
SBOLDESIGNER: A HIERARCHICAL GENETIC DESIGN

EDITOR

by

Michael Zhang

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Bachelor’s of Science

Computer Science

The University of Utah

April 2018

Approved:

/
Chris Myers
Advisor

/
Ross Whitaker
Director
School of Computing

/
H. James de St. Germain
Director of Undergraduate Studies
School of Computing

ABSTRACT

Synthetic biology, as a field of research, applies electrical engineering, systems biol-

ogy, and bioinformatics to genetic circuit design. Software tools are leveraged to provide

rapid iteration through the design space, and data standards are used to encode and

characterize complicated genetic circuit designs. Specifically, genetic design automation

workflows centered around standards, abstraction, and decoupling are utilized to help

experimental biologists accomplish their goals. Unfortunately, the software tools that sup-

port this workflow are lacking in some critical features such as combinatorial design and

support for an extended range of glyphs. These inadequacies hinder the adoption of data

standards, and therefore hurt the reproducibility of experiments and results. Necessary

details of experiments are not recorded, and the resulting conclusions are therefore not

trusted. SBOLDesigner, a sequence-based computer aided design tool, addresses these

issues. This thesis will focus on SBOLDesigner’s implementation of combinatorial design

and the SBOL Visual 2 standard using the SBOL 2 data model. Using SBOLDesigner, ex-

perimental biologists are able to visualize their genetic circuits unambiguously and express

the full state of their design robustly. This results in higher productivity when designing

genetic circuits, more comprehensive circuit descriptions, and most importantly, enhanced

reproducibility in the field of synthetic biology.

CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

CHAPTERS

1. INTRODUCTION . 1

1.1 Background . 1
1.2 Genetic Circuits . 2
1.3 The Synthetic Biology Open Language . 5
1.4 Genetic Design Automation Workflow . 6
1.5 Thesis Contributions . 9
1.6 Thesis Overview . 10

2. SBOLDESIGNER . 11

2.1 Background . 11
2.2 libSBOLj . 13
2.3 SBOL 2 . 13

3. SBOL VISUAL . 18

3.1 Background . 18
3.2 SBOL Visual 2 . 20

4. COMBINATORIAL DESIGN . 24

4.1 Background . 24
4.2 Implementation . 25

4.2.1 Data Model . 25
4.2.2 User Interface . 27
4.2.3 Algorithm . 28

4.3 Combinatorial Design Example . 31

5. CONCLUSION . 33

5.1 Summary . 33
5.2 Future Work . 34

5.2.1 Interactions . 34
5.2.2 Computer Aided Manufacturing . 34
5.2.3 Plugin Support . 34
5.2.4 Better Search . 35

REFERENCES . 36

ACKNOWLEDGEMENTS

The author would like to thank Professor Myers for being the principal investigator

of this research. The author would also like to thank Evren Sirin (Complexible), Michal

Galdzicki (Arzeda), Bryan Bartley (U. of Washington), and John Gennari (U. of Washing-

ton) for their work on the original version of SBOLDesigner. This work is funded by the

National Science Foundation under grants CCF-1218095 and DBI-1356041. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National Science Foundation.

CHAPTER 1

INTRODUCTION

1.1 Background
Synthetic biology is a relatively new field born out of systems biology, electrical en-

gineering, and bioinformatics [5]. Specifically, synthetic biology enhances these parent

fields by taking fundamental engineering principles such as standards, abstraction, and

decoupling, and applying them to genetic circuit design. Systems biology, defined as the

study of complex biological systems and their pathways of operation and interaction, is

used to accelerate the creation of new and novel genetic circuits. Electrical engineering

concepts such as circuits and logic gates function as great models for the design process.

Finally, synthetic biology borrows from bioinformatics and makes use of massive amounts

of data and computational resources.

The direct precursor to synthetic biology was genetic engineering, which focused on

modifying organisms’ genomes in order to manipulate the characteristics of those organ-

isms. While genetic engineering has existed since the 1960s, it has never really adopted

true engineering fundamentals. Therefore, even though synthetic biology is a re-branding

of genetic engineering, the focus is to adopt standards, abstraction, and decoupling. This

effort can be seen in the adoption of the Synthetic Biology Open Language (SBOL) stan-

dard, the use of software tools to rapidly iterate on the design of genetic circuits and their

models, simulations, and compositions, and the separation of different tools for different

tasks.

SBOL also addresses the problem of reproducibility in synthetic biology. Experiments

are inherently complex, and information necessary for reproducing the results found in

groundbreaking papers is often incomplete. As a result, much of the research in this field

is of reduced value to the larger scientific community. Data models such as SBOL and

2

tools that utilize the data model are therefore integral in providing a means to address

the issue of reproducibility. Without these blueprints, genetic circuits lack DNA sequence

information, proper characterization data, and circuit layout details. To more thoroughly

solve the reproducibility problem, tools that utilize SBOL must also support the wide range

of ways experimental biologists express their designs.

1.2 Genetic Circuits
In synthetic biology, genetic circuits are classified as sensor and actuator networks. In

the traditional electrical circuit, inputs such as buttons or switches control outputs such

as LEDs and motors. This is accomplished through the physical and electrical properties

of a variety of components such as resistors, capacitors, inductors, and LEDs. In genetic

circuits, much is the same: standardized sequences of DNA control expression of various

proteins that results in external factors like cells glowing green [7]. The biggest difference is

that the mode of expression is due to the transcription and translation of genes into protein,

and not of electrons flowing through wires. This is commonly referred to as the central

dogma of molecular biology [3], and is shown in Figure 1.1. Because of these similarities,

genetic circuits with similar function to traditional electrical circuits can be built.

For example, one such circuit is the NOR gate. A truth table and electrical circuit

schematic is shown in Figure 1.2. IPTG and TetR are the inputs, and LacI is the output. The

truth table shows that LacI is only high when both inputs are low. In every other case, LacI

is low. The boolean NOR function can also be obtained from a genetic circuit, as shown in

Figure 1.3. The circuit schematic describes a backbone of DNA with four glyphs of DNA

sequences, defined as parts, drawn on top of it. The yellow bent arrow is called a promoter,

and facilitates transcription of DNA to RNA. The half circle ribosome binding site, arrow

coding sequence, and T shaped terminator are all parts that get transcribed into RNA. From

there, a ribosome binds to the ribosome binding site and translates the coding sequence into

a protein before falling off due to the terminator. In this case, the coding sequence contains

the blueprint for the LacI protein. These standard parts are analogous to the electrical

components of an electrical circuit.

With the foregoing understanding of the these genetic parts’ behaviors, the boolean

NOR function is realized. TetR is a protein that inhibits the function of the promoter, and

3

Figure 1.1. The central dogma of molecular biology. DNA is transcribed into RNA, and
RNA is translated into protein. These transformations are shown by the solid arrows,
and are called the general transfers. The transformations shown by the dotted arrows are
called special transfers, and differ from general transfers in that they don’t occur in most
cells, but may occur in special circumstances. In genetic engineering and synthetic biology,
experimental biologists change the DNA, and the resulting protein is altered. For example,
by modifying a genome’s DNA to encode for green florescent protein, researchers can
determine if their genetic circuit is operating correctly by shining ultraviolet light on the
cells [7]. Figure from Crick et al. [3]

4

Figure 1.2. The truth table and classical schematic drawing for a NOR gate. The inputs are
IPTG and TetR, and the output is LacI. LacI is only produced when TetR is low, and LacI
is only expressed when IPTG is not present. Therefore, the only case where LacI is found
in the cell is when both TetR and IPTG are low. Figure from Nguyen et al. publication
pending.

Figure 1.3. The biological circuit schematic of a traditional NOR gate. TetR is repressing
the promoter, and IPTG binds with LacI to form a complex that removes LacI from the
system. When neither TetR nor IPTG are present, LacI can be produced normally and is
expressed by being present in the system. Figure from Nguyen et al. publication pending.

5

IPTG is a small molecule that binds to LacI and effectively removes it from the system.

When TetR is present, LacI doesn’t get produced in the first place; when IPTG is present,

LacI is neutralized before it can act. The states where LacI is low coincides with the rows

in the truth table in Figure 1.2 that show a zero for LacI. When neither TetR nor IPTG are

present, LacI can be expressed, resulting in a high state. This high state is the only possible

state where LacI is high, and coincides with the row in the truth table in Figure 1.2 that

shows a one for LacI.

The NOR gate is a universal gate, meaning all other gates and boolean systems can be

built just from NOR. For example, a multiple input AND function could be built [11]. The

inputs could be proteins associated with carcinogenic cells, and the output could be green

florescent protein. When all the inputs are present, all the cancer cells would glow green.

Alternatively, the function could be NAND, and cause some vital protein for the cancer

cell to stop being produced. Now that we have realized a genetic NOR circuit, all other

boolean systems can theoretically be built using genetic circuits.

1.3 The Synthetic Biology Open Language
SBOL is a standard for describing these genetic circuits [6]. SBOL consists of two parts:

the SBOL data model and the SBOL Visual standard [1, 18]. The data model, as shown in

Figure 1.4, is a specification of objects and their relationships. Circuits such as the genetic

NOR in Figure 1.3 can be encoded in SBOL and passed around as an electronic file. This

centralized file format allows software tools to communicate with each other.

The SBOL Visual standard provides a standardized set of schematic glyphs to describe

visualizations of genetic circuits. For example, Figure 1.3 is an SBOL Visual compliant

depiction of a genetic circuit. Specifically, the genetic parts are drawn in accordance to

how their glyphs are defined. These definitions are shown in Figure 1.5.

Both the SBOL data and visual standards are necessary for reproducibility and in-

teroperability in synthetic biology, and further shows how engineering principles have

influenced the field. When SBOL is not used to describe research results and genetic

circuit layouts, the information published in papers is usually incomplete. Incomplete

knowledge of the genetic system results in unreproducible results and a loss in trust for

the findings. For this reason, in 2016, ACS Synthetic Biology set a precedent by adopting the

6

SBOL data and visual standards as the official method for depicting and digitally storing

genetic constructs [9]. The use of SBOL in publications and the deposition of this data into

public repositories tremendously aids reproducibility in this field. However, in order for

biologists to generate these designs in SBOL, they need a workflow with tools that have

features that enable a straightforward way for generating these constructs [19].

Figure 1.4. The SBOL data model. Top level classes are drawn in green, and supporting
classes are drawn in yellow. Together, this data specification allows the description of a
broad range of genetic circuits. Software tools import and export this format to allow for
interoperability and decoupling from tool to tool. Figure from Beal et al. [1].

1.4 Genetic Design Automation Workflow
Figure 1.6 shows an example genetic design automation workflow that revolves around

SBOL. Part repositories, simulation and modeling tools, and sequence level computer

aided design tools interact through the SBOL standard. Software tools help experimental

biologists abstract their designs and more efficiently prototype their circuits [19]. These

tools can also be decoupled by allowing SBOL to be the common language. Because of

SBOL, even a tool developed in isolation can contribute to the workflow.

One critical feature that is not present in the workflow is the ability to create combi-

natorial designs. Combinatorial design is a method of genetic circuit optimization where

many variants of the same template part are synthesized. The performance characteristics

7

Figure 1.5. The SBOL Visual set of defined glyphs. Each glyph represents a type of
genetic part that genetic circuits are built from. The visual standard specifies rules and
best practices for how these parts should be drawn in software tools, in figures, and on
whiteboards. Figure from Quinn et al. [18].

8

Figure 1.6. A workflow consisting of SynBioHub, SBOLDesigner, and iBioSim [13].
Genetic parts from various databases are hosted in the SynBioHub repository [8, 12, 14].
SBOLDesigner and iBioSim can download these parts and use them to construct complete
genetic designs. Specifically, iBioSim takes care of modeling and simulation and SBOLDe-
signer takes care of sequence level design. Figure from Zhang et al. [21].

9

of each variation are then measured and ranked. This method works well because biology

is inherently noisy. Instead of designing a single circuit to achieve an intended result, many

variants of the same circuit are built and compared against each other; the best performing

variant is then selected. Because each variant is its own unique design, representing this

method in SBOL would require many SBOL data files. Each file would encode a single

variant, and much of the data would be duplicated.

Another missing piece of the workflow is its limited ability to express genetic circuits

visually. An updated version of the SBOL Visual standard, SBOL Visual 2, has been re-

leased [18]. This update contains modifications to many of the already established glyphs,

and introduces many more. It also contains information on how to visually display both

hierarchical and functional relationships between parts.

1.5 Thesis Contributions
This thesis will describe SBOLDesigner’s upgraded SBOL 2 internal data model, the

implementation of combinatorial designs, and the adoption of SBOL Visual 2 within this

genetic design automation workflow.

The SBOLDesigner tool was an early adopter of SBOL. The original version, developed

at the University of Washington, relied on a heavily modified version of libSBOLj 1.0,

a Java library that implemented the original version of SBOL. libSBOLj 2.0 represents a

fundamental shift in both the SBOL data model and library APIs. As a result, updating

the internal data model of SBOLDesigner to SBOL 2 required reimplementing much of

SBOLDesigner’s backend. This involved rethinking how SBOL fits into the CAD tool’s

goals and data representations. This new version of SBOLDesigner has therefore thor-

oughly adopted SBOL 2’s architecture of how biological design should be represented.

Adoption of SBOL Visual 2 required modifying, updating, and creating new glyphs,

new user interfaces, and new uses of the SBOL data model. The implications of these

benefits will be discussed in the frame of increasing reproducibility in synthetic biology.

In particular, visualizations of genetic circuit designs in SBOLDesigner are now much more

clear and semantically well defined. Many existing glyphs have been updated to conform

to more strict definitions and meanings, and many new glyphs have been added.

Support for combinatorial design within SBOLDesigner required exploring the rela-

10

tionship between SBOL’s representation of the combinatorial design objects and SBOLDe-

signer’s internal data model. New user interfaces also had to be created to give the user an

intuitive way to build combinatorially designed genetic circuits. Finally, a combinatorial

design enumeration algorithm was devised to explore the design space implied by the

combinatorial design. The end result is a cohesive implementation of combinatorial design

within SBOLDesigner.

1.6 Thesis Overview
The results of these changes are a succinct and descriptive way of specifying combina-

torial designs and less ambiguous visualizations of genetic circuits, all in the SBOL 2 data

model. Chapter 2 covers SBOLDesigner, its history, and its new SBOL 2 backend. Chapter

3 goes through the improved user interface to adopt SBOL Visual 2 over SBOL Visual 1.

Chapter 4 describes combinatorial design as a technique for genetic circuit optimization,

and how SBOLDesigner implements combinatorial design through SBOL data model ob-

jects, user interface extensions, and the underlying combinatorial enumeration algorithm.

Finally, Chapter 5 concludes with a summary of the thesis and an overview of possibilities

for future work.

CHAPTER 2

SBOLDESIGNER

2.1 Background
SBOLDesigner is a key piece of this workflow and the first sequence editor that in-

tegrates support of the SBOL 2 data standard with SBOL visual symbols. In particu-

lar, SBOLDesigner can obtain DNA sequences and other important metadata from the

SynBioHub parts repository [12]. These components can then be composed and edited

within SBOLDesigner to create a complete structural design of a genetic circuit. These

new composite designs can then be uploaded to the part repository to enable sharing

and reuse. In order to add functional information about a genetic design, SBOLDesigner

has been integrated into the modeling and simulation genetic design automation (GDA)

tool, iBioSim [13]. The iBioSim software can be used to construct and analyze functional

models using the Systems Biology Markup Language (SBML) [10]. These functional models

once annotated using genetic designs produced by SBOLDesigner [20] can be converted

into an SBOL 2 document including functional information about the product of these

genetic circuits and their interactions [15]. Once again, the complete genetic circuit with its

functional information can be archived in a part repository for sharing. Throughout this

process, researchers can collaborate and pass around files from institution to institution,

located anywhere in the world. The SBOL standard provides the means to enable a lossless

communication of data between these software tools and repositories.

SBOLDesigner is focused on the sequence and structural levels of genetic circuit de-

sign [17, 21]. This mainly involves dealing with DNA. The main interface is shown in

Figure 2.1. Parts shown in SBOL Visual appear on the bottom row and can be dropped

onto the canvas. These parts can be arranged hierarchically, and each part’s sequence, type,

role, and id can be described. Some additional features are support for importing parts and

12

sequences from external sources such as other files on disk or SynBioHub, versioning of

designs, and support for various file formats such as GenBank, FASTA, and SBOL 1 and

2 [21]. SBOLDesigner also supports rich annotations, such as the provenance standard,

through the SBOL annotation framework [1].

Figure 2.1. The main canvas of SBOLDesigner is shown. A row of parts on the bottom
show what can be placed into the design, and a hierarchically defined genetic circuit is
being displayed in the overview. Double clicking on a part in the canvas opens up a part
editor that allows the user to change the properties of the part. Parts can also be pulled
from various registries and repositories such as SynBioHub, the local filesystem, and other
file formats such as GenBank and FASTA. These parts can be combined in many ways, and
the resulting design can be uploaded back to SynBioHub. Figure from Zhang et al. [21].

13

2.2 libSBOLj
SBOLDesigner uses the libSBOLj library for its backend data model and SBOL manipu-

lation [22]. libSBOLj is a Java library that implements the SBOL specification. The libSBOLj

library has been updated to support combinatorial objects and SBOL Visual 2. Any tool

that also uses libSBOLj is able to read and write these constructs. Experimental biologists

who were previously limited by what SBOL and SBOLDesigner could represent are now

able to fully encode their designs. However, for further adoption of these extended SBOL

constructs, more tools and libraries will have to support combinatorial design and SBOL

Visual 2. This is a step in the correct direction, but there is a lot more to do before ex-

perimental biologists are able to completely abandon their Excel spreadsheets and Word

documents.

While the user interface remains similar, the transition from SBOL 1 to SBOL 2 required

re-implementing most of the software’s back-end to use the data model provided by the

libSBOLj 2.0 Java library [22]. Figure 2.2 provides a comparison of the SBOL 1 data model

to the structural portion of the SBOL 2 data model. The key difference is that SBOL

2 separates SequenceAnnotations from SBOL 1 into Components, SequenceAnnotations, and

SequenceConstraints, which requires a fundamental change in the representation of parts in

SBOLDesigner. There are also many API changes between libSBOLj 1.0 and libSBOLj 2.0.

Part of the design philosophy of libSBOLj 1.0 is the utilization of a factory for creating

objects from the data model. Conversely, all libSBOLj 2.0 data model objects inherit from

the Identified class, and all object creation is handled from a centralized SBOLDocument

object. Also, the API is more complicated due to the introduction of more specific data

model objects and the increase in the number of classes. For example, SequenceAnnotations

now contain Locations which can be specific Ranges or more general GenericLocations. Se-

quenceConstraints allow for more general ordering, and Components define explicit instan-

tiations of ComponentDefinitions. These changes taken together necessitated a complete

re-implementation of SBOLDesigner’s back-end.

2.3 SBOL 2
The SBOL data standard provides a digital format that allows biologists to share genetic

designs stored in a principled scheme. SBOL 1 focused solely on the design of DNA

14

Figure 2.2. A color coded diagram showing the mapping of classes between SBOL 1 and
SBOL 2. While the left-hand side includes the entire SBOL 1 data model, the right-hand
side is a simplified view that includes only the structural portion of the SBOL 2 data
model. SBOLDesigner currently only supports this structural portion. In particular, DNA
ComponentDefinitions specify their structure using DNA Sequences encoded using IUPAC.
These DNA ComponentDefinitions can include sub-structure specified using Components
that are ordered by their SequenceConstraints and positioned by the Locations within the
SequenceAnnotations. Finally, these DNA ComponentDefinitions can be organized into Collec-
tions. The key difference between SBOL 1 and SBOL 2 is that SequenceAnnotations are now
split into SequenceAnnotations, Components, and SequenceConstraints. Also, DnaComponents
and DnaSequences are now more generic ComponentDefinitions and Sequences enabling them
to specify parts of other types, such as RNAs, proteins, small molecules, complexes, etc.

15

components and the annotation of their sequences [6]. The latest version, SBOL 2, enables

the description of general biological components, along with their interactions, and hierar-

chical composition into modules. In particular, SBOL 2 describes designs structurally using

ComponentDefinitions, Sequences, and SequenceAnnotations that are composed together into

biological designs described functionally using ModuleDefinitions, Interactions, and Models

[1]. The SBOLDesigner tool focuses on the structural design of DNA parts. Although data

content used by SBOLDesigner is similar to that in SBOL 1, many changes are necessary

to support the restructured data model of SBOL 2 and its additional features. Figure 2.3

shows the main classes from the SBOL 2.0 data model that are used by SBOLDesigner.

Figure 2.3. A simplified view of the structural portion of the SBOL 2.0 data model that
SBOLDesigner uses. ComponentDefinitions and their Components and Sequences are ordered
by SequenceConstraints and positioned by SequenceAnnotations. Components can introduce
hierarchy by pointing to other ComponentDefinitions. A complete genetic circuit design
consists of a collection of ComponentDefinitions and Sequences organized by SequenceCon-
straints, SequenceAnnotations, and Components.

The main canvas shown in Figure 2.1 represents a ComponentDefinition that brings to-

gether information on the design’s Sequence, its Components, and their organization. There-

fore, every design in SBOLDesigner is inherently hierarchical. All the parts that are added

to a specific design are contained transitively within a root ComponentDefinition, which is

defined as a part that is not included as a sub-part within any other ComponentDefinition.

Each SBOL file is allowed to include multiple root ComponentDefinitions. Therefore, when

16

an SBOL file is opened in SBOLDesigner, a single root ComponentDefinition must be selected

for editing. Non-root ComponentDefinitions can also be selected for editing. However, it is

important to note that while non-root ComponentDefinitions appear hierarchically identical

to normal root ComponentDefinitions from the perspective of the SBOLDesigner hierarchy

viewer and canvas, they are fundamentally different since there exists another Compo-

nentDefinition in the SBOL file that contains a Component that references this transitive

ComponentDefiniton. Also, if the original non-root is overwritten, changes are reflected in

all designs in the SBOL file that reference this ComponentDefinition. If, on the other hand, a

new version is created, then the original references continue to use the original design of

this ComponentDefinition. In this case, the new version of this ComponentDefinition would

itself become a root ComponentDefinition until it is also included in another design.

The fields in the part editor map directly to a ComponentDefinition and its Sequence. For

example, the role, displayId, name, description, and version are all properties of the Compo-

nentDefinition, and the sequence text box maps directly to the elements property of a separate

Sequence object. A ComponentDefinition and its Sequence are individual top-level objects in

the data model, and can both exist independently without the other, but to simplify the

interface, SBOLDesigner treats them as a single unit.

Below the canvas in SBOLDesigner is a row of genetic elements that can be added

to the design. When placed on the canvas, each element represents a Component. These

Components are organized by SequenceAnnotations and SequenceConstraints, all of which are

children of the canvas ComponentDefinition. This means that they can only exist within

the parent ComponentDefinition. Components are completely new to SBOL 2, and represent

hierarchy in the design. Each Component refers to another ComponentDefinition, and rep-

resents a specific instantiation of that referred ComponentDefinition. While Components are

not top-level object in the data model, the ComponentDefinitions they refer to are. Therefore,

clicking on the ”focus in” button expands a Component to expose its ComponentDefinition,

generating a nested canvas. This new canvas also represents a ComponentDefinition, which

allows the user to create hierarchically defined designs. However, even though this nested

ComponentDefinition is a top-level object in the data model, it is not considered a root Com-

ponentDefinition since there exists another ComponentDefinition that contains a Component

that references this ComponentDefinition. As a result of Components, a design can have

17

any number of layers of ComponentDefinitions, as long as there is not a cycle. In other

words, ComponentDefinitions cannot refer to a Component that then directly or indirectly

refers to a ComponentDefinition that is a parent of the Component that refers to the original

ComponentDefinition.

SequenceAnnotations specify the precise Location and orientation (position and direction)

of a Component and SequenceConstraints encode information on how Components are or-

dered relative to each other. SequenceContraints are only present when there is more than

one part on the canvas, since relative ordering only matters when there are multiple parts.

However, each Component always has a SequenceAnnotation that refers to it. Also, it is im-

portant to note that SequenceAnnotations and SequenceConstraints are annotations and con-

straints on Components, not Sequences. This distinction means there could be SequenceAnno-

tations and SequenceConstraints on Components whose ComponentDefinitions do not have a

defined Sequence. By default, SequenceAnnotations contain a Location of type GenericLocation

if the ComponentDefinition pointed to by its Component does not have a defined Sequence.

However, if the Component refers to a ComponentDefinition with a defined Sequence, then

the SequenceAnnotation contains a Location of type Range. This Range specifies the start and

end index of exactly where this Component’s ComponentDefinition’s Sequence belongs in the

parent ComponentDefinition’s Sequence. An important assumption used by SBOLDesigner is

that parts are abutted as shown in the canvas. This means the start position of a Component

is one base along from the end position of the Component before it. The first Component has

a start position value of 1. With this assumption, the user does not need to worry about

the construction of Sequences and their SequenceAnnotations, since this is all handled behind

the scenes and is automatically generated by SBOLDesigner.

CHAPTER 3

SBOL VISUAL

3.1 Background
SBOL visual is a specification of standard visual schematic glyphs used to represent

various commonly used genetic components [18]. The standards are linked using the

Sequence Ontology (SO) [4] as shown in Figure 3.1. Namely, a DNA ComponentDefinition

constructed in the data standard is visualized by looking up the corresponding SBOL

visual symbol specified by its role. The SBOL visual standard defines how a ComponentDef-

inition with a particular role should be drawn on whiteboards, in computer aided design

tools, and in papers. Therefore, the Sequence Ontology term is what connects the role of

a ComponentDefinition with how it should be drawn. Specifically, the Sequence Ontology

term is used to define the meaning of a SBOL Visual glyph symbol and define the role of

an SBOL ComponentDefinition object.

Each glyph therefore has an explicit semantic meaning and representation. When

new glyphs are introduced, their specifications clearly indicate the Sequence Ontology

term that gives a semantic meaning to the glyph. Therefore, most of the specification is

dedicated to defining how the glyph should be drawn. While such detailed specification

might seem excessive, it is important to clearly define the commonly used glyphs drawn

on whiteboards and in papers. Otherwise, much of the intended meaning of figures of

genetic circuits is left to the interpretation of the reader. With SBOL Visual, the intent

of the illustrator is made more apparent, and the reader is able to more easily resolve any

ambiguity or confusion. As a result, SBOL 2 and SBOL visual taken together facilitate com-

munication between experimental biologists, computational biologists, genetic engineers,

and their computational tools.

19

Figure 3.1. SO:0000167 is the Sequence Ontology term for a promoter. SBOLDesigner
is able to associate this well-defined ID to both the SBOL Visual glyph for promoter, as
well as a template promoter ComponentDefinition. The Sequence Ontology term defines the
meaning of the SBOL visual glyph and the role of the ComponentDefinition SBOL object.
The term is specified by the Sequence Ontology, the visual symbol is defined by the
SBOL Visual standard, and the ComponentDefinition SBOL object is defined by the SBOL
data model standard. Additionally, the Sequence Ontology is organized as a tree, so
any descendants of promoter such as constitutive promoter or inducible promoter, are
also associated with the correct glyph and ComponentDefinition. Also note that many
ComponentDefinition SBOL objects can share the same Sequence Ontology term role while
each SBOL Visual symbol explicitly represents a Sequence Ontology term. Differentiating
between different parts that share the same role and glyph is done in SBOLDesigner by
writing a text label with the part’s displayId below the glyph.

20

3.2 SBOL Visual 2
SBOL Visual 2 is a natural continuation of the original SBOL visual standard. Specif-

ically, it constrains the specification of new glyphs, adds many new glyphs, and gives

glyphs more explicit semantic meanings. Figure 3.2 summarizes these changes. These

improvements further add to the benefits of having a standardized set of genetic circuit

glyphs.

Figure 3.2. There are three types of changes introduced in SBOL Visual 2. The top row
shows how glyphs now have a more constrained specification. The left row shows how
the glyphs used to be shown in the user interface, and the right side shows how they
are shown now. For example, there is now a more precise specification as to where the
glyph belongs relative to the backbone. The second row of glyphs shows new glyphs that
have been added to SBOL Visual. With the extended range of supported and well defined
glyphs, more interesting genetic circuits can be represented. Finally, bottom row shows
how the generic box glyph has been expanded into more explicit semantic meanings.
Specifically, there is now a no glyph assigned glyph, unspecified glyph, engineered region
glyph, and composite plus omitted detail overlay. As a result of these changes, the scrollable
part selection window has been expanded to accommodate the new palette.

All the glyphs now have more precise specifications. For example, some parts sit above

the backbone while other sit on the backbone. Some parts cover the backbone and other

show the backbone going through the part. SBOL Visual 1 did not provide exact details on

how each glyph should be drawn respective to the backbone and relative to other parts.

21

Now, each glyph specification also includes a bounding box that manages scale and well

defined specification style depictions. SBOLDesigner has been updated to follow all these

conventions. This results in a more consistent style between SBOLDesigner and other

tools and papers. While each illustrator can draw their glyphs creatively, there now exists

a minimal set of rules that all instances of each glyph has to follow.

Many new glyphs for various genetic constructs have also been introduced. This allows

for a wider range of part encodings. For example, a system of stem and top glyphs have

been added where the stem variations can be mixed with the top variations. These glyphs

are shown in Figure 3.3. Other new glyphs include the aptamer, non-coding RNA, ori-t,

poly-A site, recombination site, and signature. SBOL Visual is a very extensible standard, so

even more glyphs are anticipated to be introduced over time.

Figure 3.3. A systems of glyphs created by mixing variations of stems with variations of
tops. From left to right, we have the base, junction, amino acid, restriction enzyme recognition
site, ribonuclease site, protease site, rna stability element, and protein stability element. All these
parts can be uniquely represented in SBOLDesigner. Each part is well specified in the
SBOL visual standard through its pictorial glyph and Sequence Ontology role.

Some additional SBOL Visual 2 changes include adding dotted lines for hierarchically

defined composite parts and support for functional relationships between parts. Many

new glyphs have also been added to address the semantic shortcomings of the original

glyphs. For example, the glyph that used to represent the generic engineered region has

been replaced by three glyphs that represent unspecified, composite, and no glyph assigned

parts. This specific change removes ambiguity in the original SBOL Visual specification by

defining different semantics for different usages of the box glyph.

Examples of the new distinction between unspecified, no glyph assigned, and composite

parts are also shown in Figure 3.4 and Figure 3.5. Figure 3.4 shows how the no glyph

assigned glyph can be used to explicitly say a circuit contains parts that have no glyph

assigned. Due to the GenBank format, many GenBank files that are converted to SBOL

22

end up having parts with no glyph assigned. In general, there have always been loosely

specified genetic circuits with no glyph assigned parts. Prior to SBOL Visual 2, all of these

parts were simply overloaded as engineered regions. Not only was this not informative

for the users of SBOLDesigner, it also caused confusion where there were both engineered

regions, composites, and actual parts with no glyph assigned.

Figure 3.4. Many imported GenBank files contain annotations that specify parts with no
assigned glyph. To more explicitly differentiate between engineered regions, hierarchically
defined parts, and unspecified parts, these no glyph assigned glyphs are used. Prior to
this change, each part would have looked like a box regardless of whether it is actually
an engineered region or a hierarchically defined composite. The yellow warning overlay
further specifies that these parts do not have sequences associated with them.

Figure 3.5. A simple genetic device is shown. The second and fourth parts don’t have
specified roles, and are therefore marked with the unspecified glyph. There is actually
no role information in the SBOL file that encodes these parts. Also, the coding sequence
is defined hierarchically, as shown with the composite overlay beneath the glyph. This
overlay is expandable by selecting the coding sequence and clicking on the focus in button.
Before, all three of these parts would have been shown as a plain box in SBOLDesigner.

23

Figure 3.5 shows another example genetic circuit that is more explicitly rendered using

the composite and unspecified glyphs. Before, all three variations of these glyphs would

have shown up as plain boxes. Now, the unspecified parts are marked as such, and the

composite coding sequence has a composite overlay underneath the glyph. This overlay is

expandable by selecting the coding sequence and clicking on the focus in button. It is also

important to note that an unspecified part is truly unspecified, and occurs whenever there

is no role information in the actual SBOL file. As defined within the SBOL data model

specification, this kind of unspecified ComponentDefinition is against best practices.

Supporting the semantics of each glyph required lots modification of the main canvas

in SBOLDesigner. For example, composite parts, or parts composed hierarchically using

other parts, are represented with a dotted line underneath the glyph that implies substruc-

ture. This dotted line is how SBOLDesigner represents the omitted detail glyph. By clicking

on the composite part, the user can zoom into the part and view the substructure. This

is effectively viewing the detail that is omitted in the omitted detail glyph. Also, parts

without sequence information have a yellow warning icon below the glyph. Examples of

these overlays are shown in Figure 3.4 and Figure 3.5 as well. These overlays help the user

visually reason about the genetic circuit’s parts outside of what role each part has. The

overlays can also be extended in the future to support further such notifications such as

functional detail and sequence length.

CHAPTER 4

COMBINATORIAL DESIGN

4.1 Background
Combinatorial designs are a natural way to express experiments on genetic circuits

where variants of many parts are simultaneously created and then tested. Specifically, each

part can have many variants, and each variant of each part can show up in an instance of

the generated genetic circuit. This results in exponential growth in terms of the number

of possible generated instances. Figure 4.1 shows this. As a new part is added, all of the

previous parts, their variants, and all the generated instances have to choose which of the

new variants to use in the design.

Figure 4.1. An example combinatorial design is shown. The promoters are chosen from
a set of glucose sensitive promoters, the ribosome binding site comes from the Elowitz
collection, the coding sequence can either be green fluorescent protein or yellow florescent
protein, and the terminator can be one of a bunch of double terminators. To represent
this in SBOL, a template part is created for each part, and variants are connected to
each template part. SBOLDesigner supports the creation and design space exploration
of combinatorial designs.

It can therefore be very inefficient to represent the design space by simply serializing

all the different possibilities. To this end, SBOL supports combinatorial design by allowing

each part to be tagged with variants, what possibilities can occur, and what strategies to

25

use while creating the generated instances. These new additions to the SBOL data model

were introduced in SBOL 2.2.0 [2].

An emphasis has been put on making the new features conceptually easy to under-

stand. This also gives more tools in the SBOL workflow an opportunity for adopting

combinatorial design. As combinatorial design becomes an increasingly useful design

strategy, support for these objects in tools such as SBOLDesigner and libraries such as

libSBOLj will become increasingly valuable as well.

4.2 Implementation
4.2.1 Data Model

A UML diagram for the combinatorial design object that has been added to the SBOL

standard is shown in Figure 4.2 and Figure 4.3. Instead of having a separate design for

each variant, a single combinatorial derivation is created. These combinatorial derivations

represent a single combinatorial design. The template part is a ComponentDefinition that

contains hierarchically defined child parts, and each child part can be associated with a

variable component. The variable components are linked to that specific child part through

the variable field. The variable field is a Component and refers to another ComponentDef-

inition. This allows the child part to specify many variant parts without unnecessarily

duplicating other design information.

The combinational derivation also has a strategy property. This can either be enumerate

or sample. Enumerate specifies that all possible combinations of the variants should be

derived, and sample specifies that only a selected subset of all possible combinations should

be derived. Variable components also have an operator property that specifies exactly how

to group the collected variants that the variable component refers to. The operator can

either be one, zero or one, one or more, or zero or more. Variants are able to be specified

and collected using a variety of ways. Specifically, variants can be specified as a set

of individual ComponentDefinitions, a set of Collections containing ComponentDefinitions,

and hierarchically nested CombinatorialDerivations. Any grouping of the collected variants

allowed by the operator can replaced the ComponentDefinition referred to by the Component

variable field in a generated instance of the CombinatorialDerivation that owns this variable

component.

26

Figure 4.2. A UML diagram of the combinatorial derivation object. Each combinatorial
derivation points to a specific part through its template reference and specifies the variable
components that that part has through its variableComponents reference. As with all
SBOL data model top level objects, it inherits properties such as a displayId, description,
and version, and can exist independently of other SBOL data model objects. The variable
components are not top level object, and therefore are owned by and live within the top
level combinatorial derivation. Each combinatorial derivation also has a strategy field of
type uniform resource identifier that specifies how the combinatorial derivation should be
expanded.

Figure 4.3. A UML diagram of the variable component object. Each variable component
points to a specific part and specifies the variant parts that could replace the component.
These variants could be specified as plain references to Component Definitions, references
to collections of Component Definitions, and other nested Combinatorial Derivations. The
operator of the variable component is a uniform resource identifier that specifies how the
collected variants can be grouped together. The variable reference points to a Component
that refers to a ComponentDefinition that can be replaced by any one of the possible
groupings.

27

4.2.2 User Interface

The interface for the combinatorial design editor as implemented within SBOLDesigner

is shown in Figure 4.4. When a part is combinatorially defined, there is an overlay under-

neath the part that makes it clear to the user that that part has variants. Viewing the

variants is done through the variant editor. The variant editor shows all the attached

variants, fields that can be set regarding this part’s variants, and ways to add new variants

or add new combinatorial derivations. There is also a way to add a new combinatorial

derivation. This means a single genetic circuit design can have multiple combinatorial

derivations that can each be independently expanded. The variant editor is connected

to the template promoter on the canvas through a variable component reference. This

variable component is referenced to by a parent combinatorial derivation that references

the promoter’s parent as the template part. The variable field of the variable component

specifies the part that will be replaced by a grouping of the collected variants.

Figure 4.4. SBOLDesigner’s combinatorial design interface is shown. The variant editor
(leftmost window) enables the user to quickly add and remove variants of the promoter
from a variety of sources. It also allows the variable component’s operator and combina-
torial derivation’s strategy, displayId, name, and description to be set. Variants can then
be added, which pulls up an import dialog (rightmost window) that allows for parts to be
imported from other files on disk, various SynBioHub instances, and a collection of built
in parts. Since the promoter shown on the main canvas (center window) has combinatorial
design variants, SBOLDesigner shows a grid overlay underneath the promoter glyph.

28

Design space exploration of the combinatorial design is also supported within SBOLD-

esigner. Depending on whether the enumerate or sample field was selected, an SBOL file

will be generated that contains an enumeration of all possible designs or a sampling of

a single generated design. Figure 4.5 shows an opened SBOL file with many generated

instances. The algorithm that implemented enumeration of combinatorial designs is de-

scribed below. The result of SBOLDesigner’s combinatorial design implementation is that

a small and simple genetic circuit with template parts associated with variants can result

in an enumerated library of hundreds or thousands of generated instances. The complex-

ity of managing the internal SBOL data model scaffolding, enumeration algorithm, and

combinatorial design creation is abstracted away and hidden from the user.

4.2.3 Algorithm

The combinatorial design enumeration algorithm is shown in Algorithm 1. The main

driving function is enumerate, which takes in a combinatorial derivation and returns a set

of all of the generated instances. On a high level, this function goes through each of the

variable components in the derivation one at a time, and takes all the variant possibilities

from this variable component and mixes it in with the current partially explored design

space. This can be thought of as multiplying all the current possibilities by all the new

possible variants within this variable component.

Specifically, a set of component definitions call parents is created. This represents all the

possible generated instances. As we go through each variable component referenced by

the combinatorial derivation, a new empty set of component definitions is created called

newParents. The, for each parent in the original parents set, and for each group of children

specified by the variable component, a newParent is created by copying the original parent

and adding this group of children. Finally, the newParent is added to newParents and

parents is replaced with newParents for the variable component. In the end, parents will

contain all the possible generated instances from this enumeration.

Two important details are how the variant are collected together from each variable

component, and how the collected variants are grouped together to form the possible

sets of children. The collectVariants function takes in a variable component and returns

all of the referenced component definitions as a set. This includes the singly specified

29

Figure 4.5. A eukaryotic transcriptional unit genetic circuit is defined combinatorially and
enumerated. In this specific case, the enumeration resulted in 21 generated instances.
It is much easier to define and reason about the base genetic circuit as a combinatorial
design than as a collection of all the possible generated instances. How many generated
instances from enumeration exist is purely a function of the combinatorial derivation and
variable components. Because of the exponential nature of specifying more variants and
more template parts, enumerated combinatorial designs can grow to many more parts.

30

component definition variants, aggregated component definition collections, and nested

combinatorial derivations. It is important to note that when variants are specified using a

nested combinatorial derivation, this combinatorial derivation must first be recursively

enumerated over in order to get its possible generated instances. The group function

simply takes all the variants that were previously collected as well as the operator this

variable component specified. Depending on whether the operator specifies to group

the variants in groups of ONE, ZEROORONE, ONEORMORE, or ZEROORMORE, the

algorithm returns a set of sets of these groupings. Finally, the addChildren function is

also important since it has to preserve the sequence constraints, ordering, and other rules

specified by the combinatorial design.

Algorithm 1 Enumerate Combinatorial Design
1: procedure ENUMERATE(DERIVATION)
2: parents← {originalTemplate}
3: for vc : derivation.variableComponents do
4: newParents← {}
5: for parent : parents do
6: for children : group(collectVariants(vc), vc.operator) do
7: newParent← copy(parent)
8: addChildren(newParent, children)
9: newParents.add(newParent)

10: parents← newParents
11: return parents
12:
13: procedure COLLECTVARIANTS(VARIABLECOMPONENT)
14: variants← {}
15: variants.addAll(variableComponent.variants)
16: variants.addAll(variableComponent.variantCollections.variants)
17: variants.addAll(enumerate(variableComponent.variantDerivations)
18: return variants
19:
20: procedure GROUP(VARIANTS, OPERATOR)
21: if operator is ONE then return {a}, {b}, {c}
22: else if operator is ZEROORONE then return {}, {a}, {b}, {c}
23: else if operator is ONEORMORE then return {a}, {ab}, {abc}, ...
24: else if operator is ZEROORMORE then return {}, {a}, {ab}, {abc}, ...

31

4.3 Combinatorial Design Example
Figure 4.6 shows an example combinatorial design for a green fluorescent protein re-

porter circuit. As shown in the main canvas, the circuit is comprised of a promoter, ribosome

binding site, coding sequence, and terminator. The promoter and coding sequence are template

parts that can be swapped out for any of their variants. SBOLDesigner’s main canvas

indicates this through the three by three cube overlay underneath the respective glyphs.

The coding sequence’s variants are shown in the variant editor. There are three variants, and

each variant is a version of the green fluorescent protein. The ribosome binding site is an

Elowitz ribosome binding site, and the terminator is a composite double terminator as seen

from the composite overlay.

Different variations of this circuit can be generated depending on what promoter and

what coding sequence are chosen. However, they are all green fluorescent protein reporter

circuits since each coding sequence encodes a different variation of the green fluorescent pro-

tein. To represent all the variations of this circuit, the user would normally need to create

each generated instance independently. With combinatorial design, the user only needs to

create one genetic circuit using templates and variants, and the combinatorial enumeration

algorithm can handle the rest. After enumeration, each combination of promoter would be

mixed with each combination of coding sequence. Specifically, this kind of design space

exploration occurs since the enumeration strategy is specified on the combinatorial derivation

object and both of the variable components that reference the promoter and coding sequence

specify the one operator.

32

Figure 4.6. A combinatorial design of a green fluorescent protein reporter circuit is shown
in SBOLDesigner’s main canvas. The promoter and coding sequence are described using
combinatorial variants. The variants of the template green fluorescent protein coding
sequence are shown in the variant editor. After enumeration, each combination of promoter
and coding sequence will be generated using the same ribosome binding site and hierarchically
defined terminator.

CHAPTER 5

CONCLUSION

5.1 Summary
The ability to express these new kinds of constructs means a wider variety of designs

are able to be captured. The use of SBOLDesigner to create well-formed SBOL docu-

ments also helps the adoption of data standards in synthetic biology. Before, valuable

information about how a genetic circuit was specified was omitted due to not having

a straightforward method of encoding all the details other than Excel spreadsheets and

Word documents. This use of unstructured and non-machine interpretable data made

transcription of knowledge a mess and bookkeeping a chore. Now, with automated tooling

and biologist friendly user interfaces, even some of the most daunting and most advanced

synthetic biology techniques can be captured with the click of a button. Ease of use spurs

adoption, especially if the intended users traditionally are not subscribers to computer

aided design workflows. However, the rewards for adopting these new synthetic biology

workflows are great.

Additionally, support for SBOL 2, combinatorial design, and SBOL Visual 2 helps ad-

dresses the problem of non-reproducible science in synthetic biology. With the adoption of

the SBOL workflow using SBOLDesigner and its new features, data published in papers

will be well organized, and biologists will be able to easily search through and find the

information they need to rapidly iterate and validate their new and novel designs.

Using SBOLDesigner, a critical missing part of the synthetic biology workflow centered

around SBOL has been addressed. Experimental biologists are now able to more com-

pletely represent their design methodology in these tools, and visualizations of genetic cir-

cuits are more clear. These additions to SBOLDesigner’s ability to express genetic circuits

allows for a easier path towards SBOL adoption. Increased SBOL adoption in turn drives

34

experimental biologists towards the end goal of enhancing reproducibility in synthetic

biology. The benefits of reproducibility include higher quality papers, more trustworthy

results and conclusions, and faster accumulation of synthetic biology’s body of knowledge.

5.2 Future Work
5.2.1 Interactions

The SBOL community is currently limited in its ability to express interactions. The

SBOL data model supports parts interacting with other parts through ModuleDefinitions,

FunctionalComponents, and MapsTos, but there is currently no tool that specializes in encod-

ing and creating this information in an easy and user friendly manner. Figure 1.3 shows

an example genetic circuit with parts interacting with other small molecules.

To support interactions within SBOLDesigner, the main canvas would need to be able

to understand the functional side of the SBOL data model, draw interaction arcs, draw

small molecules, and present the user with a series of dialogs that controls the data model.

This presents a major user interface challenge. However, SBOLDesigner’s main canvas has

already been extended with overlays, so initial proofs of concepts have been completed.

5.2.2 Computer Aided Manufacturing

Computer aided manufacturing (CAM) tools in synthetic biology are used to prepare

DNA sequences for fabrication and manufacturing. In short, CAM tools are used to pre-

pare for the building of the systems designed using CAD tools. The Build OptimizatiOn

Software Tools (BOOST) service provides an API for common CAM sequence operations

such as reverse translation, codon juggling, and synthesis constraint verification [16]. It

would be beneficial to integrate SBOLDesigner with BOOST so a user could simply click

on a ”prepare for synthesis” button and run CAM operations on their completed genetic

circuit design. BOOST would return with a manufacturing optimized SBOL file which

SBOLDesigner could present to the user.

5.2.3 Plugin Support

SBOLDesigner is very useful both standalone and embedded in a larger tool. For exam-

ple, SBOLDesigner is currently embedded within iBioSim, resulting in a robust platform

for genetic circuit design, modeling, and simulation. iBioSim provides the simulation and

35

modeling capabilities, and SBOLDesigner provides a simple and intuitive way to construct

the structural portions of genetic circuits. Embedding SBOLDesigner as a plugin within

other suites of tools such as Geneious or Benchling would be similarly useful.

5.2.4 Better Search

One of the biggest pain points in genetic circuit design is finding the right parts. Most

part repositories are not well curated and/or consist of lackluster quality user submitted

parts. Data mining and data infrastructure techniques can be used to extract or filter out

parts to provide a better part selection process. While SBOLDesigner currently has great

integrations with SynBioHub, it is only really useful when the user already knows exactly

what part they are looking for. Also, the search query results in a somewhat randomly

ordered list of parts. To improve this, parts in SynBioHub can be merged to reduce the

number of useless or low quality parts, resulting cleaned and normalized parts could be

ranked to give a better order of usefulness based on popularity, and the backend datastore

could be improved so that queries evaluate quicker.

REFERENCES

[1] J. Beal, R. Cox, R. Grunberg, J. McLaughlin, T. Nguyen, B. Bartley, M. Bis-

sell, K. Choi, K. Clancy, C. Macklin, C. Madsen, G. Misirli, E. Oberortner,

M. Pocock, N. Roehner, M. Samineni, M. Zhang, Z. Zhang, Z. Zundel, J. Gennari,

C. Myers, H. Sauro, and A. Wipat, Synthetic Biology Open Language (SBOL) Version
2.1.0, Journal of Int. Bioinfo., (2016).

[2] R. S. Cox, C. Madsen, J. A. McLaughlin, T. Nguyen, N. Roehner, B. Bartley,

J. Beal, M. Bissell, K. Choi, K. Clancy, et al., Synthetic biology open language (sbol)
version 2.2. 0, Journal of Integrative Bioinformatics, (2018).

[3] F. Crick, Central Dogma of Molecular Biology, Nature, 227 (1970), pp. 561–563.

[4] K. Eilbeck, S. Lewis, C. Mungall, M. Yandell, L. Stein, R. Durbin, and M. Ash-

burner, The Sequence Ontology: A Tool for the Unification of Genome Annotations,
Genome Biology, 6 (2005), p. 1.

[5] D. Endy, Foundations for Engineering Biology, Nature, 438 (2005), pp. 449–453.

[6] M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn, C. A.

Rodriguez, N. Roehner, M. L. Wilson, L. Adam, J. C. Anderson, B. A. Bartley,

J. Beal, D. Chandran, J. Chen, D. Densmore, D. Endy, R. Gruenberg, J. Hallinan,

N. J. Hillson, J. D. Johnson, A. Kuchinsky, M. Lux, G. Misirli, J. Peccoud, H. A.

Plahar, E. Sirin, G.-B. Stan, A. Villalobos, A. Wipat, J. H. Gennari, C. J. Myers,

and H. M. Sauro, The Synthetic Biology Open Language (SBOL) Provides a Community
Standard for Communicating Designs in Synthetic Biology, Nature Biotechnology, 32
(2014), pp. 545–550.

[7] T. S. Gardner, C. R. Cantor, and J. J. Collins, Construction of a Genetic Toggle
Switch in Escherichia Coli, Nature, 403 (2000), pp. 339–342.

[8] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D. Keasling,
Design, Implementation and Practice of JBEI-ICE: an Open Source Biological Part Registry
Platform and Tools, Nucleic Acids Res., 40 (doi: 10.1093/nar/gks531, 2012).

[9] N. Hillson, H. Plahar, J. Beal, and R. Prithviraj, Improving synthetic biology
communication: Recommended practices for visual depiction and digital submission of genetic
designs, ACS synthetic biology, 5 (2016), pp. 449–451.

[10] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, , the rest

of the SBML Forum:, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden,

A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin,

W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L.

Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio,

P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen,

37

T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,

K. Takahashi, M. Tomita, J. Wagner, and J. Wang, The Systems Biology Markup
Language (SBML): a medium for representation and exchange of biochemical network models,
Bioinformatics, 19 (2003), pp. 524–531.

[11] Y. Liu, Y. Zeng, L. Liu, C. Zhuang, X. Fu, W. Huang, and Z. Cai, Synthesizing
and Gate Genetic Circuits Based on CRISPR-Cas9 for Identification of Bladder Cancer Cells,
Nature Communications, 5 (2014), p. 5393.

[12] C. Madsen, J. A. McLaughlin, G. Mısırlı, M. Pocock, K. Flanagan, J. Hallinan,

and A. Wipat, The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic
Biology Designs, ACS Synthetic Biology, (2016).

[13] C. Madsen, C. Myers, T. Patterson, N. Roehner, J. Stevens, and C. Winstead,
Design and Test of Genetic Circuits Using iBioSim, IEEE Design and Test of Computers,
29 (2012), pp. 32–39.

[14] G. Misirli, A. Wipat, J. Mullen, K. James, M. Pocock, W. Smith, N. Allenby,

and J. S. Hallinan, Bacillondex: An Integrated Data Resource for Systems and Synthetic
Biology, Journal of Integrative Bioinformatics (JIB), 10 (2013), pp. 103–116.

[15] T. Nguyen, N. Roehner, Z. Zundel, and C. J. Myers, A converter from the systems
biology markup language to the synthetic biology open language, ACS synthetic biology, 5
(2016), pp. 479–486.

[16] E. Oberortner, J.-F. Cheng, N. J. Hillson, and S. Deutsch, Streamlining the design-
to-build transition with build-optimization software tools, ACS synthetic biology, 6 (2016),
pp. 485–496.

[17] C. Olsen, K. Qaadri, H. Shearman, and H. Miller, Synthetic Biology Open Language
Designer, 2014 International Workshop on Bio-Design Automation, (2014), pp. 60–61.

[18] J. Quinn, R. Cox, A. Adler, J. Beal, S. Bhatia, Y. Cai, J. Chen, K. Clancy,

M. Galdzicki, N. Hillson, N. Novre, A. Maheshwari, J. Alastair, C. Myers,

P. Umesh, M. Pocock, C. Rodriguez, L. Soldatova, G. Stan, N. Swainston,

A. Wipat, and H. Sauro, SBOL Visual: A Graphical Language for Genetic Designs, PLOS
Biology, (2015).

[19] N. Roehner, J. Beal, K. Clancy, B. Bartley, G. Misirli, R. Grunberg,

E. Oberortner, M. Pocock, M. Bissell, C. Madsen, T. Nguyen, M. Zhang,

Z. Zhang, Z. Zundel, D. Densmore, J. Gennari, A. Wipat, H. Sauro, and C. My-

ers, Sharing Structure and Function in Biological Design with SBOL 2.0, ACS Synthetic
Biology, 5 (2016), pp. 498–506.

[20] N. Roehner and C. Myers, A methodology to annotate systems biology markup language
models with the synthetic biology open language, ACS synthetic biology, 3 (2013), pp. 57–
66.

[21] M. Zhang, J. A. McLaughlin, A. Wipat, and C. J. Myers, SBOLDesigner 2: An
Intuitive Tool for Structural Genetic Design, ACS Synthetic Biology, (2017).

38

[22] Z. Zhang, T. Nguyen, N. Roehner, G. Misirli, M. Pocock, E. Oberortner, M. Sami-

neni, Z. Zundel, J. Beal, K. Clancy, A. Wipat, and C. Myers, libsbolj 2.0: A Java
Library to Support SBOL 2.0, IEEE Life Sciences Letters, 1 (2015), pp. 34–37.

