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ABSTRACTThe design and synthesis of asynchronous circuits is gaining importance in boththe industrial and academic worlds. Timed circuits are a class of asynchronouscircuits that incorporate explicit timing information in the speci�cation. Thisinformation is used throughout the synthesis procedure to optimize the design.In order to synthesize a timed circuit, it is necessary to explore the timed statespace of the speci�cation. The memory required to store the timed state spaceof a complex speci�cation can be prohibitive for large designs when explicit rep-resentation methods are used. This thesis describes the application of BDDs andMTBDDs to the representation of timed state spaces and the synthesis of timedcircuits. These implicit techniques signi�cantly improve the memory e�ciency oftimed state space exploration and allow more complex designs to be synthesized.
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CHAPTER 1INTRODUCTION
A journey of a thousand miles mustbegin with a single step.- Lao-tzu, The Way of Lao-tzuRecent trends in the integrated circuit industry, such as decreasing feature sizesand increasing clock speeds, make global synchronization across large chips di�cultto maintain. In fact, many modern chips have a number of communicating clockdomains, which eliminate many of the advantages of a synchronous design andgreatly increase design complexity. Furthermore, in most cases these designs arecreated in an ad hoc fashion, with little tool support for synchronization issues,and are di�cult to verify. As a result, many designers have become interested inasynchronous circuits because they eliminate the need for global synchronization.Asynchronous circuits consist of groups of independent modules which communi-cate using handshaking protocols. Since there is no global clock, clock distributionand skew are not issues. Power dissipation is also reduced because gates onlyswitch when they are doing meaningful work, instead of at every clock edge. Also,eliminating the global clock permits modules to work at their own pace and allowsaverage-case performance to be realized. There are a number of di�erent stylesfor designing asynchronous circuits. Most asynchronous design methodologies arebased on the assumption that nothing is known about the delays between signaltransitions. Therefore, the circuit must be constrained to work correctly even incases which never occur in a realistic implementation. The overhead necessary toguarantee this behavior often makes the asynchronous average-case worse than the



2synchronous worst-case.Timed circuits are a class of asynchronous circuits which use explicit timinginformation in circuit synthesis. Although precise timing relationships are oftenunknown before synthesis and technology mapping, the designer usually knowssome reasonable estimates. Applying even rough estimates can lead to the removalof large amounts of circuitry that would be required for a speed-independent design.These timing assumptions can then be formally veri�ed after synthesis when theactual timing values are known. This design style can lead to signi�cant gains in cir-cuit performance over asynchronous circuits designed without timing assumptions[29].Timed circuit synthesis consists of two phases. The �rst stage involves the ex-ploration of the timed state space to determine which untimed states are reachableby the system. Because these state spaces grow exponentially with the numberof signals, it is important to �nd e�cient methods to store the information com-piled. One method of accomplishing this is to implicitly represent the data pointsrepresenting the state space.The second stage consists of repeatedly dividing the state graph into subregionsto determine the necessary behaviors. For each signal, the graph is divided intothose regions where the signal should be enabled to rise, should be enabled to fall,should remain high, or should remain low. Equations are derived to represent allpossible circuit implementations which conform to these behaviors.We have adapted the ATACS tool to use implicit methods to improve memoryperformance. Binary Decision Diagrams (BDDs) [8] are used throughout cir-cuit synthesis. Where appropriate, Multi-terminal Binary Decision Diagrams [16](MTBDDs, also known as Algebraic Decision Diagrams or ADDs [34]) are used tostore integer valued data. BDDs are a highly e�ective way to store and manipulateboolean functions. MTBDDs allow this methodology to be extended to integervalued functions with boolean inputs. We have found the (MT)BDD representationto be much smaller than an equivalent explicit representation.



31.1 Related workMany systems exist for the synthesis of untimed asynchronous circuits [21].One methodology is the use of fundamental mode designs [37], where signals areconstrained to change one at a time, and must give the system time to settle beforeother signals may change. Another possibility is burst-mode circuits [17, 31, 40],where this limitation is extended to allow a set (or burst) of inputs to arriveconcurrently, followed by a burst of outputs. Delay-insensitive circuits are a thirdmethod, with the assumption that the delays of both wires and gates are unbounded[7, 20, 27]. Speed-independent circuits are similar, but assume that wire delays arenegligible [2, 12, 26]. These synthesis methods use little or no timing information,and therefore can lead to ine�cient circuits because they need to correctly handlecases which never occur in practice.Many models have been proposed for the analysis of timed systems. These rangefrom continuous timers on individual events to large equivalence classes representinggroups of events. The timed circuit synthesis method used in ATACS [29] allows alower and an upper bound to be assigned to the causal relationships between signals.Timing analysis is performed using geometric regions, which have been shown tobe an e�cient method for representing information about timed state spaces [4].Unfortunately, large state spaces are still generated when the method is applied tolarge, complex designs, and memory size can be prohibitive.BDDs have been shown to be an e�cient way to represent design information andlarge state spaces. In [11], BDD techniques are developed to decompose generalizedC-element circuits in a hazard free manner, the result being a parameterized descrip-tion of all hazard free decompositions. In [6], implicit methods are applied to theanalysis of timed systems. BDDs are used to perform discrete time analysis, withtiming values represented as binary vectors. The system is unable to analyze largemodels due to the complexity of the discrete time model used. The COSPAN toolalso uses implicit methods to perform state space analysis, but uses the unit-cubealgorithm [1]. This method also su�ers from state space explosion when used onrelatively small designs.



41.2 ContributionsFigure 1.1 shows the design ow of the ATACS tool. The focus of this work hasbeen to apply implicit methods to timed state space exploration and the synthesisof timed circuits within this tool framework.MTBDDs have been used as an implicit data structure to store informationcompiled during state space exploration. A standard explicit state space explorationmethod is used, but the list of geometric regions encountered as well as the resultingstate graph are represented using MTBDDs. This mixed approach of implicitstructures and explicit algorithms results in a tradeo�. For large examples thememory performance of the MTBDD representation can be two to three timesbetter than the explicit representation, but unfortunately also takes an order ofmagnitude more time to manipulate. In those cases where the data set would not
Compiler

TERS/TEL

RSG

PRS

Synthesis

State Space Explosion

VHDL HSE AFSM Etc.

Figure 1.1. ATACS design ow.



5otherwise �t in the memory of the computer, it is a win.In the synthesis stage the entire process has been reengineered to use implicitalgorithms. Runtimes for the synthesis stage using this method compare reasonablywell with heuristic single-cube approaches. It also results in a substantial improve-ment compared with the best exact method. (Of course, this gain is dwarfed bythe amount of time spent in state space exploration.) The main advantage of thisapproach is that it allows the derivation of solution spaces containing all validsolutions to the synthesis problem.There is another gain which is somewhat di�cult to quantify: the use of implicitmethods provides a certain elegance to the coding process. The algorithms used inthis work can be expressed as mathematical operations on boolean functions, andthe use of a BDD package allows direct mapping to primitive operations on BDDstructures. Such code is easier to develop and decode, more aesthetically pleasing,and simpler to verify. 1.3 OutlineChapter 2 discusses issues relating to the exploration of timed state spaces.Chapter 3 discusses methodologies for timed circuit synthesis. Finally, Chapter 4gives some conclusions and some ideas for future work.



CHAPTER 2STATE SPACE EXPLORATIONI could be bounded in a nutshell,and count myself the king of in�nitespace...- Hamlet, Act 2, Scene 2Timed circuit synthesis is dependent on a complete exploration of the timed statespace of the speci�cation. This state space can be very large since it must include,not only all of the combinations of signal values allowed by the speci�cation, butalso the time relationships between signal �rings. However, it can be smaller thanthe complete state space of an equivalent speci�cation without timing since statesthat are not reachable given the timing information are not explored.The size of the timing information depends on the timing algorithm being used.In fact, in a naive algorithm where a continuous timer is associated with each signaltransition, the timed state space is in�nite. A slightly better representation wouldbe to attach a clock to each signal transition that advances only in discrete timesteps [10]. This does make the state space �nite, but it still explodes [36]. A BDDmethod has been proposed in [6], to improve discrete time memory performance,but it does not address the state explosion problem inherent in discrete time. Thegeometric region method, where timing information is stored as a constraint matrixrepresenting relationships between signal transition times, has been shown to bean e�cient way to represent a timed state space [4, 30, 35, 36]. However, evenwith a region based representation, the memory required to store such a statespace explicitly can be prohibitive for large designs. In many domains, implicitmethods have been shown to signi�cantly reduce memory usage [9]. Since statespace exploration is such a memory intensive process, it is an excellent candidate



7for such an approach. 2.1 Motivating exampleThe circuit shown in Figure 2.1 is a self-precharging dynamic OR gate (SPDOR)and is used as an example throughout this chapter. Figure 2.1(a) shows a blockdiagram of the circuit, and Figure 2.1(b) shows the waveforms which describe thebehavior of the circuit. Briey, the circuit receives a pulse from either i1 or i2, andreacts with a pulse on the output a. A rising transition on the output causes thefeedback signal x to fall, which causes the reset of signal a. The falling transitionon a then sets x high, and the gate is ready to process another pulse. The timingannotated handshaking expansion for this circuit is shown in Figure 2.2.2.2 Explicit timed state space explorationThe state space exploration procedure used by ATACS begins with a timed event-rule (ER) structure, described formally in [4, 29]. Timed ER structures can repre-sent a set of speci�cations equivalent to those represented by both time and timedPetri nets, as well as others that are quite di�cult to represent with a Petri net.A timed ER structure consists of a set of rules that represent causality betweensignal transitions, or events, as well as a set of conicts which are used to modeldisjunctive behavior. Rules are annotated with a bounded timing constraint whichmust be satis�ed in order to enable a transition to occur. Each rule is of the formhe; f; l; ui, where e is the enabling event, f is the enabled event, and hl; ui is the
i1
i2

x

a

i1

i2

a

x(a) (b)Figure 2.1. SPDOR (a)block diagram and (b)waveform.



8

module synor;delay idelay = <500,550;269,299>;delay xdelay = <101,111;99,109>;delay adelay = <201,221;199,229>;input i1 = {false,idelay};input i2 = {false,idelay};output a = {false,adelay};output x = {true,xdelay};process a;*[[ i1+ -> a+; x-; a-; x+| i2+ -> a+; x-; a-; x+]]endprocessprocess ienv;*[[ skip -> i1+; i1-| skip -> i2+; i2-]]endprocessendmodule Figure 2.2. CHP description of the SPDOR gate.



9bounded timing constraint. The timing constraint places a lower and upper boundon the timing of a rule. A rule is satis�ed if the amount of time which has passedsince the enabling event has exceeded the lower bound of the rule. A rule is saidto be expired if the amount of time which has passed since the enabling event hasexceeded the upper bound of the rule. Ignoring conict, an event cannot occuruntil all rules enabling it are satis�ed. An event must always occur before everyrule enabling it has expired. Since an event may be enabled by multiple rules, it ispossible that the di�erences in time between the enabled event and some enablingevents exceed the upper bound of their timing constraints, but not for all enablingevents.A graphical representation of the timed ER structure for the SPDOR gateis shown in Figure 2.3. Nodes represent signal transitions and arcs representcausal relationships between them. Each arc should be annotated with a set oftiming bounds, but in this drawing most have been removed to keep things simple.Tokens on arcs indicate that the preceding transition has occurred but the followingtransition has not. Except where signals are in conict, all incoming arcs must havetokens to �re a transition. Where two signals conict but both have causal arcs tothe same event, only one of the two tokens need be present to cause the transition.In a similar fashion, when a signal transition causes two conicting events, tokensare placed on both arcs but the occurrence of one of the conicting events removesthe token enabling the other.The goal of state space exploration is to derive the state graph (SG), which isnecessary for circuit synthesis. A SG is a graph in which the vertices are untimedstates and the edges are possible state transitions. A transition between two statesexists if the speci�cation allows the circuit to move from one state to the other withone signal transition. A reduced state graph (RSG) is a SG where some brancheshave been pruned because timing information has shown them to be unreachable.A RSG is modeled by the tuple hI; O;�;�i where I is the set of input signals, Ois the set of output signals, � is the set of states, and � � ��� is the set of edges.For each state s, there is a corresponding labeling function s : I [O! f0; R; 1; Fg



10
i1+ i2+

i1-

x-/1 x-/2
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[201,221]
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[269,299]

[99,109]

Figure 2.3. Self-precharging dynamic OR gate: timed ER structure.which returns the value of each signal and whether it is enabled, i.e.,s(x) � 8>>><>>>: 0 if x is stable low in sR if x is enabled to rise in s1 if x is stable high in sF if x is enabled to fall in sIt is useful to also de�ne a function val which strips the excitation information, i.e.,val(s(x)) � ( 0 if s(x) = 0 or s(x) = R1 if s(x) = 1 or s(x) = FFinally, the predicate enabled returns true if the signal is enabled, i.e.,en(x) � (x = R _ x = F ):Traditional de�nitions of state labeling functions have not included the enablingof signals as it can usually be inferred from the set of state transitions. In timedcircuits, however, it is possible that a signal is enabled, but another signal always�res �rst. In this case, there would be no state transition out of that state in whichthat signal �red, and thus, it would not be possible to infer from the state graph



11that the signal is enabled. This information is necessary to properly synthesizetimed circuits for the output signals. The notation 1* (or 0*) has also been usedto indicate that a signal is enabled to change.A state graph is de�ned to be well-formed if for any state transition (s; s0) in �,the value of exactly one (denoted by 9!) enabled signal in s changes to a new valuein s0. , i.e., (s; s0) 2 �) 9!x 2 I [ O:val(s(x)) 6= val(s0(x))The signal x that di�ers in value in the state transition (s; s0) is denoted as follows:s x! s0. Our synthesis procedure also requires that the state graph be completestate coded, de�ned to be that for any two states in which all signals have the samevalue, any output signal enabled in one state is also enabled in the other [12].Figure 2.4 shows the RSG describing the behavior of the SPDOR circuit. In theinitial state (RR10) both i1 and i2 are enabled to rise, while a is stable low and xis stable high. This state may be exited either on the transition i1 " or i2 ". Notethat the transitions i1 " and i2 " are in conict, as indicated in Figure 2.3; one orthe other may occur, but not both. The occurrence of i1 " therefore disables i2 ",and we enter state (F01R), not (FR1R). In this state, either a may rise or i1 may
F0F1
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RR10
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0FF1

RR0F
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x+
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<i1,i2,x,a>

Figure 2.4. RSG for the self-precharging dynamic OR gate.



12fall, while i2 is stable low, and x is stable high. Notice that there is no edge for thetransition i1 #. As shown in Figure 2.3, the maximum delay for a rising is 221 timeunits, while the minimum delay for i1 falling is 269 time units. This determinesthat a " always occurs �rst, so (001R) is eliminated as a reachable state. Firingthis transition causes the system to enter state (F0F1). This state is representedby the enabling tokens shown in Figure 2.3. Again, although su�cient tokens arepresent to �re both the event i1- and the event x-/1, the timing indicates that themaximum time from i1+ to i1- is 299 time units, while x- occurs no less than 300time units after i1-. Therefore, i1- always occurs �rst and the system enters state(RRF1).While the state space of this system is relatively easy to �nd, the time constraintson most systems are more di�cult to analyze. It is important to have an e�cientalgorithm to perform this analysis. The method used is to perform a depth �rstsearch to �nd all reachable timed states. A timed state for an ER structure consistsof a set of rules whose enabling events have �red, Rm, the state of all the signals,sc, and a set of timing information, TI. The vector sc de�nes an untimed stateand contains a variable for each signal in the system. These variables may take onany one of the following values: 0 denotes a stable low signal, R denotes a signalenabled to rise, 1 denotes a stable high signal, and F denotes a signal enabled tofall. The timing information, TI, is represented with geometric regions, which were�rst introduced in [5, 19, 24].When the geometric region approach is used for timing analysis, a constraintmatrix M speci�es the maximum di�erence in time between the enabling times ofall the currently enabled rules. The 0th row and column of the matrix contain theseparations between the enabling times of each enabled rule and a dummy rule r;.The enabling time of r; is de�ned to be uniquely 0. Each entry mij in the matrixM has the value max(t(enabling(j))� t(enabling(i))), which is the maximum timedi�erence between the enabling time of rule j and the enabling time of rule i. Sincethe enabling time of r; is always zero, the maximum time di�erence between theenabling of rule i and the enabling of rule r; (m0i) is just the maximum time since



13i was enabled. The maximum time di�erence between the enabling time of r; andthe enabling time of rule i (mi0) is the negation of the minimum time since i wasenabled. Note that M only needs to contain information on the timing of the rulesthat are currently enabled, not on the whole set of rules. This constraint matrixrepresents a convex n-dimensional region, where n is the number of enabled rules.Each dimension corresponds to a rule, and the �ring times of the enabled eventsfor the rules can be anywhere within the space. Figure 2.5(a) shows a samplegeometric region, and Figure 2.5(b) shows the corresponding constraint matrix.Again, the region is a convex polygon de�ning the relationships between the timersassociated with the active rules at a given point in the state space exploration, andthe matrix is a concise numerical description of the region. In this case, the regionindicates that the timer t1, associated with rule r1, can have a value anywherefrom two to twenty time units, but no more than �ve time units greater than t2.(t0 � t1 � �2; t1 � t0 � 20, and t1 � t2 � 5.) Similarly, timer t2, associated withrule r2 can have a value between zero and �fteen, but must be no more than twotime units less than t1. (t0 � t2 � 0; t2 � t0 � 15, and t2 � t1 � �2.) The polygonshown in Figure 2.5(a) contains all points (t2; t1) which conform to these timingconstraints.In order to track progress through the timed state space, it is necessary to recordthe geometric regions encountered for each state so that previously explored pathsare not repeated. The explicit method maintains the timed state list and the stategraph in a joint structure, a hash table where each entry is an augmented timedstate (a timed state with transition links). Each entry in the state table containsthe sc vector and the Rm set for that state with a linked list of associated geometricregions. Pointers are stored with each state to indicate its predecessor and successorstates. 2.3 Implicit timed state space explorationThe explicit enumeration method described above requires too much memoryto e�ectively represent complex designs. Therefore, it is necessary to explore
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(a) (b)Figure 2.5. A sample (a)Geometric region and (b) the corresponding constraintmatrix.alternative methods of storing this information. Since much of the data compiledduring state space exploration consists of simple bit vectors, we have chosen touse BDDs, which have been shown to be a highly e�cient method for storingand manipulating Boolean functions [8]. Because geometric region information isinteger-valued, MTBDDs have been chosen to store the region matrices. MTBDDsare a type of BDDs which allow terminal nodes to contain numerical data, ratherthan just the constants TRUE and FALSE. Geometric region matrices only haveentries for currently enabled rules. However, to make the representation moremanageable, the matrices have been expanded to a canonical form, where rowsand columns representing rules that are not enabled have been �lled with a \notan entry" symbol, the constant FALSE. MTBDDs collapse paths with commonstructural features to the fewest nodes possible. In addition, because of the natureof BDD implementations, it is possible for separate geometric regions with similarstructures to have common subregions stored in the same memory location.The �rst step in building the representation is to use BDDs to store the bitvector that indicates which rules are in Rm. To accomplish this, an atomic BDDis allocated to represent each rule. These BDDs are assembled into the array



15m = (m1; :::mn), where n is the number of rules in the timed ER structure. Anatomic BDD is one which represents a single variable. As shown in Algorithm 2.3.1(see Figure 2.6), a new BDD, �, is created with the value TRUE. Each memberof the rule set R is then considered. If that rule is a member of the Rm set, thecorresponding mi BDD is added to �, otherwise the complement of the appropriatemi BDD is added. The resulting BDD uniquely represents the Rm set. In an ERstructure with four rules, where R = fr1; r2; r3; r4g, m = (m1; m2; m3; m4), andRm = fr1; r3g, (meaning that rules 1 and 3 are enabled, but rules 2 and 4 are not),the implicit representation of the set of enabled rules would be composed of theproduct m1 ^ m2 ^ m3 ^ m4 and is shown in Figure 2.7(a). (Note that BDDs asshown in this thesis are drawn to be relatively readable, and do not necessarilyindicate the actual node ordering or machine representation of these structures.)It is also necessary to store the list of regions associated with each Rm set. Torepresent this list structure, a numerical index i is used to indicate that a givenmatrix is the ith matrix associated with a given Rm set. Any number i can beviewed as a bit vector ~i = (i0; :::; in), where i0 is the low order bit of the binaryrepresentation of i, and in is the high order bit. A set of BDD variables is usedto represent the binary value of i, and a number BDD is constructed in a manneranalogous to that used for theRm set. For instance, the BDD shown in Figure 2.7(b)represents the number \2" in a four-bit notation. Numbers of this form are used toAlgorithm 2.3.1 (Extract Rm BDD)bdd FindRmBDD(rule set R, rule set Rm, bdd array m) fbdd � = TRUEforeach (ri 2 R)if (ri 2 Rm) then� = � ^m[i]else� = � ^ :m[i]return �g Figure 2.6. Function to extract a BDD for the rule set Rm.
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(b)Figure 2.7. MTBDD representation of (a) Rm and (b) the number \2".create a dynamically sized array of matrices. In order to conserve space, preciselyenough bits are used to represent the largest number currently needed.There are many ways to represent regions, and on the surface using MTBDDswould seem to be a very ine�cient method. Methods for representing sparsematrices have been developed for scienti�c computing that are much more e�cientat representing single matrices. There are two major bene�ts to this approach.First, it allows matrices to be manipulated within the BDD paradigm, which amongother advantages allows two matrices to be compared for equality in constant timeregardless of size. The greatest advantage, however, is the capacity to amortize thecosts of storage across many matrices. Many of the matrices encountered in practicedi�er very little from one another. The BDD storage system used in ATACS allowsadditional matrices to be added to the database and only consume the resourcesnecessary to represent the new elements. This often leads to the use of only afew BDD nodes per matrix. Similarly the representation of numbers with BDDbit vectors is extremely ine�cient for small numbers of integers, but the costs arespread if many are used, and the use of this format is necessary to enable thismatrix representation.A matrix with integer entries can be viewed as a function (N �N 7! Z), whichtakes row and column indices and returns the appropriate matrix entry(M(r; c) =



17Mrc). A square matrix can also be viewed as a function from boolean values tointegers, f0; 1gn � f0; 1gn 7! Z. The row and column indices of the geometricregion matrices are thus parameterized. Each is represented as a boolean vector ~r =(r0; r1; r2; :::; rn) or ~c = (c0; c1; c2; :::cn), so the function can be viewed as M(~r;~c) =Mrc. MTBDDs are an ideal way to represent this type of function [15]. BDDs areconstructed for each necessary row and column index, and stored in arrays r andc. The BDD for the ith column index is stored in c[i] and the BDD for the ithrowindex is stored in r[i]. For example, r[3] represents the value \3" using a set ofvariables which indicate that it is a row index. Each augmented matrix is thentransformed into a MTBDD. Figure 2.8 shows the algorithm used to accomplishthe transformation. First, � is initialized to FALSE. Then each matrix locationis considered in turn. If that location is not tagged as \not an entry", the BDD� is set to represent the appropriate indices and a terminal node is created withthe proper value. The entry is then inserted into the matrix BDD using the ITEoperator. This operator takes three parameters: the �rst must be a normal BDD,and the others may be either MTBDDs or normal BDDs. The e�ect of the callITE(�; ; �) is to take all paths in � which lead to TRUE and link them to ,and all paths in � that lead to FALSE and link them to �. (This is equivalent tothe operation (� ^ ) _ (:� ^ �) if all parameters are normal BDDs.) Since anypath not leading to a valid terminal ends in FALSE, there is no need to explicitlylink \not an entry" locations. Figure 2.9 shows the MTBDD representation of thefollowing matrix: 0BBBBBB@ 0 20 x 15 x�2 0 x �2 xx x x x x0 5 x 0 xx x x x x
1CCCCCCASince rows 2 and 4 and columns 2 and 4 are �lled with \not an entry" (and sincethere is no row or column 5, 6, or 7), the BDD representation truncates thosepaths with FALSE as soon as possible. Matrices represented in this form can becompared for equality by checking to see if they are the same MTBDD, which is asimple pointer check.
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Algorithm 2.3.2 (Construct Matrix MTBDD)mtbdd MakeMatrixBDD(int n, matrix M, bdd vector r, bdd vector c) fmtbdd � = FALSEforall (i : 0 � i � n)forall (j : 0 � j � n)f if M [i; j] 6= \not an entry00 thenf bdd � = r[i] ^ c[j]mtbdd  = terminal(M [i; j])� = ITE(�; ; �)ggreturn �g Figure 2.8. Function to create a MTBDD for the matrix M .
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20A timed state is represented by a composition of BDDs, one for the Rm set,another for the list index, and a third representing the geometric region matrix.Figure 2.10 shows the complete MTBDD for the timed state where Rm = fr1; r3g,the link value is 2, and the region is the one shown in the above matrix. When anew timed state is found, the timed state list MTBDD TS is extended by the callTS = ITE(FindRmBDD(R;Rm;m) ^ i;MakeMatrixBDD(n;M; r; c); TS);where i is the list index BDD for this region. Since list indices are kept as small aspossible, a size check is made before adding this region to the array. If necessary,an extra bit (leading zero) is added to existing entries to accommodate the newgrowth. As shown in Figure 2.11, the index numbers are dynamically grown asthe list lengthens. Index bits which do not appear in the �gure are don't cares,so matrix \zero" as shown in Figure 2.11(a) also appears as every even numberedmatrix. Since the list is always traversed in order, the array is FALSE terminated(much like a C string) so that the end of the array can be detected by the algorithm.When inserting matrix \one", the existing structure is �rst restricted to require atwo bit \zero" and then matrix one is ORed in, resulting in the structure shown inFigure 2.11(b). Note that adding a third matrix (as shown in Figure 2.11(c)) doesnot require the use of an additional bit, but adding a fourth matrix would result ina �ve element list, (including the terminator), requiring three bits.2.4 Implicit RSG representationTo construct an implicit representation of the RSG, each state is inserted as itis encountered in the exploration.2.4.1 Reachable state spaceTo represent the reachable state space, a predicate S on the vector x is de�nedwhich returns true for all states reachable in any number of transitions from theinitial state. The vector x is hx1; x2; :::xni, where each variable xi is in I [ O. S isrepresented using a BDD which is constructed by de�ning a variable for each signal,and then sweeping through the states de�ned in the RSG. In each state, we AND



21the extracted values of the signals together to de�ne the state (see Algorithm 2.4.1in Figure 2.12), then OR the individual states together to create S:S = S _ FindStateBDD(si;x):Figure 2.13 shows the BDD for the state space predicate for the SPDOR example.The BDD S shows that the reachable states are those in which (1) both i1 and i2are low, or (2) exactly one of i1 and i2 are high and x is also high.2.4.2 NextState functionThe NextState function N is a predicate on S�S which returns true for all thestate pairs (s; s0) for which s0 may be reached from s in exactly one signal transition.N is constructed in a manner analogous to S. A product term is created for eachvalid pair of states (s; s0), and these are ORed together to form N :N = N _ (FindStateBDD(s;x) ^ FindStateBDD(s0;x0))A complication arises from the use of timing in generating the RSGs. Asmentioned before, when timing considerations show a state to be unreachable,it may be removed from the RSG. If we based our implementation only on thereduced state graph, the enablings to reach these states would be lost, and theresulting circuit would be suboptimal. In the SPDOR example, a naive derivationof S and N actually represents the state graph found in Figure 2.14(a). This graphcorrectly describes the signal changes, but not the enablings. A correct graph isshown in Figure 2.14(b). To illustrate the di�erence, the circuits synthesized fromthese graphs are shown in Figure 2.15. The naive derivation results in the circuitfound in Figure 2.15(a). This circuit may work, but is larger and slower than thecircuit shown in Figure 2.15(b), derived from the correct RSG. This problem issolved in the explicit system by using a four valued logic system (0,R,1, and F asdescribed above) stored as characters. However, in the implicit method the use ofbit vectors makes this less attractive, as it would double the necessary length of thevectors.
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(a) (b)Figure 2.17. Simple diamond:(a)original TERS fragment and (b)incorrect TERSfragment.The basic problem can be illustrated using the familiar diamond shown inFigure 2.16. The original speed-independent graph is shown in Figure 2.16(a).Because timing analysis says that the signal b always rises before a, the state (1R)is removed from the graph. If the correct enablings are not maintained, the lessconcurrent graph shown in Figure 2.16(b) is produced. The enabling of a is nowdelayed by the time necessary to �re b, and each cycle of the circuit is slowed bythat amount. Suppose that the original graph fragment shown in Figure 2.16(a)represents the behavior shown by the TERS fragment in Figure 2.17(a): somesignal x enables both a and b, with a to follow in 10 time units and b to follow in5. The total time necessary to traverse this graph from state (RR) to state (11)



25should be 10 time units. An improperly pruned graph (Figure 2.16(b)) loses thefact that x was the enabling event, and actually represents the TERS fragmentin Figure 2.17(b). In this case the total traversal time has increased from 10 to15 time units. This less concurrent circuit may not only be slower, but it mayalso be incorrect if it violates the original timing assumptions. Some other statemay have been pruned as unreachable based on the timing of this segment. Suchunreachable states are used as \don't cares" during the synthesis process. If such astate were used in minimizing a gate, and this new timing made it reachable again,there would be a hazard introduced in the system.To maintain the correct enablings, the N relation is populated with a transitionfor every enabled signal, even if the target state is not reachable. Such a \ghosttransition" can be detected by the fact that the target state is not contained in theS relation. This ghost state consists of the same values as the original state, exceptthat the enabled signal has changed phase (see Algorithm 2.4.4 in Figure 2.20).Figure 2.16(c) shows an example of a \haunted" graph: the state (1R) has beenreinserted as a \ghost state" with a transition from (RR). This path is never taken,but it is essential that it be represented. In the SPDOR example, several ghoststates are necessary, such as (001R) which has a transition from (F01R).2.4.3 Existing GraphsThe original version of this system extracted implicit representations from ex-isting explicit state graphs. These algorithms have been maintained to allow thesystem to import graphs from other systems for synthesis. The S relation is con-structed using Algorithm 2.18. The N relation is constructed using Algorithm 2.19.To maintain the correct enablings, a transition to a \ghost state" is added to theRSG whenever an enabling is found without a matching next state, as shown inAlgorithm 2.4.4 (see Figure 2.20). Note: we use the notation s jxi=1 to de�ne thestate where all values are the same as in s, except that the signal xi has the value1.



26Algorithm 2.4.2 (Find Reachable State Space)/* Given the graph G, with set of states si 2 �, �nd BDD S.*/bdd FindStateGraphBDD(RSG G) fS = FALSEForeach si in �S = S _ FindStateBDD(si;x);return (S)g Figure 2.18. Algorithm to �nd reachable state space S.
Algorithm 2.4.3 (Find NextState Relation)/*Given the graph G, with set of state pairs (s; s0) 2 �, �nd BDD N.*/bdd NextState(RSG G) fN = FALSEForeach (s; s0) in �N = N _ (FindStateBDD(s;x) ^ FindStateBDD(s0;x0));return (N)g Figure 2.19. Algorithm to �nd NextState relation N .
Algorithm 2.4.4 (Add Ghost State Transitions)/*Given the graph G, with set of state pairs (s; s0) 2 �, add missing transitions.*/RSG Haunt(RSG G) fForeach si in �Foreach xj in xif ((si(xj) = R) ^ ((si; si jxj=1orF ) =2 �))� = � [ f(si; si jxj=1)g;else if ((si(xj) = F ) ^ ((si; si jxj=0orR) =2 �))� = � [ f(si; si jxj=0)g;return (G)g Figure 2.20. Algorithm to add transitions to ghost states.



272.5 ResultsWe have implemented the implicit timed state space exploration procedureand tested it on a number of examples. Since most timed circuit examples arequite small due to previous memory limitations of synthesis tools, we have alsoparameterized two asynchronous FIFO examples in order to demonstrate the e�ec-tiveness of implicit methods. One, described below, is a simple lazy-active passivebu�er (lapb). The other is a parameterized version of the high-performance FIFOelement described in [28](referred to as �fo). The lazy-active-passive bu�er FIFO isconstructed of a chain of lazy-active-passive bu�ers which behave as FIFO elements.The bu�er continually reads data from its left port and sends data to its right port,implementing the CHP �[L?;R!], illustrated graphically in Figure 2.21. Figure 2.22shows a timed ER structure that speci�es a lapb implemented with a four-phasecommunication protocol. The signal li is the bu�er's input on the left channel,lo is the output on the left channel, ri is the input on the right channel, andro is the output on the right channel. A state variable a is also included in thespeci�cation to allow it to have complete state coding (CSC) [12]. A number oftiming assumptions are made in the speci�cation to optimize the circuit and areshown as ranges attached to each rule. Rules that enable transitions on li aregiven a delay range [lL; uL], which indicates that this range is set depending onwhat the lapb element is communicating with. If it is communicating with anothersimilar lapb circuit, this range is [1; 5] like the rest of the ranges. If the circuit iscommunicating with a dissimilar circuit, these ranges are set to [100;1], since thebehavior of the environment is assumed to be slow. The [lR; uR] delay ranges usedon rules enabling transitions in ri are assigned in a similar way. Both this FIFOand the one described in [28], are very concurrent when parameterized and generatean extremely large number of geometric regions which correspond to the numberof regions necessary to synthesize a large complex design.Table 2.1 shows the results of applying both explicit and implicit state spacerepresentation techniques to the various examples. The partial order method forstate exploration discussed in [4] is used to generate the timed state space. The
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29examples shown were run on an Sparc20 with 128Mb of physical memory. Thetable is divided into two sections: the top section contains information aboutvarious timed circuit benchmarks, and the bottom section contains data on theparameterized examples lapb and �fo. The �rst column in the table shows thenumber of regions that are found for each speci�cation. From this column, it is clearthat adding each new stage to the �fo or lapb examples causes the number of regionsto increase exponentially. The Max Memory columns depict the maximum amountof memory in megabytes that is used during state space exploration. This numberis the factor that limits the size of speci�cations that can be synthesized. The tableshows that for small examples, such as the one and two element lapbs and �fos, aswell as examples in the �rst part of the table, implicit methods do not improve andsometimes even worsen this performance measure. However, for small examples,Table 2.1. Experimental results. Memory values are given in Mb.Implicit Rep. Explicit Rep.Mem Max CPU Mem Max CPUExamples Regions (Mb) Time (Mb) Timespdor 21 .89 .24 .82 .026spdand 91 1.04 1.07 .82 .16cnt 171 2.0 6.32 1.6 .57mmuoptSV 955 1.8 38.8 1.7 6.6mmuopt 149 1.3 3.47 .95 .45slatch 68 1.2 1.14 .9 .13elatch 115 1.3 2.28 .9 .24SELopt 1116 2.5 62.8 2.7 7.1tsbm 1784 3.0 74.0 2.9 11.3scsiSVT 20 .84 .20 .77 .016lapb 56 .96 .45 .79 .089lapb2 615 1.7 11 1.3 1.5lapb3 8226 5.5 500 8.0 61lapb4 127,618 40.1 4.3 �104 143 6.6�103�fo 81 1.2 1.65 .90 .163�fo2 828 2.5 36 1.9 4.3�fo3 12371 12 1683 17 175



30memory size is not an issue since modern machines regularly contain at least 32Mbof memory. In the larger examples, lapb3, lapb4, and �fo3, the bene�ts of implicitmethods become clear. On lapb3 and �fo3, the implicit representation only requiresabout two thirds of the memory required by the explicit representation. On lapb4the explicit representation requires less than a third of the memory required by theexplicit representation. The columns labeled CPU time show the amount of timespent in state space exploration for each method. The implicit method normallytakes approximately 10 times as long as the explicit method. On large examples,however, the implicit method takes much less space and is able to complete exampleswhich the explicit algorithm cannot do.Figure 2.23 shows the memory usage pattern of the state space exploration oflapb4 and lapb5 for both the explicit and implicit methods. The x-axis shows thenumber of regions explored and the y-axis shows the maximummemory used to thatpoint in the state space exploration. The solid lines represent the implicit methodand the dashed lines represent the explicit method. The graphs show that theimplicit method not only yields a signi�cant overall improvement in memory usage,but also that the memory usage trends for implicit methods are much better. Asthe number of regions grows very large, the amount of memory used by the implicitmethods approaches an asymptotic value. This occurs since once the BDDs getmostly full, adding additional regions does not add signi�cant memory due to thenode sharing behavior of BDDs. When the BDDs get large and a new region isadded, most of the nodes needed for this state are already in the current BDD, andvery little new memory is necessary. With explicit methods, on the other hand,each new region throughout the state space exploration requires a new allocationof memory, causing the memory usage of the explicit method to grow linearly withthe number of regions. (Figure 2.23(b) does not represent a complete explorationof lapb5. Both methods were allowed to progress until they had exhausted thephysical memory available on a Pentium II workstation with 384MB of physicalmemory.)Figures 2.24(a) and 2.24(b) show the number of BDD nodes per region that
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32are required to do timed state space exploration for the lapb FIFOs of varioussizes. Figure 2.24(a) shows the BDD nodes that are used in representing the timedstate space, and Figure 2.24(b) shows the total BDD nodes necessary, includingS, N , and overhead required to manage the BDDs. The trend on these resultsis also very good. As the size of the example increases, the number of nodes perregion decreases dramatically, indicating that BDDs should be able to be usedfor even bigger examples. Unfortunately, the technique is currently limited in ourimplementation by the memory used in the stack. As examples get very large, agreater percentage of memory is being used storing stack elements. Most of theinformation on the stack can be represented using BDDs, and in the future we planto extend this work to include that optimization. When the stack is implementedwith BDDs we expect to be able to do even larger examples.
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CHAPTER 3SYNTHESIS"Contrariwise," continued Twee-dledee, "If it was so, it might be;and if it were so, it would be; but asit isn't, it ain't. That's logic."-Lewis Carroll,Through the Looking GlassThe synthesis stage starts with a reduced state graph (RSG), as described inthe preceding chapter. State graphs are a common intermediate form for mostasynchronous CAD tools [13, 14, 23, 26, 32, 33, 38, 39], and can be derived frommany higher-level languages such as CHP and STGs [29], as well as more recentlyVHDL [41]. Because of this commonality, support has been included in the toolto import SGs derived from other CAD tools. ATACS implicitly stores RSGs usingtwo BDD structures: S, which represents the reachable state space, and N , whichdescribes the next state relation.3.1 Excitation regions and quiescent statesIn order to obtain an implementation, the state space is �rst decomposed foreach output signal into a collection of excitation regions. An excitation region forthe output signal x is a maximally connected set of states in which the signal isenabled to change to a given value (i.e., s(x) = R or s(x) = F ). If the signal isrising in the region (i.e., s(x) = R), it is called a set region, otherwise the regionis called a reset region. The excitation regions for each signal transition is indexedwith the variable k and the kth excitation region for a signal transition x� is denotedER(x�; k), where \*"indicates \"" for set regions and \#" for reset regions. We alsode�ne a set of excited states, which is the union of the excitation regions for a given



35signal transition, i.e., ES(x�) =[k ER(x�; k):For each signal transition, there is an associated set of stable, or quiescent, statesQS(x�). For a rising transition x ", it is the states where the signal is stable high(i.e., QS(x ") = fs 2 � j s(x) = 1g), and for a falling transition, it is the stateswhere the signal is stable low, i.e., QS(x #) = fs 2 � j s(x) = 0g).Given the BDD N , the BDD representations of ES and QS are straightforwardto �nd. For instance, the set of excited states for x " would be found by applyingthe following formula: ES(x ") = existq(x0;:x ^ x0 ^N)And the quiescent states can be found in a similar manner:QS(x ") = existq(x0; x ^ x0 ^N)The function existq(x; f) is de�ned to be the existential quanti�er of the variablex in the function f . This is equivalent to fx_f:x, and is used to return the portion ofthe predicate which can return TRUE for any value of x. This function is extendedto iteratively operate on a vector of variables x, and results in a new function f 0which does not depend on the variables in x.The excitation regions would then be found by dividing each excited set intoconnected regions. To do this, the algorithm merely picks a seed state at randomand iteratively adds all excited states reachable in one step from the region (seeAlgorithm 3.1.1 in Figure 3.1). This algorithm uses the function TRANS(x! y; f)which is de�ned to transform the function f on the variables xi to a function onthe variables yi.In our SPDOR example, let us consider the excitation region for x #. In the naivegraph shown in Figure 3.2(a), this region is just f(00F1)g. In the \haunted" versionshown in Figure 3.2(b), it is extended to f(RRF1), (0FF1), (F0F1)g. The quiescentset for the same transition is f(RR0F)g (f(000F)g in the naive derivation).
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Algorithm 3.1.1 (Find Excitation Regions)set of bdds FindER(bdd N ,bdd ES) fDo fPick s 2 ES (at random)� = s;Do fERk = �;� = ERk _ existq(x0; ES(x) ^ ERk(x0) ^N(x;x0)) _TRANS(x0 ! x; existq(x; ERk(x) ^ ES(x0) ^N(x;x0)));g While(ERk 6= �);Add ERk to bdd set ER;ES = ES ^ :ERk;g While (ES)return (ER)g Figure 3.1. Algorithm to �nd excitation regions.
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373.2 Timed circuit implementationThe circuit is implemented by creating a function block for each output signal,consisting of a C-element with a sum-of-products (SOP) stack each for the set andreset (see Figure 3.3). Each product block in the SOPs for each function implementsa cover for a single excitation region. Note that while depicted as a simple ANDgate, in order to guarantee hazard-freedom, this \product" block may need to bea more general function block. The circuit may be implemented using a standardC-element (SC) structure using discrete gates, as shown in Figure 3.3(a). It mayalso be created using a complex gate known as a generalized C-element (gC) [25].Figure 3.3(b) shows a transistor-level gC design using a weak feedback staticizer,and Figure 3.3(c) shows a fully static design.3.2.1 Single cube coversIn [11], a parametrized family of decompositions of high-fanin gates is investi-gated at one time by adding additional variables. We extend this idea to synthesisby representing our covers by a series of implications of the form (�i ) xi)^(�n+i ):xi). These implications will be ANDed together to produce a BDD which repre-
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38sents every possible potential single cube cover of the corresponding ER.C0(x�; k) = î 	i;0; where 	i;0 = [(�i;0 ) xi) ^ (�n+i;0 ) :xi)]We then apply restriction operators to this BDD, to remove covered states whichviolate our requirements for a valid cover. Any satisfying assignment of the remain-ing BDD is a valid implementation: if a � variable appears in the positive phase,the implied variable must appear in the cover; if it appears in the negative phase,the variable cannot be included; and if it does not appear at all, it may or may notbe used, at the designers discretion.3.2.2 Multicube coversOccasionally an excitation region is found which cannot be covered by a singlecube. An example is the RSG fragment shown in Figure 3.4. This is commonlyknown as a nondistributive region, since the excitation region has multiple minimalentry points. The ER for c " is the set f(1RR),(R1R),(11R)g. The state (RR0),however, cannot be included, because c is stable low. Therefore, no single cube willdescribe the entire region. A possible solution is to add state variables to changethe state coding [22]. Our approach is to create a SOP block to represent thisregion, instead of a simple \AND" gate design. To accomplish this, the algorithmtests each cover BDD to see if it is identically FALSE. If this occurs, a second (orthird, etc.) initial cover is created, and ORed together with the preceding initialcover (i.e., C = C0 _ C1 _ :::Cm). The resulting BDD is passed through the same�lters, producing a multicube implementation of the ER.3.3 Correct cover formulationIn order to create a valid timed circuit implementation, it is necessary to de�nethe states a cover must include, may include, and may not include. Each cube of theimplementation must include the entire corresponding excitation region. In orderto minimize the logic, it may also include any unreachable state, and may includesome additional reachable states. Inclusion of some reachable states, however, cancause incorrect behavior. These disallowed states vary, depending on the type of
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Figure 3.4. Fragment of an RSG for a standard OR gate.circuit chosen. In a gC implementation, any state where the signal is enabled inthe same direction or stable at the �nal value may be included. In a SC circuit,some of those states may need to be excluded to guarantee hazard-freedom. Thecorrectness constraints discussed here were developed in [3] for speed-independentcircuits and extended to timed circuits in [30].3.3.1 gC cover violationsIn a gC implementation, the allowed growth regions include the remainder of theexcitation space and the entire quiescent space for the corresponding signal transi-tion. In other words, correct covers must satisfy the following covering constraint:ER � C \ � � ES [QSThe boolean equation for this restriction is the following:V = S ^ :ES ^ :QSThat is to say, the cover may not include any reachable state not in the quies-cent or excited spaces. This prevents the gate from being pulled up and downsimultaneously. 3.3.2 SC cover violationsIn a SC implementation, additional internal signals are introduced by the useof discrete gates. In order to prevent the introduction of hazards, additional



40restrictions are placed on the states allowed in the cover. The purpose is to ensurethat each cover makes a single monotonic transition when it is actively changingthe output and makes no other transitions at any other time. To guarantee this, weneed a modi�ed covering constraint and an entrance constraint. This ensures thatthe transition of the gate is acknowledged. The covering constraint is the following:ER � C \ � � ER [QS:That is to say that we must include the entire ER, and may only include statesfrom the ER or the corresponding QS. The resulting boolean equation is:V1 = S ^ :ER ^ :QSThis ensures that only one AND block is on at a time, so the transition can beacknowledged by a transition on the output. In addition, the cover may only beentered through the excitation region. This is to guarantee a single monotonictransition, with no unacknowledged glitch in the function block. The entranceconstraint is ((s; s0) 2 N) ^ (s =2 C) ^ (s0 2 C)) (s0 2 ER);and the resulting boolean equation isV2 = TRANS(x0 ! x; existq((x; N(x;x0) ^ :C(x) ^ C(x0) ^ :ER(x0)))The �nal boolean equation for the violations is: V = V1 _ V2.3.3.3 Correct coversThe valid cover BDD, VC, is constructed to include all implementations that donot include any violating states and completely cover the corresponding excitationregion. In other words, we �lter the cover BDD C with the following conditions:(1) C \ V = ;, and (2) C \ ER = ER. The combined boolean equation isV C = univq(x; (:C _ :V ) ^ (:ER _ C)):The function univq(x; V C) implements the universal quanti�er. This is equivalentto fx^f:x, and returns the portion of the predicate that is independent of the value



41of x. This can be extended to iteratively operate on the vector x. The resultingBDD represents all valid covers of the signal.Figure 3.5 shows the resulting BDD for a SC implementation of the set regionfor signal c from Figure 3.4. Light arrows represent FALSE paths and dark arrowsrepresent TRUE paths. pa represents the � variable representing a in the �rst cube,pnota represents the � variable representing :a in the �rst cube, and pa0 representsthe � variable representing a in the second cube. There are six valid two-cubecovers for this region: a _ b; (a ^ :b) _ b; a _ (:a ^ b); (a ^ :c) _ (b ^ :c); (a ^ :b ^:c) _ (b ^ :c); (a ^ :c) _ (:a ^ b ^ :c).Figure 3.6 shows the results for the feedback control signal x in the SPDORexample. The BDDs indicate that the pull-up stack can be enabled whenever a isfalse, and can be further restricted to only those states where some combinationof x,i1,and i2 are false. Similarly, the pull-down stack must be on when a ishigh, but can be further restricted to those states where x is high. The resultinggeneralized C-element implementation is shown in Figure 3.7. Transistors shownin lighter print are optional. While this example shows some of the exibilityof the system, it should be noted that the end result is that this gate can beimplemented with an inverter. As shown in the results section, other exampleshave many implementations of minimal size.3.4 ResultsThe complete BDD timed circuit synthesis procedure shown in Algorithm 3.4.1(see Figure 3.8) has been automated within the CAD tool ATACS. This algorithmhas been applied to the design of numerous timed circuit designs.Synthesis results are shown in Table 3.1. The �rst column shows the numberof gC style solutions that were found by the BDD synthesis procedure that canbe implemented within the stack size limits. Most of the examples have a hugenumber of possible implementations with four of fewer transistors in each stack(\need decomp" is used to indicate that there is no valid implementation usingonly four-stacks). However, since they are stored implicitly, keeping track of this
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Table 3.1. Experimental results.# of Solutions Synthesis TimeExamples < 4 min Implicit Single-Cube Generalspdor 8192 1 .011 .0068 .35spdand 512 1 .010 .0058 .28cnt 614656 1 .043 .096 1.03mmuoptSV 1.3 �1023 405 .44 .15 1.7mmuopt 3.7 �109 4 .089 .029 .65slatch 1.3 �1015 2 .10 .022 .83elatch 9.4 �1012 4 .13 .026 .85SELopt need decomp 4 .53 .082 1.5tsbm need decomp 4 5.0 FAIL 3.3scsiSVT 3.2 �109 18 .037 .034 .67lapb 16384 1 .023 .0098 .43lapb2 1.2 �109 1 .26 .078 1.1lapb3 6.1 �1015 2 2.1 1.6 20lapb4 2,2 �1022 4 13.4 8.4 29�fo 1.7 �1011 4 .17 .048 .81�fo2 1.9 �1027 16 1.8 .5 3.9�fo3 2.1 �1043 64 2.2 9.1 53



46many solutions is not di�cult and is useful for technology mapping. The secondcolumn shows the number of solutions for each example where each transistor stackhas its minimum size. Some of these have only one minimal solution, but many,most notably eager with 2304, have multiple minimal solutions which will not befound if explicit synthesis methods are used. The numbers in this table representthe number of potential implementations for the entire circuit. This number is theproduct of the possible covers for each individual excitation region. For example, inthe gC implementation of the SPDOR, the set region for x has 8 solutions, the resetregion has 2, each of the two set regions for a has 8 solutions, and the reset regionhas 8 which makes a total of 8�2�8�8�8 = 8192. The SC implementation is morerestricted so it only has 80 possible solutions. Filters have been employed to reducethe set to those having reasonable implementations in CMOS technology (i.e., thoseimplementations which require transistor stacks of four or less.) It is interestingto note that often, as in the case of the SPDOR gate, all valid implementationsare within the allowed stack size. The use of implicit methods not only improvesmemory performance for large speci�cations, they also allow a parameterized familyof solutions to be produced. Possibilities for component sharing between functionsare also increased by the capacity to consider all valid implementations in parallel.The �nal three entries in the table are the runtimes to synthesize these circuitsusing the implicit approach, a heuristic single cube approach, and an exact multic-ube approach. Although somewhat slower than the heuristic single cube algorithm,the BDD synthesis method never fails, and in comparable runtime, �nds BDDrepresentations for a large number of possible synthesis solutions. The heuristicalgorithm fails when multicube covers are required. The BDD method typicallytakes more than an order of magnitude less time than the general algorithm whilestill �nding large numbers of solutions.



47
Algorithm 3.4.1 (Synthesize)bdd list Synthesize(RSG G) fS = FindStateGraphBDD(G);G = Haunt(G);N = NextState(G);Foreach xi in xfForeach xi� in fxi "; xi #gfC = Generate C0;If (� =")fQS(xi�) = existq(x0; xi ^ x0i ^N);ES(xi�) = existq(x0;:xi ^ x0i ^N);g elsefQS(xi�) = existq(x0;:xi ^ :x0i ^N);ES(xi�) = existq(x0; xi ^ :x0i ^N);gForeach ERk in ERfDo fif (gC) thenV = S ^ :ES ^ :QS;elsefV1 = S ^ :ERk ^ :QS;V2 = TRANS(x0 ! x; existq((x; N(x;x0)^:C(x)^C(x0)^:ERk(x0)));V = V1 _ V2;gV C = univq(x; (:C _ :V ) ^ (:ERk _ C));If (V C = ;)C = C _ Generate next Cl;gWhile (V C = ;);add V C to set of results;gggReturn set of resultsg Figure 3.8. Function to synthesize circuit from a reduced state graph G



CHAPTER 4CONCLUSIONS AND FUTURE WORKOne never notices what has beendone; one can only see what re-mains to be done.- Marie Curie, letter(1894)This thesis presents a new implicit synthesis method for timed circuits whichutilizes BDD based algorithms and data structures to allow the synthesis of largertimed circuit implementations. We formulated a MTBDD representations to repre-sent the timed state spaces during timed state space exploration. We also describeda BDD representation of the reduced state graph which is derived alongside. Weuse ghost transitions to preserve accurate signal enabling information. We havedeveloped BDD formulations and algorithms for both standard-C and generalizedC-element implementation styles. These algorithms �nd all valid covers for eachexcitation region (if necessary, by transparently �nding minimal multicube covers).Although this algorithm has led to a substantial reduction in memory usage, thishas come at the cost of longer running times. We believe that this is not inherentin the methodology and plan to explore ways of optimizing our implementation.We would also like to extend the use of BDDs to other data structures in ouralgorithm. Speci�cally, the stack used during state space exploration continues toconsume large amounts of memory. We attempted to synthesize lapb5 and �fo4,but exhausted the available memory rapidly due to explosive stack growth. Storingthe stack entries implicitly will hopefully reduce the size of the individual stackframes, allowing even larger speci�cations to be explored. Finally, we would like toresearch variable orderings and their a�ect on sharing, including possible methodsof reordering and heuristics for static orderings.



49The two major advantages of the implicit synthesis method is that larger timedsystems can be designed and a parameterized family of solutions is found whileearlier algorithms merely found a single solution. Considering all possible validimplementations will greatly facilitate technology mapping. In the future, weplan to extend BDD based technology mapping algorithms for speed-independentcircuits [11, 18] to timed circuits.
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