
SynBioHub 3 - An
Improved Synthetic
Biology Repository

Eric Yu
April 2022

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Bachelor’s of Computer Science

Chris Myers
Advisor

H. James de St. Germain
Director of Undergraduate Studies
School of Computing

Mary Hall
Director
School of Computing

1

3-May-2022

Contents 2

Contents
1 Introduction 3

1.1 Contributions . 5
1.2 Overview . 6

2 Background 6
2.1 Synthetic Biology Open Language 6
2.2 Triplestores . 7
2.3 Representational State Transfer 8
2.4 Related Works . 8

3 Methods 9
3.1 Libraries . 9

3.1.1 Spring Boot . 9
3.1.2 libSBOLj . 10
3.1.3 Apache Jena . 10
3.1.4 Hibernate . 10

3.2 Data Storage . 11
3.2.1 Virtuoso . 11
3.2.2 User Data . 11

3.3 Design Patterns . 13
3.3.1 Controllers . 14
3.3.2 Data Transfer Objects 14
3.3.3 Repositories . 15
3.3.4 Entities . 16

4 Results 17
4.1 Search . 18
4.2 Downloads . 18
4.3 Authorization and Authentication 21

5 Conclusions 21
5.1 Summary . 21
5.2 Further Work . 22

5.2.1 Other Endpoints . 22
5.2.2 Improved Authentication and Authorization 22
5.2.3 Plugin Support . 23

6 Acknowledgement 23

References 24

1 Introduction 3

1 Introduction

One of the primary goals of the field of Synthetic Biology is to facili-
tate reuse of genetic parts and designs. To meet this goal, there must
be an e�cient way to store, share, and find these modular genetic de-
signs. This is especially critical for a rapidly growing field such as Syn-
thetic Biology, with publications per year growing nearly tenfold since
the year 2000 [11]. To address this, various data repositories have
been created, such as the Joint BioEnergy Institute’s public Inventory
of Composable Elements (JBEI-ICE) [5] and the International Geneti-
cally Engineered Machine (iGEM) Registry of Standard Biological Parts
(http://parts.igem.org). SynBioHub was developed in 2017 as a collab-
oration between multiple universities. It was designed as a repository
for not only biological parts, but a wider ecosystem of Synthetic Biology
tools, supporting standards like SBOL [3] to accomplish this.

Although SynBioHub is already utilized by many synthetic biologists
and organizations, further development is necessary to meet the needs
of large-scale synthetic biology projects. The first and most major issue
is SynBioHub’s use of server-side rendered pages. Figure 1 shows the
user-facing pages being rendered by the server before being sent to the
user. While this may be easier to develop, as it is part of the same code-
base, it eventually becomes harder to maintain as the project scales.
The functions to render a page may become intertwined with the data
processing functions, making simple tasks such as designing new pages
carrying a risk of a�ecting the backend’s behavior. Ultimately, making
simple changes may become time consuming, harder to understand,
and cause further coupling between the frontend and backend. This
also makes keeping the application up to date di�cult, as adding or
upgrading libraries in one end of the code risks conflicting or breaking
parts of the code in the other end of the application. Any vulnerability
in the frontend code could also put the backend at risk, making security
a concern. Additionally, server side rendering puts the strain of render-
ing user pages on the server, which can cause degraded performance
for the entire SynBioHub instance.

There were other general concerns as well. SynBioHub does not cur-
rently support SBOL 3, which supports a much wider range of file types
for serialization and deserialization. In the current SynBioHub, the use

http://parts.igem.org

1 Introduction 4

Figure 1: Architecture diagram of the original SynBioHub. Note the
usage of Jade files, which are webpage templates statically rendered by
the backend before being sent to the frontend.

1 Introduction 5

of the Java SBOL 2 library is currently implemented as a workaround
to the Node.js backend, meaning there is both Java and Javascript code
running concurrently, which is not optimal. This further increases com-
plexity and may be something that a�ects the performance of SynBio-
Hub, which is another concern. There have been many instances of
SBH freezing or running slowly, such as during high periods of use by
concurrent users at the same time.

SynBioHub2 was designed as a temporary solution to some of these
problems. A new frontend was built using ReactJS, communicating
with SynBioHub using its REST API as its backend. While this solved
the issue of the frontend being coupled with the backend, the perfor-
mance was still reliant on the original SynBioHub. SynBioHub3 aims
to address the previously mentioned concerns, by using SynBioHub2’s
newly developed frontend, coupled with a newly developed backend.
First and foremost, SynBioHub3’s architecture adheres to a strict sepa-
ration of concerns between the frontend and backend. Communication
between the two ends is done solely through a public REST API. This
means that the frontend can be built as a standalone application that
acts as a graphical user interface for the API, removing all coupling be-
tween the two applications. The API is written following the existing
documentation such that existing applications that rely on SynBioHub
such as SBOLCanvas [12] or SBOLDesigner [15] are able to use SynBio-
Hub3 with little configuration needed. SynBioHub3 will be written to
use many of the same backend applications, as there is no strong case
to change these applications, however it will be written in a way such
that switching triplestores is no harder than changing a line within the
configuration file.

1.1 Contributions

This thesis will describe the major changes in the complete rewrite of
SynBioHub3.

Redesigned Architecture
SynBioHub3 has been completly rewritten in Java following a di�er-

ent design pattern. This redesigned architecture is an improvement to
SynBioHub’s server-side rendering method. By reducing the coupling

2 Background 6

between the client-side and server-side code, SynBioHub3 is made more
modular, meaning the backend does not need to rely on a scripting lan-
guage such as JavaScript to render frontend pages. This has led to a
increase in performance, with tasks such as downloading large parts
being much faster.

Improved Downloads
The entire download algorithm has been rewritten in SynBioHub3.

The downloading algorithm in SynBioHub was ine�cient, resulting in
slower performance. SynBioHub3 redesigns the data gathering and fil-
tering process, resuting in a massive speed gain as well as reducing the
load that the triplestore must handle.

Authentication and Authorization
Authentication and Authorization have been been implemented us-

ing the Spring Security library, replacing the previously hand-written
library in use. This allows SynBioHub3 to take advantage of the already
available functions for more secure basic authentication, as well as lay
the groundwork for further development.

1.2 Overview

First, this thesis will describe the background of standards such as
the Synthetic Biology Open Language, and other core concepts used in
SynBioHub. Next, it will go over the methods used, such as various
libraries, tools, and design standards used in the development of Syn-
BioHub3. Finally, it will desribe what has been currently implemented
in SynBioHub3, as well as discuss what features are to be added in the
future.

2 Background

2.1 Synthetic Biology Open Language

The Synthetic Biology Open Language (SBOL) was created as a response
to the issue of unreproducable sequence information in papers, which
hurts reproducibility and limits reuse of past work[4]. Standardized

2 Background 7

languages can help to improve communication by decreasing ambiguity
and increasing the amount of information that can be conveyed, all
while increasing the amount of flexibility both by the compatibility with
many software tools and the adoption of one core standard. The first
version of the SBOL standard defined a simple data model for genetic
parts, and has since evolved to store more information. Version 2.0
of the SBOL standard [3], released in July of 2015, introduced a host
of new features, including a new core data model. Version 3.0 of the
SBOL standard, released in September of 2020 [7], refines the previous
version by simplifying the SBOL model to reduce its complexity which
was limiting future development.

The driving design goal for SynBioHub is to achieve all FAIR (findable,
accessible, interoperable, reusable) principles for data sharing [13]. To
achieve this goal, SynBioHub (unlike other repositories) natively sup-
ports a community-developed standardized data format—the Synthetic
Biology Open Language (SBOL) [3]. This native support helps SynBio-
Hub to meet the principles of FAIR in a number of ways. First, SBOL’s
rich metadata and use of ontologies for identifiers enables standard-
ized search algorithms that make designs more findable [14] [16]. Sec-
ond, public instances of SynBioHub provides easy accessibility with-
out authentication to static published genetic design information either
through its web-based interface or REST application programmers in-
terface (API). Third, the use of the SBOL standard promotes interoper-
ability, since it is supported by a growing number of genetic design au-
tomation (GDA) tools, such as Cello [9], SBOLCanvas [12], VisBOL [6],
SBOLDesigner [15], and more (https://sbolstandard.org). Finally, Syn-
BioHub can be used with a curation workflow that ensures that the
SBOL representation is rich with metadata and provenance informa-
tion to promote genetic design reuse.

2.2 Triplestores

The RDF, or Resource Description Framework, is a data model created
by the World Wide Web Consortium (W3C) in 1999, designed to en-
capsulate metadata. More specifically, it aims to store relationships
between data - subject, predicate, object. For example, if we want to
represent the sentence “the sky is blue”, we could store this in a triple,

https://sbolstandard.org

2 Background 8

with the subject being “sky”, predicate being “color” or “has color”, and
object being “blue”. The SBOL [3] standard was built on top of this data
standard to allow for standardized storage of biological data (see Section
2.1).

Triplestores are often used in Synthetic Biology because of the graph-
like structure of parts. These relationships are not well represented in
relational databases, as fetching data would require many join queries
traversing along the foreign-primary key path, which can be computa-
tionally expensive. A triplestore is similar to a normal relational database,
except that each entry, or triple, must follow the RDF model described
above.

2.3 Representational State Transfer

Representational State Transfer (REST) is a set of guiding principles de-
signed in 2000 for use in distributed web systems. Over 75% of web
services were found to adhere to these principles in 2019, compared to
other design principles such as SOAP or GraphQL [8]. There are a few
main guiding principles that a REST architecture must satisfy. First,
there must be a uniform interface, meaning that each interface must
be self-descriptive and have a uniform response. Second, it must fol-
low the Client-Server architecture, which helps to enforce separation
of concerns and improve portability of user data across multiple inter-
faces. Third, requests must be stateless, meaning that each request
must contain all information necessary to resolve the request. Finally,
the system must be designed in a layered hierarchy such that one com-
ponent does not extend its functionality beyond its current layer. This
places a bound on system complexity as changes made on one level will
not be reflected on another.

2.4 Related Works

SBOLExplorer [16] is a search program used to improve the quality
and sorting of search results in SynBioHub. SynBioHub uses SBOLEx-
plorer for keyword and sequence queries [16][14]. SBOLExplorer uses
an inverted-index to return better fuzzy search results, which is im-
plemented using Elasticsearch. For example, if the user erroneously

3 Methods 9

types the query “GPF” whilst intending to type “GFP”, SBOLExplorer is
able to predict the user’s intentions and serve them the correct search
results, similar to search engines on the web. Additionally, SBOLEx-
plorer implements the PageRank algorithm [10], which is used to sort
genetic design records by their popularity. This is achieved by querying
the triplestore for a graph of each part, associating a higher number of
links to a higher pagerank, which translates to greater popularity.

3 Methods

This section will go over the implementation-level details in the rewrite
of SynBioHub3. First, various libraries used in the backend are in-
troduced, describing their functionality and importance. Next, we will
discuss the design patterns of SynBioHub3 and how they contribute to
a more modular application.

3.1 Libraries

3.1.1 Spring Boot

The libraries used in SynBioHub3’s core backend development is the
Spring Boot framework. This is a framework that encompasses many
di�erent libraries, such as security, database management, and REST
request routing. By using this package of libraries, it allows for a mode
consistent code style, as the encapsulated functions will be standard-
ized in regards to naming, documentation, and return types. This im-
proves readability, as well as allowing developers less familiar with Syn-
BioHub3 to pick up development quicker. These libraries have been
used and tested by many large enterprises, which will eliminate many
concerns as SynBioHub3 scales in the future. Because Spring boot ap-
plications like SynBioHub3 are written in Java, it can take advantage of
the Java Virtual Machine. This allows us to compile the app into a sin-
gle, standalone JAR file and run it on any platform, which reduces the
compexity of fetching multiple dependencies, building, and deploying
SynBioHub3 to platforms such as Docker.

3 Methods 10

3.1.2 libSBOLj

libSBOLj is a library that provides an implementation of the SBOL [3]
standard in Java. Parts are abstracted as objects, and various functions
are provided to manipulate these objects in code. An I/O module is also
provided for serialization of RDF/XML files, and deserialization into a
wide range of commonly used formats. A validator is available to check
that SBOL models follow the standard correctly. libSBOLj is available
for both versions 2 and 3 of the SBOL standard, with SynBioHub only
supporting the former. SynBioHub3 will support both versions of the
SBOL standard, in order to be backwards compatible with existing ap-
plications, as well as having full support for newer applications that can
take advantage of the new SBOL version.

3.1.3 Apache Jena

Apache Jena is a library used to create and read RDF graphs. It provides
classes to create and model RDF graphs, as well as functions to serialize
and deserialize data in a wide range of formats. The most important
functions used in SynBioHub3 (and not available in libSBOLj) reside
within its graph manipulation abilities; functions such as unions and
intersections are supported, and are much faster than its respective
queries in Virtuoso (a triplestore). This allows SynBioHub3 to simplify
the queries being sent to Virtuoso, reducing the load it must handle,
speeding up download queries in the process.

3.1.4 Hibernate

An Object Relational Mapping (ORM) is required if one wants to be able
to use a relational database (RDBMS) within an object-oriented appli-
cation such as SynBioHub3. This is because of a few di�culties arising
translating from an object-oriented paradigm to a relational paradigm,
also known as an object–relational impedance mismatch. First, objects
may be more granular than their corresponding database table, mean-
ing not all class fields may exist in the database. Second, the notion of
subtypes is common in objects, however this paradigm does not exist in
RDBMSs. Third, equality can be defined by both value and object iden-
tity in object-oriented programs (i.e. a==b versus a.equals(b)), while

3 Methods 11

RDBMSs only understand the notion of a key. Fourth, accessing data
in an object-oriented program is done by following relations between ob-
jects. This is ine�cient in an RDBMS, as it requires multiple queries,
which is computationally expensive. Finally, objects are not guaran-
teed to follow Atomicity, Consistency, Isolation, and Durability (ACID)
principles, as they can be mutated, which can cause conflicts in the
database.

Hibernate is an ORM library written in Java and used by Spring Boot.
It aims to solve the aforementioned problems by providing classes and
functions to model and manipulate an RDBMS from within the code
itself. SynBioHub uses Hibernate to map user data within the SQL
database. This allows actions such as reading row values or writing
data such as passwords to be accomplished without having to write
any SQL queries, reducing both time, complexity, and risk for common
attacks such as SQL injection attacks.

3.2 Data Storage

3.2.1 Virtuoso

SynBioHub uses Virtuoso, a triplestore developed by OpenLink Soft-
ware, to store RDF triples. The format that these triples are stored are
follow the SBOL standard [3] [7], allowing a uniform data model that
other applications can take advantage of as well. The SPARQL [1] query
language, similar to SQL, is used by SynBioHub to interact with the
triplestore. Figure 2 shows an example of one SPARQL query used by
SynBioHub. Virtuoso provides a REST API, so SynBioHub or any other
applications such as SBOLExplorer [16] are able to query the triplestore
without any configuration needed, simply by attaching a SPARQL query
to a REST request.

3.2.2 User Data

In SynBioHub, user data was managed through the use of an embed-
ded database, SQLite. The main advantage of such a database over
traditional client-server databases such as MySQL or PostgreSQL is its
ease of use. Traditional databases require a separate server process to
manage the database, which needs to be installed and configured be-

3 Methods 12

PREFIX sbol: <http://sbols.org/v2#>
PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT distinct ?uri WHERE {
<$uri> sbol:member ?member .{
?member a ?uri .
}
UNION {
?member sbol:type ?uri .
FILTER(STRSTARTS(str(?uri),’http://www.biopax.org/release/biopax-level3.owl’))
}
UNION {
?member sbol:role ?uri .
FILTER(STRSTARTS(str(?uri),’http://identifiers.org/so/’))
}

}

Figure 2: An example of a SPARQL query used to get all SBOL members
of type “type” or “role”. Note the use of union operations, which can have
an impact on the performance of Virtuoso, depending on the amount of
resources is allocated to the process. SynBioHub3 aims to address this
by moving all data filtering into the backend instead.

fore use, taking both disk space and time. With SQLite, the server is
represented as a self-contained file, meaning that the database is both
lightweight and portable, which is advantageous for the federated struc-
ture of SynBioHub, where multiple instances across di�erent servers
can often share the same user data.

SynBioHub3 uses H2, an embedded database written in Java. Sim-
ilar to SQLite, it uses a database file instead of a dedicated server pro-
cess, and is extremely lightweight, with the JAR file taking less than
3 MB of disk space. The decision to switch to H2 was twofold: first,
SQLite only has four primitive data types: Integer, Real, Text, and Blob.
Any other data types must fit into one of these four categories, which
severly restricts what we are able to store without any compatibility
workarounds. Second, Spring Boot (Section 3.1.1) does not o�cially
support SQLite, so there is no o�cial Java Database Connectivity (JDBC)
driver. This would mean that SynBioHub3 would need to rely on a third-
party driver in order to support the database connection, which may
have compatibility issues with the Spring Boot libraries.

3 Methods 13

3.3 Design Patterns

The backend utilizes a traditional Model-View-Controller (MVC) design
pattern. Figure 3 shows how a user interacts with this design. The
Model is what can be thought of as the “backend”, or the core of Syn-
BioHub3’s logic. Here, functions reside to manipulate and parse input
data, fetch data from other applications, and save and return prepared
data, and control who can and cannot view certain data. The Controller
is what the user interacts with; it is responsible for the user-facing API,
and presenting this data to the Model. The View is the representation
of data, most often graphical, that the user sees. For example, the Syn-
BioHub3 front end or applications such as SBOLCanvas[12] are views
that present this structured data from SynBioHub3.

Figure 3: The Model-View-Controller design pattern.

This separation of concerns addresses one of the major points in
our redesign of SynBioHub. By separating the user-facing layer and
logic layers, it is much easier to make changes to either side without
interference, and changes will a�ect fewer parts of the entire project.

3 Methods 14

It also allows for easier development between di�erent users, which is
important as SynBioHub3 grows. Figure 4 shows the package structure
of SynBioHub3.

Figure 4: Overview of the packages in SynBioHub3. Each package aims
to self-contain its code such that changes in one package do not a�ect
behavior of other packages, with major changes being easy to implement
through basic code refactoring.

3.3.1 Controllers

Controllers are the first layer in the API for REST request handling. Each
controller corresponds to one endpoint in the API. Figure 5 shows an
example of one of many endpoint in SynBioHub3. Each endpoints can
be configured with the “mapping” annotation, which designates both
the type of REST request (E.G. GET, POST, DELETE, etc.), as well as
the endpoint URL itself. These endpoint structures are also highly con-
figurable, with support for pattern matching, as well as regular expres-
sions. All of these features are provided by Spring Boot (Section 3.1.1),
reducing the time needed to manually route and handle these various
request parameters.

3.3.2 Data Transfer Objects

Data transfer objects (DTOs) are objects in the backend that represent
a piece of data. They hold no logical code; only minimal functions to

3 Methods 15

@GetMapping("/{visibility:.+}/{collectionID:.+}
/{displayID:.+}/{version:.+}/subCollections")

public String getSubCollections(@PathVariable("visibility") String
visibility, @PathVariable("collectionID") String collectionID,

@PathVariable("displayID") String displayID,
@PathVariable("version") String version,

HttpServletRequest request) throws
JsonProcessingException {

String collectionInfo = String.format("%s/%s/%s/%s", visibility,
collectionID, displayID, version);

String sparqlQuery =
searchService.getSubCollectionsSPARQL(collectionInfo);

return
searchService.collectionToOutput(searchService.SPARQLQuery(sparqlQuery));

}

Figure 5: A REST controller responsible for getting all sub-collections.
Note that very little code exists here; data processing is instead del-
egated to various service functions in order to abstract the controller
and service layers of SynBioHub3.

access and mutate the data. The main advantage of DTOs are their self-
contained nature, as they were originally designed to aggregate multiple
pieces of data into one object in order to avoid repeated network calls.

The use of DTOs allows SynBioHub3 to seperate the data layer from
the service layer. Figure 6 shows a DTO used by SynBioHub3 to receive
a multipart login form. By abstracting the various pieces of data into
an object, any changes to a DTO minimally impact how functions must
parse this data, reducing the coupling that the data and service layers
will have.

3.3.3 Repositories

Hibernate (Section 3.1.4) is used in order to map a RDBMS table’s in-
formation to a Repository object. Because the database table has been
abstracted into an object, queries to the database can be written simply
by declaring a ”findBy” method name, with values being passed in as
parameters. Operations such as saving, updating, or deleting rows in
the database are possible using built-in functions, and can take lists
of Entities as arguments to perform batch saves. Figure 7 shows an

3 Methods 16

@Data
public class LoginDTO {

@NotBlank
private String email;

@NotBlank
private String password;

}

Figure 6: A DTO used to encapsulate a login query. Note that there
are no methods for data processing; this is done in the service layer.
Various annotations can be used in order to specify the required fields
and types for a query. The @Data annotation is used by Spring Boot
to automatically generate getters and setters for all fields, reducing the
need to write these manually.

example of a Repository used in SynBioHub3 to store user data.

@Repository
public interface UserRepository extends JpaRepository<UserEntity,

Integer> {
Optional<UserEntity> findByUsername(String username);
Optional<UserEntity> findByEmail(String email);

}

Figure 7: The ”users” SQL table represented as an object in Java. Each
query function will return a row from the database, which corresponds
to the UserEntity object. The Java ”Optional” container wraps the re-
turn type of the function, meaning that the query may return a null
value.

3.3.4 Entities

Entities are abstractions of each row within a RDBMS table. The Hiber-
nate (Section 3.1.4) library is used to map the relational row schema
into an object. Figure 8 shows an example of an Entity in SynBioHub3.
Relational-specific paradigms, such as columns, primary and foreign
keys, uniqueness, and null constraints are all able to be represented
using Hibernate’s annotations. These Entities are able to be manipu-
lated in code like any other object, and operations such as inserting

4 Results 17

multiple Entities into a List in order to perform batch SQL commands
are all supported by Hibernate.

@Entity
@Data
public class UserEntity {
@Id
@SequenceGenerator(name= "CLIENT_SEQUENCE", sequenceName =

"CLIENT_SEQUENCE_ID", initialValue=1, allocationSize = 1)
@GeneratedValue(strategy=GenerationType.AUTO,

generator="CLIENT_SEQUENCE")
private Integer id;

@Column(name = "name")
private String name;

@Column(name = "username")
private String username;

@Column(name = "password")
private String password;

@Column(name = "email")
private String email;

@Column(name = "affiliation")
private String affiliation;

@Column(name = "isAdmin")
private Boolean isAdmin;

@Column(name = "isCurator")
private Boolean isCurator;

Figure 8: A class representing each row within the ”users” table. The
use of Hibernate allows us to represent database entries as Entities
in code, as part its Object-Relational Mapping capabilities. Data types
such as Strings, Integers, and Booleans are all mapped to the corre-
sponding SQL data types automatically as well.

4 Results

This section will describe what has been implemented in SynBioHub3
thus far. Figure 9 shows the newly designed architecture at a high level,

4 Results 18

with SynBioHub3’s interaction with various libraries and services. Both
search and download endpoints have been fully implemented, meaning
existing users and applications can use SynBioHub3 immediately with
no major changes. Basic Authentication and Authorization have been
added, meaning users are able to login and receive an X-Authorization
token for identity verification.

4.1 Search

All of the original search endpoints in SynBioHub have been success-
fully replicated in SynBioHub3. This means that apps will be able to
use the search functionality without any major changes. Additionally,
new standardized endpoints have been added to replace some inconsis-
tencies in the old SynBioHub.

Many of the endpoints in the original SynBioHub do not strictly ad-
here to the Uniform Resource Locators (URL) standard [2], and as a
results, may vary in their formatting. For example, some endpoints do
not require a question mark before the query string, which is not ideal.
Figure 10 shows examples of these inconsistencies. These did not af-
fect the original SynBioHub as heavily, as URL routing and parsing was
done manually. However, in Spring Boot, there already exist methods
to parse valid URL’s, and the inconsistent formatting does not allow
for programmatic best practices in using available libraries. In SynBio-
Hub3, we have introduced a new set of endpoints that will adhere to the
URL standards. These will be added alongside the endpoints. In the fu-
ture, we may choose to deprecate these URL’s if SynBioHub3 achieves
majority adoption, in order to achieve API standardization.

4.2 Downloads

Another set of endpoints that have been fully implemented are down-
loads. Users are able to download any part in a wide range of formats.
This is accomplished by using libraries to read and model the raw data
from Virtuoso (Section 3.1.3) as well as to serialize the data into a wide
range of formats (Section 3.1.2).

Downloads have seen a significant boost in performance, due to
two main reasons. First, the recursive algorithm used to fetch child

4 Results 19

Figure 9: The architecture of SynBioHub3. Many backend applications
used are similar, however, frontend pages are no longer rendered by
the backend. The frontend is treated like any other application, and
communicates solely through the public REST API.

4 Results 20

Figure 10: Examples for querying SynBioHub found in the API doc-
umentation (https://wiki.synbiohub.org/api-docs/). For a search
query, the first set of key/value pairs is separated by a single slash,
and the o�set and limit are separated by a slash and question mark,
while the SPARQL query endpoint uses a question mark but no slash to
separate the query. Similar inconsistencies within the API design exist;
they are not ideal, as for end users it can be more confusing to use, and
for developers it requires di�erent, sometimes non-standard, methods
of parsing URL’s.

parts has been completly rewritten. The use of an RDF parsing li-
brary (Section 3.1.3) allows us to model the RDF graph as a binary
tree, allowing us to take advantage of a breadth-first search opera-
tion to fetch child parts. Secondly, the SPARQL query to fetch these
parts have been rewritten as well. Unions have been removed from
queries sent to Virtuoso, as all data processing and filtering is now
moved into the backend. These union queries have had a significant
impact on the time to query Virtuoso. To test the new download im-
provements, a download query to fetch the 2019 iGEM parts collection
was sent to both SynBioHub and SynBioHub3 locally. The command
curl -s -w %{time_total} \\n <uri> was used to time and download
each GET request. Table 1 shows these results. Alongside these two ma-
jor improvements, SynBioHub3 benefits from not having to switch be-
tween Java and Javascript to complete download operations, although
it is di�cult to quantify the extent to which this had an impact on per-
formance.

https://wiki.synbiohub.org/api-docs/

5 Conclusions 21

iGEM Parts Registry
SynBioHub Did not finish
SynBioHub3 22.77 sec

Table 1: Testing download speeds on local SynBioHub and SynBioHub3
instances. Times are averaged over 3 trials. SynBioHub could not finish
the download.

4.3 Authorization and Authentication

Authentication and authorization is a critical part of SynBioHub. User
accounts are used to manage uploads, collections, and shared parts. In
the original SynBioHub, SQLite is used to store this basic user data ba-
sic access privileges, such as administrator or curator. In SynBioHub3,
SQLite is still used to allow easy portability of user data. However, the
tables are updated to store other data, such as user groups and more
granular share links. This is accomplished by storing in the SQLite
user tables specific record access rights on graphs, sub-graphs, and
individual URI identified objects as described in [17].

In SynBioHub 3, basic authentication and authorization has been
implemented. Users are able to register as a new user, and login to re-
ceive an x-authorization token. This has been achieved by using Spring
security. The library provides a wide range of features within the au-
thentication and authorization process. When a user logs in, the library
will check whether such user exists, and if so, whether their password
matches the hashed representation in the database. It will then get the
user’s roles, such as admin or curator, and return this as an authoriza-
tion token. When a logged in user queries SynBioHub3, Spring Security
(Section 3.1.1) will check to see whether a user has access to a certain
subset of endpoints, which can be fine tuned in the backend.

5 Conclusions

5.1 Summary

SynBioHub3 aims to fix the issues that SynBioHub currently faces.
Its architecture has been redesigned from the ground up, following a
strict Model-View-Controller design pattern, removing the coupling be-

5 Conclusions 22

tween the backend and frontend. By using the Spring Boot framework,
SynBioHub3 avoids the need to integrate a large number of external
libraries, improving code consistency while reducing complexity. Au-
thentication and authorization is handled by Spring Boot, which lays
a consistent foundation for any future complex additions or modifica-
tions to this layer. By rewriting the algorithm for downloading parts,
performance has been increased by shifting the data computation from
the triplestore to the backend, as well as reducing the load that the
triplestore must handle.

5.2 Further Work

The SBH3 backend is still currently in development, and thus is missing
some features that exist within the original SynBioHub, as well as new
features that do not currently exist.

5.2.1 Other Endpoints

There are multiple endpoints that rely on the authentication endpoints,
such as submission, permission, and attachments, with submission
being a non-trivial task to implement. These rely on the authentication
endpoints in order to check user access to parts for download or modi-
fication. We hope to see speed-ups, specifically with submission, since
this is implemented using Java in SynBioHub.

5.2.2 Improved Authentication and Authorization

More granularity in authentication and authorization, such as stor-
ing share links or multiple user groups, is something that has been
discussed by members of the SBOL board during the planning phase
of SynBioHub3. By taking advantage of the relational SQL database,
which is currently only storing basic user information, we can use more
complex relational methods such as foreign keys and joins to store data
such as groups, graph permission, or share links with varying levels of
granularity.

6 Acknowledgement 23

5.2.3 Plugin Support

Plugins are a crucial part of SynBioHub, as they have been the main
method of adding new features due to their ease of development. There
are currently 37 o�cial plugins available for SynBioHub (https://github.
com/SynBioHub), which handle features such as upload conversion, SBOL
visualization, part curation, and search. We would like to reuse many
of these plugins in SynBioHub3, as their usage has proven their help-
fulness in many aspects in SynBioHub. Additionally, plugins are an
excellent way for anyone who may want to contribute to SynBioHub3
without having to modify its source code, and we want to support the
community-focused aspects of these plugins.

6 Acknowledgement

The author would like to thank Professor Myers for being the princi-
pal investigator of this research, as well as Jeanet Mante for revisions
of this paper and Benjamin Hatch for contributions to the frontend of
SynBioHub3. The author of this work is supported by DARPA FA8750-
17-C-0229, the National Science Foundation Grant No. 1939892, and
the National Institute of Standards and Technology (NIST), Microsoft
Azure. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the funding agencies.

https://github.com/SynBioHub
https://github.com/SynBioHub

References 24

References

[1] SPARQL 1.1 Query Language. Technical report, W3C, 2013.

[2] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform
resource locators (url), Dec 1994.

[3] Robert Sidney Cox, Curtis Madsen, James Alastair McLaugh-
lin, Tramy Nguyen, Nicholas Roehner, Bryan Bartley, Jacob Beal,
Michael Bissell, Kiri Choi, Kevin Clancy, and et al. Synthetic biology
open language (sbol) version 2.2.0. Journal of Integrative Bioinfor-
matics, 15(1), 2018.

[4] Michal Galdzicki, Kevin P Clancy, Ernst Oberortner, Matthew
Pocock, Jacqueline Y Quinn, Cesar A Rodriguez, Nicholas Roehner,
Mandy L Wilson, Laura Adam, J Christopher Anderson, and et al.
The synthetic biology open language (sbol) provides a community
standard for communicating designs in synthetic biology. Nature
Biotechnology, 32(6):545–550, 2014.

[5] Timothy Ham, Zinovii Dmytriv, Hector Plahar, Joanna Chen,
Nathan Hillson, and Jay Keasling. Design, implementation and
practice of jbei-ice: an open source biological part registry plat-
form and tools. Nucleic acids research, 40(18):e141–e141, 2012.

[6] Benjamin Hatch, Linhao Meng, Jeanet Mante, James A. McLaugh-
lin, James Scott-Brown, and Chris J. Myers. Visbol2—improving
web-based visualization for synthetic biology designs. ACS Syn-
thetic Biology, 10(8):2111–2115, 2021. PMID: 34324811.

[7] James Alastair McLaughlin, Jacob Beal, Göksel Mısırlı, Raik
Grünberg, Bryan A. Bartley, James Scott-Brown, Prashant
Vaidyanathan, Pedro Fontanarrosa, Ernst Oberortner, Anil Wipat,
Thomas E. Gorochowski, and Chris J. Myers. The synthetic biol-
ogy open language (sbol) version 3: Simplified data exchange for
bioengineering. Frontiers in Bioengineering and Biotechnology, 8,
2020.

[8] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An anal-
ysis of public rest web service apis. IEEE Transactions on Services
Computing, 14(4):957–970, 2021.

References 25

[9] Alec A K Nielsen, Bryan S Der, Jonghyeon Shin, Prashant
Vaidyanathan, Vanya Paralanov, Elizabeth A Strychalski, David
Ross, Douglas Densmore, and Christopher A Voigt. Genetic cir-
cuit design automation. Science, 352(6281):aac7341, April 2016.

[10] Larry Page, Sergey Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. 1998.

[11] Philip Shapira, Seokbeom Kwon, and Jan Youtie. Tracking the
emergence of synthetic biology. Scientometrics, 112(3):1439–1469,
2017.

[12] Logan Terry, Jared Earl, Sam Thayer, Samuel Bridge, and Chris J
Myers. Sbolcanvas: A visual editor for genetic designs. ACS Syn-
thetic Biology, 10(7):1792–1796, 2021.

[13] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-
Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jil-
dau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, In-
grid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard
Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul
Groth, Carole Goble, Je�rey S. Grethe, Jaap Heringa, Peter A.C
’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J.
Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt
Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik,
Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted
Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan
van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester,
Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend
Mons. The fair guiding principles for scientific data management
and stewardship. Scientific Data, 3(1):160018, Mar 2016.

[14] Eric Yu, Jeanet Mante, and Chris J. Myers. Sequence-based
searching for synbiohub using vsearch. ACS Synthetic Biology,
11(2):990–995, 2022. PMID: 35060706.

[15] Michael Zhang, James Alastair McLaughlin, Anil Wipat, and
Chris J Myers. Sboldesigner 2: an intuitive tool for structural ge-
netic design. ACS synthetic biology, 6(7):1150–1160, 2017.

References 26

[16] Zhang, Michael and Zundel, Zach and Myers, Chris. SBOLEx-
plorer: Data infrastructure and data mining for genetic design
repositories. ACS Synthetic Biology, 8(10):2287–2294, 2019. PMID:
31532640.

[17] Zach Zundel. Improving Authentication and Authorization on Syn-
BioHub. B.S. Thesis, University of Utah, December 2019.

	Introduction
	Contributions
	Overview

	Background
	Synthetic Biology Open Language
	Triplestores
	Representational State Transfer
	Related Works

	Methods
	Libraries
	Spring Boot
	libSBOLj
	Apache Jena
	Hibernate

	Data Storage
	Virtuoso
	User Data

	Design Patterns
	Controllers
	Data Transfer Objects
	Repositories
	Entities

	Results
	Search
	Downloads
	Authorization and Authentication

	Conclusions
	Summary
	Further Work
	Other Endpoints
	Improved Authentication and Authorization
	Plugin Support

	Acknowledgement
	References

