1� and rj = h$2; ej ; lj ; uji 2 $2�, they are hangedto r0i = h$; ei; li; uii and r0j = h$; ej ; lj ; uji� R0 = (R � frm; rng) [ frg where rm = ha; $1; lm; umi 2 �$1, rn = ha; $2; ln; uni2 �$2, and r = ha; $;min(lm; ln);max(um; un)i.Lemma 5.1.5 Redution 5 is a safe transformation.Proof: Consider the TEL struture N shown in Figure 5.8(a) and its abstrated oun-terpart N 0 shown in Figure 5.8(b). There are six possible untimed traes produed by N :fa$1$2b; a$1$2b; a$2$1b; a$2$1b, a$2$1b; a$1b$2g. The untimed trae set produedby N 0 has two possible untimed traes: fa$b; a$bg. It is obvious that these two netshave the same untimed traes after all sequening events in the traes are deleted, so the�rst ondition is satis�ed. Next, we must show that the timed traes produed by N 0inlude all the timed traes produed by N with the sequening event deleted. Considera timed trae x = e1e2 : : : where ei = (a; ta), ej = ($1; t$1), ek = ($2; t$2), el = (b; tb),and em = (; t) with i < j, i < k, j < l, and k < m. The value of t$1 and t$2 fall in thefollowing ranges: ta + l3 � t$1 � ta + u3 (5.14)ta + l4 � t$2 � ta + u4 (5.15)The value of tb and t omes from the range:t$1 + l1 � tb � t$1 + u1 (5.16)



78t$2 + l2 � t � t$2 + u2 (5.17)Substituting Equation 5.14 and 5.15 into Equation 5.16 and 5.17 yields:ta + l1 + l3 � tb � ta + u1 + u3ta + l2 + l4 � t � ta + u2 + u4After redution, the value of t$ omes from the range:ta +minfl3; l4g � t$ � ta +maxfu3; u4g: (5.18)and the value of tb and t still ome from the range de�ned in Equation 5.16 and 5.17 wheret$1 and t$2 are de�ned in Equation 5.18. Substituting Equation 5.18 into Equation 5.16and 5.17 yields: ta + l1 +minfl3; l4g � t0b � ta + u1 +maxfu3; u4g (5.19)ta + l2 +minfl3; l4g � t0 � ta + u2 +maxfu3; u4g (5.20)Sine ta + l1 +minfl3; l4g � ta + l1 + l3ta + u1 + u3 � ta + u1 +maxfu3; u4gand ta + l2 +minfl3; l4g � ta + l2 + l3ta + u2 + u4 � ta + u2 +maxfu3; u4gthe ranges of values for t0b and t0 are a superset of tb and t. This means that the abstratedTEL struture N 0 produes a superset of timed traes in the unabstrated TEL strutureN . The same result an be obtained if the above analysis is applied to sequening eventswhere the sizes of their presets and postsets are greater than 2. Aording to the de�nitionof safe transformation, Redution 5 is safe. 2One may ask the question: sine Redution 1 and 2 exist, why Redution 4 and 5are neessary to remove those sequening events as illustrated in Figure 5.7 and 5.8. Toanswer the question, we need to take a look at the example shown in Figure 5.9. Forsimpliity, delays on all rules in this �gure are not shown. In this �gure, the sizes of thepresets and postsets of both the sequening events are two. Neither Redution 1 nor 2



79
a b c d

e f

$1 $2
$

a b c d

e f(a) (b)Figure 5.9. An example of the appliation of Redution 4.an be applied to remove either one of the sequening events. However, Redution 4 anbe used in this example to merge the two sequening events together. Therefore, the newTEL struture has one sequening event and two rules less than the unabstrated one.The new TEL struture is shown in Figure 5.9(b). Similar situations an be found thatonly Redution 5 is appliable.5.2 Dealing With ConitsThe TEL strutures with the redutions desribed in the last setion an be appliedwhen there are no onits. However, onit-free TEL strutures are not very apable ofmodeling real systems. It is ommon that most TEL strutures ontain onits to modelhoie, so it is neessary to extend the redutions to be able to handle onits. Given anevent in a TEL, there are two groups of onits involved with this event: onits amongthe events in its enabling set and enabled set, and those between the event itself and otherevents. The onit relation between a pair of events must be arefully preserved if oneof them is abstrated away, otherwise, the untimed semantis of the system may hange.Consider the example shown in Figure 5.10(a). In the last setion, Redution 1 anbe applied, but now it has a onit between a and b. For simpliity, the timing on therules is not shown. Aording to the semantis of onits, either �ring a or b, but notboth, auses $ to �re. Therefore, this TEL an be deomposed to two equivalent TELstrutures as shown in Figure 5.10(b). During one exeution yle of the TEL, either oneof the TELs in Figure 5.10(b) is ative. As proved in Lemma 5.1.1, the system produesthe same timed traes after Redution 1 is applied to them. The abstrated TEL forthe one shown in Figure 5.10(a) is shown in Figure 5.10(). Another example is shown
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(a) (b) ()Figure 5.11. An example of a sequening event where its postset has multiple rules butonly one onit plae.in Figure 5.11(a) where there are two rules in the postset of the sequening event, butthe enabled events of these two rules are in onit. Similarly, this TEL fragment anbe deomposed to two equivalent TELs as shown in Figure 5.11(b). Sine Redution 1an be applied to both of them safely, the sequening event in the TEL in Figure 5.11(a)an be abstrated away safely, and the abstrated TEL is shown in Figure 5.11(). Thisredution assumes that the hoies between events are timing independent. If, instead thetiming dependent hoie semantis is applied, the redution shown in Figure 5.11 reatesextra behavior. For example, in Figure 5.11(a), event  has no hane to �re beause therule h$; ; 1; 3i always expires before the other rule beomes satis�ed. In the TEL shownin Figure 5.11(), there exists a hane that event  an �re. However, with the timingindependent hoie semantis, hoie between �ring  and d is made �rst, then the timingis onsidered. Therefore, no extra behavior is reated. The semantis of hoies in the
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(a) (b)Figure 5.12. An example where the sequening event onits with another event.
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c d(a) (b)Figure 5.13. Another example where the sequening event onits with another event.TEL strutures is timing independent. This disussion an be extended to a sequeningevent where the postset of the sequening event has a number of rules greater than 2 butall enabled events of the rules are in onit. In other words, there is only one onitplae in the postset of the sequening event. Combining the analysis for the above twoexamples, if there exists only one onit plae in the postset of a sequening event,Redution 1 in Lemma 5.1.1 an be applied to remove the sequening event without anymodi�ation.In the example shown in Figure 5.12(a), the sequening event, $, has a onit plaein its postset, and meanwhile the sequening event itself onits with another event e,



82and $ and e have a ommon enabling event. During one exeution yle, either $ or e an�re, but not both. Firing $ auses either  or d to �re. This situation an be translatedto the following: after �ring a and b, or b and f , only one of , d, and e an �re. Inother words, , d, and e are in onit. To keep the same semantis, it is neessary toadd two new onits after the sequening event, $, is abstrated away: #e and d#e.The abstrated TEL for the example shown in Figure 5.12(a) is shown in Figure 5.12(b).Another example where the sequening event $ onits with another event b is shownin Figure 5.13(a). In this example, $ and b enable some ommon events. Firing either$ or b auses one of  and d to �re. Sine $ is enabled by a, that means a and b mustbe in onit. Therefore, a new onit between a and b needs to be added to the TELafter $ is abstrated away. The above disussion of Redution 1 for TEL strutures withonits is formalized and proved to be safe in the following de�nition and lemma.Redution 6 (Extension of Redution 1 to TELs with onits) If there exists asequening event, $, in a TEL struture N where there is only one onit plae in itspostset, a new TEL struture N 0 an be derived from N as follows:� E0 = E � f$g,� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji,� if $ onits with e 2 E and enabling set($) \ enabling set(e) 6= ;,#0 = # [ fe#xg for all x 2 enabled set($)� if $ onits with e 2 E and enabled set($) \ enabled set(e) 6= ;,#0 = # [ fe#yg for all y 2 enabling set($)Lemma 5.2.1 Redution 6 is a safe transformation.Proof: Sine only the timing of the enabled set of $ is hanged and preserved in thesame way as in Lemma 5.1.1, we only need to show that N and N 0 produe the sameuntimed trae to prove this lemma. First onsider the TEL N shown in Figure 5.11(a)where the sequening event does not onit with other events and the orrespond-ing abstrated TEL N 0 shown in Figure 5.11(). N produes four possible untimedtraes: fab$; ba$; ab$d; ba$dg, while N 0 also produes four possible untimed traes:
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(a) (b) ()Figure 5.14. An example of sequening event where its preset has multiple rules butonly one onit plae.fab; ba; abd; badg. It is obvious that these two untimed trae sets are the same after the$ is deleted. Then, onsider the TEL N shown in Figure 5.12(a) where the sequeningevent onits with e and they are enabled by b. The orresponding abstrated TELN 0 shown in Figure 5.12(b). The possible untimed traes produed by N has six traes:fab$; ab$d; ba$; ba$d; bfe; fbeg. This maps to the possible untimed traes produed byN 0 after $ deleted: fab; abd; ba; bad; bfe; fbeg, so N and N 0 produe the same untimedtraes. Now onsider the TEL N shown in Figure 5.13(a) where the sequening eventonits with b and they enable ommon events  and d. The orresponding abstratedTEL N 0 shown in Figure 5.13(b). The possible untimed traes produed by N has sixtraes: fa$; a$d; b; bdg. This maps to the possible untimed traes produed by N 0after $ is deleted: fa; ad; b; bdg, so N and N 0 produe the same untimed traes. Sinethe timing of the events enabled by $ is preserved as proved in Lemma 5.1.1, N andN 0 produe the same timed traes. Aording to the de�nition of safe transformations,Redution 1 is safe. 2Similar to Redution 1, Redution 2 an be extended to TEL strutures with onitsas shown in the following de�nition and lemma.Redution 7 (Extension of Redution 2 to TELs with onits) If there exists asequening event $ in a TEL struture N where there is only one onit plae in �$, anew TEL struture N 0 an be derived from N as follows:� E0 = E � f$g,
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(a) (b)Figure 5.16. An example of sequening event oniting with another event.� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji,� if $ onits with e 2 E and enabling set($) \ enabling set(e) 6= ;,#0 = # [ fe#xg for all x 2 enabled set($)� if $ onits with e 2 E and enabled set($) \ enabled set(e) 6= ;,#0 = # [ fe#yg for all y 2 enabling set($)Lemma 5.2.2 Redution 7 is a safe transformation.Proof: Consider the TEL, N , shown in Figure 5.14(a) where the sequening event has
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ee(a) (b)Figure 5.17. Deompose a TEL into TELs where Redution 8 an be applied.only one onit plae in its preset. This TEL fragment an be deomposed into twoequivalent TELs as shown in Figure 5.14(b). Only one of them is ative during oneexeution yle. It is obvious that $ in these two TELs an be abstrated away safelyusing Redution 2 in Lemma 5.1.2, and the system produes a superset of timed traes ofN . N 0 is shown in Figure 5.14(). If $ onits with another event, we only need to showthat N and N 0 produe the same untimed traes to prove this lemma beause only thetiming of the enabled set of $ is hanged and preserved onservatively. First, onsider theTEL N shown in Figure 5.15(a) where $ onits with another event e and they have thesame enabling set. N 0 is shown in Figure 5.15(b) where new onits #e and d#e arereated. N produes six possible untimed traes: fa$d; a$d; ae; b$d; b$d; beg, whileN 0 also produes six possible untimed traes: fad; ad; ae; bd; bd; beg. It is obviousthat these two untimed trae sets are the same after $ is deleted. Then, onsider theTEL N shown in Figure 5.16(a) where $ onits with e and they both enable d. N 0is shown in Figure 5.16(b) where new onits a#e and b#e are reated. The possibleuntimed traes produed by N has �ve traes: fa$d; a$d; b$d; b$d; edg. This maps tothe possible untimed traes produed by N 0 after $ deleted: fad; ad; bd; bd; edg, so Nand N 0 produe the same untimed traes. In both TEL strutures shown in Figure 5.15and Figure 5.16, only the timing of the rules in $� is hanged and preserved onservativelyas proven in Lemma 5.1.2, so N 0 produes a superset of timed traes of N . Aording tothe de�nition of safe transformations, Redution 2 is safe. 2Examples shown in Figure 5.17(a) and Figure 5.7(a) have a similar struture, exeptthat the two sequening events in Figure 5.17(a) are in onit and there are also onit
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(a) (b)Figure 5.18. An example of Redution 8.plaes in their presets and postsets. The example shown in Figure 5.17(a) an bedeomposed into four equivalent TEL strutures, eah of whih has a struture shown inFigure 5.18(a). If the redution shown in Figure 5.18 is safe, merging the two sequeningevents in Figure 5.17(a) is also safe. The above disussion is formalized and proved to besafe in the following de�nition and lemma.Redution 8 (Extension of Redution 4 to TELs with onits) If there exist twosequening events $1 and $2 in a TEL struture N where $1 onits with $2, andenabled set($1) = enabled set($2). A new TEL struture, N 0, an be derived fromN as follows:� E0 = E � f$1; $2g [ f$g,� for eah ri = hei; $1; li; uii 2 �$1 and rj = hej ; $2; lj ; uji 2 �$2, they are hanged tor0i = hei; $; li; uii and r0j = hej ; $; lj ; uji� R0 = (R�frm; rng)[frg where rm = h$1; ; lm; umi 2 $1�, rn = h$2; ; ln; uni 2 $2�,and r = h$; ;min(lm; ln);max(um; un)iLemma 5.2.3 Redution 8 is a safe transformation.Proof: Consider the TEL struture N shown in Figure 5.18(a), it produes two possibleuntimed traes: fa$1; b$2g. The untimed trae set produed by the abstrated TELstruture N 0 in Figure 5.18(b) has two traes: fa$; b$g. It is obvious that N and N 0have the same untimed traes after sequening events are deleted, so the �rst ondition



87is satis�ed. Next, we must show that the timed traes produed by N 0 ontains all thetimed traes produed by N with all sequening events deleted. Consider a timed traex = e1e2 : : : where ei = (a; ta), ej = ($1; t$1), ek = (; t) with i < j < k. The value of t$1falls in the following range: ta + l1 � t$1 � ta + u1 (5.21)The value of t omes from the range:ta + l1 + l3 � t � ta + u1 + u3 (5.22)In the abstrated TEL struture N 0, suppose a ours, the value of t ome from theranges: ta + l1 +minfl3; l4g � t0 � ta + u1 +maxfu3; u4gSine a � minfa; bg and a � maxfa; bg, the following two equations are true:ta + l1 +minfl3; l4g � ta + l1 + l3ta + u1 + u3 � ta + u1 +maxfu3; u4gThe range of values for t0 in N 0 is the superset of t in N . The same result an be derivedif b and $2 �re in N or b �res in N 0. This means that the abstrated TEL struture,N 0, produes a superset of timed traes of the unabstrated TEL struture, N . Thesame result an be obtained if the above analysis is applied to sequening events wherethe sizes of their presets and postsets are greater than 2. If there exist multiple onitplaes in the preset and postset of the sequening events as shown in Figure 5.17(a), theTEL an be deomposed into equivalent TELs as shown in Figure 5.17(b). Eah of themhas the struture where the redution in Figure 5.18 an be applied. Therefore, aftermerging the sequening events, the TEL produes a superset of traes of the one shownin Figure 5.17(a). Aording to the de�nition of safe transformation, Redution 8 is safe.2 Similarly, the TEL struture shown in Figure 5.19(a) an also be deomposed into fourTEL strutures shown in Figure 5.19(b). If the redution shown in Figure 5.20 is safe,merging the two sequening events in Figure 5.19(a) is also safe. The above disussion isformalized and proved to be safe in the following de�nition and lemma.
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(a) (b)Figure 5.20. An example of Redution 9.Redution 9 (Extension of Redution 5 to TELs with onits) If there exist twosequening events $1 and $2 in a TEL struture N where $1 and $2 are in onit, andenabling set($1) = enabling set($2). A new TEL struture N 0 an be derived fromN as follows:� E0 = E � f$1; $2g [ f$g,� for eah rule ri = h$1; ei; li; uii 2 $1� and rj = h$2; ej ; lj ; uji 2 $2�, they are hangedto r0i = h$; ei; li; uii and r0j = h$; ej ; lj ; uji� R0 = (R � frm; rng) [ frg where rm = ha; $1; lm; umi 2 �$1, rn = ha; $2; ln; uni2 �$2, and r = ha; $;min(lm; ln);max(um; un)i



89Lemma 5.2.4 Redution 9 is a safe transformation.Proof: Consider the TEL struture, N , shown in Figure 5.20(a) and its abstratedounterpart, N 0, shown in Figure 5.20(b). There are two possible untimed traes produedby N : fa$1b; a$2g. The untimed trae set produed by N 0 also has two possible untimedtraes: fa$b; a$g. It is obvious that these two nets have the same untimed traes afterall sequening events in the traes are deleted, so the �rst ondition is satis�ed. Next, wemust show that the timed traes produed by N 0 ontains all the timed traes produedby N with the sequening event deleted. Consider a timed trae x = e1e2 : : : whereei = (a; ta), ej = ($1; t$1), and ek = (b; tb) with i < j < k. The value of t$1 falls in thefollowing range: ta + l3 � t$1 � ta + u3 (5.23)The value of tb omes from the range:t$1 + l1 � tb � t$1 + u1 (5.24)Substituting Equation 5.23 into Equation 5.24 yields:ta + l1 + l3 � tb � ta + u1 + u3After abstration, the value of t$ omes from the range:ta +minfl3; l4g � t$ � ta +maxfu3; u4g: (5.25)and the value of tb still omes from the range de�ned in Equation 5.24 where t$1 is de�nedin Equation 5.25. Substituting Equation 5.25 into Equation 5.24 yields:ta + l1 +minfl3; l4g � t0b � ta + u1 +maxfu3; u4g (5.26)Sine ta + l1 +minfl3; l4g � ta + l1 + l3ta + u1 + u3 � ta + u1 +maxfu3; u4gthe range of value for t0b is a superset of tb. The same result an be derived if the aboveanalysis is applied to the timed trae that ontains events a, $2, and . This means thatthe abstrated TEL struture, N 0, produes a superset of timed traes in the unabstratedTEL struture, N . If there exist multiple onit plaes in the preset and postset of the
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[ + ]inf,(a) (b) ()Figure 5.21. An example of Redution 10.sequening events as shown in Figure 5.19(a), the TEL an be deomposed into equivalentTELs as shown in Figure 5.19(b). Eah of them has the struture where the redution inFigure 5.20 an be applied. Therefore, after merging the sequening events, the abstratedTEL produes a superset of traes of the one shown in Figure 5.19(a). Aording to thede�nition of safe transformation, Redution 9 is safe. 2Another redution is similar to Redution 3 where the sequening event forms a loopas shown in Figure 5.21. In Figure 5.21, $1 and $2 form a loop where $2 is in both thepreset and postset of $1 and $1 is also in both the preset and postset of $2. Also, $2onits with the events in both the enabling set and enabled set of $1. In this example,$2 onits with a and b. The semantis of this TEL is as follows: after �ring a, $1an our sine event a and $2 are in onit. Next, either b or $2 an �re. Before�ring b, $2 an �re an in�nite number of times. If the upper bound delay along the path$1 ! $2 ! $1 is greater than 0, this means that b may not �re for an in�nite amountof time. After removing $2 and hanging upper(r) to 1 for all r 2 $1�, the system stillprodues the same set of timed traes. This an be proven by the following lemma.Redution 10 (Redution 10) If there exist two sequening event $1 and $2 in a TELstruture N , $2 is in both enabling set and enabled set of $1, and $2 onits with theevent e 2 enabling set($1) and e 2 enabled set($1). A new TEL struture, N 0, an bederived from N as follows:� R0 = R� fr1; r2g where r1 = f$2; $1; l1; u1g 2 �$1 and r2 = f$1; $2; l2 ; u2g 2 $1�,
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(a) (b)Figure 5.22. An example of Redution 1 for a TEL with levels.� if u1 + u2 > 0, upper(r) =1 for all r 2 �$1.Lemma 5.2.5 Redution 10 is a safe transformation.Proof: Consider the TELN shown in Figure 5.21(a) and the abstrated TELN 0 shown inFigure 5.21(b). There is only one untimed trae produed by N : fa$1($2$1)�bg. ($1$2)�means that the sequene of $2 and $1 an our zero or in�nite number of times. Afterdeleting the sequening events, the untimed trae beomes ab whih is what is produedby N 0. In N , $1 an �re one or an in�nite number of times before b �res. The �rst time$1 �res, ta + l1 � t$1 � ta + u1. After an in�nite number of times of �ring $1, t$1 = 1.Therefore, The value of tb omes from the following ranges:ta + l1 + l3 � tb � 1 (5.27)It is obvious that tb determined in Equation 5.27 is the same as that obtained from N 0.Therefore, N and N 0 produe the same set of timed traes. Aording to the de�nitionof safe transformations, this redution is safe. 25.3 Dealing With LevelsRedution 1, 2, 4, and 5 an be extended to TEL strutures with levels. However,extension of eah redution to handle levels has di�erent onstraints. For Redution 1and 2, it is required that all rules in the postset of a sequening event must have a level oftrue; otherwise, the timing behavior hanges. Figure 5.22 shows an example of Redution1 for a TEL with levels. Figure 5.23 shows an illegal appliation of Redution 1 for a
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CHAPTER 6REMOVING REDUNDANT RULESA rule puts a onstraint on the �ring time of an event. If the event is enabled bymultiple rules, and the �ring time of the event is independent of one of them, then thatrule is redundant. Informally, a rule is redundant in a TEL struture if its omissiondoes not hange the behavior spei�ed. In other words, given a TEL struture, N , anda rule, r, a new TEL struture, N 0, onstruted by removing r from its rule set hasthe same timed traes as N . The general approah to determine if a rule is redundantrequires �nding the minimum and maximum separation times between any two events,however, the alulation of minimum and maximum separation times is an exponentialproblem. This approah is very undesirable beause the purpose of determining andremoving redundant rules is to redue the omputational ost of state spae exploration.Therefore, an approximate method is neessary. For TEL strutures without levels, wean determine if a rule is redundant by analyzing the struture of the net around therules of interest and the relations of their timing onstraints. If the rules have levels, anapproximate algorithm is neessary to alulate the worst-ase minimum and maximumseparation time between every two events in a TEL struture so that this informationan be used to determine the redundany of a rule. This hapter starts with the formalde�nition of redundant rules. In the seond setion, a strutural analysis method isdesribed to hek if a rule is redundant for onit-free TEL strutures without levels.The following setion desribes how onits in the TEL strutures a�et the abovemethods. In the last setion a method to determine redundany of rules with levels isdesribed based on the assumption that the minimum and maximum separation timebetween every two events in a TEL struture is available.6.1 De�nition of Redundant RulesA redundant rule is de�ned to be a rule suh that removing it from a TEL struturedoes not hange the timed trae set produed, so the �rst requirement that a redundant



95rule must satisfy is that removing it does not redue the untimed traes spei�ed. Se-ondly, timing must be preserved exatly for the system to produe the same timed traes.In Chapter 2, a rule is said to be enabled if its enabling event has �red and the booleanexpression of its level evaluates to true. A rule is satis�ed if it is enabled and the timerof the rule exeeds the lower bound of the timing onstraint. A rule is expired if it isenabled and the timer of the rule exeeds the upper bound of the timing onstraint. Ifan event is enabled by multiple rules and suppose there is no onit among the enablingevents, the event is enabled to �re when all enabling rules are satis�ed. The event isfored to �re before all enabling rules beome expired. Note that some may be expiredas long as at least one has not expired. Therefore, the rules in the preset of the eventdetermine a range of �ring time of the event. The lower bound of this range is deidedby the rule whih is the last one to beome satis�ed. The upper bound of this range isdeided by the rule whih is the last one to beome expired. If a rule in the preset of theevent is neither the last one beoming satis�ed nor the last one beoming expired, thatmeans it does not onstrain the timing behavior of the event so it is redundant. Reallin Chapter 2, EFT(e r1; � � � ; rn) and LFT(e r1; � � � ; rn) de�ne the lower and upperbound of the range of �ring time of e deided by r1; � � � rn, respetively. Redundantrules are formally de�ned as follows:De�nition 6.1.1 (Redundant Rules) Given a TEL struture, N , an event e 2 E suhthat size(�e) � 2 and a rule r 2 �e, r is redundant if removing r does not redue theuntimed traes produed by N , and the following equations are satis�ed:EFT(e r1; � � � r; � � � ; rn) = EFT(e r1; � � � ; rn)LFT(e r1; � � � r; � � � ; rn) = LFT(e r1; � � � ; rn)From the above disussion, the omission of redundant rules in a TEL does not have anyimpat on the system behavior. However, the existene of redundant rules inreases theomputational ost to explore the state spae beause more rules need to be onsidered.Therefore, it is highly desirable and neessary to remove redundant rules wheneverpossible to redue the ost of state spae exploration. Reall the de�nition of safe trans-formations that a transformation is safe if the transformed system produes a supersetof timed traes of the system before the transformation. Aording to this de�nition, itis obvious that removing redundant rules is another kind of safe transformation in that
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Figure 6.1. A TEL fragment with a redundant rule.the system produes the same timed traes after the redundant rules are removed.Figure 6.1 shows a simple example of a redundant rule. The TEL fragment in theexample has three rules: r1 = ha; ; 1; 3i, r2 = hb; ; 2; 4i, and r3 = ha; b; 2; 4i. This TELstruture produes only one untimed trae fabg. In this TEL fragment, either r1 or r2is potentially redundant beause the untimed trae set produed by the TEL after r1 orr2 is removed inludes ab. Suppose ta is when event a �res. We haveEFT(b r3) = ta + 2 and LFT(b r3) = ta + 4and EFT( r1) = ta + 1 and LFT( r1) = ta + 3From above equations, we an derive the earliest and latest �ring time of  determinedby r2: EFT( r2) = EFT(b r3) + 2 and LFT( r2) = LFT(b r3) + 4Sine EFT(b  r3) and LFT(b  r3) are available, the above two equations an bereformulated as follows:EFT( r2) = ta + 4 and LFT( r2) = ta + 8Sine  is enabled by r1 and r2, the range of �ring time of  determined by r1 and r2 isde�ned as follows: EFT( r1; r2) = max(EFT( r1); EFT( r2))LFT( r1; r2) = max(LFT( r1); LFT( r2))
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Figure 6.2. An example where removing a rule hanges the untimed behavior of a TEL.Obviously, in this example,EFT( r1; r2) = EFT( r2) and LFT( r1; r2) = LFT( r2)This indiates that the timing behavior of  is solely onstrained by rule r2, whih makesrule r1 redundant. A similar analysis an be applied to r2, and the result shows it is notredundant.An example shown in Figure 6.2 illustrates a situation where removing a rule hangesthe untimed semantis of the system even if timing is preserved exatly. In the example,the event d is enabled by two rules: r1 = hb; d; 2; 5i and r2 = h; d; 2; 5i, and b onitswith . If one of r1 and r2 �res, d �res sometime between 3 and 8 time units after a has�red. However, removing either one of the them hanges the untimed traes produedby the TEL. For example, if r1 is removed, the TEL does not produe untimed traesontaining events b and d. Similar result is obtained if r2 is removed. Therefore, both r1and r2 annot be redundant.6.2 Redundany Chek for Conit-Free TEL StruturesWithout LevelsIf an event is enabled by multiple rules, aording to the de�nition of redundant rules,it is neessary to know when these rules beome satis�ed and expired, and the order ofwhen they beome satis�ed and expired to determine if one of them is redundant. Thisrequires the information of the minimum and maximum separation times between everypair of events in the system. Unfortunately, alaulation of the minimum and maximumseparation times has an exponential omplexity in the size of the system. This makes thegenaral method of removing redundant rules as hard as state spae exploration. Sine
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c(a) (b) ()Figure 6.3. The triangle struture for redundany hek.the information of the minimum and maximum separation times between an arbitrarypair of events is not available until the exponential proedure is done, we have to restritthe general analysis approah to a subset of TEL strutures so that alaulation of theminimum and maximum separation times between two events is not required. Instead,suh information is derived by a simple strutural analysis. This setion desribes themethod to determine redundant rules for TEL strutures without onits and levels.This method explores the topology of TEL strutures to �nd if there exists a ertainstruture that the separation time among the events in the enabling set of an event anbe obtained easily.The example shown in Figure 6.1 in the last setion points out one kind of struturethat an be used to determine redundant rules. This struture an be generalized inFigure 6.3(a). In this triangle struture, an event is enabled by two rules r1 and r2,and there is another rule r that onnets the enabling events of r1 and r2 so that theseparation time between enabling events of r1 and r2 an be obtained by just hekingthe timing onstraint of r. Sine the separation time between enabling events of r1 and r2is available, it an be determined if either r1 or r2 is redundant as shown in the followinglemma.Lemma 6.2.1 (Redundany Chek for Rules not in the Initial Marking) GivenA TEL struture, N , that ontains an event e 2 E and two rules r1 2 �e and r2 2 �e.If there exists a rule r 2 R suh that enabling(r) = enabling(r2) and enabled(r) =enabling(r1), r2 is redundant if the following equations are satis�ed:lower(r1) + lower(r) � lower(r2) and upper(r1) + upper(r) � upper(r2)



99Rule r1 is redundant if size(�b) = 1 and the following equations are satis�ed:lower(r1) + lower(r) � lower(r2) and upper(r1) + upper(r) � upper(r2)To �re  in Figure 6.3(a), a needs to �re �rst resulting in a marking shown inFigure 6.3(b), then b �res resulting a marking in Figure 6.3(). If the initial markingis as shown in Figure 6.3(b), the rule r and r2 are initially enabled. This indiatesimpliitly that a has �red. Firing  requires b to �re �rst. In this ase, all three rules areinvolved in �ring , the �ring time of  is the same in the �rst exeution yle as thatin the following exeution yles. Therefore, for the purpose of redundany hek, theTEL shown in Figure 6.3(b) is onsider the same as that in Figure 6.3(a). However, ifthe TEL has the initial marking shown in Figure 6.3(), the �ring time of  is di�erent inthe �rst exeution yle where r1 and r2 are initially enabled. The reason is that r is notinvolved in the �ring of  in the initial marking. A rule is redundant if it does not a�etthe �ring time of the event enabled by the rule in every exeution yle when it is enabledto �re, so one more step to hek if r1 or r2 is redundant in the initial marking needsto performed. Besides using Lemma 6.2.1 to deide if either r1 or r2 is redundant, it isalso neessary to hek that either one is also redundant in the initial marking. To makean initially enabled rule r redundant, there must exist another rule that onstrains thetiming behavior in suh a way that it does not hange after r is removed. The followinglemma gives the onditions to hek if a rule in the initial marking is redundant.Lemma 6.2.2 (Redundany Chek for Rules in the Initial Marking) Given a TELstruture, N , in whih there is a r 2 R and also r 2 M0, if there exists another rx, andthe following equations are true:lower(rx) � lower(r) and upper(rx) � upper(r)then r is redundant in the initial marking M0.This triangle struture only involves three rules. Redundany hek on this kind ofTEL struture an be handled very fast, but also limits the appliability of this method.Figure 6.4(a) shows an alternative TEL to those shown in Figure 6.3 based on the sameidea. In this kind of TEL struture, there is not a single rule from a to b. Instead, areahes b through a path. A path P from a to b is a sequene of rules so that a anreah b through P by traversing the graph. Lemma 6.2.1 an still be applied to this kind
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(a) (b)Figure 6.4. Extension of the triangle struture for redundany hek.of TEL, only lower(r) and upper(r) in Lemma 5.2.5 need to be replaed by lower(P )and upper(P ). lower(P ) and upper(P ) of a path P = r1 ! r2 � � � ! rn are de�ned asfollows: lower(P ) = lower(r1) + lower(r2) + � � � + lower(rn)upper(P ) = upper(r1) + upper(r2) + � � � + upper(rn)And also to hek if r1 is redundant, it needs to hange the ondition that size(�b) = 1in Lemma 5.2.5 to size(�enabled(r)) = 1 for all r in P . Figure 6.4(b) shows an exampleof this kind of TEL struture. In the example, path P from a to b is (r3 r4), where r3 =ha; d; 2; 4i and r4 = hd; b; 3; 7i. lower(P ) = 5 and upper(P ) = 11. Sine r1 = hb; ; 1; 5iand r2 = ha; ; 5; 11i, and lower(r1)+lower(P ) > lower(r2) and upper(r1)+upper(P ) >upper(r2), aording to Lemma 6.2.1, r2 is redundant. However, redundany hek forthis kind of TEL struture requires alulating the transitive losure among all events ina TEL to deide if there is a path between a pair of events. Calulation of the transitivelosure has omplexity O(n3) where n is the number of events in the TEL. If n is big,�nding the transitive losure is very omputationally expensive, therefore the algorithmhandling the more general strutures should be used in a limited way and preferably whenno other transformations work.6.3 Extending Redundany Chek to Handle ConitsThe last setion desribes a method to determine redundant rules in a TEL struturewithout onits. This setion extends the method to TELs with onits. In a TEL withonits, a rule that is identi�ed redundant aording to Lemma 6.2.1 and Lemma 6.2.2
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(a) (b) ()Figure 6.5. Redundany hek with an enabling onit set.is alled a potentially redundant rule. If a potentially redundant rule does not hangethe untimed semantis of a TEL, it beomes a truly redundant rule. It is obvious thata potentially redundant rule is automatially a truly redundant rule if the TEL has noonits. There are two groups of onits that need to be onsidered when deiding ifa potentially redundant rule r is truly redundant: the onits among the events in theenabling set of the event enabled(r) and onits involved with enabled(r).First, onsider the onits among the events in the enabling set of an event. As shownin Figure 6.2, if all events in the enabling set of another event e onits with eah other,in other words, there is only one onit plae in the preset of e, none of rules in �e anbe redundant beause removing any one of them redues the spei�ed untimed behavior.Figure 6.5(a) shows an example where the TEL, N , has a onit between b and . eis enabled by r1, r2, and r3. Sine b onits with , either �ring of a and b or �ring ofa and  is required to �re e. N an be deomposed to two equivalent TELs shown inFigure 6.5(b) and Figure 6.5(). Only one of the two TEL strutures is ative during anexeution yle. Suppose r1 is potentially redundant only due to r2, and it is removed fromboth the TELs. In the ase shown in Figure 6.5(b), the �ring time of e does not hange.However, in the ase shown in Figure 6.5(), e may �re sooner than spei�ed beause itis possible that EFT(e  r1; r3) 6= EFT(e  r3) and LFT(e  r1; r3) 6= LFT(e  r3).Sine the �ring time of e may hange after r1 is removed, r1 is not truly redundant. r1is truly redundant if it is redundant due to both r2 and r3. Let an enabling onit setof an event e be a set of rules in the preset of e whose enabling events onit with eahother, and an enabled onit set of an event e be a set of rules in the postset of e whoseenabled events onit with eah other. If an enabling onit set is used to deide theredundany of another rule, that rule is redundant if it is redundant due to all rules inthe enabling onit set. Now suppose r2 is potentially redundant due to r1. However,



102
r1 r3

r2

b

c

a

d #Figure 6.6. Redundany hek with an enabled onit set.
r1 r2

r5r4

r3

b c

a

e
b # c

r1 r2

r3
r4 r5 r6

a

c

e

b

d

b # c, d # e(a) (b)Figure 6.7. Redundany hek for rules in the same postset of an event where theirenabled events are in onit.removing r2 hanges the semantis of the TEL struture. The reason is as follows: beforeremoving r2, e �res after a and b, or a and  have �red. After removing r2, e �res onlyafter a and  have �red. Sine b and  are in onit, this may ause deadlok. If bothr2 and r3 are redundant and removed, the system produes the same timed traes.In summary, a rule annot make another rule in the same enabling onit set redun-dant. If a rule in an enabling onit set makes another rule not in this enabling onitset redundant, then all rules in the onit set must make that rule redundant for it to betruly redundant. On the other hand, a rule in an enabling onit set is truly redundantif all rules in the same onit set are redundant.Now onsider the situation where the enabled event of a potentially redundant ruleonits with other events. Figure 6.6 shows an example where the TEL, N , ontainsa onit between  and d that are enabled by a. Suppose r2 is redundant due to r3.The untimed trae set produed by N is fab; abd; ba; bad; adbg. After removing r2, theuntimed trae set produed by N 0 is fabd; abd; bad; bad; adb; badg. The hange inthe untimed semantis is beause the onit between  and d disappears after removingr2. In N , a hoie is made between  and d after a �res that only one of them an �re. In



103
r1

r2

rjri

c

a

b

d

a # d

Figure 6.8. The enabling onits that a�et the onditions for redundany hek.N 0, no hoie is made after a �res beause there is no onit between  and d. Now both and d an �re in parallel after a does. Now suppose r3 is redundant beause of r2. Theuntimed trae set produed by N is still fab; abd; ba; bad; adbg. After removing r3, theuntimed trae set produed by N 0 is the same. Therefore, r3 is truly redundant in thisase. Based on the above disussion, a potentially redundant rule r is truly redundantif it is not in any enabled onit set of any events in a TEL. However, in the situationshown in Figure 6.7(a), both r1 and r2 are in the enabled onit set of a, and if they areredundant and removed together, the new TEL struture still produes the same timedtraes. This is beause the TELs before and after r1 and r2 are removed produes thesame two untimed traes: faeb; aeg. And also removing r1 and r2 does not hange thetiming behavior of b and , so the new TEL produes the same timed traes. Figure 6.7(b)shows a TEL alternative to the one shown in Figure 6.7(a). In this ase, if both r4 andr5 are redundant and removed together, the behavior desribed by this TEL does nothange. The reason is the same for the TEL shown in Figure 6.7(a). If r3 and r6 areredundant based on their own triangle redundany hek, they an be removed together,and it is neessary to reate two new onits e#b and d# to keep the same untimedtraes. Based on the above disussion, it is required that removing a rule does not hangethe onit relation of any pair of events.In Lemma 6.2.1 and Figure 6.3, the onditions using timing onstraints of rules r, r1,and r2 to deide if r2 is redundant is based on an assumption that there is no onitamong the enabling events of the rules in the preset of b. If it is not true as shown inFigure 6.8 where a onits with d, then heking onditions de�ned in Lemma 6.2.1 isno longer orret. The reason is explained as follows: sine a onits with d, the earliest�ring time of b has two values shown as follows:EFT(b ri) = ta + lower(ri)



104EFT(b rj) = td + lower(rj)where ta and td are the earliest �ring time of a and d.EFT( r1; r2) = max(ta + lower(r2); tb + lower(r1)) (6.1)The earliest �ring time of  deided by only r1 is de�ned as follows:EFT( r1) = tb + lower(r1) (6.2)If tb = EFT(b ri), thenEFT( r1) = ta + lower(ri) + lower(r1)EFT( r1; r2) = max(ta + lower(r2); ta + lower(ri) + lower(r1))Aording to Lemma 6.2.1, EFT( r1) = EFT( r1; r2) (6.3)However, if tb = EFT(b rj), thenEFT( r1) = td + lower(rj) + lower(r1)EFT( r1; r2) = max(ta + lower(r2); td + lower(rj) + lower(r1))It is possible that EFT( r1) 6= EFT( r1; r2)Therefore, it is required that there are no onits among the events in the enabling setof b for the heking onditions de�ned in Lemma 6.2.1 to be orret.6.4 General Redundany Chek for TEL struturesThis setion disusses the general method to determine the redundany of a rulebased on an assumption that a onservative estimate of the minimum and maximumseparation time between two events is available. We �rst show two simple redundanyheks for TEL strutures with levels that do not require suh information. As shownin Figure 6.9(a), rule r and r1 now have levels z and z1, respetively. If r2 is redundantbased on Lemma 6.2.1 ignoring levels, r2 is still redundant when the levels are taken intoonsideration. The reason is as follows: if r2 is heked to be redundant ignoring levels,that means r1 is the last one to beome satis�ed and expired. Adding a level into r1
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<z>(a) (b)Figure 6.9. Two simple redundany heks for TEL strutures with levels.delays r1 to beome satis�ed and expired so it does not hange the redundany of r2.Similarly, in the example shown in Figure 6.9(b), if r1 is redundant based on Lemma 6.2.1ignoring the level on r2, r1 is still redundant when the level on r2 is onsidered.The above two simple ases are appliable only when r2 has a level but r and r1does not, or vie versa. If this is not true, the information of separation time betweentwo events is required. In the �rst setion, if an event is enabled by multiple rules,one of them is redundant if it is neither the last one to beome satis�ed nor the lastone to beome expired. This requires knowing when a rule beomes enabled. To makethe following disussion easier, we de�ne a referene event eref and the minimum andmaximum separation times between eref and another event e are represented as te minand te max, respetively. Therefore, te min = min st(eref ; e) and te max = max st(eref ; e).A rule is enabled when the enabling event has �red and the level evaluates to true.As desribed in Chapter 4, if the boolean expression of a level only onsists of a produt,for example z = ab, z evaluates to true at tz min = max(ta min; tb min) and tz min =max(ta max; tb max). If the expression only onsists of a sum term, for example z = a+b,z evaluates to true at tz min = min(ta min; tb min) and tz max =max(ta max; tb max). Thetime when an expression with a sum-of-produt evaluates to true an be derived similarly.Given a rule r = he; f; l; u; zi, the earliest time when it is enabled is max(te min; tz min),and the latest time when it is enabled is max(te max; tz max). Therefore, the lower andupper bounds of the range that r beomes satis�ed aremax(te min; tz min) + l and max(te max; tz max) + lSimilarly, the lower and upper bounds of the range that r beomes expired are



106max(te min; tz min) + u and max(te max; tz max) + uSuppose an event is enabled by two rules: r1 and r2. If the lower bound of the rangewhen r2 beomes satis�ed is larger that the upper bound of the range when r1 beomessatis�ed and the lower bound of the range when r2 beomes expired is larger than theupper bound of the range when r1 beomes expired, then r1 is redundant.There is a speial ase when the level only onsists of a produt. If the level alwaysevaluates to false, the rule with this level would never beome enabled, so it is automat-ially redundant.



CHAPTER 7EXPERIMENTAL RESULTSThe goal of the automati abstration tehniques desribed in this dissertation isto avoid state spae explosion in large and omplex designs by partitioning designsinto bloks with onstrained omplexity and exploring the state spae of eah blokindividually. To redue the state spae, it is neessary to remove the sequening eventsand assoiated rules in a system whenever possible under the onstraint that the systembehavior is preserved onservatively.This automati abstration tehnique has been inorporated into the VHDL and THSEompiler [86℄ frontend of the ATACS tool. In this hapter, several examples are presented,and their state spae is explored using Bap, an enhaned version of the POSET timinganalysis algorithm [55℄. Next, the state spae of eah omponent in these examples isexplored after abstration. For the purpose of easy omparison between the runtimes ofstate spae exploration of the whole designs and the runtimes of state spae exploration ofthe designs using abstration, all examples shown in this hapter have a regular strutureso that they an be expanded easily. However, it does not neessarily mean that theabstration tehnique is limited to only iruits with a regular struture. When a designsu�ers state explosion, that means that the state spae of the design is too large to �t inthe memory. Abstration not only improves the runtime of state exploration, but also thememory usage beause the state spae of eah omponent an be substantially smallerthan the whole design. Besides showing the omparison of runtimes, the omparison ofthe memory usage is also shown for the whole design and eah omponent.7.1 Simple FIFOsThe �rst example is a dataless version of the preharge half bu�er (PCHB) from [49℄.In one experiment, we explored the state spae of the whole PCHBs with di�erent numberof stages without using abstration, and ATACS �nishes suessfully up to 7 stages. Inanother experiment, we explored the state spae of the PCHBs with di�erent number of
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3E_3’()Figure 7.1. Illustration of how modular design works on eah stage and how abstrationredues the omplexity of designing eah stage.stages with asbtration on. In this experiment, a single stage of the PCHB is seleted,and the rest of the stages of the PCHB and the environment for the whole PCHB areombined to be the environment for the seleted stage. Before the state spae of theseleted stage is explored, its environment is simpli�ed using the abstration approahdesribed in this dissertation. This proess an be illustrated in the Figure 7.1. The sameproess is applied to the other stages of the PCHB. Then, the runtimes for the state spaeexploration of all stages in the PCHB are added together to form the time to �nish thewhole PCHB. Note that the runtime for eah stage also inludes the time for abstrationon that stage. Comparative runtimes and memory usages for the state spae explorationof 1 through 9 stages are shown in Figure 7.2 and Figure 7.3, respetively. While ATACSan only �nish PCHBs up to 7 stages on the at design, it easily �nishes 100 stages inabout 6.2 minutes with a maximum memory usage of 4 MB with abstration on.
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BapFigure 7.3. Memory usage for PCHB example.The seond example is a multiple stage ontroller for a self-timed FIFO from SunMirosystems. In [58℄, a highly optimized hand designed timed iruit implementation ispresented. The purpose of this FIFO is to ompare the performane of an asynhronousFIFO with that of a loked shift register using the same data path. The FIFO uses apulse-like protool to advane data along the pipeline. Aggressive timing assumptions



110module �fo;input fin = fh180; inf ; 180; 260ig;input seinb = ftrue; h90; 110; 90; infig;output seoutb = ftrue; h90; 110ig;output fout = fh90; 110ig;output eout = ftrue; h90; 110ig;output foutb = ftrue; h90; 110ig;output eoutb = fh90; 110ig;proess seoutb;�[[fin+℄; seoutb�; [eout�℄; seoutb+; [eout+℄℄endproessproess eout;�[[seoutb�℄; eoutb+; eout�; [seoutb +&foutb+℄; eoutb�; eout+℄endproessproess fout;�[[eoutb+℄; foutb�; fout+; [seinb�℄; foutb+; fout�; [seinb+℄℄endproessendmoduleFigure 7.4. The timed HSE ode for the SUN FIFO.are made for the FIFO to ahieve high performane. In a pipeline using transparent datalathes, the movement of a datum from one stage of a pipeline to the next involves twoations: apturing the data value in the lathes of the next stage; and unlathing the datalathes in the present stage to free them to apture the next datum. Tight ontrol of thetiming relationships between these two ations is important if robust and fast iruitsare to be ahieved. Speed su�ers if the unlathing ation is too late ompared with thelathing ation. Robustness su�ers if the unlathing ation takes plae before the lathingation is omplete. The delay requirements of lathing and unlathing must be satis�edregardless of the speed at whih the pipeline operates.The operation of the FIFO is very simple: whenever a stage that is Full is followedby a stage that is Empty, the data in the full stage is moved to the empty stage and thestates of both stages are hanged orrespondingly. Figure 7.5 shows the ontrol iruitfor a single stage of the FIFO. When a request omes in (FIN+) and the FIFO is empty(EOUT is high), the data is lathed (En bar+ and En�). In parallel, the insertion isaknowledged (SEOUT�) and the next stage is requested to aept the data (FOUT+).When the next stage aepts the data (SEIN�), the FIFO is set to be empty (EOUT+)and the lath is opened (En bar� and En+). The THSE ode for a single stage FIFO isshown in Figure 7.4.The orretness of this iruit is highly dependent on timing parameters. By using
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BapFigure 7.6. Synthesis time for FIFO example.ATACS, the same eÆient iruit is derived [77℄. We run the same experiments for theFIFO as we did for the PCHB. Without using abstration, ATACS an only �nish theFIFO up to 4 stages. For the 5-stage FIFO, we had to kill the proess after it ran for overa day. With abstration on, however, ATACS easily proeeds to 100 stages, whih takesapproximately 31 minutes and 13 MB memory. The diret method [44℄ an also �nish100 stages, but it takes over 300 minutes. Comparative results upto 6 stages are shownin Figure 7.6.
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Figure 7.7. The STARI interfae.7.2 STARI: A Communiation CiruitThe last example is a STARI ommuniation iruit desribed in detail in [38℄. STARIis a self-timed FIFO that is used to ommuniate between two synhronous systemsthat are operating at the same lok frequeny, but are out-of-phase due to lok skew.These two systems ommuniate as though they are part of an ideal synhronous systems(Figure 7.7). During eah period of the lok, one value is inserted into the FIFO bythe transmitter and one value is removed by the reeiver. Beause data is insertedand removed at the same rate, no ontrol signals are required to prevent underow andoverow. However, due to the lok skew, there an be short term utuations in thelok rate at the reeiver or transmitter and it an appear that one of them is workingfaster than the other. STARI responds to these utuations by building up more data inthe FIFO when the transmitter is working faster, and by supplying data from the FIFOwhen the reeiver is working faster.For orret operation of the STARI, the following two properties need to be veri�ed:1. Eah data value output by the transmitter must be inserted into the FIFO beforethe next one is output.2. A new data value must be output by the FIFO before eah aknowledgment fromthe reeiver.To guarantee the seond property, it is neessary to initialize the FIFO to be approxi-mately half-full [38℄. Intuitively, the longer and faster the FIFO, the more skew it antolerate. The orretness of the above properties depends on the length of the FIFO, thelok speed, the magnitude of the skew, and the speed of operation of the FIFO stages.In the STARI iruit, eah signal x is represented by the dual-rail ode as shown inTable 7.8. The \empty" value is neessary to distinguish between two onseutive dataitems of the same value and one data value asserted for a long time.



113x.t x.f x0 0 E(empty)0 1 F(false)1 0 T(true)1 1 illegalFigure 7.8. Dual rail oding.
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x(k−1).f Figure 7.9. Stage k of STARI.The typial STARI iruit onsists of n idential stages, eah of whih is omposed of2 C-elements and 1 NOR-gate per stage as shown in Figure 7.9. The timed HSE ode fora single stage STARI is shown in Figure 2.2. The TEL struture of the �rst stage of theSTARI is shown in Figure 2.12 in hapter 2.In [75℄, the authors state that COSPAN whih uses a region tehnique for timingveri�ation [3℄ ran out of memory attempting to verify a 3 stage gate-level version ofSTARI on a mahine with 1 GB of memory. In [7℄, a at gate-level design for 10stages an be veri�ed in 124 MB and 20 minutes using POSET timing. Our automatedabstration method veri�es a 14 stage STARI in about 5 minutes with a maximummemory usage of 23 MB of memory for a single stage . Figure 7.10 shows the omparativeruntimes for veri�ation using Bap timing [55℄ with and without abstration on STARI.Bap is an enhaned version of the POSET timing analysis algorithm. As shown in thehart, Bap an verify STARI for up to 12 stages with a memory usage of 277 MB.In the �rst few stages, the runtime for veri�ation with abstation is larger beause
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BapFigure 7.10. Runtimes for STARI veri�ation.abstration itself takes time. When the omplexity of the design grows, the runtimefor at veri�ation grows muh faster. As the designs beome more and more omplex,the time for abstration dominates the total synthesis time. However, sine abstrationruntime grows polynomially in the size of the spei�ation, the total synthesis time withabstration grows in an approximately polynomial manner. This is substantially betterthan the exponential growth in the analysis of at designs.As shown in Figure 7.10, the runtime for state spae exploration using abstration isnot as good as that for the examples in the �rst setion. The reason is that sequeningevents annot be totally abstrated away in STARI. For example, in the 8 stage STARI,there are 44 sequening events for eah stage before the transformations. After thetransformations, 36 sequening events in stage 1, 40 in stage 4, and 38 in stage 8 areremoved. Chapter 5 desribes several situations that the sequening events annot beremoved. For example, if the preset and postset of a sequening event ontain multiplerules of whih the enabling events or the enabled events are not in onit, it annotbe removed as it often auses a safety violation. As designs grow, the number of suhsequening events an beome large. This inreases the ost of state spae explorationdramatially. Sequening events with size(�$) > 1 and size($�) > 1 are inevitable.Redundany hek desribed in Chapter 6 needs to be used in suh ases to redue thesize of preset or postset of a sequening event until some redution tehniques an be



115applied. More general redundany hek is needed to expose more sequening events tobe redued.This example, as well as the ones shown in the �rst setion, is parameterizable. Onemay argue the utility of at synthesis in that for all examples shown in this hapter onlyone stage needs to be built and opied to reate the other stages. However, synthesis ofa at design an lead to a simpler iruit implementation. For STARI, if eah stage isbuilt from the iruit shown in Figure 7.9, this design works orretly using the timingparameters shown in Figure 2.12. If a at design of, for example, an 8 stage STARI, issynthesized, the C-elements in the �rst 3 stages used to store the data an be reduedto simple bu�ers. In the last 3 stages, a generalized C-element using one less transistoran be used. Only the middle two stages require full C-elements. 80 literals and 160transistors are required to implement a 8 stage STARI onsisting of the same stages,while the 8 stage STARI synthesized from the at design requires 56 literals and 136transistors. Synthesis using our abstration tehniques derives the same results.



CHAPTER 8CONCLUSIONS8.1 SummaryState spae exploration is required for designing high-performane timed iruits.However, state spae explosion limits synthesis and veri�ation methods to small de-signs. This dissertation desribed a theoretial framework and tehniques to avoid statespae explosion enountered in large designs by partitioning a design into bloks withonstrained omplexity and designing the bloks separately. When designing a blok, therest of the iruit and the system environment together are regarded as the environmentthat de�nes the operating ondition for the blok. Sine only the behavior on the interfaeof the environment for the blok is essential, the internal signals of the environment needto be abstrated away. After removing the internal signals in the environment, the totalnumber of states of a blok and its abstrated environment an be dramatially redued,thus signi�antly reduing the runtime and memory usage for state spae exploration.In this dissertation, we gave an overview of the spei�ation method of timed iruitsusing hardware desription languages suh as THSE and a synthesizable subset of VHDLfor ATACS. These languages inlude onstruts for speifying sequening, onurreny,hoie, and two-sided timing onstraints. They also support the strutural spei�ationof a iruit. Spei�ations in these languages are ompiled to a graphial representation,TEL strutures, to whih timing analysis algorithms are applied. The behavioral seman-tis of TEL strutures are de�ned using timed trae theory. In this dissertation, we haveproven, by using timed trae theory, the orretness of a series of theorems that supportmodular synthesis and veri�ation. We desribed the onept of safe abstration thatdeals with abstrating signals away from levels in TEL strutures. It an reate extrabehavior not spei�ed originally. We also desribed the onept of safe transformationsand de�ned onditions that safe transformations must satisfy. Then, we desribed twogroups of tehniques based on the de�nition of safe transformations to redue the number



117of events and rules in a TEL struture. The �rst is safe net redutions that remove thesequening events and rules in their presets and postsets, and reates new rules thatpreserve the ausal and timing behavior between the enabling sets and enabled sets ofthe sequening events. They an remove most sequening events in a TEL struture. Safenet redutions an reate extra behavior not spei�ed originally. The seond is removingredundant rules. This tehnique identi�es and removes rules in a TEL struture that haveno e�et on the behavior. Redundany hek preserves the behavior preisely. These twogroups of tehniques are used alternatively to ahieve the best result in terms of thenumber of sequening events left and the number of rules in the TEL struture. Safe netredutions are applied �rst, then redundany hek is applied to reveal more situationsthat an be simpli�ed by safe net redutions. We have applied the tehniques desribedin this dissertation to several examples inluding the lassi STARI example, and ourresults show that modular synthesis and veri�ation with abstration is not only severalorders of magnitude faster, but also apable of analyzing several orders of magnitudemore omplex systems that an be handled previously.8.2 Future WorkAbstration is essential when analyzing systems with a huge number of states suh asa iruit with a data path. The work presented in this dissertation is only a starting pointwhere there is muh work that needs to be done in order to make it pratially useful. Thissetion desribes the areas that we believe to be the most important researh problemsthat must be addressed. 8.2.1 Spei�ationIn Chapter 5, we disussed that if there exist initially enabled rules in the postsetof a sequening event, Redution 1 and 2 annot be applied without reating extrabehavior. Also, in Chapter 6, a di�erent redundany hek must be applied if initiallyenabled rules appear. The reason is that semantis of initially enabled rules are di�erentfrom the orresponding non-initially enabled rules. In order to make safe redutions andredundany more appliable, it is neessary to introdue speial kinds of rules into TELstrutures. These rules are similar to initially enabled rules. However, after �ring theenabled events in the �rst exeution yle, they are removed during the timing analysis.



1188.2.2 Calulation of Separation Time Estimates Between EventsIn the disussion of safe abstration in Chapter 4 and redundany hek for TELstrutures with levels in Chapter 6, it is assumed that the separation time betweenevents are known. As mentioned, alulating separation time is as hard as state spaeexploration, and should be avoided. In order to make safe abstration and redundanyhek viable for TEL strutures with levels, it is neessary to develop an approximatealgorithm to alulate a onservative estimate of the separation time. This algorithmmustinur low omputational ost. In [63℄, Myers desribed suh an approximate algorithmto ompute a estimate of the minimum and maximum separation time between all eventsin a yli, hoie-free graph. It has a polynomial omplexity. It is highly desirable toextend this algorithm to apply to TEL strutures with arbitrary hoie and levels whilemaintaining the polynomial omplexity.8.2.3 Automati Partitioning of DesignsThe quality of abstration has several aspets. One of them is that eah blokafter partitioning must have a balaned and onstrained omplexity. The omplexityof state spae exploration algorithms is exponential in the size of TEL strutures. Extratime is required if abstration is applied, and time for abstration for eah blok growspolynomially in the size of TEL strutures. Therefore, the total time for synthesis andveri�ation of a blok onsists of two portions: time for state spae exploration with anexponential omplexity in the size of the blok and time for abstration with a polynomialomplexity in the size of TEL strutures. If the size of the blok is too large, the ostof designing a blok is lose to that of the whole iruit. If the size of eah blok istoo small, then the number of bloks after partitioning is too large, and the overheadfor abstration an grow substantially. Also, the urrent abstration tehnique seletsa blok in a iruit based on the spei�ed strutural information. In other words, adesigner hooses a omponent from a iruit by hand. This proess beomes tedious andtime-onsuming if the iruit onsists of many omponents and levels of hierarhy. Toaddress the above problem, it is neessary to develop an algorithm that takes advantage ofthe spei�ed strutural information to partition a iruit so that eah blok has a balanedand onstrained omplexity, so the speed of the design proesses using abstration anbe improved in a maximum way.



1198.2.4 Re�nement Guided AbstrationSafe abstrations in Chapter 4 and safe net redutions in Chapter 5 reate extrabehavior that may result in violating states that are unreahable in the original iruit.This may produe a false negative answer for veri�ation. When this situation happens,abstration has to go bakwards to eliminate the extra behavior ausing the fake violatingstates. One method is to run abstration again without using a safe abstration ornet redution tehnique that reates extra behavior. If this is not enough, more suhtransformations are removed and abstration needs to be performed again. An alternativeis to analyze the error traes and �nd out if they are aused by removing some sequeningevents. If it is true, these sequening events are restored and timing analysis is performedagain. 8.2.5 Strutural Analysis for TEL StruturesFor safe net redutions desribed in Chapter 5, it is required that the net afterredutions preserves safeness and liveness of the original net. In [31℄, Commoner desribedan analysis approah to determine the safeness and liveness of a net based on its struture.However, his approah an only be applied to marked graphs that are a lass of Petri-netwithout hoies. In [40℄, Hak desribed and proved the suÆient onditions for afree-hoie Petri-net to be safe and live. The above approahes either annot handlehoie at all or in a limited way. It is desirable to develop a method to deide the safenessand liveness of a net with arbitrary struture, so more omplex safe transformations thatpreserve safeness and liveness of nets an be developed.8.2.6 Combining Partial Order Redution with AbstrationAs introdued in the �rst hapter, partial order redution redues the state spae byonsidering only a subset of all possible interleavings between two onurrent events. Thistehnique is widely used in veri�ation world, but not in synthesis beause all behaviorsof a iruit need to be onsidered. In timed iruit design, the internal bebehavior of anenvironment has no impat on how a iruit is synthesized or veri�ed, therefore, partialorder redution an also be used to simplify the environment besides the abstrationtehnique desribed in this dissertation. If these two tehniques an be ombined together,better results an be obtained.
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