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ABSTRACT

Advancements in the systems and synthetic biology fields have proved that biology can

be engineered. The development of computer-aided design (CAD) tools has contributed

to advancements in these fields. Mathematical modeling and simulation methods are

important assets of CAD tools that are frequently applied to the systems and synthetic

biology fields. Modeling and simulation methods are used to understand or predict the

behavior of a biological system being studied. However, many modeling efforts in those

fields face a reproducibility problem, where many published models are not reproducible.

In order to address such issue, standards have been created for the representation of

biological models. A major advantage of standards is that they enable model reuse and

sharing. The leading standard representation of biological systems is the Systems Biology

Markup Language (SBML).

The SBML standard is used to describe how biological processes affect and modify

biological entities in a system. Such standard has been widely used to describe biochemical

networks, cell signaling path, and gene regulation, among others. Unfortunately, not

all models use SBML since there are many biological systems that SBML is incapable

of representing efficiently, such as heterogeneous cellular populations. This dissertation

explores extensions to SBML for the efficient representation of large heterogeneous cellular

populations and simulation methods that can simulate such complex models efficiently.

Since cellular populations are inherently hierarchical, this dissertation proposes an efficient

simulator for hierarchical SBML models. Since the hierarchical structure is preserved

in the proposed simulator, the hierarchical simulator is a perfect fit for handling hybrid

models. However, no one has explored the coupling of different modeling formalisms

within the same SBML model. Hence, this dissertation proposes a methodology that can

be used to describe hybrid models. Such methodology is demonstrated by using dynamic

flux balance analysis (DFBA) models as examples and such models can be successfully

exchanged between tools. This dissertation also discusses extensions to the SBML data



model to support regular structures in the form of arrays. Arrays is well-suited for pop-

ulation models since population models use large regular structures. Another application

of arrays is microsimulation of disease models, where a population of individuals with

unique characteristics need to be model. With the proposed arrays extension, simulators

need to scale in order to handle the increase complexity that the arrays extension intro-

duces. Hence, this dissertation also proposes an efficient simulation method that takes

advantages of arrays.
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CHAPTER 1

INTRODUCTION

Humans are yet to fully comprehend biological systems due to their complexity. Sys-

tems biology is a field that studies how biological components interact with each other

at the systems level to create more complex functions [1]. In order to do so, scientists

develop the necessary technologies for experimentation and computation to gain further

understanding of biology. Using computational approaches, scientists make discoveries

by collecting data and applying data-driven techniques to analyze the collected data to

form hypotheses on how the system works or using model-based approaches to make

predictions on how the system behaves [2].

While systems biology tries to understand biology in its natural state, there is another

field in biology called synthetic biology. The synthetic biology field builds upon the systems

biology and genetic engineering fields by using engineering principles to develop novel

biological designs [3, 4]. Advancements of synthetic biology have contributed to a sub-

stantial impact in the biotechnology industry [5] and this trend is likely to continue. As

an example, synthetic biology has inspired the creation of novel products, such as wine

without grapes by Ava Winery, plant-based burgers by Impossible Foods, and cow milk

without cows by Perfect Day, just to name a few. The most exciting part of synthetic

biology is that these products are just a fraction of the applications of the field. Synthetic

biology has the potential of a much greater impact in society and be used for natural

products [6, 7], therapeutics [8, 9], agriculture [10, 11], and biofuels [5, 12], among others.

One of the goals of synthetic biology is the systematic design of gene regulatory net-

works, also known as genetic circuits. The idea is to perform computation within a living

cell [13] as shown in Figure 1.1 on the following page. Namely, cells have input sensors

and use internal logic circuits to control the dynamic expression of output actuators. Since

electronic design automation (EDA) software tools have had success in the construction of
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Cell

Sensors

Actuators

Figure 1.1: Genetic circuits are used to perform computations within a cell. The input of
the circuit, include chemicals, light, heat, and others. Internal logic circuits are used to
control the output of the circuit, where the output can be reporters, cell growth, chemicals,
and others.

complex electronic circuits, the synthetic biology field has introduced the development of

genetic design automation (GDA) tools [14], sometimes also referred as bio-design automation

(BDA) [15], to enable the design-build-test cycle of genetic circuit design in a more reli-

able fashion. A multitude of GDA tools have been developed to assist in genetic circuit

design [16–23] for different purposes, such as design, visualization, modeling, and anal-

ysis. While synthetic biology has had many positive outcomes, building genetic circuits

accurately and efficiently is challenging.

In systems and synthetic biology, mathematical models and dynamic simulation are

widely used to study the behavior of biological systems. Mathematical models have been

successfully used in both fields for the analysis of complex systems. In systems biology, an

example is the whole-cell model of the human pathogen called Mycoplasma genitalium [24].

This model captures all of the genes and molecular processes of this bacteria and it has

been validated using experimental data. These facts made this project an important break-

through in the systems biology field. In synthetic biology, many scientists are interested in

cell-cell communication of cellular populations [25, 26], and such population models are

highly complex because they are often large scale and they a large number of components

in the system that interact with each other.

As mathematical models become more complex, simulation methods need to scale in

order to address such complexity. Throughout the years, many simulation tools have
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been developed for these purposes. For example, Stochastic Pi Machine (SPiM) [27]

is a language that is used to design and simulate biological processes. The language is

based on pi-calculus, which belongs to the family of process calculus, a formalism used

to express concurrent systems. BioNetGen is a tool that can be used to simulate large

complex models based on rule-based systems [28]. The gro tool [19] can be used to express

and simulate the behavior of cellular populations. CompuCell3D [29] is another tool for

simulating large-scale models of cellular populations that supports the representation of

several dynamic processes, such as cell growth, division, and diffusion among others.

Although several modeling and simulation tools have been developed, many of them

use tool-specific data representations that other tools are not capable of interpreting. Some

tools, such as the BioNetGen tool can be exported into a standard representation, but the

generated model suffers from a large state space inherited from the modeled pathways

and loses all the benefits of rule-based modeling.

The lack of tool interoperability is problematic since it prevents different groups from

collaborating with each other. In order to address this issue, many tools have adopted the

use of data standards. Data standards offer many benefits. For instance, they allow model

exchange and model reuse, which are critical for building complex models and designs.

In addition, data standards allow for research reproducibility, which is key for model and

design validation and for sharing knowledge.

The leading standard representation of models in systems and synthetic biology is the

Systems Biology Markup Language (SBML) [30]. There are many SBML-compliant simulation

tools. This includes iBioSim [31–33], a GDA tool for genetic circuit design, COPASI [34],

a tool for simulation and analysis of biochemical networks, libRoadRunner [35], a high-

performance simulation engine, SBMLSimulator [36], a Java simulator that is built on top

of the Systems Biology Simulation Core Library [37], BioUML [38], a Java platform for

biomedical research, and many others.

Although these tools are efficient for the analysis of SBML core models of chemical

reaction networks, these tools do not scale well for more complex models, such as cellular

populations. Cellular populations have regular structures that are best represented using

hierarchy and arrays. However, tools flatten out such constructs. Not only the flatten-

ing procedure is computationally intensive, but also the model loses important structural
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information.

1.1 Research Reproducibility
Over the past years, concern about research reproducibility has risen in multiple fields

and such concern is justifiable. A recent Nature survey has shown about 70% of researchers

from a pool of 1,576 individuals have tried and failed to reproduce a published exper-

iment [39]. More astonishing is the fact that more than half of these researchers have

unsuccessfully attempted to reproduce their own experiment. Irreproducible research is a

problem encountered in many fields, such as computer science [40], economics [41], and

psychology [42]. The outcome of the survey is alarming. Nonetheless, the fact that there

exists many research experiments that are not reproducible is not a surprise. After all,

the definition of the term reproducibility is non-standard and it is often misinterpreted by

replicability or repeatability.

According to [43], reproducibility should be defined as three distinct terms: methods

reproducibility, results reproducibility, and inferential reproducibility. Methods reproducibil-

ity refers to the application of the same set of procedures, dataset, and tools when repeating

an experiment. Results reproducibility refers to obtaining the same results when following

the same methodologies. Finally, inferential reproducibility refers to an independent study

or reanalysis of the original study that results in qualitatively the same results. Data

standards help with all three reproducibility facets. Reproducibility is achieved because

standards allow the reuse of the same models in the same set of tools and procedures of

an experiment. Models should give the same results quantitatively when analyzed in dif-

ferent tools. This is due to well-defined modeling semantics in well-established standards.

Well-defined semantics provides anyone the ability to interpret a model unambiguously,

which allows anyone to apply the same methodologies of an experiment described by a

standard without reusing the model represented in the standard.

In systems and synthetic biology, in particular, the use of data standards, standard-

compliant software tools, and data repositories for sharing published models and designs

is critical [44–46]. Unfortunately, many researchers do not see the benefits of reproducibil-

ity [47]. In the modeling community, many researchers prefer publishing their own in-

terpretation of their results without sharing their models [48]. Luckily, there has been an
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increase in efforts towards reproducibility in the systems and synthetic biology fields with

the adoption of standards [30, 49–51].

1.2 Modeling and Analysis
Mathematical models of genetic circuits and other biological designs have played an

important role in biology, since they allow scientists to perform numerical analysis to gain

intuitions of a design that is being studied [2]. Several modeling formalisms have been

used to represent biological designs, such as chemical kinetics [52], Boolean networks [53],

Bayesian methods [54, 55], constraint-based methods [56], rule-based methods [28], and

many others. Chemical kinetics modeling, in particular, is one of the most widely used.

This type of modeling describes how molecules change in terms of rates of chemical re-

actions. The rates can be realized as a set of Ordinary Differential Equations (ODEs) using

the Law of Mass Action. ODEs are used to retrieve the time-course data in a deterministic

fashion. Another way to reason about biological designs is to use stochastic simulation

since biological processes are inherently noisy. Stochastic simulation can capture noise

effects. The most widely used simulation method is Gillespie’s Stochastic Simulation Algo-

rithm (SSA) direct method [57].

A major problem of SSA is that it is computationally intensive. Hence, many variants of

the algorithm have been proposed, such as tau leaping [58, 59], composition/rejection [60],

and next reaction method [61]. Additionally, there are reaction-based abstraction methods

to simplify the models and speed up simulation [62].

The SBML standard is quite expressive and certainly not limited to chemical reaction

networks. The standard has been used for cell signaling pathways, Boolean models, and

petri-nets, among many other applications. A major feature of SBML is the support for

hierarchical models [63]. Hierarchy is an important engineering concept in many fields.

For example, electrical and computer engineering use hierarchy to design electronics cir-

cuits at different levels (e.g. transistor, gate, and module) and software engineering use the

principle of separation of concerns. Hierarchy helps with abstraction, which is critical for

complex systems like the ones found in biology. Biological models can be realized at the

molecular, cell, population, tissue, organ levels, and so on. Determining the correct level

of abstraction is key in modeling.
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In synthetic biology, it is reasonable to use a bottom-up design strategy when design-

ing genetic circuits since designs are created from individual parts and then designs are

built off from existing designs of these parts. Several designs have been constructed in

a single-cell [64, 65]. However, there are applications that require a population of cells,

such as biomedical applications [66, 67]. Modeling cellular populations hierarchically is

the most straightforward way to do so, where a top-level model is composed of many

sub-models, each representing a cell as shown in Figure 1.2 on the current page. This is

an example of cell-cell communication for population-based models. In this case, Cell A

and Cell B can be modeled separately and connected in a top-level model. While SBML

can express such models, existing tools flattens out the hierarchy. Not only is flattening

a computationally expensive, but also the model loses important structural information.

A better solution is to implement a hierarchical simulation method that takes advantage

of hierarchy for better scaling up of simulation. A hierarchical simulation method also

allows the simulation of different formalisms using hybrid methods. This is particularly

important because different applications are better suited for different formalisms.

Although SBML is an expressive modeling language, there are many limitations. For

instance, SBML cannot represent regular structures efficiently. Such a limitation makes it

difficult to express population-based models efficiently and even makes complex models

Logic Circuit T

Cell A

Logic Circuit T

Cell B

Figure 1.2: This is an example of how hierarchical modeling can be used for biological
systems. Hierarchical models are helpful to encode population models. In this example,
there are two different cells that communicate via a molecule: Cell A and Cell B. Each cell
can be modeled separately and put together in a top-level model.
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infeasible to represent such as the whole-cell model. There were efforts to encode the

model in SBML [68] but such encoding proved to be nearly impossible for several reasons.

For example, different parts of the model are encoded using different formalisms and some

parts require arrays of hundreds of thousands of elements, such as for representing the

genome of the Mycoplasma genitalium bacteria.

A major drawback of standards is the fact that data standards limit flexibility of design

and model representation since standards backed up by a community need consensus be-

fore introducing new changes. Unfortunately, this slows down progress of many research

groups, and it is a major factor that discourages them to adopt standards. Nonetheless, the

benefits of standards and standard-compliant tools far-exceeds the drawbacks. SBML, in

particular, is constantly evolving and new extensions can be proposed if the community

finds them beneficial, but in order for an extension to be officially part of the standard, it

is necessary to have tools using the extensions.

1.3 Contributions
The main contributions of this dissertation are divided into two groups: building tool

infrastructure and making use of it. Since hierarchy is a good modeling practice and

many researchers rely on it, the first contribution is a hierarchical simulator for SBML

models. Unlike existing simulation tools that flattens out the hierarchy, the hierarchical

simulator skips the expensive flattening routine. The second contribution is a proposed

extension to the SBML modeling standard to support regular structures using arrays.

This dissertation also presents an efficient simulation method to support the arrays in

SBML by avoiding arrays flattening and exploiting the array structure for representing the

state variable. This dissertation presents a simulation algorithm that supports the arrays

extension and simulates it efficiently. The third contribution is a reproducible mechanism

to encode hybrid models in SBML. In order to simulate such models, the hierarchical

simulation method is necessary because different formalisms need to be decoupled from

each other during simulation. Lastly, use-cases of SBML compliant tools for population

modeling. Namely, arrays in SBML are used for encoding disease models. Without arrays,

the representation of disease models at the individual level is impossible.

In summary, the main contributions of this dissertation are:
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• an efficient hierarchical simulation for SBML hierarchical models;

• an array extension to SBML and an efficient simulator method that can analyze

arrays structures more efficiently;

• an SBML-compliant hybrid simulator;

• exploration of SBML for population-based models.

The proposed research work has been integrated in iBioSim version 3. This tool is

freely available for download at: http://www.async.ece.utah.edu/iBioSim/.

1.4 Dissertation Outline
This dissertation is organized as follows. Before discussing the contributions of this

dissertation, Chapter 2 provides a background on genetic circuit design, which includes

information about genetic circuits that are necessary to understand the later chapters. In

addition, this chapter explains how genetic circuits are modeled, and how such models

can be simulated. This chapter also provides an overview about research reproducibility

and how standards are used towards reproducibility. Lastly, a high-level overview of the

iBioSim tool, which is the tool where the main contributions of this dissertation have been

integrated.

Chapter 3 discusses the hierarchical stochastic simulation algorithm. First, it discusses

the algorithm and shows how the algorithm works with an example. Then, it compares

the efficiency of the hierarchical simulation method compared to a flattening methodology.

Chapter 4 discusses the proposed arrays extension to SBML. This includes an overview

on how the data model is modified to support arrays, a simulation algorithm for SBML

models that use arrays, and an example. The efficiency of the arrays simulation is com-

pared to a flattening methodology.

Chapter 5 discusses the encoding of hybrid models in SBML. By extending the hier-

archical simulator infrastructure, the simulation of hybrid models is enabled. While the

encoding works for any arbitrary modeling formalism, the hierarchical simulator only

supports stochastic models coupled with constraint-based models and ODE-based models

coupled with constraint-based models. This proposed encoding is demonstrated to be

exchangeable between two tools as proof-of-concept.
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Chapter 6 describes some use-cases of this work. First, this chapter shows an appli-

cation for SBML arrays by using the extension for the encoding of disease models where

microsimulation is enabled by the arrays simulator. This chapter also demonstrates how

SBML can be used in a tool workflow for population-based models of genetic circuits for

communication systems.

Finally, Chapter 7 concludes this dissertation with a summary of the accomplishments

of this work and potential future directions of this research.



CHAPTER 2

BACKGROUND

In this chapter, some concepts are explained to better understand the contributions of

this dissertation. Section 2.1 describes genetic circuits as they are used in examples in the

following chapters. Section 2.2 discusses different modeling formalisms used to describe

biological systems. Section 2.3 describes analysis methods for analyzing biological models.

Section 2.4 discusses data standards in systems and synthetic biology. Finally, Section 2.5

describes the iBioSim tool, which is the where the main contributions of this dissertation

have been integrated.

2.1 Genetic Circuits
All organisms are made up of cells. Some organisms are composed of a single cell

(e.g. bacteria) and some are composed of many cells (e.g. humans). Within each cell,

a deoxyribonucleic acid (DNA) molecule includes coding sequences (known as genes) that

provide instructions on how to construct proteins. Proteins are macromolecules made from

chains of amino acids that serve many important functions in all organisms. An example

of a DNA molecule is shown in Figure 2.1 on this page, which shows the necessary parts

for coding a ribonucleic acid (RNA) molecule and the synthesis of RNA to protein. A DNA

T
Pin rbs cds term

Figure 2.1: This is a representation of a transcriptional unit. A transcriptional unit typi-
cally contains a promoter (Pin), ribosome binding site (rbs), coding sequence (cds), and a
terminator (term).
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sequence with parts necessary for protein synthesis is known as a transcriptional unit.

A high-level description on how genetic circuits operate is shown in Figure 2.2 on the

next page. The first step to understand how genetic circuits work is to know how protein

synthesis work. The process of protein synthesis is shown in Figure 2.2a on the following

page. Protein synthesis begins with a process known as transcription. In a cell, there is an

enzyme called RNA polymerase (RNAP) that initiates transcription (Step I in Figure 2.2a

on the next page). Transcription begins when RNAP binds to a specific sequence in the

DNA called a promoter (Step II in Figure 2.2a on the following page). RNAP walks the

DNA to produce a single-stranded messenger RNA (mRNA) (Step III in Figure 2.2a on

the next page). Transcription ends at a region within the DNA called a terminator. The

resulting mRNA sequence is converted into a sequence of amino acids by a ribosome using

a process known as translation. This amino acid sequence then folds into a protein (Step IV

in Figure 2.2a on the following page).

The rate of this protein synthesis process can be regulated through the binding of

proteins known as transcription factors to regions on the DNA called operator sites. That

is, transcription factors can facilitate or inhibit the binding of RNAP to certain promoters.

Figure 2.2b on the next page illustrates how transcription factors are used for regulation.

In this example, when the input protein is not bound to the operator site (oper), then the

output protein is synthesized. However, when the input protein binds to the operator

site, then the downstream promoter (Pout) is unable to attract RNAP and this prevents

transcription of the output protein. The interaction of transcriptional units can be used to

create networks that control the transcription rate of the genes. These genetic regulatory

networks are known as genetic circuits.

One well-known genetic circuit is the repressilator, which was constructed in Escherichia

coli (E. coli) [65]. In the repressilator, there are three proteins produced from three pro-

moters in which each protein acts as a transcription factor for one promoter creating a

loop that forms an oscillator. Namely, the first protein, LacI, inhibits the production of the

second protein, TetR. TetR inhibits the production of the third protein, CI, which inhibits

the production of LacI. Figure 2.2c on the following page depicts the genetic circuit at

the DNA-level and a high-level behavioral description of the circuit. In the high-level

description, vertices are proteins and the edges represent repression relationships. Note
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TT T

Step I Step II Step III

T

Step IV

RNAP mRNA

protein

(a)

T T
Poutoper

Bound

Free

T

T
(b)

T T T
pR cILacI pLac TetR pTet GFP

TetR

cI LacI

GFP

(c)

Figure 2.2: This is an illustration of how genetic circuits work. (a) This is a high-level
description of protein synthesis. In a cell, there are RNAP enzymes and transcriptional
units as shown in Step I. The transcription process begins when the promoter in a tran-
scriptional unit recruits RNAP as shown in Step II. The recruited RNAP walks along the
transcriptional unit to produce a single-stranded mRNA as shown in Step III. Transcription
ends when RNAP reaches the terminator. The produced mRNA is then converted into a
sequence of amino acids by a ribosome during translation. The sequence of amino acids
is folded in a protein as shown in Step IV. (b) Proteins known as transcription factors can
influence the rate of protein synthesis. In this example, there is a transcriptional unit that
produces a protein that can bind to a region near the promoter called operator site (oper)
of a downstream genetic circuit. When the operator site is free as shown in the figure
above, the downstream transcriptional unit is able to produce proteins. However, when
the operator site is bound, the promoter (Pout) is unable to recruit RNAP, which effectively
blocks protein synthesis. This is an example of a repression regulation in gene regulatory
networks. (c) The repressilator circuit is a genetic oscillator formed by three proteins (LacI,
TetR, and cI) that repress each other in a loop. On the left, there is an illustration of
the repressilator at the DNA-level. On the right, there is a diagram that demonstrates a
high-level description of the behavior of the circuit. In this circuit, there is an additional
protein called GFP, which is a reporter protein that is used to observe the circuit in a wet
lab.
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that a fourth protein, green fluorescent protein (GFP), is included in this genetic circuit to

be produced at the same time as CI. The purpose of this protein is to make the cells glow

green when CI is high, allowing an observer to see the oscillation in a wet lab experimental

setting.

2.2 Modeling Frameworks
Biology is complex and many underlying processes in biological systems remain a

mystery. However, advancements in technologies resulted in the collection of massive

data that let scientists tackle such complexity. One of the uses for such massive data

is to develop computational models of biological systems. Computational models use

mathematical formulations to approximate the behavior of biological systems on the com-

puter. Computational models play an important role in biology. Specifically, scientists can

validate hypotheses, predict the behavior of genetic circuits before building them in a wet

lab, which can be time consuming, and gain intuitions of a complex system that is being

studied

2.2.1 Chemical Reaction Networks

A widely used modeling framework for genetic circuits and biological systems is the

chemical reaction network model. Chemical reaction networks are mechanistic models

that combine species (DNA, RNA, protein molecules, etc.) to form new species. In order to

simulate the repressilator, the model must be converted into a set of chemical reactions.

The species and chemical reactions for the repressilator circuit in Figure 2.2c on the

previous page are shown in Figure 2.3 on the following page. Note that edges from species

to reactions indicate that a species is a reactant (i.e., consumed by the reaction), edges from

reactions to species indicate that a species is a product (i.e., produced by the reaction), and

edges with no direction indicate that the species is a modifier (i.e., is neither produced or

consumed). Finally, bi-directional edges indicate that a reaction is reversible, meaning

that it can run in either direction. The number of molecules produced or consumed by a

reaction is known as its stoichiometry. The edge is labeled with the stoichiometry when it

is not one.

Some chemical reactions from the model are below:
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Figure 2.3: This is an illustration of the repressilator circuit as a chemical reaction network.
The blue squares are species and the yellow boxes are reactions.

P0 + RNAP
Ko

 P0 RNAP (transcription initiation)

P0 RNAP ko→ P0 RNAP + 10 · LacI (production)

P1 + 2 · LacI
Kr

 P1 LacI bound (repression)

LacI
kd→ () (degradation)

Note that parameters such as ko and kd are known as rate constants, and they indicate the

speed or likelihood of the reaction. Parameters such as Kr and Ko are known as equilibrium

constants, and they are ratios of the forward and reverse rate constants (i.e., Kr = kr f /krr).

2.2.2 Constraint-based Models

One of the challenges of modeling genetic circuits as chemical reaction networks is that

they require the knowledge of kinetic parameters. Such knowledge is not always available.

This is especially problematic for large-scale models, such as genome-scale metabolism

models, where some models contain thousands of metabolites and reactions. The most

widely used method for modeling genome-scale metabolic networks is constraint-based

modeling [56, 69]. This modeling formalism centered around the idea that such networks

have network connectivity and physico-chemical constraints [56, 69]. More specifically, a

metabolic network is constrained by the network topology imposed by reaction stoichiom-



15

etry. Also, in a metabolic network, there are chemical reactions that transform substrates

into products. Many of these reactions are catalyzed by enzymes. Hence, the substrates

or enzymes necessary for a chemical reaction in a metabolic network must be present or

produced by another reaction. Without the necessary substrates and enzymes, a chem-

ical reaction is biologically infeasible to occur so metabolic networks are constrained by

substrate and enzyme availability. In addition, the biochemical reactions in the metabolic

network must obey mass conservation. That is, mass and energy can neither be created

nor destroyed in a chemical reaction. In a closed system, the total mass stays the same

at all times. Also, such networks must obey thermodynamics laws, which limits the

directionality of the reactions. Lastly, a metabolic network is constrained by the capacity

of flux rates.

The procedure of modeling genome-scale metabolic networks as constraint-based mod-

els is summarized in Figure 2.4 on the current page. The first step is to reconstruct the

metabolic network from biochemical data into a curated network. Then, the network is

formulated using a mathematical format known as a stoichiometric matrix where metabo-

lites are associated with reactions. Each row corresponds to a particular metabolite and

each column corresponds to a particular reaction in the network. A zero entry indicates

that a metabolite does not participate in the corresponding reaction. A positive entry

indicates that the metabolite is a product of the corresponding reaction. A negative entry

indicates that the metabolite is a product of the corresponding reaction. In constraint-based

modeling, biological uncertainty inherited from many unknown phenomena in biology is

taken into account by computing a solution space. Instead of providing a single solution,

1 0 0 0 0

0 1 -1 0 0

0 0 -1 1 0

0 0 1 0 -1

0 0 0 0 1

Reactions

M
et

ab
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ite
s

Curated network Stoichiometric Matrix Solution Space

v1

v2

Imposing Constraints

v1

v2

Figure 2.4: This is an illustration of constraint-based models. A curated network is
constructed and formulated using a mathematical format known as stoichiometric matrix.
This matrix is used to find a solution space for the design at steady-state. The solution
space can be narrowed down with constraints. by imposing constraints.
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constraint-based models provide a solution space with all possible feasible phenotypic

behaviors. When taking into account the physico-chemical constraints mentioned before,

some solutions become unfeasible, which narrows down the solution space.

2.3 Analysis Frameworks
Numerical analysis of biological models is used to derive numerical approximations

from biological systems. This allows scientists to better understand the behavior of bio-

logical systems. While there are several analysis methodologies in literature, this section

focuses on three analysis methods that are used in following chapters: deterministic sim-

ulation, stochastic simulation, and flux balance analysis.

2.3.1 Deterministic Simulation

A chemical reaction model can be converted into a set of ordinary differential equations

(ODEs) using the law of mass action. This law states that the rate of a reaction is its rate

constant times the concentration of the reactants raised to the power of their stoichiometry.

More formally, consider a model with n species {S1, . . . , Sn} and m reactions {R1, . . . , Rm}

where each reaction, Rj, is of the form:

vr
1jS1 + . . . + vr

njSn
k f→←
kr

vp
1jS1 + . . . + vp

njSn

where vr
ij is the reactant stoichiometry for species Si in reaction Rj and vp

ij is its product

stoichiometry. Therefore, the law of mass action states that the rate equation, Vj, for reaction

Rj is:

Vj = k f

n

∏
i=1

[Si]
vr

ij − kr

n

∏
i=1

[Si]
vp

ij (2.1)

where [Si] is the concentration of species Si. The rate equations for all reactions that

produce or consume a species, Si, can be combined to form an ODE describing the time

evolution of the concentration of that species as follows:

d[Si]

dt
=

m

∑
j=1

vijVj, 1 ≤ i ≤ n (2.2)

where vij = vp
ij − vr

ij (i.e., the net change in species Si due to reaction Rj).
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As an example, the ODE for LacI is as follows:

d[LacI]
dt

= 10ko[P0 RNAP]− kd[LacI]− 2(kr f [P1][LacI]2 − krr[P1 LacI bound])(2.3)

ODE simulation results for the repressilator are shown in Figure 2.5 on this page. It is

clear from these results that ODE simulation of this model is not an accurate representation

of the repressilator circuit, since the circuit stabilizes rather than oscillates. ODE simu-

lation is deterministic, meaning that multiple simulations starting from the same initial

condition always produce the same result. Moreover, ODE methods assume a large count

of the entities being analyzed. In electrical engineering, ODE methods are reasonable for

simulating electronic circuits, since the number of electrons flowing through the wires is

very large. However, ODE methods can be inaccurate for certain genetic circuits, such

as the repressilator circuit, because the numbers of molecules of each species in a genetic

circuit are typically small discrete values. In addition, since the number of molecules is

typically quite small, the system can have large intrinsic noise making ODE methods less

accurate.
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ODE simulation: GFP time-evolution
GFP

Figure 2.5: This plot shows the time-evolution of the GFP reporter protein when perform-
ing dynamic simulation using a deterministic approach based on ODEs.
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2.3.2 Stochastic Simulation

While ODE simulation has been used for the analysis of many biological circuits, ODE

methods may not be appropriate for certain genetic circuits, such as the repressilator cir-

cuit, because the numbers of molecules of each species in a genetic circuit are typically

small discrete values [14]. In addition, since the number of molecules is typically quite

small, the system can have large intrinsic noise making ODE methods less accurate. Most

importantly, the chemical reactions in genetic circuits occur sporadically making them

extremely noisy, a behavior not captured by ODE methods. A better method for reasoning

about genetic circuits is to use the Gillespie’s stochastic simulation algorithm (SSA) [57].

There are several variants of the SSA, but the most widely used is the direct method which

is shown in Algorithm 2.1 on the current page.

The SSA takes a chemical reaction network model, M, and computes a time series sim-

ulation, α. The SSA is essentially a Monte Carlo algorithm which treats each reaction as a

random event. The simulation first initializes α to an empty sequence, computes the initial

time and state, 〈t, x〉, from the model, M, and appends this time point to α. The state of

the network is x = 〈x1, . . . xn〉 where xi is the current amount of species Si. The next step

computes the reaction propensities, a = 〈a1, . . . , am〉, where aj is the propensity for reaction,

Rj, and can be approximated using the rate equation as follows:

aj = k j

n

∏
i=0

(xi)
vr

ij (2.4)

where k j is the rate constant for reaction Rj and vr
ij is the number of reactant molecules of

species Si consumed by the reaction.

Algorithm 2.1: Gillespie’s SSA

1 Input: Chemical reaction network model, M;
2 Output: Time series simulation, α;
3 α := 〈〉;
4 〈t, x〉 := initialize(M);
5 while t < timeLimit do
6 α := α · 〈t, x〉;
7 〈a, a0〉 := computePropensities(M, x);
8 τ:= computeNextReactionTime(a0);
9 µ := selectNextReaction(a, a0);

10 〈t, x〉 := 〈t + τ, x + vµ〉;
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For example, the propensity for the forward reaction for transcription initiation on

promoter P0 is approximately:

ko f · P0 · RNAP (2.5)

The total propensity, a0, is the sum of all propensities. The total propensity is used to

determine time until the next reaction using the following equation:

τ =
1
a0

ln
1
r1

. (2.6)

where r1 is a random number drawn from a uniform distribution from [0, 1]. Next, the

propensities are used to compute the next reaction, µ, as follows:

µ = smallest integer s. t.
µ

∑
j=1

aj > r2a0 (2.7)

where r2 is a random number drawn from a uniform distribution from [0, 1].

Finally, the time and the state are updated as shown in Algorithm Algorithm 2.1 on

the preceding page, where vµ is a vector representing the change in state due to reaction

Rµ. This process repeats until the time, t, exceeds the simulation time limit. Using the SSA

method, the repressilator model indeed oscillates as shown in Figure 2.6 on the next page.

2.3.3 Flux Balance Analysis

Flux balance analysis (FBA) is a method to analyze constraint-based models [70]. Ac-

cording to mass balance, the rate of accumulation of a metabolite can be modeled as:

dXi

dt
= Vproduce −Vconsume (2.8)

where Xi is an arbitrary metabolite and Vproduce is the rate of production and Vconsume is

the rate of consumption of the metabolite Xi. The complete metabolic network can be

represented as:

dX
dt

= S · v (2.9)

where S is the formulated stoichiometry matrix for the metabolic network and v is the

metabolic flux vector 〈v0, ..., vn〉. At steady-state, this becomes:
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Figure 2.6: This plot shows the time-evolution of the GFP reporter protein when perform-
ing stochastic simulation.
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S · v = 0 (2.10)

In order to address capacity and thermodynamics constraints, each metabolic flux can

be assigned a constraint as an inequality as follows:

αi ≤ vi ≤ βi (2.11)

Flux balance analysis is solved in respect to an objective function, such as maximizing

cell growth, maximizing metabolite production, minimizing ATP production, and others.

The objective function can be formulated as follows:

Z = c · v (2.12)

where c is the weight of each flux in the objective function.

The canonical form of a FBA problem is:

maximize/minimize Z

s.t. S · v = 0

α ≤ v ≤ β

FBA can be solved using linear programming. Given a set of linear equations and linear

inequalities, a value is assigned to each flux variable such that the specified linear objective

function is maximized or minimized.

2.4 Data Standards
Standards are key to the success of any engineering field since standards give engineers

the ability to share and reproduce models. In electronic circuit design, hardware description

languages (HDL), such as Verilog and VHDL, are used to describe the behavior of a circuit.

HDLs have played an important role in the development of complex circuits. One reason

is because HDLs allow engineers to reason about behavior without caring about the logic
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implementation for the design. However, a major reason is because HDLs allow engineers

to collaborate with each other and reuse existing modules to create more complex designs.

For computational biology, standards can help with the representation of complex

models by reusing existing ones. In addition, standards help towards research repro-

ducibility. Thus, there have been efforts towards the development of standards and more

research groups are adopting the use of standards.

2.4.1 COMBINE Initiative

The Computational Modeling in Biology Network (COMBINE) is an initiative towards

the coordination between communities for the development of open standards used in

computational biology [71]. COMBINE organize meetings that bring together several

communities working on standardization of computational biology, facilitate interactions

between the communities, provides the infrastructure for the specification of each standard

and resources for the development of standards, among others.

2.4.2 The Systems Biology Markup Language

The Systems Biology Markup Language (SBML) is the leading standard representation for

representing biological models [30]. SBML is a standard under the COMBINE umbrella

whose main purpose is to provide an unambiguous data model that can be interpreted by

different computational tools. For that end, SBML uses the Extensible Markup Language

(XML) to encode models with well-defined semantics. Note that SBML is intended to

represent how models should be interpreted and not how they should be used. SBML is

backed up by a large international community of researchers and software developers who

continuously help the standard to evolve. Such involvement resulted in over 280 tools that

support SBML. The latest SBML specification is Level 3 Version 2 [72]. A major feature of

SBML level 3 in comparison to previous levels is that it has been designed to be modular.

That is, SBML level 3 contains core elements, which are elements that compliant tools must

support, and package extensions, which are optional. Core elements include constructs for

representing the most common modeling formalisms in computational biology, such as

chemical reaction networks, discrete-event systems, boolean networks, and others. Pack-

age extensions adds support for special purpose models that are more complex and cannot

be represented using only core elements. Several packages have been created, including



23

hierarchical composition package (comp) [63], flux balance constraints (fbc) [73], groups [74],

layout [75], multistate and multicomponent species (multi) [76], qualitative models (qual) [77],

and rendering (render) [78]. There are two major implementations of the SBML library:

a C/C++ library called LibSBML [79] and a Java library called JSBML [80]. This section

further explains the comp and fbc packages, which are the primary ones used by this

dissertation. The proposed arrays package is the primary contribution of this dissertation

and is discussed in further detail in Chapter 4.

2.4.2.1 Core Elements

The SBML data model has been designed primarily for the modeling of chemical reac-

tion networks. An SBML model of a chemical reaction network contains a list of chemical

species, each representing a chemical molecule or entity. Species reside within a compart-

ment, which represents a well-stirred container with finite size. Species can be transformed

into new species through reactions. Reactions have a list of species references to indicate

which species participate in the reaction and how they participate (i.e. reactant, product,

or modifier). Each species reference associates a species to a stoichiometry value in the

reaction. Reactions have a kinetic law, which is a mathematical expression for the reaction

rate. Such mathematical expressions can include parameters, which are simply named

variables often used for kinetic parameters. SBML also includes function definitions that

can be used for pre-defined named mathematical expressions. They are especially useful

for mathematical expressions that are used multiple times.

SBML core is not restricted to chemical reaction networks. In fact, SBML can represent

arbitrary mathematical models. Initial assignments are used to set the initial value of a

variable. Rules can be used to model continuous systems. The rate of change of a variable

can be expressed using a rate rule. Assignment rules are used to assign the evaluation of

a mathematical expression to a variable. For discontinuous systems, SBML events can be

used. Events are executed when its trigger condition evaluates from false to true. Events

can have delay, which indicates how long a triggered event needs to wait until execution.

When an event fires, its event assignments are performed which assign the evaluation of a

mathematical expression to a variable. Finally, SBML models may have constraints, which

are conditions that cannot be violated throughout a simulation run.
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2.4.2.2 Hierarchical Composition Package

Constructing hierarchical models is a common practice in many fields, such as in elec-

trical and computer engineering for the design of electronic circuits at different levels (e.g.

transistor, gate, and module) and in software engineering, where software engineers often

use the principle of separation of concerns. Hierarchy is also helpful for reasoning in

biology as well. Namely, biological models can be realized at the molecular, cell, popu-

lation, tissue, organs, etc. In SBML, models can be constructed hierarchically using the

hierarchical model composition package (comp) [63]. This package allows the expression

of hierarchy in SBML by allowing a top-level model to be constructed from a collection of

sub-models. This package also enables the customization and connection of sub-models

using replacements and deletions. A replacement can be used to state that an element in the

top-level model replaces an element in a sub-model. A replacement can, for example, be

used to state that a species in the top-level model is to replace a species in two sub-models

which effectively connects the two sub-models through this species. A deletion can be

used to remove part of a sub-model that is not relevant to this use of the sub-model. A

deletion, for example, can be used to remove a reaction that is not needed for this particular

instantiation of a sub-model. More details are given in Chapter 3

2.4.2.3 Flux Balance Constraints Package

Constraint-based modeling is a widely adopted technique for representing biologi-

cal systems. Such models can be represented using the flux balance constraints package

(fbc) [73]. Using this package, a model is associated with an objective, which is used for the

optimization problem formulated by FBA. In addition, reactions are associated with flux

bounds that are used to constrain the FBA model. More details are given in Chapter 5

2.4.3 The Simulation Experiment Description Markup Language

The Simulation Experiment Description Markup Language (SED-ML) [50] is a standard

that encodes the necessary information for reproducing a simulation experiment. That is, a

SED-ML document is associated with models that can be modified with changes. Simulations

describe the simulation settings (e.g. simulation method, algorithm parameters, initial

time, etc.). Simulation runs are described with tasks, which executes a simulation on a

specified model. Since users typically expect to collect data from simulation, SED-ML
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describes the data that simulation runs should report and how it should process the data.

The generated data can then be used in outputs, which indicates how the data should be

presented to the user.

2.4.4 COMBINE Archive

There is no universal standard that fits all applications in computational biology. How-

ever, there are many special-purpose standards, such as the standards developed under

the COMBINE umbrella, that can be used in combination with other standards to encode a

wider range of information. For instance, the Synthetic Biology Open Language (SBOL) [49,

81] can be used to describe structural and functional information of genetic circuits. The

mathematical models of such genetic circuits can be encoded using SBML. The SBML

model can then be visualized using the Systems Biology Graphical Notation (SBGN) [82].

Finally, the procedures to simulate the SBML model can be encoded using SED-ML.

Users can encode complex information by combining different standards. However,

one problem is that each standard is encoded in a different file. If one of the files is miss-

ing, then critical information can be lost. Furthermore, standards can be tightly coupled

together in a way that they are not meaningful on their own. For these reasons, COMBINE

Archive has been created for grouping together COMBINE standards [83].

2.5 iBioSim Version 3
iBioSim is a genetic design automation (GDA) tool for the modeling, analysis, and design

of genetic circuits that is being actively developed at the University of Utah [17, 32, 33] (see

Figure 2.7 on the following page). iBioSim is enabled by community developed standards

that promote the model-based design of genetic circuits and allow the sharing of these

designs via data repositories. iBioSim emerged in 2003 as a systems biology tool. The first

version included reb2sac [62], a simulation tool that converts reaction-based networks

to stochastic asynchronous circuits for efficient analysis, GeneNet [84], a learning tool for

inferring the connectivity of genetic circuits from time-series data, and an user-interface

(UI) to facilitate the usage of reb2sac and GeneNet. iBioSim started targeting synthetic

biology applications after the tool was used to design a Genetic C-element in silico [85].

In the first version, the tool used a custom modeling representation called genetic cir-
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cuit model (GCM) as a high-level abstraction to represent genetic regulatory networks.

However, in the second version, the tool adopted standards for reproducibility and shar-

ing of models and designs that included the SBML [30] and the SBOL standards [49, 81].

A schematic editor was implemented for constructing models using a graphical user-

interface (GUI). New analysis methods were also implemented, including the incremental

stochastic simulation algorithm (iSSA) [86], which works with small time increments and

checks statistics at the end of each time step to constrain the initial values of the next

time step; stochastic model checking [87], which uses continuous-time Markovian analysis to

reason about the design’s correctness with respect to stochastic properties that capture its

critical behaviors; and grid-based models of dynamic cellular populations [88].

The most recent version of iBioSim enables a design workflow that leverages models

and their analysis to guide the design choices made when constructing genetic circuits as

shown in A high-level illustration of the key features of iBioSim is shown in Figure 2.8 on

the next page.
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Figure 2.7: This timeline shows the evolution of iBioSim and highlights the key features
implemented in each version. The latest version, iBioSim 3, includes support for new
standards, the latest SBML and SBOL versions, and additional SBML packages. Further-
more, the tool supports new features for DNA circuit design, model generation, additional
analysis methods, and synthesis methods.
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Figure 2.8: This is a high-level diagram of the genetic circuit design workflow supported
by iBioSim. The red arrows indicate the flow between the different software components
and dotted lines indicate the output of each step that is then used by the proceeding
software component in the workflow. First, genetic parts encoded using SBOL are fetched
from SynBioHub using the SBOLDesigner plugin to construct the DNA-level design en-
coded using SBOL. Next, the DNA design is augmented with interaction data using the
Virtual Parts model generator, and the functional SBOL is converted into an SBML
model. The resulting mathematical model can then be refined and parameters configured
using iBioSim’s model editor. The SBML model can be analyzed in iBioSim as described
by an associated SED-ML document. The data created for the SBOL parts, the SBML
model, and the analysis can be shared and documented by uploading these artifacts to
SynBioHub as a COMBINE archive.
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DNA Circuit Design: The process of genetic circuit design in iBioSim begins by using

the SBOLDesigner [89] tool to select genetic parts from the SynBioHub part repository [90].

This DNA-level design is expressed using Version 2 of the SBOL [91]. SBOLDesigner is

an intuitive sequence editor tool that is incorporated into iBioSim as a plugin. The struc-

tural layer of genetic designs can be viewed and created hierarchically in SBOLDesigner’s

canvas. SynBioHub is a repository for synthetic biology designs that allows storing and

sharing genetic designs represented in SBOL. This feature facilitates model-based design

of genetic circuits by providing the means to construct new designs from existing modeled

parts.

Model Generation: The Virtual Parts Repository (VPR) model generator is used

to obtain interaction data, as described in [92, 93], from the SynBioHub to add functional

information to the SBOL description [94]. For example, it adds the proteins that act as

transcription factors for the promoters, as well as their coding sequences in the DNA-level

design. These protein components are coupled with the DNA components constructed by

SBOLDesigner along with their interactions into functional module definitions. Next, an

SBOL to SBML converter [95] can be applied to translate the structural and functional

information of the corresponding SBOL into a quantitative model expressed in the SBML

Level 3 Version 2. Since SBOL is used to represent qualitative models, the quantitative

information required by SBML is inferred. However, this SBML model can then be further

refined and model parameters added using iBioSim’s model editor. Any changes made

can be mapped back to SBOL using the SBML to SBOL converter [96].

Analysis: iBioSim supports simulation of SBML models using a variety of different

simulation methods, such as ODEs and stochastic simulation. This list also includes the

hierarchical simulation, arrays simulation, and hybrid simulation methods described in

the following chapters of this dissertation. Since one of the goals of iBioSim is to use

standards for the interoperability between tools, the SED-ML standard is integrated into

iBioSim. Each iBioSim project is associated with a single SED-ML file, where each analysis

corresponds to a single task that is used to specify how a model should be analyzed (e.g.,

which simulator to use) and how the results are presented to the user (e.g., how the output

plot should look like). The SBOL document, the SBML model, and the SED-ML file along

with results of analysis can be collected within a COMBINE Archive and uploaded to
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SynBioHub.

Synthesis: While the workflow shown in Figure 2.8 on page 27 requires manual se-

lections of parts for a genetic design, iBioSim also supports automated methods for part

selection leveraging a process called technology mapping [97]. Rather than derive a model

from manually composed parts, this process derives a genetic combinational circuit design

from a given SBML model by automatically selecting parts to implement the model’s

specified function. The key challenge that has to be addressed is that the parts selected

must not interfere with each other. Namely, there should be no unintended interactions

between the proteins produced by each portion of the design.



CHAPTER 3

HIERARCHICAL SIMULATION

Many tools have been designed to model and simulate models at the molecular level.

However, it is of interest to many scientists to have the ability to represent models at the

population level since there are applications in which population modeling is used [98, 99].

While there are tools for modeling and simulation of cellular populations, the field still

lacks a standard-enabled workflow for the modeling and simulation of population-based

models. Expressing such models in a standard fashion is crucial, but it becomes mean-

ingless if there is no efficient simulation methods capable of handling such complexity.

Traditional methods flatten out the hierarchical constructs of population models, which

causes the state space of the model to grow quickly. For that reason, a new stochastic sim-

ulation algorithm is developed. This fact motivated the development of the hierarchical

simulation method, which is a method that takes advantage of the inherent hierarchical

structure of population-based models by reusing parts.

Section 3.1 describes why hierarchy is an important abstraction for biological systems

and the motivation for the development of a hierarchical simulator. Section 3.2 describes

the hierarchical simulation algorithm. Section 3.3 illustrates the hierarchical method through

an example. Section 3.4 presents extensions to the simulator to support additional SBML

constructs, such as, rules, events, and constraints. Finally, Section 3.5 describes the results

and compares the performance of the hierarchical simulator described in this chapter

against simulation of flat models.

3.1 Algorithm Overview
Genetic circuits have been constructed for many applications, such as genetic timers,

oscillators, and logic gates, among others. These applications can be developed in single-

celled organisms. However, there are applications in which cellular population modeling

is required. One example is tissue development [100], which relies on cell-cell communi-
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cation for the coordination of different processes within the population.

It is natural to model cellular populations using hierarchy because cells can be defined

separately and then instantiated in a top-level model. In SBML, hierarchy is represented

using the hierarchical model composition package. The hierarchical model composition

package in SBML is better illustrated using an example in Figure 3.1 on the current page.

Assume there is a chemical reaction network as shown in Figure 3.1a on this page, where

a molecule of A and B are taken as the reactants of a certain reaction R1 that forms a

molecule of C. In addition, a molecule of C is used to form a molecule of D through reaction

R2. In this model, species A and D are put on a port, where the former is on an input

port and the latter is on an output port. This chemical reaction network can be used to

construct a hierarchical model as shown in Figure 3.1b on the current page. In this model,

the top-level model contains two instances, C1 and C2, of the chemical reaction network

shown in Figure 3.1a on this page. In addition, the top-level model has three species: X,

Y, and Z. Species X replaces species A in instance C1, species Y is replaced by species D in

C1 and replaces species A in C2, and species Z is replaced by species D in C2. Note that

when a species in the top-level model replaces or is replaced by a species in a sub-model,

the two species are effectively the same. Furthermore, reaction R2 in sub-model instance

C2 is deleted from the respective model.

B

C

A

R1 R2 D

(a)

C1
C2

X
Y

Z

(b)

Figure 3.1: This is an illustration of how hierarchy is used for modeling chemical reaction
networks. (a) A simple chemical reaction network consisting of species A, B, C, and D.
Species A reacts with species B through reaction R1 to form species C. Species C is used to
form species D through reaction R2. Species A and D are put on ports. (b) A hierarchical
model example using the simple chemical reaction network above as a sub-model.
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Dealing with the hierarchy inherent in cellular population models can be difficult be-

cause there are many dependencies that need to be handled. Therefore, it is a common

practice for many modeling tools to flatten (inline) the hierarchy of a model before sim-

ulation. In other words, a typical simulator would instantiate copies of each sub-model

and perform replacements and deletions during this flattening process resulting in a po-

tentially much larger model that no longer includes any hierarchical modeling constructs.

This approach has several disadvantages. First, the flattening routine causes the size of

the model representation to grow quickly, consuming a lot of computational resources.

Second, the flattening process itself can be very time consuming.

3.2 Hierarchical Stochastic Simulation Algorithm (hSSA)
The Hierarchical Stochastic Simulation Algorithm (hSSA) is a more efficient algorithm for

simulating cellular populations. This method avoids the cost of flattening while preserv-

ing identical simulation results through several steps. First, in the preamble stage, the

simulator locates the sub-models, {M1, . . . , Mp}, used by the top-level model, M0. The

simulator, however, only stores in memory one copy of each unique type of sub-model.

The state of the simulator is now a vector of state vectors (i.e., x = 〈x0, . . . xp〉 where xi is

the state corresponding to model Mi).

The SSA is modified as shown in Algorithm 3.1 on the next page to support hierarchical

simulation. Structurally, the algorithms are similar. The main difference is the introduction

of ν to indicate the model for the reaction to be executed. Since there is only one copy

of each unique sub-model stored in memory, the key challenge is that replacements and

deletions must be performed on the fly during simulation making each step a bit more

involved. In the description of the algorithm, the notation replaces(Sk
i , Sl

j) is used to indicate

that species Sk
i in model Mk replaces species Sl

j in model Ml , and the notation delete(Rk
j )

indicates that reaction Rk
j is to be deleted from model Mk.

In the hSSA method, replacements must be considered when determining the initial

state which is accomplished with Algorithm 3.2 on the following page. First, the initial

state vector is set to the initial value defined within each model. Next, each state in the top

model, x0
i , must be updated to take the value, xk

j , of the initial state of a species Sk
j when

that species is specified to replace the top-level species S0
i . Finally, the algorithm updates
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Algorithm 3.1: Hierarchical SSA

1 Input: Hierarchical reaction model, M = 〈M0, . . . , Mp〉;
2 Output: Time series simulation, α;
3 α := 〈〉;
4 〈t, x〉 := initialize(M);
5 while t < timeLimit do
6 α := α · 〈t, x〉;
7 〈a, a0〉 := computePropensities(M, x) ;
8 τ := computeNextReactionTime(a0);
9 〈ν, µ〉 := selectNextReaction(a, a0);

10 〈t, x〉 := 〈t + τ, x + vµ〉;
11 performReplacements(M, x, reactants(Rν

µ) ∪ products(Rν
µ));

Algorithm 3.2: initialize(M)

1 x := 〈x0
0, . . . , xp

0 〉;
2 for k := 1 to p do
3 for i := 1 to n0 do
4 for j := 1 to nk do
5 if replaces(Sk

j , S0
i ) then

6 x0
i := xk

j ;
7 for k := 1 to p do
8 for i := 1 to n0 do
9 for j := 1 to nk do

10 if replaces(S0
i , Sk

j ) then
11 xk

j := x0
i ;

12 return 〈t0, x〉;
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any species in a sub-model which is replaced by a species at the top-level. These steps are

necessary to ensure that the states of species involved in replacements coincide initially.

Deletions are considered when evaluating reaction propensities. Namely, in Algo-

rithm 3.3 on the next page, the propensity of a deleted reaction is set to zero, so it does

not participate in the simulation. The total propensity calculated, a0, is the sum of the

propensities for all the non-deleted reactions in all models.

Computing the next reaction time is the same as for the original SSA, but the compu-

tation of the next reaction is modified as shown in Algorithm 3.4 on the following page.

Namely, the sum must be over all reactions in all models, and return both the model, Mν,

and the reaction, Rν
µ, in this model to execute.

Finally, the current time is advanced to the next time step and the state of the model Mν

is updated as a result of the reaction Rν
µ. Reactants and products of the selected reaction

that are involved in replacements must have their state updated in order to ensure that the

values of these species continue to coincide throughout simulation. Namely, Algorithm 3.5

on the next page is passed a set of species which have been updated. For each of these

species, yµ
δ , if this species is not from the top-level model (i.e., µ 6= 0), then it must check

if this species is involved in a replacement with a top-level species, y0
i . If it is, this top-

level species must be updated, and this algorithm must be called recursively to perform

replacements on y0
i . Otherwise, if this is a top-level species (i.e., µ = 0), then it must check

if it is involved in a replacement for any species at a lower-level. If it is, then this species

must be updated to take this value.

3.3 Example
To better illustrate how the algorithm works, the hierarchical model shown in Fig-

ure 3.1b on page 31, which is described in Section 3.1 is going to be used as an example.

In hSSA, the input is a collection of models where M0 represents the top-level model,

and there are p sub-models. In this particular case, there are two sub-models where M1

represents instance C1 and M2 represents instance C2. Both C1 and C2 are instances of the

model shown in Figure 3.1a on page 31. The output is a times series simulation α, which

is set to be initially empty.

The first step in the initialization process is to set initial time to be equal to zero and
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Algorithm 3.3: computePropensities(M, x)

1 a0 := 0;
2 for l := 0 to p do
3 for j := 0 to ml do
4 if delete(Rl

j) then
5 al

j := 0
6 else
7 al

j := kl
j ∏nl

i=0(xl
i)

vrl
ij

8 a0 := a0 + al
j

9 return 〈a, a0〉;

Algorithm 3.4: selectNextReaction(a, a0)

1 a := 0, r2 = uni f orm(0, 1);
2 for k := 0 to p do
3 for j := 0 to mk do
4 a := a + αk

j ;
5 if a > r2 · a0 then
6 return 〈k, j〉;
7 return 〈p, mp〉;

Algorithm 3.5: performReplacements(M, x, Y)

1 for yν
δ ∈ Y do

2 if ν 6= 0 then
3 for i := 1 to n0 do
4 if replaces(y0

i , yν
δ) ∨ replaces(yν

δ , y0
i ) then

5 y0
i := yν

δ ;
6 x := performReplacements(M, x, {y0

i });
7 else
8 for k := 1 to p do
9 for i := 1 to nk do

10 if replaces(y0
δ, yk

i ) ∨ replaces(yk
i , y0

δ) then
11 yk

i := y0
δ;

12 return x;
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the state vector x to contain the initial amount of each species in each model as shown in

row Initial in Table 3.1 on the following page. The green entries represent changes in the

state vector. Since the state vector is populated with the initial state of all species in the

model, all of the entries are marked green. Note that the state vectors in C1 and C2 are

equal since they refer to the same model definition. Once the state vectors are populated

with the initial amount of each species, the simulator handles replacements. The Before

row marks the species involved in replacements. First, the simulator handles the case

where a species in a sub-model replaces a species in the top-level model. Once this step

is completed, the simulator is going to handle the case where a top-level species replaces

species in sub-models. In the example, the value of species X percolates down to species A

in instance C1. The same holds for the case where species Y replaces A in sub-model C2.

The After row in Table 3.1 on the next page shows the final values once all replacements

are handled.

After initialization is done, the simulator enters the loop. First, the simulator records

the current state of the simulation. Then, the propensities for each reaction are calculated

along with the total propensity as shown in Table 3.2 on the following page. The next

reaction and the next reaction time are computed afterwards.

From the table shown in Table 3.2 on the next page, it is possible to notice that the only

possible reaction to be selected is reaction R1 in C1 given that it is the only reaction that

has a propensity greater than zero. Table 3.3 on the following page shows the computed

time for the next reaction to occur, as well as, the next reaction to be fired. The last step

is to update the state of the simulation. Time is advanced to the next time step and the

state vector x is updated based on the stoichiometry of the species involved in the selected

reaction as shown in Table 3.4 on page 38.

These steps are repeated until the current time exceeds the time limit. Assuming the

current time is still lower than the time limit, another iteration is performed. First, the

current state of the simulation is recorded. Then, the propensities are computed as shown

in Table 3.5 on page 38. The next step is to compute the next reaction time, which, in this

case, is 0.2. The next reaction selected is R2 in sub-model C1. Once the next reaction is

selected, the state of the simulation is updated. Time is advanced to the next time step and

the state vector x is updated after firing reaction R2 in C1. Table 3.6 on page 38 shows the
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Table 3.1: This table shows the initial value of the state vector of the top-level model under
Top and the initial value of the state vector of the models C1 and C2 given in Figure 3.1b
on page 31, and how replacements affect the state vector of each model. In this particular
model, species Y in the top-level model is replaced by species D in C1 and the value of Y
is updated accordingly. Similarly, species Z in the top-level model is replaced by species
D in C2. In addition, species X is replacing species A in C1 and species Y is replacing A in
C2.

Species Amounts

Top C1 C2

t X Y Z t A B C D t A B C D
Initial 0 5 10 10 0 10 10 0 0 0 10 10 0 0
Before 0 5 10 10 0 10 10 0 0 0 10 10 0 0
After 0 5 0 0 0 5 10 0 0 0 0 10 0 0

Table 3.2: Propensity for each reaction and the total propensity, which is the sum of all
reaction propensities.

Reaction Propensities

C1 C2 Total

a1 a2 a1 a2 a0

5 0 0 0 5

Table 3.3: The next reaction time is computed and the next reaction time is selected,
which is a random variable drawn from an exponential distribution where the mean is the
inverse of the total propensity. The next reaction to fire is selected based on the reaction
propensities. That is, the next reaction is random with probability proportional to the
contribution of this reaction’s propensity to the total propensity.

Next Reaction
τ ν µ

0.1 C1 R1
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Table 3.4: Amount for all species in the hierarchical model after the first iteration. Reaction
R1 is selected, where a molecule of A and a molecule of B are consumed for the production
of a molecule of C. Since species A in C1 is involved in a replacement, the new value of A
needs to be percolated up to X in the top-level model. Now, the value of X is 4.

Species Amounts

Top C1 C2

t X Y Z t A B C D t A B C D
0 5 0 0 0 5 10 0 0 0 0 10 0 0

0.1 5 0 0 0.1 4 9 1 0 0.1 0 10 0 0
0.1 4 0 0 0.1 4 9 1 0 0.1 0 10 0 0

Table 3.5: Propensity for each reaction for the second iteration, as well as, the total
propensity. Note that reaction R2 in sub-model C1 can be fired now, since a molecule
of C is produced in the last iteration.

Reaction Propensities

C1 C2 Total

a1 a2 a1 a2 a0

3.6 1 0 0 4.6

Table 3.6: Amount for all species in the hierarchical model after the second iteration. The
total amount of C is 0 and the amount of D is 1 in sub-model C1. The state update for
species D is effectively affecting the state of Y in the top-level model, and consequently,
species A in C2 since Y replaces A. In the update function, the value of D in C1 is percolated
up to species Y in the top-level and the value of Y is percolated down to species A in C2.

Species Amounts

Top C1 C2

t X Y Z t A B C D t A B C D
0 5 0 0 0 5 10 0 0 0 0 10 0 0

0.1 4 0 0 0.1 4 9 1 0 0.1 0 10 0 0
0.3 4 1 0 0.3 4 9 0 1 0.3 1 10 0 0
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state after firing reaction R2 in C1 and handling replacements in the second iteration.

After recording the state of the simulation, the propensities are calculated as shown

in Table 3.7 on the following page. Up until this point, C2 is unable to fire any reaction.

However, species A in C2 has a molecule now which enables reaction R1 to fire. The next

reaction time that is 0.2. The next reaction selected in this iteration is reaction R1 in C2.

Once again, the state of the simulation is updated by advancing time to the next time step

and the reaction is fired. The new state is shown in Table 3.8 on the next page.

Something interesting happens in the fourth iteration. After recording the state of

the simulation, the propensities are calculated. Even though reaction R2 in C2 could, in

theory, be fired since this reaction requires only a molecule of C, the propensity is zero

as shown in Table 3.9 on the following page. This is because the reaction is deleted,

causing the reaction propensity to be always zero. That is, this reaction can never be fired.

One final note, although in this example duplicate copies of local and top-level variables

connected through replacements are shown, as a further memory saving optimization, our

implementation only keeps one copy of these variables.

3.4 Extensions to hSSA to Support SBML
While the algorithm presented in Section 3.2 is limited to SBML models composed

of only species and reactions, the actual implementation of our hierarchical simulator

supports nearly all SBML Level 3 Version 2 core constructs, such as assignment and rate

rules, events, and constraints. The modifications necessary to support these are similar

to those for reactions. Namely, deleted elements are dropped from sub-models, math

expressions are computed on local states, and care must be taken to ensure that top-level

model and local sub-model states for variables involved in replacements must always

coincide throughout simulation. Algorithm 3.6 on page 42 shows how these features can

be incorporated into hSSA, and the rest of this section describes the modifications in more

detail.

In general SBML, there are five types of objects that can take a value: compartments,

species, parameters, species references, and reaction. Algorithm 3.6 on page 42 extends the

state vector, x, to take values of all of these types. Elements can have an initial assignment

or be involved in an assignment rule that changes the value at the starting point of simu-
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Table 3.7: Propensity for each reaction and the total propensity for the third iteration.

Reaction Propensities

C1 C2 Total

a1 a2 a1 a2 a0

3.6 0 1 0 4.6

Table 3.8: Amount for all species in the hierarchical model after the third iteration. In this
iteration, reaction R1 in C2 is selected and, in this reaction, a molecule of both species A and
B is consumed for the production of a molecule of C. Since the amount of A is changed, the
value of species Y in the top-level model and species D in C1 must be updated accordingly.

Species Amounts

Top C1 C2

t X Y Z t A B C D t A B C D
0 5 0 0 0 5 10 0 0 0 0 10 0 0

0.1 4 0 0 0.1 4 9 1 0 0.1 0 10 0 0
0.3 4 1 0 0.3 4 9 0 1 0.3 1 10 0 0
0.5 4 0 0 0.5 4 9 0 0 0.5 0 9 1 0

Table 3.9: Propensity for each reaction and total propensity for the fourth iteration that
illustrates deletion in hierarchical models. When a reaction is deleted from the model, the
propensity is always zero.

Reaction Propensities

C1 C2 Total

a1 a2 a1 a2 a0

3.6 0 0 0 3.6
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lation. Thus, Algorithm 3.2 on page 33 considers whether a variable’s value is determined

by one of these. If so, the math is evaluated and the initial value of the object is updated

accordingly. Additional SBML constructs that are not described are fast reactions, delay,

algebraic rules, and rate rules.

The extended hSSA supports assignment rules, where a variable’s value is associated

with a math function. The algorithm for performing assignment rules is shown in Al-

gorithm 3.7 on the following page. This algorithm goes through each assignment rule,

AR in each model. In this function, if the assignment rule AR in the model i for object

j exists, and the assignment rule is not deleted, then the math associated with the rule

is evaluated and the state vector x gets updated. Since the variable associated with the

rule can participate in a replacement, replacements for this particular variable must be

performed. Since assignment rules can affect the math of other rules, they need to be

evaluated until there is no change in the evaluations.

Another extension to the hSSA algorithm is the support for constraints, which are

terminating conditions to the simulation. In each model, there are c constraints in a set of

constraints, C. Simulation ends if any constraint in C evaluates to false. At the beginning

of each iteration, hSSA evaluates all of the constraints in each model that are not deleted

using the function illustrated in Algorithm 3.8 on the next page.

SBML models include a powerful discrete-event formalism, which adds much of the

complexity to Algorithm 3.6 on the following page. To support events, Algorithm 3.9 on

page 43, Algorithm 3.10 on page 43 are needed to handle events. Two sets are introduced

in these algorithms: EU and ET. The untriggered events are stored in the set EU and the

triggered events are stored in the set ET. These sets are initialized using Algorithm 3.9 on

page 43. Each model i has ei events, Ei
j. Each event is analyzed during the initialization

process. If an event is deleted, the event is not evaluated since deletion on events prevents

them from ever being fired. However, non-deleted events require their initial condition

or trigger condition to be evaluated, where the initial condition of a certain event Ei
j is

evaluated using triggerInitial(Ei
j) and the trigger condition is evaluated using trigger(Ei

j).

All events that are initially false or the trigger condition is evaluated to false are inserted

into EU .

After initializing the model and the event sets, the hSSA needs to handle events using
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Algorithm 3.6: Extended Hierarchical SSA

1 Input: Hierarchical reaction model, M = 〈M0, . . . , Mp〉;
2 Output: Time series simulation, α;
3 α := 〈〉;
4 〈t, x〉 := initialize(M);
5 〈EU , ET〉 := initializeEvents(M);
6 while t < timeLimit ∧ checkConstraints(M, x) do
7 α := α · 〈t, x〉;
8 〈a, a0〉 := computePropensities(M, x);
9 τ := computeNextReactionTime(a0);

10 tR := t + τ ;
11 〈tE, EU , ET〉 := handleEvents(M, t, x, EU , ET);
12 if tR < tE then
13 〈ν, µ〉 := selectNextReaction(a, a0);
14 〈t, x〉 := 〈tR, x + vµ〉;
15 x := performReplacements(M, x, reactants(Rν

µ) ∪ products(Rν
µ));

16 x := performAssignmentRules(M, x);
17 else
18 〈t, x, EU , ET〉 := fireEvents(M, tE, x, EU , ET);

Algorithm 3.7: performAssignmentRules(M, x)

1 repeat
2 x′ := x;
3 for i := 0 to p do
4 for j := 0 to ni do
5 if (exists(ARi

j) ∧¬ delete(ARi
j)) then

6 x := performAssignmentRule(ARi
j, x);

7 x := performReplacements(M, x, {variable(ARi
j)});

8 until x = x′;
9 return x;

Algorithm 3.8: checkConstraints(M, x)

1 for i := 0 to p do
2 for j := 0 to ci do
3 if ¬delete(Ci

j) then
4 if ¬Ci

j(x) then
5 return f alse;
6 return true;
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Algorithm 3.9: initializeEvents(M)

1 EU := ∅;
2 ET := ∅;
3 for i := 0 to p do
4 for j := 0 to ei do
5 if ¬ delete(Ei

j) ∧ (¬ trigger(Ei
j) ∨ ¬ triggerInitial(Ei

j))) then
6 EU := EU ∪ {〈i, j〉} ;
7 return 〈EU , ET〉;

Algorithm 3.10: handleEvents(M, t, x, EU , ET)

1 tE := ∞;
2 for i := 0 to p do
3 for j := 0 to ei do
4 if delete(Ej

i ) then
5 continue;
6 if {〈i, j〉} ∩ EU 6= ∅ then
7 if trigger(Ei

j) then
8 tF := t+ delay(Ei

j);
9 if tF < tE then

10 tE := tF;
11 ET := ET ∪ {〈tF, i, j, x〉};
12 EU := EU − {〈i, j〉};
13 else
14 if (¬ trigger(Ei

j) ∧¬ persistent(Ei
j)) then

15 ET := removeEvent(ET, i, j);
16 EU := EU ∪ {〈i, j〉};
17 else
18 tF := getNextEventTime(ET, i, j) ;
19 if tF < tE then
20 tE := tF;
21 return 〈tE, EU , ET〉;
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Algorithm 3.10 on the preceding page. The algorithm keeps track of tE, the time of the next

event scheduled to fire. Algorithm 3.10 on the previous page loops through each event, if

event (Ei
j) is deleted, then the algorithm does nothing. Otherwise, the algorithm checks if

the event becomes enabled and ready to fire. An event is scheduled to fire when its trigger

condition is evaluated to true and the trigger condition previously evaluated to false. Thus,

the function checks if event (Ei
j) exists in EU , since the set contains events that previously

evaluated to false. If event (Ei
j) is in EU , then the trigger condition is evaluated. If the event

is triggered, then the time tF in which the event is going to be fired is calculated, where tF

is the current time, t, plus the delay associated with the particular event, where the delay is

evaluated using delay(Ei
j). If this event is scheduled to take place before the earliest event

previously scheduled, then the next event time tE is updated and set to be equal to tF. The

event is added to the triggered events set ET along with the time the event is supposed to

fire and the current state of the simulation. The state vector x is needed because events can

use the values from trigger time. The event must also be removed from EU . On the other

hand, if the event (Ei
j) is not in EU , then the event needs to be evaluated again and check

if the event is still allowed to fire. That is, if the event trigger is evaluated to false and the

event is not persistent, given by persistent(Ei
j), then all instances of this event in the set ET

are removed from the set and the event is added to the set EU . If the event is enabled,

then the firing time of this event is retrieved using getNextEventTime(ET, i, j). If this event

is scheduled to happen before the current scheduled event, then the time of the next event

gets updated to this event’s firing time to reflect the fact that this event takes precedence

over the other evaluated events.

After handling the events, the algorithm needs to decide whether the next action to

fire is a reaction or an event. In order to do so, the algorithm needs to keep track of two

additional times: tR and tE. The former indicates the time of the next reaction and the

latter indicates the time of the next event, and whichever is scheduled to happen first takes

precedence over the other. If there is a reaction preceding the events, then the algorithm

performs the same way as in Algorithm 3.1 on page 33. The only difference is that the

extended hSSA supports assignment rules, where a variable’s value is associated with a

math function. After firing the reaction, replacements must be performed, followed by

assignment rules that need to be evaluated due to the change in the state of the variables
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caused by the reaction.

If, on the other hand, there is an event scheduled to take place before the next reaction,

all events preceding the next reaction are fired using Algorithm 3.11 on the current page.

In this algorithm, the current time is advanced to the next event time. Then, all events

that are enabled are retrieved using getEvents, which returns a set of all events that are

scheduled to fire at tE, and this set is assigned to set F, which is a set local to the fireEvents

function that keeps track of the events that are ready to fire. The next event to fire is

selected from F using the function getHighestPriority, which selects event µ in model ν

based on the priorities of the events scheduled to fire. This function also returns the state

vector x′, which is the state of the simulation when the event was triggered. For each

object in model ν, there is a check if the selected event has an event assignment for object

xν
j . If it does, then the math associated with the event assignment is evaluated and x gets

updated accordingly. Since the variable involved in the event assignment can be involved

in a replacement, replacements must be performed to maintain consistency of the objects.

Assignment rules are performed afterwards, since the update in x can cause a change in

the assignment rules’ math function. After all the assignments rules are performed, events

need to be handled again since an event assignment or assignment rule can trigger an a

new event.

Algorithm 3.11: fireEvents(M, x, tE, EU , ET)

1 t := tE;
2 repeat
3 F := getEvents(ET, t);
4 〈tE, ν, µ, x′〉:= getHighestPriority(M, F);
5 for j := 0 to nν do
6 if (exists(EA(ν, µ, j))) then
7 x := performEventAssignment(M, ν, µ, j, x′);
8 x := performReplacements(M, x, {xν

j });
9 x := performAssignmentRules(M, x);

10 〈tE, EU , ET〉 := handleEvents(M, t, x, EU , ET);
11 until F 6= ∅;
12 return 〈t, x, EU , ET〉;
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3.5 Results
While the complexity of the algorithm from a theoretical standpoint has not changed,

the hSSA provides substantial improvements in performance relative to flat simulation

methods. The performance analysis of the hierarchical simulator is conducted as follows:

the same simulator is executed with a model with hierarchical constructs and a flattened

version of the model. Two different tests have been performed. The first test is a hi-

erarchical model without replacements and deletions. The second test is customized to

have replacements. Both tests used flattened models that have been pre-processed before

simulation. The time that takes to flatten out the hierarchy is summarized in the Table 3.10

on this page.

Tests are performed using an Intel(R) Core(TM) i5 CPU 3.50 GHz and 8GB RAM. The

first test consists of a hierarchical model that is populated with repressilator sub-models

without replacements or deletions and the results are shown in Figure 3.2 on page 48. The

test is performed using 1, 50, 100, 150, 200, 250, 500, 750, and 1000 sub-models. Simulation

is executed for 10,000 time units with time-step of 100 time units. The total runtime results

are shown in Figure 3.2a on page 48. The increase in runtime for hierarchical simulation is

clearly more scalable than for flat simulation. Analysis of memory consumption has also

been performed. Figure 3.2b on page 48 shows the results for the model with a population

Table 3.10: A summary of the time that takes to flatten out different sizes of the population
model of repressilator circuits.

Flattening Time in Seconds

Size Without Replacements With Replacements
1 0.025 0.025

50 0.388 0.382
100 0.691 0.718
150 1.168 1.304
200 1.445 1.71
250 2.23 2.802
500 6.683 7.963
750 14.995 24.493
1000 22.057 40.248
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of repressilator circuits in sub-models that have no interaction between each other. The

model suggests that the hierarchical simulation method takes less space over the long run

compared to the flattening approach.

Analysis of memory consumption has also been performed. Figure 3.2b on the fol-

lowing page shows the results for the model with a population of repressilator circuits

in sub-models that have no interaction between each other. The model suggests that

the hierarchical simulation method takes less space over the long run compared to the

flattening approach.

A second test is performed using a top-level model populated with repressilator cir-

cuits in a top-level species is added for each sub-model that replaces the GFP species in

each sub-model as shown in Figure 3.3 on page 49. An assignment rule is added to the

model to compute the sum of all GFP amounts at every time point. Performance tests

are performed using the same configurations as the experiment without replacements and

deletions, and the total runtime results are shown in Figure 3.3a on page 49. These results

show that the performance of the hierarchical simulator still scales much better than an

SSA simulator that uses flattening even with the added complexity from replacements.

The model customized connections of sub-models using replacements, hSSA still takes

less space as shown in the right plot of plot of Figure Figure 3.3b on page 49.

The algorithm is not a direct translation of the hierarchical simulation implemented in

iBioSim. This implementation translates SBML models into a custom data structure that is

internal to iBioSim. Mathematical equations are translated into abstract syntax tree (AST).

Variables in the model are named nodes. Since sub-models can be instantiated from the

same model definition, ASTs can be reused. The only difference is the state of the variables

in each sub-model. Hence, named variables in an AST become vectors in the hierarchical

simulator. This concept is illustrated in Figure 3.4 on page 51. As an example, assume

there is a model with four sub-models instantiated from the same sub-model as shown

in Figure 3.4a on page 51. The mathematical equations need to be duplicated when the

model is flattened out. Duplicated trees are avoided in the hierarchical simulator because

it is aware that sub-models share the same structure. Such structural information about

the model given by hierarchy helps the translation of SBML models to the internal data

structure in iBioSim because there’s no need to process models that have been already
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Figure 3.2: These figures illustrate the performance evaluation of the hierarchical simu-
lation method in comparison to a flattened method for the repressilator example without
replacements and deletions. (a) Comparison of runtime of SSA using flattening and the
hierarchical approaches. (b) Memory comparison of the hierarchical simulator for models.
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Figure 3.3: These figures illustrate the performance evaluation of the hierarchical sim-
ulation method in comparison to a flattened method for the repressilator example that
includes replacements. (a) Comparison of runtime of SSA using flattening and the hierar-
chical approaches. (b) Memory comparison of the hierarchical simulator for models.
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been processed in the setup phase of the simulation.

The extra overhead when handling replacements is avoided by updating pointers to the

state object. For example, assume that the variable X in sub-model C1 from the example

shown in Figure 3.4a on the following page replaces the variable X in C3. In this case, the

value of X in C3 refers to the value of X in C1 and this is achieved by updating the reference

to the state value of X in C3 to point to the value of X in C1 as shown in Figure 3.4b on the

next page.

3.6 Summary
This chapter presents an efficient hierarchical simulation method for SBML models.

Hierarchy is an useful abstraction that is applied to many engineering principles. Such

principle also helps when reasoning about biological systems. Most SBML-compliant

tools, if not all, flatten out the hierarchy before simulation. While this facilitates the im-

plementation of simulators, models lose important structural information. As results have

shown, simulation is more efficient when models are not flattened out. The algorithm

presented in this chapter works for any arbitrary hierarchical SBML model.

In order to test the hierarchical simulator, an ODE simulator has been implemented.

The ODE simulator shares core functionality with the presented stochastic simulation

algorithm. The only difference being how the variables in the model are dynamically

updated over time. The hierarchical ODE simulator has been tested using the SBML Test-

Suite [101]. The hierarchical simulator does not support every feature of SBML. Test cases

with the following tags have been filtered out: CSymbolDelay, FastReaction, FastReaction,

AlgebraicRule, RandomEventExecution, tags related to any type of ConversionFactors, and tags

related to the fbc package.
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Figure 3.4: An illustration on how a hierarchical structure can be used to improve a
simulator. (a) When a hierarchical model is flattened out, important structural information
is lost. Common structures need to be duplicated for each sub-model. However, when the
simulator is aware of the hierarchy, then common structure between sub-models can be
reused. In this case, assume there is a mathematical equation in a model corresponding
to k1 ∗ X. When flattening the model, a variable for X is created for each sub-model. In
the hierarchical model, the mathematical equation is shared for all sub-models. The only
difference is that a state variable is created for each sub-model. (b) In the hierarchical
simulator, replacements are handled by updating references to the state object. If X in C1
replaces X in sub-model C3, then the state vector in C3 simply references the state object in
C1.



CHAPTER 4

MODELING AND SIMULATION OF ARRAYS

IN SBML

The SBML standard has been widely used for modeling biological systems. Although

SBML has been successful in representing a wide variety of biochemical models, the core

standard lacks the structure for representing large complex regular systems in a standard

way, such as whole-cell and cellular population models. These models require a large

number of variables to represent certain aspects of these types of models, such as the

chromosome in the whole-cell model and the many identical cell models in a cellular

population. While SBML core is not designed to handle these types of models efficiently,

the proposed SBML arrays package can represent such regular structures more easily.

However, in order to take full advantage of the package, analysis needs to be aware of

the arrays structure. When expanding the array constructs within a model, some of the

advantages of using arrays are lost. This chapter describes a more efficient way to simulate

arrayed models. Section 4.1 describes how the SBML data model has been extended to

support arrays. Section 4.2 describes an intuitive way to create models using arrays. Sec-

tion 4.3 describes how to simulate arrayed models. This section shows how a model can be

flattened for simulation and how to extend the SSA direct method to support arrays. The

advantages and disadvantages of both methodologies are described. Section 4.4 evaluates

the performance of the extended arrays simulation method described in this chapter and

compares the performance with simulation of flattened models. Lastly, Section 4.5 gives

an overview of the main impacts of using arrays in SBML.

4.1 Arrays Extension in SBML
An SBML package extension called the arrays package has been proposed to allow

the expression of regular constructs in SBML models more efficiently. The SBML arrays

package is shown in Figure 4.1 on the following page as an Unified Modeling Language
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SBase (extended)

ListOfDimensions

Dimension

ListOfIndices

Index

id: SId { use = “optional” }
name: string { use = “optional” }
size: SIdRef
arrayDimension: int

referencedAttribute: string
arrayDimension: int

Math
xmlns: String { "http://www.w3.org/1998/Math/MathML" } 
{ MathML content }

0..10..1

0..* 0..*

1

Figure 4.1: Unified Modeling Language (UML) diagram for data structure modifications
required for the SBML Arrays package. Namely, all SBML objects inherit from the SBase
class. This class is extended to include a ListOfDimensions and a ListOfIndices. If an object is
arrayed, it has a Dimension object for each of its dimensions to specify its size via a constant
Parameter. If an object has attributes that are arrayed, it can have an Index to indicate the
specific object being referenced. This Index is specified using a MathML expression.

(UML) diagram. Every SBML object inherits from an SBase object. The arrays extension

introduces Dimensions and Indices to SBML objects and these are explained in detail below.

Further details of the package can be found in the latest specification, which can be found

at: http://sbml.org/Documents/Specifications/SBML Level 3/Packages/

Arrays and Sets (arrays).

4.1.1 Dimension Class

A SBML object is an array when the object is given a Dimension. Each Dimension

can have a name and id as optional fields and size and arrayDimension as required fields.

Dimensions are locally scoped so different SBML objects can have Dimensions with the same
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id. The id of a Dimension can appear in mathematical equations inside the SBML object that

has this particular Dimension. An SBML object cannot refer to the Dimension of a different

SBML object. The size field points to a non-negative constant Parameter. The arrayDimension

is an integer to indicate a notion of dimensionality. That is, a one-dimensional array

has a single Dimension with arrayDimension equal to 0 and a two-dimensional array has

two Dimensions where one of them has arrayDimension equal to 0 and the other one has

arrayDimension equal to 1.

4.1.2 Index Class

An object that has attributes that are arrayed need Indices to select single elements

from an array. Index objects include a mathematical equation that evaluates to an integer

value. This integer value corresponds to a position within an array. In order to specify the

exact element being selected, Index objects have the arrayDimension and referencedAttribute

fields. The arrayDimension is used to specify which dimension is being indexed and the

referencedAttribute is used to specify the element that is being indexed (e.g. compartment,

variable, and species, among others). Note that objects in an array share the same at-

tributes, including annotations. However, annotations can be structured to make use of

the index and dimension fields in a way similar to how the arrays package uses them.

4.2 Creating Models using Arrays
The arrays package allows an SBML model to include regular constructs more effi-

ciently. iBioSim has been extended to support such array constructs. This tool provides

a user interface to construct SBML models using arrays for all SBML core constructs:

Compartments, Species, Reactions, Parameters, Rules, Events, Constraints, etc. For example,

Figure 4.2 on the next page demonstrates the idea on how to create models with arrays

using the user interface in iBioSim. This example illustrates an array of repressilator cir-

cuits. When constructing this model, each SBML object has an optional dimension, which

is indicated in the figure by square brackets enclosing the id for a constant parameter,

e.g., “[” size “]”, with a non-negative integer value. In this particular case, the proteins

LacI, TetR, and CI, and their respective promoters are arrays of size n. The index math is

specified within the attributes box of each object.
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TetR[n]

cI[n] LacI[n]

TetR_1

cI_1 LacI_1

Arrayed

TetR_2

cI_2 LacI_2

TetR_0

cI_0 LacI_0

TetR_3

cI_3 LacI_3

TetR_4

cI_4 LacI_4

Flattened

Figure 4.2: The idea on how to represent an array of repressilator circuits in iBioSim.
The blue rectangles represent the chemical species for the proteins LacI, TetR, and CI.
The black arcs represent repression of the promoter by the corresponding species. The
blue arrows from promoter to species represent genetic production of the protein from the
corresponding promoter. The bracketed entry indicates that each object in this model is
actually an array of objects of size n.

Without arrays, the same population of repressilator circuits would have to be instan-

tiated explicitly multiple times as shown in the flattened case. Assuming that the value of

n in Figure 4.2 on this page is 5, then the corresponding flat model would have 5 copies of

the repressilator circuit.

4.3 Arrays Simulation
There are two ways to simulate models with arrays. The first way is to flatten a model

before simulation. This procedure simply inlines the array elements within the model.

The arrays package is just syntatic sugar for SBML models. That is, semantically equiv-

alent models can be constructed without this extension. Therefore, an SBML document

using arrays can be flattened into a new SBML document without arrays. This flattening

procedure has been implemented in the Java-based library of SBML called JSBML [80].

4.3.1 Flattening of Array Constructs

The flattening algorithm is shown in Algorithm 4.1 on the next page. The flattening

routine starts off by cloning the document that is being flattened to preserve the original

document. Then, the algorithm loops through each SBML element in the cloned document

(e.g., Species, Parameters, Reactions, etc) and handles the arrayed elements appropriately.

Every object in SBML is derived from an SBase object. For a given SBase object, the
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Algorithm 4.1: Arrays Flattening(D)

1 Input: SBML Document D;
2 Output: SBML Document Dnew;
3 Dnew := clone(D);
4 foreach SBase S in Dnew do
5 remove(Dnew, S);
6 Dnew := expandDimensions(Dnew, S, dimensionCount(S)− 1);
7 Evaluate all selector and replace elements with new ids;

object is deleted from the document and Algorithm 4.2 on the following page is called.

This algorithm is used to inline arrayed objects. Starting from the highest dimension to

the lowest, the algorithm dereferences the elements in the array until a scalar element is

retrieved. Namely, if the current dimension dim is non-negative, then for each element in

the array, a clone of the current SBase is created. The id of the clone is updated to ensure that

new elements are created with unique ids. The metaId is updated in a similar fashion. Then,

math associated with the current SBase is updated, since dimension ids are being replaced

by their corresponding integer value. This is needed because dimensions are being deleted

while new elements are being added to the document. Lastly, the algorithm makes a

recursive call so lower dimensions can be expanded. If the current dimension is negative,

it means the current SBase is a scalar and there is no dimension left to be expanded. In

this case, the algorithm goes through each attribute that references an arrayed object and

updates the value of the attribute by computing the respective indices and dereferencing

the corresponding element in the array. Once this is completed, the element is added to

the document.

The main advantage of this routine is that it eases the integration of the arrays package

into existing analysis tools. A flattened model can be analyzed using any tool that support

SBML core constructs. This includes a variety of different methods that are used to analyze

ordinary chemical reaction networks, such as the SSA described in Section 2.3.2.

However, the flattening approach has some limitations: it restricts arrays objects to

be statically computable (i.e., constant sizes), loses valuable structural information, and

causes model size to grow substantially. Memory consumption of the JSBML data object

for both the arrayed version of the repressilator and the flattened version are shown in

Table 4.1 on page 59 as an experiment to check the scaling limitation of flattening. Note
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Algorithm 4.2: expandDimensions (D, S, dim)

1 Input: SBML Document D, SBase S, Dimension dim;
2 Output: SBML Document D;
/* Handle dimensions recursively. Repeat the process as long as

there is a dimension that needs to be handled */

3 if dim ≥ 0 then
4 for i := 0; i < dimSize(S, dim); i := i + 1 do

/* Create n copies of the SBML object, where n corresponds to

the size of the current dimension being dealt with */

5 Snew := clone(S);
/* Update the id by appending the index of the current

dimension to it to ensure there is no duplicated ids */

6 updateId(Snew, getId(Snew) + “ ” + dim);
7 updateMetaId(Snew, getMetaId(Snew) + “ ” + dim);

/* If the object is associated with math that is using the

dimension id, then replace the dimension id with its

corresponding integer value */

8 replace(Snew, getDimensionId(Snew, dim));
/* Repeat the process for a new dimension */

9 return expandDimensions(Dnew, Snew, dim− 1);
10 else

/* The base case is when dealing with scalar object with no

dimensions. In this case, each attribute referencing another

SBML object needs to be handled */

11 foreach attribute with index for S do
/* There is an index for each dimension of a given arrayed

object being referenced */

12 for i := indexCount(S, attribute); i ≥ 0; i := i− 1 do
/* Get the math associated with the index */

13 indexMath := getIndexMath(S, attribute, i);
/* Update the referenced object to reflect the updated id

after expanding all of the arrays in the document. In

this case, the index value needs to be evaluated */

14 setAttribute(S,attribute, getAttribute(attribute) + “ ” +
evaluateIndex(indexMath));

/* Add the object to the SBML document after expanding the arrays

and updating the references */

15 addSBase(D, S);
16 return D;
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that regardless of the size of the population, the SBML data object of the model consumes

the same amount of memory whereas for the flat version, memory consumption grows

quickly. When size is one, the flattened document becomes smaller than the one using

arrays because all Dimension and Index objects are stripped away after flattening.

4.3.2 Arrays Simulation Algorithm

A better approach is to simulate on the arrayed model without changing the model [102].

An extension to SSA, where arrays are handled on-the-fly has been implemented and is

described below. The SSA takes a chemical reaction network model, M, and computes a

time series simulation, α. The simulation begins by initializing α to an empty sequence. In

Algorithm 4.3 on the following page, the initial state of the model is computed, where t

denotes the current simulation time and x = 〈x1, . . . xn〉 denotes the state of all species.

In order to handle arrays, modifications to the algorithm are introduced. The first modi-

fication is the addition of vector r. This vector is a multi-dimensional vector where each

element corresponds to a reaction. Although the simulation algorithm implemented in this

dissertation supports multi-dimensional arrays, the algorithms presented in this section

assume reactions are inlined to an one-dimensional array. In addition to the reaction

vector, the state vector x is modified and it can now take either scalar values or multi-

dimensional vectors.

The simulation proceeds until the current simulation time exceeds a given time limit.

For each simulation step, the current state of the simulation is appended to α. Then, the

reaction propensities, a, are computed as shown in Algorithm 4.4 on the next page. Each

reaction propensity, aj, is the propensity for reaction, Rj, which can be approximated by

taking the product of the rate constant times each of the reactants raised to the power of

their respective stoichiometry. Lastly, the total propensity is computed, which is simply the

sum of all reaction propensities. In the modified algorithm, there are p reactions, where p

corresponds to the number of reactions inlined. For each reaction Rj, the corresponding

index values, ind, are retrieved. The indices are used to reference the corresponding

species participating in the reaction. If the vector ind is empty, then the reaction is a

scalar and only contains scalar species participating in the reaction. Once again, the total

propensity is computed in the end.
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Table 4.1: A summary of the SBML document sizes corresponding to the population of
repressilator circuits before and after flattening the document.

Document Size For the Repressilator After Flattening

Population Size Document Size (Arrays) Document Size (Flattened)
1 36 KB 15 KB
50 36 KB 612 KB
100 36 KB 1.2 MB
150 36 KB 1.8 MB
200 36 KB 2.4 MB
250 36 KB 3 MB
500 36 KB 6 MB
750 36 KB 9 MB
1000 36 KB 12 MB

Algorithm 4.3: initialize(M) // arrays

1 Input: Chemical reaction network model M;
2 Output: Simulation time t, simulation state vector x, ordered list of reactions r;
3 t := 0;
4 x := 〈〉;
/* Make an ordered list for the reactions in the model */

5 r := enumerateReactions(M);
6 foreach mi in M do
7 if isArray(mi) then
8 xi := expandArray(M, mi);
9 x := x · xi;

10 else
11 x := x · getValue(mi);
12 return 〈t, x, r〉;

Algorithm 4.4: computePropensities(M,x,r) // arrays

1 Input: Chemical reaction network model M, simulation state vector x, ordered list
of reactions r;

2 Output: List of reaction propensities a, total propensity a0;
3 p := size(r);
4 a = 〈a1, . . . , ap〉;
5 for j = 1; j ≤ p); j := j + 1 do
6 ind := getIndices(rj);
7 aj = k j ∏n

i=0 getValue(xi, ind)vr
ij ;

8 a0 = ∑size(r)
j=1 aj;

9 return 〈a, a0〉;
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The total propensity is used to determine the time until the next reaction. The next

reaction time is computed using Algorithm 4.5 on the following page. The next reaction

is an exponential random variable with mean proportional to the inverse of the total

propensity. This function remains unmodified for the arrayed simulation.

The next step is to select a reaction to fire using Algorithm 4.6 on the next page. To

compute the next reaction, a running sum of propensities is computed. The selected

reaction is the one where the running sum exceeds the total propensity times a random

number from an uniform distribution with value [0,1]. Note that the algorithm remains

the same for the arrayed simulation since the reactions have been inlined before computing

the propensities.

Finally, the simulation time and state of the model are updated as shown in Algo-

rithm 4.7 on the following page, where vµ is a vector representing the change in state due

to reaction Rµ. This process repeats until the time, t, exceeds the simulation time limit. For

the arrays simulation, there is a small change as shown in the algorithm. In the extended

algorithm, the inlined reaction vector is used to determine how the state should be updated

using the update function since arrayed reactions can be selected, which can possibly refer

to arrayed species. When updating the states, the fact that the state vector can have scalar

and vector entries needs to be taken into account.

As shown above, the structure of the algorithm stays the same in the arrays simulation

approach. However, the simulator can make smarter choices since the arrays give hints

on the structure of the objects. Only one copy of each construct is necessary with the

exception of variables. Variables, such as Species, Parameters, and Compartments, among

others, need a record of the state of each member of the array. However, attributes such

as constant fields, boundary condition for Species, and number of space dimensions for

Compartments, among others, are stored only once since all of the arrayed objects can refer

to the same parent object to look up attribute values. In addition, optimizations that are

implementation-specific can be applied. Rather than using maps to store values, arrays

can be used, which are more efficient. Other constructs need a record of the size of the

array. When performing arrayed Reactions, Events, Rules, and other constructs that change

the state of the simulation, the simulator iterates through each of the components of the

array and performs the necessary updates. Objects that reference other arrayed objects
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Algorithm 4.5: computeNextReactionTime(a0)

1 Input: Total propensity a0;
2 Output: Next time step τ;
3 x, ordered list of reactions r;
4 r1 := getRandom();
5 τ := 1

a0
ln 1

r1
;

6 return τ;

Algorithm 4.6: selectNextReaction(a0, a)

1 Input: List of reaction propensities a, total propensity a0;
2 Output: Next reaction index µ;
3 µ := 1;
4 sum := aµ;
5 r2 := getRandom();
6 while sum < r2a0 do
7 µ := µ + 1;
8 sum := sum + aµ;
9 return µ;

Algorithm 4.7: updateState(a0, x, r, µ, t, τ)

1 Input: total propensity a0, simulation state vector x, ordered list of reactions r, next
reaction index µ, simulation time t, next time step τ;

2 Output: Simulation time t, simulation state vector x;
3 v := update(r, µ);
4 return 〈t + τ, x + v〉;
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need to calculate the index for each object being referenced.

4.4 Results
In order to illustrate the benefits of simulating arrayed models without flattening, com-

parison between the two approaches is conducted by simulating models with arrays and

their corresponding flattened versions.

4.4.1 Repressilator

The first experiment consists of comparing the performance of simulation for cellular

population of different sizes, where each cell contains the repressilator. Tests are performed

using an Intel(R) Core(TM) i5 CPU 3.50 GHz and 8GB RAM. The test is performed using

the following array sizes: 1, 50, 100, 150, 200, 250, 500, 750, and 1000. Simulation is

executed for 10,000 time units with time-step of 100 time units. The results are summarized

in Figure 4.3 on the next page. The runtime comparison is shown in Figure 4.3a on the

following page. For this particular example, the arrays simulator is faster because arrays

allow the aggregation of reactions that helps prune the search of the next reaction to fire.

That is, when finding the next reaction to fire, array reactions are considered as one reaction

where its propensity is the sum of the propensities of all reactions in the array. If the next

reaction to fire is an array, then the algorithm can simply search which element in the array

should be selected.

Using knowledge of the structure of the arrays, the simulator is able to condense mem-

ory usage. The method discussed in this paper reduces the memory usage substantially as

shown in Figure 4.3b on the next page. While the flattened approach has a linear increase

in the memory usage, the arrays simulator memory usage is nearly constant.

4.4.2 Genetic Toggle Switch

A population of cells with a genetic toggle switch [64] is used to evaluate the perfor-

mance of the arrays simulator. An illustration of the genetic toggle switch is shown in

Figure 4.4 on page 64. In the genetic toggle switch design, there are two proteins, LacI

and TetR, where they act as repressors for one another. This scheme leads to bistability.

Namely, LacI and TetR can either be in a high or low state. In order to switch from a

high to low state, small molecules are injected. The injected small molecule reacts with the
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Figure 4.3: These figures illustrate the comparison of the arrays simulator for a population
of cells that include a repressilator genetic circuit. (a) Runtime comparison. (b) Memory
comparison.
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T

Figure 4.4: Each toggle switch includes the TetR and LacI proteins that mutually repress
each other on different promoters. The model also includes complex formation reactions,
indicated by dashed arrows, to represent the reactions that combine aTc with TetR and
IPTG with LacI to sequester them from being able to act as repressors.

corresponding protein to form a complex, which no longer represses the production of the

other protein. In this case, LacI and IPTG form a complex and TetR and aTc form another

complex.

A population of cells containing the genetic toggle switch circuit is modeled as a two-

dimensional array of size 10x10. Figure 4.5 on the next page shows the result when

simulating this model. Each blue line represents the LacI protein in each cell and each

green line represents the TetR protein in each cell. Cells that start in the low state (i.e., LacI

is high and TetR is low), remain in the high state. However, there is a small probability of

a cell switching to the high state (i.e., LacI is low and TetR is high). This is indicated by the

red lines in the plot where two cells switch state erroneously.

The model for the population of cells containing the genetic toggle switch circuit is

simulated with the arrays simulator and compared with the flattening approach. In order

to evaluate performance, the model is simulated with varying array sizes. Tests are per-

formed using an Intel(R) Core(TM) i5 CPU 3.50 GHz and 8GB RAM. The test is performed

using the following array dimension sizes: 8, 10, 12, 16, 20. Note that because this is a

two-dimension array of size NxN, the model with array dimension size of 10 includes

100 copies of the genetic toggle switch. Simulation is executed for 2,000 time units with
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Figure 4.5: Simulation results for a population of cells that include a genetic toggle switch
circuit that are not communicating. In most cases, the cells remain in the low state (i.e.,
LacI is high and TetR is low), but sometimes a cell changes to the high state erroneously
(i.e., LacI is low and TetR is high.)

time-step of 100 time units. As shown in Figure 4.6 on the following page, the arrays

simulator is more efficient in runtime and memory. Namely, Figure 4.6a on the next

page shows that the both methods have similar complexity but the arrays simulator is

slightly faster. However, the main advantage of the arrays simulator is memory as shown

in Figure 4.6b on the following page. The arrays simulator has nearly a constant space

complexity.

4.4.3 Genetic Toggle Switch with Cell Communication

In order to create more robust genetic toggle switches (i.e. if a genetic toggle switch

starts in a high state, it should stay in a high state), the genetic toggle switch model is

modified by adding quorum sensing [103]. Quorum sensing is a mechanism used for cell

communication as a response to fluctuation in cell-density. This is accomplished by the
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Figure 4.6: These figures illustrate the comparison of the arrays simulator for a population
of cells that include a genetic toggle switch circuit without cell communication. Simulation
for both cases use the next reaction method rather than the direct method. Results are
shown for both a flattened and arrayed model. (a) Runtime comparison. (b) Memory
comparison.
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sensing and secretion of signal molecules known as autoinducers [104]. Coupling genetic

toggle switch and quorum sensing allows for more reliable behavior because cells would

only switch state when there is consensus among neighboring cells. The genetic toggle

switch coupled with quorum sensing design is shown in Figure 4.7 on the next page. This

circuit is an extension to the design shown in Figure 4.4 on page 64. A new gene that

encodes for RhlI is placed downstream of the pLac promoter. The synthase RhlI is used

in the synthesis of an autoinducer called C4-HSL. Another DNA strand is added to the

design, which contains a promoter induced by C4-HSL that encodes for TetR. Similarly, a

different gene is placed downstream of the pTet promoter. This gene encodes for CinI. CinI

is a synthase used for the synthesis of the C14-HSL autoinducer. Another DNA strand is

added to the design, which contains a promoter induced by C14-HSL that encodes for LacI.

Both C4-HSL and C14-HSL can diffuse through cell membrane.

In order to construct models of cell-to-cell communication, a grid-based model can be

used. An example of a grid-based model is shown in Figure 4.8 on the next page. In a grid

model, relational positions are given to each entity. Each grid location is associated with a

compartment that has a spatial location. Each location may include a membrane-enclosed

cell. Within a cell, there may exist species that can diffuse through membranes. Namely,

diffusible species can move between a cell and the environment for each grid location.

Species in the environment can also move between adjacent grid locations. Such a model

can be easily represented using SBML arrays. Diffusible species are created as a NxN

array and placed within a NxN compartment, where each one of these compartments

represents a cell. Each species is placed inside its corresponding compartment. Namely,

the species at position 0,0 is placed in compartment 0,0, the species at position 0,1 is

placed in compartment 0,1, and etc. In addition, a NxN compartment is created for the

representation of the cell exterior. A NxN reversible reaction for membrane diffusion

is created to transport species within a cell to the cell exterior at the corresponding grid

location. In order to move species in the environment, two reaction arrays are added. A

NxM reversible reaction is used to horizontally move species between two grid locations,

where M is N-1. For example, reaction at position d1, d0 in the two-dimensional array is

added to move species between d1, d0 and d1, d0 + 1. Because these are reversible reactions,

there is also a reaction to move between d1, d0 − 1 and d1, d0. In order to move species
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Figure 4.7: An example of a grid-based model and how it can be model using arrays.

S_in[n][n] di�[n][n] S_ext[n][n]

move_x[n][m]

move_y[m][n]

[d1][d0]        [d1+1][d0]        

[d1][d0]        

[d1][d0]        [d1][d0]        

[d1][d0+1]        

Figure 4.8: An example of a grid-based model and how it can be model using arrays.
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vertically, an array of MxN reactions is added. However, in this case, species at d1, d0

moves to d1 + 1, d0.

The design shown in Figure 4.7 on the preceding page is modeled as a grid-based

model. This model contains a population of cells that contain the extended genetic toggle

switch. Each cell is contained within a membrane-enclosed compartment that is placed

in a grid location. there are reactions for moving a species from one grid location to a

neighbor location. In each grid position, there may exist a cell corresponding to the genetic

toggle switch circuit, where the circuits are enclosed by their own compartment. These

compartments clearly distinguish the interior from the exterior of the cells. Diffusion is

represented as a reaction, which is a reversible reaction that takes one species from the

exterior and moves it to the interior of a cell and vice-versa. Diffusion between the cells is

also modeled using additional reactions.

This model is much more complex than the model of the population of cells containing

the genetic toggle switch. Using SSA direct method to simulate this model is highly

unpractical because there are numerous fast reactions (e.g. diffusion and degradation)

that need to fire frequently. Both the arrays method and flattened method timed out (after

5hrs) when simulating the grid-based models described above for a 6x6 population size.

4.4.4 Towards Scalable Modeling and Simulation

In order to effectively simulate this model, it is necessary to improve the performance

of the arrays simulation. For each time-step, the direct method would compute the propen-

sity of each reaction in the model. However, this is unnecessary since a single reaction is

fired in each time-step. Such an approach is not scalable when simulating a model with

many fast reactions. A better way to deal with such models is to use the Gibson and Bruck

next reaction method [61]. Figure 4.9 on the next page illustrates the idea of this method.

The main idea behind the next reaction method is the use of a dependency graph. When a

reaction fires, only the reactions that have at least one reactant affected by the fired reaction

needs to be have the propensity recalculated. In this example, notice that when reaction

R1 fires, the number of molecules for S, R, and SR changes. Since reaction R2 has SR as a

reactant, the propensity of R2 changes when SR changes. Since no other reaction is affected

by S, R, or SR, the only propensities that need to be recomputed are for R1 and R2.
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R1: S+R          SR
R2:   SR           SR+X
R3: P+X          PX  
R4:      X          
R5:    PX          PX+Y

R1 R2 R3 R4 R5

R2 R3
R4

R4
R5
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Figure 4.9: An illustration of how a dependency graph can be generated from a reaction
network. As an example, assume there is a network with five reactions, R1, ..., R5. A
reaction X depends on a reaction Y if reaction Y modifies at least one of the reactants of
X when fired. In this example, R2 depends on R1 since R1 modifies the species SR, which
is a reactant for R2. Hence, when R1 fires, the propensity of R2 should be recalculated.

As shown in Figure 4.10 on the following page, the grid model for the design in Fig-

ure 4.7 on page 68 can be simulated for a population of 2x2, 4x4, 6x6, 8x8, and 10x10. The

arrays simulation is slower than the flattened version because there is an extra overhead

for indexing arrayed elements through selectors and index objects as shown in Figure 4.10a

on the following page. However, the arrays simulator scales better in terms of memory as

shown in Figure 4.10b on the next page.

While this is a significant improvement, the runtime of simulation is still highly affected

by the fast reactions. In order to address this issue, model abstraction can be used. In par-

ticular, stoichiometry amplification is used for the diffusion reactions. Using this abstraction,

the stoichiometry of the species participating in the reaction is multiplied by an amplifi-

cation factor and the propensity is divided by the same amplification factor [14]. Using

stoichiometry amplification and the next reaction method, the model can be simulated

much faster. The arrays simulator actually performed better than the flattened version as

shown in Figure 4.11 on page 72. Figure 4.11a on page 72 shows that the arrays simulator

is slightly faster than the approach using flattening. Figure 4.11b on page 72 shows a

significant improvement in memory for the arrays simulator.

By simulating the models with large array sizes and performing multiple runs, the

probability of a cell going into a bad state can be approximated. The results are summa-

rized in Table 4.2 on page 73. These results indicate that a probability of a bad state is

improved by more than two-fold when the cells are able to communicate with each other.
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Figure 4.10: These figures illustrate the comparison of the arrays simulator for a popu-
lation of cells that include a genetic toggle switch circuit coupled with quorum sensing.
Simulation for both cases use the next reaction method rather than the direct method.
Results are shown for both a flattened and arrayed model. (a) Runtime comparison. (b)
Memory comparison.
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Figure 4.11: These figures illustrate the comparison of the arrays simulator for a pop-
ulation of cells that include a genetic toggle switch circuit coupled with quorum sensing.
Models have been modified to use stoichiometry amplification. Results are shown for both
a flattened and arrayed model. (a) Runtime comparison. (b) Memory comparison.
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Table 4.2: A comparison of a cell switching to the wrong state when cells communicate
and when they do not communicate.

Probability of a cell going into a bad state

Number of Cells Number of Failures Probability
With Diffusion 100 0 0 %
With Diffusion 400 4 1 %
No Diffusion 100 2 2 %
No Diffusion 400 8 2%

4.5 Summary
The arrays extension is just an abstraction to the data model to represent regular struc-

tures more efficiently. All models created using the arrays package can be created with

core constructs alone. However, not only would this be a tedious process, but also it

would not scale, since the model would grow quickly for large population sizes. This

can hinder reproducibility because large models get too large to a point where it becomes

more difficult to distribute and also becomes more difficult for other to understand the

model.

With the arrays package, it is simple to extend a two-dimensional grid-based model to

a three-dimensional grid-based model. All of the model elements shown in Figure 4.8

on page 68 inherits one additional dimension as shown in Figure 4.12 on the current

page. Aside from adding an extra dimension to the array objects in Figure 4.8 on page 68,

one additional three-dimensional reaction array is added to move species along the third

dimension.

S_in[n][n][n] di�[n][n][n] S_ext[n][n][n]

move_z[m][n][n]

move_y[n][m][n]

move_x[n][n][m]

[d2][d1][d0]        [d2][d1+1][d0]        

[d2][d1][d0]        [d2+1][d1][d0]        

[d2][d1][d0]        

[d2][d1][d0+1]        

[d2][d1][d0]        [d2][d1][d0]        

Figure 4.12: An example of a grid-based model and how it can be model using arrays.
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The method presented in this section prevents the unnecessary duplication of data

caused by flattening. This simulation method enables the simulation of larger models that

otherwise would not fit in memory by handling array structures more efficiently. However,

the method adds some overhead when retrieving the value of a certain variable within an

array due to the necessity of computing indices when accessing arrayed elements. As

shown in the results, using array constructs improves runtime as compared to simulating

a flattened model. This is because arrays help with the selection of the next reaction to

fire. That is, the simulator aggregates arrayed reactions in the reaction selection phase of

the simulation and then selects which element within the selected array to fire. One of the

issues of arrays is an extra overhead with indexing arrayed elements, and this can affect

the overall performance of simulation.



CHAPTER 5

TOWARDS REPRODUCIBLE HYBRID

MODELING

A key challenge in the modeling realm is ensuring that modeling efforts are repro-

ducible and easily exchanged between research groups. When models are reproducible

and exchangeable, results can be validated and models can be reused to build more com-

plex ones. To achieve these goals, standard model representation formats for the model

exchange, such as the SBML or CellML [105, 106], have been established. Both SBML

and CellML have been successfully applied to the encoding of models using a single

modeling framework, but the support of multiple frameworks adds new challenges. The

first few sections in this chapter gives a high-level overview on key points that highlights

the contributions of this chapter. Namely, Section 5.1 gives an overview about the different

forms of modeling formalisms and how it is important to have a mechanism to couple

different frameworks for complex models. Section 5.2 discusses how FBA can be extended

for the dynamic analysis of biological systems through the use of dynamic FBA. Section 5.3

discusses the benefits of model reproducibility and limitations with current methods to-

wards reproducibility. Then, Section 5.4 describes the scheme for a standard-compliant

model encoding and how such models can be simulated. Section 5.5 shows the results of

this work and how the models encoded using the proposed scheme can be successfully

exchanged between two tools for different models. Finally, Section 5.6 summarizes the

main accomplishments of the work described in this chapter.

5.1 Multi-framework Computational Models
Various simulation and analysis methods have been developed in systems biology,

and depending on the biological question that the model is attempting to answer, dif-

ferent methods are preferred. Kinetic time-course simulation based on ODEs or stochastic

methods is often employed to observe the dynamics of the entities in a model over time.
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Other simulation frameworks are Boolean models [107–109], Bayesian models [54] and

constraint-based approaches [69], among others.

Metabolic networks, in particular, are often challenging to model dynamically using

ODE or stochastic approaches because kinetic parameters needed for such models are

often unavailable [69, 110]. Hence, steady-state approaches that do not need kinetic infor-

mation are employed to model metabolism, so called flux balance analysis (FBA) [111, 112]

based on constraint-based optimization. This method only requires the connectivity of the

reactions and metabolites along with the respective stoichiometry, an objective function

(e.g. cell growth), and additional constraints like flux bounds. The idea is to constrain the

model based on the stoichiometry of the reactions and optimize the objective function

while satisfying the flux constraints. This approach computes the flux distribution at

steady-state that optimizes the objective function and that satisfies the set of constraints

imposed by the model. The advantages of using such method include its efficiency and

not requiring any kinetic information.

Biological research questions often require the coupling of different model formalisms.

One such recent example is the whole-cell model for the Mycoplasma genitalium [24] that is

encoded using a mixture of Boolean networks, stochastic processes, differential equations,

and FBA.

5.2 Dynamic Flux Balance Analysis
One disadvantage of FBA is that it cannot express the dynamics of the metabolites since

it does not change species’ amounts or concentrations. FBA only provides information

about the optimal flux distribution for the given optimization problem. Due to this limi-

tation, the field of dynamic FBA (DFBA) [110] has emerged, which couples the stationary

flux distribution resulting from FBA with the kinetic update of the metabolites taken up

or consumed by the FBA network. In DFBA, the FBA sub-model is coupled to a kinetic

model (ODE) via a multi-framework approach.

Besides the whole-cell model which uses DFBA as a core module, many DFBA models

have been constructed for different metabolic pathways. DFBA has been applied in small-

scale models [110, 113, 114], medium-scale models [115–117], and up to genome-scale ap-

plications [118, 119]. For a recent overview, see Table 1 in [120].
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The coupling between FBA and kinetic model parts can be implemented via three main

approaches, i.e., static optimization approach (SOA), dynamic optimization approach (DOA), or

direct approach (DA) [121]. DOA approaches discretize the simulation time and optimize

simultaneously over the entire time period by solving a nonlinear programming problem

(NLP). The DA approach directly includes the LP solver in the right-hand side of the ODEs.

The SOA approach solves the LP at each time step using a Euler forward method assuming

constant fluxes over the time step [121]. Most of the published DFBA models use the SOA

approach, which is relatively simple to implement and not as computationally demanding.

5.3 Exchangeability & Reproducibility of Models
Despite the multitude of published DFBA models, currently no standard for the ex-

change of such models exists. Existing models are hard-coded in programming code, e.g.,

the whole-cell model in MATLAB. Hereby, the mathematical models in their respective

formalisms are embedded in the script along with the connections between the kinetic and

flux balance parts of the models. As a consequence, it is not possible to exchange existing

DFBA models between different software tools. Thus, they cannot be reproduced or val-

idated. This is especially problematic in the case of DFBA models because often multiple

optima for the objective function can exist for the FBA model part (and the various time

steps). Thus, the resulting DFBA solutions is not unique. The solution varies depending on

the actual simulation implementation, i.e., how an implementation or solver selects one of

the possible solutions. In addition, solutions can depend on the selected step size in SOA

if the step size is not small enough.

While it is possible to replicate the same scripts in different programming languages,

it is unpractical to do so as replication is error prone, requires unnecessary work, needs

conversions that can lead to data loss, and most importantly does not solve the underlying

problem of exchangeability of such models. For these reasons, replication of scripts makes

achieving reproducibility difficult and often infeasible. The necessity of an exchange for-

mat for DFBA resulted from efforts trying to encode and reproduce the DFBA sub-model

of the whole-cell model using standards during the whole-cell workshop [68].
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5.4 Methods
A scheme is proposed for the encoding of DFBA models in SBML. SBML core is used

in combination with the hierarchical model composition (comp) package [63] and the flux

balance constraints (fbc) package [73] for describing the multi-framework DFBA models.

The comp package is used to construct hierarchical models. It provides the means to

build models from sub-models and define the interfaces between them. The fbc package

is used to encode the FBA sub-model (typically consisting of the metabolic network). This

sub-model provides the flux bounds for the reactions and an objective function, which

are the information necessary to perform FBA. In addition, SED-ML is used to describe

how each SBML model should be simulated, i.e., provide reproducible example simulation

experiments by encoding which simulation algorithm to use, specifying the corresponding

parameters, and defining the time course simulations for the DFBA. A COMBINE Archive

is used for the exchange of the encoded models, simulation descriptions, and reference

solutions. While the scheme discussed in this chapter is applied to DFBA models, the

scheme is applicable to any combination of modeling frameworks.

One of the challenges in current SBML models is the limitation on the expression of

models using different formalisms. Although there are several tools that support ODE

simulation and FBA, they all support them independently. In order to overcome this chal-

lenge, this chapter introduces a scheme that allows the coupling of ODE and FBA models.

This scheme provides exchangeability and reproducibility by encoding and simulating

DFBA models in both iBioSim [33] and sbmlutils [122].

5.4.1 Stationary optimization approach (SOA)

A stationary optimization approach for DFBA was implemented as a simulation algo-

rithm in iBioSim and sbmlutils following the simulation scheme depicted in Figure 5.1

on the next page. The first step is the initialization of the model. All of the species and

parameters in the model are initialized, where each variable’s initial value is computed.

After the initialization step, the FBA sub-model is executed. During the FBA step, reaction

fluxes are computed using the initial flux bound values where the flux bounds for the

reactions come from the top-level using SBML comp replacements. In SBML, as described

earlier, replacements of parameters and species indicate the top-level entities are the same
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Figure 5.1: Overview of the implemented SOA algorithm for DFBA. After initialization
of the model, the FBA and kinetic simulations are run in an iterative manner until the
simulation end point. In every step, FBA is used to compute the reaction rates of the FBA
network. Subsequently, based on the computed FBA rates, the values of the species are
updated dynamically. In the SOA approach, FBA fluxes are assumed to be constant within
a time step. For a detailed description see the methods section.



80

entity as the one being replaced. Once the fluxes are computed, they are assigned to pa-

rameters using assignment rules on the top-level. These parameters are assigned reaction

rates computed as functions of the fluxes.

After computing reaction fluxes, the update step is performed concurrently with the

dynamic step by computing the time-evolution of every species in the UPDATE and KI-

NETIC sub-models. Species that affect any flux bound in the FBA sub-model are updated

in the top-level. The new bounds are used in the FBA sub-model for the next time step.

Simulation time is incremented at the end. If the time limit is reached, then simulation is

complete. Otherwise, all of the steps above are repeated.

The SOA simulation algorithm has been implemented in iBioSim and sbmlutils. The

iBioSim tool uses the structure of [123] for simulation. The sbmlutils tool uses libRoad-

Runner [124] for the kinetic simulation and COBRApy [125] to solve the FBA problem. Both

iBioSim and sbmlutils take an SBML file that describes a DFBA model and a SED-ML file

that describes the simulation experiment. In the proposed approach, SED-ML is mainly

used to indicate which simulation algorithm to use, the time points in which tools should

print out the values of the variables, the initial time and the time limit. The SED-ML files

provide a minimal simulation experiment to check reproducibility between implementa-

tions. The value of each time increment for SOA is defined as a parameter with id dt in

the SBML model, which can be overwritten by the SED-ML file for the actual simulation.

Ontology terms for the description of DFBA simulation algorithms have been introduced

in the Kinetic Simulation Algorithm Ontology (KISAO) [126] and are used in the SED-ML

descriptions, i.e., KISAO:0000500 (SOA-DFBA).

5.4.2 Model Reproducibility

In order to test interoperability based on the proposed scheme, models were built in

both iBioSim and sbmlutils. Models built in iBioSim were imported into sbmlutils

and vice-versa to check whether models could be interpreted by both tools consistently.

This was done in an iterative manner and resulting issues were solved by clarifying the

encoding scheme, e.g., by adding additional rules which resolved ambiguities.

Reproducibility of DFBA models is challenging because there may exist several possi-

ble outcomes that satisfy the objective function and constraints of the FBA models. De-
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pending on how the FBA solver selects one of the multiple solutions, different trajectories

can result from the DFBA simulation. The issue of multiple solutions can be solved by

guaranteeing uniqueness of the solution in every time step based on Flux Variability Anal-

ysis (FVA) [127]. FVA gives the possible minimal and maximal fluxes for each reaction

in each step of the simulation. If all minimal fluxes are equal to all maximal fluxes for a

time point, then a solution is unique in the time point. If all time points are unique, then

the solution is unique. As a practical note, if the solution is not unique, the addition of

additional constraints to the FBA problem can make the solution unique.

Model reproducibility was tested by comparing the numerical SOA results between

simulation results of the two tools for models with unique solutions. Results are assumed

as numerically equivalent if the absolute difference for every time point tk for all dynamical

FBA species in the model ck is smaller than the tolerance ε = 10−5, i.e.,

abs(ci(tk)sbmlutils − ci(tk)ibiosim) ≤ ε ∀ci, tk (5.1)

In SOA-DFBA, it is important that the time step dt is small enough so that the solution

converges to the correct solution. Solutions vary if selected step sizes are too large (e.g.

changing the step size in the toy wholecell model described later from 1.0 to 0.1 resulted

in differences in steady state concentrations of up to 10%). Consequently, different step

sizes were tested for the models and step size of the simulations were selected, so that

smaller step sizes did not change the simulation results.

5.5 Results
The major result of this work is the creation of the first scheme for encoding DFBA

in SBML. This section presents the scheme and its application to multiple DFBA models

and demonstrates that the proposed multi-framework computational models can be ex-

changed and reproduced between tools.

5.5.1 Scheme for Dynamic Flux Balance Analysis

This chapter proposes for the first time a scheme to encode hybrid models, such as

DFBA models, in SBML. The DFBA models presented in this chapter were created in

the proposed scheme either using a graphical user interface in iBioSim or a script-based
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approach in sbmlutils. For a given model, the TOP, FBA, BOUNDS, and UPDATE sub-

models, as depicted in Figure 5.2 on the following page, were packaged with respective

simulation files using SED-ML in COMBINE Archives for the exchange between tools.

In this section, a high-level overview of the underlying concepts used in the scheme

is provided, followed by application of the scheme to encode DFBA models. The DFBA

model is constructed hierarchically using the SBML comp package, separating the hybrid

model in different building blocks based on the respective functionality and modeling

frameworks ( Figure 5.2 on the next page). The top-level model is hereby composed of

four sub-models: (i) a kinetic sub-model that computes flux bounds based on the dynamic

metabolite availability and ensures that the FBA problem is constrained by the available

metabolite resources (BOUNDS sub-model); (ii) a FBA sub-model that encodes metabolism

as a FBA problem (FBA sub-model); and (iii) a kinetic sub-model that updates the amounts

and concentrations of the dynamic metabolites changed via the FBA sub-model via con-

sumption or production (UPDATE sub-model); (iv) an optional kinetic sub-model that

represents a dynamic part with all kinetics other than the metabolic pathway, such as

DNA transcription, DNA translation, and protein degradation, among others (KINETIC

sub-model). Alternatively, arbitrary kinetics can be part of the top model.

The top-level model ties together the three different sub-models using SBML comp

replacements and replacedBy constructs with the interface between the sub-models defined

via ports. Ports define which components within a sub-models are exposed and can be

connected to components in the top-level.

In order to describe the different formalisms of each sub-model, the Systems Biology

Ontology (SBO) is used [128]. The SBO defines controlled vocabulary terms used in the

systems biology field. The SBO terms are arranged in a taxonomic hierarchy using a

tree structure. This allows the grouping of terms that are related to one another. The

modeling formalisms of the individual sub-models are described using terms on the mod-

eling framework branch, where FBA models are described using the flux balance framework

term, stochastic processes are described using the non-spatial discrete framework term, and

differential equations are described using the non-spatial discrete framework term. Although

the terms for stochastic processes and differential equations can be used for describing

either stochastic or deterministic simulation methods, these terms were selected because
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Figure 5.2: Overview of scheme for encoding DFBA models in SBML. The hierarchical
SBML model is composed of a top-level model with four sub-models: FBA, BOUNDS, UP-
DATE, and KINETIC. The individual sub-models are connected via ports. The respective
SBML packages used are listed in the models, as well as the simulation framework used.
The BOUNDS sub-model calculates the upper and lower flux bounds based on metabolite
availability. The FBA sub-model computes the reaction fluxes of the metabolic fbc model
using the bounds as constraints. The UPDATE sub-model calculates the dynamic update
of the dynamic metabolites affected by the FBA model. The rates of change are functions of
the FBA fluxes. The KINETIC sub-model includes all of the other processes in the model,
which may affect or be affected by entities in metabolism. The top-level model ties together
the different sub-models using SBML comp replacements and replacedBy constructs.
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they are the ones that best describes these two formalisms.

In addition to the modeling formalism, other key components are annotated in the

sub-models via SBO terms in the scheme, e.g., the upper and lower flux bounds and the

exchange reactions in the FBA sub-model defining which metabolites can be consumed or

produced in the FBA part of the DFBA, or the dynamic species in the top model changed by

the FBA sub-model. By the means of these annotations, the interface between the hybrid

sub-models can be clearly defined.

All of the interconnections between the sub-models are encoded in SBML rather than

using an external approach like for instance via SED-ML. The connections between model

components are crucial information of the model and should be part of the model en-

coding. SED-ML is only used to encode which simulation to run with the model. As a

consequence, this scheme requires only a single hierarchical SBML model and a single

SED-ML file.

5.5.2 Minimal Example (toy wholecell)

In order to illustrate the proposed scheme, a simplified example of a whole-cell model

was created with a model overview depicted in Figure 5.3 on the following page. The fig-

ure was created with cy3sbml using the SBML models [129]. This model is constructed hi-

erarchically where a top-level model is created to instantiate different sub-models (BOUNDS,

UPDATE, and FBA shown in Figure 5.2 on the previous page) and makes the necessary

connections between them. The figure illustrates the structure of each sub-model and

how each sub-model ties in with each other in a flat version of the model once all of the

connections are established.

In the example, the FBA sub-model imports species A and converts it via a linear chain

of reactions to species C. The exchange reactions EX A and EX C contain the rate of consump-

tion and production of the respective species. The TOP model contains assignment rules

which assign the fluxes to the parameters pEX A and pEX C, which are used by the UPDATE

model to update the dynamic species A and C via the update reactions update A and

update C. The BOUNDS model calculates the bounds of all FBA exchange reactions, which

are constrained by the availability of the dynamic species, as well as bounds changed by

kinetic expressions. In the example, the upper bound ub R1 of reaction R1 is changed via a
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Figure 5.3: Detailed scheme of the minimal example model (toy wholecell). The fig-
ure shows the components in the BOUNDS, FBA and UPDATE sub-models. Links
between sub-model components are based on ports which are connected elements via
TOP model replacements (replacedElements and replacedBy). The flattened SBML comp
model (FLATTENED) shows the resolved connections between the different sub-models
after these replacements have been performed. The flattened model cannot be simulated
because the separation of frameworks is lost in the flattening process.

rate rule. Additional kinetics are encoded in the TOP model, i.e., a kinetic conversion of C

to C (these could also be in a separate KINETIC sub-model).

In order to validate the exchangeability and reproducibility of the model, simulations

in iBioSim and sbmlutils were performed using the simulation algorithm described in

Figure 5.1 on page 79 with results depicted in Figure 5.4 on the next page. Both implemen-

tations resulted in numerically equivalent results (see 5.4.2). Importantly, the proposed

encoding scheme allowed the replication of the numerical results to converge against the

correct solution even for bigger step size than Figure 5.4 on the following page, thereby

allowing to test the effects of varying step sizes in a reproducible manner.

5.5.3 Diauxic growth in E. coli (diauxic growth)

The next example is an encoding and reproduction of results from a published DFBA

model of diauxic growth of E. coli [113] consisting of four reactions between four metabo-
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Figure 5.4: DFBA Simulation results for the toy wholecell model in two different tools.
This demonstrates that models can be exchanged by different tools using standards and
the results can be reproduced when using the same simulation algorithm. Species A is
converted to C via the FBA subnetwork over time. C is converted to D via the kinetic parts
in the top model. Species A is not consumed completely because the import of A in the FBA
subnetwork via R1 is shut down via a rate rule for the upper flux bound, and a steady state
is reached. The model was simulated for 50[h] with a time step dt of 0.1[h]. (a) Simulation
results with sbmlutils. (b) Simulation results with iBioSim.
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lites, i.e., glucose (Glcxt), oxygen (O2), acetate (Ac) and biomass (X). The model can grow

either aerobically on acetate (v1), aerobically on glucose (v2 or v3) or anaerobically convert

glucose to acetate:

v1 : 39.43Ac + 35O2 → X

v2 : 9.46Glcxt + 12.92O2 → X

v3 : 9.84Glcxt + 12.73O2 → 1.24Ac + X

v4 : 19.23Glcxt→ 12.12Ac + X

The kinetic part of the model is described by the following differential equations:

dGlcxt
dt

= AGlcxtνX

dAc

dt
= AAc νX

dO2

dt
= AO2 νX + kLa(0.21−O2)

dX
dt

= (v1 + v2 + v3 + v4)X

where AGlcxt, AAc , AO2 are the respective rows of each variable in the stoichiometry ma-

trix and kLa is the mass transfer coefficient of oxygen. For a detailed description see [113].

The results in Figure 5.5 on page 89 depict an exponential growth phase using glucose

anaerobically until running out of glucose, which at this point the cell grows linearly due to

oxygen. When both oxygen and glucose run out, the cell growth stagnates. Experimental

data from [110] is plotted alongside the simulation results. The model is able to capture

the behavior observed in the experimental data. The results are equivalent to the models

in [113]. Results show that the proposed scheme is able to encode published DFBA models,

resulting in a reproducible and exchangeable model representation between tools.

5.5.4 E. coli core (ecoli)

To demonstrate the feasibility of the proposed scheme for real-world examples of DF-

BAs, a larger metabolic network for the core metabolism of E. coli [130] was encoded in



88

0.0 2.5 5.0 7.5 10.0 12.5
time [h]

0

2

4

6

8

10

Co
nc

en
tr

at
io

ns
 [

m
M

]

diauxic_growth_lw_v4-sbmlutils_dt0.01_tend15.0

[Ac]
[Glcxt]
[O2]
Ac data
Glcxt data

0.0 2.5 5.0 7.5 10.0 12.5
time [h]

10 4

10 3

10 2

10 1

100

101

Co
nc

en
tr

at
io

ns
 [

m
M

]

diauxic_growth_lw_v4-sbmlutils_dt0.01_tend15.0

[Ac]
[Glcxt]
[O2]

0.0 2.5 5.0 7.5 10.0 12.5
time [h]

0.0

0.2

0.4

0.6

0.8

Bi
om

as
s 

[g
/l]

diauxic_growth_lw_v4-sbmlutils_dt0.01_tend15.0

[X] biomass
X data

0.0 2.5 5.0 7.5 10.0 12.5
time [h]

10 3

10 2

10 1

100

Bi
om

as
s 

[g
/l]

diauxic_growth_lw_v4-sbmlutils_dt0.01_tend15.0

[X] biomass

(a)

Figure 5.5: This plot shows the results for the model representing diauxic growth in E.
coli. The model is able to reproduce the general behavior captured from experiment data.
There is an exponential cell growth while glucose is present in the model, but when the cell
runs out of glucose, growth slows down and is affected mostly by oxygen. However, when
the cell runs out of glucose and oxygen, growth diminishes significantly. The model was
simulated for 15[h] with a time step dt of 0.01[h]. (a) Simulation results for the diauxic
growth of E. Coli in sbmlutils. (b) Simulation results for the diauxic growth of E. Coli
simulated in iBioSim.
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Figure 5.5: (continued) This plot shows the results for the model representing diauxic
growth in E. coli. The model is able to reproduce the general behavior captured from
experiment data. There is an exponential cell growth while glucose is present in the
model, but when the cell runs out of glucose, growth slows down and is affected mostly
by oxygen. However, when the cell runs out of glucose and oxygen, growth diminishes
significantly. The model was simulated for 15[h] with a time step dt of 0.01[h]. (a)
Simulation results for the diauxic growth of E. Coli in sbmlutils. (b) Simulation results
for the diauxic growth of E. Coli simulated in iBioSim.



90

the proposed scheme and simulated as shown in Figure 5.6 on the following page. The

FBA sub-model was downloaded from BiGG [131] (core metabolism of Escherichia coli

str. K-12 substr. MG1655) and transformed to an DFBA model in an automatic fashion

using sbmlutils. BiGG models encode the exchangeable species via annotated exchange

reactions which allows and automatic inference of the dynamic species. The only ad-

ditional information required to run DFBA simulations are initial concentrations for the

species. The automatic encoding of larger scale examples demonstrates the scalability of

the proposed encoding approach.

While sbmlutils is able to find a solution for the model, iBioSim cannot as it runs into

an unfeasible solution in the middle of simulation. This captures the well-known problem

of DFBA with multiple solutions. The FBA problem is not constrained enough to result in a

unique solution and depending on which solution the simulator picks, different solutions

and thereby trajectories arise. Despite the existence of multiple solutions, tools and LP

solvers typically pick solutions deterministically. Hence, single tools can reproduce their

own results, but results can be irreproducible between different implementations. Without

the use of standards, this could never be demonstrated because variations in results could

be due to discrepancies in the model, and not in the tool.

5.6 Summary
Modularity of models, the ability to encode multi-framework models, and reproducibil-

ity of models is indispensable for encoding more complex models in computational biol-

ogy. In this work, an approach that allows a clear separation of the different modeling

frameworks via comp sub-models and defining the interfaces between the sub-models

is presented. The proposed scheme implements for the first time an exchangeable and

reproducible multi-framework scheme purely in SBML. This scheme for encoding DFBA

models in a standard way has been implemented in two different tools, demonstrating

the exchangeability and reproducibility of our approach on various example models like

diauxic growth in E.coli. iBioSim and sbmlUtils are freely available for download and

offer the necessary infrastructure for anyone to develop DFBA models using the proposed

scheme.

All of the materials presented in this chapter are publicly available at the following link:
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Figure 5.6: DFBA simulation results for core metabolism of E. coli with sbmlutils. The
proposed approach can be used in larger models, such as the E. coli model described in
the paper. The model is growing aerobically on glucose in the initial phase and reaches
a steady state after oxygen is consumed. The model was simulated for 3.5[h] with a time
step dt of 0.01[h].
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https://github.com/matthiaskoenig/dfba/. This link includes the developed scheme con-

sisting of rules, guidelines and additional information, as well as models and simulation

results. Proposals, errata, and updates to the scheme are managed via the respective issue

tracker and releases.



CHAPTER 6

TOWARDS REPRODUCIBLE DISEASE

MODELS USING THE SYSTEMS BIOLOGY

MARKUP LANGUAGE

SBML provides a standard data representation for biological models that can help to-

wards reproducibility. Although SBML primarily targets biological models, the standard is

capable of expanding to other fields. Many fields that lack a well-established infrastructure

for reproducibility can potentially benefit from SBML. One example is the disease model-

ing field, which is a field that has encountered serious issues related to reproducibility.

This chapter demonstrates how SBML and the arrays package can be applied to disease

modeling. Section 6.1 discusses why using standards for disease models is important,

problems related to reproducibility encountered in the field, and how SBML can be used

to represent microsimulation disease models. Section 6.2 demonstrates through several

abstract examples how microsimulation disease models can be encoded using the SBML

Arrays package enabling reproducible disease modeling. One of the main benefits of

standards in modeling is the exchange and reuse of models. Section 6.3 shows how the

examples can be reproduced in two different tools, and finally Section 6.4 concludes the

chapter by highlighting the importance of this work.

6.1 Overview
Disease modelers have been modeling progression of diseases for several decades us-

ing tools such as Markov Models or microsimulation. However, they need to address a

serious phenomenon; many models they create are not reproducible. Moreover, there is no

proper practice that ensures reproducible models since modelers rely on loose guidelines

that change periodically, rather than well-defined machine-readable standards. SBML

is one such standard that allows exchange of models amongst different software tools.

Recently, the SBML Arrays package has been developed, which extends the standard
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towards the modeling and simulation of population models.

Disease models attempt to explain phenomena observed by clinical trials and follow-up

of patient populations through time. Such phenomena include complications of chronic

diseases such as diabetes [132] and cardiovascular diseases [133], infectious diseases such

as Ebola [134] and HIV [135], or even mental health conditions [136]. Beyond complica-

tions, models can also include economic aspects, such as costs or quality of life related to

health utility scores. Models describe those phenomena using mathematical and statistical

equations or other programmatic constructs.

In the past, differential equations have been used, which are still very dominant in the

infectious disease domain [134]. However, other disease models have used state transition

mechanisms. Markov cohort models have been prevalent in the past [136], but modern

disease models tend to use microsimulation [132], where simulation considers each individ-

ual in the population separately. Some infectious disease models are also moving in the

direction of individual-based simulation [137].

Individualization of computation makes models more flexible, but also more complex

to understand. Therefore, clarity in model publication and transparency are essential.

However, modeling practices in the field lack support for reproducibility. Publication of

models’ source code is rare – [138–141]. The norm is still publication of descriptive-only

models in papers in which they appear, and only rarely do authors attempt to publish in a

way that their work can be reproduced. However, publishing models within a paper does

not allow full reproducibility as numeric examples provided in papers have insufficient

precision and are prone to misinterpretation (see, for example [132]).

The Mount Hood Diabetes Challenge highlighted this reproducibility problem. The chal-

lenge revolved around reproducing models from two published papers. Multiple mod-

eling teams around the world attempted to reproduce these published models, and they

were unsuccessful. This is conclusive proof that a new method for model reproducibility

is needed since models that cannot be reproduced are perceived to be non-credible.

To date, disease modelers have been trying to improve their model publication meth-

ods by publishing guidelines. Yet a better solution is to provide standard-compliant mod-

eling tools that allow model exchange. This is exactly what SBML and associated lan-

guages such as Pharmacometrics Markup Language (PharmML) [51] and its counterpart
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Model Description Language (MDL) [142] are designed for. While SBML is a standard rep-

resentation that primarily targets chemical reaction networks, it has strong discrete event

support in its core constructs, which allows the representation of a wide range of mod-

els other than chemical reaction networks in the form of Boolean networks [143], Petri

nets [144], and Markov chains [87], among others. This is a continuation of the first attempt

to reproduce disease models in such modeling languages that started with [145]. This

work demonstrated how a disease model can be reproduced in three languages: SBML,

PharmML, and MIcro Simulation Tool (MIST) [146]. When the SBML models in [145]

were created, SBML capabilities lacked the means to support microsimulation. SBML has

evolved with the recent introduction of the proposed SBML Arrays package. This package

makes the expression of more complex models using microsimulation possible [147]. This

chapter demonstrates this through a few abstract disease modeling examples that can now

be implemented using SBML Arrays described in Chapter 4.

6.2 Disease Modeling Examples
To illustrate the requirements for disease models, the following sections present several

abstract examples that are successfully implemented using SBML coupled with the arrays

package. The first three examples are the same examples given in [145] but they have

been modified with the addition of microsimulation components that were not originally

modeled in the discrete-time Markov models. Two more examples are added that are

impossible to model without SBML Arrays. Important nuances are discussed for each

example.

6.2.1 Example 1: Simple Example

The first simple example is depicted in Figure 6.1 on the next page. This example

starts with a population of 100 individuals. Every individual starts in the Alive state. Each

individual has 0.05 probability of moving to the Dead state. This example can be modeled

as a cohort model as demonstrated before in [145], where the number of individuals in each

state is counted for each time step. However, the model has been modified and implements

it using microsimulation where each individual is processed through the model using

Monte Carlo simulation with the probability defined. SBML Arrays defines an array of
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Alive Dead0.05

Figure 6.1: State transition diagram of a simple Markov model. The model uses two
disease states: Alive and Dead, where the Dead state terminates simulation.
Initial conditions: 100 people start in Alive and none in Dead.
Output: Number of people in each state for years 1-10.

individuals, where each individual can be either Alive or Dead. Unlike cohort models

where simulation continues for each time step until the end, microsimulation models can

stop for individuals who reach a terminal state. In all simulations in this chapter, the

terminal state would be represented by the Dead state. This mechanism is used in disease

models to shorten simulation time and to indicate non-existence of a record for a human

in years after death, effectively diminishing cohort size.

This entire model is implemented as SBML events as can be seen in Table 6.1 on the

following page. The InstructionNumber parameter is used to control the firing sequence

of events and specific events competing in time. This competition of events is an im-

portant SBML element and is not related to the model being implemented. Therefore,

the addition of the InstructionNumber parameter forces discrete times for the sequence of

occurrences. Also note that model time and SBML implementation time are different.

In this example, there is a header of events enumerated as #0 ,#1,#2 that start each time

step in the simulation. Event #0 advances the Time parameter. Event #1 provides a point

where the user can take a snapshot of the data to represent the state of the system in the

time step. Event #3 is used for termination. The last three events represent transitions.

Namely, Event #4 generates a random number and stores it in the Random variable. Event

#4 tests if the drawn random number matches the transition criteria and, if so, updates

the states and increases the instruction count to progress the simulation. Event #5 is a

counter event for event #4 that is triggered if event #4 does not happen. It is essential to

advance the simulation by setting the InstructionNumber. Unless set, the simulation would

not continue, since there would not be another event for the individual, which is how

event #3 terminates simulation. Alternatively, termination can happen if the simulation
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Table 6.1: SBML events for Example 1.

Trigger Assignments

0 InstructionNumber[d0] = 0 Time[d0] := Time[d0] + 1
InstructionNumber[d0] := 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] := 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧
Time[d0] < 10

InstructionNumber[d0] := 1

3 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] := 1.5

4 InstructionNumber[d0] = 1.5 ∧ Alive[d0] = 1 ∧
Random[d0] ≥ 0∧ Random[d0] < (0 + 0.05)

Alive[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 0

5 InstructionNumber[d0] = 1.5 ∧ Alive[d0] = 1 ∧
Random[d0] ≥ (0 + 0.05) ∧ Random[d0] < 1

InstructionNumber[d0] := 0
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time limit is reached. Future examples follow this structure. The models shown here

are generated using the SBML Arrays package that automatically generates any arbitrary

number of individual copies, which is 100 for the examples shown.

6.2.2 Example 2: Three State Markov Model

The next example (depicted in Figure 6.2 on the current page) is a simple extension

of the first one. This example demonstrates how new states and transitions are added

by introducing more parameters and events. Rather than starting with a population of

individuals in the Alive state, this example starts with individuals in the Healthy state.

Healthy individuals can transition to the Sick state each year with 2% probability and

they can transition to the Dead state with a 1% probability. Individuals in the Sick state

can transition back to a Healthy state with 10% probability and to the Dead state with 5%

probability.

Table 6.2 on the following page represents the events implemented to run this simula-

tion. Events #0-#2 form a simulation header. Events #3-#6 represent transitions originating

from the Healthy state while #7-#10 represent transitions originating from the Sick state.

Each state has three events since there are two transitions emanating from each event and

therefore three competing options have to be checked: taking the first transition, taking

the second transition, or not taking any transition. The model generates a random variable

and stores it in the Random parameter. The three events afterward check the three different

possible options using the Random parameter and transition thresholds. This structure is

used in all the remaining examples.

Healthy Sick
0.2

Dead0.05

0.1

0.01

Figure 6.2: State transition diagram of a three state Markov model. There are 3 disease
states: Healthy, Sick, and Dead, where the Dead state is terminal
Initial conditions: Healthy = 100, Sick = 0 and Dead = 0.
Output: Number of people in each state for years 1-10.
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Table 6.2: SBML events for Example 2.

Trigger Assignments
0 InstructionNumber[d0] = 0 Time[d0] := Time[d0] + 1

InstructionNumber[d0] := 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] := 0.2

2 InstructionNumber[d0] = 0.2 ∧Dead[d0] := 0 ∧
Time[d0] < 10

InstructionNumber[d0] := 1

3 InstructionNumber[d0] = 1 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

4 InstructionNumber[d0] = 1.5 ∧
Healthy[d0] = 1 = 1 ∧ Random[d0] ≥
0∧ Random[d0] < (0 + 0.01)

Healthy[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 0

5 InstructionNumber[d0] = 1.5 ∧
Healthy[d0] = 1 = 1 ∧ Random[d0] ≥
(0 + 0.01) ∧ Random[d0] < (0 + 0.01) + 0.2

Healthy[d0] := 0
Sick[d0] := 1
InstructionNumber[d0] := 0

6 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] =
1 ∧ Random[d0] ≥ (0 + 0.01) + 0.2 ∧
Random[d0] < 1

InstructionNumber[d0] := 0

7 InstructionNumber[d0] = 1 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

8 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 =
1∧ Random[d0] ≥ 0∧ Random[d0] < (0 + 0.1)

Sick[d0] := 0
Healthy[d0] := 1
InstructionNumber[d0] := 0

9 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 =
1 ∧ Random[d0] ≥ (0 + 0.1) ∧ Random[d0] <
(0 + 0.1) + 0.3

Sick[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 0

10 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 ∧
Random[d0] ≥ (0 + 0.1) + 0.3∧Random[d0] < 1

InstructionNumber[d0] := 0
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6.2.3 Example 3: Stratified Markov Model

The example depicted in Figure 6.3 on the current page is similar to the previous

example. That is, this example starts with individuals in the Healthy state. Healthy in-

dividuals can transition to the Dead state with 1% probability. Individuals in the Sick

state can transition back to a Healthy state with 0.1 probability and to the Dead state with

5% probability. However, unlike the first two examples, this example starts introducing

microsimulation concepts. Every individual is given a gender. This parameter is given by

the Male parameter, which is a Boolean variable where the value is 1 if the individual is

male and 0 if the individual is female. This parameter is used in the F1(Male) function

that governs the transition probability. In this case, healthy males become sick with higher

probability than females. Therefore, simulation should show a higher sickness and death

rate amongst males.

This example is still simple enough to implement as two separate cohort models as can

be seen in Table 6.3 on the following page. The transition probabilities are controlled by the

Male parameter, which is used in event #5 and in the counter event #6. Microsimulation

becomes more significant and challenging when individuals have more characteristics.

This is explored further in the next examples.

Healthy Sick
F1 (Male)

Dead0.05

0.1

0.01

F1 (Male) = 0.1 · ( 1 + Male )
Figure 6.3: State transition diagram of a simple Markov model. There are three disease
states: Healthy, Sick, and Dead, where the Dead state is terminal. The transition probability
now depends on the cohort (male or female) and can be expressed as a function of a
Boolean covariate Male.
Initial conditions: Healthy = (50 males, 50 females), Sick = (0,0) and Dead = (0,0).
Output: Number of men and women in each disease state for years 1-10.
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Table 6.3: SBML events for Example 3.

Trigger Assignments
0 InstructionNumber[d0] = 0 Time[d0] := Time[d0] + 1

InstructionNumber[d0] := 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] := 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧
Time[d0] < 10

InstructionNumber[d0] := 1

3 InstructionNumber[d0] = 1 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

4 InstructionNumber[d0] = 1.5 ∧
Healthy[d0] = 1 = 1 ∧ Random[d0] ≥
0∧ Random[d0] < (0 + 0.01)

Healthy[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 0

5 InstructionNumber[d0] = 1.5 ∧
Healthy[d0] = 1 = 1 ∧ Random[d0] ≥
(0 + 0.01) ∧ Random[d0] < (0 + 0.01) + 0.1 ∗
(1 + Male[d0])

Healthy[d0] := 0
Sick[d0] := 1
InstructionNumber[d0] := 0

6 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] =
1 ∧ Random[d0] ≥ (0 + 0.01) + 0.1 ∗ (1 +
Male[d0]) ∧ Random[d0] < 1

InstructionNumber[d0] := 0

7 InstructionNumber[d0] = 1 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

8 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 =
1∧ Random[d0] ≥ 0∧ Random[d0] < (0 + 0.1)

Sick[d0] := 0
Healthy[d0] := 1
InstructionNumber[d0] := 0

9 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 =
1 ∧ Random[d0] ≥ (0 + 0.1) ∧ Random[d0] <
(0 + 0.1) + 0.3

Sick[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 0

10 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 ∧
Random[d0] ≥ (0 + 0.1) + 0.3∧Random[d0] < 1

InstructionNumber[d0] := 0
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6.2.4 Example 4: State Transition Model Dependent on Changing Parameters

This example is depicted in Figure 6.4 on the current page. This model can no longer

be implemented using Markov cohort models due to the yearly change in Age and the

stratification by Male and Age of the transition probabilities. This example captures the

heterogeneity of the population by describing each individual’s behavior. SBML arrays

allows for the definition of distinct individuals. Table 6.4 on the following page presents

the event sets for this example. SBML events plays a crucial role by increasing the Age

every year before transition probabilities are calculated. The new element in this model

is the change of Age before determining transitions in each simulation timestep. This can

be seen in Instructions #3 to #5 that behave similar to transitions -– note that some of the

code is redundant and can be replaced by one event since event #5 never fires. However,

this example maintains this code structure for compatibility and future extendibility. Once

again, our method uses InstructionNumber to guide the model during simulation such that

state transitions are considered at each simulation time step only after InstructionNumber

reaches the value of 2. Despite the complexity of this example, it is not yet representative

of the full range of phenomena we wish to model that include treatment and cost. The next

example shows how this is accomplished.

Healthy Sick
F1 (Age, Male)

Dead
0.1

F1 (Age, Male) = min(0.8, 0.1 · ( 1 + Male )  + 0.01 · Age)
F2 (Age, Male) = min(0.9, 0.01 · Age + 0.2 · Male)

F2 (Age, Male)

0.001 · Age

Figure 6.4: State transition model dependent on changing parameters. There are 3 disease
states: Healthy, Sick, and Dead, where the Dead state is terminal.
Pre-Transition Rules: Age increased by 1 each cycle.
Initial conditions: Healthy = (50 Male, 50 Female with Age =1,2,. . . ,50 for each individual),
Sick = (0,0) and Dead = (0,0).
Output: Number of men and women in each disease state for years 1-10 and their ages in
each state.
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Table 6.4: SBML events for Example 4.

Trigger Assignments
0 InstructionNumber[d0] = 0 Time[d0] := Time[d0] + 1

InstructionNumber[d0] := 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] := 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧
Time[d0] < 10

InstructionNumber[d0] := 1

3 InstructionNumber[d0] = 1 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

4 InstructionNumber[d0] = 1.5∧ 1 Age[d0] := Age[d0] + 1
InstructionNumber[d0] := 2

5 InstructionNumber[d0] = 1.5∧ 0 InstructionNumber[d0] := 2

6 InstructionNumber[d0] = 2 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 2.5

7 InstructionNumber[d0] = 2.5 ∧ Healthy[d0] =
1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <(

0 + Age[d0]
1000

) Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

8 InstructionNumber[d0] = 2.5 ∧ Healthy[d0] =

1 ∧ Random[d0] ≥
(

0 + Age[d0]
1000

)
∧

Random[d0] <
(

0 + Age[d0]
1000

)
+ min(0.8, 0.1 ∗

(1 + Male[d0]) + 0.01 ∗Age[d0])

Sick[d0] := 1
Healthy[d0] := 0
InstructionNumber[d0] := 0

9 InstructionNumber[d0] = 2.5 ∧ Healthy[d0] =

1 ∧ Random[d0] ≥
(

0 + Age[d0]
1000

)
+

min(0.8, 0.1 ∗ (1 + Male[d0]) + 0.01 ∗ Age[d0]) ∧
Random[d0] < 1

InstructionNumber[d0] := 0

10 InstructionNumber[d0] = 2 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 2.5

11 InstructionNumber[d0] = 2.5 ∧ Sick[d0] = 1 ∧
Random[d0] ≥ 0∧ Random[d0] < (0 + 0.1)

Sick[d0] := 0
Healthy[d0] = 1
InstructionNumber[d0] := 0

12 InstructionNumber[d0] = 2.5 ∧ Sick[d0] = 1 ∧
Random[d0] ≥ (0 + 0.1) ∧ Random[d0] < (0 +
0.1) + min(0.9, 0.2 ∗Male[d0] + 0.01 ∗Age[d0])

Sick[d0] := 1
Healthy[d0] := 0
InstructionNumber[d0] := 0

13 InstructionNumber[d0] = 2.5 ∧ Sick[d0] =
1 ∧ Random[d0] ≥ (0 + 0.1) + min(0.9, 0.2 ∗
Male[d0] + 0.01 ∗Age[d0]) ∧ Random[d0] < 1

InstructionNumber[d0] := 0
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6.2.5 Example 5: State Transition Model with Treatment and Costs

This example is depicted in Figure 6.5 on the current page. This model adds Blood

Pressure (BP) as another parameter that increases yearly at different rates. Once BP is

above a threshold, treatment is administered that drops it back closer to previous val-

ues. Moreover, costs include elements of Age and Treatment. Even this relatively sim-

ple example is complex enough to show why individual modeling is needed, and hence

making SBML Arrays essential. Table 6.5 on the following page shows the event scheme

implementation in SBML. Notice that in this example there are multiple post transition

rules implemented as event triplets: #3-#5 handle Age increment in pre-transition, #6-#8

handle BP pre-transition update, #17-#19 determine whether treatment is administered

post-transition, #20-#22 adjust BP according to treatment for next timestep post-treatment

calculation, #23-#25 calculate yearly cost that includes treatment cost, and finally #26-#28

accumulate total cost. The important elements of this simulation are the pre-transition

rules and post-transition rules. Each of those rule sets needs to be executed in sequential

order during simulation. SBML events allow for timing these using the InstructionCounter.

Healthy Sick
F1(Age, Male, BP)

Dead
0.1

F1 (Age, Male, BP) = min(0.8, 0.1 · ( 1 + Male )  + 0.01 · Age + ( 0.01 · ( BP-120 ) )2 )
F2 (Age, Male) = min(0.9, 0.01 · Age + 0.2 · Male)

F2 (Age, Male)

0.001 · Age

Figure 6.5: State transition diagram with functions depending on Age, Male, BP (Blood
Pressure). There are 3 disease states: Healthy, Sick, and Dead, where the Dead state is
terminal.
Pre-Transition Rules: Age increased by 1 and BP by Age/10 each simulation cycle.
Post-Transition Rules: Treatment = BP > 140 (i.e. becomes 1 when BP crosses 140
threshold); BP = BP − Treatment ∗ 10 (i.e. a drop of 10 once treatment is applied);
CostThisYear = Age+ Treatment ∗ 10 (i.e. cost depends on age and if treatment was taken
); Cost = Cost + CostThisYear (i.e. accumulates cost over time).
Initial conditions: Healthy = (50 Male, 50 Female with Age =1,2,. . . ,50 for each individual),
BP =120, Sick = (0,0) and Dead = (0,0).
Output: Number of men and women in each disease state for years 1-10 and their ages
and costs in each state. A stratified report by male and female and young – up to age 30
and old above age 30 is produced.
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Table 6.5: SBML events for Example 5.

Trigger Assignments
0 InstructionNumber[d0] = 0 Time[d0] := Time[d0] + 1

InstructionNumber[d0] := 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] := 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧
Time[d0] < 10

InstructionNumber[d0] := 1

3 InstructionNumber[d0] = 1 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 1.5

4 InstructionNumber[d0] = 1.5∧ 1 Age[d0] := Age[d0] + 1
InstructionNumber[d0] := 2

5 InstructionNumber[d0] = 1.5∧ 0 InstructionNumber[d0] := 2

6 InstructionNumber[d0] = 2 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 2.5

7 InstructionNumber[d0] = 2.5∧ 1 InstructionNumber[d0] := 3
BP[d0] := BP[d0] + Age[d0]

10

8 InstructionNumber[d0] = 2.5∧ 0 InstructionNumber[d0] := 3

9 InstructionNumber[d0] = 3 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 3.5

10 InstructionNumber[d0] = 3.5 ∧ Healthy[d0] =
1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <(

0 + Age[d0]
1000

) Healthy[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 4

11 InstructionNumber[d0] = 3.5 ∧ Healthy[d0] =

1 ∧ Random[d0] ≥
(

0 + Age[d0]
1000

)
∧

Random[d0] <
(

0 + Age[d0]
1000

)
+ min(0.8, 0.1 ∗

(1 + Male[d0]) + 0.01 ∗Age[d0] +
(

BP[d0]−120
100

)2
)

Sick[d0] := 1
Healthy[d0] := 0
InstructionNumber[d0] := 4

12 InstructionNumber[d0] = 3.5 ∧ Healthy[d0] =

1 ∧ Random[d0] ≥
(

0 + Age[d0]
1000

)
+

min(0.8, 0.1 ∗ (1 + Male[d0]) + 0.01 ∗ Age[d0] +(
BP[d0]−120

100

)2
) ∧ Random[d0] < 1

InstructionNumber[d0] := 4
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Table 6.5: (continued) SBML events for Example 5.

Trigger Assignments
13 InstructionNumber[d0] = 3 Random[d0] := uniform(0, 1)

InstructionNumber[d0] := 3.5

14 InstructionNumber[d0] = 3.5 ∧ Sick[d0] = 1 ∧
Random[d0] ≥ 0∧ Random[d0] < (0 + 0.1)

Sick[d0] := 0
Healthy[d0] := 1
InstructionNumber[d0] := 4

15 InstructionNumber[d0] = 3.5 ∧ Sick[d0] = 1 ∧
Random[d0] ≥ (0 + 0.1) ∧ Random[d0] < (0 +
0.1) + min(0.9, 0.2 ∗Male[d0] + 0.01 ∗Age[d0])

Sick[d0] := 0
Dead[d0] := 1
InstructionNumber[d0] := 4

16 InstructionNumber[d0] = 3.5 ∧ Sick[d0] =
1 ∧ Random[d0] < (0 + 0.1) + min(0.9, 0.2 ∗
Male[d0] + 0.01 ∗Age[d0]∧ Random[d0] < 1

InstructionNumber[d0] := 4

17 InstructionNumber[d0] = 4 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 4.5

18 InstructionNumber[d0] = 4.5∧ 1 Treatment[d0] := Age[d0] + 1
InstructionNumber[d0] := 5

19 InstructionNumber[d0] = 4.5∧ 0 InstructionNumber[d0] := 5

20 InstructionNumber[d0] = 5 Random[d0] := uniform(0, 1)
InstructionNumber[d0] := 5.5

21 InstructionNumber[d0] = 5.5∧ 1 BP[d0] := BP[d0] −
Treatment[d0]*10
InstructionNumber[d0] := 6

22 InstructionNumber[d0] = 5.5∧ 0 InstructionNumber[d0] := 6

23 InstructionNumber[d0] = 6 InstructionNumber[d0] := 6

24 InstructionNumber[d0] = 6.5∧ 1 CostThisYear[d0] := Age[d0] +
Treatment[d0] ∗ 10
InstructionNumber[d0] := 7

25 InstructionNumber[d0] = 6.5∧ 0 InstructionNumber[d0] := 7

26 InstructionNumber[d0] = 7 InstructionNumber[d0] := 7.5

27 InstructionNumber[d0] = 7.5∧ 1 Cost[d0] := Cost[d0] +
CostThisYear[d0]
InstructionNumber[d0] := 0

28 InstructionNumber[d0] = 7.5∧ 0 InstructionNumber[d0] := 0



107

6.3 Results
The examples described above are implemented in the Python language as SBML files

and then simulated using iBioSim, which supports SBML Arrays. Since these exam-

ples are not intuitive, a reference is needed to provide some comparison of results. The

MIcro Simulation Tool (MIST) is used to implement the same examples. Since MIST is

particularly designed for disease modeling, comparable results provide sufficient support

to the claim that SBML Arrays is suitable to create reproducible disease models. Fig-

ure 6.6 on page 109, Figure 6.7 on page 112, Figure 6.8 on page 115 presents the result

of simulation using MIST compared to SBML Arrays implemented in iBioSim. Since this is

random simulation, results should not match exactly using a single run of the simulation,

Figure 6.6 on page 109 shows this case, yet they are comparable enough to indicate a

similar simulation. To verify that the models indeed are identical, the models are executed

10 times and results are averaged as shown in Figure 6.7 on page 112. The average

results of 100 repetitions are shown in Figure 6.8 on page 115. The plots show clear

convergence as more repetitions are added. To provide additional support, we conducted

statistical analysis of results for each example in a similar way. Statistical analysis has been

performed on each example: Example 1 (Figure 6.9 on page 118), Example 2 (Figure 6.10

on page 119), Example 3 (Figure 6.11 on page 120, Figure 6.12 on page 121), Example

4 (Figure 6.13 on page 122, Figure 6.14 on page 124), and Example 5 (Figure 6.15 on

page 126, Figure 6.16 on page 133). In these analyses, the vertical axis represents the

absolute difference between MIST and iBioSim results. The left column shows the mean

as circles and standard deviation as squares for each year in simulation. The right column

shows the average difference of all years and the horizontal axis represents repetitions. The

convergence of the model results is clearly seen from those statistics for most plots where

both the mean and standard deviation difference is reduced by adding iterations. There are

several outliers where mean does not follow this trend, such as in example 3 healthy male

10 repetitions mean, yet even in those cases standard deviation statistic improves or stays

similar implying convergence. In Example 5 there are three cases where standard deviation

does not improve for 100 repetitions: dead young male and age old female, and cost old

female. However, in those examples the mean statistic improves and considering that

example 5 is highly stratified, has some relatively rare events and has somewhat volatile
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changes in age, so it is quite reasonable and expected. Therefore, we conclude that the

examples are reproduced properly between tools as clearly seen in Figure 6.8 on page 115.

6.4 Summary
Disease modelers have been modeling progression of diseases for several decades us-

ing tools such as Markov Models or microsimulation. However, they need to address

a serious challenge; many models they create are not reproducible. Moreover, there is

no proper practice that ensures reproducible models, since modelers rely on loose guide-

lines that change periodically, rather than well-defined machine-readable standards. Re-

cently, the SBML Arrays package has been developed, which extends the standard to allow

handling simulation of populations. This chapter demonstrates how such microsimula-

tion disease models can be encoded in SBML. As demonstrated through several abstract

examples, the disease models created in MIST and converted to SBML can be success-

fully simulated in iBioSim. To support this reproducibility, the models, example code,

and results for both implementations are available online at: https://github.com/Jacob-

Barhak/DiseaseModelsSBML. This repository includes detailed instructions to replicate

the results in this paper in both MIST and iBioSim as well as Python scripts to assist

SBML creation and additional statistical analysis. Although the results were generated

with MIST and iBioSim. It is important to remember that this paper promotes SBML with

arrays as a transfer mechanism between systems rather than focusing on a specific system.

In addition, all of the examples have been uploaded to the BioModels database [148]. The

models used in this paper have been assigned the following identifiers: MODEL1803120002,

MODEL1803120003, MODEL1803120004, MODEL1803120005, and MODEL1803120006 for

Example 1, Example 2, Example 3, Example 4, and Example 5, respectively.

Note that reproducibility has many facets. Different implementations of the models

with different tools may generate different results for such probabilistic models shown in

this chapter. Therefore, asking for the exact same output files generated by two systems

is not practical. However, it is expected that the same tools after receiving the SBML file

will be able to internally to repeat the same results given the same random seed. It is

also expected that repetition of the same model simulations on different systems have to

converge towards the same statistical solution.
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Figure 6.6: This figure shows the results comparison between MIST and iBioSim for one
run. (a) Examples 1, 2, and 3. (b) Example 4. (c) Example 5.
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Figure 6.6: (continued) This figure shows the results comparison be-
tween MIST and iBioSim for one run. (a) Examples 1, 2, and 3. (b) Example 4. (c)
Example 5.
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Figure 6.6: (continued) This figure shows the results comparison be-
tween MIST and iBioSim for one run. (a) Examples 1, 2, and 3. (b) Example 4. (c)
Example 5.
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Figure 6.7: This figure shows the results comparison between MIST and iBioSim for 10
runs. (a) Examples 1, 2, and 3. (b) Example 4. (c) Example 5.
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Figure 6.7: (continued) This figure shows the results comparison be-
tween MIST and iBioSim for 10 runs. (a) Examples 1, 2, and 3. (b) Example 4. (c)
Example 5.
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Figure 6.7: (continued) This figure shows the results comparison be-
tween MIST and iBioSim for 10 runs. (a) Examples 1, 2, and 3. (b) Example 4. (c)
Example 5.
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Figure 6.8: This figure shows the results comparison between MIST and iBioSim for 100
runs. (a) Examples 1, 2, and 3. (b) Example 4. (c) Example 5.
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Figure 6.8: (continued) This figure shows the results comparison be-
tween MIST and iBioSim for 100 runs. (a) Examples 1, 2, and 3. (b) Example 4. (c)
Example 5.
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Figure 6.8: (continued) This figure shows the results comparison be-
tween MIST and iBioSim for 100 runs. (a) Examples 1, 2, and 3. (b) Example 4. (c)
Example 5.
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Figure 6.9: Statistical analysis for example 1.
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Figure 6.10: Statistical analysis for example 2.
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Figure 6.11: Statistical analysis for males in example 3.
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Figure 6.12: Statistical analysis for females in example 3.
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Figure 6.13: Statistical analysis for males in example 4. (a) Healthy and Sick. (b) Dead and
Age.
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Figure 6.13: Statistical analysis for males in example 4. (a) Healthy and Sick. (b) Dead and
Age.
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Figure 6.14: Statistical analysis for females in example 4. (a) Healthy and Sick. (b) Dead
and Age.
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Figure 6.14: (continued) Statistical analysis for females in example 4. (a) Healthy and Sick.
(b) Dead and Age.
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Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.



127

0 2 4 6 8 10

Time

0

1

2

3

4

5

D
iff

er
en

ce

Difference Example 5 Sick young male

1 10 100

Repetitions

0.5

1

1.5

2

D
iff

er
en

ce

Average Difference Example 5 Sick young male

0 2 4 6 8 10

Time

0

1

2

3

4

D
iff

er
en

ce

Difference Example 5 Sick old male

1 10 100

Repetitions

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
iff

er
en

ce

Average Difference Example 5 Sick old male

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100
Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

(b)

Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.15: (continued) Statistical analysis for males in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.



133

0 2 4 6 8 10

Time

0

1

2

3

4

5

D
iff

er
en

ce

Difference Example 5 Healthy young female

1 10 100

Repetitions

0.5

1

1.5

2

D
iff

er
en

ce

Average Difference Example 5 Healthy young female

0 2 4 6 8 10

Time

0

1

2

3

4

5

6

D
iff

er
en

ce

Difference Example 5 Healthy old female

1 10 100

Repetitions

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
iff

er
en

ce

Average Difference Example 5 Healthy old female

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

(a)

Figure 6.16: Statistical analysis for females in example 5. (a) Healthy. (b) Sick. (c) Dead.
(d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.16: (continued) Statistical analysis for females in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.16: (continued) Statistical analysis for females in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.16: (continued) Statistical analysis for females in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.



137

0 2 4 6 8 10

Time

0

2

4

6

8

10

12

D
iff

er
en

ce

Difference Example 5 BP young female

1 10 100

Repetitions

0

2

4

6

8

10

D
iff

er
en

ce

Average Difference Example 5 BP young female

0 2 4 6 8 10

Time

0

10

20

30

40

50

60

D
iff

er
en

ce

Difference Example 5 BP old female

1 10 100

Repetitions

0

5

10

15

20

D
iff

er
en

ce

Average Difference Example 5 BP old female

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100
Single Run

Mean of 10

Mean of 100

STD of 10

STD of 100

(e)

Figure 6.16: (continued) Statistical analysis for females in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.16: (continued) Statistical analysis for females in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.
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Figure 6.16: (continued) Statistical analysis for females in example 5. (a) Healthy. (b) Sick.
(c) Dead. (d) Age. (e) Blood Pressure. (f) Cost this year. (g) Cost.



CHAPTER 7

CONCLUSIONS

In the middle of a reproducibility crisis across many disciplines, community-driven

standards in systems and synthetic biology are being developed to assist in the repro-

ducibility of biological models and designs. One such effort is the SBML standard. While

SBML has allowed the representation of many biological models, modifications to the

standard are necessary to enable the representation of more complex models. This is partic-

ularly true for heterogeneous population models. However, as models become more com-

plex, efficient simulation methods need to be developed that scale accordingly. This dis-

sertation proposes extensions and methodologies for the creation of heterogeneous popu-

lation models and hybrid models, and simulation methods that can simulate such models

efficiently. This chapter concludes the dissertation by highlighting the main contributions

of this research, which are summarized in Section 7.1, and future directions of this research,

which are discussed in Section 7.2.

7.1 Summary
This dissertation presents efficient modeling and simulation methods for heteroge-

neous populations using the SBML standard. The SBML standard is widely adopted and

it is very active within the multi-scale modeling community that tries to address different

types of modeling that traverse scales, from cells to organs to populations. When modeling

many types of systems in different scales, it is essential to have many modeling capabilities.

SBML has 280 tools reported that support it as well as an established development pro-

cess, specifications, and annual meetings. This makes it an established infrastructure for

modeling transport mechanism. Therefore, enriching SBML to support microsimulation

may make it an attractive candidate for adoption for modelers that need to support many

modeling systems. Population models are often described using hierarchy, which is an

abstraction used for the reasoning of complex designs by building larger designs from
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smaller designs. SBML can represent hierarchical designs using the comp package. Even

though SBML can represent hierarchical models, simulations tools typically flatten out the

hierarchy and consequently lose important structural information in the model. This dis-

sertation proposes a hierarchical simulation method based on Gillespie’s SSA that avoids

flattening. Results have shown that the proposed simulator improves runtime and mem-

ory usage. While the hierarchical simulator has to perform replacements and deletions on

the fly, such overhead can be avoided with efficient data structures. Although SBML is

powerful and allows the representation of complex models, the standard is not efficient

for the representation of large designs, such as heterogeneous populations. Oftentimes,

population models require a large number of copies of regular structures. For this reason,

the arrays package has been proposed to address this issue. This dissertation demonstrates

that the arrays package can be used to construct large lattice-based population models

quite easily. In addition, this dissertation proposes an efficient simulation method that

takes advantage of the arrays structure by preventing the unnecessary duplication of data

caused by flattening. Results have shown that memory usage is improved significantly.

However, the method adds some overhead when retrieving the value of a certain vari-

ables within an array due to the necessity of computing indices when accessing arrayed

elements.

Another major contribution of this dissertation is towards reproducibility. In biology,

different modeling formalisms best describe different biological models. Hence, it is im-

portant for a model to be able to combine different formalisms. This dissertation demon-

strates how hybrid models can be described in SBML using hierarchy. This is demon-

strated by using DFBA as an example. Such models have been created and successfully

exchanged between two tools, where the hierarchical simulator provides the necessary

infrastructure for simulating such models. In addition, this dissertation shows how SBML

can contribute to the disease modeling field by modeling microsimulation disease models

using the SBML arrays package. Once disease models are implemented in SBML, it opens a

multitude of software tool options for disease modelers and may have considerable impact

on the field (in particular, a significant impact on model reproducibility). Once model

reproducibility is no longer an issue, model credibility will certainly increase.
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7.2 Future Work
This section discusses future directions of the work presented in this dissertation.

7.2.1 Simulation of Population Dynamics

In electrical engineering, the size of the circuit is constant. Once an integrated circuit

is fabricated, the number of transistors stays the same. Unlike electronic circuits, cellular

populations are inherently dynamic. Namely, cells undergo dynamic processes such as cell

division and death, and such events add or remove sub-models from the simulation dy-

namically. The proposed hierarchical simulator can be modified to support such changing

model structures, and this requirement is actually a major motivation for the development

of this simulator.

7.2.2 Explore Ways to Improve Performance

A future enhancement is to improve even further the efficiency of the simulation meth-

ods presented in this dissertation. One way to accomplish this is through dynamic model

abstraction. In previous work, significant improvements in analysis time are achieved

by removing unimportant details using automated model abstraction before simulation

which improves simulation time while still delivering accurate results. A dynamic hierar-

chical simulator has the potential to allow these abstractions to be performed on-the-fly to

manage complexity as needed to balance computational cost with accuracy. Finally, given

that dynamic hierarchical models are inherently concurrent, parallel processing can also

be explored to further improve simulation time.

7.2.3 Improve Arrays Support

The arrays simulator presented in this dissertation handles arrays on-the-fly. Handling

arrays on-the-fly allows one to leverage sparse array data structures to further improve

the memory-efficiency. Namely, the simulator can be extended to support sparse arrays.

Furthermore, the simulator can potentially support the analysis of arrayed models with

dynamically changing sizes, which cannot be accomplished when a model is flattened

because flattening is that the model has to be statically computable.
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7.2.4 Extend Hybrid Modeling Capabilities

Currently, the proposed approach supports the modeling of DFBA models based on the

SOA simulation algorithm. Most DFBA models are stiff and small time steps are required

for stability, making the SOA approach computationally expensive. Another disadvantage

of the SOA approach is that it requires a sufficiently small fixed time step to give accurate

results. Future directions include the exploration of adaptive time steps for executing the

DFBA with SOA, alternative DFBA methods, such as DOA or DA, and extending our

scheme to encode such models. In addition, only small to medium-size DFBA models

have been encoded in our proposed approach. For future work, genome-scale metabolic

models will need to be encoded. This would allow to evaluation of the scalability and

performance of the proposed approach.

The hierarchical simulator has shown that it is capable of simulation models that couple

different modeling formalisms. This can be further generalized and allow the simulation

of models with different representations (e.g. MATLAB, scripting languages, CellML, and

others).

7.2.5 Extend Disease Modeling Capabilities

The long-term goal of this effort of implementing disease modeling examples in SBML

is to eventually allow converting MIST examples to SBML using the SBML Arrays package.

The provided examples pave the way in this direction. Those examples do not cover all

possible modeling elements used in epidemiological modeling, such as infectious disease

modeling, discrete event simulation, or population generation. Only the very basic essen-

tial building block elements, that are regularly used to model chronic disease progression

at the individual level, are presented here. Those examples are sufficient to support tasks

such as life expectancy estimation and cost effectiveness analysis, which are core uses of

disease models. Future work will include adding more elements such as handling event

states, splitting and joining disease processes and other elements supported by MIST with

the intention to promote SBML Arrays to be part of the SBML standard. In this work,

the model transport is partially manual since MIST did not write the SBML code that was

transported to iBioSim. Future work will address automation of this mechanism. This

work is intended to establish feasibility of SBML Arrays as a model transport mechanism.
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It is only a step towards adoption by SBML editors into the SBML standard, which already

provides SBML Arrays specification and tools towards such a goal.

7.2.6 Improve SED-ML support

The simulators presented in this dissertation support SED-ML through iBioSim. While

the tool supports many features of SED-ML, there are many features that are not sup-

ported. However, because the simulators presented in this dissertation can be executed as

stand-alone applications, they are easier to implement the features of SED-ML that are not

supported in iBioSim, such as repeated tasks and data generators.

7.2.7 Enriched Cellular Population Modeling

The benefit of supporting standards is that workflows can be created. For future work,

this research can be extended to allow a workflow for the generation of population models

of cell-cell communication models from sub-modules inferred by data. Namely, well-

characterized sub-models represented in SBML can be placed in a population and sim-

ulation can be used to predict the behavior of such models.
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R. Keller, C. Wrzodek, S. Fröhlich, N. E. Lewis, C. J. Myers, N. Le Novère, B. Ø.
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[120] K. Höffner, S. M. Harwood, and P. I. Barton, “A reliable simulator for dynamic flux
balance analysis,” Biotechnology and Bioengineering, vol. 110, no. 3, pp. 792–802, oct
2012.
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