
SOFTWARE COMPLIANCE TESTING FOR WORKFLOWS

USING THE SYNTHETIC BIOLOGY OPEN LANGUAGE

by

Meher Samineni

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

May 2019

Copyright c© Meher Samineni 2019

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The thesis of Meher Samineni

has been approved by the following supervisory committee members:

Chris Myers , Chair(s) 17 Aug 2018
Date Approved

Jake Beal , Member 17 Aug 2018
Date Approved

Matthew Flatt , Member 17 Aug 2018
Date Approved

Mary Hall , Member 17 Aug 2018
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Data standards are integral for interoperability between software applications,

since they provide guidelines for how data can be meaningfully exchanged and in

a uniform manner. While standards provide a bridge for applications to share and

translate data, they do not guarantee that applications are compatible to perform

a data exchange or that any translated data is legal and valid. As such, data

passed from pairing applications must be validated to ensure that the data was not

transformed or lost in the process of exchanging information. Ideally we would

want an exchange between tools that is automatically successful; however, the

data translated might not be legal or valid any longer. Therefore, data exchanges

between applications need to be evaluated under conditions to ensure that compli-

ance with the standard is met. The proposed research is to develop a compliance

methodology that tests compliance of applications against the Synthetic Biology

Open Language (SBOL) standard. This research aims to provide a robust test suite,

a TestRunner tool implementing the compliance strategy, and a demonstration of

the created methodology.

To my sister, Sai

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

CHAPTERS

1. INTRODUCTION . 1

1.1 Contributions of this Thesis . 2
1.2 Thesis Overview . 3

2. SYNTHETIC BIOLOGY OPEN LANGUAGE . 4

2.1 Structural Data Classes . 6
2.2 Functional Data Classes . 7
2.3 Additional Data Classes . 8
2.4 SBOL Supporting Applications . 9
2.5 Types of Software . 9
2.6 SBOL Support Within Applications . 10

3. ENRICHMENT OF THE SBOL TEST SUITE . 18

3.1 Algorithm for the Analysis of the SBOL Test Suite 18
3.2 Results of the Analysis of the SBOL Test Suite 25

3.2.1 SBOL Test Suite with Provenance Examples for SBOL 2.2 29
3.2.2 Current State of the SBOL Test Suite . 29

3.3 Discussion . 30

4. COMPLIANCE TESTING FOR THE SBOL DATA STANDARD 37

4.1 Compliance Testing Approach for the SBOL Data Standard 39
4.2 SBOLTestRunner . 41
4.3 Case Studies . 43

4.3.1 SBOL Library Applications . 43
4.3.2 SynBioHub Application . 44

4.4 Discussion . 45

5. CONCLUSIONS . 49

5.1 Future Work . 51
5.1.1 SBOL Test Suite Strategies and Expansion 51

5.1.2 Round-Trip Testing Methodology Case Study Expansion 51
5.1.3 SBOLTestRunner Software Tool Development 52
5.1.4 Integrating Compliance into the SBOL Standard 52

REFERENCES . 53

vi

LIST OF FIGURES

2.1 Biological design standards format evolution. 11

2.2 Structural classes of the SBOL data model . 12

2.3 Functional classes of the SBOL data model . 12

2.4 Additional classes of the SBOL data model are marked in dark blue . . 13

2.5 Results of the availability of SBOL applications 13

2.6 The results of the survey question regarding the OS/Platform re-
quirements . 15

2.7 Results of SBOL applications supporting structural or functional in-
formation . 15

2.8 The breakdown of the various capabilities that SBOL applications have 16

2.9 Survey results determining the level of SBOL Visual 16

2.10 Survey results determining the number of applications able to import
SBOL . 17

2.11 Survey results determining the number of applications able to export
SBOL . 17

3.1 This is a graphical representation of the original SBOL test suite 31

4.1 Simple round-trip test . 45

4.2 A slightly more complex round-trip test . 46

LIST OF TABLES

2.1 A partial list of software supporting SBOL . 14

3.1 This table represents the valid combinations for each top level 30

3.2 Each entry represents information within each cluster 32

3.3 Each entry represents the data types found within a set of examples . . 33

3.4 The results observed from analyzing the original SBOL Biological
Design Examples. 34

3.5 The results observed from analyzing SBOL Biological Design Exam-
ples with the addition of SBOL 2.2 examples . 35

3.6 The results observed from analyzing SBOL Biological Design Exam-
ples with the addition of tests added from the work of this thesis 36

4.1 The errors identified in pySBOL through round-trip testing 46

4.2 The errors identified in sboljs through round-trip testing 46

4.3 The data modifications the SynBioHub emulator makes 47

4.4 The errors identified in SynBioHub through round-trip testing 47

4.5 A summary of various timing statistics of the round-trip testing 47

4.6 A summary of various timing statistics of the round-trip testing 48

ACKNOWLEDGMENTS

I would like to first and foremost thank my adviser, Chris Myers. I joined Chris’

lab as a junior and his mentorship has provided me with valuable support in my

time as an undergraduate and graduate. I am greatly indebted to Chris for his

patience in guiding my work. I gained confidence and insight in my work as a

researcher and Computer Scientist. I am incredibly thankful and will be forever

grateful for all the encouragement and time he has given to me providing feedback,

advice, and mentorship.

I would also like to thank my committee members, Jake Beal, Matt Flatt, and

Mary Hall. I deeply appreciate the invaluable support each member has provided

me, which goes beyond their guidance of this thesis.

I would also like to thank my fellow undergraduate and graduate researchers

in the Myers Research Group. Particularly, I would like to thank Zach Zundel,

Tramy Nguyen, Leo Watanabe, Zhen Zhang, and Michael Zhang for always being

willing to lend a helping hand, providing advice, and always listening during the

times I felt incredibly overwhelmed. Without my parents and all the sacrifices they

have made, I would not be able to be the person I am today. I would like to express

my immense appreciation for them and for the values they have instilled within

me including determination, courage, and the incredible importance of education.

Lastly, I would like to express my gratitude to my sister, Sai, for always believing

in me even when I did not always share the sentiment. I would not have had

the emotional and mental support needed to survive my undergraduate career

without her. I would not be the person I am today without the unconditional

love and support she has always provided me. I am genuinely grateful for her

continued determination in seeing me through every major milestone of my life.

CHAPTER 1

INTRODUCTION

Software communities are integral in various diverse industries. Since users

have different needs, software communities cater to their needs by developing

unique applications. While users are able to perform tasks more easily due to

these developed applications, software communities face some challenges in the

management of tools. These challenges include data reproducibility and ensuring

data integrity, which are issues that impact the quality of communication between

applications. To overcome these challenges, software communities rely on data

standards to provide crucial support. By establishing guidelines for data to be

meaningfully exchanged and in a uniform manner, standards are integral for in-

teroperability between software applications. While standards enable applications

to share and translate data, they do not verify correct implementation within ap-

plications. Furthermore, standards do not validate the data exchanged between

communicating applications. To certify that an application is functioning correctly

as specified by the underlying standard, a compliance methodology is required.

Particularly, for applications supporting a data standard, a compliance method-

ology should ensure that no data loss occurs, data is not harmed, and that all

translated data is legal and valid as specified by the standard.

In order to create and test a compliance methodology and identify patterns

for non-compliance, a software community with developed applications and a

well-defined standard focused in one area is necessary. Synthetic biology is one

such particular field in which well-defined standards and developed applications

exist. Emerging over the last quarter of a century, synthetic biology grew as a

field concerned with the ability to construct biological devices by applying engi-

neering principles [14]. During the development of this field, a synthetic biology

2

oriented software community created the Synthetic Biology Open Language (SBOL)

standard that establishes guidelines to represent biological information about ge-

netic devices. In pairing with the standard, developers within this community

have created applications with diverse functionalities. Some of these functional-

ities include genetic design automation, genetic modeling and visualization, and

databases hosting genetic information. By creating a compliance methodology to

test applications, we can ensure standard compliance and data integrity will be

validated by analyzing the developed synthetic biology-related applications for

SBOL compliance and verifying data exchanges between applications.

1.1 Contributions of this Thesis

The field of synthetic biology contains well-defined data standards with nu-

merous applications claiming to be standard compliant. A major challenge in the

field and in particular the SBOL community is to systematically test applications

for standard compliance. One of the key goals of my research is to create a method-

ology to systematically test and verify applications for compliance. In particular,

my research will use software tools specifically supporting the SBOL standard as a

case study. The main contributions of this proposed research is briefly summarized

in the following paragraphs.

An analysis was performed through a developed SBOL characterization tool

on an existing SBOL test suite. The purpose of this analysis is to understand if

there is a set of diverse examples representing the entire SBOL data model. A set

of metrics are created in order to identify gaps within the SBOL test suite. A more

enriched SBOL test suite was created in order to target these gaps and create a

more complete test suite.

In addition to a more robust SBOL test suite, a testing methodology including

simple and complex round-trip tests is implemented. The purpose of this method-

ology is to determine compliance of an application to the SBOL standard. This

created methodology is instrumented through an SBOLTestRunner software tool

that performs both types of round-trip testing.

In order to test the created compliance testing methodology, several libraries

3

and a critical software application were tested. These case studies show proof of

concept of the methodology and caught errors within each of the libraries and

applications tested. The proposed research has implications within both the SBOL

community and within the broader context for software communities maintaining

applications encoding a standard. Developers within the SBOL community now

have a process to determine if their application is compliant with the SBOL stan-

dard. Furthermore, the case studies tested identified critical bugs within each of

the applications tested.

While the created methodology utilized the SBOL standard and its supporting

applications as case studies, the principles used within this methodology can be

applied to various other communities. For example, the concept of a round-trip

can be used to test other applications encoding standards other than SBOL. More-

over, this research corroborates that standards should have a notion of compliance

testing in order to test applications that support it.

1.2 Thesis Overview

This thesis is organized within five chapters. Background information on the

SBOL standard and data model is provided in Chapter 2. This chapter gives a

detailed overview of the structural and functional components of the SBOL data

model used as a platform to encode biological design information. The results of

the SBOL software survey gathered for various applications supporting the SBOL

standard is also briefly summarized in this chapter. Chapter 3 describes the algo-

rithm that we developed to analyze the SBOL test suite. It also describes how this

algorithm is applied to discover gaps in the test suite. The final result is an enriched

test suite that provides better coverage. Chapter 4 describes the round-trip testing

methodology that we developed to analyze compliance of applications against the

SBOL standard. The chapter also includes the case studies for the application of

the SBOLTestRunner tool against various SBOL software tools. Lastly, Chapter 5

provides a summary of this thesis and the direction of future work.

CHAPTER 2

SYNTHETIC BIOLOGY OPEN LANGUAGE

Given the motivation for the importance of standards and compliance, the

rest of this thesis focuses on creating the methodology for compliance testing of

standards. However, due to the infinite amount of applications that exist and

the standards that they encode, this thesis specifically utilizes the Synthetic Biology

Open Language (SBOL) and the applications that support SBOL as the case study to

analyze. This chapter introduces the SBOL data standard.

SBOL is developed to specify the information within a biological construct.

Biological designs are described in both a structural and functional manner. While

other biological design standards support representing information in a unilateral

manner, SBOL is able to describe a design in a multilevel fashion. This evolution

of biological design standards is shown in Figure 2.1. FASTA represents only the

nucleotide sequencing data of a design, GenBank format provides more detail

regarding the components within a biological design by annotating the positions

of the components within the sequence, but the complete sequence is required.

SBOL provides a format describing both structural and functional information of a

genetic design. The structural description of a design is the information describing

the chemical makeup of entities, i.e. sequencing data [2]. The functional descrip-

tion of a design describes behavior of the design and the interactions between

entities [2]. SBOL 1 enables incomplete designs to be expressed in a modular,

hierarchical format through composition of DNA components without requiring

the sequences for components [6]. This is extended within SBOL 2, which enables

more types of components such as non-DNA components, proteins, and small

molecules and their interactions to be described [2]. Additionally, various software

libraries have been developed to ease the incorporation of the SBOL data standard

5

into applications such as the SBOL java library, libSBOLj [12], the SBOL python

library, pySBOL, the SBOL c++ library, libSBOL, and lastly the javascript library,

sboljs. In addition to the SBOL data standard, there exists the SBOL Visual standard

that enables genetic designs to be visually expressed. SBOL Visual is a graphical

notation that uses schematic “glyphs” to specify genetic components and systems

[11]. Additionally, SBOL Visual allows different regions of DNA components to

be depicted using these “glyphs.” For example, Figure 2.1 visually represents the

promoter, ribosome binding, and terminator regions using SBOL Visual 1, as well

as the proteins, small molecules, and their interactions in SBOL Visual 2.

To give an overview of the SBOL data model, all classes stem from the ab-

stract TopLevel class. As the TopLevel class is an abstract class, it is not directly

referenced, but rather indirectly implemented through twelve key classes. Those

classes that inherit from the TopLevel class directly are considered as parent classes

that are never nested under any other object. The TopLevel classes include the fol-

lowing derived classes: Sequence, ComponentDefinition, Model, ModuleDefini-

tion, Collection, GenericTopLevel, CombinationalDerivation, Implementation,

Attachment, Activity, Agent, and Plan.

The CombinatorialDerivation, ComponentDefinition, Sequence, Collection,

and Implementation classes and their supporting classes represent the structural

entities within the SBOL standard. ModuleDefinition and Model TopLevel classes

along with their supporting classes represent functional entities. These classes

are explained within the next few sections. The associations between classes are

indicated using arrows. Solid arrows indicate ownership of the class towards

which the arrow is pointing [2].

The rest of this section describes these classes in a bit more detail. First, Sec-

tion 2.1 introduces the structural classes, followed by Section 2.2 that introduces

the functional classes. Lastly, Section 2.3 describes a third group of additional data

classes that represent auxiliary information that is neither structural nor functional.

6

2.1 Structural Data Classes

Figure 2.2 depicts the structural classes within the SBOL data model. The

ComponentDefinition class represents the structural entities within a biological

design [2]. The components that represent DNA, RNA, and protein, i.e. the struc-

tural entities are described using ComponentDefinition objects. While this is the

main purpose of this data class, ComponentDefinition objects are also used to

represent other types of structural entities that exist within a biological design such

as small molecules and complexes. A Sequence object is used to define the genetic

coding within the structural entity. Additionally, there are sub-classes that further

assist this class including the Component, SequenceAnnotation, and Sequence-

Constraint classes, which capture more details regarding the structure of the entity

being represented. The Component class is a child of the ComponentDefinition

class. Its purpose is to define sub-entities and their structural uses. For example, a

gene is represented using a ComponentDefinition. However, the substructures

within a gene include a promoter, terminator, and a coding region, which are

represented by Components.

Within a Sequence object belonging to a ComponentDefinition, it is ideal to

denote specific positions of the sequence. This function is achieved through a

SequenceAnnotation object. To specifically denote the position, a Location object

is used. The Location class is an abstract that allows a region of a coding sequence

within a SequenceAnnotation object to be denoted either through a Range, Cut,

or GenericLocation object. A Range object denotes the sequencing data between

a given start and end position of the data. Alternatively, a Cut object denotes the

position at a specified index within a sequence. Lastly, GenericLocation allows

position access within a Sequence object containing different genetic encodings or

to annotate objects that lack sequence data. In addition to denoting specific posi-

tions of a sequence, a SequenceConstraint object allows for rules to be specified

regarding the relative location and orientation of substructures.

The Sequence class represents the genetic code within a ComponentDefinition

object. The main purposes of this class include representing the genetic coding

of the constituents of a biological entity and identifying the meaning behind the

7

genetic encoding, for example, the nucleotide bases of a DNA molecule.

In order to represent a physical instance of a synthetic biological construct,

the Implementation class is used. This class provides the ability to describe the

product that was built within a laboratory sample.

The purpose of the CombinatorialDerivation class is to describe combinatorial

genetic designs without having to specify every possible design variant individu-

ally. Its child class is a VariableComponent that provides the ability to specify

ComponentDefinition objects denoting any new Component objects.

2.2 Functional Data Classes

Figure 2.3 represents the functional classes and their relationships. The Mod-

uleDefinition class allows for grouping of the structural and functional entities in

a biological design [2]. The main purpose of this class is to track the function and

molecular interactions between entities within a biological design. A ModuleDefi-

nition references a set of FunctionalComponent objects, the Interactions between

entities, and Modules of a biological design.

As discussed earlier, the entities within a design are represented as Compo-

nentDefinition objects. In order to instantiate the created object, a Functional-

Component object is defined. There are many entities that connect and interact

within a design to produce some function. For this purpose, Interactions are

utilized in order to provide the information on how FunctionalComponents be-

have together such as representing the biological processes of transcription and

translation. Within a Interaction, a set of Participation objects are typically created

to denote the entities participating within an Interaction.

ModuleDefinition objects can contain abstract entities representing various

components. These components do not necessarily reference a specific part with

genetic information, but act as placeholders for more specific entities to replace

the abstract entities. This functionality is achieved through a MapsTo object. A

MapsTo object defines the relationships between the abstract entity and the specific

component. It can also be used to indicate when two entities represent the same

object.

8

The Model class allows for an external computational model to be referenced

and for meta-data of the contents of a model to be tracked. This class allows for an

abstraction so that there isn’t duplication of designs.

2.3 Additional Data Classes

Figure 2.4 represents the additional classes within SBOL. The Collection class

allows for TopLevel objects with a common feature to be grouped together. For

example, a set of ComponentDefinition objects representing different types of

promoters could be placed within a promoter Collection.

Annotation objects are created to attach information to any SBOL object. This

attached information does not change the meaning of the SBOL object, but adds

extra description to the referenced part. For example, a ComponentDefinition

object might contain an annotation with the location of the imported source data

[2].

The Attachment class allows for data files to be associated and to link metadata

relating to a SBOL design. For example, experimental data files resulting from a

procedure can be represented using an Attachment. The Activity class is used

to track experimental meta-information regarding a genetic design. Submodules

of this class include Association and Usage, which further clarify the roles of

entities within an Activity. The Plan class specifies the steps within a process. For

example, this entity could refer to the lab protocols used in an experiment. This

class pairs with the Agent class. The Agent class refers to the entity performing a

design process. The Agent class could refer to a person, organization, or software

tool.

The last class to briefly mention within the SBOL data model are the GenericTo-

pLevel objects. These objects act as a catch-all mechanism to retain information re-

garding a biological construct that cannot be internally well-defined by an existing

SBOL class. The entities that are created using a GenericToplevel object contain

annotations with information that can be used to exchange non-SBOL-related data.

9

2.4 SBOL Supporting Applications

We created and dispersed a survey to application developers within the SBOL

community with the goal of compiling a list of the current software applications

supporting SBOL. The application information gained from the survey is utilized

in evaluating the created testing methodology. Twenty-nine responses have been

collected as of July, 2018 from the survey and the compiled results are shown in

Table 2.1. The questions within the survey focused on gaining a comprehensive

understanding of an application’s capabilities and extent of SBOL support the

application provides. To meet this objective, there are three main types of questions

asked. The first was a general overview of information regarding the application.

The second type of questions included the functionality and usage of the applica-

tions. The last type of questions related to the capacity in which the SBOL standard

was supported.

2.5 Types of Software

Figure 2.5 and Figure 2.6 are a few examples of the questions asked regarding

the platforms and licenses applications supported. Most applications are hosted

under an open-source license. There is not any preference for any particular OS,

but there are slightly higher statistics for web-based applications.

One of the key points of this survey is the breakdown between how applica-

tions supported both structural and functional aspects of SBOL. Figure 2.7 shows

the breakdown of the applications supporting the SBOL data model. Fourty-one

point four percent of applications support SBOL structurally only while thirteen

point eight percent of applications specifically are able to support SBOL functional

classes. fourty-four point eight percent of developers claim that their application

supports both. The testing methodology must take into account that applications

that state they can only support one level can only be tested with SBOL data

examples supporting that level of data. Another point is the applications that fall

under ’both’ levels still could only partially support parts of the classes within the

data model.

Figure 2.8 references the functionality that various applications provide. An ap-

10

plication can have multiple capabilities, so there is overlap among the categories.

Predictably, however, the largest category is that applications allow for designing

sequence and biological/genetic constructs. Fifteen of the twenty-nine applica-

tions that state they could support biological/genetic circuit design and fourteen of

twenty-nine state functionality for sequence designing capability. Other categories

include twelve of twenty-nine applications that state they support visualization of

created designs.

2.6 SBOL Support Within Applications

Figure 2.9 represents a summary of results about SBOL applications supporting

SBOL Visual. SBOL Visual defines a graphical notation to define genetic compo-

nents and designs [11]. Of the applications queried, 58.6 percent report they do

support SBOL Visual.

Figure 2.10 and Figure 2.11 summarized the results from questions regarding

SBOL support integrated within the application. Figure 2.10 shows the results for

whether applications are able to read and understand the contents of data within a

SBOL example file. Figure 2.11 shows the results for whether applications are able

to export a SBOL file containing valid SBOL data of the design built within the

application. Applications largely support SBOL 1.0, which only supports struc-

tural classes within the data model. However, there were nine of twenty-nine

applications that support SBOL 2.0 which includes multilevel support as well as

support within Genbank and FASTA formats.

Given the software applications that currently support SBOL and the informa-

tion of how they support SBOL, the next chapter discusses the testing algorithm

created to test SBOL applications and analyze a set of SBOL examples used as the

input to test SBOL applications.

11

TATAATAGGATT GATTACAGGGTTAGC CTGATTACAGG ATGGCAGCCT

TATAATAGGATT GATTACAGGGTTAGC CTGATTACAGG ATGGCAGCCT

PromoterRBS CDS Terminator RBS CDS TerminatorPromoter

TATAATAGGATTCCGCAATGGATTACAGGGTTAGCAAATGGCAGCCTGATTACAGGGTTAGCAAATGGCAGCCT

FASTA

GenBank

SBOL 1

SBOL 2

TATAATAGGATTCCGCAATGGATTACAGGGTTAGCAAATGGCAGCCTGATTACAGGGTTAGCAAATGGCAGCCT

Figure 2.1. Biological design standards format evolution. SBOL expands beyond
previous formats that only allow expression of sequences to include hierarchical
representations of the structure and functional information of a genetic design.
SBOL 1 allows for DNA components to be described without requiring sequences
to be assigned to each component. SBOL 2 further extends this format by enabling
more types of components and their interactions to be described (figure courtesy
of Zundel et al [13]).

12

Figure 2.2. Structural classes of the SBOL data model. The dark yellow classes
represent the TopLevel structural data classes within the SBOL data model with
the lighter yellow representing the supporting structural data classes.

Figure 2.3. Functional classes of the SBOL data model. Dark green classes rep-
resent the top level functional data classes with the supporting functional data
classes marked in light green.

13

Figure 2.4. Additional classes of the SBOL data model are marked in dark blue.
These classes represent top level additional classes that do not strictly represent
structural or functional information. The lighter shade of blue represents the
supporting classes. All of the classes within the SBOL data model inherit from
the abstract Identified class; therefore, any class can have a child annotation.

Figure 2.5. Results of the availability of SBOL applications and licensing and user
requirements to acquire the applications.

14

Table 2.1. A partial list of software supporting SBOL. An up-to-date list is
maintained on http://sbolstandard.org. The function column indicates if
the tool is a (K)nowledge Management, (S)equence design tool, (G)enetic circuit
design tool, (M)odeling and simulation tool, or a (V)isualization tool. The SBOL
column indicates if it supports SBOL(1), (2), or (v)isual (table courtesy of Myers et
al. [10]).

SBOL
Function Import Export

Name K S V G M V 1 2 1 2
BOOST • • • • •
Cello • • • •
DeviceEditor • • • • • •
DNAPlotLib • • • • • •
D-VASim •
Eugene • • • • •
Finch • • • • • •
GeneGenie • •
GenoCAD • • • • • •
Graphviz • •
iBioSim • • • • • • • •
ICE • • • • • •
j5 • • • • •
MoSeC • • •
Parts&Pools • •
Pigeon • •
Pinecone • • • • •
Pool Designer • • •
Proto BioCompiler • • • • •
SBOL-GB Converter • •
SBOL Validator • • • • •
SBOLDesigner • • • • • • • •
SBOLme • •
ShortBol • • •
SynBioHub • • • • • •
Tellurium • • • • •
TinkerCell • • • • • •
VisBOL • • •
VirtualParts • • • • • • •

15

Figure 2.6. The results of the survey question regarding the OS/Platform require-
ments for SBOL applications. The results of the breakdown of the platform usage
are shown.

Figure 2.7. Results of SBOL applications supporting structural or functional infor-
mation.

16

Figure 2.8. The breakdown of the various capabilities that SBOL applications have.

Figure 2.9. Survey results determining the level of SBOL Visual in SBOL applica-
tions.

17

Figure 2.10. Survey results determining the number of applications able to import
SBOL.

Figure 2.11. Survey results determining the number of applications able to export
SBOL.

CHAPTER 3

ENRICHMENT OF THE SBOL TEST SUITE

The survey results provide a group of software applications to test the compati-

bility between applications through their data exchanges. Furthermore, the survey

provides information regarding how each application supports SBOL. Since these

results are self-reported, the claims of what an application can support must be

verified. In order to verify the self-reported data, a robust test suite with exam-

ples representing the SBOL standard is required. During the beginning work of

this thesis, the initial SBOL test suite contained different sets of tests created for

various purposes. This test suite contained a series of existing SBOL files used for

conversion testing of SBOL 1 to SBOL 2 [1, 6]. Examples also representing the

SBOL 2 specification were created [2]. Additionally, some examples belonging

to the test suite were utilized to test the SBOL Java library [12]. Alternatively,

the initial test contained a series of invalid files that were used to test the SBOL

validation rules, and applications supporting SBOL should throw errors for these

files. The focus of this thesis is to analyze the initial example set to understand its

coverage of the SBOL data model and to augment the test suite with new examples

for a full coverage of the data model. This analysis begins the start of the testing

methodology to robustly test and verify the claims from the survey responses of

the SBOL software applications. Section 3.1 of this chapter details the algorithm

created to analyze the SBOL Suite of Examples. The results of the analysis are

discussed within Section 3.2.

3.1 Algorithm for the Analysis of the SBOL Test Suite

In order to test applications supporting the SBOL standard, the SBOL 2 ex-

amples within the test suite are analyzed to create a logical understanding of the

various biological designs in relation to the SBOL data model. These biological

19

designs are created for the purpose of testing SBOL’s java library libSBOLj and

have been reorganized to determine SBOL compliance, example completeness,

and adherence to best practices. While these designs are robust in the diversity

of both structural and functional classes integrated from the SBOL data model and

the pairings of classes, there is not an obvious way to identify how an application

supports SBOL when given one of these biological designs as input. Therefore, this

following section explains the algorithm created to organize the created biological

designs based on the data types represented within each biological design.

The goal of this algorithm is to understand the current data given within the

series of SBOL files representing various biological designs. The files are placed

into a set and then each file is read into an SBOLDocument individually using

libSBOLj. As explained within Algorithm 1, the types introduced within the SBOL

data model are given as a set. Then each file identifies the types contained and a

count is associated with each type. The purpose of this is to understand the extent

of the SBOL data model support within the existing biological designs.

Algorithm 1: Pseudocode to determine what SBOL data types exist within an
SBOL example.

Input: SBOLDocument doc, Set files, Set types
Output: Map 〈 f, Map 〈 t, c 〉〉 m
foreach f ∈ files do

doc = read(f)
foreach t ∈ types do

c = doc.count(t)
if m[f][t] 6= 0 then

m[f][t] := c
end

end

end

The second goal of the algorithm is to create relationships between biological

designs that contain the same type of data. A cluster is defined to have a set of

SBOL data types and a set of the files with the data that contains those specific data

types. Algorithm 2 shows the pseudocode of the function to create the clusters.

The set of files with the associated data counts is given as input. The function

20

works such that an SBOL file is chosen at random and removed from the remaining

list of files. A cluster is created with the chosen file as the only member included.

Then using the information previously gained from Algorithm 1, the types existing

in the file with counts greater than zero are placed into a set of data types. In order

to determine what other files are members of this cluster, every other file is checked

such that the count data is the same for each file as the chosen file, then the current

file is placed into the cluster. Once all the files are checked, a set of clusters with

files that contain common data types is created.

Algorithm 2: Pseudocode to create clusters with a set of SBOL data types com-
mon to a set of SBOL examples.

Input: Map 〈 f, Map 〈 t, c 〉〉 m, Set files
Output: Set clusters
foreach f ∈ files do

cTypes = ∅

Map 〈 t, c 〉 givenTypes = m[f]
foreach t ∈ givenTypes do

if m[f][t] 6= 0 then
cTypes = cTypes ∪ t

end

end
clusters[cTypes] = clusters[cTypes] ∪ f

end

While the clusters are able to group the SBOL data files, the third and final

goal of the algorithm is to create relations between the clusters. In order to do

this, Algorithm 3 iterates through the clusters and chooses two different clusters

at random. One cluster is marked arbitrarily as the parent and the other cluster

as the child. To see if a direct relation exists between the two clusters, each cluster

within the remaining clusters is checked to ensure that the third cluster is not a

subset of the parent cluster and the child is not a subset of the third cluster. The

subset relation in this function is defined through the common data types. If every

data type belonging to a cluster is also contained within another cluster, then the

first cluster is considered a subset of the second cluster.

Determining relations between the created clusters provides an organized un-

21

Algorithm 3: Pseudocode to create parent-child relationships between clusters
representing common SBOL data types across SBOL examples.

Input: Set clusters
Output: Graph g
for p ∈ clusters do

for c ∈ clusters do
if p == c then

end
continue
if c (p then

continue
end
flag = true;
for otherCluster ∈ clusters do

if otherCluster == parent or otherCluster == child then
continue

end
if otherCluster ⊆ parent and child ⊆ otherCluster then

flag = false
end

end
if flag then

Edge e from parent to child
end

end

end

22

Algorithm 4: This algorithm determines if any data types found within a parent
cluster are not found within at least one of the child clusters.

Input: Set clusters
Output: String state
for p ∈ clusters do

childDataTypes = ∅

if size(p) 6= 0 then
if isTopLevel(p) then

state = ”leaf node : complete set”
end
else

for c ∈ p do
childDataTypes = childDataTypes ∪ c

end
if size(childDataTypes) == 0 then

state = ”children have no data types: complete set”
end
else if getDataTypes(p) == childDataTypes then

state = ”children exist in parent: complete set”
end
else

state = ”children do not exist in parent : incomplete Set”
end

end

end

end

23

derstanding of how the SBOL standard is represented through the series of SBOL

examples. The created graph of clusters determines what tests do exist, not neces-

sarily what tests do not exist in the current test suite. Further analysis determined

the gaps in the test suite. In particular, the ”completeness” of the cluster graph was

determined. Each cluster was checked against its children to verify whether they

form complete tree subset relations. As shown in Algorithm 4, this method iterates

through the set of clusters and for each cluster retrieves data types its child clusters.

If the union of all the data types of the children equals the data types within the

parent cluster, then a perfect subset relation exists. For each cluster, if the union

of all the child types do not equal the parent’s types, then the graph is incomplete.

In this case, a new test case can be added for the missing data types to create a

perfect subset. In certain cases, the union of the child types cannot equal the parent

because within the SBOL data model, only the top level types are allowed to exist

alone. All other data types must exist along with their top level parent type. For

example, a parent cluster with the types ComponentDefinition and Component

that has one child cluster containing a ComponentDefinition is not a perfect sub-

set. To complete this subset, there would need to be a cluster containing just the

Component data type. However, this case is not possible because a Component

cannot exist without a ComponentDefinition. Within the SBOL data model, all

child data types must exist with their top level classes. Therefore, when checking

for the ”completeness” of the graph, these parent-child data type relationships are

taken into account before creating any new test cases. Additionally, there are also

sibling relationships that exist. In extending the previous example, a cluster that

contains the types: ComponentDefinition, Component, and SequenceConstraint

cannot have a child cluster with ComponentDefinition and SequenceConstraint.

A SequenceConstraint references a Component, therefore a Component is re-

quired to exist. In adhering to top level parent-child and sibling relationships,

the graph structure will formulate such that the leaf nodes will be single top level

classes as shown in Algorithm 5. Then the parents of those leaf nodes will be a

combination of the top level classes with their child classes and in some cases,

their required sibling classes. This structure can follow to create larger and more

24

complex cases with various classes.

Algorithm 5: Algorithm to determine if a cluster is a leaf node. The cluster must
contain one data type that must be a TopLevel type.

Input: cluster c
Output: boolean b
b = false
if size(dataTypes(c)) == 1 then

for dataType in c do
if dataType == Collection then

b = true
end
else if dataType == ModuleDefinition then

b = true
end
else if dataType == ComponentDefinition then

b = true
end
else if dataType == Sequence then

b = true
end
else if dataType == Model then

b = true
end
else if dataType == GenericTopLevel then

b = true
end
else if dataType == Attachment then

b = true
end
else if dataType == Implementation then

b = true
end
else if dataType == CombinatorialDerivation then

b = true
end
else if dataType == Activity then

b = true
end

end

end

The second main extended analysis performed determined the total number

25

of valid combinations of data types. A complete test suite would ideally have at

least one example for each valid combination. Utilizing the combos function within

the itertools Python library, each valid combination of data types was identified.

Each top level and its children paired with their siblings were recorded in a list.

If the paired top level for the children did not exist within the combination, then

it is not considered valid and was not recorded. For example, for the top level,

Sequence, it has a child class Annotation. The outputted combinations include

(Sequence), (Sequence, Annotation), and (Annotation). All of the combinations

are valid except for the last because in Annotation, the data type is not a top level

and its paired top level, i.e the Sequence class, does not exist. Therefore, it is

excluded. Table 3.1 provides the number of unique valid combinations for each top

level paired with their children and required siblings. If these combinations were

once again paired across with each other, then the total number of combinations is

105,840. It is not practical to create tests for all of these cases, but it is reasonable to

create examples for each of the individual top level combinations. The number of

combinations for each top level combination is shown in Table 3.1.

The total number of valid combinations identified points to the minimum num-

ber of valid examples that should exist within a test suite. The data types within

each cluster provide one possible combination. To understand how many com-

binations had a paired example within the test suite, all of the data type sets

from each cluster were concatenated into a set. This set was matched against the

total number of possible combinations to determine the coverage amount and also

which combinations did not have a paired example.

3.2 Results of the Analysis of the SBOL Test Suite

There is now a methodology to which the SBOL test suite can be systematically

tested to determine the robustness of the examples. The purpose of analyzing

the examples and creating a graphical representation of the test suite is to pro-

vide some insight into how to logically test applications that support SBOL. The

created graph provides a method to be able to test applications and validate the

self-reported information taken from the survey responses. One possible strategy

26

is given an application, an example from each of the source nodes can be imported

into an application to determine the classes it can support. If the application

fails to properly import the data within any of these examples, then the examples

belonging to the next level child nodes can be imported and checked. This process

can be continued to see what parts of the SBOL data model the application truly

does support. This type of testing provides some confidence that the application

successfully supports those data types of the SBOL data model. Another test-

ing strategy to verify an application’s claims to supporting both structural and

functional data, the data within the examples belonging to the clusters identifying

only as structural or functional can be imported into an application. Lastly, the

examples within the SBOL test suite acts as the input for the round-trip tests, which

are used to determine if an application is able to exchange data accurately. Addi-

tionally, the process determines whether the created graph and the examples create

a robust test suite or if there are gaps that are to be filled. Lastly, the methodology

measures the test suite against the total valid number of test cases that can exist.

The SBOL test suite was enriched through utilizing the methodology and iden-

tifying areas of areas of improvement. To show the evolution of the SBOL test

suite, various statistics and the created graph will be discussed from analyzing

the test suite at three different time points. The first time point is previous to the

addition of classes to the SBOL standard. The second time point is immediately

after examples were added to the test suite representing the new SBOL classes.

The last is the current test suite with examples added as part of the work of this

thesis. While the created graphs at each time point can be discussed, only the

graph for the first time point is discussed in detail due to space consideration.

There are a variety of statistics tabulated from analyzing the SBOL test suite at each

of the three time points. The information provided is organized in three different

sections. The first is overall data statistics of the test suite including the number

of examples and clusters that make up the test set. The second section breaks

down the data type diversity of the SBOL examples. This includes the number of

structural, functional, and auxiliary examples that exist as well as their overlaps.

The last section provides statistics for cluster coverage of the data types.

27

Original SBOL Test Suite

A graphical representation of the resulting POSET for the example test suite

is shown in Figure 3.1. The nodes with no incoming arrows are the source nodes

within the graph. Source nodes represent a superset of the data types common to

a group of examples. Each source node denotes a set of examples with a unique

superset of the data types. In other words, no other node exists that includes

the same data types and more. The remaining portion of the graph consists of

paths made up of nodes that follow parent-child relationships. Pathways exist

as a child node that stems from one or more parent nodes and each child node

consists of examples that contain a subset of the SBOL data types contained by

its immediate parent. These pathways are significant because they provide a test

strategy to narrow down which data types are being correctly supported. There

are three numbers within each cluster. The top number is an arbitrary number

used to reference the cluster node. The second number represents the number of

common data types found within a group of examples. The last number within

the parenthesis denotes the number of examples. Red colored nodes represent

clusters that include structural, functional, and auxiliary data types. The yellow

colored nodes represent clusters that include structural and possibly auxiliary data

types (Sequences, ComponentDefinitions, etc.) while the green colored nodes

represent clusters that are functional and possibly auxiliary data types (Models,

ModuleDefinitions, etc.). Blue colored nodes represent only auxiliary data types

(Collection, GenericTopLevel, etc). Lastly, white colored nodes represent nodes

with data types. For example, source Node 11 contains one example with eighteen

data types represented in the example and there exists no example representing

these data types and more. Node 22 stems from 10 with three examples rep-

resenting eleven types and are also a subset of the types found in the previous

node. Node 17 contains one example with five data types that are also within

node 22 and so on. The pathway is followed depth-wise with each child level

providing a more constrained subset of the data types existing within the parent

node. Table 3.2 provides the details for each node including the number of example

files that belong to that node as well as the type of examples found within the node.

28

Furthermore, Table 3.3 provides the exact data types found within each node.

In the SBOL data model, there are twenty-seven classes excluding abstract

classes. The SBOL data model has expanded to include new classes. The SBOL

data model that existed during the first time point had eighteen non-abstract data

classes. Given this, the maximum number of data types that exists in a set of

examples is eighteen types as represented by Node 10. Furthermore, there does

not exist any example with every data type represented. While there does not exist

an all-inclusive example, every single data type is at least represented once within

an example. One last key insight is the imbalance in the types of data existing

within the examples. Thirty-four percent of the examples represent only structural

data classes, while only five percent of the examples include functional data type.

The inspection of the example test suite whose examples are organized in par-

tial order set relationships provides a way to test SBOL applications. However,

the example test suite is incomplete. A full summary of the analysis statistics is

provided in Table 3.4. There are ninety-five examples and twenty-seven clusters.

There are nine data types that are not currently being represented in any one

example. The test suite contains an imbalance in the structural and functional

examples. Thirty-four percent of the test suite contains examples representing

structural data types that are representative of SBOL 1 examples. In contrast, the

test suite only contains five percent of examples representing functional data types.

The example test suite needs to expand to include more SBOL 2 examples that

include functional data types. This imbalance across structural, functional, and

auxiliary types shows in cluster formation.

In analyzing the current suite of examples, we observed that different combi-

nations of classes, especially key classes such as ComponentDefinition and Mod-

uleDefinition, do exist. However, many combinations of data classes are still

missing. Furthermore, some classes are being tested very thoroughly whereas

other classes only are tested by a few examples. The number of examples is not

evenly distributed across types.

29

3.2.1 SBOL Test Suite with Provenance Examples for SBOL 2.2

Along with the expansion of the SBOL data model, there were new tests con-

tributed by various developers within the SBOL community. These new tests were

representative of the new classes. Once again, performing the test suite analysis,

the statistics regarding the expanded test suite were gathered. There were 114 tests

total that did increase the test count as well as increased the number of clusters to

thirty-six. However, the same issues that were seen with the original test suite

remained prevalent. The same imbalance between structural versus functional

tests did not improve. Twenty-nine percent of total examples represented struc-

tural data only. In comparison, about one-eighth the amount of structural tests

were functional. Additionally, there is an improvement in the number of clusters

representing various combinations. While all combinations cannot be covered in a

realistic manner, at least more of the first two levels of the graph that are the top

level leaf nodes and the top levels paired with their children should exist. These

statistics are shown in Table 3.5.

3.2.2 Current State of the SBOL Test Suite

From identifying the problems that existed in the previous states of the test

suite, a main goal of this thesis was to enrich the SBOLTestSuite. Once again,

performing the test suite analysis, the statistics regarding the expanded test suite

were gathered and are shown in Table 3.6. There are now 200 tests total and 113

clusters total. Every single data type is represented in at least one example. New

tests were created with the goal of creating a balanced test suite representative

of every category of data type. In the previous test suites, there were far more

structural examples than functional. Therefore, more examples now exist with

only functional data types. The ratio of structural to functional examples is half

rather than an eighth as before. There is also an increase of examples including

auxiliary data types. This is particularly important since SBOL 2.2 expansion

included more types that were neither structural or functional. With the added

clusters, there is an improvement in the combinations covered. There are still many

uncovered combinations, but this is a difference from the number of clusters that

30

represented valid combinations in the original test suite. Increasing clusters covers

more of the first two levels of the graph that have examples representing top level

and their direct children combinations.

3.3 Discussion

In creating a methodology for analyzing SBOL software applications and their

support of the SBOL standard, an algorithm is created to analyze the SBOL test

suite. The inspection of the examples results in a graph that can be used to test

SBOL applications and verify the self-reported data from the survey. A goal of this

thesis is to enrich the SBOL test suite and provide a process to prove its robustness.

The test suite was expanded to fill in gaps in the diversity of SBOL data types

represented. In extension, the developed SBOLTestRunner software tool will utilize

the enriched test suite to perform compliance testing of applications supporting

SBOL. The SBOL test suite is available at https://github.com/SynBioDex/

SBOLTestSuite. The algorithm for analyzing the test suite is located at

https://github.com/mehersam/SBOLTestCharacterization.

Table 3.1. This table represents the valid combinations for each top level paired
with its children and siblings.

Valid Combinations

ModuleDefinition 32
ComponentDefinition 80

Sequence 2
Model 2

Collection 2
GenericTopLevel 2

CombinatorialDerivation 4
Implementation 2

Attachment 2
Activity 8

Plan 2
Agent 2

Total Combos 105,840

31

Figure 3.1. This is a graphical representation of the original SBOL test suite and
their relations based on the data types supported. The nodes are clusters of
examples with the same SBOL data types that are numbered arbitrarily for easy
referencing. The second number references the number of data types common
to a group of examples. The numbers within the parentheses are the number of
examples in the cluster. Diamond nodes are source nodes with unique supersets
of data types. The yellow colored nodes represent clusters that include structural
and possibly auxiliary data types, while the green colored nodes represent clusters
that are functional, and possibly auxiliary data types. The red colored nodes
represent clusters that include structural, functional, and possibly auxiliary data
types. Blue colored nodes represent only auxiliary data types. All of the examples
analyzed are available at https://github.com/SynBioDex/SBOLTestSuite
/tree/master/valid/SBOL2.0

32

Table 3.2. Each entry represents information within each cluster. The Example
Count column indicates the number of examples within that cluster. The Data
Count column represents the number of unique data types found within that set
of examples. The Source column indicates whether that cluster is a root node in the
graph. The Structural and Functional columns indicate the examples within that
cluster represent structural or functional data.

Node Example Count Data Count Source Structural Functional

1 4 6 •
3 1 15 • •
4 1 10 •
5 1 13 •
6 1 15 • •
7 3 1 •
8 2 1 •
9 4 1 •

10 1 2 •
11 3 9 •
12 5 6 •
13 1 3 •
14 2 1 •
15 1 3 •
16 1 3 •
17 1 8 • •
18 1 5 •
19 12 8 • •
20 3 1
21 28 3 •
22 1 2 •
23 6 7 •
24 2 2 •
25 1 2 •
26 2 1 •

33

Table 3.3. Each entry represents the data types found within a set of examples
within that node cluster. CD denotes ComponentDefinition, S denotes Sequence, C
denotes Collection, SA denotes SequenceAnnotation, SC denotes SequenceConstraint,
L denotes Location, R denotes Range, Cut denotes Cut, Comp denotes Compo-
nent, MD denotes ModuleDefinition, FC denotes FunctionalComponent, Mod denotes
Module, I denotes Interaction, P denotes Participation, MDL denotes Model, MPS
denotes MapsTo, GTL denotes GenericTopLevel, A denotes Annotation

Node Data Types

1 A, SA, S, R, CD, L
3 A,C,I,SA,S,R,MD,SC,MDL,GTL,C,Comp,Mod,CD,L
4 P, MD, SC, I, MPS, S, FC, Comp, Mod, CD
5 P, I, MPS, SA, S, FC, R, MD, MDL, Comp, Mod, CD, L
6 P,A,MPS,SA,S,FC,R,MD,MDL,GTL,C,Comp,Mod,CD,L
7 S
8 CD
9 C

10 A, CD
11 A, SA, GTL, C, S, Comp, R, CD, L
12 SA, S, Comp, R, CD, L
13 SC, Comp, CD
14 MD
15 MD, I, FC
16 A, GTL, CD
17 A, SA, GTL, S, Comp, R, CD, L
18 Cut, SA, S, CD, L
19 SC, SA, GL, S, Comp, R, CD, L
20 GTL
21 C, S, CD
22 Comp, CD
23 SA, C, S, Comp, R, CD, L
24 S, CD
25 C, S
26 MDL

34

Table 3.4. The results observed from analyzing the original SBOL Biological
Design Examples.

Graph Statistics

SBOL Examples 95
SBOL Clusters 27

Covered Data Classes 18
Missing Data Classes 9

Example Statistics

Structural Examples 32 (34%)
Functional Examples 5 (5%)
Auxiliary Examples 7 (8%)

S & F Examples 2 (2%)
S & A Examples 40 (42%)
F & A Examples 0

All Types Examples 2 (2%)
No Types Examples 7 (7%)

Cluster Statistics

Structural Clusters 11
Functional Clusters 3
Auxiliary Clusters 2

S & F Clusters 2
S & A Clusters 6
F & A Clusters 0

All Types Clusters 10
No Types Clusters 1

35

Table 3.5. The results observed from analyzing SBOL Biological Design Examples
with the addition of SBOL 2.2 examples.

Graph Statistics

SBOL Examples 114
SBOL Clusters 36

Covered Data Classes 27
Missing Data Classes 0

Example Statistics

Structural Examples 33 (29%)
Functional Examples 5 (4.4%)
Auxiliary Examples 8 (7%)

S & F Examples 2 (2.8%)
S & A Examples 54 (47%)
F & A Examples 0

All Types Examples 5 (4.3%)
No Types Examples 7 (6.1%)

Cluster Statistics

Structural Clusters 12
Functional Clusters 3
Auxiliary Clusters 3

S & F Clusters 2
S & A Clusters 11
F & A Clusters 0

All Types Clusters 4
No Types Clusters 1

36

Table 3.6. The results observed from analyzing SBOL Biological Design Examples
with the addition of tests added from the work of this thesis.

Graph Statistics

SBOL Examples 200
SBOL Clusters 113

Covered Data Classes 27
Missing Data Classes 0

Example Statistics

Structural Examples 62 (31%)
Functional Examples 31 (15%)
Auxiliary Examples 29 (14.5%)

S & F Examples 3 (1.5%)
S & A Examples 59 (30%)
F & A Examples 0

All Types Examples 9 (4.5%)
No Types Examples 7 (3.5%)

Cluster Statistics

Structural Clusters 36
Functional Clusters 27
Auxiliary Clusters 25

S & F Clusters 3
S & A Clusters 13
F & A Clusters 0

All Types Clusters 8
No Types Clusters 1

CHAPTER 4

COMPLIANCE TESTING FOR THE SBOL

DATA STANDARD

Standard compliance provides many benefits to applications supporting a stan-

dard. These benefits as previously mentioned include data reproducibility, inter-

operability across platforms, and data exchanges between applications. While

frameworks for compliance testing are not common or largely in use, some do

exist in order to verify that an application is able to perform as specified by a

standard [4]. This section explores some of these approaches.

Compliance testing generally consists of checking a system’s behavior in re-

lation to defined specifications [5]. A compliance testing approach exists to test

software tools supporting a standard for modeling software systems [4]. The ap-

proach is to analyze the outputs produced and maintained by a software appli-

cation supporting the standard. The components within a test case consists of

a software model and an expected result that follows the specifications of the

standard. Each software tool then imports the input model, verifies the model,

and produces its own result. The produced result is then compared against the

expected result [3]. This approach was experimented with a case study for testing

software tools supporting the UML standard. A test case consists of a UML model

and the expected test result, which verifies whether UML well-formedness rules

are violated. The software tool then imports the UML model provided in the test

case and outputs a verification of the correctness of the model. This verification

result is compared with the expected result on a pass/fail scale. In building a test

suite of these types of test cases, there are two different sets. One set of test cases

contain valid models that should be accepted by a software tool. The other set

includes invalid models. A tool is fully compliant if it accepts all the valid models

38

and rejects all the invalid models [3].

Another compliance testing approach to test applications is to model an un-

derlying specification as a finite state machine (FSM). This type of verification is

utilized in applications supporting the Trusted Computing standard guidelines.

Trusted Computing (TC) is a technology used to ensure computer security and in-

volves establishing a trustworthy environment. Trusted Computing Group (TCG)

defined specifications for TC and a standard platform called Trusted Platform Mod-

ule (TPM). In pairing with these resources, researchers established a compliance

validation approach to test TC applications [5]. To expand on TPM, the module

represents a microprocessor chip attached to a motherboard. From a programmatic

view, the chip has three parts: the functional units that provide the functions for

cryptographic operations, and the nonvolatile and volatile memory that act as

storage for keys. TPM is used by executing commands in an order-dependent

manner that produce codes as the output. The proposed testing approach has two

parts; the first is the commands reliability tests and the second is the functional

execution tests [5]. The first type of tests consist of pairing commands with their

different possible values. These tests are utilized in the second type of tests, which

consists of categorizing TPM commands with a function and building a finite state

machine [5]. When testing a TC application, the application should verify its state

against the built state machine if a test is run with a series of commands that

represent different functions.

Different compliance testing schemes in both hardware and software have been

discussed. Within the synthetic biology software community, there has not been

a formalized compliance testing approach to test software compliance with the

SBOL data standard. However, a conformance testing system exists for applica-

tions supporting the Systems Biology Markup Language (SBML) standard. The SBML

standard provides a format for modeling and describing biological processes. In

particular, SBML allows description of biochemical networks, cell signaling, and

metabolism models within a biological system [7]. The SBML test suite is a confor-

mance testing system in which SBML supporting applications are able to verify the

extent and correct usage of SBML support [8]. The test suite consists of three differ-

39

ent test collections that includes semantic tests, stochastic tests, and syntactic tests.

Each different test in the collections contains a test biological model, the expected

SBML output file, a visualization of the expected simulation, and the statistical

results in the form of a csv file. Applications supporting the SBML standard can

represent the given model and compare it to the expected output given. Seman-

tic tests represent deterministic simulation behavior of various biological models.

Stochastic tests cases represent the expected result for the stochastic simulation

behavior of a model. Lastly, the syntactic test suite represents whether SBML data

was parsed correctly within the supporting application.

4.1 Compliance Testing Approach for the SBOL Data Standard

The analysis of the examples and the graph structure allows us to test the ap-

plications compiled from the results of the SBOL survey for standard compliance

and verify self-reported data. In particular, the graph allows us to understand

what parts of the SBOL standard an application does in fact support. The process

of checking includes selecting one test case from each source node and using it to

test the application. If an example fails, then one test case would be drawn from

all child clusters. This process would repeat until the sink node is reached or no

further failures are discovered. By analyzing the point at which examples succeed,

we can accurately determine the data classes that the software supports.

While the graph provides a way to test compliance of the SBOL data model, the

methodology needs to be extended to evaluate data exchanges across applications.

There are three different elements for testing. The first is to test applications’

support of SBOL Visual, an application’s ability to import SBOL data, and an ap-

plications’ ability to export SBOL data. SBOL Visual must be manually inspected

to ensure the correct usage of symbols. Additionally, to verify an application can

export SBOL data, the SBOL Validator tool can check the validity of the SBOL files

produced [13]. Verifying that SBOL data is correctly imported requires a round-

trip test. A round-trip test as shown in Figure 4.1 consists of importing SBOL

data into an application and then exporting the imported data. A comparison

is performed of the imported and exported data to ensure that no semantically

40

important data has been transformed or lost. If the comparison produces no se-

mantic differences, then the application can correctly import SBOL data. While

this test strategy could be excruciatingly tedious if the comparison is performed

manually, the ideal scenario is to instrument the software through an interface that

enables the tool to import and export SBOL data programmatically, then perform

the comparison. This simple round-trip test works perfectly well if an application

does not internally modify the data in any way. However, applications can modify

data either by removing, adding, or transforming data internally. In some cases,

these data modifications are not always harming the data, but for these cases,

the simple round-trip does not actually work. Therefore, we have expanded our

methodology to include a slightly more complex test as shown in Figure 4.2. In the

instance that an application modifies the data internally, an emulator is built which

follows the same operations that the application performs on the data and outputs

its own SBOL file. The SBOL file that is output from the application is compared

against the emulator’s output file to check that no significant differences exist. The

result of this type of compliance test is that the emulator effectively characterizes

how the application modifies the data, so these modifications can be analyzed to

determine if they are significant.

The goal of creating and testing a compliance methodology is to analyze a piece

of software to programmatically determine what ways an application is modify-

ing the data through the use of an emulator. The methodology should identify

an algorithm and a set of rules on how to abstractly test compliance of appli-

cations supporting standards in general as well as identify patterns that cause

non-compliance. An SBOLTestRunner tool is the means of testing each SBOL

application for compliance using the methodology. Once the created methodology

is published to the community, developers can utilize the SBOLTestRunner to en-

sure compliance for an application. In order to use the SBOLTestRunner, develop-

ers must provide an emulator function that can be written using any SBOL library.

This function is executed in parallel with the application with the same input.

The results that are output from the emulator and the application are checked for

semantic differences. The SBOLTestRunner has three main features. The software

41

has the ability to filter examples that are used to test the application. For exam-

ple, functional examples are not used for an application which does not support

functional information and states that it cannot support functional information.

Furthermore, the SBOLTestRunner has the ability to configure what factors are

considered important during comparisons such as identifying fields that can be

ignored when performing a comparison. As mentioned before, there is a way to

accept an emulator provided by the developer as input. Each of the applications

tested requires some form of an interface either through an API or a command line

program in order to programmatically interact with the application to import and

export SBOL data.

Additionally, the methodology ideally is used to validate workflows of SBOL

applications to show how data is preserved. The methodology is applied to each

of the applications within a workflow to demonstrate that the methodology can

be utilized to show how the data is changed as it passes through each application.

This demonstration also tests each application to determine the extent of SBOL

support based on which examples from the developed test suite each application

supports. The output of a successful evaluation of an application is determining

the SBOL support, determining what modifications happen in passing data to the

application, characterizing the modifications to build an emulator, and answering

key questions. The key questions that ideally can be answered include how an ap-

plication handles receiving data representing the areas of SBOL it does not support

and is data lost in the process of importing and exporting. Successfully analyzing

the applications in the workflow demonstrates the usage of the methodology to

test for software compliance against an underlying standard.

4.2 SBOLTestRunner

The SBOLTestRunner tool allows for testing SBOL applications for compli-

ance. Utilizing the testing methodology and the complete SBOL test suite, the

tool tests applications’ compliance of the SBOL standard.

As specified in the methodology, there are two different types of round-trip

tests— a simple and complex test. Within both testing processes, an SBOL data file

42

is fed to the application and the data that is output is compared to the input data

to ensure that no changes have been made. This idea is followed exactly within

a simple round-trip, the application is fed an SBOL data file and data is simply

output and absolutely no internal data changes are made in processing the file.

However, within a complex round-trip test, the application does make changes to

the data file passed, and an emulator is necessary when testing the application.

The emulator specifies the steps of what data changes and modifications are made

to the data when given to the application. The SBOLTestRunner software tool

follows the methodology and two types of applications are tested. The tool is used

to test applications that perform data changes on an SBOL data file and require an

emulator as well as applications that simply pass the data file from input to output.

There are two main inputs required by the software tool regardless of the type of

application. The first input is the application program command and the second

input is location path for recording retrieved files. The third input is determined

by the type of application tested. For applications that require an emulator, users

can use ”-e” as a command line argument followed by the command to run the

emulator program. Once the arguments are provided, the tool performs round-trip

testing by running the application as a system exec command and utilizing the

input of the arguments provided by the user. The tool then passes SBOL data files

as input to the application, and outputs the retrieved and emulated files and result

of comparison. If the round-trip produces no differences, then the application

successfully processed the data file.

Within the process of testing an application, multiple failures can occur. The

SBOLTestRunner attempts to carefully document any failures that occur and are

provided to the user. Moreover, the SBOLTestRunner tries to identify the point at

which the application failure occurred since failures can occur outside executing

the round-trip. The failure classifications include exceptions that occurred when

running the application and emulator program command, test file validation er-

rors, round-trip execution errors, and round-trip comparison errors. By clarify-

ing the point of failure, the SBOLTestRunner provides if the application is non-

compliant with the SBOL standard by failing the actual round-trip test, or rather

43

the application tested is failing for some other reason either by the commands

provided or maybe the SBOL data file passed as input is bad.

Some applications only support a certain subset of data specified within the

SBOL standard. If the application provides information on exactly which data

types they support, then these applications should be tested with the appropri-

ate SBOL data files. The SBOLTestRunner classifies data test files into different

categories. Users can specify to provide SBOL2, SBOL1, Genbank, or FASTA data

files only. Additionally, files can be classified as structural, functional, auxiliary, or a

mixture between those categories.

4.3 Case Studies

Using the SBOLTestRunner software tool that implements the created method-

ology, various SBOL applications have been tested. An emulator was created for

each application that made data modifications or additions when processing data.

The emulators recorded each step of how the data was internally changed. Addi-

tionally, the software tool determined if the application successfully performed a

round-trip test. If not, errors were identified and documented. A brief summary

of the process and errors identified for applications performing under a round-trip

test is provided.

4.3.1 SBOL Library Applications

This section summarizes the results of round-trip testing the individual libraries

that code the SBOL data standard. The libraries do not require emulators as they

should not change data processed in anyway. Therefore, a simple round-trip is

used to test each of the libraries. Each data file passed is simply read using the

library and written to an output file. The two data files are compared for any data

modifications.

In using a simple round-trip test to determine if the libSBOLj application mod-

ified any data, no errors were found. There are 200 SBOL 2 tests that include both

structural, functional, auxiliary, and a combination of all types of tests. libSBOLj

passed the round-trip test for each of these data files without reporting any data

44

modifications or validation errors. The input data file compared exactly to the

output data file. Furthermore, this also proves that libSBOLj does support all

data types represented within the SBOL data model.

In testing the pySBOL application, both round-trip and validation errors were

reported. Thirty-two data files failed to compare successfully in the round-trip

testing process. From comparing the input file and the file output from the applica-

tion, multiple data objects differed. These specific files were then hand-compared

individually to determine the specific point of difference in the round-trip test.

These error results are tabulated in Table 4.1. There were also seventeen data files

that were throwing validation errors and one input file that could not be read and

a SBOLReader occurred. A total of fifty files are failing in some manner.

The sboljs application is the SBOL Javascript library. Similar to the SBOL

Python and Java libraries, the SBOLTestRunner was utilized to determine data

modification and validation errors. The following error results found are tabulated

in Table 4.2. There are nine files that are failing round-trip testing and no validation

errors were reported. From comparing the specific file output by the application

and the corresponding input files, three bugs were identified.

4.3.2 SynBioHub Application

SynBioHub [9] is a software application that is able to store and publish syn-

thetic biology designs using a Web interface. Additionally, SynBioHub function-

ality is available to use through the SBOL java library, libSBOLj. An emulator was

created that records which steps are taken in processing the data. Table 4.3 shows

these steps. Table 4.4 briefly summarizes the errors found through round-trip

testing of the SynBioHub application. In addition to compliance testing of the

application, timing statistics are provided of the round-trip testing process. Statis-

tics were gathered for the overall emulation and retrieval of SBOL data files from

SynBioHub. Additionally, the time taken to perform each individual emulation

step is almost insignificant. Changing the URI prefix is the emulation step with

the longest average time of 1.25 seconds. The examples sizes used to the test the

application ranged from 1 kilobyte to 3.5 megabytes. On average, the example size

45

is 106 kilobytes. Therefore, most of the files test were not very large. A summary of

the timing information for smaller sized files is provided in Table 4.5. The timing

information for larger sized SBOL data files is provided in Table 4.6.

4.4 Discussion

A methodology is created to test the compliance of SBOL software applications

and their support of the SBOL standard. The SBOLTestRunner software tool au-

tomates round-trip testing of applications to test for compliance of the SBOL stan-

dard. This software is available https://github.com/mehersam/SBOLTest

Runner. Additionally, the emulators for the applications with which the SBOLTe-

stRunner was utilized to test are available at https://github.com/mehers

am/SBOLEmulators.

Figure 4.1. Simple round-trip test used to verify compliance of a SBOL application
by ensuring that an SBOL file imported by an application and the corresponding
exported SBOL file on output contains no semantically different data.

46

Figure 4.2. A slightly more complex round-trip test used to verify compliance of a
SBOL application that modifies imported data internally on export. A SBOL data
file is imported into the application and exported. In parallel, an emulator mimics
the same operations to the same imported SBOL data file as the tested application
and exports its own version of a SBOL data file. The different SBOL data files are
then compared to verify no significant differences and ensure that no data is lost or
harmed. The emulator effectively characterizes how the application modifies the
data.

Table 4.1. The errors identified in pySBOL through round-trip testing using the
SBOLTestRunner.

Bug Number Description Resolved

pySBOL#77 Activity displayId field is modified Open
pySBOL#84 Activity hasPlan field is dropped Open
pySBOL#78 ComponentDefinition Nested Annotations are dropped Open
pySBOL#79 Attachment source field URI is changed to the full URI Open
pySBOL#83 Model source field URI is changed to the full URI Open
pySBOL#80 Attachment Annotations are dropped i.e time created Open
pySBOL#81 Version tag was inserted into the VariableComponent object Open
pySBOL#82 GenericTopLevel Annotations were dropped Open
pySBOL#82 Version tag was inserted into the GenericTopLevel object Open

Table 4.2. The errors identified in sboljs through round-trip testing using the
SBOLTestRunner.

Bug Number Description Resolved

sboljs#39 GenericTopLevel object is dropped Open
sboljs#40 ComponentDefinition and Sequence objects are dropped Open
sboljs#41 Attachment object URI is changed to ”undefined” Open

47

Table 4.3. The data modifications the SynBioHub emulator makes in processing
SBOL data.

Emulator Changes

Add Collection to SBOLDocument.
Create Annotation for creator field of created Collection

Include TopLevel objects as members of the created Collection

Create Annotations forownedBy, topLevel, and type fields for each TopLevel added
Accepted Changes

Created timestamp on the created Collection

Modified source location in Model classes

Table 4.4. The errors identified in SynBioHub through round-trip testing using
the SBOLTestRunner.

Bug Number Description Resolved

libSBOLj#493, SBH#479 GenericTopLevel namespace is missing/not being recognized Closed
libSBOLj#492 createGenericTopLevel function does not allow SBOL1 namespace Closed
libSBOLj#491 equals function for Annotations and GenericTopLevels should not compare QName prefix Closed
SBH#477 Downloading test file with a GenericTopLevel object causes an exception Closed
SBH#474 Nested Annotations are returned as GenericTopLevel Closed
SBH#473 Empty set of collection choices on remote submit creating spurious isMemberOf annotations Closed
SBH#486 Fetching collections with Unicode characters creates invalid URIs Closed
SBH #481 Sorting collection for labhost All.xml causes a hang Closed
SBH #478 Uploading files with non-compliant Closed
SBH #476 two objects with same displayId but different URI prefixex cannot be uploaded to the same Collection Closed

Table 4.5. A summary of various timing statistics of the round-trip testing process
against SynBioHub application.

SynBioHub Round-Trip Testing Timing Statistics
of Examples 194

Average Size of Files (in KB) 47.96

Average Submission Time (in sec) 0.73

Average File Retrieval Time (in sec) 1.38

Average Emulation Time (in sec) 0.07

Average Removal Time (in sec) 0.0004

Average URI Prefix Change Time (in sec) 0.07

Average Add Collection Time (in sec) 0.0004

Average Add Annotations Time (in sec) 0.002

libSBOLj work performed (%) 4.5

48

Table 4.6. A summary of various timing statistics of the round-trip testing process
against SynBioHub application using large-scale examples.

SynBioHub Round-Trip Testing Timing Statistics of Large-Scale Examples
of Examples 6

Average Size of Files (in MB) 2

Average Submission Time (in sec) 54.87

Average File Retrieval Time (in sec) 6.7

Average Emulation Time (in sec) 39.49

Average Removal Time (in sec) 0.007

Average URI Prefix Change Time (in sec) 39.462

Average Add Collection Time (in sec) 0.0004

Average Add Annotations Time (in sec) 0.02

libSBOLj work performed (%) 58.47

CHAPTER 5

CONCLUSIONS

This thesis presents a methodology for analyzing compliance of software ap-

plications for the SBOL standard. A list of current SBOL software applications and

data regarding each application’s functionality, purpose, and degree of SBOL sup-

port was compiled. Since this data is self-reported by the application’s developer,

each software requires verification of the claims made. In order to do this, a main

goal of this thesis is to create a robust, diverse test suite that is representative of the

entire SBOL data standard. The purpose of this test suite is to test each application

and understand how well it supports the SBOL standard as well as if it is compliant

with the standard. The work to create such a test suite began through analyzing

the existing biological designs created to test libSBOLj, the SBOL Java library and

are representative of the SBOL 2 standard. By inspecting each biological design to

determine the classes of the SBOL data model represented internally, clusters were

created such that each cluster tracks the same set of SBOL data types for a specific

group of biological design examples. These clusters were then paired to create

parent-child relationships and segregated into separate sets based on whether or

not the data types within the cluster represent structural, functional, or auxiliary

data classes. The inspection of the examples results in a graph that can be used to

test SBOL applications and verify the self-reported data from the survey. However,

after analyzing the original examples, the results showed gaps within the SBOL

test suite. These gaps included that a majority of the test suite contained mostly

examples representing structural data only. Additionally, the graph created was

considered ”incomplete” since the data types found in the parent did not also exist

in at least one child node. This is an issue as applications cannot be correctly

verified if the test suite does not contain a full set of examples. Therefore, this

50

thesis provides a metric system to analyze the SBOL test suite that determines the

breakdown of structural, functional, and auxiliary tests available. Additionally,

one metric includes whether the graph output from characterizing the examples

into clusters is complete and each parent-child cluster is complete. The last main

metric is a set of combinations determining the set of valid combinations that are

available given the SBOL data model. These combinations are the total number of

minimum tests that would ideally exist in the test suite. While this is not realistic,

as the test suite grows, this thesis provides a way to determine how many combina-

tions are represented in the test suite. In creating these metrics, this thesis provides

the enriched test suite that covers majors gaps such as the imbalance across data

types as well as making incomplete parent-child relationships complete.

The second major goal of this test suite is to create a methodology to test the

compliance of a SBOL application against the SBOL standard. The enriched test

suite is utilized as the testing input for the SBOLTestRunner software tool to

perform simple and complex round-trip tests. This compliance methodology and

the paired software tool that executes the methodology provides a way to test a

SBOL application. This thesis shows the case studies for which the applications

were successfully tested and determined compliance failure points. This tool is

available along with the enriched SBOL test suite to developers to test their own

applications. Developers must provide an emulator recording any data changes

made to an input example for the test runner to utilize in performing the round-trip

test. Furthermore, the self-reported data regarding SBOL application compliance

retrieved from the SBOL survey can now be accurately verified.

For applications encoding a standard, it is important to verify that the appli-

cation is using the standard correctly. Standards need a compliance methodology

in order to ensure application data reproducibility and integrity. The research of

this thesis focuses on the impact of developing a process to determine compli-

ance guidelines and testing applications against those guidelines. In creating a

compliance methodology specifically for the SBOL standard and testing various

key software, there were numerous bugs identified. A major impact of this thesis

showed that applications that were used within the the SBOL community still did

51

not completely maintain data integrity. While it is unlikely to extinguish all errors

within a software application, it is necessary for software communities to rely on a

process to ensure whether an application is reliable and compliant. However, the

created software methodology to test for compliance is not applicable to just the

SBOL standard, but should be maintained for many existing standards. The impact

of this thesis verifies that standards need some qualification for applications to

determine if they are compliant and correctly using an underlying standard.

5.1 Future Work

While this thesis provides the basis for compliance testing of SBOL applications

for the SBOL standard, this research can be furthered. Further contributions in-

clude expanding the test suite, testing more applications using the SBOLTestRun-

ner, and creating an interface for the software tool created.

5.1.1 SBOL Test Suite Strategies and Expansion

This thesis provides metrics and a cluster formation algorithm to organize SBOL

data types. The metrics provided include imbalances in the test suite. Future

developments can be to add tests to decrease the gaps identified in the test suite.

However, it is not practical to hand create all of the examples to meet every single

possible valid test. It would be ideal if property-based automated testing existed

to auto-generate tests based on a set of parameters given. This particularly would

be ideal to generate tests for new validation rules that are added to the SBOL

standard. Additionally, the test suite metrics are only based on existence of data

types within an example. However, individual data types have fields that the test

suite characterization does not analyze whether they exist or not.

5.1.2 Round-Trip Testing Methodology Case Study Expansion

The test suite currently provides case studies testing a few SBOL applications to

show proof of concept for the created methodology. However, emulators should

be created for each of the applications reported in the SBOL survey. There are

many different types of applications with various functionalities such as sequence

design, genetic circuit design, knowledge management, modeling, and visual-

52

ization tools. All of these tools support different parts of the SBOL data model

including functional types. It would be ideal to test these applications using the

created cluster graph. Additionally, the case studies provided utilize applications

that follow simple round-trip tests, but it would be interesting to see applications

that require complex round-trip testing as they process and potentially change

SBOL data internally. Lastly, automating testing using the round-trip methodol-

ogy focuses on testing compliance of the SBOL data model. However, possible

future development could be used to determine automated compliance testing for

applications supporting SBOL Visual.

5.1.3 SBOLTestRunner Software Tool Development

While the SBOLTestRunner software tool currently has functionality that au-

tomates round-trip testing, it does not currently have an interface. It is currently

command-line based and compliance reporting is basic. It would ideal to expand

it in the future to have both an interface that users can use to provide emulators

and better specify what capacity their application supports SBOL. In pairing with

an interface, it would be a future development to output a more visual graph of

the tests the application supports and fails to support.

5.1.4 Integrating Compliance into the SBOL Standard

In order to ensure that this work does not stop at the conclusion of this thesis,

it would be ideal to integrate the compliance methodology into a workflow to

automatically test SBOL applications. It would be ideal if a process could be

created such that application developers within the community can ”check-in” an

emulator software into a central GitHub repository. Each of the applications within

this created repository can fit into an automated system such that each applica-

tion within the repository is tested using the SBOLTestRunner and the examples

within the SBOLTestSuite. Furthermore, using continuous integration software,

it would good to periodically re-test each application or if a change is detected

in any application software, then the automated system re-tests that particular

application to ensure that it is still in compliance with the SBOL standard.

REFERENCES

[1] Adames, N., et al. GenoLIB: a database of biological parts derived from a
library. IEEE Life Sciences Letters 1, 4 (2016), 34–37.

[2] Beal, J., Cox, R. S., Grnberg, R., McLaughlin, J., Nguyen, T., Bartley, B.,

Bissell, M., Choi, K., Clancy, K., Macklin, C., Madsen, C., Misirli, G., Oberort-

ner, E., Pocock, M., Roehner, N., Samineni, M., Zhang, M., Zhang, Z., Zundel,

Z., Gennari, J., Myers, C., Sauro, H., and Wipat, A. Synthetic biology open
language (SBOL) version 2.1.0. J. Integrative Bioinformatics 13, 3 (2016).

[3] Bunyakiati, P., and Finkelstein, A. The compliance testing of software tools
with respect to the uml standards specification - the argouml case study. 2009
ICSE Workshop on Automation of Software Test (2009).

[4] Bunyakiati, P., Finkelstein, A., and Rosenblum, D. The certification of software
tools with respect to software standards. 2007 IEEE International Conference on
Information Reuse and Integration (2007).

[5] Cui, Q., and Shi, W. An approach for compliance validation of trusted com-
puting applications. Workshop on Knowledge Discovery and Data Mining (2008).

[6] Galdzicki, M., Clancy, K., Oberotner, E., M. Pocock, J. Q., Rodriguez, C.,

Roehner, N., Wilson, M., Adam, L., Anderson, J., Bartley, B., Beal, J., Chan-

dran, D., Chen, J., Densmore, D., Endy, D., Grunberh, R., Hallinan, J., Hillson,

N., Johnson, J., Kunchinsky, A., Lux, M., Misirli, G., Peccoud, J., and Plahar, H.

The synthetic biology open language (SBOL) provides a community standard
for communicating designs in synthetic biology. Nature Biotechnology, 32
(2014), 545–550.

[7] Hucka, M., Bergmann, F. T., Hoops, S., Keating, S. M., Sahle, S., Schaff, J. C.,

Smith, L. P., and Wilkinson, D. J. The systems biology markup language
(sbml): Language specification for level 3 version 1 core. Journal of Integrative
Bioinformatics 12, 2 (2015), 266.

[8] Keating, S., Evans, T., Smith, L., and et al. SBML test suite, 2016.

[9] McLaughlin, J., Myers, C., Zundel, Z., Mirsirli, G., Zhang, M., Ofiteru, I., Goni-

Moreno, A., and Wipat, A. Synbiohub: A standards-enabled design repository
for synthetic biology. ACS Synthetic Biology 7, 2 (2018), 682–688.

[10] Myers, C., Beal, J., Gorochowski, T., Kuwahara, H., Madsen, C., McLaughlin,

J., Mirsirli, G., Nguyen, T., Oberortner, E., Samineni, M., Wipat, A., Zhang, M.,

and Zundel, Z. A standard-enabled workflow for synthetic biology. Biochemi-
cal Society Transactions 45 (2017), 793–803.

54

[11] Quinn, J., Cox, R., Adler, A., Beal, J., S. Bhatia, Y. C., Chen, J., Clancy,

K., Galdzicki, M., Hillson, N., Novere, N., Maheshwari, A., Mclaughlin, J.,

and Sauro, H. SBOL visual: A graphical language for genetic designs. PLoS
Biology 13, 12 (12 2015), e1002310.

[12] Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M., Oberotner, E.,

Samineni, M., Zundel, Z., Beal, J., Clancy, K., Wipat, A., and Myers, C.

libSBOLj 2.0: a java library to support SBOL 2.0. IEEE Life Sciences Letters
1, 4 (2016), 34–37.

[13] Zundel, Z., Samineni, M., Zhen, Z., and Myers, C. A validator and converter
for the Synthetic Biology Open Language. ACS Synthetic Biology 6, 7 (2016),
1161–1168.

