
ASYNCHRONOUS GENETIC CIRCUIT DESIGN

by

Tramy T Nguyen

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Utah

December 2019

Copyright c© Tramy T Nguyen 2019

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Tramy T Nguyen

has been approved by the following supervisory committee members:

Chris J. Myers , Chair(s) August 29, 2019
Date Approved

Kenneth Stevens , Member August 29, 2019
Date Approved

Priyank Kalla , Member August 29, 2019
Date Approved

Tara Deans , Member August 29, 2019
Date Approved

Nicholas Roehner , Member September 04, 2019
Date Approved

by Florian Solzbacher , Chair/Dean of

the Department/College/School of Electrical and Computer Engineering

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Synthetic biology is applying engineering concepts to biological processes to enable

genetic circuit designs, among other applications. As more biological parts are being

discovered, it is vital to have an automated procedure to allow complex circuit designs

to be built. Technology mapping is a set of procedures that maps biological components

to a design specification. Current technology mapping frameworks for genetic circuits are

used to design combinational circuits. This dissertation illustrates the process of building

an automated workflow for a technology mapping framework to design asynchronous

sequential genetic circuits. An automated process to create a library of gates for logic

and memory circuits is described to construct gates from DNA parts retrieved from a

standardize data repository. Genetic constraints address what parts can be mapped to

the design specification when the gates and designs are constructed. The proposed au-

tomaton workflow begins with a specification provided in a formal design language, such

as Verilog. The input design specification is converted into a genetic regulatory network

represented using the Synthetic Biology Open Language (SBOL). The network is decomposed

into base functions (NOR gates, inverters, and genetic toggle switches) and matching and

covering algorithms are performed to produce the output design. The output design

is converted to the Systems Biology Markup Language (SBML) data format for testing and

simulation. The outcome of this work provides the synthetic biology community insights

on how asynchronous sequential circuit designs can be built through an automated proce-

dure to perform technology mapping from libraries composed of logic gates and memory

circuits.

For my parents.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . xvii

LIST OF ALGORITHMS . xviii

ACKNOWLEDGEMENTS . xix

CHAPTERS

1. INTRODUCTION . 1

1.1 Genetic Design Automation (GDA) . 2
1.2 Contributions . 6
1.3 Dissertation Outline . 8

2. BACKGROUND . 10

2.1 Asynchronous Circuit Design . 10
2.2 Genetic Circuits . 14
2.3 Biological Data Standards . 17

2.3.1 Synthetic Biology Open Language . 18
2.3.2 Systems Biology Markup Language . 20

2.4 IBIOSIM . 21

3. ASYNCHRONOUS GENETIC CIRCUIT DESIGN . 24

3.1 Specification . 25
3.2 Synthesis . 29

3.2.1 Behavioral Verilog to SBML . 32
3.2.2 SBML to LPN . 33
3.2.3 Synthesizing in ATACS . 33
3.2.4 Structural Verilog to SBOL . 35

3.3 Summary . 36

4. PROGRAMMATIC CREATION OF GATE LIBRARIES THROUGH AUTOMATED
GATE GENERATION . 38

4.1 Assembling Transcriptional Units . 40
4.2 Gate Generation . 42
4.3 Identifying Gate Types . 43
4.4 Summary . 48

5. TECHNOLOGY MAPPING FOR ASYNCHRONOUS GENETIC
CIRCUITS . 50

5.1 Boolean Decomposition . 51
5.2 Matching . 54
5.3 Covering . 59

5.3.1 Exhaustive Covering Algorithm . 60
5.3.2 Greedy Covering Algorithm . 68
5.3.3 Branch and Bound Covering . 68

5.4 Generating a Netlist of Genetic Gates Encoded into SBOL 75
5.5 Summary . 78

6. VERIFICATION . 80

6.1 Synthesis Verification . 81
6.2 Genetic Circuit Verification . 83
6.3 Summary . 84

7. CASE STUDY: GENETIC LOW-PASS FILTER . 85

7.1 Cello Library Gates . 85
7.2 Genetic Low-Pass Filter . 86
7.3 Results of Our Technology Mapping Procedure . 90
7.4 Discussion . 93

8. CONCLUSION . 96

8.1 Summary . 96
8.2 Future Work . 98

8.2.1 ATACS Search Space . 98
8.2.2 Replicating ATACS for Genetic Circuits . 98
8.2.3 Curate Part Library into SBOL . 98
8.2.4 Evaluate Promoter Location to Assemble Transcriptional Units 99
8.2.5 Support Additional Genetic Gate Types . 99
8.2.6 Expand Signal Mismatch . 100
8.2.7 Evaluating Threshold of Genetic Gates Before Cell Death 100
8.2.8 Increase Technology Mapping Performance . 100
8.2.9 Reduce Structural Bias in Technology Mapping . 101
8.2.10 Enriched Parts to Improve Genetic Circuit Models 101

REFERENCES . 102

vi

LIST OF FIGURES

1.1 A high-level overview of an EDA workflow to build an electronic circuit.
First, the behavior of a circuit is described in a high-level descriptive lan-
guage. The behavioral design is then synthesized to a structural design that
describes a gate-level description. Technology mapping is performed to pro-
duce a layout of what electronic components are needed to physically build
the circuit. Verification is performed to ensure the layout of the physical
design meets the requirement of the specification described in the behavioral
design. 2

1.2 This figure shows a high-level GDA workflow. This GDA workflow is similar
to the EDA workflow except the physical design generates DNA sequences. . . 3

1.3 This workflow is illustrated using a genetic toggle switch design. The work-
flow starts off with an asynchronous design specified using behavioral Ver-
ilog. Next, the ATACS asynchronous design tool synthesizes logic equations
represented using structural Verilog. The synthesized circuit is then realized
as a physical design by a technology mapping procedure that selects gates
from a SBOL encoded gate library stored in a SynBioHub repository. In order
to verify the workflow, a model is generated and simulations are performed
to verify that the design displays the expected behavior. 7

2.1 This figure shows the difference between an asynchronous and a synchronous
S-R latch and a waveform illustrating the behavior of both circuits after they
have been initialized for simulation. The S-R latch is a level-sensitive circuit
designed asynchronously for storing information when there is a change on
the input signals. The clocked S-R latch is a level-sensitive circuit designed
synchronously for storing information based on a clock level. Set, S, and
Reset, R, are input signals used for setting the circuit’s data value. Q̄A is the
inverse signal of QA and are both represented as output signals to show what
data value is currently stored within the S-R latch. The same can be said for
QS and Q̄S. Q̄A and Q̄S are simplified in the waveform as the LOW state of
QA and QS. The behavior of the clocked S-R latch is identical to that of the
S-R latch except that the output signal is governed by a clock, CLK, signal.
In other words, the output signals for QS and Q̄S are designed in this circuit
to update when CLK is HIGH. The red signals that go HIGH on S is a glitch
that appeared for a short duration and causes QA to go HIGH unexpectedly.
The clocked S-R latch is able to avoid this glitch because the input signal was
not stable before CLK could capture this information. The S-R latch, however,
encounters the glitch as a change in the input signal and produced an invalid
output signal. 12

2.2 A NOT gate and a NOR gate represented as a genetic circuit. The symbol of
the logic gate is shown on the left. A listing of all possible combinations of the
gate’s input signals (X, X0, and X1) mapped to the output signal, Y, is shown
in the Boolean table at the center. A design of a genetic circuit that behaves
similarly to that of its logic gate are shown on the right. These genetic circuits
are made of transcriptional units that undergoes the process of transcription
and translation to transform DNA to protein. A transcriptional unit is com-
posed of promoters, Pro, ribosome binding sites, RBS, coding sequences CDS,
and terminators, Ter. The encoded protein translated from CDS is illustrated
in both genetic circuits as protein Y and are represented as the output protein
for the circuit. The production of the output protein Y can be controlled by
proteins that can bind to the the transcriptional unit through repression or
activation of the promoter. These proteins are referred to as transcription
factors acting as input proteins to a genetic circuit and are represented in
this example as X, X0, and X1. X, repressing Pro in the NOT gate example,
prevents the production of the Y protein. If X is removed, this allows for
protein Y to be produced. The same concept applies for building a genetic
circuit that behaves similarly to a NOR gate. The presence of X0 and X1
represses Pro. As long as one input protein is present, the output protein Y
cannot be produced. If both input proteins are removed, then protein Y is
produced. 15

2.3 A genetic toggle switch is a genetic circuit that behaves similarly to that of
an S-R latch. The genetic toggle switch shown in this example is composed
of a transcriptional unit that primarily produces a LacI protein and a TetR
protein. The green fluorescent protein (GFP) serves as an output reporter to
indicate when the TetR protein is produced. Both the LacI protein and the
TetR protein can mutually repress each other through the negative feedback
loops that affect the production of its counter protein. This means that, when
a LacI protein is produced, the pLac promoter is repressed, thus preventing
the production of a TetR protein. Likewise, if a TetR protein is produced, the
pTet promoter is repressed and no LacI protein is produced. The LacI protein
and the TetR protein can be controlled by IPTG and aTc to switch between
states of the two proteins. IPTG and aTc are small molecules that act as input
sensors for controlling the production of the LacI and TetR protein. When
IPTG is applied, it forms a complex with the LacI protein and acts as an in-
hibitor to the LacI protein. If the LacI protein is repressed, the pLac promoter
is free to synthesize the TetR protein. Similarly, when aTc is applied, it forms
a complex with the TetR protein and acts as an inhibitor to the TetR protein. If
the TetR protein is repressed, the pTet promoter is free to synthesize the LacI
protein. If both input sensors for IPTG and aTc are removed, then the genetic
toggle switch produces whatever output protein that was synthesized in its
previous state. 17

viii

2.4 A genetic toggle switch modeled hierarchically using SBOL visual symbols
to represent the SBOL data model. The circuit and its inverters are described
using SBOL ModuleDefinitions. Instantiation of the LacI Inverter and TetR
Inverter as referred to in SBOL as Modules. These Modules are connected
through the use of SBOL MapsTo. The DNA, small molecules, proteins, and
their complexes that are shown in this example are described in SBOL as
ComponentDefinitions. Instantiations of these ComponentDefinition within a
ModuleDefinition are referred to as FunctionalComponents. ComponentDefini-
tions can also be instantiated onto other ComponentDefinitions as SBOL Com-
ponents to construct a transcriptional unit that is shown in the LacI Inverter
and TetR Inverter. SBOL Interactions are used to specify the relationship be-
tween FunctionalComponents such as the forming of a complex between aTc
and TetR and IPTG and LacI. SBOL Interactions are used in the LacI Inverter
and TetR Inverter to represent the inhibition of TetR repressing pTet and LacI
repressing pLac. SBOL Interactions are also used in both inverters to indicate
the production of the LacI protein, TetR protein, and GFP protein. 18

2.5 A genetic toggle switch modeled hierarchically and is visualized using SBGN
graphical symbols to describe the SBML data model. The Genetic Toggle
Switch is represented as an SBML Model. The LacI Inverter and TetR Inverter
are created as SBML ModelDefinitions and are instantiated inside of the Ge-
netic Toggle Switch as SubModels. Replacement and ReplacedBy are used for
connecting the elements within the Genetic Toggle Switch and the inverters.
Small molecules, proteins, complexes, and nucleic acid that are shown in
this example are represented as SBML Species. The forming of a complex
between aTc and TetR and IPTG and LacI is described as SBML Reactions. In
these type of Reactions, the complexes are referred to as the Products and the
small molecules and the protein used to form the complex are referred to as
Modifiers. SBML Reactions are also used to describe the LacI protein, TetR
protein, and GFP protein produced when TetR protein is not inhibiting the
pTet promoter and the LacI protein is not repressing the pLac promoter. The
TetR protein repressing the pTet promoter and the LacI protein repressing the
pLac promoter are referred to as Modifiers in their Reactions. The LacI protein,
TetR protein, and GFP proteins produced in their Reactions are represented as
Products. 21

ix

2.6 This is a high-level diagram of the genetic circuit design workflow supported
by IBIOSIM. The red arrows indicate the flow between the different soft-
ware components and dotted lines indicate the output of each step that is
then used by the proceeding software component in the workflow. First,
genetic parts encoded using SBOL are fetched from SYNBIOHUB using the
SBOLDESIGNER plugin to construct the DNA-level design encoded using
SBOL. Next, the DNA design is augmented with interaction data using the
VIRTUAL PARTS model generator, and the functional SBOL is converted into
an SBML model. The resulting mathematical model can then be refined and
parameters configured using IBIOSIM’s model editor. The SBML model can
be analyzed in IBIOSIM as described by an associated SED-ML document.
The data created for the SBOL parts, the SBML model, and the analysis can
be shared and documented by uploading these artifacts to SYNBIOHUB as a
COMBINE archive. 22

3.1 The data workflow demonstrates how a behavioral Verilog is synthesized into
a structural Verilog. ATACS is an asynchronous synthesis tool used in this
workflow for transforming a high-level behavioral design into a hazard-free
structural design. The structural Verilog is transformed into SBOL at the end
so that physical biological parts can be realized onto the structural design.
A mapping of the four data formats supported in the proposed workflow is
shown under Data Conversion. The green label represents the terminologies
that are supported from SBOL data model, the orange labels represent the
Verilog constructs that are used for designing an asynchronous genetic cir-
cuit, the blue labels represent the elements that are supported from the SBML
data model, and the white label with black boarders represents terminologies
that are supported within ATACS for building an LPN model. 26

3.2 Specification of an S-R latch expressed in the Verilog language. This design
style follows that of a Mealy machine in which the output signal is calcu-
lated base on the current inputs and the current state that was sensed. The
InitialBlock is executed at the beginning to set the initial state and the output
signals of the circuit. The AlwaysBlock is executed afterwards by first waiting
on the desired input signals to become true before the circuit kickstarts and
performs operations to produce an output signal. When the input signal
matches what the circuit expects, then the output signal q is updated base
on what input signals were sensed. The state of the circuit is updated after
setting the output signal to reflect what the current output signal is set to in
response to the input signals that were detected. 27

3.3 Testbench of an S-R latch expressed in Verilog. Variations of input signals are
set to test the assignment of the output signal q produced from the specifi-
cation. The output signal is asserted through WaitStatements. If the output
signal q produces in invalid value, then the WaitStatements is locked in that
state and further input signal variations are prevented from changing. 28

x

3.4 An example of the SR latch LPN models generated from ATACS. The left
LPN model represents the specification transformed from Figure 3.2 and the
right LPN model represents the testbench transformed from Figure 3.3. The
circles are Places to represent conditions. The black filled circle is a Token with
a Marking to represent that condition of the place holds true. The Marking
of these Tokens can move from one place to a subsequent place base on the
horizontal bars that are referred to as Transitions. These Transitions represent
actions that can fire when the places connected towards the transition have
conditions that hold true. 30

3.5 A synthesized design of the S-R latch expressed in structural Verilog made
of ContinuousAssignments. The variable of a ContinuousAssignment updates it
value when its expression becomes true. This structural Verilog is converted
into a decompose form represented in the SBOL data format for describing
the genetic circuit. 34

4.1 Four genetic constraints that occur in genetic circuits. Figure 4.1a Roadblock:
initiation of transcription from the upstream promoter in a tandem promoter
is impeded by the presence of a transcription factor bound to the downstream
promoter. Figure 4.1b Crosstalk: interference of circuit components with
each other or the host circuitry. Figure 4.1c Signal mismatch: incompatible
signal levels of gates composed in series. Figure 4.1d Genetic context effects:
the same circuit can act differently based on the ordering of neighboring
components. 39

4.2 An illustration of the properties that must be set on a CombinatorialDerivation
for generating transcriptional units to build a preset of genetic logic gates
supported in this workflow. The pattern for building multiple transcriptional
units with two promoters, two pairs of RBS, CDS, and a terminator is speci-
fied as the Template. Three VariableComponents (vc1, vc2, and vc3) are created
for listing possible DNA parts that a component on the transcriptional unit
can be assembled from. The DNA parts listed in these three VariableCom-
ponents are referred to as Variants. VariableComponents for vc1 and vc3 have
Operators (op) set to one to indicate that one Variant from its list must be
selected when constructing a transcriptional unit. Likewise, VariableCompo-
nent vc2 has op set to zeroOrOne to indicate that zero or one Variant can be
selected from its list to generate transcriptional units with tandem promoters
and gates with an output reporter included. The Strategy is set to Enumerated
so that all Variants listed in each VariableComponent must be used to build
different variations of a transcriptional unit with one and two input gates. . . . 41

4.3 An enriched design of a transcriptional unit after calling VPR. Four Inter-
actions encapsulated within Modules are added to the design. These four
Interactions are an inhibiting interaction for protein X and Pro, a produc-
tion interaction for protein Y and CDS, and two degradation interactions for
protein X and Y. The black arrows denote MapsTo objects that are used for
connecting proteins and DNA parts from the Modules encasing the four types
of Interactions to the components on the transcriptional unit. 43

xi

4.4 Genetic logic gates that are identified and sorted in the gate generation pro-
cess are NOT, NOR, OR, wired OR, NAND, AND, and NOTSUPPORTED
gates. A NOT gate is identified as a transcriptional unit with a promoter
repressed by an input protein X that produces an output protein Y. An OR
gate is identified as a transcriptional unit with a promoter activated by two
input proteins X0 and X1 that produces an output protein Y. A wired OR gate
has identical structure as that of an OR gate but the input and output signals,
in this case, are all identical. A NAND gate is identified as a transcriptional
unit with tandem promoters that are both separately inhibited by two input
proteins X0 and X1 that produces an output protein Y. A AND gate is identi-
fied as two input proteins X0 and X1 forming a protein-to-protein complex to
repress Pro. When the protein-to-protein complex is not present, the output
protein Y is produced. Because there are several ways to build a genetic logic
gate that exhibit the same logic behavior, three different structures for a ge-
netic NOR gates are supported. The first structure has a transcriptional unit
with two transcription factors repressing a promoter (Pro) and producing an
output protein Y. The second structure has two forms of input molecules.
The first is an input protein X0 repressing the Pro and the second input is a
small molecule X1 forming a complex with the output protein Y. The third
structure ressembles the second structure in which the second input signal X1
forms a complex with the output signal. The difference in the third structure
in comparison to the second structure is that X1 is an input protein rather
than a small molecule. Gates that are not identified as a NOT, OR, wired
OR, NAND, AND, and NOR gates are classified as NOTSUPPORTED Gates. 46

4.5 Extra information included from VPR when identifying NOR gates. This
type of gate is expected to be identified as the second structure NOR gate
shown in Figure 4.4. Important information might be lost by removing this
extra information that is added from VPR. As a result, this type of NOR gate
is recognized in the gate identify step unchanged as long as this NOR gate
has the same substructure as the expected NOR gate. 47

5.1 A representation of the logic gates decomposed to a graph-based format be-
fore performing technology mapping. A 2-input AND gate involves attach-
ing two 1-input NOT gates as inputs to a 2-input NOR gate. A NAND
gate has a 2-input NOR gate with its input and output signals inverted with
1-input NOT gates. NOT and NOR gates, on the other hand, are left in their
original form. The graph-based structure shown on the right of each genetic
gate represents a DecomposedGraph. Circles represent nodes. A root node has
no parent. A leaf node has no child. Interactions are used to form connections
between nodes. Arrows with pointy heads indicate production and arrows
with flat heads are repression. Color represents signal carrier type. A white
DecomposedGraphNode indicates that there is no signal carrier type assigned.
A DecomposedGraphNode can have a cost factor that is calculated by DNA
sequences. 52

xii

5.2 A figure to illustrate how an SBOL data model is converted into a Decom-
posedGraph. This conversion transforms the given structural specification to a
graph-based structure before performing technology mapping so that genetic
gates can map to the specification. NOTSUPPORTED gates can also use
this conversion if a behavioral Verilog was provided and synthesized into a
structural representation. 53

5.3 An example of the technology mapping procedure taking in two forms of
inputs. The first is a specification describing an AND gate. The second is a
library containing five genetic gates. The cost of each gate is calculated by the
sum of sequences stored on the DecomposedGraphNodes. The color code as-
signed to each genetic gate’s DecomposedGraphNode indicates the assignment
of a molecule signal. If DecomposedGraphNodes have the same color assigned,
then this indicates that molecule signals are the same. 58

5.4 The result of the matching step when applied on the AND specification. In
this step, the library of genetic gates are mapped onto the AND specifica-
tion. Genetic gates that can map to the specification are recorded on the
specification’s DecomposedGraphNodes. Where a genetic gate maps on the
specification’s DecomposedGraphNode corresponds to the gate’s root Decom-
posedGraphNode. 59

5.5 An example to show how signal carrier mismatch is determind when cov-
ering a genetic gate to the specification. A genetic gate is added to the cur-
rent solution when the molecule signal on a root DecomposedGraphNode of a
genetic gate matches the molecule signal assigned to a specification’s Decom-
posedGraphNode. In this example, the brown DecomposedGraphNode for NOT2
does not match the yellow DecomposedGraphNode assigned on the specifica-
tion. However, NOT1 has the same molecule signal that matches the assigned
specification’s DecomposedGraphNode and is thus added to the current solu-
tion for covering. 62

5.6 The purpose of EndNodes is used for matching the DecomposedGraphNodes for
g paired to s. EndNodes are calculated by determining where the root of a ge-
netic gate begins and where the genetic gate’s leaf DecomposedGraphNodes end
on the specification. In this figure, the yellow and blue DecomposedGraphN-
odes indicate where NOR1 ends on the given specification. The EndNodes
calculated in this example is where the yellow and blue DecomposedGraphN-
odes map on the specification DecomposedGraphNodes. 63

5.7 An example to show how crosstalk is computed in the covering step. In
this example, NOT2, if added to the current solution, causes crosstalk with
an existing genetic gate that has already been selected in the solution. The
DecomposedGraphNodes causing crosstalk in this example is the tan colored
DecomposedGraphNode located in the specification conflicting with the tan col-
ored DecomposedGraphNode in NOT2. NOT1, if added to the current solution,
avoids crosstalk because the colors assigned to each DecomposedGraphNode in
the specification are unique. 67

xiii

5.8 A figure showing the result of the technology mapping procedure after call-
ing the covering step on the AND specification. Two solutions are derived in
this figure after performing the covering step. Signal carrier mismatch and
crosstalk are accounted for when generating these solutions. If exhaustive
was selected for the running of the covering step, then both solutions from
this figure are returned from the technology mapping procedure. If greedy
was selected, then the solution returned from this procedure varies based
on the number of solutions provided as the input to this covering algorithm.
If the number of solutions provided to the method is one, then the solution
with a cost of 20 is returned. Greedy selects this solution with a cost of 20
to return from its method because greedy is designed to select gates with the
lowest score for covering a specification’s DecomposedGraphNode. If branch
and bound was selected, then the final solution returned from this method
is the solution with a cost of 16. This solution was selected from branch and
bound because out of both solutions that were found, this solution has the
lowest score. 73

5.9 An example of the technology mapping procedure performed on the SR Latch
example. The four genetic gates provided as the library are generated from
the CELLO SYNBIOHUB collection. The matching step identified NOT1 and
NOT2 mapped to Out and NOR1 and NOR2 mapped to Q̄ and Q. One solu-
tion is produced from the covering step because all three covering algorithms
identified that NOT1 results in signal carrier mismatch if it is added to the
solution for technology mapping. 74

5.10 A netlist of the SR Latch represented in SBOL. The genetic gates that were
selected in the covering solution are instantiated in the SR Latch as Modules.
These Modules are shown in the figure as NOT1, NOR1, and NOR2. IPTG,
aTc, TetR_protein, LacI_protein, and YFP_protein are FunctionalComponents
instantiated on the topLevelCircuit as the input and output signals of these
genetic gates. The connections that are formed from a gate’s input and output
signals to the instantiated signals on the SR Latch are done so through MapsTo
objects. 78

6.1 Figure 6.1a and Figure 6.1b are the two areas in the workflow where veri-
fications are performed. Synthesis verification takes the behavioral Verilog
and the structural Verilog produced from synthesis to perform simulation.
The simulation results are verified to check if they are equivalent in simu-
lation behavior. Genetic circuit verification is performed on the technology
mapping procedure. This verification workflow takes the SBOL converted
from the structural Verilog and the SBOL netlist produced from technology
mapping. Both SBOL representations are compared and simulated within
iBioSim by converting SBOL to SBML. The simulation results are compared
and checked if they are equivalent in simulation behavior. 81

6.2 Simulation results for synthesis verification. Figure 6.2a shows a behavioral
Verilog simulation of an SR latch executed in ModelSim. Figure 6.2b shows
a structural Verilog simulation of an SR latch executed in ModelSim. 82

xiv

6.3 Simulation results for synthesis verification generated within IBIOSIM. Fig-
ure 6.3a shows a behavioral Verilog to SBML simulation of an SR latch. Fig-
ure 6.3b shows a behavioral Verilog to LPN simulation of an SR latch. 82

6.4 Simulation results for synthesis verification. Figure 6.4a shows a structural
Verilog to SBOL simulation of an SR latch. Figure 6.4b shows a simulation of
an SR latch after running technology mapping. 83

7.1 Mapping of Cello DNA parts used for building transcriptional units. The
left table in the figure shows the different combinations that are used for
a transcription unit with two promoters. The rows indicate promoters on
position 1 and columns indicate promoters on position 2. Green indicates
that the pairing is valid and red indicates the pairing is invalid. The right
table in the figure shows the list of cassettes. 86

7.2 Behavioral Verilog of a generalized C-element. 87

7.3 The testbench of a generalized C-element. 88

7.4 A genetic sensor that uses filtering and communication to improve its relia-
bility. The logic diagram produced by logic synthesis. It is composed of three
gC gates that go high when both inputs are high and go low when the input
not marked with a “+” goes low. The output of the second and third gate are
connected to the “+” input of the next gate. The detection begins when both
IPTG and aTc go high, activating Cell 1. This creates the quorum signal LasI
to diffuse to Cell 2, which then activates Cell 2 to produce the quorum signal
RhlI. The RhlI signal diffuses to Cell 3 to activate YFP production. However,
if IPTG goes low at any point during this chain reaction, the whole circuit
resets. 89

7.5 Structural Verilog of a generalized C-element after running ATACS. 90

7.6 A decomposed gC described using NOT and NAND gates after running
YOSYS. Figure 7.6a represents the decomposed circuit using logic gates. Fig-
ure 7.6b represents the decomposed circuit using DecomposedGraph. 91

7.7 Result of circuit after running technology mapping. Figure 7.7a represents a
netlist of the genetic circuit. Figure 7.7b is a flattened representation of the
netlist designed on a plasmid. 92

7.8 The genetic design produced by IBIOSIM, which is composed of three genetic
sequences that can be put onto separate plasmids and transformed into cells
to create three cell types. 92

xv

7.9 IBIOSIM ODE Runge-Kutta simulations (measured in number of molecules)
of the genetic sensor demonstrating the filtering behavior. For the circuit
outputs to turn on (LasI, RhlI, and YFP for the three cells, respectively), both
aTc and IPTG inputs need to be present; however, if the IPTG signal is only
briefly present, then the circuit filters this and does not show the YFP output.
This behavior can be seen in the four different panels where the IPTG is
present for differing amounts of time. Figure 7.9a IPTG is present for 10 time
units and almost no LasI is produced. Figure 7.9b IPTG is present for 100 time
units and LasI is produced by the first cell but only a little RhlI is produced
by the second cell. Figure 7.9c IPTG is present for 300 time units seconds and
both LasI and RhlI are produced with a clear delay between the two peaks.
Figure 7.9d IPTG is present for 750 time units, providing sufficient time for
the final circuit output (YFP) to be produced. 94

xvi

LIST OF TABLES

5.1 This table summarizes the different existing technology mapping tools. It
shows the tool’s input specification language, standards supported, the types
of library parts used, and the genetic constraints addressed. 79

LIST OF ALGORITHMS

4.1 Gate Identifier . 44

4.2 Gate Interaction . 45

5.1 Match . 55

5.2 isMatch . 56

5.3 Covering Algorithm . 61

5.4 Cover for 1-input Gate . 64

5.5 Cover for 2-input Gate . 65

5.6 Update Covering Solution . 66

5.7 Crosstalk Implementation . 66

5.8 Branch and Bound . 69

5.9 Branch and Bound Cover for 1-input Gate . 70

5.10 Branch and Bound Cover for 2-input Gate . 71

5.11 Generating SBOL NetList . 75

5.12 SBOL Netlist Molecule Connections . 76

ACKNOWLEDGEMENTS

There are many people I would like to acknowledge for the completion of this disserta-

tion. I want to express my gratitude to my research supervisor, Professor Chris Myers,

for allowing me to do research and for providing me invaluable guidance throughout

this time. The knowledge I accumulated during my research is vast, and it is attributed

to his patience and his willingness to teach, disregarding the times it took for concepts

to engrain themselves. He has taught me to never stop asking questions and thereby,

has helped me improve my skills to analyze, evaluate, and explain information. He has

also introduced me to synthetic biology and systems biology. These fields have been

instrumental in my research and have allowed me to make significant contributions. In

addition to Professor Chris Myers, I want to thank my supervisory committee, Tara Deans,

Priyank Kalla, Nicholas Roehner, and Ken Stevens. They steered me in directions that

helped me produce quality work and provided invaluable feedback where this research

can expand on.

I am grateful to have worked alongside great colleagues: Curtis Madsen, Nicholas

Roehner, Andrew Fisher, Zhen Zhang, Leandro Watanabe, Meher Saminemi, Zach Zundel,

Michael Zhang, Pedro Fontanarrosa, Jeanet Mante, Samuel Bridge, and James Scholz. I

want to thank these members for the times that we have spent working on projects, playing

board games to decompress, and engaging in discussions in and out of the research. I am

fortunate to be a part of a supportive team, and I cherish the fond memories that we have

built together within this lab.

I would like to thank those who are involved in the development of the software tools

that are used in this research. These tools include SYNBIOHUB, SBOLDESIGNER, IBIOSIM,

and the community representing SBOL and SBML. The work presented in this research

could not have been made possible without these developers. I thank them for their hard

work and the time that these developers have invested in producing quality products.

Throughout my research, I participated actively in the SBOL community. In this com-

munity, I met great researchers and one person I would like to highlight is Dr. Jacob Beal.

Since I’ve joined the community, Dr. Beal has encouraged me to have a voice. Dr. Beal

has taught me leadership skills and valued my inputs to the development of SBOL. I have

learned a lot from working with Dr. Beal and I would like to thank him for taking time to

help me grow as a researcher.

I also have a strong support system that has been a significant influence towards my

academic career. I want to thank Leandro Watanabe and his family for their unwavering

support. His family has provided a space where I can always go to study and work. He,

on the other hand, is an excellent example of showing me what it is like to set goals

and achieve them. I value his constructive criticisms because they helped me continue

to grow. I know that whatever milestones I achieve, he is always there in the background

to encourage me.

I want to thank my siblings, Thi Nguyễn, Yếnnhi Nguyễn, and Khánhly Nguyễn. I

thank them for treating my success and my accomplishments as their own. I feel like I can

do anything because of their support. I thank them for cheering me on in everything I set

out to do.

I would like to thank my parents, Lân Nguyễn and Ánh Trần. I chose to pursue

higher education because they taught me its value. I enjoy learning and developed a

fondness for the STEM field at a young age because of my parents. They did this by

tutoring me in mathematics so that I had a subject where I could do well in school when

first immigrating to America. My parents have made many sacrifices during these hard

times so that everything I dreamed became a reality. I thank them for all of what I have

accomplished and the person I’ve become.

Last but not least, I would like to thank my uncle and aunt, Khoa Nguyễn and Bích

Nguyễn, for providing the opportunity to achieve my American dream. I continue to ac-

complish my dreams because I can do so. I thank them for providing me this opportunity.

This research is based upon work supported by the National Science Foundation under

Grants CCF-1748200 and DBI-1356041. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

xx

CHAPTER 1

INTRODUCTION

Digital circuits have come a long way since the discovery of transistors, which is the

basic building block of all digital circuits that exist today. One of the first digital devices

was the transistor radio, TR-1, which was composed of only four transistors [1]. Over the

years, novel and more complex digital circuits were developed, which required a growth in

the number of transistors needed to build these digital circuits. In the early 1970s, Gordon

Moore raised an observation to predict the growth rate of transistors known as Moore’s

Law. According to Moore’s Law, the number of transistors in a chip will continue to double

every two years. True to Moore’s prediction, the number of transistors found in electronic

devices today are in the billions, such as the A12 Bionic chip found on the iPhone XS.

The main driving force that enabled advancements in digital circuits was Electronic

Design Automation (EDA). EDA is composed of software tools that work together to form a

workflow for designing and analyzing electronic systems. Before EDA tools were created,

engineers had to design their digital circuits by hand. EDA tools were introduced to

help eliminate manual labor, such that software tools automate the process of designing

electronic systems. The result of EDA software tools has helped increase the complexity

of circuit design, and they have also helped validate the functionality of circuits before

manufacturing them.

An EDA workflow starts off with a high-level description language that describes the

behavior of the digital circuit being designed, as shown in Figure 1.1. This high-level

description is represented in a hardware description language (HDL), such as Verilog [2]

or VHDL [3]. Once the behavioral description of the circuit is specified, the design then

goes through logic synthesis, which is a process that translates the behavioral design to a

corresponding gate-level design. The gate-level designs then go through a procedure that

translates structural design to physical design. An important part of this procedure is a

2

Synthesis
Technology

Mapping Veri�cation

Behavioral Design Structural Design Physical Design Veri�cation

module circuit (a, b, x, y);

input a, b;
output x, y;

assign x = ~(a | b);

endmodule

Figure 1.1: A high-level overview of an EDA workflow to build an electronic circuit. First,
the behavior of a circuit is described in a high-level descriptive language. The behavioral
design is then synthesized to a structural design that describes a gate-level description.
Technology mapping is performed to produce a layout of what electronic components are
needed to physically build the circuit. Verification is performed to ensure the layout of
the physical design meets the requirement of the specification described in the behavioral
design.

layer that maps transistor-level gates to implement the gate-level design.

1.1 Genetic Design Automation (GDA)
Synthetic biology is a field that explores the design of genetic circuits. Genetic circuits are

built from biological components that have been engineered and assembled to perform a

specified function within a biological system. The first signs of synthetic biology involved

observing how regulatory circuits within a cell respond to environmental cues [4]. When

molecular components and their interactions were better understood, it led to the discov-

ery that cellular networks are hierarchically grouped and molecular components can be

modularly assembled, such that they can be rearranged or tuned to engineer regulatory

networks. This discovery laid the foundation on how genetic circuits are built and brought

about the first sequential circuits [5, 6] containing internal states that allow them to map

a sequence of input signals to a sequence of output signals. Not long after, a library of

combinational circuits [7] producing an output signal solely based on its input signals

were also implemented as well.

The construction of these types of circuits stemmed from the idea of building a genetic

circuit that replicates the same functionality of an electrical circuit [4]. Similar to electrical

circuits, genetic circuits constructed within cells operate by sensing input molecule(s) to

produce an output molecule. The signals that are carried across genetic circuits are de-

pendent upon the presence and concentration of molecules that exist within the cell. The

3

DNA parts that are used to construct a genetic logic gate are represented as hierarchical

groupings of DNA sequences.

Since the breakthrough of engineering genetic regulatory networks (GRN), many se-

quential [5, 8–13] and combinational circuits [14–16] have continued to be developed to

build useful applications. In particular, synthetic biologists are designing genetic circuits

to produce useful biochemical and pharmaceutical products [17–30], to help cure genetic

diseases and create therapeutic bacterial agents [31–43], and to produce plants that can

sense and adapt to a wider range of environments [44–50].

For the field to scale up and develop more complex circuits for other applications, syn-

thetic biologists started using principles from EDA to develop Genetic Design Automation

(GDA) for the systematic design of genetic circuits. Figure 1.2 shows a high-level GDA

workflow. This GDA workflow is similar to the EDA workflow except the physical design

generates DNA sequences.

Many computer-aided design (CAD) tools were developed to aid the synthetic biologist

in the design of genetic circuits. Today, there are GDA tools that can be found for specifi-

cation [51–58], design [59–72], build/assembly [73–80], test/analysis [81, 82], data [83–87],

simulation [88–99], and sequence editing [100–102].

CAD tools geared towards the design of combinational circuits have been developed [15,

64, 66, 103–105]. Cello [15] is an example of such a tool. This tool can be used to design

complex circuits consisting of NOT and NOR gates. Many circuits designed in Cello have

been validated in a wet lab and they have shown promising results.

However, there is a need for a GDA tool designed for sequential circuits and certain

barriers exist to develops these tools. First, there is a need for a large collection of well-

Synthesis
Technology

Mapping Veri�cation

Behavioral Design Structural Design Physical Design Veri�cation

module circuit (a, b, x, y);

input a, b;
output x, y;

assign x = ~(a | b);

endmodule

Figure 1.2: This figure shows a high-level GDA workflow. This GDA workflow is similar
to the EDA workflow except the physical design generates DNA sequences.

4

characterized parts in order to construct an abundance of memory circuits [10]. However,

creating a memory collection is challenging because memory circuits constructed on tran-

scriptional regulatory networks must exhibit positive or double negative transcriptional

feedback loops. This design style limits the number of DNA parts that can be used to

construct a memory circuit and as a result, limits the ability for complex circuit to be

constructed using memory circuits. Second, design principles and analogies between

electronic and biological circuits are required to create effective tools for sequential genetic

circuits [10]. Namely, it is important to understand the synchronous and asynchronous

styles for designing sequential circuits.

Synchronous designs require the use of a global clock signal to produce a fixed-time

schedule for updating the state to store information. Asynchronous designs, on the other

hand, determine when to update their state using handshaking protocols. The advantage

of designing synchronous circuits is the state of a signal only changes when the global

clock is signaled to change the state. This allows signals to stabilize before a new clock

cycle passes through and the next operation is performed. However, because synchronous

circuits rely on a global clock, the delay is proportional to the time it takes a signal to

propagate through the circuit’s longest path. In asynchronous circuits, input signals arrive

independently and operations happen as soon as all input signals have arrived.

Given the difficulties to create a precise timing reference using biological components

and the fact that most biological systems are responsive immediately to changes in en-

vironmental conditions, it seems likely that synthetic genetic circuits should follow the

asynchronous design paradigm. Nature also makes uses of asynchronous timing. One

such example of an asynchronous sequential circuit that occurs in nature is the filtering

system utilized by the venus flytrap (Dionaea muscipula). It shows different behaviors

depending on how often prey touches trigger hairs within a period of time (the circuit

is asynchronous as the time element is simply due to molecular decay). At least two

trigger events are required to close the trap, and at least three to start producing digestion

enzymes [106]. It has been suggested that the memory of the system works by increasing

cytosolic calcium levels in a quantized manner correlating with the number of triggers that

have been seen [107]. Thus, here the calcium levels are proposed to act as state memory in

the asynchronous sequential network.

5

One GDA tool that was reported to have a framework that can be used to design

complex genetic circuits using combinational and sequential circuits and has taken on

the synchronous approach was GeNeDA [105]. GeNeDA was built to resemble an ideal EDA

workflow by reusing existing software tools [108–110] from microelectronics to assemble

DNA sequences to design genetic circuits. This tool uses Verilog to describe a high-level

description of their design. Abstract DNA parts are used from BioBricks to construct the

physical components needed to build the specification. Lastly, verification is performed

by using the Systems Biology Markup Language (SBML) [111] to analyze the behavior of

their design. The limiting factor in their design tool is the library that is used to map

genetic parts to their specification does not support the traditional memory circuits such

as the genetic toggle switch and the repressilator circuits. Instead, the tool used memory

modules that were inspired by Hoteit et al. [8]. In the work presented by Hoteit et al., the

author noted that existing genetic toggle switches and repressilator circuits behaved more

asynchronously rather than synchronously. Although a robust repressilator circuit [9] has

been constructed with inputs for tuning oscillation signals, the repressilator circuit still

does not have bistable states. Hoteit et al. also presented toggle switches [112–114] that

were designed to behave asynchronously because there were no input clock signals that

can be connected to a toggle switch to make the circuit perform synchronously. As a

result, Hoteit et al. constructed a synchronous memory module that has an input clock

using far-red light (FR) to operate on the rising edge of the clock. The result of the Hoteit

et al. memory module gave insights on the complexity of the use of a clock in a genetic

circuit. Specifically, the FR light used as an input clock signal must be large enough for the

circuit to sense when its state should change. If the FR light is removed sooner than the

circuit expected, the production of protein in the circuit could be affected. Also, the clock

has to turn off for a certain duration before turning back on for an input signal to correctly

affect the current state of the circuit.

Needless to say, there is still a need for sequential circuits. Burill et al. constructed a

genetic circuit to track cellular memory through cell division when different stimulis are

applied to a cell [115, 116]. After cell division, two subpopulation of cells can be formed to

track cells that have a high response to the stimulis. Cells that showed high response were

shown to exhibit memory based on the effects of growth rate and gene expression of the

6

cells to the stimuli. Their work showed that building memory circuits will provide a better

understanding on a cell’s heterogeneity and how cells’ fate are determined. As a result,

future applications are envisioned from building memory circuits to detect and track a

subpopulation of cells in a tumor environment and how the subpopulation will contribute

to developments of tumor. Burill et al. also noted that in order to create more complex

human applications, such as these memory circuits, there is a need for more robust design

methodologies to help reduce the number of devices that are built [115, 116].

The workflow presented in this dissertation is inspired to take on an asynchronous

approach for developing a GDA tool for designing sequential genetic circuits. Including

combinational circuits, many of the toggle switches that have been designed to follow the

asynchronous nature are well-suited for this realm of work. However, hazards will need

to be addressed and solutions on how they are handled are discussed in further details in

the later chapters.

1.2 Contributions
As shown in Figure 1.3, the contributions of this dissertation are divided into four areas

and are highlighted as follows:

• a compiler that translates an asynchronous design described in the Verilog language,

and converts it to biological data standards.

• an automated library for gate generation.

• a technology mapping procedure using standardized biological data formats to fa-

cilitate the process of designing genetic circuits.

• a verification procedure to validate the workflow.

• a case study for building a sequential circuit.

The main contributions for this dissertation involve the necessary steps for the devel-

opment of an end-to-end asynchronous circuit design workflow. The workflow presented

in this dissertation leverages electronic design styles that have been explored for designing

electronic systems. By replicating electronic design styles to model biological systems,

7

Figure 1.3: This workflow is illustrated using a genetic toggle switch design. The workflow
starts off with an asynchronous design specified using behavioral Verilog. Next, the
ATACS asynchronous design tool synthesizes logic equations represented using structural
Verilog. The synthesized circuit is then realized as a physical design by a technology map-
ping procedure that selects gates from a SBOL encoded gate library stored in a SynBioHub
repository. In order to verify the workflow, a model is generated and simulations are
performed to verify that the design displays the expected behavior.

there are potential outcomes of what this could show when designing genetic circuits and

how it could possibly scale up in terms of building complex circuits.

Because of the inherent nature of how biological systems behave, an asynchronous

circuit design workflow is proposed. A critical part in design automation is to have a way

to describe the behavior of the circuit. Hence, the first contribution of this dissertation is to

specify how to model asynchronous circuits in Verilog and how to synthesize the Verilog

designs into gate-level designs. In order to realize a physical design from a gate-level

design, technology mapping is necessary. A key part of technology mapping is to have a

gate library. The second contribution of this dissertation involves an automated procedure

to generate a gate library for genetic circuits. The third contribution is a technology map-

ping procedure for asynchronous circuits. Lastly, this dissertation highlights the proposed

workflow with case studies.

8

A key features that is important for navigating between steps in the workflow is the use

of data standards. Data standards have come a long way to increase the result for repro-

ducibility and exchangeability of information between software tools. The biological data

standards used in this automated workflow are well-suited for its purpose for designing

and performing verification on genetic circuits.

1.3 Dissertation Outline
This dissertation is composed of seven themed chapters.

Chapter 2 provides the necessary background on the different areas that are needed

to build a technology mapping workflow for asynchronous genetic circuit designs. First,

concepts for constructing a genetic circuit are discussed to get an understanding of how

high-level descriptions can map into physical biological components. Then, biological

data standards are discussed to show how information about genetic circuits is formally

represented throughout the different stages of the workflow. Finally, the chapter discusses

software tools that are used in the workflow.

Chapter 3 focuses on understanding how the specification for a sequential circuit is

built from a high-level description and how the specification is synthesized to a gate-level

circuit. A general template to describe the behavior for the desired sequential circuit is

discussed in order to correctly build a specification that follows the asynchronous design

style. This chapter also discusses what performing synthesis entails and how a gate-level

circuit translates into a genetic regulatory network to perform technology mapping pre-

sented in Chapter 5.

Chapter 4 describes how transcriptional units are assembled to form a library of logic

gates that are needed to perform technology mapping. An automated gate generation

procedure is presented to build genetic gates from transcriptional units. A gate identifica-

tion procedure is also described in this chapter to classify a gate’s logic behavior and the

different structure that a genetic gate can take on.

Chapter 5 shows the full process to map a library of gates constructed in Chapter 4

to build the corresponding circuit of a synthesized specification that is obtained from

Chapter 3. This chapter describes a Boolean decomposition procedure performed on the

specification and the library gates before technology mapping occurs. Then, the technol-

9

ogy mapping procedure is broken into two separate sections. The first is a matching step

that is used to filter from the library of genetic gates that can map to the specification. The

second is a covering step that generates possible solutions from a list of genetic gates for

constructing the specification.

Chapter 6 presents a verification procedure performed at different stages in the design

process. This chapter describes how each step in the workflow is verified to ensure that

the behavior of the design remains consistent in each of stage. This verification procedure

is split into two areas. The first verification procedure shows the process for verifying

behavioral to structural Verilog. The second verification procedure shows the process for

verifying a structural representation of a synthesized genetic circuit design to a netlist of

genetic gates.

Chapter 7 goes over a case study to demonstrate how the proposed workflow operates.

First, this chapter presents a library of genetic gates created for testing the circuit. Then,

this chapter goes through the step by step procedure for designing the intended genetic

circuit.

Finally, Chapter 8 summarizes the accomplishments that were presented and discusses

future directions for this work.

CHAPTER 2

BACKGROUND

This chapter presents the background information needed to understand the proposed

asynchronous genetic circuit design workflow. This chapter is composed of four sec-

tions, where each section provides the necessary background in a specific topic. That

is, Section 2.1 discusses the differences between synchronous and asynchronous styles

for designing genetic circuits. Section 2.2 defines terminologies of a genetic circuit and

demonstrates how they behave similarly to that of a logic circuit. Section 2.3 goes over the

biological data standards needed for representing genetic circuit designs and modeling

genetic circuits that can be used for simulating the designs needed for verification. Lastly,

Section 2.4 goes over the features of an existing GDA tool relevant to this dissertation and

how it is leveraged to build an end to end workflow for designing asynchronous genetic

circuits.

2.1 Asynchronous Circuit Design
Electronic circuits based on digital systems rely on Boolean logic as an abstraction layer.

Such abstraction allows signals to be either in a HIGH or LOW state, which helps reason

about the structure of the circuit design. There are two types of digital circuits. One is

combinational circuits, where the input signals map directly to the output signal. The other

is sequential circuits. Unlike combinational circuits, sequential circuits have an internal

state that allows them to map a sequence of input signals to a sequence of output signals.

Sequential circuits can be designed synchronously, asynchronously, or a hybrid be-

tween the two. Synchronous circuits operate on a global clock used to produce a fixed-time

schedule for updating states. However, because synchronous circuits rely on a global clock,

the clock rate is determined based on the critical path (i.e., longest path from inputs to an

output). As a result, there is no best-case or average-case timing performance [117] when

designing synchronous circuits.

11

Some key challenges in synchronous circuit design include dealing with clock distribu-

tion [118–121] and the corresponding power consumption [117] for the clock network. Such

challenges do not apply for asynchronous circuits. Asynchronous circuits perform oper-

ations without the use of a clock signal. In asynchronous circuits, the states are updated

by using handshaking protocols as a mechanism to synchronize communication and data

encodings to represent information. Handshaking protocols have request signals to indicate

there is information to be sent and acknowledge signals to indicate that the information has

been received. One benefit of asynchronous circuits is that they can exploit average-case

performance, since the states are updated as soon as possible after the input signals arrive.

In digital circuits, there are cases when a signal switches erroneously due to a glitch

(a spontaneous transition of a signal going HIGH to LOW or LOW to HIGH). Glitches

on synchronous circuits are not a major concern as long as the signal is stable before or

after the clock signal is sampled to produce a valid result [117]. However, this puts more

reliability on carefully controlling the global clock to ensure glitches are filtered. However,

glitches in asynchronous circuits are problematic. In asynchronous circuits, glitches, also

referred to as hazards, happen when a signal that is supposed to remain stable momentarily

changes value, or a signal that is supposed to change does so non-monotonically. Unless

the circuit is validated to be hazard-free, unexpected input signals could result in invalid

circuit outputs [117].

The S-R latch and the clocked S-R latch shown in Figure 2.1 illustrate the difference

between synchronous and asynchronous circuits. A S-R latch is a circuit designed asyn-

chronously for capturing information when it senses a change in its input signals. A

clocked S-R latch is a level-sensitive circuit designed synchronously for capturing infor-

mation based on a clock signal (i.e., only change state when clock is high). Set, S, and

Reset, R, are input signals used to control what data are captured in the circuit. The output

signals, QA, Q̄A, QS, and Q̄S are used to show what data value is currently stored within

the circuits. As shown in the waveform, both circuits behave in the following manner.

QA produces a HIGH signal when S is set to HIGH. S and R are never allowed to be

HIGH at the same time but can both be LOW at the same time. When both input signals

are LOW, then the previous output state is returned. When R is set to HIGH, Q̄A goes

HIGH. The main difference between the S-R latch and the clocked S-R latch is the use

12

CLK

S

R

QS

QA

S-R Latch : Clocked S-R Latch :

QS

S

R

CLK

QSQA

QA

S

R

Figure 2.1: This figure shows the difference between an asynchronous and a synchronous
S-R latch and a waveform illustrating the behavior of both circuits after they have been
initialized for simulation. The S-R latch is a level-sensitive circuit designed asynchronously
for storing information when there is a change on the input signals. The clocked S-R latch
is a level-sensitive circuit designed synchronously for storing information based on a clock
level. Set, S, and Reset, R, are input signals used for setting the circuit’s data value. Q̄A
is the inverse signal of QA and are both represented as output signals to show what data
value is currently stored within the S-R latch. The same can be said for QS and Q̄S. Q̄A
and Q̄S are simplified in the waveform as the LOW state of QA and QS. The behavior of
the clocked S-R latch is identical to that of the S-R latch except that the output signal is
governed by a clock, CLK, signal. In other words, the output signals for QS and Q̄S are
designed in this circuit to update when CLK is HIGH. The red signals that go HIGH on
S is a glitch that appeared for a short duration and causes QA to go HIGH unexpectedly.
The clocked S-R latch is able to avoid this glitch because the input signal was not stable
before CLK could capture this information. The S-R latch, however, encounters the glitch
as a change in the input signal and produced an invalid output signal.

of a CLK signal in the clocked S-R latch. Specifically, the output signal on the clocked

S-R latch is only updated when the CLK signal is HIGH. It is important to note that, in

synchronous circuits, edge-sensitive flip-flops are more commonly used than clocked S-R

latches. However, clocked S-R latches are used in this context because they are easier to

13

explain.

Glitches can occur on sequential circuits. The circuit could possibly latch onto the a

glitching signal or it could also cause the circuit to go metastable. It depends on how long

the glitch persists and the relative delay of the circuit. As an example, the red signal that

went HIGH on S for a short duration in Figure 2.1 illustrates a glitch. For synchronous

circuits, this glitch can be avoided because the use of a clock signal ensures that the input

signals must be stable before capturing information. On the other hand, an asynchronous

circuit does not see this glitch signal as an unexpected signal that should be ignored. In this

specific case, the glitch on the input signal, S, causes the output signal, q, to latch onto the

HIGH state when it was not expected to. This example shows that it is critical to eliminate

hazards in asynchronous circuit designs. Therefore, it is important to account for hazards,

such as the one shown in this example, when designing circuits asynchronously to ensure

correct behavior. This can be accomplished in a couple of ways. Redundant logic can be

added onto the design, timing analysis can be performed on the design, or delays can be

inserted to limit the behavior of a circuit.

Designing hazard-free asynchronous designs is challenging and a number of CAD tools

have focused on supporting asynchronous designs to be hazard free [122] . ATACS [122]

is an example of such a tool. ATACS is an asynchronous logic synthesis tool that derives

Boolean logic equations that implement a specified design. ATACS creates a state graph

from the given labeled-Petri net [123] (LPN) model.

To do so, one area of work proposed in this dissertation is to convert a high-level asyn-

chronous design, described in Verilog, into its equivalent LPN model. Once the high-level

description of the design is modeled as an LPN, it is translated into a state graph within

ATACS to perform synthesis. The state graph is analyzed to determine the logic necessary

to implement any state and output signals. Synthesis from ATACS produces hazard-free

Boolean logic functions described in a structural Verilog representation. The structural

Verilog representation produced from ATACS can then be used for technology mapping to

derive the asynchronous genetic circuit.

14

2.2 Genetic Circuits
Many biological mechanisms have emerged to engineer genetic circuits [124, 125]. The

most popular mechanism is transcriptional regulation. The main advantages of using

transcription regulation includes modularity of the circuit so that it can be reused for

building more complex circuits and orthogonality of the circuit to function independently

from interfering with other functions within a cell. Genetic circuits designed and built

using this mechanism have been documented in literature and can be accessed through

online databases. For these reasons, the work demonstrated in this dissertation uses the

concept of transcriptional regulation for designing genetic circuits.

Genetic circuits using transcriptional regulation are made of transcriptional units. Tran-

scriptional units store information on a complex molecular structure called deoxyribonucleic

acid (DNA). The central dogma of biology is that DNA is used to create RNA (ribonucleic

acid) through a process called transcription. The RNA is in turn used to create proteins

though a process called translation. Some of the proteins created, called transcription factors,

can regulate (i.e., activate or repress) further protein production. The sequence that is

directly used to create a protein is called the coding sequence (CDS). Not all of a genetic

sequence is directly used in the creation of proteins. For example, there are sequence

regions called promoters where transcription is initiated and that include binding sites for

transcription factors allowing them to regulate the speed of transcription. Ribosome binding

sites (RBS) are sequences where ribosomes can bind to the RNA to initiate translation. Fi-

nally, there are terminators, which are regions of the DNA that indicate where transcription

should stop.

These transcriptional units can interact with other transcriptional units through tran-

scription factors. Complex behavior can be achieved by combining transcriptional units.

For example, transcriptional units can be used to construct genetic logic gates as shown

in Figure 2.2. A genetic NOT gate is built with one transcriptional unit composed of a

promoter, Pro, an RBS, a CDS, and a terminator, Ter. The transcription factor, X, represents

the input protein to the genetic gate and the encoded protein translated from the CDS rep-

resents the output protein from the gate. The promoter, Pro, is repressed by a transcription

factor, X, such that, when it binds to the promoter, no protein is produced. If X is absent,

then the output protein Y is produced. This genetic circuit behaves like a NOT gate such

15

0 1
1 0

0 0

0
0 1
1
1 1

1
0
0
0

X Y

X0
X1 Y

X Y

X0 X1 Y

NOT Gate

NOR Gate

T
YX

Pro RBS
CDS

Ter

T
Y

Pro RBS
CDS

Ter

X1X0

Figure 2.2: A NOT gate and a NOR gate represented as a genetic circuit. The symbol of
the logic gate is shown on the left. A listing of all possible combinations of the gate’s input
signals (X, X0, and X1) mapped to the output signal, Y, is shown in the Boolean table at
the center. A design of a genetic circuit that behaves similarly to that of its logic gate are
shown on the right. These genetic circuits are made of transcriptional units that undergoes
the process of transcription and translation to transform DNA to protein. A transcriptional
unit is composed of promoters, Pro, ribosome binding sites, RBS, coding sequences CDS,
and terminators, Ter. The encoded protein translated from CDS is illustrated in both
genetic circuits as protein Y and are represented as the output protein for the circuit.
The production of the output protein Y can be controlled by proteins that can bind to the
the transcriptional unit through repression or activation of the promoter. These proteins
are referred to as transcription factors acting as input proteins to a genetic circuit and are
represented in this example as X, X0, and X1. X, repressing Pro in the NOT gate example,
prevents the production of the Y protein. If X is removed, this allows for protein Y to be
produced. The same concept applies for building a genetic circuit that behaves similarly
to a NOR gate. The presence of X0 and X1 represses Pro. As long as one input protein
is present, the output protein Y cannot be produced. If both input proteins are removed,
then protein Y is produced.

16

that the output signal is inverted based on the presence of the input signal.

A NOR gate is a universal logic gate that can be used to realize any Boolean function.

Figure 2.2 shows a genetic logic gate that behaves similarly to a NOR gate. This type of

genetic logic gate is built from a transcriptional unit composed of a promoter, Pro, an RBS,

a CDS, and a terminator, Ter. The production of protein Y, in this case, is controlled by two

input proteins X0 and X1 repressing the Pro. As long as one of the promoters is repressed,

no output protein is produced from the circuit. If both of the promoters are not repressed,

then the output protein Y is produced. This genetic circuit behaves similar to that of a

NOR gate because an output signal is produced only when both input signals are not

present. Because this type of NOR gate is versatile for building any Boolean functions, this

gate, along with the genetic NOT gate, is used in this proposed dissertation for designing

an asynchronous genetic circuit. The use of these two genetic gates is discussed in more

detail in a later chapter.

Another form of genetic circuit that is used for the work proposed in this dissertation

are memory devices that are needed for sequential circuits. Memory devices are con-

structed using feedback loops. A well-known memory device that has been built for useful

applications in synthetic biology is the genetic toggle switch [5]. As shown in Figure 2.3, a

genetic toggle switch produces two primary proteins (LacI and TetR). The green fluorescent

protein (GFP) serves as an output reporter that indicates when the TetR protein is produced.

The LacI and TetR proteins mutually repress each other through negative feedback loops

that control the production of the opposing protein. The production of the LacI protein

causes the pTet promoter to be repressed and prevents the production of TetR. Similarly,

the production of the TetR protein causes pLac to be repressed and prevents the production

of LacI. IPTG and aTc are small molecules used as input sensors to control the production

of LacI and TetR. When IPTG is applied, it forms a complex with the LacI protein and

acts as a repressor to the LacI protein. If the LacI protein is repressed, this allows the

TetR protein to produced. If aTc is applied, the small molecule forms a complex with TetR

and represses the production of TetR. The repression of TetR allows for the production of

LacI. If both IPTG and aTc are removed, then the genetic toggle switch produces whatever

output protein that was synthesized in the previous state.

17

lacI gfptetRpTet pLac
TT

LacI

IPTG

TetR GFP

aTc

Genetic Toggle Switch

Figure 2.3: A genetic toggle switch is a genetic circuit that behaves similarly to that of an
S-R latch. The genetic toggle switch shown in this example is composed of a transcriptional
unit that primarily produces a LacI protein and a TetR protein. The green fluorescent protein
(GFP) serves as an output reporter to indicate when the TetR protein is produced. Both the
LacI protein and the TetR protein can mutually repress each other through the negative
feedback loops that affect the production of its counter protein. This means that, when a
LacI protein is produced, the pLac promoter is repressed, thus preventing the production
of a TetR protein. Likewise, if a TetR protein is produced, the pTet promoter is repressed
and no LacI protein is produced. The LacI protein and the TetR protein can be controlled
by IPTG and aTc to switch between states of the two proteins. IPTG and aTc are small
molecules that act as input sensors for controlling the production of the LacI and TetR
protein. When IPTG is applied, it forms a complex with the LacI protein and acts as an
inhibitor to the LacI protein. If the LacI protein is repressed, the pLac promoter is free to
synthesize the TetR protein. Similarly, when aTc is applied, it forms a complex with the
TetR protein and acts as an inhibitor to the TetR protein. If the TetR protein is repressed,
the pTet promoter is free to synthesize the LacI protein. If both input sensors for IPTG and
aTc are removed, then the genetic toggle switch produces whatever output protein that
was synthesized in its previous state.

2.3 Biological Data Standards
In order to develop software tools that can automate the genetic circuit design process,

data standards must be used to transfer information between the different tools used in

each design step. As such, data standards play a big role in the workflow described

in this dissertation. In particular, this workflow uses two biological data standards, the

Synthetic Biology Open Language (SBOL) [126, 127] and the Systems Biology Markup Language

18

(SBML) [111].

2.3.1 Synthetic Biology Open Language

SBOL has emerged as an international standard to describe and exchange structural

and qualitative information about genetic circuits. This standard is useful to specify de-

signs in terms of constituent components. Using SBOL, the order and sequences of biolog-

ical components in a design can be captured, and these designs can be hierarchically reused

in more complex designs. Importantly, SBOL supports capturing molecular interactions

between these components.

Aside from the SBOL data model, SBOL also supports the use of SBOL visual. SBOL

visual represents a collection of graphical symbols that have guidelines and suggestions

for capturing information about the functional and structural relationship described in the

SBOL data model. SBOL visual can be used for representing genetic circuits and biological

parts.

A demonstration of how SBOL is used to represent a genetic toggle switch is depicted

with SBOL visual graphical symbols in Figure 2.4. This example is constructed hierarchi-

TetR
TetR Inverter

GFP

LacI

T
lacIpTet

TetR

LacI Inverter

IPTG

T
GFPtetRpLac

aTc

LacI

IPTG

aTc GFP

Genetic Toggle Switch

LacI Inverter

TetR Inverter

Figure 2.4: A genetic toggle switch modeled hierarchically using SBOL visual symbols to
represent the SBOL data model. The circuit and its inverters are described using SBOL
ModuleDefinitions. Instantiation of the LacI Inverter and TetR Inverter as referred to in
SBOL as Modules. These Modules are connected through the use of SBOL MapsTo. The
DNA, small molecules, proteins, and their complexes that are shown in this example are
described in SBOL as ComponentDefinitions. Instantiations of these ComponentDefinition
within a ModuleDefinition are referred to as FunctionalComponents. ComponentDefinitions
can also be instantiated onto other ComponentDefinitions as SBOL Components to construct
a transcriptional unit that is shown in the LacI Inverter and TetR Inverter. SBOL Interactions
are used to specify the relationship between FunctionalComponents such as the forming of
a complex between aTc and TetR and IPTG and LacI. SBOL Interactions are used in the
LacI Inverter and TetR Inverter to represent the inhibition of TetR repressing pTet and
LacI repressing pLac. SBOL Interactions are also used in both inverters to indicate the
production of the LacI protein, TetR protein, and GFP protein.

19

cally, where the genetic toggle switch is built from a TetR inverter and a LacI inverter using

ModuleDefintions and Modules. Specifically, the genetic toggle switch, TetR inverter, and

LacI inverter are repesented as ModuleDefinitions and Modules are used in the genetic toggle

switch to refer to the two inverters. The Modules for the LacI inverter and TetR inverter

have MapsTos used for linking the LacI protein, TetR protein, and GFP protein to their

corresponding components in the genetic toggle switch. The components shown in this

example with type DNA, RNA, proteins, small molecules, and complexes are represented

as ComponentDefinitions and are instantiated within ModuleDefinitions as FunctionalCom-

ponents. ComponentDefinitions can also be instantiated in other ComponentDefinitions as

Components. In this example, the promoters, RBS, CDS, and terminators found in both

inverters are created as individual ComponentDefinitions. These DNA parts are joined on a

ComponentDefinition by referring to the DNA parts as Components to represent a complete

transcriptional unit. The sequences on each DNA part are referenced on their Component-

Definition as a Sequence object.

Interactions are represented in ModuleDefinitions to show the relationship between Func-

tionalComponents. An Interaction has Participants that refer to the FunctionalComponents

that are involved in the Interaction. In this example, Interactions are represented in the

genetic toggle switch to show complex formation between IPTG and LacI and aTc and

TetR. The Participants for forming the IPTG-LacI complex are the IPTG small molecule, the

LacI protein, and the complex IPTG-LacI molecule. The same pattern can be expected for

representing Interactions in both inverters. Specifically, Interactions are represented in both

inverters to show the tetR CDS producing the TetR protein, the gfp CDS producing the

GFP protein, and the lacI CDS producing the LacI protein. Interactions are also represented

to show the LacI protein inhibiting a pLac promoter in the LacI inverter and the TetR

protein inhibiting a pTet promoter in the TetR inverter. The Participants, in this case, are

the proteins and DNA parts.

There are also other features of the SBOL data model that are useful for representing

genetic circuits. The SBOL data model can support different variants of genetic parts as-

signed to a transcriptional unit through CombinatorialDerivation. Information that does not

have a direct mapping to the SBOL data object can be annotated through GenericTopLevel

or Annotation. The cycle to design, build, and test a genetic circuit can be recorded using

20

the Activity, Agent, Plan, and Implementation.

2.3.2 Systems Biology Markup Language

The Systems Biology Markup Language (SBML) [111] is a standard for behavioral models

of biological systems at the molecular level and is supported by more than 280 tools,

enabling researchers to create, annotate, simulate, and visualize biological models. A

SBML Model is primarily used for reaction-based models that are composed of a number

of chemical Species (i.e., proteins, genes, etc.) and Reactions that transform these Species.

Species that are consumed by a Reaction are called Reactants, Species that are produced from

a Reaction are called Products, and Species that participate in a Reaction but neither are

consumed or produced (e.g., catalysts) are called Modifiers. Reaction rates are controlled

by KineticLaws. KineticLaws are typically influenced by rate constants that are represented

using Parameters (i.e., named variables in a model). While Reactions are used to compute the

continuous dynamics of Species, Events can be used to make discrete changes in the state

of a model. Events take place when their corresponding Trigger condition is evaluated

from false to true. Triggered events can be executed immediately or executed in the future

through the use of a Delay assignment. When an event is executed, its EventAssignments

are computed to update the state of the model.

SBML Level 3 Version 1 [128] has package extensions [129–132] that generalize the use

of the standard even further. The hierarchical composition package (comp), in particular,

is a useful extension important for the workflow presented in this dissertation. By using

comp, hierarchical models can be constructed through the use of SubModels. A top-level

model can instantiate multiple SubModels. Each SubModel refers to a ModelDefinition. The

SubModel can also reference an ExternalModelDefinition that is associated with an external

file. Connections between SubModels can be made through Replacements and ReplacedBys.

A good illustration for representing SBML through Systems Biology Graphical Notation

(SBGN) glyphs is shown in Figure 2.5 for modeling a hierarchical representation of a

genetic toggle switch. In this example, the genetic toggle switch is represented as a Model.

The LacI inverter and TetR inverter are represented as ModelDefinitions and are instantiated

as SubModels in the genetic toggle switch Model. Replacements are used to connect the TetR

protein, GFP protein, and LacI protein in both inverters to the genetic toggle switch. The

21

TetR InverterLacI Inverter

IPTG

GFP

Genetic Toggle Switch

LacI Inverter

TetR InverterTetR

LacIIPTG

IPTG
LacI

aTc

aTc
TetR

TetRaTc

LacI GFP

pTet pLac

Figure 2.5: A genetic toggle switch modeled hierarchically and is visualized using SBGN
graphical symbols to describe the SBML data model. The Genetic Toggle Switch is rep-
resented as an SBML Model. The LacI Inverter and TetR Inverter are created as SBML
ModelDefinitions and are instantiated inside of the Genetic Toggle Switch as SubModels.
Replacement and ReplacedBy are used for connecting the elements within the Genetic Toggle
Switch and the inverters. Small molecules, proteins, complexes, and nucleic acid that are
shown in this example are represented as SBML Species. The forming of a complex between
aTc and TetR and IPTG and LacI is described as SBML Reactions. In these type of Reactions,
the complexes are referred to as the Products and the small molecules and the protein
used to form the complex are referred to as Modifiers. SBML Reactions are also used to
describe the LacI protein, TetR protein, and GFP protein produced when TetR protein is
not inhibiting the pTet promoter and the LacI protein is not repressing the pLac promoter.
The TetR protein repressing the pTet promoter and the LacI protein repressing the pLac
promoter are referred to as Modifiers in their Reactions. The LacI protein, TetR protein, and
GFP proteins produced in their Reactions are represented as Products.

DNA, small molecules, proteins, and complexes found in the genetic toggle switch and the

inverters are represented as Species. Aside from degradation Reactions that were omitted

in this example to simplify the model, there are two Reactions to represent the forming of

a complex between aTc and TetR and IPTG and LacI. The complex reactions, aTc, TetR,

IPTG, and LacI represent the Reactants and aTc-TetR and IPTG-LacI represent the Products.

There are also two Reactions created to model the production of the LacI protein when

the TetR protein is not inhibiting the pTet promoter the TetR protein and GFP protein

produced when the LacI protein is not repressing the pLac promoter. In these particular

cases, the TetR protein repressing pTet and the LacI protein repressing the pLac promoter

are referred to as Modifiers in their Reactions and the LacI protein, TetR protein, and GFP

protein produced from their Reaction are referred to as Products.

2.4 IBIOSIM

There are GDA tools that exist for putting together the different elements of designing

a genetic circuit. One tool that incorporates most of the features that are proposed in this

22

dissertation is IBIOSIM. IBIOSIM is a GDA tool for the modeling, analysis, and design of

genetic circuits [88, 133]. A high-level illustration of the key features of IBIOSIM is shown

in Figure 2.6.

A genetic circuit design in IBIOSIM begins by using the SBOLDESIGNER [102] tool to

construct a SBOL design by selecting genetic parts from the SYNBIOHUB part repository.

SBOLDESIGNER is an intuitive sequence editor tool that is incorporated into IBIOSIM as

a plugin. This feature facilitates model-based design of genetic circuits by providing the

means to construct new designs from existing modeled parts.

Figure 2.6: This is a high-level diagram of the genetic circuit design workflow supported
by IBIOSIM. The red arrows indicate the flow between the different software components
and dotted lines indicate the output of each step that is then used by the proceeding
software component in the workflow. First, genetic parts encoded using SBOL are fetched
from SYNBIOHUB using the SBOLDESIGNER plugin to construct the DNA-level design
encoded using SBOL. Next, the DNA design is augmented with interaction data using
the VIRTUAL PARTS model generator, and the functional SBOL is converted into an SBML
model. The resulting mathematical model can then be refined and parameters configured
using IBIOSIM’s model editor. The SBML model can be analyzed in IBIOSIM as described
by an associated SED-ML document. The data created for the SBOL parts, the SBML
model, and the analysis can be shared and documented by uploading these artifacts to
SYNBIOHUB as a COMBINE archive.

23

The VIRTUAL PARTS REPOSITORY (VPR) model generator is utilized to obtain interac-

tion data, as described in [134, 135], from the SYNBIOHUB data repository to add func-

tional information to the SBOL description. For example, it adds the proteins that act

as transcription factors for the promoters, as well as their coding sequences in the DNA-level

design. These protein components are coupled with the DNA components constructed by

SBOLDESIGNER along with their interactions into functional module definitions. Next, an

SBOL to SBML converter [136] can be applied to translate the structural and functional

information of the corresponding SBOL into a quantitative model expressed in SBML.

Since SBOL is used to represent qualitative models, the quantitative information required

by SBML is inferred [136]. However, this SBML model can then be further refined and

model parameters added using IBIOSIM’s model editor. Any changes made can be mapped

back to SBOL using the SBML to SBOL converter [137]. Simulation is used to verify if the

design is behaving as expected. Since one of the goals of IBIOSIM is to use standards for

the interoperability between tools, the Simulation Experiment Description Markup Language

(SED-ML) [138] is integrated into IBIOSIM to describe analysis experiments. The SBOL

document, the SBML model, and the SED-ML file along with results of analysis can be

collected within a COMBINE Archive [139] and uploaded to SYNBIOHUB.

Currently, the workflow in IBIOSIM requires manual design of genetic circuits. Specifi-

cally, transcriptional units are constructed by manually selecting genetic parts for building

genetic circuits. In addition, this workflow requires the structure of the genetic circuits to

be predefined. The work presented in this dissertation expands on the existing workflow

for genetic circuit design in IBIOSIM. Rather than requiring the structure of the design to

be predefined and parts to be manually selected, the workflow allows the behavior of the

design to be specified and the design to be realized through automated procedures.

CHAPTER 3

ASYNCHRONOUS GENETIC CIRCUIT

DESIGN

A design specification is used to describe the behavior of a circuit while ignoring its

structure. Abstracting behavior from structure helps with the scalability and complexity

of a design. Such an abstraction has been fundamental to the rapid development of EDA

tools that are used to construct complex circuits. Verilog and VHDL are two prominent

HDLs that are widely used by many EDA tools to express high-level electronic designs.

The idea of describing the behavior of a design can also be applied to GDA tools. In the

proposed workflow of this dissertation, Verilog is used to describe the behavior of genetic

circuit designs. While VDHL can also be used as a high-level description of genetic circuit

designs, Verilog was chosen because there are existing GDA tools [15, 105] that use Verilog.

By supporting Verilog in this workflow, the results produced in this work can be compared

and verified with other existing tools. Furthermore, tool interoperability is critical for the

growth of the GDA field since it encourages collaboration between scientists and engineers.

While describing the behavior of a design using a high-level description language helps

with the reasoning about a design, the description itself is not sufficient to obtain a circuit.

In order to realize a circuit, the behavioral design needs to be converted into a structural

design through a synthesis procedure.

There are existing tools that allow the expression of combinational genetic circuits

using HDLs [15], but there is no other tool that supports asynchronous circuit designs. This

chapter describes a methodology to describe asynchronous genetic circuits using Verilog

and how genetic circuits can be realized from a specification. That is, Section 3.1 goes into

detail about how Verilog is used to describe behavioral designs of asynchronous circuits

and Section 3.2 describes how the Verilog design is synthesized into a structural design

and realized as a genetic circuit represented in SBOL.

25

3.1 Specification
As shown in Chapter 2, Boolean gates can be realized using biological parts through

transcriptional regulation. Using such gates, genetic circuits can be constructed. Since

genetic circuits have the same qualitative behavior as electronic circuits, Verilog can be

used to describe the behavior of genetic circuits as well. The workflow presented in this

dissertation leverages a subset of the Verilog language to express the core concepts of

asynchronous circuit design. The orange labels listed under Data Conversion in Figure 3.1

represent all the Verilog constructs that are used in this workflow.

The behavior of a genetic circuit described in Verilog is done so within a ModuleDef-

inition. Depending on the complexity of a circuit, a circuit can be abstracted and hier-

archically assembled through ModuleInstantiations and is connected with PortConnections.

These PortConnections are defined in ModuleDefinitions as PortIdentifiers to specify the di-

rection of which signals are sending and receiving data. Port Identifiers have data types

that can be set to Wires for connecting signals across different levels of a genetic circuit

design or Registers (Reg) for storing the value of a signal. A circuit described within a

Module Definition can have an InitialBlock and multiple AlwaysBlocks. An InitialBlock is used

for setting the initial state of Registers through BlockingAssignments. BlockingAssignments

execute assignments of variables in sequential order. AlwaysBlocks represent a grouping

of Verilog constructs that are executed in a continuous loop and is used in a specification

to group the behavior of a design. Within an AlwaysBlock, there are BlockingAssignments,

WaitStatements, ConditionalStatements, Delay, and SystemFunctions for describing the behav-

ior of a circuit. WaitStatements are used to follow the handshaking protocol for establishing

a communication channel between the circuit and its stimulating environment. Unless

the expression in a WaitStatment is evaluated to true, Verilog constructs defined after a

WaitStatement are stalled from executing. ConditionalStatements are used for checking the

change in signals so that the state of signal variables can be updated appropriately. Delays

are used when the state of a variable should not be updated immediately. The value of

a Delay can be set to a constant integer through DecimalNumbers or to a random value

through urandom_range. The urandom_range operation is a SystemFunction, where a value is

selected between a specified lower and upper bound. The support of Random is useful for

randomly assigning the state of a signal that is sent to the specification. Expressions are

26

Verilog SBML

SBOL

Behavioral

iBioSim
Compiler

iBioSim
Compiler

Yosys

LPN

iBioSim
Compiler

Verilog
Structural
Decomp.

ATACS

Verilog
Structural

Data Workflow

AlwaysBlock

BlockingAssignment

ConditionalStatement

ContinuousAssignment

Delay

InitialBlock

ModuleDefinition

ModuleInstantiation

Random

Register

urandom_range

WaitStatement

BinaryOperators

UnaryOperators

DecimalNumber

Wires

PortDeclaration

Model

comp: Port

InitialAssignment

Event

EventAssignment

comp: Replacement

comp:Submodel

comp: ReplacedBy

PortConnections

ASTNode

ModuleDefinition

FunctionalComponent

ComponentDefinition

MapsTo

Remote

Local

Interaction

Module

DirectionType

RefinementType

Model

Transition

Place

ListOfInitialAssignments

ListOfEvents

Parameter

comp:
ExternalModelDefinition

Booleans

Movement

BoolAssign

Enabling

Delay

Data Conversion

Figure 3.1: The data workflow demonstrates how a behavioral Verilog is synthesized into
a structural Verilog. ATACS is an asynchronous synthesis tool used in this workflow
for transforming a high-level behavioral design into a hazard-free structural design. The
structural Verilog is transformed into SBOL at the end so that physical biological parts
can be realized onto the structural design. A mapping of the four data formats supported
in the proposed workflow is shown under Data Conversion. The green label represents
the terminologies that are supported from SBOL data model, the orange labels represent
the Verilog constructs that are used for designing an asynchronous genetic circuit, the blue
labels represent the elements that are supported from the SBML data model, and the white
label with black boarders represents terminologies that are supported within ATACS for
building an LPN model.

27

supported with BinaryOperators and UnaryOperators. The data encodings to represent the

presence of a LOW and a HIGH signal are abstracted with the support of BinaryNumbers.

Building upon these Verilog constructs, the S-R latch is used as an example to show

how an asynchronous circuit can be represented in Verilog. Figure 3.2 represents the

specification and Figure 3.3 represents the testbench of the circuit. The specification of the

S-R latch begins with the output signals initialized to zero (LOW signal). The AlwaysBlock

is executed and starts off by waiting on an incoming input signal. Just like a S-R latch, the

combination of input signals that can be detected in the specification are when s is one and

r is zero, or s is zero and r is one, or both input signals are zero. Once the input signals are

set, the output signal q is assigned. In the case that both input signals are LOW, the output

signal q is set to the value of the state that was last set. The current state is also updated

once the output signal has been changed. This means that, if the newly assigned q is set to

one and the previous state was set to zero, then the current state must be updated to one.

module srlatch_imp (s, r, q);
output reg q;
input wire s, r;

initial begin
q = 1’b0;

end
always begin

wait (s == 1’b1);
#5 q = 1’b1;
wait (r == 1’b1);
#5 q = 1’b0;

end
endmodule

Figure 3.2: Specification of an S-R latch expressed in the Verilog language. This design
style follows that of a Mealy machine in which the output signal is calculated base on the
current inputs and the current state that was sensed. The InitialBlock is executed at the
beginning to set the initial state and the output signals of the circuit. The AlwaysBlock is
executed afterwards by first waiting on the desired input signals to become true before the
circuit kickstarts and performs operations to produce an output signal. When the input
signal matches what the circuit expects, then the output signal q is updated base on what
input signals were sensed. The state of the circuit is updated after setting the output signal
to reflect what the current output signal is set to in response to the input signals that were
detected.

28

module srlatch_testbench ();
wire q;
reg s, r;
initial begin

s = 1’b0;
r = 1’b0;

end
srlatch_imp sl_instance(
.s(s),
.r(r),
.q(q)
);
always begin

#5 s = 1’b1;
wait(q == 1’b1);
#5 s = 1’b0;
#5 r = 1’b1;
wait(q == 1’b0);
#5 r = 1’b0;

end
endmodule

Figure 3.3: Testbench of an S-R latch expressed in Verilog. Variations of input signals are
set to test the assignment of the output signal q produced from the specification. The
output signal is asserted through WaitStatements. If the output signal q produces in invalid
value, then the WaitStatements is locked in that state and further input signal variations are
prevented from changing.

Similarly, if the newly assigned q is set to zero and the previous state of the circuit was set

to one, then the current state must be updated to zero. The last WaitStatement is used to

ensure that the current state and the output signal q are set to the appropriate signal values

before the next input signal is detected and executed.

The testbench, on the other hand, represents the testing environment for the S-R latch.

The testbench begins with the input signals, s and r, initialized to zero in the InitialBlock.

An instance of the circuit is defined after the InitialBlock to connect the input and output

signals from the testbench to the circuit’s specification. All variations of sampled input

signals, assigned within the AlwaysBlock, are then sent to the circuit for testing the response

of the circuit’s behavior. First, the input signals are set so that the output signal q is set to

one. Then, both input signals are set to zero so that q is expected to produce the same

output value that was remembered in its previous state. In this particular condition, the

29

output signal q is expected to stay at one. A similar behavior was tested to set the output

signal q back to zero by setting input signal s to zero and r to one. Both input signals s and

r are then set to zero so that the previous state of the circuit continues to hold the output

signal q at zero. The wait statements found in between variations of input conditions

are used to stall until q produces the expected output value before the next set of input

assignments are executed. If the output signal q is not producing the desired value that

the wait statement is expecting to become true, then this error can easily be recognized

during simulation when the output value remains in the same state and prevents further

input variations to change.

3.2 Synthesis
Labeled-petri net (LPN) models are widely used for specifying and synthesizing asyn-

chronous circuits. The LPN models, as shown in Figure 3.4, are a directed bipartite graph.

An LPN model has Places to represent statement Assignments. Each Place can consume a

Token and a Token can have a Marking to indicate an enabling of the Assignment. A Token

can move from a Preset to Postset through Transitions. Preset is defined as an input Place to a

Transition and a Postset is defined as an output Place of a Transition. A Transition represents

an action that can fire when the Condition of a Transition is satisfied and the Markings on

the Presets are enabled. A Delay can be added to a Transition to control the time for which

a Transition can fire. When a Transition fires, the token is removed from the Presets and a

Marking is made on the Postsets.

The workflow presented in this dissertation leverages the ATACS tool for synthesis.

ATACS does not support Verilog files as input. Therefore, one contribution of this disser-

tation is the implementation of a Verilog compiler that can convert a behavioral Verilog

file to an LPN model so that synthesis can be performed in ATACS. Figure 3.1 shows

a data workflow of how this is done. When a behavioral Verilog file is provided, it is

first translated into an SBML model and then to an LPN model that ATACS can parse to

perform synthesis. SBML is used as the intermediate data model when converting from

behavioral Verilog to an LPN model for two reasons. First, the format for describing LPN

models that is used in ATACS does not support hierarchy and many designs described in

Verilog are hierarchical. However, this issue can be avoided by making use of the SBML

30

sl_instance_P2

sl_instance_P3

sl_instance_P4

sl_instance_P5

sl_instance_P6

sl_instance_P0

sl_instance_delay_0
{true}
[5]

sl_instance_assign_0
{true}
[0,0]

<q:=1>

sl_instance_wait_1
{r}
[0,0]

sl_instance_delay_1
{true}
[5]

sl_instance_assign_1
{true}
[0,0]

<q:=0>

sl_instance_T0
{true}
[0,0]

sl_instance_wait_0
{s}
[0,0]

sl_instance_P1

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

T0
{true}
[0,0]

delay_0
{true}
[5]

assign_0
{true}
[0,0]

<s:=1>

wait_0
{q}
[0,0]

delay_1
{true}
[5]

assign_1
{true}
[0,0]

<s:=0>

delay_2
{true}
[5]

assign_2
{true}
[0,0]

<r:=1>

wait_1
{q=0}
[0,0]

delay_3
{true}
[5]

assign_3
{true}
[0,0]

<r:=0>

Figure 3.4: An example of the SR latch LPN models generated from ATACS. The left
LPN model represents the specification transformed from Figure 3.2 and the right LPN
model represents the testbench transformed from Figure 3.3. The circles are Places to
represent conditions. The black filled circle is a Token with a Marking to represent that
condition of the place holds true. The Marking of these Tokens can move from one place
to a subsequent place base on the horizontal bars that are referred to as Transitions. These
Transitions represent actions that can fire when the places connected towards the transition
have conditions that hold true.

31

data model. The SBML data have many core elements that can encode data models that

follow the LPN paradigm. SBML has the comp extension package that can be used for

expressing hierarchical models and these hierarchical designs can be flattened using the

SBML libraries [140, 141]

Each color label shown under Data Conversion for Figure 3.1 shows a list of termi-

nologies that are encoded into its corresponding data model under the Data Workflow.

A mapping of terminologies going from one data model to another form is shown with

lines that connect the terminologies together. Using the S-R latch as an example, the

ModuleDefinition for the specification and the testbench are converted into an SBML Model.

The ModuleInstantiation is used for instantiating the specification onto the testbench, and

it is converted into ExternalModelDefinition and Submodel in SBML. ExternalModelDefinition

is used for referencing the SBML file of the specification and a Submodel for instantiating

onto the SBML model that defines the testbench. The PortIdentifiers are converted into

SBML Ports and are set with Sequence Biology Ontology (SBO) [142] terms for further dis-

tinguishing the input and output signals. PortConnections are converted into Replacements

and ReplacedBys for mapping signals across hierarchical models. In this example, the input

signals for s and r in the testbench are set to Replacement so that the input signals from

the testbench are used to assign the input signals within the specification and the output

signal q in the testbench is set to a ReplacedBy so that the output signal in the specification

replaces the output signal found in the testbench. BlockingAssignments in the InitialBlocks

are converted into InitialAssignments. The AlwaysBlocks are converted into a ListOfEvents

that compose a LPN. Each Event corresponds to a transition, and the first one has the Preset

places with a marking. WaitStatements, ConditionalStatements, and Delays found within an

AlwaysBlock are converted into Events as well where the Postset of the last statement is the

Preset of the first statement within the AlwaysBlock. The Verilog expressions are converted

into an ASTNode that can be assigned onto each Event.

First, LPN models do not not support hierarchical models. In order to do so, a flattening

routine must be implemented from Verilog to LPN. However, this issue can be avoided by

making use of the SBML data model. SBML have many core elements that can encode

data from a structural Verilog to an LPN model. SBML has the comp extension package

that can be used for expressing hierarchical models that are designed in Verilog. SBML

32

also has flattening methods that can be used for modeling information into an LPN model.

Second, expressing a genetic design in SBML allows for the specification to be simulated

within IBIOSIM before and after performing synthesis. Synthesis can report failure or pass

messages and having an SBML model for the specification can allow for easy debugging in

the case that synthesis fails. SBML can also be used for further verification to be performed

at different design stages when synthesis passes. More details of this verification process

are mentioned in Chapter 6.

3.2.1 Behavioral Verilog to SBML

The S-R latch designed in Section 3.1 is used as an example to illustrate the compilation

of Verilog files into an LPN model. The Modules for the specification and testbench are

converted into SBML Models. The PortIdentifiers for signals s, r, and q are converted into

SBML Ports and are set with Sequence Biology Ontology (SBO) terms for further distin-

guishing input and output signals. Wires and Registers are converted into Parameters. A

ModuleInstantiation that references the specification into the testbench is converted into

ExternalModelDefinition and Submodel. ExternalModelDefinition is added into the SBML

testbench file so that it can refer to the SBML specification file. Submodel is used for

instantiating a copy of the specification into the SBML testbench Model. PortConnections are

converted into Replacements and ReplacedBys for mapping signals from the testbench to the

specification. In this example, two Replacements objects are created for s and r so that the

input signals from the testbench replace the signals within the specification. A ReplacedBy

is created for the output signal q so that the signal in the specification replaces the output

signal found in the testbench. InitialBlocks represent a ListOfInitialAssignments and each

construct nested inside this block is converted into an InitialAssignment. AlwaysBlocks

represent a ListOfEvents. Events have their own Parmeter variable and they are created

from BlockingAssignments, WaitStatements, ConditionalStatements, and Delays nested within

an AlwaysBlock. An ASTNode is added onto a Trigger of an Event for representing the

expression of a Verilog construct. This ASTNode supports the expression of BinaryOpera-

tors, UnaryOperators, DecimalNumbers, urandom_range, Random, and ContinuousAssignments

in Verilog constructs. The order of Verilog constructs defined within an AlwaysBlock is

maintained by setting the value of Parameters found on Triggers and EventAssignments.

33

When the expression of a Trigger becomes true, then the Parameter variable assigned to its

Event is enabled. Enabling of a Trigger on an Event causes the EventAssignment to change the

value of the Parameter variable assigned to this Event to a Paremeter assigned to a different

Event. Since the AlwaysBlock operates as a continuous loop for executing all nested Verilog

constructs within its block, the first Event created is initialized from its Parameter variable

to indicate the starting position of a continuous loop.

3.2.2 SBML to LPN

As shown in Figure 3.1, the next step in the data workflow after Verilog is converted

into SBML models is to create an LPN model. To do so, these SBML Models are flattened by

calling IBIOSIM’s SBML flattening method. The result of the flattener produces an SBML

model composed of core elements that describe both the specification and the testbench.

Elements of an LPN model are created by using the LPN data model supported in IBIOSIM.

The flattened SBML Model is converted into an LPN Model. Parameters that are not

categorized as primary inputs, outputs, and registers are converted into Places. Each Event

is converted into a Transition. The EventAssignments are added as Assignments to the created

Transition. If the variable of the EventAssignment refers to the variable of a Place, a Movement

is created to connect the Place to the Transition. In the case that no Place matches the variable

name of an EventAssignment, a BoolAssign is created. If the EventAssigment is encoded from

a Verilog Random construct, this Event is dropped. SBML Ports are converted into Booleans

for tracking input signals, output signals, and internal states of the circuit. Triggers are

converted into Enablings. Delays that are set in an Event are converted into equivalent LPN

Delays.

3.2.3 Synthesizing in ATACS

The LPN model derived from SBML is sent to ATACS to create a state graph needed

for performing synthesis. The state graph is analyzed to determine the logic necessary to

implement any state and output signals. After the state graph is generated, it is checked to

see if it satisfies the Complete State Coding (CSC) property.

CSC violations ensure that there are no confusion on which current and next state is

receiving and sending data.

A key challenge with asynchronous logic design is the avoidance of logic hazards. A

34

logic hazard occurs if a signal that is supposed to remain stable momentarily changes

value, or a signal that is supposed to change does so non-monotonically [143]. Unlike

electronic circuit designs where the cost of errors is circuit failure, in genetic circuits, errors

can be tolerated. Since genetic circuits are deployed in a population of cells, there are

multiple copies of a genetic circuit available. Therefore, if one genetic circuit fails within

a cell due to glitches, it may not highly affect the entire system if other cells exhibit the

correct behavior. Nikolaev et al. [144] have shown from modeling a genetic toggle switch

that a large population of cells performing the same task will help average out the expected

behavior for the majority of the genetic toggle switch circuits. While it is important to ad-

dress high probability hazards, genetic circuits can likely tolerate low probability hazards.

Exploiting this observation is an area of future research that we plan to explore.

The Verilog constructs that are mentioned thus far are used for describing the behav-

ioral design of a genetic circuit. A structural representation of a genetic circuit is much

more simplified in which a ModuleDefinition does not have InitialBlocks and AlwaysBlocks.

Instead, a structural representation for describing a circuit is done so through Continu-

ousAssignments. A ContinuousAssignment is dependent upon the expression of an assign

statement becoming true in order for the variable of the assignment to be updated with

a new output value for an output signal or an internal state variable. Synthesis produces

a structural Verilog design from a behavioral Verilog representation. This representation

contains continuous assign statements expressed in the form shown in Figure 3.5.

module r_s_q_net(r, s, q);

input r;
input s;
output q;

assign q = (s) | (~r) & q;

endmodule

Figure 3.5: A synthesized design of the S-R latch expressed in structural Verilog made
of ContinuousAssignments. The variable of a ContinuousAssignment updates it value when
its expression becomes true. This structural Verilog is converted into a decompose form
represented in the SBOL data format for describing the genetic circuit.

35

In the case that sequential circuits are designed using this workflow, ATACS produces

expressions that include feedback to store state. These expressions in this structural Verilog

file can be further simplified in another EDA synthesis tool called YOSYS so that the number

of logic gates needed to represent this genetic circuit is reduced. After simplification is

performed, YOSYS can produce a Verilog file that is similar to ATACS that is made of

ContinuousAssignments. These structural Verilog files are then decomposed into the SBOL

data format with only NOT and NOR logic functions to describe the structural design of

a genetic circuit.

3.2.4 Structural Verilog to SBOL

An SBOL ModuleDefinition is created from a Verilog ModuleDefinition for representing

the genetic circuit of an S-R latch. The input signals and output signals are converted

into ComponentDefinitions for representing proteins. DirectionType is assigned to a Compo-

nentDefinition to differentiate between input signals, output signals, or a register variable

for holding state. Conceptually, a ModuleInstantiation is converted into a SBOL Module. Be-

cause a structural Verilog does not use ModuleInstantiation, hierarchical designs of a genetic

circuit can be built through each ContinuousAssignment. MapsTo objects are used to connect

variables of a ContinuousAssignment across different ModuleDefinitions. A RefinementType

is set to a MapsTo for indicating which FunctionalComponent should be used in hierarchical

designs. A RefinementType can be set to Local so that it can refer to a FunctionalComponent

within a logic gate signal or it can be set to Remote for referring to a FunctionalComponent on

the top level circuit where the entire circuit is formed. The expression of a ContinuousAs-

signment is parsed into an ASTNode to perform decomposition.

Decomposition involves transforming Boolean logic functions to express a design using

NOT and NOR logic gates. This is accomplished by performing DeMorgan’s Theorem

on each expression. Because synthesis produces ContinuousAssignments expressed in the

Sum-of-Products (SOP) form, the decomposition method supports expressions with NOT,

AND, and OR operators.

Setting the expression of a ContinuousAssignment into an ASTNode allows the decom-

position method to easily access different operators that are found within the given ex-

pression. This means that each operator is broken into an individual ASTNode with the

36

operands set as children. These individual ASTNodes are then layered onto each other

to form the complete expression. The layered ASTNodes are iterated from left to right

by parsing the innermost expression, which works its way out to create a decomposed

expression. It is important to note that while the decomposition method can decompose

an expression to use more than two input logic gates, this work limits the decomposition to

two input logic gates because of genetic constraints. These genetic constraints are discussed

in further detail in Chapter 4.

In the example shown on Figure 3.5, the expression for assignment q is represented in

the following format as an ASTNode: or(s, and(not(r), q)). Working from left to right, not(r)

is the innermost expression that is handled. Because not(r) is already in a decomposed

form, this ASTNode is replicated into the decomposed expression. Next the ASTNode for

the AND operator is handled. An AND logic is decomposed into a NOR gate with its

operands inverted. This decomposed AND logic is added onto the previous decomposed

expression to form the following: nor(not(not(r)), not(q)). Finally, the OR logic is han-

dled by decomposing the expression with two inversions to form not(nor(s, nor(not(not(r)),

not(q)))). This final decomposed expression is returned from the decomposition method to

construct a genetic circuit.

The concept that was described in Chapter 2 for building a genetic NOT gate and a

genetic NOR gate out of transcriptional regulation is applied in this part of the conversion

to build the decomposed logic into a genetic circuit. The operands of a logic function are

converted into FunctionalComponents for representing transcriptional units and proteins.

The operators of a logic function are converted into Interactions for representing the rela-

tionship between proteins to and from transcriptional units.

3.3 Summary
In synthetic biology, large circuits have not been realized yet. Biology is far too complex,

and in order to deal with such complexity, abstraction is critical. Boolean abstraction is one

such abstraction that has been applied to synthetic biology. That is, inspired by the success

of digital circuits, genetic circuits can be described in terms of LOW and HIGH values.

Since genetic circuits can be abstracted as electronic circuits, some methodologies used

to design electronic circuits can also be used to design genetic circuits. For instance,

37

genetic circuits can be designed using HDLs that describe the design’s behavior rather

than structure. This chapter demonstrates how asynchronous circuit designs described

using Verilog can be realized as genetic circuits described in SBOL.

CHAPTER 4

PROGRAMMATIC CREATION OF GATE

LIBRARIES THROUGH AUTOMATED

GATE GENERATION

CAD tools are essential to deal with the complexity of genetic circuit design. An

important element of CAD tools used for genetic circuit design is the access to collections

of well-characterized parts used to realize a design. The number of well-characterized

parts influence the scale of the design. That is, the larger the number of parts in the

collection, the larger the design that can be realized. However, this poses a key challenge:

how to efficiently explore the solution space of possible designs to find the best possible

design. A solution space is a collection of valid designs, where a valid design is one

that does not violate any design constraint. In genetic circuit design, design constraints

include crosstalk, signal mismatch, roadblocking, and genetic context effects [145]. As shown

in Figure 4.1a, roadblocking can occur in gates that use tandem promoters [146], and

the downstream promoter interferes in transcription initiated at the upstream promoter

[15]. As shown in Figure 4.1b, crosstalk occurs in genetic circuits when the product of

one gate has unintended interactions with another. As shown in Figure 4.1c, a signal

mismatch occurs when the level of a product produced by one gate does not meet the

threshold necessary to cause the correct response in a downstream gate. Finally, as shown

in Figure 4.1d, genetic context effects occur when the ordering of neighboring components

changes the behavior of the design. In cases where context effects are known to be strong,

gates may be integrated into the host genome at predetermined locations where each gate’s

transcription rate has already been characterized.

Genetic circuit design constraints reduce the solution space of genetic circuit designs.

For example, avoiding crosstalk requires that a particular signal carrier (transcription fac-

tor) assigns to a specific node in the circuit and does not interact with other nodes within

39

T
Pro2 RBS CDS TerPro1

T
Pro2 RBS CDS TerPro1

(a) Roadblock

T

SrpR

pAmeR SrpR

T
pSrpR

GFP

T
pAmtR

SrpR

T
pSrpR

YFP

SrpR

(b) Crosstalk

Adapted from A. Nielsen et al., 2016, Science

(c) Signal Mismatch

T TT T T

T T T T T

T TT T T

Adapted from A. Nielsen et al., 2016, Science

context 1

context 2

context 3

(d) Genetic Context Effects

Figure 4.1: Four genetic constraints that occur in genetic circuits. Figure 4.1a Road-
block: initiation of transcription from the upstream promoter in a tandem promoter is
impeded by the presence of a transcription factor bound to the downstream promoter.
Figure 4.1b Crosstalk: interference of circuit components with each other or the host
circuitry. Figure 4.1c Signal mismatch: incompatible signal levels of gates composed in
series. Figure 4.1d Genetic context effects: the same circuit can act differently based on the
ordering of neighboring components.

the circuit. Such a constraint can be avoided by having a diverse set of signal carriers.

Signal mismatching can be avoided by having a diverse set of gates with different input and

output threshold levels. Roadblocking is avoided by finding promoter interferences during

the gate library characterization and eliminating these problematic permutations from the

ensemble of DNA sequences that are considered to fulfill the specification. Therefore, it is

critical to have a library with diverse biological parts.

Some existing GDA tools are using libraries with characterized parts to implement a

genetic circuit design [64, 105]. There are also existing GDA tools with customized libraries

with tool-specific usage [15, 103, 104]. Because there are various ways of building genetic

logic gates with similar logic behavior, the construction of these gate varies across different

tools. The main contribution of this chapter is to present a standardized framework for

the creation of a gate library through automated gate generation. Specifically, Section 4.1

goes over the process of assembling biological parts to form transcriptional units using

SYNBIOHUB and SBOLDESIGNER. Section 4.2 describes the process of automating the

creation of genetic logic gates using VPR model generation supported within IBIOSIM.

Section 4.3 goes over the process of identifying genetic gates into their proper gate types.

40

Then, Section 4.4 concludes by summarizing the work presented in this chapter.

4.1 Assembling Transcriptional Units
The first step when building a library of genetic logic gates is to generate a large num-

ber of transcriptional units so that interactions can be added to connect proteins, small

molecules, and complexes as the input and output signals to a genetic logic gate. SBOLD-

ESIGNER [102] is a CAD tool that was chosen for this task because it is supported in

IBIOSIM as a plugin for assembling DNA parts to build a DNA-level design. This CAD

tool has the ability to connect to the online design repository SYNBIOHUB [147] to retrieve

linked information for genetic parts and build large quantities of transcriptional units

using CombinatorialDerivation [148]. A CombinatorialDerivation, as shown in Figure 4.2, has

three property fields that must be set in order to build transcriptional units in volume.

The first property is a Template that refers to a ComponentDefinition for representing a

transcriptional unit. The second property is a VariableComponent used for listing possible

Variants of DNA parts assigned to a component on a transcriptional unit. The last property

is a Strategy used to indicate how a list of Variants can be Enumerated or Sampled on the

Template. Enumerated indicates that all possible outcomes of DNA parts listed in each

VariableComponent are used to create different variations of transcriptional units. Sampled

indicates a subset of DNA parts are selected from each VariableComponents to form dif-

ferent variations of transcriptional units. The number of DNA parts selected from each

VariableComponent for building the template is set using the Operator field.

Figure 4.2 shows an example of a CombinatorialDerivation created for building tran-

scription units with one or two promoters. The Template references a transcriptional unit

made of tandem promoters, an RBS, a CDS, and a terminator. Each component on the

transcriptional unit has a VariableComponent created for listing the possible DNA parts

that are chosen when assembling multiple transcriptional units. In this specific example,

three VariableComponents are created and are referred to in Figure 4.2 as vc1, vc2, and vc3.

The DNA parts are referred to as Variants, and they are added to a VariableComponent in

SBOLDESIGNER by fetching this information from a Collection in a SYNBIOHUB repository.

The number of DNA parts that are selected from each VariableComponent when building

a transcriptional unit is specified by the Operator (op). The Operator for vc1 and vc3 is

41

Pro2 GenPro1

pBAD pAmeR A1_AmtR
B1_BM3R1
B2_BM3R1

...

vc1 vc2 vc3

Strategy: Enumerated

op = Zero or Oneop = One op = One

pAmtR
pBetI...

(+11) (+17)

Figure 4.2: An illustration of the properties that must be set on a CombinatorialDerivation
for generating transcriptional units to build a preset of genetic logic gates supported in this
workflow. The pattern for building multiple transcriptional units with two promoters, two
pairs of RBS, CDS, and a terminator is specified as the Template. Three VariableComponents
(vc1, vc2, and vc3) are created for listing possible DNA parts that a component on the
transcriptional unit can be assembled from. The DNA parts listed in these three Variable-
Components are referred to as Variants. VariableComponents for vc1 and vc3 have Operators
(op) set to one to indicate that one Variant from its list must be selected when constructing
a transcriptional unit. Likewise, VariableComponent vc2 has op set to zeroOrOne to indicate
that zero or one Variant can be selected from its list to generate transcriptional units with
tandem promoters and gates with an output reporter included. The Strategy is set to
Enumerated so that all Variants listed in each VariableComponent must be used to build
different variations of a transcriptional unit with one and two input gates.

set to One and v2 is set to ZeroOrOne because the main requirement for this Combinatori-

alDerivation is to generate transcriptional units that must have at least one promoter, one

RBS, one CDS, and one terminator so that one input genetic logic gate can be formed.

For the downstream promoter with op set to ZeroOrOne, this guarantees that the tran-

scriptional unit provided as the Template can at most assemble two promoters to form a

transcriptional unit that can be generated into two input genetic logic gates. Lastly, the

Strategy of this CombinatorialDerivation is set to Enumerated so that all DNA parts listed in

each VariableComponents are used to build different combinations of transcriptional units

specified by the Template.

Roadblocking is resolved by handpicking compatible promoters that are added as Vari-

ants to its VariableComponent. However, this can only happen when the dataset used for

building transcriptional units has detailed information on which pair of promoters pair

42

well with each other.

The result of CombinatorialDerivaton is returned in SBOLDESIGNER as a new SBOLDoc-

ument. Each transcriptional unit listed in this new SBOLDocument is represented as a

RootComponentDefintion. The number of transcriptional units that are generated from this

CombinatorialDerivation is calcuated by multiplying all Variants from each VariableCompo-

nent. For the example that is shown in Figure 4.2, 300 transcriptional units are expected to

be generated from the CombinatorialDerivation with 20 transcriptional units that are made

of a single promoter and 280 transcriptional units that are made of tandem promoters.

4.2 Gate Generation
Once transcriptional units are created, the next step involves transforming them into

genetic logic gates using VPR [149]. VPR facilitates model composition by mining for

biological components and functional relationships from SYNBIOHUB instances that could

be used to optimize an existing DNA-level design or to create a new design. It is impor-

tant to note that if DNA parts are taken from one dataset on SYNBIOHUB for assembling

transcriptional units and a different dataset is used when calling VPR, there is a possibility

that VPR is unable to find data to enrich a given transcriptional unit.

Each transcriptional unit must be transferred into a separate SBOLDocument before

calling VPR to ensure that VPR does not combine unintended Interactions between multiple

transcriptional units when building a genetic logic gate. This process is performed by

recursively copying each RootComponentDefinition to its own SBOLDocument. VPR is then

called on each SBOLDocument so that the design can be enriched with additional SBOL

data.

The VPR API creates an SBOL ModuleDefinition for the DNA-level design. Then, it

adds to the ModuleDefinition proteins, small molecule, and complex that interact with the

components in the design. In the example shown in Figure 4.3, four Interactions are found

and added to the design. These four Interactions are protein X inhibiting Pro, Protein Y

produced from CDS, and two degradation interactions for X and Y. Black arrows are

MapsTo objects used to connect the proteins and DNA parts from the Interaction Modules

to the transcriptional unit. VPR returns this information as a new SBOLDocument that can

then be used for sorting gate types.

43

T

YX

Pro RBS
CDS

Ter

Pro CDSPro CDS

X

X Y

Y

Figure 4.3: An enriched design of a transcriptional unit after calling VPR. Four Interactions
encapsulated within Modules are added to the design. These four Interactions are an
inhibiting interaction for protein X and Pro, a production interaction for protein Y and
CDS, and two degradation interactions for protein X and Y. The black arrows denote
MapsTo objects that are used for connecting proteins and DNA parts from the Modules
encasing the four types of Interactions to the components on the transcriptional unit.

4.3 Identifying Gate Types
The enriched designs generated by VPR goes through a gate identification procedure

to group the different structures of a genetic logic gate that exhibit the same logic behav-

ior. The algorithm for this process is described in Algorithm 4.1. This method takes a

ModuleDefinition, gateMD, generated from VPR and produces an identified genetic gate

that has been classified as a NOT, NOR, OR, AND, or NAND gate. This method begins

by creating two list of components, p and cds, for storing the promoters and CDS that

the gate has on its transcriptional unit. A map of components, σ, is also created to store

the molecules and the Interactions that connect them to the transcriptional unit. Then,

molecules are collected by iterating through FunctionalComponents from gateMD. Each

FunctionalComponent, f c, is added into c. Recall from Figure 4.3 that MapsTo object are used

extensively in the enriched genetic gate design produced by VPR. Storing all f c instances

used in gateMD ensures that the local parts that the MapsTo object referred to in the

gateMD are accessible later on when parts and molecule information are needed to identify

the gate. Because the promoter and the CDS region is defined in this workflow as the

region where input molecules and output proteins interact directly to the transcriptional

44

Algorithm 4.1: GateIdentifier

1 Inputs: ModuleDefinition gateMD;
2 Output: Genetic Gate g;
3 p = 〈〉;
4 cds = 〈〉;
5 σ = 〈〉;
6 foreach f c in gateMD.FunctionalComponents do
7 component = fc;
8 insert(σ, component);
9 cd = f c.getCd();

10 if cd is PROMOTER then
11 add(p, component);
12 else if cd is CDS then
13 add(cds, component);
14 foreach m in gateMD.getModules do
15 addGateInteraction(m, σ);
16 return getGateType(p, cds);

unit, the f c for these DNA parts are also stored in p and c. The lists p and c are used

afterwards when all information has been collected about the genetic gate.

The second step involves collecting the type of Interaction and its Participants that are

involved in connecting components together to form the logic behavior of a genetic gate.

This step is done by iterating through all Modules, m, instantiated in gateMD. Then ad-

dGateInteraction shown in Algorithm 4.2 is performed for each m by linking interactions

to the components collected in σ.

The first step in Algorithm 4.2 is to collect FunctionalComponents that are found in

ModuleDefinition m. Then, m is stored in re f MD so that the information about Interactions

is retrieved. Each Interaction, i, found in re f Md is recorded by first collecting information

about its Participants. The lists inputs and outputs are created to store when Participant, p,

acts as inputs and outputs to i. In this case, the role of p is used as a reference to track

components that act as the input to an Interaction and which component represents the

output from an Interaction. If the role of p is INHIBITOR, STIMULATOR, TEMPLATE, or

REACTANT, then p is categorized as an input to i. Likewise, if the role of p is INHIBITED,

STIMULATED, or PRODUCT, then p is categorized as an output to i. The components

added to inputs and outputs are retrieved by first getting the FunctionalComponent referred

to in re f Md and storing it into localPart. Then, ω is used to retrieve the gatePart that

45

Algorithm 4.2: addGateInteraction

1 Inputs: Module m, Map of Components σ;
2 ω = getMapsToParts(module.MapsTos);
3 refMd = m.MD;
4 foreach i in re f Md.Interactions do
5 inputs = 〈〉;
6 outputs = 〈〉;
7 foreach p in i.Participations do
8 localPart = p.Participant;
9 gatePart = getPartMappings(ω, localPart);

10 component = getComponent(σ, gatePart);
11 if getRole(gatePart, INHIBITED) ∨ getRole(gatePart, STIMULATED) ∨

getRole(gatePart, PRODUCT) then
12 add(outputs, component);
13 else if

getRole(gatePart, INHIBITOR) ∨ getRole(gatePart, STIMULATOR) ∨
getRole(gatePart, TEMPLATE) ∨ getRole(gatePart, REACTANT) then

14 add(inputs, component);
15 iType = getInteractionType(i);
16 if iType != UNKNOWN then
17 foreach out in outputs do
18 addOutputInteraction(iType, inputs);
19 foreach in in inputs do
20 addInputInteraction(iType, outputs);

connects to localPart from gateMD. The gatePart is then used to look up the component

from ω to add onto the list of inputs and outputs. At this point in Algorithm 4.2, all inputs

and outputs for i have been collected. The next step is to retrieve the interaction type for

i and storing it into iType by calling getInteractionType. As long as iType is not classified

as UNKNOWN, then the components stored on the list of inputs and outputs are linked

together with this iType. This method continues until all Interactions, i, have been traversed.

Once all information about the gates has been collected, then the last step in Algo-

rithm 4.1 is to determine the gate type by calling getGateType. This method takes the

list for p and cds and produces a genetic gate, g, that has been identified into its proper

type. This method traverses all components that are linked to each promoter in p and

coding sequences in CDS to identify the gates that are shown in Figure 4.4. If there is

an interaction inhibiting a promoter, Pro, and an interaction forming a production from

a CDS to a protein, Y, then the gate is identified as a NOT gate. OR gates are identified

by looking for a transcriptional unit with two transcription factors, X0 and X1 activating a

46

T
YX

Pro RBS
CDS

Ter

T

X0 X1 Y

Pro2 RBS CDS TerPro1

NOT Gate

NAND Gate

T
Y

Pro RBS
CDS

Ter

NOR Gates
X1X0

OR Gate

X1X0

T
X0

X1
Y

RBS CDS TerPro

AND Gate NOTSUPPORTED Gate

T
Y

Pro RBS
CDS

Ter

?

T
X0

X1
Y

RBS CDS TerPro

T

X0 X1

Y

RBS CDS TerPro

Wired OR Gate

XX

T
X

Pro RBS
CDS

Ter

Figure 4.4: Genetic logic gates that are identified and sorted in the gate generation process
are NOT, NOR, OR, wired OR, NAND, AND, and NOTSUPPORTED gates. A NOT gate
is identified as a transcriptional unit with a promoter repressed by an input protein X that
produces an output protein Y. An OR gate is identified as a transcriptional unit with a
promoter activated by two input proteins X0 and X1 that produces an output protein Y.
A wired OR gate has identical structure as that of an OR gate but the input and output
signals, in this case, are all identical. A NAND gate is identified as a transcriptional unit
with tandem promoters that are both separately inhibited by two input proteins X0 and
X1 that produces an output protein Y. A AND gate is identified as two input proteins X0
and X1 forming a protein-to-protein complex to repress Pro. When the protein-to-protein
complex is not present, the output protein Y is produced. Because there are several ways
to build a genetic logic gate that exhibit the same logic behavior, three different structures
for a genetic NOR gates are supported. The first structure has a transcriptional unit with
two transcription factors repressing a promoter (Pro) and producing an output protein Y.
The second structure has two forms of input molecules. The first is an input protein X0
repressing the Pro and the second input is a small molecule X1 forming a complex with
the output protein Y. The third structure ressembles the second structure in which the
second input signal X1 forms a complex with the output signal. The difference in the third
structure in comparison to the second structure is that X1 is an input protein rather than
a small molecule. Gates that are not identified as a NOT, OR, wired OR, NAND, AND,
and NOR gates are classified as NOTSUPPORTED Gates.

47

promoter Pro and a protein Y produced from a CDS. NAND gates are identified with a

transcriptional unit with two transcription factors X0 and X1 repressing tandem promoters

and produce an output protein Y from the CDS region. AND gates are identified as two

proteins, X0 and X1, forming a complex to activate a promoter, Pro, and produce an output

protein, Y.

NOR gates are identified for two type of structures. The first structure of a genetic NOR

gate is made of two transcription factors X0, and X1, repressing one common promoter

with an output protein Y produced from the CDS region. The second structure defines

the input of X1 as a small molecule or a protein that forms a complex with the output

protein Y. In this specific gate structure, the molecule signal for X1 can go HIGH when

the output protein Y is present. There is one special condition, however, when identifying

the second structure NOR gate. Since this second structure comes from a transcriptional

unit that was designed from half of a genetic toggle switch, extra information is included

in this NOR gate after calling VPR. This extra information is shown in Figure 4.5 as the

small molecule X2 forming a complex with X0. The gate identifier allows the identification

of such gates without removing information. As long as this type of NOR gate fits the

primary description that is expected in the second structure, this type of gate is recognized

in Algorithm 4.1 as a NOR gate.

Wired OR gates are also supported in the gate generation procedure. Wired OR gates

T
X0 Y

X1X2

RBS CDS TerPro

Figure 4.5: Extra information included from VPR when identifying NOR gates. This type
of gate is expected to be identified as the second structure NOR gate shown in Figure 4.4.
Important information might be lost by removing this extra information that is added from
VPR. As a result, this type of NOR gate is recognized in the gate identify step unchanged
as long as this NOR gate has the same substructure as the expected NOR gate.

48

are advantageous when the types of gates available to use in the workflow are limited. For

example, if the technology mapping procedure needs NAND gates but none are available,

then wired OR gates can be used to build such a gate.

NAND gates built from wired OR gates are made by connecting two NOT gates that

produce the same output protein. The wired OR gate takes in two input proteins and

produces one output protein that all have the same molecule signal. By connecting two

NOT gates to a wired OR gate in this manner, the wired OR gate acts as a wire that ties

the output protein from the two NOT gates.

Wired OR gates are generated in this workflow after genetic gates are enriched by VPR

and have been identified into their proper gate types. All generated NOT gates are iterated

through to build wired OR gates with input and output signals set to the same molecule

signal. These wired OR gates can then export into SBOL library files that can be used for

the technology mapping procedure.

If these wired OR gates are provided to Algorithm 4.1 for identifying its gate type,

then they are returned as a wired OR gate and not a standard OR gate. This type of gate

is recognized in the algorithm as a wired OR gate because the gate’s input and output all

have the same molecule signal. Categorizing these wired gates in this manner also helps

resolve crosstalk when these types of gates are used in the technology mapping procedure

mentioned in Chapter 5.

If a given gateMD does not follow these expected gate structures that are presented in

Figure 4.4, then the gate is categorized as a NOTSUPPORTED gate. The NOTSUPPORTED

gates can be utilized in the technology mapping procedure by providing a structural Ver-

ilog of the gate so that the gate can be interpreted in the procedure. This finalizes the gate

identifying procedure. A user building their library of gates can then decide whether these

sorted gates can be exported in separate SBOL files or into a single SBOL file that they can

then use for the technology mapping procedure mentioned in Chapter 5.

4.4 Summary
This chapter demonstrates a programmatic methodology for generating genetic gates.

Large quantities of transcriptional units are assembled in SBOLDESIGNER using the con-

cept of CombinatorialDerivation. The generated transcription units are enriched with genetic

49

interaction information using VPR. The enriched transcription units are then processed

and identified as different gate types. This automated procedure was used to build two

genetic gate libraries. These generated libraries are used for testing the work presented in

Chapter 7.

CHAPTER 5

TECHNOLOGY MAPPING FOR

ASYNCHRONOUS GENETIC

CIRCUITS

The workflow described in this dissertation uses technology mapping, as shown in

Figure 1.2, to realize a physical design from a gate-level design (netlist). Technology map-

ping, as applied to genetic circuits, is a class of optimization problem that aims to get an

optimized design following a predefined scoring system while avoiding genetic constraints

discussed in Figure 4.1. In the context of this dissertation, the goal is to minimize the

sequence of the genetic circuit design. The technology mapping procedure presented in

this workflow is adapted from Roehner et al. [103]. This dissertation incorporates all of

the technology mapping algorithms in [103], including branch and bound, greedy, and

exhaustive algorithms.

The technology mapping presented in this dissertation is different from the work pre-

sented in Roehner et al. This procedure builds around an asynchronous circuit design

workflow. The technology mapping procedure takes a synthesized design using the proce-

dures described in Section 3.2 and selects technology-specific gates generated in Section 4.2

while avoiding genetic constraints. The proposed technology mapping supports more

logic gates. Namely, the proposed workflow allows the use of arbitrary gates by using

NOTSUPPORTED gates. NOTSUPPORTED gates referred to in Section 4.3 are not iden-

tified as one of the core gates supported in this workflow. A user has the option to provide

a Verilog file that defines the gate’s behavior in order to incorporate NOTSUPPORTED

gates. The proposed technology mapping also supports memory gates, which are required

for constructing sequential circuits.

This chapter is organized as follows. Section 5.1 describes a decomposition method

applied to the synthesized design before technology mapping and the reasons why this

51

step is necessary in achieving better results. Then, the technology mapping procedure

used in the workflow proposed in this dissertation is described. The technology mapping

procedure is composed of two key steps: matching and covering. Section 5.2 goes over the

implementation of the matching algorithm and Section 5.3 goes over the implementation

for the covering algorithm and some variants. Details on handling genetic constraints are

discussed throughout the matching and covering steps. Section 5.4 shows the process

to generate a netlist of gates into SBOL. Lastly, Section 5.5 concludes the chapter with a

summary of the highlights.

5.1 Boolean Decomposition
The ATACS tool produces a canonical normal form for the synthesized design using

an SOP composed of NOT, OR, and AND gates. However, using technology mapping

on the SOP representation of the logic circuit limits the solution set. The solution set

can be expanded by using decomposition, where the structural design produced by the

ATACS tool and the genetic logic gates from the generated gate library are decomposed

into equivalent logic using only NOT and NOR gates. Decomposition is useful to find

better gate mapping that can possibly yield better design results.

Using NOT and NOR gates is advantageous because a NOR gate is a universal gate

that can be used to build any Boolean logic circuit. As shown on Figure 5.1, OR gate

is represented by a series of NOR gates connected to a NOT gate. A 2-input AND gate

involves attaching two 1-input NOT gates as inputs to a 2-input NOR gate. A NAND

gate has a 2-input NOR gate with its input and output signals inverted with 1-input NOT

gates. Section 3.2.4 has a detailed explanation on how individual gates can be decom-

posed into NOR and NOT gates. In addition to the gates described in Section 3.2.4,

NOTSUPPORTED gates are also decomposed. Gates identified as NOTSUPPORTED are

decomposed by performing synthesis on the gate and then applying logic minimization

using the YOSYS tool on the resulting structural design. Logic minimization is performed

due to a limited number of gates in the gate library and genetic constraints limiting the

number of gates that can be used together. The decomposed gate is then parsed and

converted into the SBOL data format using the Verilog parser implemented for the work

described in Section 3.2.4.

52

AND Decomposed NAND Decomposed

Y YX1
X0

X1
X0

AND Gate

T

X0 X1

Y

RBS CDS TerPro

OR Gate

X1X0

T
Y

Pro RBS
CDS

Ter

OR Decomposed

Y
X1
X0

T

X0 X1 Y

Pro2 RBS CDS TerPro1

NAND Gate

T
YX

Pro RBS
CDS

Ter

NOT Gate

T
Y

Pro RBS
CDS

Ter

NOR Gates
X1X0

Figure 5.1: A representation of the logic gates decomposed to a graph-based format before
performing technology mapping. A 2-input AND gate involves attaching two 1-input
NOT gates as inputs to a 2-input NOR gate. A NAND gate has a 2-input NOR gate with
its input and output signals inverted with 1-input NOT gates. NOT and NOR gates, on the
other hand, are left in their original form. The graph-based structure shown on the right
of each genetic gate represents a DecomposedGraph. Circles represent nodes. A root node
has no parent. A leaf node has no child. Interactions are used to form connections between
nodes. Arrows with pointy heads indicate production and arrows with flat heads are
repression. Color represents signal carrier type. A white DecomposedGraphNode indicates
that there is no signal carrier type assigned. A DecomposedGraphNode can have a cost factor
that is calculated by DNA sequences.

While logic gates and circuits used in the workflow are represented in SBOL, the tech-

nology mapping procedure uses a custom representation for the decomposed nodes. A

graph-based structure is used to encode the decomposition of these genetic gates and spec-

ification. The graph-based structure, shown in Figure 5.1, is referred to in the implemen-

tation as a DecomposedGraph. A DecomposedGraph has a list of DecomposedGraphNodes that

represents the components used for assembling a genetic gate. A DecomposedGraphNode

marked as a leaf node represents an input of a gate, and a DecomposedGraphNode marked

as a root node represents an output of a gate. A DecomposedGraphNode can be assigned

with a signal carrier type based on the color of the nodes shown in Figure 5.1. Decom-

posedGraphNodes with the same color indicate that the signal carrier types are the same.

A white DecomposedGraphNode indicates that there is no signal carrier type assigned. A

53

DecomposedGraphNode connects to another DecomposedGraphNode by adding a NodeInterac-

tionType. NodeInteractionType uses repression and production as ontology terms to define

the relationship between connecting DecomposedGraphNodes.

Figure 5.2 shows the mapping of SBOL objects to the objects described above. That is,

ModuleDefinition objects are converted into DecomposedGraph objects, FunctionalComponent

objects are converted into DecomposedGraphNode nodes, and Interaction objects are con-

verted into NodeInteractionType objects. A DecomposedGraphNode is set to a leaf if a Func-

tionalComponent has its Direction set to DirectionType.IN and a DecomposedGraphNode is set to

an output node if a FunctionalComponent has its Direction set to DirectionType.OUT. The Type

of each Interaction within a ModuleDefinition, represented as an SBO [142] term, is converted

into NodeInteractionType. If the Type contains SystemsBiologyOntology.INHIBITION, then

the converted NodeInteractionType is set to NodeInteractionType.REPRESSION. The direc-

tion of the node interactions is determined by locating the DecomposedGraphNodes for the

Participants involved in the Participation of an Interaction. If the Participant has the Role

INHIBITED, then the DecomposedGraphNode for this Participant is set as the parent for its

NodeInteractionType. The child of this NodeInteractionType is set to the DecomposedGraphNode

with the Participant containing the Role of INHIBITOR. The same concept applies when

an Interaction with Type SystemsBiologyOntology.GENETIC_PRODUCTION is encountered.

If an Interaction has Type SystemsBiologyOntology.GENETIC_PRODUCTION, the node rela-

tionship is set to NodeInteractionType.PRODUCTION. The DecomposedGraphNode represent-

ing the parent of this NodeInteractionType is the Participant containing the Role of PRODUCT.

The DecomposedGraphNode representing the child of this NodeInteractionType is the Partici-

DecomposedGraph

DecomposedGraphNode

ModuleDefinition

ComponentDefinition

NodeInteractionTypeInteraction

FunctionalComponent

Figure 5.2: A figure to illustrate how an SBOL data model is converted into a Decom-
posedGraph. This conversion transforms the given structural specification to a graph-based
structure before performing technology mapping so that genetic gates can map to the
specification. NOTSUPPORTED gates can also use this conversion if a behavioral Verilog
was provided and synthesized into a structural representation.

54

pant containing the Role of TEMPLATE.

A DecomposedGraphNode has a score. On a library of genetic gates, the score set on the

root DecomposedGraphNode acts as the cost (in DNA sequence length) for using the gate. On

a specification, the score set on each DecomposedGraphNode serves as a scoreboard to keep

track of the best designs. Effectively, the score of each node indicates the DNA sequence

length of the sub-circuit up to the node. A DecomposedGraphNode also has a feature to allow

a user to preselect a specific ComponentDefinition when performing technology mapping.

This feature provides a user the capability to indicate what specific molecule must pair

to a particular DecomposedGraphNode, which can improve runtime since it constrains the

solution space. A caveat to this preselected feature is the URI obtained from the given

ComponentDefinition must exist as a primary input or a primary output within one of

the libraries of genetic gates provided for technology mapping. If the library of genetic

gates does not contain ComponentDefinitions with this same URI, the technology mapping

procedure will not find a solution. The use of these features is explained in further detail

in Section 5.3.

Once the library of genetic gates and the structural design of the specification are

decomposed, the technology mapping procedure can then proceed to the matching step.

For the remainder of this chapter, the matching and covering steps are discussed using

DecomposedGraph as the internal data structure for performing technology mapping.

5.2 Matching
Matching entails filtering through a list of library gates and recording which genetic

gate is capable of covering a subset of the DecomposedGraph for the design specification.

While the matching step in Roehner et al. [103] requires the specification to be a directed

acyclic graph (DAG)(i.e., only combinational circuits), the matching step described in this

chapter supports feedback loops, and thus sequential circuits. The algorithm is described

in Algorithm 5.1. The algorithm takes a DecomposedGraph, S, representing the design

specification and a gate library, G, as inputs. The algorithm outputs M, which maps each

node in S to a list of gates that can be used to cover that particular node.

The first step in matching is to indicate that all nodes in S have not been traversed by

assigning the nodes with a score of ∞. Topological sort is then called on S to get the order

55

Algorithm 5.1: Match

1 Input: Specification S, Gate Library G;
2 Output: Map of node matches M ;
3 setAllGraphNodeScore(S, ∞);
4 N = topologicalSort(S);
5 foreach n in N do
6 foreach g in G do
7 if isMatch(n, g.root) then
8 insert(M, n, g);
9 totalScore = score(g) + score(n) ;

10 if totalScore < score(n) then
11 setScore(n, totalScore);
12 if ¬contains(M, n) then
13 setScore(n, 0);
14 return M;

that DecomposedGraphNodes should be visited when pairing genetic gates. The topological

sort implemented in this matching step is ordered from leaf nodes to the root node. The

sorted nodes are stored in list N. Each node n in N checks if a genetic gate, g, provided

in the library G can be used to cover that particular subset of the specification using

Algorithm 5.2. If there is a match, then gate g is inserted into the output M as a match

for node n. The score of node n is also computed when selecting the gate. This is used as a

bound in the covering method. A gate, g, can pair to a DecomposedGraphNode, n, in S if all

DecomposeGraphNodes of g and the InteractionTypes connecting these DecomposedGraphNodes

match the structure of n. Since the order of the inputs matters when mapping gates to the

specification, this matching process checks for different corner cases (described later on)

when pairing genetic gates to the specification.

As shown in Algorithm 5.2, a set visited is created to catalog the DecomposedGraphNode

encountered when checking if the structure of a genetic gate matches the structure of the

specification’s DecomposedGraphNode. This set also eliminates infinite loops when travers-

ing DecomposedGraphNodes with feedback. The queue indicates the order in which each

DecomposedGraphNode on the specification is visited and matched. During initialization,

the queue adds the root DecomposedGraphNode of s and g. Initializing the queue to start

at the root DecomposedGraphNode of s and g indicates where the matching pattern begins.

DecomposedGraphNode for s and g are continually added to this queue until the leaf nodes

56

Algorithm 5.2: isMatch

1 Inputs: Specification node s, Genetic Gate g;
2 Output: Boolean;
3 visited = {};
4 queue = 〈〉;
5 insert(queue, s, g);
6 while ¬queue.empty do
7 curr_s, curr_g = queue.pop;
8 if isPreselected(curr_s) then
9 if ¬isNodeCdMatch(curr_s, curr_g) then

10 return false;
11 if size(curr_s.children) 6= size(curr_g.children) then
12 return false;
13 if size(curr_s.children)) = 1∧ interactionMatch(curr_s, curr_g) then
14 if isPreselected(curr_s.child1) ∧ hasCdAssigned(curr_g.child1) then
15 if isNodeCdMatch(curr_s.child1, curr_g.child1) then
16 if ¬contains(visited, curr_s.child1) then
17 add(visited, curr_s.child1);
18 add(queue, curr_s.child1, curr_g.child1);
19 else if ¬contains(visited, curr_s.child1) then
20 add(visited, curr_s.child1);
21 add(queue, curr_s.child1, curr_g.child1);
22 else if size(curr_s.children) = 2∧ interactionMatch(curr_s, curr_g) then
23 if isPreselected(curr_s.children) then
24 match2inputPreselect(queue, visited, curr_s.children, curr_g.children);
25 else
26 if ¬contains(visited, curr_s.child1) then
27 add(visited, curr_s.child1);
28 add(queue, curr_s.child1, curr_g.child1);
29 if ¬contains(visited, curr_s.child2) then
30 add(visited, curr_s.child2);
31 add(queue, curr_s.child2, curr_g.child2);
32 if ¬visited.containsAll(curr_s.children()) then
33 return false;
34 return true;

for g are encountered. Matching a node g to a node s begins by removing the first pairing

of nodes s and g from the queue and storing each node to curr_s and curr_g, respectively.

Then, requirements that define if g matches s are checked in the following order. First, the

ComponentDefinition URI for curr_s and curr_g is checked for equivalency if the curr_s has

been assigned with a ComponentDefinition URI. Second, the number of children for curr_s

and curr_g is checked to see if they are the same size. Third, properties of the children

57

node for curr_s and curr_g are checked before adding the children nodes to the queue to

continue matching the next set of nodes on s and g. In the case that one child connects

to curr_s and curr_g and the interactions that connect the parent to the child node on s

and g match, then two corner cases are checked. The first corner case examines if the first

child of curr_g has been preselected with a molecule signal. If the signal assignment on

curr_s.child1 matches with the signal on curr_g.child1, then queue adds curr_s.child1 and

curr_g.child1 and visited adds curr_s.child1 if visted has not encountered curr_s.child1.

The second corner case applies when curr_s.child1 does not have a ComponentDefinition

preselected. In this scenario, the curr_s.child1 adds to the queue if it has not been visited.

Similar corner cases apply when there are two children connected to curr_s and curr_g

and their interactions connected on curr_s are the same as they are on curr_g. If the

children nodes for curr_s are preselected, then the signals assigned to the children nodes

are checked for equivalency with the children nodes of curr_g. These signal checks are

performed in match2inputPreselect. In this scenario, there are four corner cases that are

checked before the children nodes for curr_s and curr_g are added to the queue.

The first corner case applies when curr_s.child1 is preselected and curr_s.child2 has not

been preselected. An input signal for curr_g in this case must match the signal assigned

to curr_child1. If there is an input signal on curr_g that matches the signal assigned to

curr_s.child1, then visited and queue are updated with the children nodes for curr_s and

curr_g if visited does not contain curr_s.child and curr_s.child2. The second corner case

is an inverse of the first corner case and follows the same checks. The third corner case

applies when curr_s.child1 and curr_s.child2 are preselected with a molecule signal. In

this scenario, both input signals for curr_g must match the signals assigned to the two

children of curr_s. This scenario involves checking the assignment of curr_g.input1 and

curr_g.input2 in two different orientations. If one orientation does not match, the pairing

of signals is reversed to ensure that the matching of g on s is not dependent on the layout

of g paired to s. The fourth corner case occurs when curr_s.child1 and curr_s.child2 are

not preselected with molecule signals. In this case, the queue and visited updates if

curr_s.child1 and curr_s.child2 have not been visited. False returns from isMatch when

the children for curr_s were not all encountered. True returns from isMatch when queue

is empty and all nodes in g have been traversed and checked with s.

58

If Algorithm 5.2 returns true for a node pair, g and n, then the pair is inserted into

M. The score of n is also updated if the total score of g summed with n is less than

the current score of n. The score of g is determined based on summing the length of all

Sequences referenced by all ComponentDefinitions that compose the genetic gate. Note that

DNA sequence length is used as the score because sequence length of a DNA has shown

correlations to the delay of transcription and translation [103]. Nonetheless, there are many

other ways to score a design. Chapter 8 proposes other relevant genetic circuit parameters

that could be incorporated for future work. In the case that no gates can map to n, then the

score of n is set to zero. This matching step continues until all DecomposedGraphNodes in

N have been visited. The solution returned from this match algorithm is then used in the

covering step.

In order to better understand how the matching procedure works, an example is used.

Figure 5.3 shows an example of a technology mapping problem, where the specification

is a decomposed AND gate and five genetic gates are provided in the gate library. The

goal is to select gates that realize the specification while minimizing cost. The cost of each

gate is calculated by the sum of sequences stored on the DecomposedGraphNodes. The color

Library of Genetic GatesSpeci�cation

NOR1

NOR2

NOT1

NOT2

Decomposed AND AND1

Cost: 5

Cost: 6 Cost: 11

Cost: 9 Cost: 16

Figure 5.3: An example of the technology mapping procedure taking in two forms of
inputs. The first is a specification describing an AND gate. The second is a library
containing five genetic gates. The cost of each gate is calculated by the sum of sequences
stored on the DecomposedGraphNodes. The color code assigned to each genetic gate’s Decom-
posedGraphNode indicates the assignment of a molecule signal. If DecomposedGraphNodes
have the same color assigned, then this indicates that molecule signals are the same.

59

code assigned to each genetic gate’s DecomposedGraphNode indicates the assignment of a

molecule signal. If DecomposedGraphNodes have the same color assigned, then this indicates

that molecule signals are the same.

Figure 5.4 shows the result of the technology mapping procedure after calling the

matching step on the AND specification. In this step, the library of genetic gates is mapped

onto the AND specification. Genetic gates that can map to the specification are recorded

on the specification’s DecomposedGraphNodes. Where a genetic gate maps on the specifica-

tion’s DecomposedGraphNode corresponds to the gate’s root DecomposedGraphNode.

5.3 Covering
The map of node M produced from the matching procedure is then used to perform the

covering procedure. Covering obtains an optimal solution that realizes the specification.

There are three covering methods that are supported in the proposed workflow: exhaus-

tive, greedy, and branch and bound. The number of optimal solutions varies depending

on the selected algorithm.

Matching

NOT1
NOT2

NOT1
NOT2

NOR1
NOR2

AND1

Figure 5.4: The result of the matching step when applied on the AND specification. In this
step, the library of genetic gates are mapped onto the AND specification. Genetic gates
that can map to the specification are recorded on the specification’s DecomposedGraphNodes.
Where a genetic gate maps on the specification’s DecomposedGraphNode corresponds to the
gate’s root DecomposedGraphNode.

60

5.3.1 Exhaustive Covering Algorithm

The exhaustive covering algorithm is a brute force methodology for finding and enu-

merating every possible solution. Exhaustive is performed by calling Algorithm 5.3 to

generate all possible solutions. Algorithm 5.3 takes a map of node matches M, a number

of solution γ, and a Boolean flag sortMatches to produce a list of solution α. When calling

exhaustive, γ is set to MAX_VALUE to specify that the list of solutions returned from

Algorithm 5.3 should contain all possible solutions generated for the desired specification.

sortMatches is set to false to indicate that genetic gates selected at each node in specification

should not depend on the order in which gates are sorted when building a solution.

Algorithm 5.3 begins with queueO f Sol and α as two empty lists. queueO f Sol stores

the order of possible solutions that are evaluated and α stores complete solutions that are

found when performing baseCover. S represents the specification that the matching proce-

dure used for pairing genetic gates and it is used in this covering algorithm for generating

solutions from those genetic gates that pair to the specification. β is a technology mapping

solution initialized to zero. The root node of S adds to β as an unmappedNode to indicate

the beginning node on S that a genetic gate can map onto. Then, β adds to queueO f Sol as

the first solution that needs to be evaluated. As long as queueO f Sol is not empty, then

the first technology mapping solution is evaluated by removing from queueO f Sol and

storing to β. If β has unmappedNodes that are needed to assign genetic gates to, then

nextUnmappedNode retrieves the β and stores it into s. Genetic gates that map to s are

retrieved from getGateList using M to look up the node s and the list of gates are then

stored into gateList. Each gate g is evaluated at node s to ensure constraints that determine

if a g can include in solution β by checking for the following conditions. The first condition

is to check if s has been assigned with a ComponentDefinition by calling hasCdAssigned and

if the output signal of g matches the assigned ComponentDefinitionvalue. This type of check

ensures molecule signals must be the same in order to link the input and output signals

of g to its neighboring gates assigned in β. Figure 5.5 shows NOT1 and NOT2 as two

possible genetic gates that can map to the specification node encased within the dashed

rectangular box. The color assigned to each node in the DecomposedGraphNodes indicates

the molecule signal assigned to that node. Nodes that have the same color indicate that the

same molecule signal is assigned. In this example, NOT1 can assign to the yellow node in

61

Algorithm 5.3: baseCover

1 Inputs: Map of node matches M, Number of Solutions γ, Boolean sortMatches;
2 Output: List of Solutions λ;
3 queueOfSol = 〈〉;
4 α = 〈〉;
5 S = M.speci f ication;
6 β = ∅;
7 setScore(β, 0);
8 addUnmappedNode(β, S.root);
9 add(queueOfSol, β);

10 while ¬queueO f Sol.empty do
11 β = queueOfSol.pop;
12 while hasUnmappedNode(β) do
13 s = nextUnmappedNode(β);
14 gateList = getGateList(M, s);
15 if gateList.empty then
16 continue;
17 if sortMatches then
18 sortAscendingOrder(M, gateList);
19 foreach g in gateList do
20 if hasCdAssigned(s) ∧ getAssignedComponent(s) 6= g.output then
21 continue;
22 λ = β;
23 if isRoot(S, s) then
24 assignNode(s, g.output);
25 next_s = getMatchingEndNodes(s, g);
26 if size(next_s) = 1 then
27 Cover_1input(λ, s, next_s, g, queueO f Sol);
28 else if size(next_s) = 2 then
29 Cover_2input(λ, s, next_s, g, queueO f Sol);
30 if isSolutionComplete(S, β) then
31 if ¬hasCrosstalk(β) then
32 if size(α) < γ then
33 insert(α, β);
34 else
35 return α;

36 return α;

62

Speci�cation NOT1

NOT2

Signal Carrier Mismatch

Signal Carrier Match

Figure 5.5: An example to show how signal carrier mismatch is determind when covering
a genetic gate to the specification. A genetic gate is added to the current solution when the
molecule signal on a root DecomposedGraphNode of a genetic gate matches the molecule
signal assigned to a specification’s DecomposedGraphNode. In this example, the brown
DecomposedGraphNode for NOT2 does not match the yellow DecomposedGraphNode assigned
on the specification. However, NOT1 has the same molecule signal that matches the
assigned specification’s DecomposedGraphNode and is thus added to the current solution
for covering.

the specification because NOT1 has the same molecule signal assigned to its output node.

NOT2, however, cannot assign to the yellow node on the specification because its output

node does not match in signal type.

If the signal matches from the output value of g to s, then the solution, β, is copied

over and stored into λ to ensure that each solution evaluated at node s for different gate

g is not overwritten. The second condition is to check if s is a root node of S, then the

output signal of g is assigned to s. This check ensures that the root node s is not left empty

without a molecule assignment. The third check is to look at the children node where g

ends on S and observe if input signals for g match signals at S. The children nodes where

the input signals of g map on S are computed by calling getEndNodes. getEndNodes

takes in two DecomposedGraphNodes to indicate where the root node of g maps to the node

of s and returns a list of DecomposedGraphNodes where g ends on s. Figure 5.6 shows

63

Speci�cation NOR1

End Nodes

Figure 5.6: The purpose of EndNodes is used for matching the DecomposedGraphNodes for
g paired to s. EndNodes are calculated by determining where the root of a genetic gate
begins and where the genetic gate’s leaf DecomposedGraphNodes end on the specification.
In this figure, the yellow and blue DecomposedGraphNodes indicate where NOR1 ends on
the given specification. The EndNodes calculated in this example is where the yellow and
blue DecomposedGraphNodes map on the specification DecomposedGraphNodes.

an example of getEndNodes performed on NOR1 mapped to the specification. In this

example, the purple nodes on NOR1 and the specification are provided to getEndNodes

as the starting point where NOR1 maps to the specification. The yellow and blue nodes on

the specification are used to indicate where the leaf nodes of NOR1 end on the specification

and are returned from this method as the children nodes of s. These children nodes are

stored in next_s.

If the size of next_s is one, then Algorithm 5.4 is called to check if the one input gate

matches the signal assigned at next_s before adding g to λ. totalScore represents the total

score of λ if g is added to λ as a part of the solution. Then, the first node in next_s

is evaluted to see if it has been assigned with a ComponentDefinition at λ. If there is no

ComponentDefinition assigned to next_s. f irst, then the gate is added to the λ and assigned

to node s. The score for λ is also updated with the totalScore to reflect the addition of a new

gate added to the solution. Then, next_s. f irst is assigned with the input signal of g with

a ComponentDefinition. λ is also added back onto queueO f Sol to continue on generating

a complete solution for the specification. In the case that next_s. f irst has been assigned

with a ComponentDefinition, then the input signal of g is compared to next_s. f irst. If the

ComponentDefiniton matches, then the g maps to s and adds to λ. The score of λ is also

64

Algorithm 5.4: Cover_1input

1 Input: Map of Node λ, Specification Node s, List of Specification Nodes next_s,
Genetic Gate g, List of Solution queueOfSol;

2 totalScore = score(λ) + score(g);
3 if ¬isNodeMapped(λ, next_s. f irst) then
4 addGate(λ, s, g);
5 setScore(λ, totalScore);
6 assignNode(λ, next_s. f irst, g.input1);
7 addUnmappedNode(λ, next_s. f irst);
8 add(queueO f Sol, λ);
9 else

10 if isNodeCdMatch(next_s. f irst, g.input1) then
11 addGate(λ, s, g);
12 setScore(λ, totalScore);

updated with totalScore to reflect the additon of a g added to λ.

If the size of the children nodes for next_s is two, then Algorithm 5.5 is called. Because

there are two nodes that the input signals for g can assign to next_s, then each node for

next_s must check if it can pair with both input signals of g. There are four scenarios

that could happen during this condition. The first scencario is when next_s.second is not

assigned with a ComponentDefinition and next_s.second is assigned with a ComponentDefi-

nition. In this case, one input signal of g must match a ComponentDefinition signal assigned

to next_s.second. If the signal matches, then Algorithm 5.6 is called so that g can map to s

and is added to the solution λ. The score of λ is updated to reflect the addition of g to λ.

The next unmapped node added to λ is next_s. f irst. Then, the new solution for λ is added

onto queueO f Sol to continue covering the procedure.

The second scenario occurs when next_s. f irst is assigned and next_s.second is not as-

signed with a ComponentDefinition. In this case, the same condition applies from the first

scenario but next_s.second is added to λ as the unmapped node. The third scenario occurs

when next_s. f irst and next_s.second are assigned with a ComponentDefinition. In this case,

both input signals of g must match the ComponentDefinition assigned to the two nodes in

next_s. The last scenario occurs when both nodes in next_s are not assigned with a Compo-

nentDefinition. In this case, sol1 and sol2 are two technology mapping solutions created to

test different orientation of the input signals for g assigned to next_s. The solution for sol1

represents the assignement of next_s. f irst assigned to g.input1 and next_s.second assigned

65

Algorithm 5.5: Cover_2input

1 Input: Map of Node λ, Specification Node s, List of Specification Nodes next_s,
Genetic Gate g, List of Solution queueOfSol;

2 if ¬isNodeMapped(λ, next_s. f irst ∧ isNodeMapped(λ, next_s.second)) then
3 if isNodeCdMatch(λ, next_s.second, g.input1) then
4 updateCovSol(queueO f Sol, λ, s, g, totalScore, next_s. f irst, g.input2);
5 else if isNodeCdMatch(λ, next_s.second, g.input2) then
6 updateCovSol(queueO f Sol, λ, s, g, totalScore, next_s. f irst, g.input1);
7 else if isNodeMapped(λ, next_s. f irst) ∧ ¬isNodeMapped(λ, next_s.second) then
8 if isNodeCdMatch(λ, next_s. f irst, g.input1) then
9 updateCovSol(queueO f Sol, λ, s, g, totalScore, next_s.second, g.input2);

10 else if isNodeCdMatch(λ, next_s.second, g.input2) then
11 updateCovSol(queueO f Sol, λ, s, g, totalScore, next_s.second, g.input1);
12 else if isNodeMapped(λ, next_s. f irst) ∧ isNodeMapped(λ, next_s.second) then
13 if isNodeCdMatch(λ, next_s. f irst, g.input1) ∧

isNodeCdMatch(λ, next_s.second, g.input2) then
14 addGate(λ, s, g);
15 setScore(λ, totalScore);
16 else if isNodeCdMatch(λ, next_s. f irst, g.input2) ∧

isNodeCdMatch(λ, next_s.second, g.input1) then
17 addGate(λ, s, g);
18 setScore(λ, totalScore);
19 else
20 sol1 = λ;
21 addGate(sol1, s, g);
22 setScore(sol1, totalScore);
23 assignNode(sol1, next_s. f irst, g.input1);
24 assignNode(sol1, next_s.second, g.input2);
25 addUnmappedNode(sol1, next_s. f irst);
26 addUnmappedNode(sol1, next_s.second);
27 add(sol1, queueO f Sol);
28 sol2 = λ;
29 addGate(sol2, s, g);
30 setScore(sol2, totalScore);
31 assignNode(sol2, next_s. f irst, g.input1);
32 assignNode(sol2, next_s.second, g.input2);
33 addUnmappedNode(sol2, next_s. f irst);
34 addUnmappedNode(sol2, next_s.second);
35 add(sol2, queueO f Sol);

66

Algorithm 5.6: updateCovSol

1 Inputs: List of Solution queueOfSol, Map of Node λ, Specification Node s, Genetic
Gate g, Score of Solution totalScore, Specification Nodes next_s, Gate signal gs;

2 addGate(λ, s, g);
3 setScore(λ, totalScore);
4 assignNode(λ, next_s, gs);
5 addUnmappedNode(λ, next_s);
6 add(queueO f Sol, λ);

to g.input2. Gate g is then assigned to s and added to sol1. The score for sol1 is updated

and both next_s. f irst and next_s.second are added as the next set of nodes that are used to

perform covering on sol1. sol1 is also added to the queueO f Sol as a possible solution. sol2

is similar to sol1 except the input signal for g assigned to next_s. f irst and next_s.second are

inverted.

After checking the signals assigned to next_s, the last check is to see if the current solu-

tion for β is complete by calling isSolutionComplete. isSolutionComplete takes the speci-

fication S and the solution β to iterate over all genetic gates assigned to their corresponding

s node. If the genetic gates completely cover S, then true is returned. Otherwise, false is

returned. Once a complete solution has been found, then β is examined for crosstalk.

Recall that crosstalk occurs when there is interference of circuit components with each

other or the host circuitry. Algorithm 5.7 shows the implementation to check for crosstalk.

Algorithm 5.7 begins by creating an empty signals that is used for storing ComponentDefi-

nitions that are assigned in S. Then, all nodes s are iterated in S. The ComponentDefinition

assigned to s in the solution β is retrieved by calling getAssignedComponents and storing

the value in cd. If a cd is assigned to s, then the signal for cd is checked to see if it is

Algorithm 5.7: hasCrosstalk

1 Input: Specification S, Map of Node β ;
2 Output: Boolean;
3 signals = {};
4 foreach s in S do
5 cd = getAssignedComponent(s, signals);
6 if ¬empty(cd) then
7 if contains(cd, signals) then
8 return true;
9 return false;

67

contained within signals. True is returned, in this case, if signals already contains cd. False

is returned when each cd stored in signals is unique.

An illustration to show how crosstalk is considered in the covering step is shown in Fig-

ure 5.7. In this example, NOT2, if added to the current solution, causes crosstalk with an

existing genetic gate that has already been selected in the solution. The DecomposedGraphN-

odes causing crosstalk in this example is the tan colored DecomposedGraphNode located in

the specification conflicting with the tan colored DecomposedGraphNode in NOT2. NOT1, if

added to the current solution, avoids crosstalk because the colors assigned to each Decom-

posedGraphNode in the specification are unique.

If Algorithm 5.3 identified that the solution β does not have crosstalk, then β is added

to α if the size of α is less than the number of solution specified as γ. Because exhausting

Speci�cation NOT1

NOT2

Crosstalk

No Crosstalk

Figure 5.7: An example to show how crosstalk is computed in the covering step. In
this example, NOT2, if added to the current solution, causes crosstalk with an existing
genetic gate that has already been selected in the solution. The DecomposedGraphNodes
causing crosstalk in this example is the tan colored DecomposedGraphNode located in the
specification conflicting with the tan colored DecomposedGraphNode in NOT2. NOT1,
if added to the current solution, avoids crosstalk because the colors assigned to each
DecomposedGraphNode in the specification are unique.

68

generates all solutions that can map to S, each solution β will continue to add to α until all

possible solutions have been explored. This covering routine stops when all solutions are

evaluated in queuO f Sol.

One of the problems of the exhaustive method is its complexity. Because all possible

solutions are enumerated, the time it takes to find all solutions results in O(n!), where n

represents the number of DecomposedGraphNodes in the specification. Factorial of n results

from enumerating multiple solutions at each specification’s DecomposedGraphNode with a

different selection of genetic circuit.

5.3.2 Greedy Covering Algorithm

Greedy is a covering algorithm designed to find a solution by choosing genetic gates

with the lowest score at each step performed in the covering method. Genetic gates selected

in this covering algorithm are locally optimal but not globally optimal. The drawback of

this algorithm is that the selection of one genetic gate affects the decision of future genetic

gates. Although a genetic gate selected at the beginning of the covering algorithm may

have low cost, this restricts future gate coverings. These restricted genetic gates could

produce a covering solution with a better score than the one computed by the greedy

algorithm. However, this covering method is advantageous to use when the specification

has optimal substructures and the library of genetic gates is limited to the choices that can

pair to the specification.

Presented in this work is a greedy algorithm designed to produce the first n number of

solutions found, where n represents a finite integer value. The greedy covering algorithm

is similar to the exhaustive algorithm because it calls the same baseCovering. The differ-

ence in implementation is specifying γ to be an n value provided by the user running this

technology mapping procedure. The last difference is setting the sortMatches to true so

that the genetic gate selected at each node s is always evaluating g with the lowest score

first.

5.3.3 Branch and Bound Covering

Branch and bound is a covering algorithm that uses scores from genetic gates as a

cost factor to find the best solution with the lowest cost for generating a netlist of genetic

gates. Branch and bound is advantageous to use when looking for an optimal solution that

69

best satisfies all the constraints that are considered in the method. Algorithm 5.8 is an

implementation of the branch and bound algorithm. This algorithm takes a specification S

to perform the covering method on, a specification node s to map a genetic gate, a map of

node β to store the current technology mapping solution, and a map of node M that stores

the list of genetic gates mapped at each node in S. This algorithm produces a technology

mapping solution α that represents a netlist with the lowest score summed by all genetic

gates selected to form a complete cover for S.

This algorithm begins by retrieving all genetic gates mapped at s from M and storing

the list of genetic gates in gateList. In the case that there is no gate mapped at s, then this

indicates that s is at the end of the specification S. When this happens, the solution for β

is checked to see if the solution found at that instant is complete, has crosstalk, and if the

score of β is better than the score of α. If these three conditions are satisified, then β is

returned as the best solution. Otherwise, the existing best solution for α is returned.

Algorithm 5.8: BranchBoundRecurse

1 Inputs: Specification S, Specification Node s, Map of Node β, Genetic Gate prev_g
Map of node matches M;

2 Output: Map of Node α ;
3 gateList = getGates(M, s);
4 if ¬gateList.empty then
5 if isSolutionComplete(S, β) ∧ ¬hasCrosstalk(S, β) ∧ score(β) < score(α) then
6 return β;
7 else
8 return α;
9 foreach g in gateList do

10 estimatedScore = score(g) + score(β) + score(s);
11 if estimatedScore >= score(α) then
12 continue;
13 λ = β;
14 addGate(λ, s, g);
15 setScore(λ, score(λ) + score(g));
16 if isRoot(S, s) then
17 assignNode(λ, s, g.output);
18 next_s = getMatchingEndNodes(s, g);
19 if size(next_s) = 1 then
20 bbCover_1input(α, λ, S, s, next_s, gM);
21 else if size(next_s) = 2 then
22 bbCover_2input(α, λ, S, s, next_s, g, M);
23 return α;

70

If there are genetic gates assigned to s, then each gate g is evaluated to find the optimal

solution for α. estimatedScore stores a predicted value for β if the remaining gates selected

from s down to the leaf nodes of S are gates selected in the solution with the lowest score.

If estimatedScore is less than the best score α, then g is evaluated in the cover. The solution

for β is stored in λ so that each gate g assigned to s for a solution β is not overwritten when

backtracking to evaluate for alternative solutions. After storing the solution for β in λ, g is

added to λ and the score of λ is incremented with the score of g. If s is a root node of S,

then the output signal of g is assigned to s in λ. This check is important when checking for

crosstalk in order to ensure that all signals involved in connecting genetic gates to cover

S are not ignored. Then, the end nodes where g ends on S are evaluated and stored in

next_s. If the number of nodes stored in next_s is a size of one, then this indicates that the

gate assigned to s is a 1-input gate. Likewise, if the number of nodes stored in next_s is a

size of two, then this indicates tht the gate assigned to s is a 2-input gate.

If the gate g assigned to s is a 1-input gate, then the input of g is checked to see if it

matches the signal assigned to next_s by calling Algorithm 5.9. Algorithm 5.9 checks to

see if there is a signal assigned to the node at next_s. f irst. If there is no signal assigned to

next_s. f irst, then the input signal for g is assigned to next_s. f irst. The algorithm continues

to perform a complete cover for λ by recursively calling itself with next_s. f irst as the next

starting node evaluated. Otherwise, if the input signal of g does not match the signal

assigned to next_s. f irst, then the solution for λ is ignored by setting its score to ∞. If g

assigned to s is a 2-input gate, then the 2-input signals for g are checked to see if they

match with the signals assigned to next_s by calling Algorithm 5.10. If one of two nodes

in next_s are assigned with a signal, then the first two condition shown in Algorithm 5.10

Algorithm 5.9: bbCover_1input

1 Inputs: Map of node α, Map of Node λ Specification S, Specification node s, List of
Specification node next_s, Genetic Gate g, Map of node matches M;

2 if ¬isNodeMapped(λ, next_s. f irst) then
3 assignNode(λ, next_s. f irst, g.input1);
4 α = BranchBoundRecurse(S, next_s. f irst, λ, g, M);
5 else
6 if ¬isNodeCdMatch(β, next_s. f irst, g.input1) then
7 setScore(λ, ∞);

71

Algorithm 5.10: bbCover_2input

1 Inputs: Map of Node α, Map of Node λ, Specification Node s, List of Specification
Node next_s, Genetic Gate g, Map of Node matches M;

2 if ¬isNodeMapped(λ, next_s. f irst) ∧ isNodeMapped(λ, next_s.second) then
3 if isNodeCdMatch(next_s.second, g.input1) then
4 assignNode(λ, next_s. f irst, g.input2);
5 α = BranchBoundRecurse(S, next_s. f irst, λ, g, M);
6 else if isNodeCdMatch(next_s.second, g.input2) then
7 assignNode(λ, next_s. f irst, g.input1);
8 α = BranchBoundRecurse(S, next_s. f irst, λ, g, M);
9 else

10 setScore(λ, ∞);
11 else if isNodeMapped(λ, next_s. f irst) ∧ ¬isNodeMapped(λ, next_s.second) then
12 if isNodeCdMatch(next_s. f irst, g.input1) then
13 assignNode(β, next_s.second, g.input2);
14 α = BranchBoundRecurse(S, next_s.second, λ, g, M);
15 else if isNodeCdMatch(next_s. f irst, g.input2) then
16 assignNode(λ, next_s.second, g.input1);
17 α = BranchBoundRecurse(S, next_s.second, λ, g, M);
18 else
19 setScore(λ, ∞);
20 else if isNodeMapped(λ, next_s. f irst) ∧ isNodeMapped(λ, next_s.second) then
21 if ¬isNodeCdMatch(next_s. f irst, g.input1) ∧

¬isNodeCdMatch(next_s.second, g.input2) then
22 setScore(λ, ∞);
23 else if ¬isNodeCdMatch(next_s. f irst, g.input2) ∧

¬isNodeCdMatch(next_s.second, g.input1) then
24 setScore(λ, ∞);
25 else
26 sol1 = λ;
27 assignNode(sol1, next_s. f irst, g.input1);
28 assignNode(sol1, next_s.second, g.input2);
29 α = BranchBoundRecurse(S, next_s. f irst, sol1, g, M);
30 α = BranchBoundRecurse(S, next_s.second, sol1, g, M);
31 sol2 = λ;
32 assignNode(sol2, next_s. f irst, g.input2);
33 assignNode(sol2, next_s.second, g.input1);
34 α = BranchBoundRecurse(S, next_s. f irst, sol2, g, M);
35 α = BranchBoundRecurse(S, next_s.second, sol2, g, M);

72

are executed to match one of 2-input signals of g. If a matching signal has been found for

an input signal of g paired to a node in next_s, then the node in next_s for the solution λ is

assigned with the matching input signal. Then, covering is performed on the other node in

next_s if the node has not been covered yet. When both nodes in next_s are assigned with

a signal, then a check is made to see if both input signals for g match the nodes for next_s.

The score of λ is set to ∞ if all possible assignments that g can pair to next_s do not match.

The last condition occurs when the nodes in next_s have not been assigned with a signal.

In this scenario, λ is assigned to sol1 and sol2 to evaluate different possible solutions for

which the input signals for g can pair to the nodes of next_s. Each solution is evaluated by

assigning the corresponding input signals g to the nodes in next_s. Then, a recursive call

is performed for both nodes in next_s to ensure that all nodes linked to the nodes in next_s

are covered with genetic gates. The solutions returned from each recursive call are stored

back onto α to ensure that the best solution is always up to date with the best solution.

Figure 5.8 shows two possible solutions generated after the covering step for the AND

specification. If exhaustive was selected, then both solutions from this figure are returned

from the technology mapping procedure. If greedy was selected, then the solution re-

turned from this procedure varies based on the number of solutions provided as the input

to this covering algorithm. If the number of solutions provided to the method is one,

then the solution with a cost of 20 is returned. The solution with a cost of 20 is returned

from this method because greedy is designed to select gates with the lowest score for

covering a specification’s DecomposedGraphNode. In this particular example, there are three

genetic gates that could map to the specification’s root DecomposedGraphNodes. Of the three

possible genetic gates, NOR2 with the cost of 9 was selected because it has the lowest

cost. The remaining genetic gates needed for completing the specification are NOT1 and

NOT2. As a result, the solution with a cost of 20 is returned. If branch and bound was

selected, then the final solution returned from this method is the solution with a cost of

16. This solution was selected from branch and bound because out of both solutions that

were found, this solution has the lowest score. Figure 5.9 shows the technology mapping

procedure applied to an example with a feedback loop. In this example, SR Latch is

described as the specification and the four genetic gates represent the library. The result

of the matching step has paired NOT1 and NOT2 to the OUT and NOR1 and NOR2 to Q

73

Covering

AND1 NOR2

NOT2 NOT1

Cost: 16 Cost: 20

Figure 5.8: A figure showing the result of the technology mapping procedure after calling
the covering step on the AND specification. Two solutions are derived in this figure after
performing the covering step. Signal carrier mismatch and crosstalk are accounted for
when generating these solutions. If exhaustive was selected for the running of the covering
step, then both solutions from this figure are returned from the technology mapping
procedure. If greedy was selected, then the solution returned from this procedure varies
based on the number of solutions provided as the input to this covering algorithm. If the
number of solutions provided to the method is one, then the solution with a cost of 20 is
returned. Greedy selects this solution with a cost of 20 to return from its method because
greedy is designed to select gates with the lowest score for covering a specification’s
DecomposedGraphNode. If branch and bound was selected, then the final solution returned
from this method is the solution with a cost of 16. This solution was selected from branch
and bound because out of both solutions that were found, this solution has the lowest
score.

74

Library of Genetic GatesSpeci�cation

NOR1

NOR2

NOT1

NOT2

SR Latch

Cost: 5

Cost: 5

Cost: 15

Cost: 20

1530

35

0 0

0 0

0

NOR1,
NOR2

NOR1,
NOR2

NOT1,
NOT2

SR Latch

Matching

S R

Out = NOT2

Q = NOR1 Q = NOR2

Covering

Cost: 40

Out

Q Q

S R

YFP_protein

betI_yfp_tu

BetI_protein

LacI_protein

IPTG

iptg_tetR_lacI_tu

TetR_protein

YFP_protein

lacI_yfp_tu

LacI_protein

TetR_protein

aTc

aTc_lacI_tetR_tu

LacI_protein

Figure 5.9: An example of the technology mapping procedure performed on the SR Latch
example. The four genetic gates provided as the library are generated from the CELLO

SYNBIOHUB collection. The matching step identified NOT1 and NOT2 mapped to Out
and NOR1 and NOR2 mapped to Q̄ and Q. One solution is produced from the covering
step because all three covering algorithms identified that NOT1 results in signal carrier
mismatch if it is added to the solution for technology mapping.

75

and Q̄. Each genetic gate selected in the covering method is guaranteed to connect when

the input and output signals share the same signals with their connecting genetic gates.

As a result, the covering step generated one solution because all three covering algorithms

identified that NOT1 results in signal carrier mismatch if it is added to the solution for

technology mapping.

5.4 Generating a Netlist of Genetic Gates Encoded into SBOL
The technology mapping procedure presented in this chapter is incorporated in this

workflow for designing asynchronous genetic circuits by converting the netlist from tech-

nology mapping into SBOL. Algorithm 5.11 shows the implementation to generate SBOL

from a given covering solution along with the specification S that the solution was de-

rived from. The final SBOL format returned from this algorithm is an SBOLDocument

represented as δ. This algorithms begins by initializing δ to an empty document. A

map of connections to molecules, moleculeConnections, is created to keep track of the

molecules connected from a genetic gate to its neighboring gate. Then a ModuleDefinition,

circuit, is created to connect gates assigned to nodes s in δ. Algorithm 5.12 collects input

and output signals and their connection to other gates in α. Algorithm 5.12 takes the

specification, S, and the covering solution, α, to produce $ as a map of genetic gates

assigned to a FunctionalComponent for linking genetic gate input and output signals. σ is a

Algorithm 5.11: generateSbolNetlist

1 Inputs: Specification S, Cover Solution α;
2 Output: SBOLDocument δ;
3 δ = ∅;
4 moleculeConnection = 〈〉;
5 circuit = createMd(δ, S);
6 $ = getTopLevelConnections(S, α);
7 foreach gc in $ do
8 g_instance = addGate(circuit, gc.gate);
9 foreach c in gc.connections do

10 if ¬contains(moleculeConnection, c) then
11 molecule = createFc(circuit, c.cd);
12 insert(moleculeConnection, c, molecule);
13 circuit_molecule = getMolecule(moleculeConnection, c.cd);
14 createConnection(g_instance, circuit_molecule, c.cd);
15 return δ;

76

Algorithm 5.12: getTopLevelConnections

1 Inputs: Specification S, Cover Solution α;
2 Output: Gate Connections $;
3 $ = 〈〉;
4 σ = 〈〉;
5 visited = {};
6 queue = 〈〉;
7 s = S.root;
8 add(queue, s);
9 while ¬queue.empty do

10 s = queue.pop;
11 g = getGate(α, s);
12 if g 6= ∅ then
13 gate_c = createGateConnection(g);
14 foreach i in g.inputs do
15 if contains(σ, i) then
16 c = getMoleculeConnection(σ, i);
17 if isDirectionOut(c) then
18 setDirection(c, DirectionType.INOUT);
19 addGateConnection(gate_c, c);
20 addConnection(c, g, i);
21 else
22 c = createMoleculeConnection(i);
23 setDirection(c, DirectionType.IN);
24 addGateConnection(c, g, i);
25 foreach o in g.outputs do
26 if contains(σ, o) then
27 c = getMoleculeConnection(σ, o);
28 if isDirectionIn(c) then
29 setDirection(c, DirectionType.INOUT);
30 addGateConnection(gate_c, c);
31 addConnection(c, g, o);
32 else
33 c = createMoleculeConnection(o);
34 setDirection(c, DirectionType.OUT);
35 addConnection(c, g, o);
36 next_s = getMatchingEndNodes(s, g.root);
37 foreach n in next_s do
38 insert(queue, n);
39 add($, gate_c);
40 return $;

77

list of connections that molecule signals are involved in. visited is a list created to prevent

an infinite loop from occurring when traversing nodes in S. queue is also a list that stores

the order in which nodes in S are evaluated. $, σ, and visited are initially empty while the

root node of S is added to queue as the starting point to record molecules and their related

connections.

Each node in queue is evaluated and stored in s. The variable g represents the gate

assigned to s from the solution α. A genetic gate g is empty when there is no gate assigned

to s. If a genetic gate g exists for s, then the input and output signals of g are retrieved to

store the signals and their connection to their corresponding gate to gate_c. A connection,

c, stores information about a signal and the gate that contains that signal. A connection c

is created for each input and output signal of g. The variable $ checks if a connection c has

been created for each input signal i and for each output signal o. If $ contains the given

signal, then the connection for the given signal is retrieved and stored in c. If this signal is

an input and it was marked as a primary output or an output marked as a primary input

in a previous connection, then genetic gates sharing this signal are set to an INOUT signal

to indicate that this signal is not a primary input or primary output signal of circuit. The

gate g and the signal are added onto the new connection c. c is then added into gate_c to

record the signal connections that exist for each g. If a signal does not exist in $, then a new

connection c is created. Then, the signal and the gate is added to c. Once connections are

recorded for all input and output signals of a gate g, then the next nodes, next_s, where g

ends on S are evaluated by adding the nodes onto queue. gate_c adds to σ to store gates

that were evaluated for signal connections. This procedure continues until all nodes in s

are traversed.

Algorithm 5.11 takes the connections generated from Algorithm 5.12 and stores them

into $. Each genetic gate included in the solution α is added to circuit by going over

each connection, gc, from $. The signal, c.cd assigned to a connection c from gc is cre-

ated as a FunctionalComponent in circuit as molecule, if the signal does not exist within

moleculeConnection. If the signal, c.cd, already exists in circuit as a FunctionalComponent,

then it is retrieved from circuit and stored to circuit_molecule. Then, a MapsTo object is

created to connect circuit_molecule to the signal connection c.cd. This process continues

untill all connections are explored for every gate assigned to S.

78

Figure 5.10 shows an SR Latch example converted into SBOL from a netlist of genetic

gates that were generated from Figure 5.9. The topLevelCircuit is the SR Latch. The ge-

netic gates that were selected in the covering solution are instantiated in the SR Latch

as Modules. These Modules are shown in the figure as NOT1, NOR1, and NOR2. IPTG,

aTc, TetR_protein, LacI_protein, and YFP_protein are FunctionalComponents that are in-

stantiated on the topLevelCircuit as the input and output signals of the genetic gates. The

connections that are formed from a gate’s input and output signals to the instantiated

signals on the SR Latch are done so through MapsTo objects.

5.5 Summary
Technology mapping is a procedure that takes in a specification and a library of genetic

gates to realize a circuit. This procedure converts a structural design into a netlist of genetic

gates described in the form of SBOL. The technology mapping discussed in this chapter is

performed in two stages: matching and covering. This chapter describes these two steps

and discusses three algorithms for covering, including exhaustive, greedy, and branch and

bound. There are many ways to perform covering, especially when accounting for different

T

aTc

NOR1

NOR2

TetR_protein
YFP_protein

aTc

NOT2IPTG

LacI_protein

aTc_TetR_protein
IPTG

IPTG_LacI_protein

LacI_protein

aTc

TetR_protein

H1 LacI
ECK120010818pTet

aTc_TetR_protein
IPTG

IPTG_LacI_protein

T
LacI_protein

YFP_protein

B2 yfp ECK120015440pTac

IPTG
IPTG_LacI_protein NOR1NOT2

SR Latch

T
LacI_protein TetR_protein

Q2 TetR ECK120010876pTac

NOR2

Figure 5.10: A netlist of the SR Latch represented in SBOL. The genetic gates that were
selected in the covering solution are instantiated in the SR Latch as Modules. These Modules
are shown in the figure as NOT1, NOR1, and NOR2. IPTG, aTc, TetR_protein, LacI_protein,
and YFP_protein are FunctionalComponents instantiated on the topLevelCircuit as the input
and output signals of these genetic gates. The connections that are formed from a gate’s
input and output signals to the instantiated signals on the SR Latch are done so through
MapsTo objects.

79

genetic constraints. Many tools have been developed for technology mapping purposes, as

shown in Table 5.1. This table summarizes technology mapping features and compares

different qualities of each tool, specifically, what form the specification is in, the type of

library parts or gates that the tools provide, and if any data standards are supported to test

the solutions produced from these tools.

This technology mapping procedure was initially adapted from Roehner et al. [103] to

extend iBioSim2 to iBioSim3 to support the design of sequential genetic circuits. How-

ever, there were several changes that were made from Roehner et al. work that altered

the work that was presented from Roehner et al. Specifically, this workflow supports

Verilog to design a genetic circuit, whereas Roehner et al. uses GRN as the specification

language. Roehner et al. supports crosstalk, whereas this workflow extends the support

of genetic constraints by addressing roadblock when assembling transcriptional units to

build genetic gates. Roehner et al. used a PoP-style method to form and connect genetic

gates, whereas this workflow uses protein to protein interactions. The support of protein

to protein interaction involves building genetic gates to use transcriptional units. Then, an

enrichment procedure was used to retrieved molecules and their interactions from the SBH

online repository to form the input and output signals of a gate. Gates identified in this

gate generation process are supported to identify different structures that a genetic gate

can take on to classify its logic behavior. Because protein to protein interaction are used

in this workflow to connect signals between genetic gates, this style of connecting gates

during the technology mapping procedure introduced signal carrier mismatch that must

be addressed when connecting gates to form a netlist for the desired specification.

Table 5.1: This table summarizes the different existing technology mapping tools. It shows
the tool’s input specification language, standards supported, the types of library parts
used, and the genetic constraints addressed.

MATCHMAKER [66] SBROME [64] IBIOSIM2 [103] CELLO [15] GENETECH [104] IBIOSIM3 [89]
Specification language Abstract GRN Abstract GRN Abstract GRN Verilog Boolean expressions Verilog
Library Arbitrary logic gates Parts Arbitrary logic gates NOT and NOR gates NOT and NOR gates Arbitrary logic gates
Signal Mismatch X 7 7 X 7 7

Crosstalk 7 X X X X X
Context Effects 7 7 7 7 7 7

Roadblock 7 7 7 X 7 X
Standard Support SBOL1 7 SBOL2 and SBML SBOL2 7 SBOL2 and SBML
Supports Seq. Design 7 7 7 7 7 X

CHAPTER 6

VERIFICATION

The workflow described in this dissertation progresses through several procedures to

translate a high-level description to a physical design composed of biological parts. The

description of the design uses different formats to perform each task. Verification must be

performed at each stage of the workflow to ensure that the behavior initially described in

the design specification stays the same throughout the data format conversions.

Figure 6.1a and Figure 6.1b show the verification stages that are performed for this

workflow. The outcome of this verification process is to ensure that the behavior that is ob-

served in the simulation is the same in each step of the workflow. If the behavior observed

in the simulation changes in one of these verification steps, then this is a clear indication

that the intended behavior of the user’s design has changed during the workflow. At this

point, the Verilog compiler and/or converters must be fixed to ensure that information

stays consistent and the data are producing valid results.

Simulation can perform when there is a modeling language used to describe a spec-

ification and its testbench. Verilog and SBML are the two modeling languages used in

this workflow. Verilog simulations can be done by using any available Verilog simulation

tool. For this workflow, ModelSim is selected to observe the behavioral and structural

Verilog designs, whereas for genetic circuits, there are a variety of formal methods and

computational tools for their analysis [150, 151]. iBioSim is selected as the simulation tool

to model and simulate genetic circuits, since the tool is incorporated in this workflow and it

supports data conversions to the SBML data format. From the array of simulation methods

supported in iBioSim, stochastic simulation is chosen for analyzing the circuit’s behavior.

Stochastic simulation was chosen because the molecule counts in these circuits are low

and the behavior of these genetic asynchronous circuits must be analyzed in the presence

of noise and hazards.

81

Behavioral
Verilog

Structural
Verilog

Synthesis

Simulation Simulation

Equivalent

(a) Synthesis Verification

Structural
SBOL

Netlist
SBOL

Technology
Mapping

Simulation Simulation

Equivalent

SBML SBML

(b) Genetic Circuit Verification

Figure 6.1: Figure 6.1a and Figure 6.1b are the two areas in the workflow where verifica-
tions are performed. Synthesis verification takes the behavioral Verilog and the structural
Verilog produced from synthesis to perform simulation. The simulation results are verified
to check if they are equivalent in simulation behavior. Genetic circuit verification is per-
formed on the technology mapping procedure. This verification workflow takes the SBOL
converted from the structural Verilog and the SBOL netlist produced from technology
mapping. Both SBOL representations are compared and simulated within iBioSim by
converting SBOL to SBML. The simulation results are compared and checked if they are
equivalent in simulation behavior.

Work presented in Chapter 3 and Chapter 5 are the two areas in this workflow where

verification is performed. The two sections in this chapter go into detail on the verification

procedure for these two areas in the workflow. Section 6.1 describes the verification pro-

cedure performed when going from behavioral Verilog to structural Verilog. Section 6.2

describes verification performed on the genetic circuit generated from technology map-

ping.

6.1 Synthesis Verification
Chapter 3 demonstrated the process for translating a behavioral Verilog to a structural

Verilog. Figure 6.2 shows MODELSIM simulation results that are generated in this process.

Figure 6.2a is a simulation generated using the specification in Figure 3.2 and the testbench

in Figure 3.3 for testing the behavioral Verilog of an SR latch. Figure 6.2b shows a structural

82

(a)

(b)

Figure 6.2: Simulation results for synthesis verification. Figure 6.2a shows a behavioral
Verilog simulation of an SR latch executed in ModelSim. Figure 6.2b shows a structural
Verilog simulation of an SR latch executed in ModelSim.

Verilog simulation of an SR latch. Note that the simulation results are not identifical but

they are equivalent. More specifically, q goes HIGH when s goes HIGH and q goes LOW

when r goes HIGH.

Figure 6.3 contains simulation results generated from IBIOSIM using stochastic simula-

tion for testing the event-based SBML model and the LPN model presented in Section 3.2.1

and Section 3.2.2. Simulation on the event-based SBML model and the LPN model ensures

that the behavior of the translated design is still behaving as expected before ATACS per-

forms synthesis on the design. iBioSim supports LPN to SBML data conversion and thus

Behavioral Verilog to SBML Simulation

q r s

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Time Unit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

L
o

g
ic

a
l

S
ig

n
a

l

(a)

Behavioral Verilog to LPN Simulation

q r s

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Time Unit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

L
o

g
ic

a
l

S
ig

n
a

l

(b)

Figure 6.3: Simulation results for synthesis verification generated within IBIOSIM. Fig-
ure 6.3a shows a behavioral Verilog to SBML simulation of an SR latch. Figure 6.3b shows
a behavioral Verilog to LPN simulation of an SR latch.

83

makes it possible to perform simulation if an LPN data model is provided to iBioSim. As

shown in these simulations, the event-based SBML model and LPN model are simulating

logic signals ranging from 0 and 1 as described. These signal values reflect the initial

design specification where 0 bit and 1 bit data are randomly generated in the testbench.

6.2 Genetic Circuit Verification
Chapter 5 is the last area where verification is performed. Simulations are gener-

ated within iBioSim by converting the SBOL files containing the structural design of the

specification to SBML and the SBOL netlist converted into SBML after calling technology

mapping.

As shown in Figure 6.4, the general idea of these two simulations is to ensure that the

waveforms are all exhibiting the same behavior that is specified for the SR latch. Specif-

ically, when r is LOW and s is HIGH, Q outputs a HIGH signal. Likewise, when r is

HIGH and s is LOW, Q outputs a LOW signal. When r and s are LOW, then the previous

output signal for Q is maintained. If the simulation shows a behavior that does not match

the designed circuit, then this indicates the specific stage in the workflow that produces

unexpected results. Then, this specific stage in the workflow is examined to resolve the

issue. This issue could result from a corner case that was overlooked when designing the

specification or a bug in the program. In either case, the simulation is used to track where

this unexpected error occurs so that it can be resolved. Once the error is resolved, the next

stage in the workflow is verified using the same simulation process until verification has

Synthesized Specification Simulation

q r s

0 250 500 750 1,000 1,250 1,500 1,750 2,000

Time Unit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

N
u

m
b

e
r

o
f

M
o

le
c

u
le

s

(a)

Genetic Circuit Simulation

aTc IPTG YFP

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500

Time Unnit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

N
u

m
b

e
r

o
f

M
o

le
c

u
le

s

(b)

Figure 6.4: Simulation results for synthesis verification. Figure 6.4a shows a structural
Verilog to SBOL simulation of an SR latch. Figure 6.4b shows a simulation of an SR latch
after running technology mapping.

84

reached the end of the workflow.

Simulation is performed in iBioSim using stochastic simulation that indicates molecule

amount dynamics rather than logic-based analysis since it better reflects the behavior of

biological designs. Nonetheless, it is possible to see that the behavior is qualitatively

equivalent to the logical design. One limitation when verifying the behavior of the pro-

duced model of biological designs from the SBOL to SBML conversion in iBioSim is that all

parts use default kinetic parameter values. Because of these default values, the simulation

result will also produce the same result. A future work in this area is to add a layer

of characterization data on the SBOL designs produced from the technology mapping

tool. These characterization data will be accessed by the VPR model generation procedure

described by Misirili et al. [149]. This will, ideally, provide a more accurate depiction of the

biological parts that were selected for the technology mapping procedure and how well it

behaves in the circuit.

6.3 Summary
This chapter presents a verification procedure applied to stages of the workflow that

involves going in and out of different data formats. Verification in this case refers to simu-

lating Verilog and SBML for modeling and testing a given specification and its testbench.

ModelSim and iBioSim are used as the two simulation tools. The goal of this verification

process is to analyze the behavior of the simulations to see if the intended behavior of the

designed circuit is the same across all simulations. Verification is complete at the end of the

workflow when all simulations exhibit similar behaviors that are intended of the designed

circuit.

CHAPTER 7

CASE STUDY: GENETIC LOW-PASS FILTER

This chapter presents a case study demonstrating this workflow on a genetic sensor that

uses filtering and communication to make a more reliable detection decision. The library

gates built for this example are presented in Section 7.1. Section 7.2 provides details on

how the filter was created using the workflow presented in this dissertation. Section 7.3

goes over the results of our technology mapping procedure. Section 7.4 concludes with

the advantages and limitations on the case study.

7.1 Cello Library Gates
A gate library is generated from the CELLO E. Coli [15] collection from the SYNBIOHUB

data repository. This collection was selected because it has information, such as DNA

parts, molecules, and interactions that connect to these parts, that can be used to generate

1-input and 2-inputs gates. The CELLO dataset was built from the MIT/BU CELLO project

to construct Boolean logic gates to perform technology mapping of combinational designs.

The CELLO dataset has information about the different components to build Boolean logic

gates and interactions on how the components relate to each other. Currently, CELLO has

72 DNA parts, 7 proteins, and 14 interactions stored on SYNBIOHUB. Although small, the

CELLO dataset is valuable due to detailed information about its library of gates. CELLO’s

library of parts has a UCF file that specifies valid biological parts that can be constructed

into NOT and NOR gates. This UCF file also has information on how genetic constraints

are addressed when parts are selected to build the genetic combinational gates. Since the

UCF file has been encoded into SBOL, CELLO’s library of parts and the genetic constraint

information are found on the SYNBIOHUB repository. Any genetic constraint that is speci-

fied to each biological part to assist during gate construction is attached to the components

as annotations.

Two types of templates are created to generate transcriptional units. The first template

86

has tandem promoters followed by an engineered region. The second template is a single

promoter followed by an engineered region. The engineered region used in these two

templates represents a cassette composed of DNA parts involved in the production of a

targeted protein. These DNA parts include ribozymes, RBS, CDS, and terminator.

Figure 7.1 shows mapping of Cello DNA parts used for generating transcriptional

units. In order to avoid roadblock, specific promoters are selected for the downstream

promoters. The left table in the figure shows the different combinations that are used for

a transcription unit with two promoters. The rows indicate promoters on position 1 and

columns indicate promoters on position 2. Green indicates that the pairing is valid and red

indicates the pairing is invalid. The right table in the figure shows the list of cassettes. After

running VPR, there are 4,560 genetic gates that were generated from the CELLO collection.

These gates were then identified and 2,696 are 2-input genetic NAND gates, 40 are 2-input

genetic AND gates, 274 are 1-input genetic NOT gates, 13 are 2-input genetic wired OR

gates, and 1,537 are NOTSUPPORTED gates.

7.2 Genetic Low-Pass Filter
This section presents a case study demonstrating our workflow on a genetic sensor that

uses filtering and communication to make a more reliable detection decision. In particular,

Cassettes (Gen)

Al_AmtR

B1_BM3R1

B2_BM3R1
B3_BM3R1
E1_BetI
F1_AmeR
H1_HlyIIR
I1_IcaRA
L1_LitR
N1_LmrA
P1_PhlF
P2_PhlF
P3_PhlF
Q1_QacR
Q2_QacR
R1_PsrA
S1_SrpR
S2_SrpR
S3_SrpR
S4_SrpR
AraC_Sensor

LacI_sensor
LuxR_sensor
TetR_sensor
YFP_reporter

Downstream Promoter (Pro2)

pAmeR pAmtR pBAD pBetI pBM3R1 pHlyIIR pIcaRA pLitR pLmrA pLuxStar pPhlF pPsrA pQacR pSrpR pTac pTet

pAmeR

pAmtR

pBAD

pBetI

pBM3R1

pHlyIIR

pIcaRA

pLitR

pLmrA

pLuxStar

pPhlF

pPsrA

pQacR

pSrpR

pTac

pTet

U
ps

tr
ea

m
 P

ro
m

ot
er

 (
Pr

o 1
)

Pro2 GenPro1

Figure 7.1: Mapping of Cello DNA parts used for building transcriptional units. The left
table in the figure shows the different combinations that are used for a transcription unit
with two promoters. The rows indicate promoters on position 1 and columns indicate
promoters on position 2. Green indicates that the pairing is valid and red indicates the
pairing is invalid. The right table in the figure shows the list of cassettes.

87

the sensor is constructed from three sensors as described in the Verilog specification and

its testbench shown in Figure 7.2 and Figure 7.3, respectively. These sensors are connected

such that the Actuator of the first sensor is connected to the Start signal of the second

sensor, and the Actuator of the second is connected to the Start signal of the third sensor.

All three sensors share the same Sensor input. This genetic sensor circuit could be used,

for example, to release pharmaceuticals in specific tissues, after sensing a cancer-related

signal for a prolonged period of time [32, 152]. Examples of tissue-specific molecules, or

the enzymes that produce them, are curated by the Human Protein Atlas and include

surfactant protein A1 in the lungs, thyroglobulin in the thyroid, and uromodulin in the

kidney [153–155]. There are many examples of possible cancer markers, though often

elevation of a marker above normal is also used, examples include: HURP in prostate

cancer cells [156], Carcinoembryonic antigen (CEA) in colorectal cancer [157], and CA

19-9 in pancreatic cancer [158]. The initial Start signal would be a tissue-specific chemical

signature and the sensing input would be a cancer-related chemical. The output Actuator

for the third sensor would be a chemotherapeutic agent. The bacteria would only produce

the payload if they are in the correct tissue, and if they consistently sense the cancer-related

input, thus filtering and decreasing the chance of false positives. Additionally, this pre-

module sensor_imp (Start, Sensor, Actuator);

input wire Start, Sensor;
output reg Actuator;

initial begin
Actuator = 1’b0;

end

always begin
wait (Start == 1’b0 && Sensor == 1’b0);
#5 Actuator = 1’b1;
wait (Sensor == 1’b1);
#5 Actuator = 1’b0;

end

endmodule

Figure 7.2: Behavioral Verilog of a generalized C-element.

88

module sensor_testbench ();

wire Actuator;
reg Start, Sensor;

initial begin
Start = 1’b0;
Sensor = 1’b0;

end

sensor_imp sensor_instance(
.Start(Start),
.Sensor(Sensor),
.Actuator(Actuator)
);

always begin
#5 Sensor = 1’b0;
#5 Start = 1’b0;
wait (Actuator == 1’b1);
#5 Sensor = 1’b1;
wait (Actuator == 1’b0);
#5 Sensor = 1’b0;
wait (Actuator == 1’b1);
#5 Start = 1’b1;
#5 Sensor = 1’b1;
wait (Actuator == 1’b0);

end

endmodule

Figure 7.3: The testbench of a generalized C-element.

vents the release of the chemotherapeutic agent in cancer-free tissues, reducing unwanted

side effects.

To exemplify this work, a case study circuit is designed that uses IPTG as the Sensor

input, aTc as the Start input, and yellow fluorescent protein (YFP) as the output. Each sensor

is going to be transformed into a different cell type to reduce crosstalk concerns, allowing

for gate reuse. Essentially, our circuit is composed of a population of three types of cells

(note that the host cells may be identical but they each include a different circuit). The cells

communicate using quorum sensing molecules LasI and RhlI, which are molecules that

89

can diffuse between the cells.

The result of asynchronous logic synthesis is shown in Figure 7.4. This circuit is com-

posed of three generalized Muller C-elements (gC), each of which is implemented as an

independent circuit in a different cell. This gC behaves as follows: its output goes high

when both inputs are high, and its output goes low only after the input not marked with a

“+” goes low. In other words, if the input marked with a “+” goes low first, it remains high.

The complete circuit behaves as follows. If the first circuit receives the Start signal (aTc) and

the Sensor input (IPTG), it will produce a quorum sensing signal (LasI). If the Sensor input

(IPTG) is still present, the second circuit would receive the first quorum sensing signal

and the Sensor input, thus producing a second quorum sensing molecule (RhlI). The third

circuit, if it receives this second quorum sensing signal and the Sensor input (IPTG) is still

present, can produce the Actuator output (YFP). The purpose of this circuit is to work as

a low-pass filter, as the Sensor input has to be present during the whole process in order

to produce the Actuator. Otherwise, if the Sensor input disappears before the Actuator is

produced, all the gC gates reset to low and LasI, RhlI, and YFP are no longer produced

and are degraded away. This means that the circuit does not produce an Actuator output

if the Sensor input is present only briefly, “filtering out” noise on the Sensor input.

IPTG

aTc +
+

+
LasI

RhII YFP

Cell 2

gC
gC

Cell 3

Cell 1

gC

Figure 7.4: A genetic sensor that uses filtering and communication to improve its reliabil-
ity. The logic diagram produced by logic synthesis. It is composed of three gC gates that
go high when both inputs are high and go low when the input not marked with a “+” goes
low. The output of the second and third gate are connected to the “+” input of the next gate.
The detection begins when both IPTG and aTc go high, activating Cell 1. This creates the
quorum signal LasI to diffuse to Cell 2, which then activates Cell 2 to produce the quorum
signal RhlI. The RhlI signal diffuses to Cell 3 to activate YFP production. However, if IPTG
goes low at any point during this chain reaction, the whole circuit resets.

90

7.3 Results of Our Technology Mapping Procedure
Before performing the technology mapping procedure, the sensor circuit in Figure 7.2

and Figure 7.3 are synthesized to a structural design shown in Figure 7.5. Then, this struc-

tural design is decomposed into NAND logic shown in Figure 7.6. Figure 7.5 represents

the designed circuit after running ATACS. Figure 7.6 is a decomposed representation of

the circuit using NOT and NAND logic after running YOSYS. The decomposed structural

design is described using NAND logic because the CELLO library gates were generated in

NAND and NOT gates. Then, technology mapping is performed on the decomposed gC

to generate three different netlist solutions that can be used to assemble into a complete

low-pass filter. Preselection is enabled when running technology mapping to ensure that

the input signals going into the a gC circuit include small molecule signals. Specifically,

the Sensor input signal is assigned to CELLO’s LacI protein, Start is assigned to CELLO’s

TetR protein, and Actuator is assigned to CELLO’s YFP protein. Then, the branch and

bound algorithm is selected to perform technology mapping on the gC circuit. The result

of technology mapping using IBIOSIM is shown in Figure 7.7 for Cell 1. Sensors that are

needed for initializing the input signals TetR and LacI proteins are manually added to

the circuit for Cell 1. The technology mapping actually produces distinct genetic circuit

sequences. Each sequence can be used to construct a plasmid that can be transformed into

a separate culture of cells. As shown in Figure 7.8, the result would be three different cell

types, which when mixed together form a population of cells that would implement the

entire composite circuit. A filter model was then created in IBIOSIM’s project workspace to

connect three instances of the gC netlists in series. Quorum sensing molecules (LasI and

RhlI) were manually added into the filter model for connecting the three gC circuits from

module Start_Sensor_Actuator_net(Start, Sensor, Actuator);

input Start;
input Sensor;
output Actuator;

assign Actuator = (Start & Sensor) | (Sensor & Actuator);
endmodule

Figure 7.5: Structural Verilog of a generalized C-element after running ATACS.

91

Sensor

Start

Actuator

(a)

(b)

Figure 7.6: A decomposed gC described using NOT and NAND gates after running
YOSYS. Figure 7.6a represents the decomposed circuit using logic gates. Figure 7.6b
represents the decomposed circuit using DecomposedGraph.

92

NAND3

NAND4

YFP

aTc

NOT1IPTG

gC
NOT2

(a)

gC

T T
TetR LacIpConst pConst

TT T T
pTac A1_AmtR pTet pLitR

PhlF
pPhlF pAmtR

L1_LitR pLitR YFP

TetR

LacI AmtR
PhlF

LitR
YFP

IPTG

aTc

YFP

(b)

Figure 7.7: Result of circuit after running technology mapping. Figure 7.7a represents a
netlist of the genetic circuit. Figure 7.7b is a flattened representation of the netlist designed
on a plasmid.

Cell 1

T T
TetR LacIpConst pConst

TT T T
pTac A1_AmtR pTet pLitR

PhlF
pPhlF pAmtR

L1_LitR pLitR LasI

TetR

LacI AmtR
PhlF

LitR
LasI

IPTG

aTc

LasI

Cell 2

T T
LasR LacIpConst pConst

TT T T
pTac A1_AmtR pLas pLitR

PhlF
pPhlF pAmtR

L1_litR pLitR RhII

LasR
LacI AmtR

PhlF

LitR
RhII

LasI

RhII
IPTG

T T
RhIR LacIpConst pConst

TT T T
pTac A1_AmtR pRhI pLitR

PhlF
pPhlF pAmtR

L1_LitR pLitR YFP

YFPLitR

PhlF
LacI

RhIR

Cell 3
RhII

YFP
IPTG

AmtR

Figure 7.8: The genetic design produced by IBIOSIM, which is composed of three genetic
sequences that can be put onto separate plasmids and transformed into cells to create three
cell types.

93

Cell 1, Cell 2, to Cell 3 because these molecules do not exist in the CELLO library. This

completes the full design of a low-pass filter.

The complete circuit behaves as follows. If the first circuit receives the Start signal (aTc)

and the Sensor input (IPTG), it will produce a quorum sensing signal (LasI). If the Sensor

input (IPTG) is still present, the second circuit would receive the first quorum sensing

signal and the Sensor input, thus producing a second quorum sensing molecule (RhlI). The

third circuit, if it receives this second quorum sensing signal and the Sensor input (IPTG) is

still present, can produce the Actuator output (YFP). The purpose of this circuit is to work

as a low-pass filter, as the Sensor input has to be present during the whole process in order

to produce the Actuator. Otherwise, if the Sensor input disappears before the Actuator is

produced, all the gC gates reset to low and LasI, RhlI, and YFP are no longer produced

and are degraded away. This means that the circuit does not produce an Actuator output

if the Sensor input is present only briefly “filtering out” noise on the Sensor input.

A testbench for the filter was created to generate a simulation to verify the behavior

of the low-pass filter. Using IBIOSIM, ODE simulation of the circuit was performed, in-

dicating the filtering behavior of the circuit shown in Figure 7.9. In each case, the circuit

was exposed to varying amounts of times in which the signal IPTG is high, which produces

different responses of the system as a whole (see Figure 7.9b, Figure 7.9c, and Figure 7.9d).

In those cases where the exposure time to IPTG is not sufficient, the system acts as a filter

and does not produce the YFP reporter protein (see Figure 7.9a). The YFP reporter protein

is only produced when the system has been exposed to IPTG for sufficient time so that

each subsystem (cell) produces its corresponding output before the signal IPTG is removed

(see Figure 7.9d).

7.4 Discussion
Separating the circuits into separate cells has multiple advantages. First, it reduces

crosstalk problems and allows the same gates to be reused. Second, it increases the delay

of the circuit to improve the filtering performance. Third, it enables further robustness as

errors caused by hazards or other noise sources in a small number of cells can be tolerated,

since the overall behavior is determined by the population dynamics. The decision to split

the circuit across three cells is to create a delay to filter out momentary pulses of IPTG. In

94

IPTG High for 10 Time Unit

aTc IPTG LasI RhlI YFP

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500

Time Unit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

N
u

m
b

e
r

o
f

M
o

le
c

u
le

s

(a)

IPTG High for 100 Time Unit

aTc IPTG LasI RhlI YFP

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500

Time Unit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

N
u

m
b

e
r

o
f

M
o

le
c

u
le

s

(b)
IPTG High for 300 Time Unit

aTc IPTG LasI RhlI YFP

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500

Time Unit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

N
u

m
b

e
r

o
f

M
o

le
c

u
le

s

(c)

IPTG High for 750 Time Unit

aTc C1__LasI C1__RhlI IPTG YFP

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500

Time Unit

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

N
u

m
b

e
r

o
f

M
o

le
c

u
le

s

(d)

Figure 7.9: IBIOSIM ODE Runge-Kutta simulations (measured in number of molecules) of
the genetic sensor demonstrating the filtering behavior. For the circuit outputs to turn on
(LasI, RhlI, and YFP for the three cells, respectively), both aTc and IPTG inputs need to
be present; however, if the IPTG signal is only briefly present, then the circuit filters this
and does not show the YFP output. This behavior can be seen in the four different panels
where the IPTG is present for differing amounts of time. Figure 7.9a IPTG is present for 10
time units and almost no LasI is produced. Figure 7.9b IPTG is present for 100 time units
and LasI is produced by the first cell but only a little RhlI is produced by the second cell.
Figure 7.9c IPTG is present for 300 time units seconds and both LasI and RhlI are produced
with a clear delay between the two peaks. Figure 7.9d IPTG is present for 750 time units,
providing sufficient time for the final circuit output (YFP) to be produced.

95

order to create a realistic design, however, we were limited to no more than three cells, since

the number of known orthogonal quorum sensing molecules is limited (namely, LasI and

RhlI). Even limiting to three cell types, there are additional challenges in engineering mi-

crobial consortia. Some of these challenges are shared with engineering of homogeneous

cell populations. Others, such as maintaining stable cell proportions, avoiding horizontal

gene-transfer [159], or engineering stable cell-cell communications [160], are specific for

multicellular engineering and require special attention [161].

CHAPTER 8

CONCLUSION

Ground breaking applications have been developed in the past couple of years due

to the rate at which the synthetic biology field is growing. Promising efforts have been

aided by adapting engineering principles that are used for designing, building, and testing

genetic circuits. Such efforts have resulted in the development of many applications built

from genetic circuits composed of combinational logic gates and memory gates. While

there are many GDA tools that exist for assembling combinational logic gates, there are

few GDA tools that have been designed for sequential circuits.

This dissertation demonstrates a workflow to construct asynchronous genetic circuits

by leveraging asynchronous logic design methods. Asynchronous design is selected for

designing genetic circuits in this workflow because it best reflects how cellular biology

behaves on a molecular scale rather than that of a synchronous design style. Biological data

standards, such as SBOL and SBML, play an important role for GDA tools and workflows.

Data standards are essential to ensure that information remains consistent when it is used

for different purposes and used across different tools. Data standards also ensure that the

contents recorded in these data formats are reproducible for sharing and publishing. This

chapter highlights the main contributions of this dissertation, summarized in Section 8.1,

and discusses future directions of this research in Section 8.2.

8.1 Summary
A key design strategy for electronic circuits is to use abstraction to separate the behav-

ioral description from the physical design for a targeted circuit. A behavioral design is

translated into physical components through several steps and verification procedures are

used to ensure correctness at each step. Doing so allows circuits to be designed at a larger

scale and develop more complex functionalities.

This dissertation presents an asynchronous circuit design workflow for genetic circuits.

97

The proposed workflow follows many electronic circuit design methodologies, such as

the use of HDLs to describe behavioral designs. More specifically, Verilog is used in this

workflow for designing genetic circuits. A Verilog compiler was created for this workflow

to translate behavioral Verilog to structural Verilog. A subset of the Verilog language

is supported in this Verilog compiler for designing genetic circuits in an asynchronous

style. Using the created Verilog compiler, the workflow starts with a behavioral Verilog

design to describe the design specification and a testbench to verify the specification’s

behavior. The behavioral Verilog design is then compiled into an LPN that is fed into

ATACS to perform hazard-free asynchronous logic synthesis. ATACS synthesizes the LPN

design into a structural logic design in Verilog. The resulting structural Verilog design can

then be imported into iBioSim for technology mapping to produce a physical design. A

library of genetic gates must be provided to the technology mapping procedure in order to

generate a netlist of genetic gates that fits the structural Verilog description. An automated

procedure to construct genetic gates from a list of transcriptional units was created for

this workflow to construct a large library of genetic gates. A gate identification method

is also supported to categorize genetic gates into its corresponding logic. Genetic gates

exhibiting the same logic behavior but that are structurally different can be identified

in this process. Gates that are not identified can be included in the library of genetic

gates by providing a Verilog file describing the gate’s behavior. Technology mapping

can proceed once a library of genetic gates and a design specification are provided. The

technology mapping procedure discussed in this dissertation leverages the same existing

technology mapping functionality supported in iBioSim. A key difference is that the

proposed technology mapping procedure can handle feedback loops that are found in

sequential circuits. The output of this technology mapping procedure produces a netlist

of genetic gates described in the SBOL format. Verification is performed to validate that

the behavior of the physical design is consistent with the original Verilog design. Case

studies are discussed in this dissertation and demonstrate how the proposed workflow

can be applied to design complex genetic circuits programatically.

98

8.2 Future Work
While the proposed workflow is promising, there is room for improvements. This

section goes over areas in the proposed workflow that could be expanded.

8.2.1 ATACS Search Space

ATACS, currently, does not ensure that all search spaces are explored for the input files

that are provided. Take the testbench for an SR latch as an example. ATACS exploration

depends on the contents of the testbench. If the provided testbench does not cover all the

corner cases that might be important for testing the designed circuit, ATACS might not

produce any valid solution. If ATACS cannot generate a solution, then errors are reported

back after running the tool that can be difficult to comprehend for those without domain

expertise. A future work needed in this area is to add more support to ATACS to have

a better mechanism to evaluate coverage to ensure that a complete search space has been

performed based on the input files that are provided.

8.2.2 Replicating ATACS for Genetic Circuits

ATACS was originally built for synthesizing asynchronous electronic circuit design. As

a result, this synthesizing tool accounts for hazards that could occur in asynchronous elec-

tronic circuit design that does not apply to asynchronous genetic circuit design. An area

where this research can expand on is to replicate this tool and modify the requirements

so that the constraints considered when performing synthesis are better suited for genetic

circuit design.

8.2.3 Curate Part Library into SBOL

In order to create larger gate libraries, more parts need to be collected. There are several

databases that contains useful information for building multiple libraries of genetic gates

and they include information for bacterias, plants, and fungi, among others, that could be

used to build genetic circuits. However, curating these databases into SBOL takes effort

for a couple of reasons. First, not all databases have all core information that is needed for

building genetic gates. For example, iGEM has a public database with a large collection of

parts that can be used for building gates but information about interactions is not provided.

If information about interactions is missing, then VPR will not be able to mine information

99

that can be used for building gates. The type of information that can be built in this case

is limited to transcriptional units. Second, databases are stored in varying data formats.

Converting information from different databases into SBOL requires knowledge about the

different data representations.

8.2.4 Evaluate Promoter Location to Assemble Transcriptional Units

It is known that the position of the promoters on a transcriptional unit affects the

transcription of DNA. Promoters that are selected in this workflow does not account for its

relative position to where the transcriptional start site occurs. This area can be expanded

to provide a better insight when selecting DNA parts to build transcriptional units. The

SBOL data format has this information already supported and available to access using the

SequenceAnnotation data object. In addition, the CELLO dataset has this location property

provided for all promoter parts that are used within this workflow when assembling

transcriptional units. Similar to how roadblock is addressed when building transcriptional

units, selecting promoters can be considered as an extra constraint when assembling tran-

scriptional units.

8.2.5 Support Additional Genetic Gate Types

Based on literature, there are more types of logic families that can be supported during

the gate identification procedure presented in Section 4.3. Some of these gate types include

XOR, XNOR, BUFFER, and C-element gates. However, the construction of these gates

must be perused from literature in order to understand how to represent these gates.

While these gates such as XOR and XNOR can be composed from gates that are already

supported in this workflow, the structure of these gates can take on different forms.

Currently, NOTSUPPORTED gates can be used to define gates that are not recognized

in the gate identification step. Recall from Section 4.3 that using NOTSUPPORTED gates

in technology mapping is done by supplying a Verilog file that defines the behavior of

the gate. However, using NOTSUPPORTED gate is not a sufficient approach if a genetic

gate can be defined within the gate identification process. For example, if VPR generates

C-element gates that are not identified, then these gates will need to be manually identified

from the list of NOTSUPPORTED gates. Providing the technology mapping procedure

one C-element in the library of genetic gate is not tedious because only one Verilog file is

100

needed to describing this gate’s behavior. However, having more variants of the C-element

gate can be a problem because a Verilog file would need to be provided for each variant,

which can be a tedious task.

Lastly, another possible way to support additional gate types is to consider gate families

other than transcriptional regulation gates, such as recombinase, CRISPR/CAS9, etc.

8.2.6 Expand Signal Mismatch

The only SYNBIOHUB collection that has information about response functions to ad-

dress signal mismatch is the CELLO E. Coli dataset. Response functions are used on genetic

gates that are built on a PoP-style method. Genetic gates, using the PoP-style method, are

defined as the effect of the rate of transcripts of an upstream CDS on the rate of transcripts

produced by a downstream promoter that it regulates. This workflow interprets input and

output signal for a genetic gate based on signal molecule counts. The technology mapping

procedure will need to be modified in order to use the response function provided in the

CELLO dataset.

8.2.7 Evaluating Threshold of Genetic Gates Before Cell Death

Cells cannot be overloaded with genetic gates. If there are too many genetic parts

within the cell, this can cause the cell to potentially die. This area of work could be better

understood by characterizing the burden used on a cell for a genetic circuit. For example,

the CELLO data used in this research have toxicity data for the parts used to assemble

the genetic gates. This toxicity data could be used to replace the cost of sequence length

when selecting gates in the technology mapping procedure. The circuit can then use these

toxicity data to model the threshold where cell death occurs.

8.2.8 Increase Technology Mapping Performance

The runtime when calling the technology mapping procedure is slow for a large library

and on a big specification. There is a need to explore a faster way to perform the technology

mapping procedure. Lehman et al. [162] have proposed a solution that decreases the run-

time down to a logarithmic complexity that is proportional to the size of the specification’s

graph.

101

8.2.9 Reduce Structural Bias in Technology Mapping

The genetic gates supported in this workflow are 1-input gates and 2-input gates. When

these gates are decomposed, the structures are symmetrical. However, if the gates included

in the library go beyond 2-input gates, then the decomposed structure for these gates will

affect how they are paired to the specification. Another area of work that this research can

expand on is to support multiple decomposition structure for large input gates in order to

prevent biasing of structure when pairing genetic gates to the specification.

8.2.10 Enriched Parts to Improve Genetic Circuit Models

Default parameter values are currently used when modeling genetic circuits from the

technology mapping procedure. These default parameter, when used for simulating an

SBML model of a genetic circuit, produces a generic simulation result. The output values

and the prediction of hazards are calculated from these default parameters. There is a

need to support parameters that are specific to the part used in the circuit. Retrieving these

parameter values is accomplished by adding a layer of characterization data on the SBOL

designs produced from the technology mapping tool. These characterization data will be

accessed by the VPR model generation procedure described by Misirili et al [149]. This

will, ideally, provide a more accurate depiction of the biological parts that were selected

for the technology mapping procedure and how well it behaves in the circuit.

REFERENCES

[1] M. F. Wolff, “The secret six-month project: why Texas Instruments decided to put the
first transistor radio on the market by Christmas 1954 and how it was accomplished,”
IEEE Spectrum, vol. 22, no. 12, pp. 64–69, 1985.

[2] D. Thomas and P. Moorby, The Verilog R© Hardware Description Language. Springer
Science & Business Media, 2008.

[3] P. J. Ashenden, The Designer’s Guide to VHDL. Morgan Kaufmann, 2010, vol. 3.

[4] D. E. Cameron, C. J. Bashor, and J. J. Collins, “A brief history of synthetic biology,”
Nature Reviews Microbiology, vol. 12, no. 5, p. 381, 2014.

[5] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle switch
in escherichia coli,” Nature, vol. 403, no. 6767, p. 339, 2000.

[6] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional
regulators,” Nature, vol. 403, no. 6767, p. 335, 2000.

[7] C. C. Guet, M. B. Elowitz, W. Hsing, and S. Leibler, “Combinatorial synthesis of
genetic networks,” Science, vol. 296, no. 5572, pp. 1466–1470, 2002.

[8] I. Hoteit, N. Kharma, and L. Varin, “Computational simulation of a gene regulatory
network implementing an extendable synchronous single-input delay flip-flop,”
BioSystems, vol. 109, no. 1, pp. 57–71, 2012.

[9] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, “A
fast, robust and tunable synthetic gene oscillator,” Nature, vol. 456, no. 7221, p. 516,
2008.

[10] G. Rodrigo and A. Jaramillo, “Computational design of digital and memory biologi-
cal devices,” Systems and Synthetic Biology, vol. 1, no. 4, p. 183, 2007.

[11] J. Sardanyés, A. Bonforti, N. Conde, R. Solé, and J. Macia, “Computational im-
plementation of a tunable multicellular memory circuit for engineered eukaryotic
consortia,” Frontiers in Physiology, vol. 6, 2015.

[12] A. Urrios, J. Macia, R. Manzoni, N. Conde, A. Bonforti, E. de Nadal, F. Posas, and
R. SolÕẩ, “A synthetic multicellular memory device,” ACS Synthetic Biology, vol. 5,
no. 8, pp. 862–873, 2016.

[13] L. Andrews, A. Nielsen, and C. Voigt, “Cellular checkpoint control using
programmable sequential logic,” Science, vol. 361, no. 6408, 2018. [Online].
Available: http://science.sciencemag.org/content/361/6408/eaap8987

[14] B. H. Weinberg, N. H. Pham, L. D. Caraballo, T. Lozanoski, A. Engel, S. Bhatia, and
W. W. Wong, “Large-scale design of robust genetic circuits with multiple inputs and
outputs for mammalian cells,” Nature Biotechnology, vol. 35, no. 5, p. 453, 2017.

103

[15] A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A.
Strychalski, D. Ross, D. Densmore, and C. A. Voigt, “Genetic circuit design
automation,” Science, vol. 352, no. 6281, 2016. [Online]. Available: http:
//science.sciencemag.org/content/352/6281/aac7341

[16] T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton, and C. A. Voigt, “Genetic programs
constructed from layered logic gates in single cells,” Nature, vol. 491, no. 7423, p. 249,
2012.

[17] G. Schendzielorz, M. Dippong, A. GrÕìnberger, D. Kohlheyer, A. Yoshida, S. Binder,
C. Nishiyama, M. Nishiyama, M. Bott, and L. Eggeling, “Taking control over control:
use of product sensing in single cells to remove flux control at key enzymes in
biosynthesis pathways,” ACS Synthetic Biology, vol. 3, no. 1, pp. 21–29, 2013.

[18] F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a dynamic sensor-regulator
system for production of chemicals and fuels derived from fatty acids,” Nature
Biotechnology, vol. 30, no. 4, pp. 354–359, 2012.

[19] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle, “Robust perfect adaptation in bacterial
chemotaxis through integral feedback control,” Proceedings of the National Academy of
Sciences, vol. 97, no. 9, pp. 4649–4653, 2000.

[20] K. Krishnanathan, S. R. Anderson, S. A. Billings, and V. Kadirkamanathan, “A data-
driven framework for identifying nonlinear dynamic models of genetic parts,” ACS
Synthetic Biology, vol. 1, no. 8, pp. 375–384, 2012.

[21] P. Carbonell, P. Parutto, C. Baudier, C. Junot, and J.-L. Faulon, “Retropath: automated
pipeline for embedded metabolic circuits,” ACS Synthetic Biology, vol. 3, no. 8, pp.
565–577, 2013.

[22] B. L. Adams, K. K. Carter, M. Guo, H.-C. Wu, C.-Y. Tsao, H. O. Sintim, J. J. Valdes,
and W. E. Bentley, “Evolved quorum sensing regulator, LsrR, for altered switching
functions,” ACS Synthetic Biology, vol. 3, no. 4, pp. 210–219, 2013.

[23] T. Umeyama, S. Okada, and T. Ito, “Synthetic gene circuit-mediated monitoring of
endogenous metabolites: identification of GAL11 as a novel multicopy enhancer of
S-adenosylmethionine level in yeast,” ACS Synthetic Biology, vol. 2, no. 8, pp. 425–430,
2013.

[24] J. A. Stapleton, K. Endo, Y. Fujita, K. Hayashi, M. Takinoue, H. Saito, and T. Inoue,
“Feedback control of protein expression in mammalian cells by tunable synthetic
translational inhibition,” ACS Synthetic Biology, vol. 1, no. 3, pp. 83–88, 2011.

[25] M. H. Medema, R. Breitling, R. Bovenberg, and E. Takano, “Exploiting plug-and-play
synthetic biology for drug discovery and production in microorganisms,” Nature
Reviews. Microbiology, vol. 9, no. 2, p. 131, 2011.

[26] M. Fischbach and C. A. Voigt, “Prokaryotic gene clusters: a rich toolbox for synthetic
biology,” Biotechnology Journal, vol. 5, no. 12, pp. 1277–1296, 2010.

[27] H.-J. Frasch, M. H. Medema, E. Takano, and R. Breitling, “Design-based re-
engineering of biosynthetic gene clusters: plug-and-play in practice,” Current Opin-
ion in Biotechnology, vol. 24, no. 6, pp. 1144–1150, 2013.

104

[28] K. Temme, D. Zhao, and C. A. Voigt, “Refactoring the nitrogen fixation gene cluster
from klebsiella oxytoca,” Proceedings of the National Academy of Sciences, vol. 109,
no. 18, pp. 7085–7090, 2012.

[29] Z. Shao, G. Rao, C. Li, Z. Abil, Y. Luo, and H. Zhao, “Refactoring the silent spectin-
abilin gene cluster using a plug-and-play scaffold,” ACS Synthetic Biology, vol. 2,
no. 11, pp. 662–669, 2013.

[30] C. Oßwald, G. Zipf, G. Schmidt, J. Maier, H. S. Bernauer, R. MÕìller, and S. C. Wenzel,
“Modular construction of a functional artificial epothilone polyketide pathway,”
ACS Synthetic Biology, vol. 3, no. 10, pp. 759–772, 2012.

[31] L. Steidler, W. Hans, L. Schotte, S. Neirynck, F. Obermeier, W. Falk, W. Fiers, and
E. Remaut, “Treatment of murine colitis by lactococcus lactis secreting interleukin-
10,” Science, vol. 289, no. 5483, pp. 1352–1355, 2000.

[32] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt, “Environmentally controlled
invasion of cancer cells by engineered bacteria,” Journal of Molecular Biology, vol. 355,
no. 4, pp. 619–627, 2006.

[33] W. C. Ruder, T. Lu, and J. J. Collins, “Synthetic biology moving into the clinic,”
Science, vol. 333, no. 6047, pp. 1248–1252, 2011.

[34] J.-P. Motta, L. G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rolland, P. Rousset,
J. Boue, G. Dietrich, K. Chapman, P. Kharrat et al., “Food-grade bacteria expressing
elafin protect against inflammation and restore colon homeostasis,” Science Transla-
tional Medicine, vol. 4, no. 158, pp. 158ra144–158ra144, 2012.

[35] S. Wang, Q. Kong, and R. Curtiss, “New technologies in developing recombinant
attenuated salmonella vaccine vectors,” Microbial Pathogenesis, vol. 58, pp. 17–28,
2013.

[36] J. H. Huh, J. T. Kittleson, A. P. Arkin, and J. C. Anderson, “Modular design of a
synthetic payload delivery device,” ACS Synthetic Biology, vol. 2, no. 8, pp. 418–424,
2013.

[37] S. Gupta, E. E. Bram, and R. Weiss, “Genetically programmable pathogen sense and
destroy,” ACS Synthetic Biology, vol. 2, no. 12, pp. 715–723, 2013.

[38] I. Y. Hwang, M. H. Tan, E. Koh, C. L. Ho, C. L. Poh, and M. W. Chang, “Reprogram-
ming microbes to be pathogen-seeking killers,” ACS Synthetic Biology, vol. 3, no. 4,
pp. 228–237, 2013.

[39] A. Prindle, J. Selimkhanov, T. Danino, P. Samayoa, A. Goldberg, S. N. Bhatia, and
J. Hasty, “Genetic circuits in salmonella typhimurium,” ACS Synthetic Biology, vol. 1,
no. 10, pp. 458–464, 2012.

[40] K. Volzing, J. Borrero, M. J. Sadowsky, and Y. N. Kaznessis, “Antimicrobial peptides
targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria,”
ACS Synthetic Biology, vol. 2, no. 11, pp. 643–650, 2013.

[41] J. Hasty, “Engineered microbes for therapeutic applications,” ACS Synthetic Biology,
vol. 1, no. 10, pp. 438–439, 2012.

105

[42] T. Danino, J. Lo, A. Prindle, J. Hasty, and S. N. Bhatia, “In vivo gene expression
dynamics of tumor-targeted bacteria,” ACS Synthetic Biology, vol. 1, no. 10, pp. 465–
470, 2012.

[43] E. J. Archer, A. B. Robinson, and G. M. SÕìel, “Engineered e. coli that detect
and respond to gut inflammation through nitric oxide sensing,” ACS Synthetic
Biology, vol. 1, no. 10, pp. 451–457, 2012, pMID: 23656184. [Online]. Available:
https://doi.org/10.1021/sb3000595

[44] M. S. Antunes, K. J. Morey, J. J. Smith, K. D. Albrecht, T. A. Bowen, J. K. Zdunek,
J. F. Troupe, M. J. Cuneo, C. T. Webb, H. W. Hellinga et al., “Programmable ligand
detection system in plants through a synthetic signal transduction pathway,” PLoS
One, vol. 6, no. 1, p. e16292, 2011.

[45] D. M. Widmaier, D. Tullman-Ercek, E. A. Mirsky, R. Hill, S. Govindarajan, J. Min-
shull, and C. A. Voigt, “Engineering the salmonella type iii secretion system to export
spider silk monomers,” Molecular Systems Biology, vol. 5, no. 1, p. 309, 2009.

[46] K. Bernhardt, N. S. Chand, E. Carter, J. Lee, Y. Xu, X. Zhu, D. Rowe, J. W. Ajioka,
J. Goncalves, J. Haseloff et al., “New tools for self-organized pattern formation,” BMC
Systems Biology, vol. 1, no. 1, p. S10, 2007.

[47] X.-X. Xia, Z.-G. Qian, C. S. Ki, Y. H. Park, D. L. Kaplan, and S. Y. Lee, “Native-sized
recombinant spider silk protein produced in metabolically engineered escherichia
coli results in a strong fiber,” Proceedings of the National Academy of Sciences, vol. 107,
no. 32, pp. 14 059–14 063, 2010.

[48] D. M. Widmaier and C. A. Voigt, “Quantification of the physiochemical constraints
on the export of spider silk proteins by salmonella type iii secretion,” Microbial Cell
Factories, vol. 9, no. 1, p. 78, 2010.

[49] F. Aquea, F. Federici, C. Moscoso, A. Vega, P. Jullian, J. Haseloff, and P. ARCE-
JOHNSON, “A molecular framework for the inhibition of arabidopsis root growth
in response to boron toxicity,” Plant, Cell & Environment, vol. 35, no. 4, pp. 719–734,
2012.

[50] M. S. Antunes, S.-B. Ha, N. Tewari-Singh, K. J. Morey, A. M. Trofka, P. Kugrens,
M. Deyholos, and J. I. Medford, “A synthetic de-greening gene circuit provides
a reporting system that is remotely detectable and has a re-set capacity,” Plant
Biotechnology Journal, vol. 4, no. 6, pp. 605–622, 2006.

[51] E. Oberortner and D. Densmore, “Web-based software tool for constraint-based
design specification of synthetic biological systems,” ACS Synthetic Biology, vol. 4,
no. 6, pp. 757–760, 2014.

[52] S. Bhatia and D. Densmore, “Pigeon: a design visualizer for synthetic biology,” ACS
Synthetic Biology, vol. 2, no. 6, pp. 348–350, 2013.

[53] J. Beal, T. Lu, and R. Weiss, “Automatic compilation from high-level biologically-
oriented programming language to genetic regulatory networks,” PloS One, vol. 6,
no. 8, p. e22490, 2011.

106

[54] E. H. Wilson, S. Sagawa, J. W. Weis, M. G. Schubert, M. Bissell, B. Hawthorne,
C. D. Reeves, J. Dean, and D. Platt, “Genotype specification language,” ACS Synthetic
Biology, vol. 5, no. 6, pp. 471–478, 2016.

[55] L. P. Smith, F. T. Bergmann, D. Chandran, and H. M. Sauro, “Antimony: a modular
model definition language,” Bioinformatics, vol. 25, no. 18, pp. 2452–2454, 2009.

[56] S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, and E. D. Gilles, “PROMOT:
modular modeling for systems biology,” Bioinformatics, vol. 25, no. 5, pp. 687–689,
2009.

[57] G. Misirli, J. S. Hallinan, T. Yu, J. R. Lawson, S. M. Wimalaratne, M. T. Cooling, and
A. Wipat, “Model annotation for synthetic biology: automating model to nucleotide
sequence conversion,” Bioinformatics, vol. 27, no. 7, pp. 973–979, 2011.

[58] G. Rodrigo, J. Carrera, and A. Jaramillo, “Asmparts: assembly of biological model
parts,” Systems and Synthetic Biology, vol. 1, no. 4, pp. 167–170, 2007.

[59] M. Quintin, N. J. Ma, S. Ahmed, S. Bhatia, A. Lewis, F. J. Isaacs, and D. Densmore,
“Merlin: computer-aided oligonucleotide design for large scale genome engineering
with MAGE,” ACS Synthetic Biology, vol. 5, no. 6, pp. 452–458, 2016.

[60] N. Roehner, E. M. Young, C. A. Voigt, D. B. Gordon, and D. Densmore, “Double
Dutch: a tool for designing combinatorial libraries of biological systems,” ACS
Synthetic Biology, vol. 5, no. 6, pp. 507–517, 2016.

[61] H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome
binding sites to control protein expression,” Nature Biotechnology, vol. 27, no. 10, p.
946, 2009.

[62] A. Espah Borujeni, A. S. Channarasappa, and H. M. Salis, “Translation rate is
controlled by coupled trade-offs between site accessibility, selective RNA unfolding
and sliding at upstream standby sites,” Nucleic Acids Research, vol. 42, no. 4, pp.
2646–2659, 2013.

[63] M. J. Czar, Y. Cai, and J. Peccoud, “Writing DNA with GenoCAD,” Nucleic Acids
Research, vol. 37, no. suppl_2, pp. W40–W47, 2009.

[64] L. Huynh, A. Tsoukalas, M. Köppe, and I. Tagkopoulos, “SBROME: a scalable opti-
mization and module matching framework for automated biosystems design,” ACS
Synthetic Biology, vol. 2, no. 5, pp. 263–273, 2013.

[65] A. Espah Borujeni and H. M. Salis, “Translation initiation is controlled by RNA
folding kinetics via a ribosome drafting mechanism,” Journal of the American Chemical
Society, vol. 138, no. 22, pp. 7016–7023, 2016.

[66] F. Yaman, S. Bhatia, A. Adler, D. Densmore, and J. Beal, “Automated selection
of synthetic biology parts for genetic regulatory networks,” ACS Synthetic Biology,
vol. 1, no. 8, pp. 332–344, 2012.

[67] M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction,”
Nucleic Acids Research, vol. 31, no. 13, pp. 3406–3415, 2003.

107

[68] A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, J. Thompson, R. Jacak, K. W. Kauf-
man, P. D. Renfrew, C. A. Smith, W. Sheffler et al., “ROSETTA3: an object-oriented
software suite for the simulation and design of macromolecules,” in Methods in
Enzymology. Elsevier, 2011, vol. 487, pp. 545–574.

[69] J. T. Bates, D. Chivian, and A. P. Arkin, “GLAMM: genome-linked application for
metabolic maps,” Nucleic Acids Research, vol. 39, no. suppl_2, pp. W400–W405, 2011.

[70] M. S. Dasika and C. D. Maranas, “OptCircuit: an optimization based method for
computational design of genetic circuits,” BMC Systems Biology, vol. 2, no. 1, p. 24,
2008.

[71] G. Rodrigo and A. Jaramillo, “AutoBioCAD: full biodesign automation of genetic
circuits,” ACS Synthetic Biology, vol. 2, no. 5, pp. 230–236, 2012.

[72] M. A. Marchisio, “Parts & pools: a framework for modular design of synthetic gene
circuits,” Frontiers in Bioengineering and Biotechnology, vol. 2, p. 42, 2014.

[73] V. Vasilev, C. Liu, T. Haddock, S. Bhatia, A. Adler, F. Yaman, J. Beal, J. Babb, R. Weiss,
D. Densmore et al., “A software stack for specification and robotic execution of proto-
cols for synthetic biological engineering,” in 3rd International Workshop on Bio-Design
Automation. Citeseer, 2011.

[74] E. Appleton, J. Tao, T. Haddock, and D. Densmore, “Interactive assembly algorithms
for molecular cloning,” Nature Methods, vol. 11, no. 6, p. 657, 2014.

[75] J. Blakes, O. Raz, U. Feige, J. Bacardit, P. Widera, T. Ben-Yehezkel, E. Shapiro, and
N. Krasnogor, “Heuristic for maximizing DNA reuse in synthetic DNA library as-
sembly,” ACS Synthetic Biology, vol. 3, no. 8, pp. 529–542, 2014.

[76] H. Huang and D. Densmore, “Fluigi: microfluidic device synthesis for synthetic
biology,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 11,
no. 3, p. 26, 2014.

[77] N. J. Hillson, R. D. Rosengarten, and J. D. Keasling, “J5 DNA assembly design
automation software,” ACS Synthetic Biology, vol. 1, no. 1, pp. 14–21, 2011.

[78] G. Linshiz, N. Stawski, G. Goyal, C. Bi, S. Poust, M. Sharma, V. Mutalik, J. D.
Keasling, and N. J. Hillson, “PR-PR: cross-platform laboratory automation system,”
ACS Synthetic Biology, vol. 3, no. 8, pp. 515–524, 2014.

[79] T. Koressaar and M. Remm, “Enhancements and modifications of primer design
program Primer3,” Bioinformatics, vol. 23, no. 10, pp. 1289–1291, 2007.

[80] A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and
S. G. Rozen, “Primer3-new capabilities and interfaces,” Nucleic Acids Research, vol. 40,
no. 15, pp. e115–e115, 2012.

[81] W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C.
Bravo, S. Davis, L. Gatto, T. Girke et al., “Orchestrating high-throughput genomic
analysis with bioconductor,” Nature Methods, vol. 12, no. 2, p. 115, 2015.

108

[82] S. M. Castillo-Hair, J. T. Sexton, B. P. Landry, E. J. Olson, O. A. Igoshin, and J. J. Tabor,
“FlowCal: a user-friendly, open source software tool for automatically converting
flow cytometry data from arbitrary to calibrated units,” ACS Synthetic Biology, vol. 5,
no. 7, pp. 774–780, 2016.

[83] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D. Keasling, “Design,
implementation and practice of JBEI-ICE: an open source biological part registry
platform and tools,” Nucleic Acids Research, vol. 40, no. 18, pp. e141–e141, 2012.

[84] C. Madsen, J. A. McLaughlin, G. Mısırlı, M. Pocock, K. Flanagan, J. Hallinan, and
A. Wipat, “The SBOL stack: a platform for storing, publishing, and sharing synthetic
biology designs,” ACS Synthetic Biology, vol. 5, no. 6, pp. 487–497, 2016.

[85] D. Densmore, A. Van Devender, M. Johnson, and N. Sritanyaratana, “A platform-
based design environment for synthetic biological systems,” in The Fifth Richard
Tapia Celebration of Diversity in Computing Conference: Intellect, Initiatives, Insight, and
Innovations. ACM, 2009, pp. 24–29.

[86] E. Appleton, J. Tao, F. C. Wheatley, D. H. Desai, T. M. Lozanoski, P. D. Shah, J. A.
Awtry, S. S. Jin, T. L. Haddock, and D. M. Densmore, “Owl: electronic datasheet
generator,” ACS Synthetic Biology, vol. 3, no. 12, pp. 966–968, 2014.

[87] V. Chelliah, C. Laibe, and N. Le Novère, “BioModels database: a repository of
mathematical models of biological processes,” in Encyclopedia of Systems Biology.
Springer, 2013, pp. 134–138.

[88] C. J. Myers, N. A. Barker, K. R. Jones, H. Kuwahara, C. Madsen, and N.-P. D. Nguyen,
“IBioSim: a tool for the analysis and design of genetic circuits.” Bioinformatics, vol. 25,
no. 21, pp. 2848–2849, 2009.

[89] L. Watanabe, T. Nguyen, M. Zhang, Z. Zundel, Z. Zhang, C. Madsen, N. Roehner,
and C. Myers, “IBioSim 3: a tool for model-based genetic circuit design,” ACS
Synthetic Biology, vol. 8, no. 7, pp. 1560–1563, 2018.

[90] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes,
and U. Kummer, “COPASI: a complex pathway simulator,” Bioinformatics, vol. 22,
no. 24, pp. 3067–3074, 2006.

[91] A. D. Hill, J. R. Tomshine, E. M. Weeding, V. Sotiropoulos, and Y. N. Kaznessis,
“SynBioSS: the synthetic biology modeling suite,” Bioinformatics, vol. 24, no. 21, pp.
2551–2553, 2008.

[92] D. Chandran, F. T. Bergmann, and H. M. Sauro, “TinkerCell: modular CAD tool for
synthetic biology,” Journal of Biological Engineering, vol. 3, no. 1, p. 19, 2009.

[93] S. S. Jang, K. T. Oishi, R. G. Egbert, and E. Klavins, “Specification and simulation
of synthetic multicelled behaviors,” ACS Synthetic Biology, vol. 1, no. 8, pp. 365–374,
2012.

[94] J. Starruß, W. de Back, L. Brusch, and A. Deutsch, “Morpheus: a user-friendly mod-
eling environment for multiscale and multicellular systems biology,” Bioinformatics,
vol. 30, no. 9, pp. 1331–1332, 2014.

109

[95] B. G. Olivier, J. M. Rohwer, and J.-H. S. Hofmeyr, “Modelling cellular systems with
PySCeS,” Bioinformatics, vol. 21, no. 4, pp. 560–561, 2005.

[96] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, and H. Kitano,
“CellDesigner 3.5: a versatile modeling tool for biochemical networks,” Proceedings
of the IEEE, vol. 96, no. 8, pp. 1254–1265, 2008.

[97] H. Sauro, “Jarnac: an interactive metabolic systems language in computation in
cells,” in Proceedings of an EPSRC Emerging Computing Paradigms Workshop. Dept.
of Computer Science Technical Report No. 345, University of Hertfordshire, 2000.

[98] C. Madsen, F. Shmarov, and P. Zuliani, “BioPSy: an SMT-based tool for guaranteed
parameter set synthesis of biological models,” in International Conference on Compu-
tational Methods in Systems Biology. Springer, 2015, pp. 182–194.

[99] E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier, M. König, J. K. Medley, M. H. Swat, and
H. M. Sauro, “LibRoadRunner: a high performance sbml simulation and analysis
library,” Bioinformatics, vol. 31, no. 20, pp. 3315–3321, 2015.

[100] S. Chakrabarti, C. J. Lanczycki, A. R. Panchenko, T. M. Przytycka, P. A. Thiessen, and
S. H. Bryant, “Refining multiple sequence alignments with conserved core regions,”
Nucleic Acids Research, vol. 34, no. 9, pp. 2598–2606, 2006.

[101] G. Wu, N. Bashir-Bello, and S. J. Freeland, “The synthetic gene designer: a flexible
web platform to explore sequence manipulation for heterologous expression,” Pro-
tein Expression and Purification, vol. 47, no. 2, pp. 441–445, 2006.

[102] M. Zhang, J. A. McLaughlin, A. Wipat, and C. J. Myers, “SBOLDesigner 2: an
intuitive tool for structural genetic design,” ACS Synthetic Biology, vol. 6, no. 7, pp.
1150–1160, 2017.

[103] N. Roehner and C. J. Myers, “Directed acyclic graph-based technology mapping of
genetic circuit models,” ACS Synthetic Biology, vol. 3, no. 8, pp. 543–555, 2014.

[104] H. Baig and J. Madsen, “A top-down approach to genetic circuit synthesis and opti-
mized technology mapping,” in 9th International Workshop on Bio-Design Automation,
2017.

[105] M. Madec, F. Pecheux, Y. Gendrault, E. Rosati, C. Lallement, and J. Haiech,
“GeNeDA: An open-source workflow for design automation of gene regulatory
networks inspired from microelectronics,” Journal of Computational Biology, vol. 23,
no. 10, pp. 841–855, 2016.

[106] J. Böhm, S. Scherzer, E. Krol, I. Kreuzer, K. von Meyer, C. Lorey, T. D. Mueller,
L. Shabala, I. Monte, R. Solano et al., “The venus flytrap dionaea muscipula counts
prey-induced action potentials to induce sodium uptake,” Current Biology, vol. 26,
no. 3, pp. 286–295, 2016.

[107] M. Escalante-Pérez, E. Krol, A. Stange, D. Geiger, K. A. Al-Rasheid, B. Hause,
E. Neher, and R. Hedrich, “A special pair of phytohormones controls excitability,
slow closure, and external stomach formation in the venus flytrap,” Proceedings of the
National Academy of Sciences, vol. 108, no. 37, pp. 15 492–15 497, 2011.

110

[108] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii-an open-source Ver-
ilog HDL synthesis tool for CAD research,” in Field-Programmable Custom Computing
Machines (FCCM), 2010 18th IEEE Annual International Symposium on. IEEE, 2010,
pp. 149–156.

[109] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification
tool,” in Computer Aided Verification. Springer Berlin Heidelberg, 2010, pp. 24–40.

[110] A. Vachoux, C. Grimm, and K. Einwich, “Analog and mixed signal modelling with
SystemC-AMS,” in Circuits and Systems, 2003. ISCAS’03. Proceedings of the 2003 Inter-
national Symposium on, vol. 3. IEEE, 2003, pp. III–III.

[111] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden et al., “The systems biology markup lan-
guage (SBML): a medium for representation and exchange of biochemical network
models,” Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

[112] C. Lou, X. Liu, M. Ni, Y. Huang, Q. Huang, L. Huang, L. Jiang, D. Lu, M. Wang,
C. Liu et al., “Synthesizing a novel genetic sequential logic circuit: a push-on push-off
switch,” Molecular Systems Biology, vol. 6, no. 1, p. 350, 2010.

[113] T. S. Bayer and C. D. Smolke, “Programmable ligand-controlled riboregulators of
eukaryotic gene expression,” Nature Biotechnology, vol. 23, no. 3, p. 337, 2005.

[114] J. E. Dueber, B. J. Yeh, K. Chak, and W. A. Lim, “Reprogramming control of an
allosteric signaling switch through modular recombination,” Science, vol. 301, no.
5641, pp. 1904–1908, 2003.

[115] D. R. Burrill and P. A. Silver, “Synthetic circuit identifies subpopulations with sus-
tained memory of DNA damage,” Genes & Development, vol. 25, no. 5, pp. 434–439,
2011.

[116] D. R. Burrill, M. C. Inniss, P. M. Boyle, and P. A. Silver, “Synthetic memory circuits
for tracking human cell fate,” Genes & Development, vol. 26, no. 13, pp. 1486–1497,
2012.

[117] A. Davis and S. Nowick, Encyclopedia of Computer Science and Technology, supplement
23 ed., J. G. W. Allen Kent, Ed. CRC Press, 1998, vol. 38, no. 231–286.

[118] H. Kaeslin, Top-Down Digital VLSI Design: From Architectures to Gate-Level Circuits and
FPGAs. Morgan Kaufmann, 2014.

[119] H. B. Bakoglu, “Circuits, interconnections, and packaging for VLSI.” 1990.

[120] K. Nagaraj, A. S. Kamath, K. Subburaj, B. Chattopadhyay, G. Nayak, S. S. Evani, N. P.
Nayak, I. Prathapan, F. Zhang, and B. Haroun, “Architectures and circuit techniques
for multi-purpose digital phase lock loops,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 60, no. 3, pp. 517–528, 2013.

[121] B. Razavi, DelayLocked Loops An Overview. IEEE, 2003, vol. 1, ch. 2, pp. 13–22.

[122] C. J. Myers, W. Belluomini, K. Kallpack, E. Peskin, and H. Zheng, “Timed circuits: a
new paradigm for high-speed design,” in Proceedings of the 2001 Asia and South Pacific
Design Automation Conference. ACM, 2001, pp. 335–340.

111

[123] J. L. Peterson, “Petri net theory and the modeling of systems,” 1981.

[124] J. Kim, K. S. White, and E. Winfree, “Construction of an in vitro bistable circuit from
synthetic transcriptional switches,” Molecular Systems Biology, vol. 2, no. 1, p. 68, 2006.

[125] A. Nagy, “Cre recombinase: the universal reagent for genome tailoring,” Genesis,
vol. 26, no. 2, pp. 99–109, 2000.

[126] M. Galdzicki, K. Clancy, E. Oberortner, M. Pocock, J. Quinn, C. Rodriguez,
N. Roehner, M. Wilson, L. Adam, C. Anderson et al., “The synthetic biology open
language (SBOL) provides a community standard for communicating designs in
synthetic biology,” Nature Biotechnology, vol. 32, no. 6, p. 545, 2014.

[127] N. Roehner, J. Beal, K. Clancy, B. Bartley, G. Mısırlı, R. Grünberg, E. Oberortner,
M. Pocock, M. Bissell, C. Madsen, T. Nguyen, M. Zhang, Z. Zhang, Z. Zundel,
D. Densmore, J. Gennari, A. Wipat, H. Sauro, and C. Myers, “Sharing structure and
function in biological design with SBOL 2.0,” ACS Synthetic Biology, vol. 5, no. 6, pp.
498–506, 2016.

[128] M. Hucka, F. T. Bergmann, S. Hoops, S. M. Keating, S. Sahle, J. C. Schaff, L. P. Smith,
and D. J. Wilkinson, “The systems biology markup language (SBML): language
specification for level 3 version 1 core,” Journal of Integrative Bioinformatics, vol. 12,
no. 2, pp. 382–549, 2015.

[129] R. Gauges, U. Rost, S. Sahle, K. Wengler, and F. T. Bergmann, “The systems biology
markup language (SBML) level 3 package: layout, version 1 core,” Journal of Integra-
tive Bioinformatics, vol. 12, no. 2, pp. 550–602, 2015.

[130] L. P. Smith, M. Hucka, S. Hoops, A. Finney, M. Ginkel, C. J. Myers, I. Moraru, and
W. Liebermeister, “SBML level 3 package: hierarchical model composition, version 1
release 3,” Journal of Integrative Bioinformatics, vol. 12, no. 2, pp. 603–659, 2015.

[131] B. G. Olivier and F. T. Bergmann, “The systems biology markup language (SBML)
level 3 package: flux balance constraints,” Journal of Integrative Bioinformatics, vol. 12,
no. 2, pp. 660–690, 2015.

[132] C. Chaouiya, S. M. Keating, D. Berenguier, A. Naldi, D. Thieffry, M. P. van Iersel,
N. L. Novère, and T. Helikar, “The systems biology markup language (SBML) level 3
package: qualitative models, version 1, release 1,” Journal of Integrative Bioinformatics,
vol. 12, no. 2, p. 270, 2015.

[133] C. Madsen, C. J. Myers, T. Patterson, N. Roehner, J. T. Stevens, and C. Winstead,
“Design and test of genetic circuits using iBioSim,” IEEE Design & Test of Computers,
vol. 29, no. 3, pp. 32–39, 2012.

[134] G. Misirli, A. Wipat, J. Mullen, K. James, M. Pocock, W. Smith, N. Allenby, and
J. S. Hallinan, “BacillOndex: an integrated data resource for systems and synthetic
biology,” Journal of Integrative Bioinformatics, vol. 10, no. 2, pp. 103–116, 2013.

[135] G. Mısırlı, J. Hallinan, M. Pocock, P. Lord, J. A. McLaughlin, H. Sauro, and A. Wipat,
“Data integration and mining for synthetic biology design,” ACS Synthetic Biology,
vol. 5, no. 10, pp. 1086–1097, 2016.

112

[136] N. Roehner, Z. Zhang, T. Nguyen, and C. J. Myers, “Generating systems biology
markup language models from the synthetic biology open language,” ACS Synthetic
Biology, vol. 4, no. 8, pp. 873–879, 2015.

[137] T. Nguyen, N. Roehner, Z. Zundel, and C. J. Myers, “A converter from the systems
biology markup language to the synthetic biology open language,” ACS Synthetic
Biology, vol. 5, no. 6, pp. 479–486, 2016.

[138] D. Waltemath, R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K. Miller,
I. I. Moraru, D. Nickerson, S. Sahle, J. L. Snoep et al., “Reproducible computational
biology experiments with SED-ML-the simulation experiment description markup
language,” BMC Systems Biology, vol. 5, no. 1, p. 198, 2011.

[139] F. T. Bergmann, R. Adams, S. Moodie, J. Cooper, M. Glont, M. Golebiewski,
M. Hucka, C. Laibe, A. K. Miller, D. P. Nickerson et al., “COMBINE archive and
OMEX format: one file to share all information to reproduce a modeling project,”
BMC Bioinformatics, vol. 15, no. 1, p. 369, 2014.

[140] N. Rodriguez, A. Thomas, L. Watanabe, I. Y. Vazirabad, V. Kofia, H. F. Gómez, F. Mit-
tag, J. Matthes, J. Rudolph, F. Wrzodek et al., “JSBML 1.0: providing a smorgasbord
of options to encode systems biology models,” Bioinformatics, vol. 31, no. 20, pp.
3383–3386, 2015.

[141] B. J. Bornstein, S. M. Keating, A. Jouraku, and M. Hucka, “LibSBML: an API library
for SBML,” Bioinformatics, vol. 24, no. 6, pp. 880–881, 2008.

[142] M. Courtot, N. Juty, C. KnÕìpfer, D. Waltemath, A. Zhukova, A. DrÕạger, M. Du-
montier, A. Finney, M. Golebiewski, J. Hastings, S. Hoops, S. Keating, D. B. Kell,
S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez,
A. Villeger, D. J. Wilkinson, S. Wimalaratne, C. Laibe, M. Hucka, and N. L. Novère,
“Controlled vocabularies and semantics in systems biology,” Molecular Systems Biol-
ogy, vol. 7, no. 1, p. 543, jan 2011.

[143] C. J. Myers, Asynchronous Circuit Design. John Wiley & Sons, 2001.

[144] E. V. Nikolaev and E. D. Sontag, “Quorum-sensing synchronization of synthetic
toggle switches: a design based on monotone dynamical systems theory,” PLoS
Computational Biology, vol. 12, no. 4, p. e1004881, 2016.

[145] P. Vaidyanathan, B. S. Der, S. Bhatia, N. Roehner, R. Silva, C. A. Voigt, and D. Dens-
more, “A framework for genetic logic synthesis,” Proceedings of the IEEE, vol. 103,
no. 11, pp. 2196–2207, 2015.

[146] A. Tamsir, J. J. Tabor, and C. A. Voigt, “Robust multicellular computing using genet-
ically encoded NOR gates and chemical ‘wires‘,” Nature, vol. 469, no. 7329, p. 212,
2011.

[147] J. A. McLaughlin, C. J. Myers, Z. Zundel, G. Mısırlı, M. Zhang, I. D. Ofiteru,
A. Goñi-Moreno, and A. Wipat, “SynBioHub: a standards-enabled design repository
for synthetic biology,” ACS Synthetic Biology, vol. 7, no. 2, pp. 682–688, jan 2018.

113

[148] N. Roehner, B. Bartley, J. Beal, J. McLaughlin, M. Pocock, M. Zhang, Z. Zundel,
and C. J. Myers, “Specifying combinatorial designs with the synthetic biology open
language (SBOL),” ACS Synthetic Biology, vol. 8, no. 7, pp. 1519–1523, jun 2019.

[149] G. Misirli, T. Nguyen, J. A. McLaughlin, P. Vaidyanathan, T. S. Jones, D. Densmore,
C. Myers, and A. Wipat, “A computational workflow for the automated generation of
models of genetic designs,” ACS Synthetic Biology, vol. 8, no. 7, pp. 1548–1559, 2018.

[150] C. J. Myers, Engineering Genetic Circuits. Chapman and Hall/CRC, 2016.

[151] ——, Platforms for genetic design automation. Elsevier, 2013, vol. 40, ch. 7, pp. 177–202.

[152] N.-p. Nguyen, C. Myers, H. Kuwahara, C. Winstead, and J. Keener, “Design and
analysis of a robust genetic Muller C-element,” Journal of Theoretical Biology, vol. 264,
no. 2, pp. 174–187, 2010.

[153] M. Uhlén, L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu,
Å. Sivertsson, C. Kampf, E. Sjöstedt, A. Asplund et al., “Tissue-based map of the
human proteome,” Science, vol. 347, no. 6220, p. 1260419, 2015.

[154] M. Uhlen, P. Oksvold, L. Fagerberg, E. Lundberg, K. Jonasson, M. Forsberg,
M. Zwahlen, C. Kampf, K. Wester, S. Hober et al., “Towards a knowledge-based
human protein atlas,” Nature Biotechnology, vol. 28, no. 12, p. 1248, 2010.

[155] J. Zhu, G. Chen, S. Zhu, S. Li, Z. Wen, B. Li, Y. Zheng, and L. Shi, “Identification
of tissue-specific protein-coding and noncoding transcripts across 14 human tissues
using RNA-seq,” Scientific Reports, vol. 6, p. 28400, 2016.

[156] I. Espinoza, M. J. Sakiyama, T. Ma, L. Fair, X. Zhou, M. Hassan, J. Zabaleta, and C. R.
Gomez, “Hypoxia on the expression of hepatoma upregulated protein in prostate
cancer cells,” Frontiers in Oncology, vol. 6, p. 144, 2016.

[157] M. Duffy, A. van Dalen, C. Haglund, L. Hansson, R. Klapdor, R. Lamerz, O. Nilsson,
C. Sturgeon, and O. Topolcan, “Clinical utility of biochemical markers in colorectal
cancer: European group on tumour markers (EGTM) guidelines,” European Journal
of Cancer, vol. 39, no. 6, pp. 718–727, 2003.

[158] K. Goonetilleke and A. Siriwardena, “Systematic review of carbohydrate antigen (CA
19-9) as a biochemical marker in the diagnosis of pancreatic cancer,” European Journal
of Surgical Oncology (EJSO), vol. 33, no. 3, pp. 266–270, 2007.

[159] J. Davison, “Genetic exchange between bacteria in the environment,” Plasmid, vol. 42,
no. 2, pp. 73–91, 1999.

[160] A. Pai, Y. Tanouchi, C. H. Collins, and L. You, “Engineering multicellular systems by
cell–cell communication,” Current Opinion in Biotechnology, vol. 20, no. 4, pp. 461–470,
2009.

[161] K. Brenner, L. You, and F. H. Arnold, “Engineering microbial consortia: a new
frontier in synthetic biology,” Trends in Biotechnology, vol. 26, no. 9, pp. 483–489, 2008.

[162] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decomposition dur-
ing technology mapping,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 8, pp. 813–834, 1997.

