
TECHNOLOGY MAPPING OF TIMED

ASYNCHRONOUS CIRCUITS

by

Curtis Allen Nelson

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

Electrical and Computer Engineering

The University of Utah

December 2004

Copyright c© Curtis Allen Nelson 2004

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Curtis Allen Nelson

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Chris J. Myers

Erik Brunvand

Behrouz Farhang-Boroujeny

Reid R. Harrison

Ken Stevens

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Curtis Allen Nelson in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Chris J. Myers
Chair, Supervisory Committee

Approved for the Major Department

Marc Bodson
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

This dissertation presents an efficient method for technology-mapping of timed

asynchronous circuits. Technology-mapping combines the steps of decomposition,

partitioning, and matching/covering to implement a synthesized design in a given

technology. This work is applied to timed circuits, which are a class of asynchronous

circuits that utilize explicit timing information for optimization throughout the

entire design process. This work carries the timing constraints down to the circuit

implementation level, giving new insight into the detection and elimination of

hazards. In asynchronous circuits, correct operation requires that there are no

hazards in the circuit implementation. Therefore, each internal node and output of

the transformed circuit following decomposition must be verified for hazard-freedom

to ensure correct operation. Current verification algorithms require an explicit state

exploration often resulting in state explosion for even modest sized examples. The

goal of the hazard verification portion of technology-mapping is to abstract the

behavior of internal nodes and utilize the reduced state space to make a conservative

determination of hazard-freedom for each node in the circuit. The newly annotated

circuit is then mapped to an existing library for implementation. This dissertation

explores various complexities of libraries used for matching and examines the hazard

covering behavior using a variety of gates. Issues such as short-circuit detection and

common-input matching are explored in detail, particularly when libraries contain

generalized C-elements. The goal of this research is a hazard-free implementation

of the synthesized design in a user-provided technology. Experimental results

indicate that this new hazard-verification approach is substantially more efficient

than existing timing verification tools and that in most cases hazard-free netlists

are produced with modest sized libraries.

To my family, for toughening my skin.

CONTENTS

ABSTRACT . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

ACKNOWLEDGMENTS . xiii

CHAPTERS

1. INTRODUCTION . 1

1.1 Synchronous Design Flow . 2
1.2 Asynchronous Design Flow . 4
1.3 Verification . 6
1.4 Synchronous Technology-Mapping . 7
1.5 Asynchronous Technology-Mapping . 12

1.5.1 Delay-Insensitive Circuits . 12
1.5.2 Speed-Independent Circuits . 12
1.5.3 Fundamental-Mode Circuits . 15
1.5.4 Timed Circuits . 17

1.6 Goal . 18
1.7 Contributions . 18
1.8 Dissertation Overview . 19

2. BACKGROUND AND SEMANTICS . 21

2.1 Time Petri Nets . 21
2.2 Netlists . 23
2.3 Sum-of-Products Representation . 23
2.4 Generalized C-elements . 24
2.5 Timed Asynchronous Design Flow . 26

3. DETERMINATION OF HAZARD-FREEDOM 30

3.1 State Graphs . 31
3.2 Definition of Circuit Correctness . 32

3.2.1 Complex Gate Equivalence . 32
3.2.2 Acknowledgment Hazards . 34
3.2.3 Monotonicity Hazards . 35

3.3 Hazard Verification Algorithm . 36
3.3.1 Checking Equivalence . 36

3.3.2 Finding Stable States . 37
3.3.3 Untimed Stabilization . 39
3.3.4 Timed Stabilization . 40
3.3.5 Acknowledgment Hazards . 45
3.3.6 Monotonicity Hazards . 46

4. DECOMPOSITION . 51

4.1 Decomposition Algorithm . 51
4.1.1 Decomposition to Base Functions . 52
4.1.2 Insertion of Inverter Pairs . 57

4.2 Hazard Annotation . 59
4.3 Input Pin Reordering . 60
4.4 Library Creation . 63

4.4.1 Implementation Library . 64
4.4.2 Base Functions . 64
4.4.3 Decomposition of Common-Input Cells 65
4.4.4 Input Label Permutations . 67

5. MATCHING AND COVERING . 69

5.1 Basic Matching . 69
5.1.1 Top Level Matching Algorithm . 71
5.1.2 Matching Algorithm . 73
5.1.3 Simple Matching and Covering Example 74

5.2 Hazard-Aware Matching . 78
5.3 Short-Circuit Issues in gC’s . 83
5.4 Matching Common-Inputs . 89

6. EXPERIMENTAL RESULTS . 93

6.1 Verification . 93
6.1.1 Verification of Benchmark Files . 93
6.1.2 Verification Using Decomposed Circuits 95
6.1.3 Timed and Untimed Stabilization . 96

6.2 Matching and Covering . 97
6.2.1 Implementation Libraries . 98
6.2.2 Matching Using Speed-Independent Synthesis 99
6.2.3 Matching Using Timed Synthesis . 101
6.2.4 Hazard-Aware Matching . 102
6.2.5 Short-Circuit Rejection for gC’s . 106

6.3 The Cost of Hazard-Freedom . 107
6.4 Case Studies . 110

6.4.1 False Hazards . 110
6.4.2 Nonpropagating Acknowledgment Hazard 112
6.4.3 Nonoptimum Covered Circuit . 114

vii

7. CONCLUSIONS . 116

7.1 Summary . 116
7.2 Current Relevance . 118
7.3 Future Work . 119

7.3.1 False Hazards . 119
7.3.2 Reordering of Inputs . 119
7.3.3 Inertial Delay Models . 120
7.3.4 Hazard-Dependent Behavior . 120
7.3.5 Acknowledgment Hazards . 120
7.3.6 Inverter Pair Insertion . 121
7.3.7 Other Input Forms . 121
7.3.8 Internal Cycles . 121

REFERENCES . 122

viii

LIST OF TABLES

4.1 Truth tables for a gC and a CEL. 54

5.1 Costs for sample library. 76

5.2 Structural matches for Ebergen output b. 77

6.1 Comparison against other timing verification tools. 94

6.2 Comparison for decomposed netlists. 95

6.3 Hazard comparison based on stabilization method. 96

6.4 Hazard reduction for speed-independent synthesis. 100

6.5 Hazard reduction for timed synthesis. 102

6.6 Hazard reduction using various weighting factors. 103

6.7 Comparing w1,w2 = (0,1) by wins and losses. 105

6.8 Short-circuit rejection of gC’s. 106

6.9 Cost of hazard reduction for untimed synthesis and verification. 108

6.10 Cost of hazard reduction for timed synthesis and verification. 109

LIST OF FIGURES

1.1 Synchronous design flow. 3

1.2 Asynchronous design flow. 5

1.3 Atomic gate model. 6

1.4 Decomposition architectures. 9

1.5 4-input AND function decomposition. 10

1.6 Hazard behavior using a speed-independent model. 14

1.7 Hazard behavior using a fundamental-mode model. 16

2.1 A time Petri net example. 22

2.2 Generalized C-element structure. 24

2.3 Example gC circuit. 26

2.4 Expanded timed asynchronous design flow. 27

2.5 Top level technology-mapping algorithm. 28

3.1 Example CGE circuit. 33

3.2 Explicit state graph. 34

3.3 Circuit to illustrate hazards. 35

3.4 Top level algorithm for verification. 36

3.5 Algorithm for finding stable states. 38

3.6 Untimed stabilization algorithm. 39

3.7 Timed stabilization algorithm. 41

3.8 Algorithm to update the zone. 42

3.9 Zone creation and evolution. 43

3.10 Timed stabilization recursion. 43

3.11 Algorithm to check for acknowledgment hazards. 45

3.12 Algorithm to check for monotonicity hazards. 46

3.13 Algorithm to check for a potential hazard. 47

3.14 Example to illustrate monotonicity hazards. 49

4.1 Generalized C-element structure. 53

4.2 CEL structure. 54

4.3 Decomposition algorithm for fu. 55

4.4 Decomposition algorithm for an OR function. 55

4.5 Decomposition algorithm for an AND function. 56

4.6 Decomposition algorithm for a literal. 57

4.7 Example decompositions. 58

4.8 Hazard annotations. 60

4.9 Input pin reordering. 61

4.10 Hazard-freedom through pin reordering. 62

4.11 Library cell examples . 65

4.12 2-input XOR example. 66

4.13 XOR matching example. 66

4.14 Input permutation example. 68

5.1 Top level matching and covering algorithm. 72

5.2 Matching algorithm. 73

5.3 Decomposition of Ebergen output b. 75

5.4 Example library. 75

5.5 Optimum covering of Ebergen output b. 79

5.6 Final circuit and netlist. 79

5.7 Algorithm for hazard-aware matching. 81

5.8 Hazard-aware matching. 82

5.9 Algorithm for short-circuit detection in gCs. 84

5.10 gC and CEL structures. 85

5.11 A short-circuit example. 85

5.12 Plain gC short-circuit example. 87

5.13 gc22 short-circuit example. 87

5.14 Segment of Ebergen output x state graph. 88

5.15 XOR decompositions. 90

5.16 gc22 library element structure. 90

5.17 Algorithm for common-input matching. 91

5.18 Common-input matching example. 92

6.1 Example library cells. 99

xi

6.2 False hazard example using circuit rpdft. 111

6.3 Full timed state graph for the region of interest in circuit rpdft. 112

6.4 Nonpropagating acknowledgment hazard example. 113

6.5 Nonoptimum covered circuit example. 115

xii

ACKNOWLEDGMENTS

There are many to thank and the first is Chris Myers, my committee chair and

patient advisor for the 3+ years of this research project. He has ably and willingly

provided proper alignment for my energy forces. He has proven not only to be

a superb technical advisor, setting high standards and requiring compliance, but

has also extended friendship beyond that expected. He has broadened my horizons,

both in technical terms, and also by providing direct support to experience research

at Stanford University and the Tokyo Institute of Technology. I am grateful to have

been chosen as a student in his asynchronous research group.

Special thanks go to Eric Mercer and Erik Peskin who spent countless hours

keeping my gaskets from blowing. Scott Little, Kip Killpack, Dave Walter, and

Yanyi Zhou provided necessary technical support, as well as making office hours

more enjoyable. I would like to thank Professor Tomohiro Yoneda for allowing us

to conduct research in Japan. I also would like to acknowledge the support given

by the Semiconductor Research Corporation, especially Ginny Wiggins and her

capable staff.

I’d like to thank my employer, Walla Walla College, and the administration who

supported my leave and gambled that I am a safe bet for the long-term. I’d also

like to acknowledge the support and sacrifices made by my colleagues at the Walla

Walla School of Engineering who pitched in at crucial times to lighten my load.

There is no way I could adequately express the debt of gratitude I owe my wife

Wanda and daughter Heather for their love and support, and loaning me to the

state of Utah for 2+ years.

Finally, I’d like to thank the mountains of Utah, just for being there.

CHAPTER 1

INTRODUCTION

Synchronous systems are those controlled by a central clock. These systems have

dominated logic design since the advent of the integrated circuit and the necessary

design styles and tools have become mature and well understood. However, with

trends in the integrated circuit industry pushing performance to physical limita-

tions, the timing issues involved with global clock synchronization have become

increasingly difficult to resolve. As clock speeds increase, the amount of time

available per clock period decreases to the point where serious design problems

and even outright failure can occur if these issues are not resolved. As a result,

logic designers require better CAD tools and more precise modeling. Alternatively,

serious consideration is being given to more aggressive design styles.

Asynchronous design styles remove the need to address clocking issues by remov-

ing the global clock itself. However, asynchronous designs are difficult to implement

reliably because of the presence of hazards. In many cases, the advantages inherent

to asynchronous design are wasted due to the overhead required to implement

hazard-free circuits. Timed circuits are a class of asynchronous design that uses

explicit timing information in circuit synthesis [1]. The use of explicit timing

information has been shown to potentially outperform synchronous designs and

other asynchronous design styles as well. This is demonstrated in the Intel RAPPID

project in which an asynchronous instruction length decoder for an x86 processor

is designed using timed circuits, which are three times faster while using half the

power of the comparable synchronous design [2].

Researchers have developed numerous Computer Aided Design (CAD) tools to

support asynchronous design styles. These tools have focused on the specification

2

and synthesis stages of the design flow. Designs are specified at a high level and

synthesis produces a logic description that is guaranteed to be hazard-free. Since

logic synthesis is best optimized when it is not constrained by an implementation

technology, the resulting logic equations are unlikely to conform directly to available

library elements. Technology-mapping, also called library binding, is the process

whereby a technology-independent logic representation is mapped to a technology-

dependent library. For timed asynchronous circuits, this process is often done by

hand as there are currently no automated CAD tools available that address removal

of hazards created during technology-mapping.

Synchronous designers have complete CAD tool-sets available from a variety of

commercial sources and high-level, technology-independent design descriptions are

implemented in technology-dependent libraries with little or no custom work needed

by the designer. These tools and the algorithms they employ cannot be directly

applied to timed asynchronous designs because they have little or no ability to deal

with hazards. Although performance pressure is causing designers to expand their

consideration of other design methodologies, the adoption of timed asynchronous

circuits is unlikely until the supporting CAD tools are complete and have been

tested on industry grade designs. In addition, few designers are aware of these

alternative methodologies because they remain primarily in the purview of research

labs and universities and have seen little exposure to market driven pressures.

This dissertation bridges the gap between synchronous technology-mapping

techniques and the technology-mapping of timed asynchronous circuits. The goal

is to complete the design flow for timed asynchronous circuits by developing an

efficient and verifiable methodology for identifying and eliminating hazards created

during technology-mapping.

1.1 Synchronous Design Flow

A typical design flow for synchronous systems is shown in Figure 1.1. The

process of automatic synthesis starts with a technology-independent description of

the design and ends with a technology-dependent transistor level implementation.

3

Decomposition

Logic Synthesis

Matching/Covering

Physical Design

Layout

Library

Cost Factors

Specifications

Technology Mapping

Partitioning

Figure 1.1. Synchronous design flow.

The subject of fully automated systems for synchronous design has been an

active area of research since the 1960s. Initial research focused on the problems of

minimizing the number of states needed to implement a given Finite State Machine

(FSM) specification and the decomposition of an FSM into a network of two or more

FSMs, which are behaviorally equivalent to the original one. Books by Hartmanis

[3] and Kohavi [4] give excellent summaries of the first two decades of research in

the optimization of synchronous FSMs.

In the 1980s, the research began to address the issue of structural representa-

tions, where the states (and sometimes the inputs and outputs) of the FSM are

encoded in such a way that issues of area, delay, power, and other cost factors

are adequately addressed. This problem was connected to multiple-valued logic

minimization by De Micheli et al. [5] and extensions to this work were done by

Villa et al. [6]. A more recent survey on the synthesis of FSMs for synchronous

systems is found in [7].

In the mid- to late 1980s, several CAD tools for synchronous design appeared

4

from research labs [8, 9, 10, 11]. As the theory and tools matured in the 1990s,

a number of companies such as Synopsis, Cadence, and Mentor Graphics began

marketing complete tool sets allowing the designer an automated means of pro-

ducing fully functional and verifiable designs. The design process typically starts

with an abstract high-level behavioral description of the circuit. Over the years,

this has migrated from schematics or RTL descriptions to high-level languages

such as VHDL [12] or Verilog [13]. These languages allow for better maintenance,

portability, and reuse of existing design efforts.

The logic synthesizer takes this high level description and creates a logical

representation of the circuit implementation. This process is often guided by a cost

metric such as area, power, or delay and the resulting logic equations reflect this

metric. For instance, a one-hot encoding scheme may be used in a synchronous state

machine to reduce the next-state logic which in turn reduces the combinational path

delay. This allows for a faster clock at the expense of increased area. The synthesis

engine works best with few (or no) constraints and the resulting logic equations

are optimal in a technology-independent sense. These equations from the synthesis

engine are then mapped to a specific technology in the technology-mapping phase,

which is described later.

1.2 Asynchronous Design Flow

Synchronous design flows cannot be used as is for asynchronous circuits because

of the possibility of introducing hazards on new internal wires. As a result, the

design flow shown in Figure 1.1 must be modified to accommodate the added restric-

tions placed on asynchronous design. Figure 1.2 shows the additional complexity

associated with these modifications.

The particular asynchronous design style chosen determines the algorithms used

during synthesis to generate a set of hazard-free logic equations. The synthesis of a

timed asynchronous circuit typically begins with a time Petri net (TPN) [14] as the

design specification. The TPN is then analyzed and a state graph (SG) is produced

as an intermediate representation of the circuit. The synthesis engine then takes

5

Timing VerificationMatching/Covering

Specifications

Layout

Library

Cost Factors

Logic Synthesis

Physical Design

Decomposition

Partitioning

Hazard
Verification

Figure 1.2. Asynchronous design flow.

this state graph as input and produces a hazard-free output, typically in the form

of logic equations. The technology-mapper then takes the TPN and the hazard-free

logic equations as inputs and outputs a hazard-free netlist composed of cells from

an implementation library.

Depending on the particular asynchronous design style, hazards can be intro-

duced during the decomposition stage of technology-mapping because the struc-

ture of the circuit changes. Each node in the newly decomposed netlist must be

annotated with hazard properties. This information is then passed to the match-

ing/covering stage, which attempts to eliminate the hazards by careful selection of

library elements. This work relies on the atomic gate model, which allows library

elements to encapsulate hazardous nodes within their structure. A complex gate is

considered atomic when its Boolean function is evaluated instantaneously and the

resulting value is then available at the output after a specified delay as shown in

Figure 1.3.

Once the circuit has been mapped to a technology-dependent library, timing

reverification must be performed to ensure the final netlist conforms to the original

6

c
a
b Gate

Complex

Figure 1.3. Atomic gate model.

timing specifications. Failure to ensure that the completed design meets original

timing specifications may result in a circuit whose behavior is not consistent with

the initial specifications.

1.3 Verification

While timed asynchronous circuits offer potential advantages over synchronous

circuits such as faster operation and lower power, these advantages are often offset

by the expense of the circuit overhead needed to eliminate hazards. Hazards are

conditions generated by the structure of the circuit or timing relationships between

inputs and propagation delays that can cause incorrect behavior. As synthesized

hazard-free logic equations are mapped to a given gate library, new internal nodes

are introduced in the circuit netlist. Each new internal node as well as the outputs

of the circuit must be verified for hazard-freedom to ensure correct operation of

the mapped circuit. This verification must be extremely efficient to allow for many

alternative designs to be considered during technology-mapping.

Verification algorithms for timed circuits [15, 16, 17, 18, 19, 20, 21, 22, 23] often

employ zones represented by difference bound matrices. When these verification

algorithms are applied to gate-level designs, the enumeration of the state-space can

can lead to state explosion problems. Yoneda and Schlingloff used a partial order

method to reduce this problem for timed circuits [24].

The state explosion issue in the verification of timed circuits must also be

addressed for gate-level speed-independent (SI) asynchronous circuits. In SI circuits,

no timing assumptions are made about gates or the environment. Beerel addresses

efficient gate-level verification methods for determinate SI circuits [25, 26]. Deter-

minate SI circuits adhere to SI constraints and allow input choice (conditionals)

but not output choice (arbitration). This work reduces the state space explosion

7

problem found in earlier methods by examining individual behavior at each internal

node and approximating this behavior for each state in the specification. The

hazard-freedom of the circuit is then verified by examining this cube approximation.

When the number of internal signals is high as compared with the number of

primary inputs and outputs (a feature common of many circuit design styles),

this cube approximation technique has the potential to substantially reduce the

complexity of verification as demonstrated in the results shown in [25].

The work described in this dissertation combines the cube approximation method

of [25] with the zone-based timing verification methods and develops an efficient

gate-level timing verification method for timed asynchronous circuits.

1.4 Synchronous Technology-Mapping

Technology-mapping is the process of binding the technology-independent de-

sign to a dependent technology. The synchronous technology-mapper takes as

input a technology-independent set of logic equations and a library of cells, and

produces a technology-dependent netlist implementing the circuit from cells found

in the library. This process is often optimized for a particular cost metric such as

area, speed, or power. Solving this problem exactly is intractable [27] so heuristics

have been created to break the problem up into smaller parts to get as good an

approximation as possible.

Excellent overviews of synchronous technology-mapping algorithms are found

in [28, 29]; therefore this section gives only a brief review. Algorithmic mappers

as described in [30, 31, 32], generally break the process up into three phases:

decomposition, partitioning, and matching/covering.

During partitioning [33], the network is split into single-output cones of logic

where each cone represents a partition of the circuit obtained by creating a cut-set

at points of multifanout. Each of these subcircuits is called a subject graph, which is

matched to the various library cells, called pattern graphs, in the matching/covering

step. The purpose of partitioning then, is to divide the size of the circuit to make

the covering function more tractable. In its simplest form, the circuit is split at

8

all points of multifanout and at the inputs to sequential elements. Each subpar-

tition is then covered locally. While this certainly makes the covering problem

more tractable, the efficiency obtained by covering across partition boundaries is

completely missed and the result is less optimum. Programs such as MIS [9] and

SIS [34] optimize the partitioning step to include the possibility of covering across

partition boundaries. The final result of this optimization is likely to be a smaller

circuit with a corresponding penalty paid in computation time.

The synthesized logic expressions from the initial network are represented as a

directed acyclic graph (DAG). These expressions are decomposed into a multilevel

circuit composed of simple gates called base functions. Base functions are typically

2-input AND, OR, NAND, or NOR gates, possibly inverters, and a primitive

storage element. The implementation library must include these base functions

to guarantee a solution.

Decomposition serves two purposes. First, it guarantees that a solution can be

found, that is, a netlist of the logic equations can always be created from the library

elements. Second, the finer granularity of a decomposed network allows for more

matching options and a chance of a higher quality solution. This is particularly

important since optimum netlists may differ depending on the chosen cost metric.

As an example, Figure 1.4 shows two possible decomposition architectures for a

4-input AND gate. The cost metric often determines which architecture is chosen.

For instance, the decomposition shown in Figure 1.4(a) has a longer worst case

path delay than the decomposition shown in Figure 1.4(b) so it is not desirable if

delay is the primary cost metric. However, if explicit or relative timing information

is available, it is possible to order the later arriving inputs closer to the output

to minimize delay through the decomposition. In addition, the decomposition in

Figure 1.4(a) may prove attractive because the architecture is consistent for N-

inputs whereas the architecture in Figure 1.4(b) changes depending on the number

of inputs.

The matching/covering step [33] finds all possible matches of pattern graphs for

each node in the subject graph. The best of these matches is then selected taking

9

(a)

(b)

Figure 1.4. Decomposition architectures. (a) A nonsymmetric decomposition. (b)
A symmetric decomposition.

into account the selected cost factors. Matching algorithms are classified as either

structural or Boolean and both methods are discussed in more detail below. Both

methods fit into the design flow shown in Figure 1.1 and are differentiated primarily

by the process in which the subject graph representing the synthesized design is

matched to the pattern graphs, representing the available library elements.

Structural matching is straightforward and is the simplest to implement. The

structural approach is implemented in programs Dagon [30], MIS [35], and Techmap

[36]. A recent and interesting structural pattern matching algorithm [37] uses

lookup tables by recognizing that the matches for a node in a subject graph are

related to the matches for its children.

For structural matching, the decomposed functions can be viewed as trees, with

roots at the outputs and the primary inputs as leaves. Beginning at the leaves, the

decomposed subject graph is then compared node-by-node to the available library

gates. Because of the semicanonical nature of the decomposition, each node may

have several variations that need to be examined. If a library gate can implement

the tree to that point, the node is annotated with that information in addition to

the cost up to that point. The cost includes the cost of generating the inputs and

the cost of the gate. For example, in Figure 1.5(a), the cost at node e is the cost

of a 2-input NAND gate where the cost of node g is either the cost of an inverter

10

d
c
b

ga e
i

fj
h

(a)

l

k

fo
c

b

d n

a m

(b)

f
d
c
b
a

(c)

Figure 1.5. 4-input AND function decomposition. (a) A nonsymmetric decompo-
sition. (b) A symmetric decomposition. (c) 4-input AND gate.

in series with a 2-input NAND gate or the cost of a 2-input AND gate.

When the root is reached, the lowest cost for implementing that portion of the

circuit is chosen. If there are higher level functions available in the library such

as 3-input NAND gates or AND-OR-INVERT gates, it is typically advantageous

to enclose as many gates in the subject graph as possible. The complexity of the

matching algorithm increases as the base functions used increase in complexity.

The additional search space needed for complete matching makes base functions

beyond 2-input NAND gates and inverters computationally expensive.

The structural mapping method usually gives good results but the quality

can be affected by how the decomposition is done and even by the form of the

equations derived to describe the design. In addition, every possible structural

representation for a library cell would need to be included in the library for a

complete matching process. For example, both of the structural representations

shown in Figures 1.5(a) and 1.5(b) must be included as separate library elements. It

is difficult (and perhaps intractable) to create all possible structural representations

of a given Boolean function. As a result, it is unlikely that structural mapping finds

all possible matches for a design. However, the structural approach is extremely

efficient computationally.

11

Boolean mapping uses a process similar to structural matching except the

nodes are labeled with the Boolean functions they represent rather than the cost.

The Boolean approach was first implemented in the program CERES [31] and in

an industrial tool from Fujitsu [38]. In [33], Mailhot proposed to use a list of

possible matching functions at all nodes. This list represents all combinations

of intermediate nodes available. For instance, given the 4-input AND function

f = abcd shown in Figure 1.5(a), the network consists of the following nodes:

f = j̄, j = id, i = h̄, h = gc, g = ē, e = ab. The library is exhaustively

checked for Boolean functions matching each node. For instance, node h would

be checked for gates implementing the following functions: h = gc, h = ēc,

h = abc. Unlike the structural method, these gates here need not match exactly;

they need only be equivalent in a Boolean sense. For instance, the gate g = a(b|c)

matches the function f = ab|ac. A match of this type would not be found by

the structural mapper unless both gates are structurally represented in the library.

The Boolean matching method can check for input permutations, inversions, and

use don’t care conditions to further optimize the solution. This method tends to

be computationally prohibitive for larger networks, but work by Burch [39] shows

implicit methods can be used to produce more reasonable run times.

Looking again at Figures 1.5(a) and 1.5(b), a Boolean matching procedure at

the output node f would find both of these decompositions equivalent. However,

a structural mapper would match both of these to the 4-input AND gate of Fig-

ure 1.5(c) only if their unique structural representations are entered as two separate

library cells. Thus, if complete Boolean representation is desired for structural

matching, the library must contain every possible structural representation of the

function represented. Because of this, structural libraries tend to be limited to a

smaller number of functions. The structural matching technique is computationally

efficient and the choice of which mapping technique to use often depends as much

on reasonable run times as it does on the quality of the final solution.

12

1.5 Asynchronous Technology-Mapping

Asynchronous design has evolved to the point where several classes or styles of

design have become well developed. The particular design style chosen determines

the types of hazards generated and the algorithms used to synthesize the design.

Four main classes of asynchronous design styles avoid or reduce hazards during

synthesis and technology-mapping by simplifying the timing assumptions. These

classes are delay-insensitive, speed-independent, fundamental-mode, and timed.

1.5.1 Delay-Insensitive Circuits

Delay-insensitive circuits [40] make no assumptions on the delays of the logic

gates or routing wires. This type of design is extremely robust and works correctly

under any timing scenarios. However, it is quite restrictive and few designs can

be implemented by direct synthesis methods. Often, syntax-directed methods are

employed that use nonstandard libraries [41]. This approach renders technology-

mapping unnecessary because the language compiler determines the structure and

selects the library elements directly.

1.5.2 Speed-Independent Circuits

Speed-independent circuits [42, 43] are those that rely on a timing model that

assumes that gate delays are unbounded and wire delays are negligible. These

circuits place no global constraints on the environment. Instead, each input change

is acknowledged by a primary output. This acknowledgment indicates that the

environment can then change some inputs to the circuit. These timing assumptions

increase the potential for higher circuit performance by exploiting concurrency.

Decomposition of SI designs is first addressed by Kimura in [44, 45]. Kimura’s

work investigated various problems encountered in circuit delays when buffers are

added to wires. Siegel and De Micheli, in work specifically targeted at standard

C-implementations, show in [46] that OR functions can be decomposed according

to the associative law independent of signal ordering and the resulting network is

still hazard-free. AND functions, however, require a set of conditions in order to be

decomposed in a hazard-free manner. They suggest adding acknowledgment wire

13

forks defined in [47] and proposed for use during decomposition in [48] for those

gates where a hazard-free decomposition does not exist. These cases occur whenever

a monotonic transition on an intermediate gate is not acknowledged somewhere else

in the circuit.

Some of the most important work in the area of decomposition is that done

by Burns [49]. He uses implicit techniques to decide whether a decomposition

of a state-holding or combinational element into two elements with an isolated

internal signal is correct. He then extends these techniques to determine all legal

decompositions in a parameterized family. Cortadella et al. [50] expanded the work

of Burns by using Boolean relations to allow for a larger number of decompositions.

In [51], Kondratyev et al. also built upon the work of Burns to implement a two-step

process for hazard-preserving decompositions. First, they used techniques based on

algebraic factorization originally proposed for combinational logic [28]. Then, they

inserted new signals in the decomposition to preserve hazard-freedom, based on

work done by Vanbekbergen et al. [52] and Cortadella et al. [53].

Once the circuit is decomposed in a SI and hazard-preserving manner, Siegel

and De Micheli show in [46] that the partitioning and matching/covering algorithms

that is originally described in [54] as pertaining to burst-mode circuits (described

in Section 1.5.3) can be used without modification.

Figure 1.6 illustrates how the decomposition of an AND function may or may not

be hazard-free under SI assumptions. The example shown is taken directly from [55]

and utilizes a state graph (formally defined in Chapter 3) shown in Figure 1.6(a)

to indicate a sequence of transitions. The implementation for output d, whose

behavior is shown in the state graph, is synthesized using a CAD tool and the

results are shown in Figure 1.6(b). Suppose this 3-input AND function with one

inverted input is not available in the implementation library. Decomposition must

then be done in order for the circuit to be implemented. Figures 1.6(c) and 1.6(d)

show two logically equivalent decompositions. The new internal signal e must now

be checked for potential hazards introduced by the change of the circuit structure

during decomposition. For the decomposition in Figure 1.6(c), in state (1110),

14

b+/1

abcd

d+a−

a+

c−

b−

d−

State =

0100

0110

1110

1111

1101

1100

1000
0010

0000

b+/2

c+/2

c+/1

(a)

d
a
b
c

(b)

e

c
b
a

d

(c)

ea
c
b

d

(d)

Figure 1.6. Hazard behavior using a speed-independent model. (a) State graph.
(b) 3-input AND function. (c) Hazardous netlist. (d) Hazard-free netlist.

inputs a, b, c and internal signal e are high while the output d is low. After a falls,

the circuit transitions to state (0110), and e becomes excited to fall. Assume the

AND gate generating e is slow. When b falls, the circuit transitions to state (0010).

If at this point c falls before e falls, d can become excited to rise prematurely. The

result is a hazard on the signal d, and there is a potential for circuit failure.

Next, consider the decomposition shown in Figure 1.6(d), beginning in state

(1110) again. This time e begins low, and it does not become excited to change

until after a falls, b falls, c falls, and a rises again. At this point, b is already

low, which maintains d in its low state until b rises again. There is no sequence of

transitions that can cause this circuit to experience a hazard on the output d.

This example illustrates the need to take special care during decomposition of

SI circuits. It also hints at how explicit timing information may be used to help

determine whether a hazard condition actually manifests or not as seen in the

example of Figure 1.6(c). This topic is explored fully in Chapter 3.

For most of the work published in the SI domain, technology-mapping of the

circuit is done completely in the decomposition stage, making partitioning and

matching/covering unnecessary. The goal of this type of SI work is to prevent

15

the creation of any hazards during decomposition and, if that is not possible,

resynthesize and repeat until a hazard-free implementation is found.

1.5.3 Fundamental-Mode Circuits

Fundamental-mode circuits [56, 57] were pioneered by Huffman and impose

restrictions on when input changes can occur. This style of asynchronous circuits

allows input changes only after the entire circuit has stabilized in response to a

previous input change. The most basic fundamental-mode class of circuits is called

single-input change (SIC) where only one input is allowed to change at a time. This

mode of operation severely limits the use of concurrency so it has seen limited use

for real designs.

Stevens [58] pioneered an extension to the SIC fundamental mode style of design

that evolved into what is now referred to as burst-mode. Burst-mode allows a

restricted burst of inputs to change rather than a single input. This design style

has been shown to be practical in industrial designs such as those found in work

done by Davis’s group at Hewlett-Packard [59, 60, 61, 62]. A further extension,

termed extended burst-mode (XBM), was developed by Yun et al. [63] and allows

for the use of directed don’t cares to specify that an input may or may not occur

in a given burst. In addition, this style supports conditional input bursts, allowing

decisions about future behavior to be based on the level of a particular signal.

The timing restrictions on when inputs can change in fundamental-mode circuits

act much like the clock in a synchronous system. As a result, these circuits allow

the designer to apply basic synchronous techniques for technology-mapping.

Decomposition can be performed by recursively applying De-Morgan’s theorem

and the associative law to the network. Both of these operations have been shown

to be hazard preserving [57, 54, 64], that is, if the original circuit is hazard-free,

then the decomposed circuit is also hazard-free. More recently, technology-mapping

techniques for XBM machines that optimize for average-case performance have been

developed by Chou et al. in [65]. Support for generalized C-element (gC) implemen-

tations of XBM designs is presented by Yun and Dill [66, 67]. A transistor-level

technique for average-case technology-mapping of XBM gC designs is presented

16

by James and Yun [68]. Finally, with the limitations that deep submicron circuit

implementation places on cell libraries, Yang [69] investigates direct transistor-level

technology-mapping as applied to asynchronous XBM controllers.

The process for technology-mapping of fundamental-mode circuits is virtually

identical to that used for technology-mapping of synchronous circuits. The re-

strictions are that decomposition must be done using only De-Morgan’s theorem

and associative laws [64], and the library elements used during the matching stage

be hazard-free. This result should not be surprising; once any input or burst of

inputs change, all internal signals and outputs must be allowed to stabilize before

another burst of inputs can occur. Fundamental-mode circuits suffer from the same

limitation that synchronous circuits do; the reduced ability to exploit concurrency.

Figure 1.7 illustrates how the hazard problem encountered in Figure 1.6(c) for

SI circuits cannot occur under fundamental-mode assumptions. Figure 1.7(a) shows

a burst-mode state machine with inputs a, b, c, and output d. The output d has

again been synthesized with a CAD tool and the results are shown in Figure 1.7(b).

Starting with the dark circle in Figure 1.7(a), the circuit state is a, b, c, and e all

a−
b−

c− c+ b+/d+

c+/d−

a+
b+

(a)

d
a
b
c

(b)

e

c
b
a

d

(c)

ea
c
b

d

(d)

Figure 1.7. Hazard behavior using a fundamental-mode model. (a) Burst-mode
state machine. (b) 3-input AND function. (c) Hazardous netlist under the SI
model. (d) Hazard-free netlist under the SI model.

17

high and d low. At this point, a goes low causing the new internal node e to go low

after some delay. Next, b goes low after e has stabilized followed by c going low.

The output cannot glitch as it did in Figure 1.6(c) because e is already low well

before c goes low. In fact, there is no sequence of events that can cause a hazard,

under fundamental-mode assumptions, in either of the decompositions shown in

Figures 1.7(c) and 1.7(d).

1.5.4 Timed Circuits

It is often the case that hazard conditions found in SI circuits do not actually

manifest as glitches in the real circuit implementation due to the actual timing

behavior. The reason for this is that internal signals, once enabled, certainly do

transition in some finite amount of time. If the time evolution in the state space

can be tracked, then it may be possible to identify the stability of some internal

signals. This additional stability information may help determine whether or not a

hazard condition actually produces a glitch in the circuit implementation.

Timed circuits are a class of asynchronous circuits that place two-sided timing

constraints on the inputs and gates. Myers et al. first used timed state space

exploration to produce optimized timed asynchronous circuits as described in [70,

71, 1, 16].

Since exhaustive state space methods quickly become intractable, much of the

synthesis effort has gone into developing algorithms that examine the state space

and utilize explicit timing to determine which states are unreachable. A reduced

state graph (RSG) is then created that factors in the timing constraints. This RSG

is analyzed to determine an optimum solution based on a set of constraints using

speed-independent synthesis algorithms.

There is not a large abundance of previous technology-mapping work applied

to timed circuits. The work by Lavagno et al. [72, 73, 74] leverages synchronous

technology-mapping methods as does the work proposed in this research. Their

work uses signal transition graphs as the primary design specification and applies to

a bounded wire-delay (BWD) model. A BWD model assumes unbounded delays for

gates and bounded delays for wires. Lavagno et al. performs synthesis on a circuit

18

without regard to hazard creation and determines which nodes are hazardous by

performing a dynamic timing analysis. This analysis conservatively detects that

a static hazard occurs when the difference between the delays along two paths in

one subcircuit is greater than the delay between two transitions. Their algorithms

then add delays until the hazard disappears. This approach is successfully applied

to small circuits where the additional delay elements result in an average delay

penalty of 25 percent when comparing the results of speed-independent work done

by Beerel [47] against those of Lavagno [75].

The other work in the area of technology-mapping of timed circuits was done by

Myers et al. [76], where they use a decomposition and resynthesis approach applied

to large fanin gC gates.

1.6 Goal

The goal of this dissertation is to implement hazard-free technology-mapping of

gate-level timed asynchronous circuits by carrying the timing information provided

with the circuit specifications into the technology-mapping algorithms. This is done

by applying the synchronous technology-mapping process of Figure 1.1 to timed

asynchronous circuits while modifying algorithms as necessary to deal with the

presence of hazards. The basis of this work is the extension of the verification work

done in [25] to perform efficient verification of the decomposed netlist. Verification

is also done on the final netlist to ensure that any timing changes incorporated

during the technology-mapping process do not introduce new hazards. This new

research has the potential to markedly increase the size of timed asynchronous

circuits that can be technology-mapped in an efficient and hazard-free manner.

1.7 Contributions

This dissertation makes four contributions in the area of technology-mapping

of timed asynchronous circuits: adaption of the synchronous technology-mapping

flow, efficient gate-level hazard verification using explicit timing, algorithms and

methods to utilize gC’s in circuit solutions, and evaluating library complexity for

implementing hazard-free circuits.

19

The first contribution is to adapt the synchronous approach to technology-

mapping with modifications as necessary to minimize the effects of hazards. This

approach allows for the leveraging of existing research in synchronous design. The

synchronous technology-mapping methods of design decomposition, partitioning,

matching, and covering work well for timed circuit technology-mapping when the

issues of hazard elimination are properly addressed.

The second contribution is the development of a new and highly efficient method

for using explicit timing information to verify hazard-freedom in gate-level timed

asynchronous circuits. Hazard verification is essential for technology-mapping and

the algorithms must be extremely efficient to allow for many alternative designs to

be considered. The results show that this new method can be substantially faster

then previous gate-level timing verification tools.

The third contribution is the development of algorithms that optimize matching

and covering in the presence of hazardous nodes. Particular emphasis is given to

the use of gC’s because of their compact nature and hazard-free operation. These

algorithms require that issues of short-circuits and common-input pins be addressed.

The final contribution is the evaluation of library complexity for implementing

the timed asynchronous circuit. Typical asynchronous approaches often require

the use of specialized libraries. The use of various complexities of libraries in

technology-mapping of timed asynchronous circuits gives designers more flexibility

for implementing hazard-free circuits.

1.8 Dissertation Overview

Chapter 2 explains the structure of the synthesized equations that are used as

inputs to the technology-mapper. Formalism is developed to support the design

description methods for time Petri nets, netlists, and sum-of-products representa-

tion. Finally, the technology-mapping algorithm design flow is presented in both

graphical and algorithmic forms.

Chapter 3 focuses on methods to verify hazard-freedom in a decomposed netlist.

First, a state graph is formally defined. Then, the components of circuit correct-

ness are defined including complex gate equivalence, acknowledgment hazards, and

20

monotonicity hazards. Since the decomposition can result in a large netlist, efficient

verification algorithms are developed to verify hazard-freedom. These algorithms

verify each node in the circuit by first using speed-independent algorithms followed

by algorithms using explicit timing information. Each node in the netlist is then

annotated with nodes found to be hazardous. The chapter is concluded with

examples illustrating concurrency, soft coloring, and path stabilization.

Chapter 4 presents the development of algorithms for the decomposition of

the synthesized design. Since many of the existing algorithms for asynchronous

technology-mapping decompose directly to library gates, this chapter follows more

of the synchronous approach, discussing enhancements applicable to asynchronous

designs and in particular, timed methods. These enhancements include unbalanced

tree decomposition, input pin reordering, and placement of trigger signals. Issues

related to decomposition of library elements are discussed including proper anno-

tation for common-input pins and gC’s.

Chapter 5 discusses the creation and application of algorithms that match the

decomposed netlist to a general library and then do a covering to create the

final netlist. The issue of matching with different cost factors is discussed as

well as algorithms to deal with library elements with common-inputs. For gC’s,

the possibility of creating short-circuits in the transistor stacks is presented and

illustrated with examples. Finally, algorithms are developed to address the complex

issue of matching in the presence of hazardous nodes.

Chapter 6 tabulates and discusses the results from running numerous examples

through the supporting software. Results from running the timed hazard verifica-

tion algorithms are presented and compared against other timed circuit verifiers.

The technology-mapping results are presented using libraries with increasing com-

plexity and variety.

Chapter 7 summarizes the results of this research and discusses the successes and

limitations of this technology-mapping approach. A future work section presents a

number of ideas for extending this research.

CHAPTER 2

BACKGROUND AND SEMANTICS

This chapter expands on the asynchronous technology-mapping design flow for

timed circuits presented in Figure 1.2. The necessary semantics and background

terminology to support time Petri nets, netlists, and sum-of-products representa-

tions are developed and illustrated with examples. The chapter concludes with a

top-level algorithm for timed asynchronous technology-mapping.

2.1 Time Petri Nets

As an intermediate form of circuit representation, the time Petri net models the

possible input behaviors and the required output behaviors for timed circuits [14].

Let W be a finite set of wires in a timed circuit. The timed behavior of a circuit is

modeled as sequences of rising and falling transitions on W . For any w ∈ W , w+

is a rising transition and w− is a falling transition on the wire w. In the following

definitions, let Q+ and R+ denote the sets of nonnegative rational and nonnegative

real numbers, respectively. A W -labeled one-safe TPN is a directed bipartite graph

described by the tuple TPN = 〈W, T, P, F, M0, s0, l, u, L〉 where:

• W = I ∪ O is the set of wires where I is the set of input wires and O is the

set of output wires;

• T is the set of transitions;

• P is the set of places;

• F ⊆ (T × P) ∪ (P × T) is the flow relation;

• M0 ⊆ P is the initial marking;

22

• s0 ⊆ W is the set of wires that are initially high;

• l : T → Q+ is the lower timing bound function;

• u : T → Q+ ∪ {∞} is the upper timing bound function;

• L : T → W is the labeling function.

The state of a TPN is a pair 〈M, D〉 where M is the current marking (i.e., the

subset of places that hold tokens) and D : T → R+ is a clock assignment function

assigning nonnegative real valued ages to transitions. With every transition t ∈ T ,

its associated preset is •t = {p ∈ P | (p, t) ∈ F}. The postset of a transition is

defined as t• = {p ∈ P | (t, p) ∈ F}. Note that the preset and postset for places are

defined in a similar manner. A transition, t, is enabled in a state if the members of

its preset form a subset of the places in the marking of the state (i.e., •t ⊆ M). A

transition, t, is fireable in a state if it has been enabled longer than its lower timing

bound (i.e., D(t) ≥ l(t)). A transition, t, must fire before it has been enabled

longer than its upper timing bound (i.e., D(t) ≤ u(t)).

A TPN for the example presented in Figure 1.6 is shown in Figure 2.1(a), with

two alternative netlists shown in Figures 2.1(b) and 2.1(c). In the initial state,

transitions a+ and b+/1 are enabled, and exactly one of these transitions fires

a− [2,5]

a+ [2,5] b+/2 [2,5]

b− [2,5]

c− [2,5]

c+/2 [2,5]

d+

c+/1 [2,5]

b+/1 [2,5]

d−
(a)

[1,2]

c

e
d

a
[1,2]

b

(b)

b
d

e

[1,2]
[1,2]

a
c

(c)

Figure 2.1. A time Petri net example. (a) An example TPN. (b) Hazardous netlist
under the SI model. (c) Hazard-free netlist under the SI model.

23

within two to five time units. The /1 and /2 notations indicate different transitions

on the same signal wire. If a+ fires, then the b+/2 transition becomes enabled and

fires within two to five more time units enabling d+.

2.2 Netlists

The goal of the verification portion of this research is to verify the correctness

of a circuit implementation against a given TPN specification. The circuit to be

verified is described using a netlist modeled by a directed graph NET = 〈V, E〉

where:

• V = I ∪O ∪N is the set of vertices in the circuit;

• E ⊆ (I ∪O ∪N)× (N ∪O) is the set of edges.

Each vertex v ∈ V represents a node in the netlist. This set is composed of both

the input wires, I, and output wires, O, from the TPN description as well as new

nodes internal to the circuit, N . Each e ∈ E represents a directed connection in the

netlist from one node to another node. The set of fanins to a node is denoted by

FI(v), and the fanouts are denoted by FO(v). Each node also has an associated

minimum gate delay, minv, a maximum gate delay, maxv, and an area cost, av.

The netlist for a possible circuit implementation of the signal d is shown in

Figure 2.1(b). The set of vertices, V , is {a, b, c, d, e}, and the set of edges, E, is

{ (a, e), (b, e), (e, d), (c, d) }. An alternative circuit implementation for signal d

is shown in Figure 2.1(c). The delays shown on the gates could just as easily be

shown on the wires. The primary concern, as discussed later, is with the maximum

delay path from primary inputs to outputs.

2.3 Sum-of-Products Representation

The output of the synthesis analyzer is a netlist. In this netlist, each node,

u, which is in N ∪ O has an associated gate output function fu(v1, . . . , vr) where

FI(u) = {v1, . . . , vr}. The form of expression of fu is a set of products, fu =

{{p1, . . . , pn}}. Each product, p ∈ fu, is a conjunction (AND) of literals. A product

24

is also referred to as a cube. A literal is a variable vi or its complement vi. A

sum-of-products (SOP) is a set of products that are disjunctively combined.

For example, the function associated with node e in Figure 2.1(b) is fe(a, b) =

{{a, b}}. As another example, consider the function fu, depicted in set notation as

fu = {{a, b},{a,c},{a, c, d}}. For clarity, this thesis often expresses functions in the

Boolean formula form. In this form fu = ab + ac + acd.

For state-holding netlists, fu is expressed as fu = f set
u + u • f reset

u . Note that

in this case, u ∈ FI(fu). The conditions which cause fu to be set are denoted as

f set
u = {p ∈ fu | u /∈ p}. The conditions which cause fu to be reset are denoted as

f reset
u = f reset

u where f reset
u = {p− {u} | p ∈ fu ∧ u ∈ p}.

2.4 Generalized C-elements

A state-holding function, fu, can be implemented using a generalized C-element

(gC) implementation as shown in Figure 2.2(a). A CMOS implementation of a

gC circuit is shown in Figure 2.2(b). The set function is combinational logic that

set

u

−

+

~resetf reset
u

f set
ufunction

set

function
reset

gC

(a)

u
set

~reset

weak

(b)

Figure 2.2. Generalized C-element structure. (a) General form of a gC circuit.
(b) A CMOS implementation.

25

implements the function f set
u , and it represents the logic that sets the output of

the gC. The reset function is combinational logic that implements the function

f reset
u , and it represents the logic that resets the output of the gC. The set and reset

functions are naturally decoupled and can be decomposed separately. If |f reset
u | = 0,

that is, if the number of elements of f reset
u = 0, then the output is not state-holding

and the gC is unnecessary.

The state-holding function in a gC is implemented through a head-to-tail in-

verter structure as shown at the output of Figure 2.2(b). The driving strength of

the feedback inverter is weak compared to that of the device stack, allowing for the

device stack to drive the output except in the case where the set input is low and

the ∼reset input is high. In this case, the output value is held by feedback through

the weak inverter.

Figure 2.3(a) shows an example of a gC circuit where f set
u = ab+cd and f reset

u =

pq+rs. The CMOS implementation for fu is shown in Figure 2.3(b). Each product

of f set
u is implemented as a series chain of NMOS devices and all such terms are

connected in parallel to implement the set portion of the netlist. For each product

in f reset
u , each literal is first complemented, and a new product is formed from these

complemented literals. Each of these new products is implemented as a series chain

of PMOS devices and all such terms are connected in parallel to implement f reset
u .

An attractive feature of gC’s is that they can be considerably more efficient

than a fully static implementation. The netlist produced by the synthesis analyzer

must ensure that there is never a time where both a set and reset term are enabled

concurrently or there is a direct short between power and ground. If this is the case,

it is equivalent to a signal being both high and low in the same state, or enabled

to be falling or rising in the same state. However, if portions of the circuit are

implemented with a gC and portions with other logic elements, there is a possibility

that timing delays may cause a direct short between power and ground. If this is

the case, an alternative state-holding element must be used.

26

q
p

r
s

c
d

b
a

+

−

gC u

f set
u

f reset
u

(a)

~p

~q

a

b d

~s

~r

c

weak

u

(b)

Figure 2.3. Example gC circuit. (a) Circuit of fu. (b) CMOS implementation.

2.5 Timed Asynchronous Design Flow

The timed asynchronous design flow first presented in Figure 1.2 is shown in

expanded form in Figure 2.4. The design flow begins with a time Petri net provided

as a user specification. The TPN is then analyzed and a timed state graph is con-

structed. This timed state graph is synthesized using timed state-space techniques

resulting in a synthesized netlist, syn net. At this point, the technology-mapping

phase begins. The goal of the technology-mapper is to provide a hazard-free netlist

composed of library elements. The technology-mapping portion of Figure 2.4 is

repeated for every o ∈ O.

The top level technology-mapping algorithm shown in Figure 2.5 takes as inputs

the time Petri net, TPN, a synthesized netlist, syn net, and a cell library, LIB. As

discussed earlier, syn net contains a pair of sets, f set
u and f reset

u . If |f reset
u | = 0, then

27

Optimize

 Synthesis

Hazard Verification

Matching/Covering Library

 Analyzer

Timed State Graph

Time Petri Net

Partition

part_net

syn_net

decomp_net

ann_net, ann_sg

final_net

Decomposition

Technology Mapping

Yes

No Hazard
 Free

No

Yes

Fail Hazard−Free Netlist

Figure 2.4. Expanded timed asynchronous design flow.

28

techmap(TPN,syn net,LIB) {
foreach o ∈ O {
part net = partition netlist cone(syn net,o)
do {
decomp net = decomp(part net)
(ann net,ann sg) = verify(TPN,decomp net)
final net = matcov(ann net,ann sg,LIB)
if (hazard check(final net,ann sg) == NULL) then

total net = total net ∪ final net

part net = NULL
else

part net = optimize(part net)
if (part net == NULL) then

report ’no hazard-free solution found for output o ’
} while (part net != NULL)

}
return (total net)

}

Figure 2.5. Top level technology-mapping algorithm.

the output is combinational, otherwise the output is state-holding.

All outputs in the TPN specification are treated independently by first parti-

tioning each o ∈ O into a single output cone of logic. This partitioning step returns

the netlist, part net. The algorithm then loops through the technology-mapping

steps attempting to find a hazard-free implementation for output o. First, part net

is decomposed into a netlist consisting of base functions. Next, verification is

performed on the netlist decomposition and the verify function returns a netlist

and state graph annotated with hazard information. During the matching/covering

phase, the results from verification are used to guide the selection of library elements

that best eliminate hazards. This new netlist, final net, is composed exclusively

of library cells. Next, final net is again verified for hazards because the timings

specified in the TPN for the output firings are approximations until the technology-

dependent final netlist is generated. If no hazards are found, the technology-

mapping phase for this output is complete. If the circuit is not hazard-free, then a

five-step optimization process is employed to make every effort possible to generate

a hazard-free netlist.

29

1. Refine timing. There is an initial chicken-and-egg problem in that the timing

specified for the primary outputs in the TPN are only an educated guess since

the actual delay timing is not known until the circuit is mapped. If this final

verification fails, it is quite likely that the initial timing bounds in the TPN

can be tightened, using the minimum and maximum times taken directly from

the mapped circuits. The technology-mapping process can then be reiterated

until a hazard-free netlist is found, or the timings are as tight as possible and

hazards still exist.

2. Pin reordering. Because of the unbalanced decomposition, the wires on

part net can be reordered to effect the circuit timing (while maintaining

logical equivalence) and the technology-mapping process is repeated until a

hazard-free netlist is found or the pin reordering permutations are exhausted.

This issue is discussed in depth in Section 4.3.

3. Expand library. First, by employing a more liberal use of the atomic gate

assumption, more logic can be placed within a library element, which improves

the chances of reducing hazards in the mapped circuit. However, this step

places an additional burden on the physical design/layout of these library

cells so that they meet the atomic gate assumptions. Second, additional base

function library elements with different delays could be added since the hazard

verification is performed based on these timings.

4. Add delay. Using the method of Lavagno [74], once hazardous nodes have

been determined, it is possible to add delay elements at the appropriate places

until the hazard goes away. However, this additional delay results in decreased

circuit performance.

5. Answer these questions: Does the hazard actually cause circuit failure? Is the

output of part net hazard-free, and if so, does hazardous activity on internal

nodes matter? These philosophical questions are expanded on in Section 7.3.

CHAPTER 3

DETERMINATION OF

HAZARD-FREEDOM

This chapter presents the pivotal work of efficiently performing gate-level ver-

ification for hazard-freedom at each node in the decomposed netlist. A formal

presentation of state graphs is first made followed by a discussion of circuit correct-

ness. The circuit correctness section details the topics of complex gate equivalence,

acknowledgment hazards, and monotonicity hazards.

At this point, there is sufficient background to discuss the algorithms for deter-

mining hazard-freedom. This process amounts to finding stable states using two

separate but related techniques: untimed (speed-independent) stabilization and

timed stabilization. Once stable states are found, this stabilization information is

propagated throughout the state graph. Finally, an examination of the behavior

of each node is made to determine whether or not that particular node is free of

acknowledgment and monotonicity hazards. Each node is then annotated with its

hazard properties and this information is passed on to the matching/covering stage.

The verification method described in this chapter requires that the primary

outputs must cut the circuit. In other words, if all primary outputs are removed

from the netlist, the netlist would become acyclic. Intuitively, this means there can

be no internal cycles in the netlist. Since the goal of this research is to use this

verifier as a hazard checker during technology-mapping and the technology-mapper

satisfies this restriction, this seems acceptable. However, as detailed in the future

work section in Chapter 7, it is desirable to extend this work to handle netlists with

reconvergent fanout and internal cycles.

31

3.1 State Graphs

In order to check correctness, a verification method typically uses a specification

such as a TPN and a representation of the circuit implementation such as a netlist

and finds all possible states represented using a state graph (SG). This verification

method then checks the SG (often on the fly as the SG is being generated) for

various correctness properties.

A SG is a labeled directed graph whose nodes are states and edges are state

transitions. Formally, a SG is modeled by the tuple SG = 〈 S, T , δ 〉 where

• S is the set of states;

• T is the set of transitions from the TPN;

• δ ⊆ S × T × S is the set of state transitions.

Each individual state s ∈ S is modeled as a tuple s = 〈ν,z〉 where

• ν ⊆ V is the set of wires that are high in the state;

• z is a zone representing timing relationships.

Timing information is described using zones that are typically represented using

difference bound matrices (DBMs) [15]. These matrices represent time differences

between recently fired transitions. Each entry, zij, in the matrix represents a timing

relationship of the form τti − τtj ≤ zij where τti is the time at which ti fires. In

other words, zij represents the maximum amount of time in which ti fires after tj.

An example zone for the point right after a+ in Figure 3.1(a) fires is given below

which represents the relationship 2 ≤ τa+ − τc− ≤ 5, that is, a+ fires between two

and five time units after the previous transition, c−, fires.

τc− τa+

τc− 0 -2
τa+ 5 0

32

3.2 Definition of Circuit Correctness

In [25, 26], the following theorem giving sufficient conditions for correctness of

a determinate speed-independent asynchronous circuit is presented (reworded here

to match the notation used in this dissertation). These conditions are also sufficient

for correctness of timed circuits.

Theorem 3.1. (Sufficient conditions for correctness) Let NET = 〈V, E〉 be a cir-

cuit implementing the behavior described by TPN = 〈W ,T ,P ,F ,M0,s0,l,u,L〉. The

NET is a correct implementation of the TPN if (1) it is complex gate equivalent

to the TPN, and (2) it satisfies the acknowledgment and monotonicity properties.

3.2.1 Complex Gate Equivalence

The first condition for circuit correctness is that the NET be complex gate

equivalent (CGE) to the TPN. Using a timed state space exploration algorithm

such as the ones in [21, 77], it is possible to derive a SG using a TPN to drive the

inputs and check the outputs, and a netlist to drive the outputs. However, one of

the key results of this research is that this method never explicitly derives this SG.

Instead, a SG for a CGE version of the netlist is derived. The CGE circuit for both

netlists in Figures 3.1(a) and 3.1(b) is shown in Figure 3.1(c). The SG found using

this circuit and the TPN in Figure 3.1(d) is shown in Figure 3.1(e). Each state

vector ν is labeled in the state diagram to show the value of all signal wires. The

zones calculated during the timed state space exploration algorithm are omitted

for clarity. Each edge of the state graph is labeled with a signal transition t ∈ T .

The input wire set is {a, b, c} and the output wire set is {d}. There are nine states

including 0000 and 1000, and ten state transitions including (0000, a+, 1000). One

detail to note is that during the state space exploration to derive this SG, this

method checks that the given CGE circuit is equivalent to the desired one. For

example, if the CGE circuit given had been the one in Figure 3.1(f), after a+ fires,

the netlist could produce a d+ when one is not expected in the TPN. This complex

gate equivalence failure would then be reported to the user.

The number of internal nodes created during decomposition can be large, each

33

[1,2]

c

e
d

a
[1,2]

b

(a)

b
d

e

[1,2]
[1,2]

a
c

(b)

[1,4]
a
b
c

d

(c)

a− [2,5]

a+ [2,5] b+/2 [2,5]

b− [2,5]

c− [2,5]

c+/2 [2,5]

d+

c+/1 [2,5]

b+/1 [2,5]

d−
(d)

c+/1

abcd

0010
1000

1110

c−

b+/2

d+

0000

1100

1101

1111

0110

0100

b−

d−

a−

a+

State =

c+/2

b+/1

(e)

[1,4]
a
c

d

(f)

Figure 3.1. Example CGE circuit. (a) Hazardous netlist under the SI model. (b)
Hazard-free netlist under the SI model. (c) Correct CGE netlist. (d) Time Petri
net. (e) State graph for the correct CGE netlist. (f) Incorrect CGE netlist.

node potentially doubling the state-space. In reality, each newly added node only

affects a portion of the state graph. An example of this is shown in Figure 3.2, the

explicit SG for the netlist of Figure 3.1(b). Here the number of states increased

from 9 to 12 as compared to the SG of Figure 3.1(e). This reflects the fact that

the analysis algorithms determined a number of the potential new states to be

unreachable. The power of using the CGE state graph is that the behavior of

34

b+/3

State = abcde

b−

a+
c−

a−

d−

e−

00000

10000

10001

11001

11011

11000

11111

11110

11100

01100

0010001000

c+/1 b+/2

b+/1

c+/2

d+

e+/2

e+/1

Figure 3.2. Explicit state graph.

internal nodes is abstracted. Adding internal nodes explicitly is unnecessary and

keeps the SG from growing in complexity.

3.2.2 Acknowledgment Hazards

The second condition for circuit correctness requires determining if internal

nodes adhere to the acknowledgment property. Hazards can manifest in asyn-

chronous circuits due to violations in the acknowledgment or monotonicity proper-

ties [25].

An acknowledgment violation occurs when an internal node becomes excited

to change to a new value, but the conditions that caused the excitation change

before the node can be shown to have stabilized. An example of a circuit with an

acknowledgment hazard is shown in Figure 3.3(a) and the hazard manifests under

the timing shown in Figure 3.3(b). This 3-gate circuit implements the function

g = abcd. The output g should never be enabled to go high because there is no

time shown in Figure 3.3(b) where all four inputs are simultaneously high. Previous

35

a
b

c
d

e

f

g

[1,2]

[1,2]

[2,4]

(a)

10

��������������

a
b
c
d
e

0 5

(b)

10

���������������� ������

a
b
c
d
e
f
g

0 5

(c)

Figure 3.3. Circuit to illustrate hazards. (a) Example circuit. (b) Timing scenario
for an acknowledgment hazard. (c) Timing scenario for a monotonicity hazard.

to time zero, input signals a and d are low, and b and c high. This forces the internal

nodes, e and f , and the output g to be low. At time zero, input a pulses high for

three time units, enabling node e to rise. However, since the delay of the AND gate

driving node e has a time delay between two and four time units, it is not certain

whether or not node e actually rises before signal a goes low. This represents an

uncertainty on node e in response to the pulse on a and the possible failure to

acknowledge the transition on a indicates an acknowledgment hazard on node e.

If input timings and gate delays allow this possible glitch on e to propagate to

the output, a monotonicity hazard is created on the output g as described in the

following section.

3.2.3 Monotonicity Hazards

The third condition for circuit correctness requires the determination of whether

or not internal or output nodes adhere to the monotonicity property. A monotonic-

ity violation occurs when an internal or output node is supposed to remain stable

but it becomes momentarily excited or when it is supposed to make a transition but

it makes the transition nonmonotonically. This occurs when a gate has a potential

hazard while there is no stable, forcing side-input. For example, a potential hazard

exists when the output of an AND gate is supposed to remain stable low or fall,

but one input is rising. If a side-input cannot be found that is stable low while the

other input is rising, it is possible that the AND gate may momentarily evaluate

36

to 1 causing a glitch on the output of the AND gate.

In the example shown in Figure 3.3, it is possible that the glitch on node e

discussed in the previous section can propagate to the output. Consider the timing

diagram shown in Figure 3.3(c). After input a goes low at time three, input d

rises at time four. This causes node f to be enabled to rise and can do so as early

as time five. At time five, both inputs to the AND gate driving the output are

in transition and there is the possibility for a glitch on the output. This timing

scenario represents a monotonicity hazard on the output g.

3.3 Hazard Verification Algorithm

The correctness conditions presented in Section 3.2 are verified using the al-

gorithm shown in Figure 3.4. This algorithm takes as input a TPN representing

the possible input behavior and the required output behavior and a netlist, NET ,

representing the circuit to be checked. It then determines if the circuit is correct.

When the circuit is not correct, this algorithm reports the locations of the errors

that it finds. This algorithm is described in detail in the remainder of this section.

3.3.1 Checking Equivalence

The check equivalence function forms a CGE netlist, uses this netlist and the

given TPN to derive a SG, and checks if the CGE netlist provides outputs at the

times specified by the TPN.

The first step is to derive a CGE netlist in which there are no internal signals.

In other words, it derives a netlist that has one gate per primary output signal.

The Boolean function for this gate is expressed only in terms of the primary inputs

verify(TPN,NET) {
SG = check equivalence(TPN,NET)
find stable states(TPN,SG,NET)
check acknowledgment(SG,NET)
check monotonicity(SG,NET)

}

Figure 3.4. Top level algorithm for verification.

37

and outputs. The delay of this gate is set to the minimum and maximum delay

from any input to the primary output. Although false paths through the logic may

exist, this algorithm need not identify them at this point. Their inclusion results

in a higher and thus more conservative maximum delay. At worst, this may result

in a node being falsely determined to be hazardous.

The CGE representation for the netlists shown in Figures 3.1(a) and 3.1(b) is

shown in Figure 3.1(c). The delay for this gate is set to [1,4], since in both cases

there exists a minimum delay path of one time unit and a maximum delay path of

four time units.

Using this CGE netlist and the TPN of Figure 3.1(d), the SG of Figure 3.1(e)

is found using a timed state space exploration algorithm. During the course of this

state space exploration, output firings are checked. If an output fires prematurely,

an error is reported to the user. Also, if an output is expected and the circuit

does not provide one, an error is reported. In the example of Figure 3.1, if the

CGE function fd = ac is used, after a+ and b+, a d+ would be expected in

the TPN of Figure 3.1(d), but the circuit would not produce it. This models

a progress condition similar to completeness with respect to specification [78] and

strong conformance [79]. When no errors are detected, check equivalence returns

a SG.

3.3.2 Finding Stable States

After the check equivalence step, this algorithm has shown that the circuit

is correct at a complex gate level. By hiding the internal signals before finding

the state space, the state space is potentially reduced from O(2|I| ∗ 2|O| ∗ 2|N |)

to O(2|I| ∗ 2|O|). When the number of internal signals is large, as is often the

case in real designs, this savings can be quite dramatic. However, hazards on

internal nodes can still produce incorrect circuit behavior. Therefore, it is now

necessary to check that all internal nodes are hazard-free. This is accomplished

by determining internal signal behavior implicitly. In particular, this method

annotates each state with stability information about each internal signal. The

goal of the find stable states algorithm is to determine in which states and for

38

which state transitions in the complex gate SG that each internal node is stable.

This is accomplished by using the predicate stable(s,n) for each state s ∈ S and

node n ∈ N and the predicate stable(s,s′,n) for each state transition (s, t, s′) ∈ δ.

This stability information can then be used to determine if there are any hazards

in the given netlist.

The algorithm to find the stability information is shown in Figure 3.5. The al-

gorithm begins by first determining the predicate eval(s,n) by finding the Boolean

evaluation in each state in the SG for each node in the netlist. This can be

accomplished by simply fixing the values for each primary input and output in the

netlist to the values given in the state and propagating this information through the

netlist. From the SG in Figure 3.1(e) and the netlist in Figure 3.1(b), eval(1100,e)

and eval(1100,d) are determined to both be 1. For node e, the states in the set

{1100, 1101, 1111, 1110} evaluate to 1 while the remaining states evaluate to 0.

The algorithm next initializes the stability predicates to FALSE to initially

indicate that it is not known whether the internal signals are stable or changing.

The goal of the rest of the algorithm is to determine stability of the internal signals,

whenever possible. In the next section, a brief review of untimed stabilization

is given, which comes from the work in [25] followed by a detailed discussion of

timed stabilization, one of the main contributions of this research. The timed

stabilization routine does not need to be iterated, so it is executed first. The

untimed stabilization routine may require iteration since stabilizations on one node

find stable states(TPN,SG,NET) {
foreach s ∈ S and n ∈ V find eval(s,n)
foreach n ∈ N, s ∈ S, and (s, t, s′) ∈ δ,

stable(s,n) = stable(s,s′,n) = FALSE
stabilize timed(TPN,SG,NET)
do
distribute(SG)
modified = stabilize untimed(SG,NET)

while modified
}

Figure 3.5. Algorithm for finding stable states.

39

of the network can influence stabilizations on other nodes.

3.3.3 Untimed Stabilization

The objective of stabilization is to show that at some points in the SG, the

evaluations of some internal node, n, are certain to be stable. The algorithm to

determine untimed stability is shown in Figure 3.6. An internal node is considered

untimed stable if a change in evaluation on an internal node is acknowledged on a

primary output. In other words, for a state transition (s, t, s′), if the transition t

could only have occurred if the internal node n is stable at its Boolean evaluation,

then it can be said that the transition t has acknowledged that the node n is stable.

To determine if an internal node n is acknowledged to be stable by a state

transition (s, t, s′), it is first determined using the function exists path, if a

path exists from n to the output transition under consideration. It must then be

determined using the function must prop if the value at n must propagate through

any possible path to the output. This is done by ensuring that all functions in the

path from n to the output have noncontrolling values on the side inputs. Consider

the example netlist in Figure 3.1(a) and the state transition (1100,d+,1101). There

exists a path between node e and the output d. In state 1100, node e evaluates to

1. This value at e must propagate to the output because d cannot go high until

e has gone high. More succinctly, output d switched from low to high as a direct

consequence of node e going high and the side input, c being at 0. Therefore,

stabilize untimed(SG,NET) {
modified = FALSE
foreach n ∈ N

foreach (s,t,s′) ∈ δ
if ((exists path(NET,n,L(t))) and (must prop(NET,s,n,L(t))) and

(not stable(s,s′,n))) then
stable(s,s′,n) = TRUE
modified = TRUE

return modified
}

Figure 3.6. Untimed stabilization algorithm.

40

stable(1100,1101,e) is set to TRUE.

The distribute function is used to copy this stabilization forward in the state

graph until a change in evaluation is encountered. In particular, stable(1100, 1101,

e) implies the following stability conditions are TRUE: stable(1101,e), stable

(1101,1111,e), stable(1111,e), stable(1111,1110, e), stable(1110,e), and stable

(1110,0110,e). This distribution of stability information halts when it reaches state

0110 since the Boolean evaluation of e in this state changes from 1 to 0.

The other transition in the SG that could possibly indicate an untimed stabi-

lization for node e is the state transition (1111, d−, 1110). In this case, however,

the input c is 1 (a controlling value), prohibiting the propagation of node e to the

output d. In addition, node e was already shown to be stable high in states 1111

and 1110. Thus, no stabilization can be assumed for the falling transition of e. As

explained later, this lack of stabilization on the falling transition of e indicates a

hazard on node e.

A similar analysis done on the circuit in Figure 3.1(b) shows that the rising

transition on node e is acknowledged by d+ and the falling transition is acknowl-

edged by d− since b is high (a noncontrolling value) when d goes low. As a result,

this circuit can be shown to be hazard-free under the speed-independent model.

3.3.4 Timed Stabilization

When timing information is taken into account, the hazard found for the netlist

shown in Figure 3.1(a) may not actually manifest. If this is the case, then node e is

hazard-free. This section describes a new method to determine stabilization using

timing information. Timed stabilization attempts to show further stability in the

state graph by calculating the maximum possible time through the network to the

node of interest, n, and comparing this against the minimum time spent traversing

the state graph. When it can be shown that in the worst-case a sufficient amount

of time has elapsed, node n can be stabilized.

The algorithm to determine timed stabilization is shown in Figure 3.7. For each

node n, the algorithm first measures the longest path delay from any primary input

or output to the node n. This must be done because the actual signal that causes

41

stabilize timed(TPN,SG,NET) {
foreach n ∈ N
d = find max delay(NET,n)
foreach s ∈ S
visit(s) = FALSE

foreach (s,ti,s′) ∈ δ where s = 〈v,z〉
if (eval(s,n) 6= eval(s′,n)) then

z′ = update zone(TPN,NET,z,ti)
foreach s′′ ∈ S
path(s′′) = FALSE

do timed(TPN,SG,NET,n,s′,z′,ti,d,visit,path)
}

Figure 3.7. Timed stabilization algorithm.

n to change evaluation may not be known due to differences in path lengths. For

the example netlist in Figure 3.1(a), this delay is determined to be 2. Next, the

algorithm initializes the visit array that is used to let the recursion know when a

state has been visited along multiple paths when determining stabilization of node

n. At this point, the algorithm finds state transitions, (s, ti, s
′), where the Boolean

evaluation of n changes. This indicates locations in the state graph where the node

n becomes unstable. The algorithm then takes the zone z associated with state

s and updates it to include the transition ti. The reason this is done rather than

taking the zone associated with s′ is that ti may have been pruned from this zone.

It is important that ti is in the zone that is used for timed stabilization as ti serves

as a reference transition as the algorithm moves forward in the state graph. Finally,

the algorithm initializes a path array that is used to terminate cycles during the

analysis of a path in the SG.

The update zone algorithm shown in Figure 3.8 adds a new transition to a given

zone. The first step is to extend the zone to include a new row and column for

the new transition, ti. Next, it searches the zone starting with the transitions that

have been added most recently for transitions that enable ti (i.e., tj ∈ • • ti). The

first such transition that it finds is the causal transition for ti. The upper bound

of the firing time for ti should be set in reference to this transition. The upper

bound is either taken from the TPN when ti is a transition on an input wire or it

42

update zone(TPN,NET,z,ti) {
z′ = extend(z,ti)
found causal = FALSE
foreach tj ∈ z′ in reverse order

if (tj ∈ • • ti) then
if (!found causal) then

found causal = TRUE
if (L(ti) ∈ I) then

z′ij = u(ti)
else

z′ij = find max delay(NET,L(ti))
if (L(ti) ∈ I) then

z′ji = (−1) ∗ l(ti)
else

z′ji = (−1)∗ find min delay(NET,L(ti))
else

z′ij = ∞
z′ji = ∞

recanonicalize(z′)
}

Figure 3.8. Algorithm to update the zone.

is taken as the maximum delay in the netlist generating ti when it is a transition

on an output wire. For all transitions that enable ti, a lower bound must be set

between tj and ti. For all transitions that do not enable ti, the timing relationships

are initially set to be unbounded. At this point, the zone is recanonicalized using

Floyd’s all-pairs shortest path algorithm to tighten any loose inequalities. This

recanonicalization step is necessary because tightened bounds increase accuracy.

In addition, there are often cases where no timing relationship is known between

a newly entered transition and the other entries in the zone. Recanonicalization

creates these entries in the zone. As an example, the zone found for the state 1110

in the example is shown in Figure 3.9(a). The new zone after adding the transition

a− is shown in Figure 3.9(b). The do timed algorithm shown in Figure 3.10 is used

to recursively explore the SG, attempting to accumulate sufficient time to stabilize

a given node n before reaching a termination condition. This algorithm first marks

the current state s as visited in the visit and path arrays described earlier. Next,

43

τd−
τd− 0

τd− τa−
τd− 0 -2
τa− 5 0

(a) (b)

τd− τa− τb−
τd− 0 -2 ∞
τa− 5 0 -2
τb− ∞ 5 0

τd− τa− τb−
τd− 0 -2 -4
τa− 5 0 -2
τb− 10 5 0

(c) (d)

τd− τa− τb− τc−
τd− 0 -2 -4 ∞
τa− 5 0 -2 ∞
τb− 10 5 0 -2
τc− ∞ ∞ 5 0

τd− τa− τb− τc−
τd− 0 -2 -4 -6
τa− 5 0 -2 -4
τb− 10 5 0 -2
τc− 15 10 5 0

(e) (f)

Figure 3.9. Zone creation and evolution.

do timed(TPN,SG,NET,n,s,z,ti,d,visit,path) {
visit(s) = path(s) = TRUE
foreach (s,tk,s

′) in δ
z′ = update zone(TPN,NET,z,tk)
if (-1*z′ik > d) then

if (not visit(s′)) then
stable(s,s′,n) = TRUE

else if (not path(s′) and eval(s,n) == eval(s′,n)) then
stable(s,s′,n) = FALSE
do timed(TPN,SG,NET,n,s′,z′,ti,d,visit,path)

path(s) = FALSE
}

Figure 3.10. Timed stabilization recursion.

44

it considers each state transition (s, tk, s
′). First, it adds the transition, tk, to the

zone. Next, it checks the zone to determine if enough time has accumulated from

the reference transition ti to the new transition tk such that the node of interest n

has certainly stabilized. If it has, it must also check that the state s′ has not been

visited along a different path. It must be the case that the minimum time upon

reaching a state along all paths to that state has exceeded the maximum logic delay

d. Therefore, if this state is encountered along a different path and did not stabilize,

then this state transition cannot stabilize the node n. If the amount of accumulated

delay does not exceed the delay d, then the algorithm must determine if it is going

to recurse down this state transition. If this state has been seen previously upon

this path, the algorithm has encountered a cycle of states and must not recurse.

If the Boolean evaluation of the node n has changed, then again the algorithm

must not recurse. If this is a new state on this path and the Boolean evaluation is

maintained, then the algorithm recursively visits the state s′. Note that this edge

may have been found to be stable along a different path, but it is not stable along

the path the algorithm is currently working on. Therefore, the algorithm must say

this edge is not stable before recursing. Upon returning from recursion, the path

variable is set to false to allow other potential paths to visit the state s.

This algorithm has the potential for requiring the exploration of a large number

of paths, although experimental results have not shown this to happen. The further

the algorithm recurses through the state graph, the more potential side paths there

are to explore. Typically, the length of the paths explored is very short as the

recursion terminates quickly. If in the future, examples are found where this is not

the case, the algorithm can be changed to limit the path length. This can improve

efficiency at the potential cost of more false negative results.

It is now useful to again consider the example netlist in Figure 3.1(a). A

change in evaluation on node e occurs between states 1110 and 0110. As mentioned

previously, the do timed function is called with the zone shown in Figure 3.9(b).

As the SG is traversed, the next transition encountered is b−. Since b− fires two

to five time units after a−, these entries are entered into the appropriate rows and

45

columns as shown in Figure 3.9(c). The timing of the other nondiagonal entries

are set to ∞. The zone is then recanonicalized and the resulting zone is shown in

Figure 3.9(d). The parameter of interest is the minimum elapsed time between the

last transition entered, b−, and the initial transition a−, which is 2 in this case.

Note that lower bounds appear as negative values in a DBM. Since two time units

is insufficient time to say with certainty that node e has stabilized, the algorithm

considers recursing on state 0010. Since this state has not yet been explored on this

path, and since node e still evaluates to 0 in this state, the algorithm recurses to

state 0010. Upon recursion, the algorithm adds transition c− to the zone as shown

in Figure 3.9(e) and recanonicalizes to obtain the zone shown in Figure 3.9(f).

The new minimum time elapsed from a− till c− is four time units. Since this

number is larger than the maximum delay of the AND gate (two time units), the

algorithm can mark this edge as stabilized. The distribute function then copies

this stabilization onto states 0000, 0100, and 1000 and edges (0000, b+/1, 0100),

(0100, c+/1, 0110), (0000, a+, 1000), and (1000, b+/2, 1100). This is significant in

that the hazard condition that existed after untimed stabilization cannot manifest

because of the timing relationships between the circuit and the SG.

3.3.5 Acknowledgment Hazards

As mentioned in Sections 3.2.2 and 3.2.3, hazards can manifest in asynchronous

circuits due to violations in the acknowledgment or monotonicity properties. The

final step in the verification process is to check each node for violations in these

properties.

The algorithm shown in Figure 3.11 uses stability information in each state

check acknowledgment(SG,NET) {
foreach (n ∈ N)

foreach (s, t, s′) ∈ δ
if ((eval(s,n) 6= eval(s′,n)) and !stable(s,s′,n)) then

report acknowledgment hazard on n for (s,t,s′)
}

Figure 3.11. Algorithm to check for acknowledgment hazards.

46

s and each state transition δ to check for acknowledgment on all excited nodes.

The algorithm examines each node n and each state transition (s, t, s′) in which n

changes Boolean evaluation. If n is not stable before it changes Boolean evaluation,

then an acknowledgment hazard is reported.

3.3.6 Monotonicity Hazards

The algorithm to check a netlist for monotonicity violations is shown in Fig-

ure 3.12. Monotonicity violations are caused on a node, n ∈ (N ∪ O), by one of

its fanins, v ∈ FI(n), in a particular state, s ∈ S. For each node, all states in

the SG are are applied to the netlist. At this point, the algorithm constructs a

cube formed from all n ∈(I ∪ O ∪ N) and applies it to fn to determine if, given

what is known about the current state, the value of node n is being forced to a

known value. The function, cube(s), is a cube formed from the values determined

on each n ∈(I ∪ O ∪ N) using the state vector and what is known about internal

nodes from the stable and eval predicates. Note that cube(s) represents a set of

implementation states. More formally, cube(s) is defined below for each node v:

cube(s)(v) =

s(v) if v ∈ I ∪O
eval(s, v) if v ∈ N ∧ stable(s, v)
X otherwise

Next, cube(s) is applied to the function fn. fn(cube(s)) is written to denote

fn(cube(s)(v1), cube(s)(v2), . . . , cube(s)(vr)). In other words, the value of each

fanin in the cube is extracted and applied to the function fn. Since some values

check monotonicity(SG,NET) {
foreach n ∈(N ∪O)

foreach s ∈ S
if (fn(cube(s)) = ’X’) then

foreach v ∈ FI(n)
if (potential hazard(s,n,v)) then

report monotonicity hazard on n for (s,v)
}

Figure 3.12. Algorithm to check for monotonicity hazards.

47

applied to the function may be X, the function fn may return X. For example, if

fn(a,b) = ab, fn(0,X) = 0 while fn(1,X) = X.

If the value at node n is determined to be unknown, then all fanins of node n

are checked for potential hazards. The algorithmic definition for potential hazard

shown in Figure 3.13 is modified from [25] to fit the definitions used in this research.

To help in the evaluation of potential hazards, a potential cube, pcube(s,v)(u), is

formed as follows:

pcube(s, v)(u) =

{
cube(s)(v) if u 6= v
eval(s, u) if u = v

The potential cube is equivalent to cube(s) except at node v, which is set to its

final evaluation.

The bitcomp function referenced in Figure 3.13 takes as arguments a state, s,

and node, v ∈(I ∪ O), and returns a new state that has the bit v complemented.

This new state and the node n then become arguments to the predicate eval.

The absence of a potential hazard is determined by examining the conditions

that prevent it from occurring. There are four such conditions shown in the

algorithm of Figure 3.13 and briefly described below. A potential hazard cannot

occur on node n in state s for fanin v:

potential hazard(s,n,v) {
if (v ∈ N ∧ stable(s,v)) then

return FALSE
if ((v ∈(I ∪O)) ∧ (eval(s,n) 6= eval(bitcomp(s,v),n))) then

return FALSE
if ((fn(pcube(s,v)) = ’X’) ∧ !stable(s,n)) then

return FALSE
if (fn(pcube(s,v)) = eval(s,n)) then

return FALSE
return TRUE

}

Figure 3.13. Algorithm to check for a potential hazard.

48

1. if v is an internal node and is stable in state s.

2. if v is a primary input or output and the evaluation of n changes when v is

complemented.

3. if fn(pcube(s,v)) does not indicate that n is being forced to a known value

and n is not stable in state s.

4. if fn(pcube(s,v)) is equal to the Boolean evaluation of n in state s.

Condition 1 implies that potential hazards can only be caused by internal nodes

if they are unstable. Condition 2 implies that potential hazards are only caused by

external nodes when changing their value does not result in a change in evaluation.

Condition 3 indicates that there is no potential hazard when node n is not being

forced to some value if n is not stable to begin with. Finally, condition 4 implies

there is no potential hazard if setting node v to its final evaluation forces node n to

its final evaluation. If all four of these conditions cannot be met, then a potential

hazard exists and a monotonicity hazard is reported on node n in state s caused

by fanin v.

An example circuit to illustrate monotonicity hazards is shown in Figure 3.14(a).

This example is named rpdft and is taken from a suite of examples used by the

timed automata tool KRONOS [80, 81]. The monotonicity hazard occurs on node b58

in state 00001 and is caused by the b49 fanin. The state graph segment where this

hazard occurs is shown in Figure 3.14(b). In state 00101, signal b49 is high and

signal b48 is low. Thus, signal b58 is held low by b49. When input b falls and the

circuit transitions to state 00001, b48 is enabled to rise and b49 is enabled to fall,

both after one gate delay. If b49 falls before b48 rises, then b58 is enabled to rise

when it should stay stable low. This represents a monotonicity hazard on node b58

caused by its b49 fanin. There is an additional monotonicity hazard in this circuit

on node b58 that is caused by fanin b48 in state 01101. Starting in state 01001

as shown in Figure 3.14(c), signals b49 and b58 are both low while signal b48 is

high. When signal b rises, a transition is made to state 01101. This enables b49 to

49

rise and b48 to fall. If b48 falls before b49 rises, then b58 is enabled to rise when

it should have stayed low. This again represents a monotonicity hazard, this one

caused on node b58 by its fanin b48 in state 01101. Note that in both these cases,

the output is not affected by these internal monotonicity hazards.

Finally, there is an additional monotonicity hazard reported on the output t in

state 10001 by its fanin b58. Starting in state 00001 as shown in Figure 3.14(d),

signal b58 is low and signals b55 and output t are high. When signal d falls, the

circuit transitions to state 10001, signal b55 is enabled to fall (through two gate

delays) and signal b58 is enabled to rise (through three gate delays). However, it

is not possible to determine the order in which these internal nodes switch. Thus,

in state 10001, neither b55 or b58 has been stabilized, and it is determined that

a monotonicity hazard occurs on the output t. This last monotonicity hazard is

discussed in more detail in Chapter 6 because this particular hazard represents a

false negative hazard. When a full timed state-space exploration is done, it is shown

dcbat

b55

b48
b58

a

b
c
d

t

state =

b49

b50

b47

b51

(a)

00101

00001

b−

(b)

01001

01101

b+

(c)

00001
d+

10001

(d)

Figure 3.14. Example to illustrate monotonicity hazards. (a) rpdft benchmark
circuit. (b) First state graph segment showing a monotonicity error. (c) Second
state graph segment. (d) Final state graph segment.

50

that this hazard does not actually exist because the switching order of nodes b55

and b58 eliminates the possibility of a monotonicity hazard on the output.

CHAPTER 4

DECOMPOSITION

Decomposition transforms the synthesized netlist representation into a logically

equivalent network that consists entirely of base functions. This process is often

done in synchronous systems by repeatedly applying DeMorgan’s laws and the

associative law. The same decomposition algorithm that is applied to the subject

graph must also be applied to the implementation library resulting in pattern graphs

for the library cells. This insures that a subgraph of the subject graph can then be

structurally matched to the pattern graphs in the library.

This chapter first presents the decomposition algorithm derived for use with

timed asynchronous circuits. A discussion of decomposition to base functions is

presented, followed by discussions of unbalanced trees and the use of inverter pairs.

Next, the issue of annotating each node with hazard information is presented

followed by a section on reordering of the input pins. Finally, issues of library

creation are discussed including common-input pins and input name permutations.

4.1 Decomposition Algorithm

If the synchronous approach is applied to timed asynchronous circuits, hazards

are likely created on newly formed nodes. These nodes must be annotated with

the type of hazard that occurs (as discussed in Chapter 3) so that the matching

stage can deal with them appropriately. The timed asynchronous decomposition

approach developed in this chapter uses unbalanced trees when decomposing f set
u

and f reset
u . This approach allows for input pin reordering in cases where hazardous

nodes cannot be properly covered in the following stage of technology-mapping.

Decomposition guarantees a solution in the matching and covering stages as

long as the base functions are available in the implementation library. In this case,

52

a trivial solution can always be be found for the subject graph. Different heuristics

can be applied to decomposition algorithms depending on the desired optimization

parameters. Care must be taken, however, as a structural decomposition may not

be unique and the resulting netlist may affect the quality of the final result. Most,

if not all, technologies have limitations on the number of fanins allowed per gate.

In CMOS technology, for instance, performance is degraded considerably when the

gate fanin exceeds four. As a result, implementation libraries typically exclude any

gate exceeding this fanin.

Decomposition is performed using repeated applications of DeMorgan’s theorem

and the Boolean associative law. Both of these operations are known to be hazard

preserving for Huffman style circuits [57]. In other words, if the original circuit

is hazard-free, than the decomposed circuit is also hazard-free. For these cases,

the technology-mapper must adhere strictly to these Boolean laws. Removing any

redundant logic may introduce hazards.

Unfortunately, this same decomposition algorithm as applied to SI circuits (and

by extension to timed circuits) is not hazard preserving as illustrated in Figure 1.6.

As a result, each internal node created in the decomposition must be checked for

hazard-freedom.

4.1.1 Decomposition to Base Functions

The output of synthesis is a function, fu, first presented in Section 2.3 whose

gC implementation form is shown again in Figure 4.1(a). Although highly unlikely,

a simple one cell implementation is possible providing that a gC library cell is

available that covers the entire subject graph. The whole crux of the technology-

mapping problem is that these complex cells are seldom available and fu must

be decomposed into gates simple enough that library cells are guaranteed to be

available to match to the decomposed subject graph.

The circuit structure of a gC shown in Figure 4.1(b) is susceptible to short-

circuits if both the n- and p- stacks are concurrently enabled. This short-circuit

problem is discussed at length in Chapter 5 but it is mentioned here because gC’s

cannot always be used for state-holding. The use of a gC is preferable due to its

53

set

u

−

+

~resetf reset
u

f set
ufunction

set

function
reset

gC

(a)

u
set

~reset

weak

(b)

Figure 4.1. Generalized C-element structure. (a) General form of a gC circuit.
(b) A CMOS implementation.

compact structure but if short-circuit problems are present, another element must

be used to provide the state-holding function.

One such element that prevents short-circuits is the standard Muller C-element

(CEL). The general structure of a CEL is shown in Figure 4.2(a) and a CMOS

implementation [82] is shown in Figure 4.2(b). The difference between this gate and

the gC can be easily seen from the truth tables shown in Table 4.1. In particular,

when the set input is equal to 1 and the ∼reset input is equal to 0, this gate holds

its previous state while a gC has a short-circuit. Therefore, when a short-circuit

condition is detected, the gC gate is replaced with a CEL. Note that when f set
u is

of the form ab and f reset
u is of the form āb̄, the CEL can be used for both this logic

and the state-holding function.

Referring again to Figure 4.1(a), fu contains a set of product terms, f set
u ,

representing the conditions that cause the output to be set. If the circuit is

state-holding, there is a corresponding set of product terms, f reset
u , that represent

conditions causing the output to be reset. These two sets of terms are naturally

54

u

~reset

set

CEL

f reset
u

f set
ufunction

set

function
reset

(a)

set

~reset
u

weak

(b)

Figure 4.2. CEL structure. (a) General form of a CEL circuit. (b) A CMOS
implementation.

Table 4.1. Truth tables for a gC and a CEL.

inputs outputs
set ∼reset gC CEL
0 0 0 0
0 1 hold hold
1 0 sc hold
1 1 1 1

decoupled and can be decomposed separately. The decomposition is done as a tree

structure, with the root at the output and the inputs as leaves and is performed

from the tree root back towards the leaves.

Figure 4.3 shows the top level algorithm used to perform decomposition on fu.

The decomposition algorithm takes as input the partitioned netlist, fu, and returns

a new netlist composed of base functions. The first step in the algorithm is to

55

decomp(fu) {
if (|f reset

u | > 0) then
return gc(or decomp(fset

u),inv(or decomp(f reset
u)))

else
return or decomp(fu)

}

Figure 4.3. Decomposition algorithm for fu.

determine if the netlist fu is state-holding. A state-holding netlist implies that

the number of elements in f reset
u is nonzero. If this is the case, the function gc is

called, a gC is placed at the root, and the cones of logic representing the set and

reset portions of fu are decomposed separately. Note that a gC is placed in the

decomposition and later checked for short-circuit conditions. If any are found, the

gC is replaced with a CEL.

Since f set
u and f reset

u are both disjunctively combined sets of products, the

or decomp function is called for both arguments of the gc function. However,

an inverter is placed on the output of the reset portion by the function inv. This

state-holding structure is implemented as shown in Figure 4.1(a). If f reset
u has

no product terms, the circuit is combinational and the state-holding function is

unnecessary. In this case, fu is passed to the or decomp function.

The or decomp function of Figure 4.4 takes a set of product terms as inputs.

If there is only one product term, a call is made to the and decomp function and

this product term is decomposed into an unbalanced tree structure. If there are

or decomp(products) {
select product from products {

if (|products | == 1) then
return and decomp(product)

else
return inv(inv(nand2(inv(and decomp(product)),

inv(or decomp(products − {product })))))
}

}

Figure 4.4. Decomposition algorithm for an OR function.

56

multiple product terms, then one of the product terms is selected, a call is made to

the and decomp function followed by a call to the inv function, thus completing one

argument of the nand2 function call. Next, the selected product term is removed

from products, or decomp is called on the remaining products, inv is called on this

result, thus completing the other argument of the nand2 call. Finally, the inv

function is called twice.

Timed circuit decomposition shown in the and decomp function of Figure 4.5

uses unbalanced trees for two reasons. First, as mentioned in Chapter 1, an

unbalanced decomposition of a product term has a regular structure regardless

of the number of literals, whereas a balanced structure varies depending on the

number of literals. Second, unbalanced trees facilitate the search for a minimal delay

implementation through input pin reordering, an optimization technique discussed

in Section 4.3 that can potentially reduce both the circuit delay and the number

of hazards in the decomposed netlist. One potential drawback of the unbalanced

architecture involves the case where all inputs arrive simultaneously. Assuming

2-input gates, if the number of inputs, n, is greater than one, the number of gate

delays in the balanced architecture is the ceiling of log2(n), where in the unbalanced

architecture the number is n-1. This difference becomes more significant with

increasing n.

The and decomp function of Figure 4.5 takes a single product term with an

arbitrary number of literals and decomposes it into an unbalanced tree structure.

and decomp(product) {
select literal from product {

if (|product | == 1) then
return lit(literal)

else
return inv(inv(inv(nand2(lit(literal),

and decomp(product − {literal })))))
}

}

Figure 4.5. Decomposition algorithm for an AND function.

57

If product contains only one literal, a call is made to lit. The function, lit, shown

in Figure 4.6, inserts an inverter pair at the leaf if the literal is positive, otherwise it

inserts a single inverter. If product contains multiple literals, then one argument to

the nand2 function call is implemented by selecting one of the literals and passing it

to the lit function. The second argument is implemented by removing this literal

from product and recursively calling the and decomp function. Upon return from

nand2, the inv function is called three times.

Figure 4.7 shows the results of running three examples through these decom-

position algorithms. Figure 4.7(a) shows the decomposition of the combinational

function fu = abcd. Figure 4.7(b) shows the decomposition for the combinational

function fu = ab̄c̄ + wxyz. Finally, Figure 4.7(c) shows the decomposition for a

state-holding function with f set
u = ab + cd and f reset

u = e.

Excluding the input and output structures, the internal structures between

2-input nand gates in the examples of Figure 4.7 have a string of two or three

inverters. The decomposition algorithms actually place a string of four inverters

where two are shown but one inverter pair is removed during implementation

because it contributes nothing to the circuit solution or optimization.

4.1.2 Insertion of Inverter Pairs

The algorithms described in the previous section employ the use of inverter pairs

in the decomposition [35, 32, 29]. This clever technique was first used in the MIS

program [35]. The goal of using inverter pairs is to increase the granularity of the

netlist thereby increasing options for the matching/covering stage.

The addition of inverter pairs at selected nodes does not affect the Boolean

lit(literal) {
if literal is positive then

return inv(inv(literal))
else

return inv(literal)
}

Figure 4.6. Decomposition algorithm for a literal.

58

b
a

d u
c

(a)

u

a
b
c

x
y
z

w

(b)

set

u

a
b

gC

e

+

reset

c
d

−

(c)

Figure 4.7. Example decompositions. (a) Combinational function fu = abcd. (b)
Combinational function fu = ab̄c̄ + wxyz. (c) State-holding function f set

u = ab + cd
and f reset

u = e.

function being implemented and is straightforward to implement in both the subject

and pattern graphs. The dynamic programming algorithm used in the matching

stage can now take advantage of a wider range of matching options. Any inverter

pair chosen as the best match at a node during the matching phase can safely be

removed from the covered netlist since its actual implementation is a wire. The

implementation cost of a matched network, starting from an unmatched network

with inverter pairs, has lower (or at most equal) cost to that of a matched network

derived without inverter pairs.

There are three potential drawbacks from using inverter pairs. First, the hazard

59

verification is done on the unmatched network, consisting only of base functions,

and the increase in the number of nodes due to inverter pair insertion increases

the computational cost of the verification algorithm. Second, there is an additional

computational cost in the matching stage because more library cells are consid-

ered as potential matches due to the finer granularity of the network. Finally,

the additional hazards that the inverter pair nodes are likely to create must be

considered in the matching algorithm, possibly making this step more difficult and

time consuming. Providing that the matching and covering stage can properly deal

with all hazardous nodes, the covered netlist has equal to or fewer library elements

(after removing inverter pairs). Thus, the timed technology-mapping algorithm has

more potential for implementing a hazard-free netlist when using inverter pairs.

4.2 Hazard Annotation

Once decomposition is complete, each node is verified for hazard-freedom using

the algorithms presented in Chapter 3. If hazards are found to exist, each node

is annotated accordingly. It is important that this annotation indicates the type

of hazardous behavior because acknowledgment and monotonicity hazards may be

treated differently in the matching stage.

Figure 4.8 shows three outputs from a file named Ebergen, which is taken from

a suite of examples used by the timed automata tool KRONOS. These outputs are

analyzed and synthesized using the ATACS tool. The synthesized equations are

verified using the algorithms in Chapter 3 and decomposed using the algorithms in

Section 4.1. Each node in Figure 4.8 has been annotated with its hazard properties

where an M indicates that a monotonicity hazard exists on that node and an A

indicates that an acknowledgment hazard exists. Note that the presence of hazards

is dependent upon explicit timing delays associated with the base functions in the

decomposition. For the hazards shown in Figure 4.8, inverter delays are [1,4], nand2

delays are [2,4], and gC delays are [4,6] time units. Note that no hazardous nodes

are present in Figure 4.8(a), only monotonicity hazards are present in Figure 4.8(b),

and only acknowledgment hazards are present in Figure 4.8(c).

60

b
x

c

x

c

(a)

gC c

a
x

−

+

a
x

M

M

(b)

A
a
d

AA

gC x

A

−a

+

A

A

d

A

(c)

Figure 4.8. Hazard annotations. (a) Ebergen output b. (b) Ebergen output c. (c)
Ebergen output x.

4.3 Input Pin Reordering

The unbalanced tree structure used during decomposition provides a means

for finding minimal delay through a netlist, and also allows for the possibility of

considering many different decompositions through reordering of the input pins. To

take advantage of this, later arriving inputs are placed closer to the output. The

two examples shown in Figure 4.9(a) and 4.9(b) indicates how input pin reordering

reduces the maximum delay through the circuit. Suppose the delay on the nand2

gates is [2, 4] time units and the delay on the inverter gates is [1, 3] time units.

For the arrival times of the primary inputs shown in Figure 4.9(a), the output u

switches somewhere in the range of [12, 22] time units. Figure 4.9(b) shows how

this delay time can be reduced by reordering the inputs so the later arriving input,

61

u[12,22]

a[6,8]
b[3,5]
c[1,2]

(a)

u[9,19]a[6,8]

c[1,2]
b[3,5]

(b)

Figure 4.9. Input pin reordering. (a) Delay calculations for a 3-input AND
function. (b) Pin reordering to improve delay times.

a, is placed closer to the output. Now the switching time of output u has decreased

to [9, 19] time units.

Not only can this pin reordering technique be used in timed asynchronous

designs to minimize delay in the decomposed network, but it can also be used

to alter the time at which internal and output nodes switch. This technique is

illustrated in the netlists that are first presented in Figures 1.6(c) and 1.6(d) and

shown again in Figures 4.10(a) and 4.10(b) with gate delays added. Using the gate

delays of [5,8], node e is hazardous in Figure 4.10(a) but is found to be hazard-free

in Figure 4.10(b).

Referring to Figure 4.10(a), beginning in state (1110), inputs a, b, c, and internal

signal e are high while the output d is low. After a falls, the circuit transitions to

state (0110), e becomes excited to go low and does so [5,8] time units later. Signal

b then falls [2,5] time units after a fell and the circuit transitions to state (0010).

Signal c now falls [2,5] time units after b, which is [4,10] time units after the AND

gate driving signal e is excited to fall. Since the AND gate driving node e takes

[5,8] time units to evaluate, it is possible that the AND function driving the output

d can become excited to rise prematurely. The result is a hazard on the signal d,

and there is a potential for circuit failure.

The netlist of Figure 4.10(b) shows how, after input pin reordering, the later

62

[5,8]

b d
ea

[5,8]

c
(a)

b
d

e
[5,8]

[5,8]a
c

(b)

b+/1

abcd

d+a−

a+

c−

b−

d−

State =

0100

0110

1110

1111

1101

1100

1000
0010

0000

b+/2

c+/2

c+/1

(c)

Figure 4.10. Hazard-freedom through pin reordering. (a) Hazardous netlist. (b)
Hazard-free netlist. (c) State graph.

arriving input, c, is placed further from the output in the decomposition. This

maintains the logical equivalence to the netlist of Figure 4.10(a) while at the same

time changing the timing behavior. Beginning again in state (1110), this time e

starts low, and it does not become excited to change until after a falls, b falls, c

falls, and a rises again. At this point, input b is already low, which maintains d in

its low state until b rises again. There is no sequence of transitions that can cause

this circuit to experience a hazard on the output d. Thus, the hazard shown in

Figure 4.10(a) has been eliminated by the reordering of the inputs.

This example shows that the placement of signal c further from the output

has eliminated the hazard condition. Signals such as c are called trigger signals

and placing them further from the output likely decreases hazardous activity in

the netlist. Trigger signals are those signals whose firing can cause the circuit or

gate to become excited. Multiple trigger signals may exist and if so, they are all

assumed to arrive concurrently. All other signals applied to a gate (or circuit) are

called context signals and are assumed to be stable before a trigger signal activates.

As just shown, trigger signal placement in the unbalanced decomposition tree can

have a direct affect on the circuit delay and hazard properties.

63

Synchronous designs are delay optimized when the trigger signals are placed as

close to the output as possible. SI designs need trigger signals placed as close to

leaves of the decomposed network as possible to ensure that all other signals that

affect the transition of the output are stable before the trigger signal enables the

output to change.

Referring to the state graph of Figure 4.10(c), input c + /2 is the trigger signal

for d-. When this trigger signal is placed closer to the output as in Figure 4.10(a) a

hazard occurs because node e has not had time to stabilize before c rises. However,

the circuit of Figure 4.10(b) is hazard-free because the trigger signal is placed closer

to the inputs and its transition is the last one to occur before d falls.

This example illustrates conflicting priorities for timed asynchronous circuits.

For minimal delay, trigger signals should be placed as close to the output as possible

since they are the latest arriving signals. For maximal hazard-freedom, trigger

signals should be placed as close to the leaves as possible to ensure that all other

signals affecting the output have stabilized.

4.4 Library Creation

Libraries have been created for both synchronous and asynchronous technology-

mapping and it is a combination of these libraries that this work uses to bind the

subject graph to a specific technology. There are several issues that are important

in regards to the selection and implementation of a cell library.

First, prefiltering must be done when preparing the library for use in matching

the elements to the subject graph. For instance, library cells expecting a clocking

signal (in the case of synchronous latches and flip-flops) along with its associated

setup and hold times, will be treated using the same atomic gate model used for

all library cells, that is, the Boolean function of the cell evaluates instantly and the

value is available at the output after a specified delay. In other words, inputs such

as clocking signals will be treated like any other inputs to the cell.

Second, special annotations must be included with library cells that cannot

be represented in a tree structure. Examples of these functions are exclusive-or,

exclusive-nor, and many gC gates. These cells are referred to as common-input

64

cells where equivalent subnetworks must be found that drive the common-input

pins, otherwise the cells cannot be utilized in the implementation the subject graph.

This issue is addressed in Section 4.4.3.

Third, the structural approach to technology-mapping requires that the match-

ing/covering stage find isomorphic pattern matches between the subject graph

and the pattern graphs. This necessarily requires that the pattern graphs be

decomposed in a structurally equivalent manner to which the subject graph is

decomposed.

4.4.1 Implementation Library

An implementation library must be available to the technology-mapper to ensure

that the decomposed netlist can be successfully implemented. Each cell of the

implementation library is modeled as an atomic gate. The combinational and

sequential cells are single output logic functions. The sequential elements are either

CEL’s or gC’s with internal feedback for state-holding purposes.

Each library cell is a netlist composed of a node for each fanin to the cell and

a single output node. This output node has the Boolean function of the cell, fu,

associated with it. If this cell is a state-holding element, then fu = f set
u + u • f reset

u .

The pattern graphs for each cell are generated using the same algorithms used

for decomposing the subject graph. Each library cell is decomposed once into a

pattern graph by the algorithms presented in Section 4.1 and then subsequently

fetched from cache.

Figures 4.11(a) and 4.11(b) show two examples of library cells. Figure 4.11(a)

is a combinational netlist implementing the XOR function where fu = āb + ab̄.

Figure 4.11(b) is a state-holding function where f set
u = pq and f reset

u = p̄r̄.

4.4.2 Base Functions

The implementation library is required to contain the base functions used in

the subject graph decomposition. These three functions are the inverter, 2-input

NAND, and a CEL. With two small additions, the base library could provide simple

optimizations to the matching/covering stage. First, a plain gC such as that shown

65

u

a

b

a

b

(a)

gC

r
p

u

−

p
q

+

(b)

Figure 4.11. Library cell examples. (a) 2-input XOR function. (b) gC function.

in Figure 4.1(b) could replace the CEL for state-holding. This would reduce the

size of the device level implementation for fu providing short-circuit conditions

are not present. Second, a zero-cost buffer in the form of an inverter pair whose

implementation is a wire would allow for the removal of unused inverter pairs in

the subject graph.

4.4.3 Decomposition of Common-Input Cells

Library cells with common-input pins cannot normally be represented as trees.

However, a tree representation can be made by splitting the leaves of the inputs

that are common and making a special notation for those input variables that

are associated with more than one leaf vertex. Since the decomposed network is a

directed acyclic graph, the matching stage must ensure that equivalent subnetworks

exist for these input variables. Thus, all library cells with common-inputs must

carry a special annotation to indicate that equivalent subnetworks (or equivalent

primary inputs) must be applied to common-input variables. This problem is not

unique to timed circuit design. However, many gC’s have this common-input pin

structure so this situation occurs frequently in timed circuits.

An example of one such decomposition is shown in Figure 4.12. Again, all

66

b ua

(a)

a

b

a

b

u

(b)

Figure 4.12. 2-input XOR example. (a) XOR circuit symbol. (b) XOR decom-
position.

inverter pairs on the inputs and output have been omitted for this example. Fig-

ure 4.12(a) shows the schematic symbol and Figure 4.12(b) shows the library cell

decomposition of the function fu = ab̄ + bā. Both of the inputs labeled a in the

pattern graph of Figure 4.12(b) must be mapped to the same physical wire of the

subject graph in order for this library cell to be mapped correctly.

The portion of the circuit shown in Figure 4.13(a) enclosed in the rectangle

can be properly covered by the library cell shown in Figure 4.12(b) because the

subnetworks driving nodes a1 and a2 are identical as are the subnetworks driving

a1

a2

b2

u
b1

(a)

b1

a1

u

b2

a2

(b)

Figure 4.13. XOR matching example. (a) A circuit that matches. (b) A circuit
that does not match.

67

nodes b1 and b2. However, Figure 4.13(b) cannot be covered by the library element

of Figure 4.12(b) because the subnetworks driving nodes a1 and a2 are not identical,

nor are the subnetworks driving nodes b1 and b2.

The previous discussion concerning common-input pins applies as well to many

of the gC library elements. These elements, by their very nature, require some

portions of both the set and reset cones of logic in the subject graph to be mapped

to the element. The same restriction applies, that is, subnetworks driving common-

input pins on the gC must be equivalent.

An example of a gC that addresses the issue of common-input matching is shown

in Figure 4.14. Figure 4.14(a) shows the pattern graph for a gC library element

with f set
u = pq and f reset

u = p̄r̄. Figure 4.14(b) shows a subject graph that is the

Ebergen output x. The dotted rectangular area indicates that part of the subject

graph that is mapped to the pattern graph of Figure 4.14(a). Note that the pattern

graph of Figure 4.14(a) is a structural match for the subject graph of Figure 4.14(b).

However, the common-input requirement (on input p) for this library cell does not

match because the p input on the set portion of Figure 4.14(a) is matched to the

input a through one inverter while for the reset portion it is matched to the a input.

However, this library cell could have matched had its inputs been permuted.

4.4.4 Input Label Permutations

Consider again the subject graph of Figure 4.14(b) where this time a match

is made to the pattern graph of Figure 4.14(c). The structure is identical to the

pattern graph of Figure 4.14(a) and the only difference is that the order of the

inputs on the set and reset portions of the pattern graph have been permuted.

Now, when this pattern graph is matched to the subject graph the common-input

pin p is considered a match because it matches the d input on top (through the

inverter pair) and the d input on the bottom.

This example shows that each library cell with common-inputs needs to have

a unique input pattern in order that all such cases can be accommodated. This

permutation creates a potentially exponential increase in the number of library cells

when common-input elements are present. However, the size of the libraries used

68

gC

r
p

u

−

p
q

+

(a)

+

a

a

xgC

d

d

−

(b)

gC u

q

r −

p

p

+

(c)

Figure 4.14. Input permutation example. (a) A pattern graph with f set
u = pq and

f reset
u = p̄r̄. (b) Ebergen output x. (c) Pattern graph of with permuted inputs.

for matching is relatively small and experimental results show that the size of the

library has a minor effect on computation time for technology-mapping [35].

CHAPTER 5

MATCHING AND COVERING

This chapter addresses the issues involved in matching and covering a timed

asynchronous circuit to a technology-dependent library. Synchronous matching

and covering algorithms are well documented in [28, 33, 29] and a brief explanation

is first given. Then algorithms for matching are presented and explained and

an example is used to illustrate. Next, cost factors, especially those related to

hazards, are presented followed by a section on hazard-aware matching. Finally,

algorithms involving short-circuit checks and common-input matching are presented

and discussed.

Several departures from the synchronous design flow arise due to the nature of

timed asynchronous technology-mapping. The first, and most important, is that

of matching and covering the decomposed netlist such that all monotonicity and

acknowledgment hazards are eliminated in the final netlist. The second issue is the

need to check for potential short-circuits in the p- and n- transistor stacks when

gC’s are selected from the library. The final issue is the matching of library cells

with common-input requirements. This last issue is not unique to asynchronous

designs; it must also be dealt with in synchronous designs for library cells such as

XOR functions and their derivatives. However, it occurs much more frequently in

asynchronous designs, particularly when gC’s are present in the library.

5.1 Basic Matching

The seminal work in tree-based matching and covering is due to Keutzer [30].

In this work, both the subject and pattern graphs are required to be acyclic and

rooted, with the root being associated with the subnetwork and cell outputs. When

the decomposition creates a tree structure, all input variables are associated with

70

different leaf vertices except in the pattern graphs for common-input library cells.

For those library cells that are represented as rooted trees, the tree matching and

tree covering problems can be solved in linear time [28].

The structural matching problem for general library functions, represented as

directed-acyclic-graphs, is thought to be intractable [27]. Nevertheless, efficient

matching algorithms have been developed because the number of library cells

considered as potential matches is typically small. Experimental results show

that the size of the library has a minor effect on overall computation time for

technology-mapping [35].

A typical approach to match an implementation library to a design is to match

subnetworks of the subject graph to individual library cells [30, 31, 32]. This

matching process is applied to the subject graph for each library cell, and an

optimum covering is chosen based on a cost parameter such as area or delay.

The matching/covering stage takes as inputs the annotated netlist from the

hazard verification process along with a technology-dependent library and creates a

new netlist composed exclusively of library cells. The matching algorithm finds the

best match at every node from the available library cells, taking into consideration

a primary and secondary cost factor chosen from hazard-freedom, area, or delay.

Since a suboptimized netlist in regards to area or delay still functions correctly

provided it is hazard-free, this research focuses on hazard elimination as a primary

cost objective. Correct circuit operation cannot be guaranteed when hazardous

nodes are present in the final netlist. The matching algorithm determines which

library cell best matches the circuit at each node and annotates the node with the

selected cell. When calculating the best match, the matching algorithm must take

into account the number and types of hazardous nodes that are encapsulated by

the cell as well as hazardous nodes left exposed where the leaves of the library cell

are mapped in the subject graph.

After the circuit is matched, the covering algorithm determines the best cover

using dynamic programming methods [83, 30] and writes a new netlist composed of

cells from the library. It is still possible that the final netlist may contain hazardous

71

nodes. First, it may not be possible to eliminate all hazardous nodes through the

matching/covering process. The success of this step is dependent upon the number

and topology of the hazardous nodes, and the available library cells. Second,

the newly covered netlist alters the timing of the decomposed netlist because the

structure of the circuit will likely change. It is certainly possible that this newly

covered circuit may now exhibit other hazards due to the new timing landscape.

As a result, hazard reverification must be performed on the covered netlist.

If this final verification shows no hazards, then the technology-mapping process

is complete and the library netlist is a hazard-free implementation of the original

circuit specification. If not, then various optimizations are performed, as discussed

in Chapter 2. The technology-mapping process is then repeated until a hazard-free

netlist can be produced or it can be shown that one is not possible.

5.1.1 Top Level Matching Algorithm

The top level algorithm shown in Figure 5.1 takes as inputs the decomposed and

hazard-annotated netlist, decomp net, a state graph, SG, that has been annotated

with the stable and eval predicates, and a cell library LIB that is a set of nets

representing the library cells. The objective of this algorithm is to return a covering

of decomp net such that this covering is free of hazards.

This algorithm works its way through the netlist topologically, beginning at

the leaves and working towards the root. For each internal and output node n, the

netlist is partitioned at n so that pn represents a netlist from the connected leaves to

n. The cost at node n is then set equal to ∞. Next, each library element l ∈ LIB is

decomposed into a netlist and considered as a possible match. The match function

returns the cost of matching dl to a subgraph rooted at n, where the parameters cost

and new cost contain information regarding area, delay, acknowledgment hazards,

and monotonicity hazards. If the match function cannot find a structural match

between the library element, dl, and the partitioned netlist, pn, then a cost of ∞ is

returned. In this case, the algorithm rejects this library element and considers the

next library element.

After the match function returns the cost of matching dl to pn, the matcov

72

matcov(decomp net,SG,LIB) {
foreach n ∈ (N ∪O) in topological order {
pn = partition(decomp net,n)
cost(n) = ∞
foreach l ∈ LIB {
dl = decomp(l)
new cost = match(dl,pn,cost)
if (new cost != ∞) then

new cost = new cost + haz aware cost(l,n)
if (new cost < cost(n)) then

if ((common input(dl,pn)) ∧
(!gC(l) || !short circuit(SG,l,dl,pn))) then

cost(n) = new cost
best match(n) = l

}
}
return cover(decomp net,best match)

}

Figure 5.1. Top level matching and covering algorithm.

function adds the cost of the library cell l to new cost. The cost of the library cell

is calculated by calling the haz aware cost function, which determines the area,

delay, and hazard costs of selecting l. If these newly computed costs are less than

the previous costs, the algorithm updates the cost and best match values at node n,

providing certain conditions are met. First, cells with common-input requirements

must pass the common-input test (discussed in Section 5.4). If this check passes,

then the cost and best match are updated if the library element is a combinational

function or it is a gC and passes the short-circuit check (discussed in Section 5.3).

At least one match is guaranteed at each n ∈ (N ∪ O) because all nodes in the

decomposition are driven by a circuit element in the base function set and all such

functions are required to be elements of LIB.

After all library cells have been checked, the cover function takes decomp net

and best match and creates a new netlist composed of cells from the library. The

algorithms for optimum tree covering of timed asynchronous circuits are not unique

to timed asynchronous technology-mapping. The covering is computed using dy-

namic programming techniques and is well documented in [83, 30].

73

5.1.2 Matching Algorithm

The basic algorithm for matching is taken from [28] and modified as shown in

Figure 5.2 to reflect the features unique to this research. The match algorithm is

linear in the size of the graphs [28]. The algorithm of Figure 5.2 finds isomorphic

pattern matches between a pattern graph and a subnetwork of the subject graph,

beginning at the root and working towards the leaves. The decomposed netlist used

for matching includes three base functions: 2-input NANDS, inverters, and a CEL.

Each vertex of the subject and pattern graphs is associated with either a 2-input

NAND or C-element and has two children (inputs), or an inverter with one child.

Each vertex is identified by its type where a call to type(v) returns the type of base

function associated with this vertex.

The algorithm in Figure 5.2 is invoked with u as the root of the pattern graph

and v as a vertex of the subject graph. If the vertex of the pattern graph is a leaf,

then a path exists from that leaf in the pattern graph to the root of the subject

graph and the cost associated with node v is returned. When both vertices are not

leaves, they must have an equal number of children that must recursively match

for a match to be possible.

match(u,v,cost) {
if (type(v) 6= type(u)) return(∞)
if (v is a leaf) return(∞)
if (u is a leaf) return cost(v)
if (type(v) == inverter) then

uc = partition(u,childu) ; vc = partition(v,childv)
return match(uc,vc,cost)

else
ul = partition(u,left childu) ; ur = partition(u,right childu)
vl = partition(v,left childv) ; vr = partition(v,right childv)
if (type(v) == nand2) then

return min[(match(ul,vl,cost) + match(ur,vr,cost)),
(match(ur,vl,cost) + match(ul,vr,cost))]

else
return (match(ul,vl,cost) + match(ur,vr,cost))

}

Figure 5.2. Matching algorithm.

74

After it has been determined that u is not a leaf, a check is made on the subject

graph. If v is a leaf, then a corresponding leaf has not been reached in the pattern

graph and a match is not possible. A cost of ∞ is returned meaning no match is

found. A cost of ∞ is also returned if the types of base functions driving u and v

are not identical.

At this point, a check is made on which base function is driving nodes u and v.

If type(v) returns an inverter, than the match algorithm is called recursively with

the children of the current vertices. If type(v) returns a 2-input NAND function,

then the match function is called recursively four times. The first call matches

the left children of u and v, and the second call matches the right children of u

and v. The third call matches the right child of u and the left child of v, and the

fourth call matches the left child of u and the right child of v. The minimum cost

of these two match pairs is then returned. This ensures an optimum matching by

checking the pattern graph against both sides of the 2-input NAND function in

the subject graph. The cost parameter is passed through the recursion levels and

is continuously updated with costs associated with area, delay, acknowledgment

hazards, and monotonicity hazards whenever a leaf of the pattern graph is reached.

These cost parameters are discussed in more detail in Section 5.2.

If type(v) is neither an inverter or a 2-input NAND function, then u and v are

both roots and the algorithm assumes a CEL. Since the children of a gC are not

symmetric (one is the set function, the other is the reset function), only one pair

of matches is done, once down the set portion of the gC, and the other down the

reset portion.

5.1.3 Simple Matching and Covering Example

The following example illustrates the algorithms of Figures 5.1 and 5.2 as applied

to a simple circuit. Issues involving optimum matching in the presence of hazards

(Section 5.2), short-circuits (Section 5.3), and common-inputs (Section 5.4) are

addressed in their respective sections.

The example used for illustration is the combinational output b from the Eber-

gen example first presented in Chapter 4 and shown again in Figure 5.3. Each

75

c

x

7
1312

6

54

11

3
1 2

0

c

x

b

109
8

Figure 5.3. Decomposition of Ebergen output b.

node has been annotated with a node number to facilitate explanation. The

combinational output b implements the function fb = ab+ab. When common-inputs

are considered in Section 5.4, the match algorithm shows that this circuit matches

a 2-input XOR gate.

The example library shown in Figure 5.4 contains eight combinational logic

elements. These elements have been structurally decomposed in a fashion identical

to the decomposition done on the subject graph. Table 5.1 shows the logic function

for each library cell and the area and delay costs associated with each element.

The area cost of matching a cell is the cost of the cell plus the sum of the area

nand2 oai12nor2inv buf and2 ao22or2

Figure 5.4. Example library.

76

Table 5.1. Costs for sample library.

Cost Parameters
Cell Area Min Delay Max Delay Function
inv 16 4 6 !a
buf 0 0 0 a
nand2 24 5 7 !(ab)
and2 32 6 8 ab
or2 32 6 8 a|b
nor2 24 5 7 !(a|b)
oai12 40 9 11 !(a(b|c))
ao22 48 8 10 ab|cd

costs of all the leaf vertexes that the inputs of this cell map to in the subject graph.

The minimum delay cost of a cell is calculated by adding the smallest delay seen at

any leaf vertex to the minimum delay of the matching cell. Likewise, the maximum

delay cost is calculated by adding the largest delay seen at any leaf vertex to the

maximum delay of the matching cell.

The matching algorithm examines all nodes in the subject graph beginning at

the leaves (inputs) and working towards the root (output). The first nodes to be

matched in Figure 5.3 are nodes 0, 1, 6, and 8. The only library cell that structurally

matches at these four nodes is the inv. Since these nodes are driven by primary

inputs, which have no area cost, the area cost at these nodes is simply the area of

inv, 16. Also, the inputs have no delay cost so the delays for these nodes are those

for a single inv, 4 and 6. The cells from the library that have an isomorphic pattern

match to a subnetwork of the subject graph are tabulated in Table 5.2. The cells

shown in bold are selected as the best match and the running total of area and

delay is also shown in Table 5.2.

The next nodes to be matched are nodes 2 and 7. There are two possible

matches at these nodes, inv and buf. The inv area cost is that of itself and the

cost at the previous node, which is 16 in both cases for a total area cost of 32. The

time delay of the inv cell is that of itself plus the time delays at the previous node,

which is 8 for minimum delay and 12 for maximum delay. The match for the buf

77

Table 5.2. Structural matches for Ebergen output b.

Node Matching Cost Parameters
Number Cells Area Min Delay Max Delay

0 inv 16 4 6
1 inv 16 4 6
6 inv 16 4 6
8 inv 16 4 6
2 inv, buf 0 0 0
7 inv, buf 0 0 0
3 nand2, or2 40 5 13
9 nand2, or2 40 5 13
4 inv, and2, nor2 40 5 13
10 inv, and2, nor2 40 5 13
5 buf, inv 40 5 13
11 buf, inv 40 5 13
12 nand2, or2, oai12, ao22 80 8 16
13? inv, and2, nor2 96 12 22
13? inv, and2, nor2 104 10 20
b inv, buf 80 8 16

has all costs of zero and is the obvious choice for minimizing both area and delay.

Next, nodes 3 and 9 are matched. The library cells inv, buf, and2, and nor2

are rejected because type(v) is not equal to type(u) at the root. The nand2 cell

as well as the or2 cell both match the subnetwork of the subject graph rooted at

these nodes. The oai12 and ao22 cells do not match because as the match function

recurses toward the leaves, a leaf of v is reached before a leaf of u is reached. This

causes the match function to return a cost of ∞ and these cells are not considered

as potential matches.

The area costs for the nand2 is the sum of the area cost of its two inputs plus

its own area cost, or 16 + 0 + 24 = 40. The minimum delay is that of the input

attached to the buffer, 0, plus the minimum delay of the nand2, which is 5 for a

total of 5. The maximum delay is that of node 0, which is 6, plus that of the nand2,

which is 7, for a total of 13. Using a similar analysis for the or2 gate, the area =

48, minimum delay = 6, and maximum delay = 14. Thus, the nand2 is the best

78

match at nodes 3 and 9 for both area and minimum delay and the costs are shown

in Table 5.2.

This matching procedure is continued up to and including the output b. Re-

ferring to Table 5.2, the best cell match found at each node is the same for both

area and delay minimization, except at node 13. Here, an inv is found to provide

the minimum area while a nor2 gate provides the minimum delay. However, this

difference is negated by the selection of a buffer as the best match at the b output.

The next step in the technology-mapping algorithm is to cover the matched

circuit and write a netlist of library cells composed of the best matches found during

the matching stage. The covering algorithm begins at the root of the subject graph,

working towards the leaves. If buf cells are encountered during covering, they are

removed from the final netlist. For example, the best match at output b is the buf

cell. This double inverter cell is removed from the covering, and node 12 becomes

the logical equivalent of output b. Note that the buf cells can remain in the covered

netlist if they serve some electrical purpose such as signal buffering.

Figure 5.5 shows the optimum covering for the circuit of Figure 5.3. Note that

in this example, the covered netlist is optimum for both area and delay. The final

covered circuit is shown in Figure 5.6(a) and an Espresso-type netlist is shown in

Figure 5.6(b). This netlist must now be reverified for hazard-freedom because the

timing from the decomposition, where the hazard check is first made, has been

altered. Note that in the original circuit decomposition shown in Figure 5.3, the

absolute min/max delays from any input to the output is [30,50]. In the covered

netlist of Figure 5.5(a), these delays have been reduced to [8,16].

5.2 Hazard-Aware Matching

When there is more than one structural match at node n, cost factors are used

to help determine which library element to choose. Historically, area and/or delay

have driven this selection decision while logical effort [84], power, and reliability are

other viable cost parameters. Since asynchronous circuits may fail when hazards are

present, this research uses hazard-freedom as the primary cost factor and considers

79

x

21

7

0c

b
6c

1312

11

53 4

9 10

8

x

Figure 5.5. Optimum covering of Ebergen output b.

xx8
x

b

xx0c
x
c

(a)

.ao22 xx0 c x xx8 b

.inv c xx0

.inv x xx8

(b)

Figure 5.6. Final circuit and netlist. (a) Final mapped circuit. (b) Espresso type
netlist.

area and delay as secondary cost factors. For all three cost parameters of hazard,

area, and delay, the costs are cumulative from the reachable leaves of the subject

graph up to node n. The cost array referenced in the matching algorithms represents

the costs associated with selecting the current library element for the given node

n. The cost array is composed of the following entries that are used to help guide

which library element, l, to choose:

• area is the area cost of l plus the sum of areas at the nodes in the subject

graph at the leaves of l;

• mindel is the minimum delay of l plus the minimum delay of any node in the

subject graph at the leaves of l;

80

• maxdel is the maximum delay of l plus the maximum delay of any node in

the subject graph at the leaves of l.

In addition, the cost array contains the following parameters associated with the

hazard characteristics of mapping l to the subject graph:

• ackhaz is 1 if there is an acknowledgment hazard on the root node being

covered by l, plus the sum of the acknowledgment hazard costs at the nodes

in the subject graph at the leaves of l;

• monohaz is 1 if there is a monotonicity hazard on the root node being covered

by l, plus the sum of the monotonicity hazard costs at the nodes in the subject

graph at the leaves of l.

The equation used to calculate the final hazard cost of implementing l is then:

hazcost = w1 ∗monohaz + w2 ∗ ackhaz (5.1)

where w1 and w2 are coefficients used to optimize the matching process in order to

reduce or eliminate hazards in the covered netlist.

Hazard-freedom requires that any hazards present in the subject graph be

eliminated in the matching and covering stages. This presents a unique challenge,

because acknowledgment and monotonicity hazards must be treated in different

ways. Encapsulating an acknowledgment hazard within an atomic gate effectively

eliminates that node and the hazard with it. However, the same approach may not

work for removal of monotonicity hazards because these hazards are caused by a

gate input with a potential hazard, while there is no forcing side-input. Thus, to

remove monotonicity hazards during matching, the input with the potential hazard

should be left exposed while the other gate input(s) should be encapsulated. This

approach does not guarantee that the monotonicity hazard is removed. It simply

attempts to alter the timing on a side-input such that it may be found to be forcing

in the state for which the monotonicity hazard exists.

81

The different constraints for acknowledgment and monotonicity hazards cannot

always be met and Equation 5.1 has been developed in an attempt to optimize the

result. Equation 5.1 parameterizes the effects of hazards in the netlist by weighting

the ackhaz and monohaz variables.

The algorithm for cost determination during hazard-aware matching is shown

in Figure 5.7. This algorithm is called from the higher-level matching algorithm of

Figure 5.1 and is invoked whenever a library element is found to match a subgraph

rooted at n. This algorithm updates the cost parameters ackhaz and monohaz

during the matching of the library element, l, and returns these two parameters, as

well as the cost parameters of l. The algorithm of Figure 5.1 then updates the cost

array and a decision is made on whether this library cell is the best match from the

perspective of minimizing hazards.

The algorithm of Figure 5.7 takes as inputs a node n from the subject graph

where the root of l is located, and the library element l. The first step of the

algorithm determines if an acknowledgment hazard exists at n. If so, then ackhaz

is set to one if the library element is not a buffer. When buffers are found to

be the optimum library element at n during matching, they are removed in the

final netlist, and any acknowledgment hazards at n are removed with them. The

monohaz parameter is set to one if there is a monotonicity hazard present at n.

Finally, the algorithm returns all costs associated with a match of l, rooted at n.

Once the number of exposed hazards is calculated for a library cell during

matching, Equation 5.1 determines the cost if this cell is chosen as the best match.

haz aware cost(l,n) {
ackhaz = monohaz = 0
if (ack(n) ∧ !buffer(l)) then

ackhaz = 1
if (mono(n)) then
monohaz = 1

return (area(l), mindel(l), maxdel(l), ackhaz, monohaz)
}

Figure 5.7. Algorithm for hazard-aware matching.

82

The coefficients w1 and w2 are used to determine how best to implement the

equation over a wide range of examples. Figure 5.8 illustrates how the algorithm

of Figure 5.7 matches to a circuit where both acknowledgment and monotonicity

hazards are present. This example is the u output from a file named elatch where

f set
u = dc̄ and f reset

u = d̄b. After hazard verification, it is found that there are

acknowledgment hazards present on nodes 0, 1, 2, 7, 8, 9 and monotonicity hazards

present on nodes 3 and 10. The monotonicity hazard on node 3 is caused by both

of its fanins, nodes 1 and 2, and the monotonicity hazard on node 10 is also caused

by both of its fanins, nodes 7 and 9.

Figure 5.8(a) shows the matching that occurs when w1 is set to -1 and w2 is

set to +1 in Equation 5.1. These coefficients instruct the hazard-aware matching

u

54 6

+

−
7 A

A8 9

1110 12

3

2

10 A A

A

M

M

M

M
A

b

d

c

d

gC

(a)

u

54 6

+

−
7 A

A8 9

1110 12

3

2

10 A A

A

M

M

M

M

d

A

c

d

b

gC

(b)

Figure 5.8. Hazard-aware matching. (a) Matching for w1, w2 = (-1,+1) and (-1,0).
(b) Matching for w1, w2 = (0,+1) and (0,0).

83

algorithm to reward a match (a lower number is better) that leaves monotonicity

hazards exposed and penalizes a match that leaves acknowledgment hazards ex-

posed. Figures 5.8(a) also represents the matching that is found when w1 is set to

-1 and w2 is set to 0. Figure 5.8(b) shows the resulting matches for w1, w2 equal

to (0,+1) and (0,0). Note that when both coefficients are set to zero, the resulting

matching does not take hazards into account and a secondary cost function, such

as area, is used to drive the matching decisions.

When hazard verification is done on the resulting covered circuit of Figure 5.8(a),

acknowledgment hazards are still present on nodes 2 and 7, and the monotonicity

hazard reported on node 10 is also still present. In addition, a new monotonicity

hazard has been created on node 4, due in part to the asymmetric path delays

caused by the new circuit topology. For Figure 5.8(b), verification results indicate

that there are still acknowledgment hazards present on nodes 2 and 8, and a new

monotonicity hazard has been created on the output, u.

Chapter 6 presents the results of hazard-aware matching using several variations

on w1 and w2 for a number of example circuits.

5.3 Short-Circuit Issues in gC’s

The design passed to the technology-mapper from synthesis could possibly be

covered by one gC element, provided it is available in the library. This is quite

unlikely, except for small designs or highly customized libraries. A much more likely

case involves the covering of a portion of the design with a gC and the remaining

portion with other logic elements. Once the circuit covering is broken up in this

manner, timing issues create the possibility of short-circuits in the transistor stacks

of the gC.

The power of gC’s is their relatively low area and delay costs compared to

the cost of implementing the equivalent logic with other library elements. This cost

savings is due in part to the ability to make direct connections to the gates of the p-

and n- devices. As a result, any gC mapped to a portion of the decomposed network

must be checked to ensure potential short-circuit conditions are not introduced. If

84

they are, that particular gC must be rejected as a potential match.

The short-circuit algorithm shown in Figure 5.9 takes as inputs a state graph,

SG, a library cell, l, a netlist, dl, representing the decomposition of l, and a netlist,

pn, representing the decomposed circuit to be matched. The first step in the

algorithm is to find the product of f set
u and f reset

u . The purpose of this step is

to identify conditions that can potentially short the transistor stack.

As an example of this product, consider the plain gC shown in Figure 5.10(a).

The plain gC is defined in product form as f set
u = a and f reset

u = b. The product

of these two products returns ab representing a short-circuit condition when a = 1

and b = 0. This short-circuit condition can readily be seen in Figure 5.10(b) when

there is a simultaneous high on the gate of the n- transistor and a low on the gate

of the p- transistor.

A more interesting example is shown in Figure 5.11 where the function f is

short circuit (SG,l,dl,pn) {
u = head(l)
shortsop = find prod(fset

u ,f reset
u)

if (|shortsop| == 0) return FALSE
shortsop = translate(shortsop,dl,pn)
foreach s ∈ SG {

foreach product ∈ shortsop {
short circ = TRUE
foreach lit ∈ product {

if (sig(lit) ∈ I ∪O) then
if (s(sig(lit)) 6= val(lit)) then

short circ = FALSE
else

if (stable(s,sig(lit)) ∧
(eval(s,sig(lit)) 6= val(lit))) then
short circ = FALSE

}
}
if (short circ) return TRUE

}
return FALSE

}

Figure 5.9. Algorithm for short-circuit detection in gCs.

85

ugC

a

b
−

+

(a)

weak

a

b
u

(b)

a

b
u

weak

(c)

Figure 5.10. gC and CEL structures. (a) Plain gC circuit symbol. (b) CMOS
implementation of a gC. (c) CMOS implementation of a CEL.

d

c
+

ugC

e
−

b

a

(a)

weak

a

b

c

d

u
e

(b)

Figure 5.11. A short-circuit example. (a) Logical decomposition of f set
u = ab + cd

and f reset
u = e. (b) CMOS implementation.

86

represented as f set
u = ab + cd and f reset

u = e. Figure 5.11(a) shows the logical

decomposition of this gC and Figure 5.11(b) shows a transistor-level CMOS imple-

mentation. For this example, the find prod function returns abe and cde. Either

of these products has the potential for causing a short-circuit in the gC.

If the number of products returned from the find prod function is zero, then

there is no possibility of a short-circuit when the library element l is mapped to the

partitioned net, pn. An example library cell where this occurs is the CEL whose

transistor-level structure is shown in Figure 5.10(c). For the CEL, f set
u = ab and

f reset
u = āb̄. find prod returns an empty set indicating that there is no possible

combination of inputs where both the p- and n- transistor stacks can be enabled

simultaneously.

The short-circuit algorithm next calls the translate function, which maps the

leaf names from the pattern graph onto the node names in the subject graph. This

step is necessary because the final netlist is composed of library cell expressions

whose signal names must be a mapping to the physical nodes of the subject graph.

The algorithm next checks to see if any state, s ∈ SG, is contained in a product

term of shortsop. If any one of these product terms produces a possibility of a short-

circuit, then the algorithm returns TRUE indicating that a short-circuit condition

is possible and this cell must be rejected as a potential match.

The algorithm of Figure 5.9 relies on the stable and eval predicates that are

computed by the hazard checking algorithms in Chapter 3 and stored with each

state s ∈ SG. The sig function in Figure 5.9 takes a literal as an argument

and returns the node (or primary input) in the subject graph where this literal is

mapped. For example, when the plain gC of Figure 5.12(a) is matched to the circuit

of Figure 5.12(b), sig(a) returns node 6 and sig(b) returns node 11. The function

val also takes a literal of a product as an argument and returns a 1 or 0 based on

whether the literal is positive or negative, respectively. If sig(lit) is an external

signal, the algorithm checks if the value in the state vector is equal to the value of

the literal in the product. If not, then this product cannot cause a short-circuit. If

sig(lit) is an internal signal, and it is stable in state s, the algorithm checks if the

87

ugC

a

b
−

+

(a)

a

xgC
a

1

−
d

d

108

6

2

9
7

+
543

11

0

(b)

Figure 5.12. Plain gC short-circuit example. (a) Plain gC. (b) Ebergen output x
matched to plain gC.

evaluation of this node in state s is equal to the value of the literal. If not, then

again no short-circuit condition exists for this product.

Two examples of how gC elements can structurally match a portion of a netlist

but are rejected because of short-circuit problems are shown in Figures 5.12 and 5.13.

The subject graph in both examples is the Ebergen output x where f set
u = ād and

f reset
u = ād̄. The netlist of Figure 5.12(b) is shown superimposed with the plain gC

element of Figure 5.12(a) and the netlist of Figure 5.13(a) is shown superimposed

a

xgC
a

−

+

d

d

108

21

9
7

6543

11

0

(a)

u

−

+

s

r

q
p

gC

(b)

Figure 5.13. gc22 short-circuit example. (a) Ebergen output x matched to a
gC22. (b) gC22 element decomposition.

88

with the pattern graph of a gc22 library element, whose pattern graph is shown in

Figure 5.13(b).

A portion of the state graph for the subject graph in Figures 5.12 and 5.13 is

shown in Figure 5.14. Note that each state is annotated with stability information

that is previously determined during hazard verification. The first set of brackets

next to each state is stability information relating to nodes 6 and 11 and applies

to the example of Figure 5.12. The second set of brackets indicates stability

information for nodes 0 and 2 and applies to the example of Figure 5.13. As

an example of what this stability information means, in state 10101, the [01][0U]

notation indicates that node 6 is stable low and node 11 is stable high for the first

set of bracketed items. For the second set of bracketed items, node 0 is stable low

and node 2 is unstable.

When the algorithm of Figure 5.9 is applied to Figure 5.12, shortsop contains

the product ab. The algorithm next attempts to find a state in which node 6 could

be high coincident with node 11 being low. After a search of a portion of the state

graph shown in Figure 5.14, state 00101 indicates both nodes are unstable. Since

instability can indicate either a low or high level on the node, it is possible that in

this state a short-circuit condition could occur. Thus, this match is rejected. For

the example in Figure 5.13, after the algorithm in Figure 5.9 is applied, shortsop

[U1][U1]

State = adbcx

a−

11101

0110110101

00101

a−d−

d−

x−

b+

[01][01]

[01][0U]

[UU][UU]

Figure 5.14. Segment of Ebergen output x state graph.

89

contains the product pqr̄s̄. A search of the portion of the state graph in Figure 5.14

now tries to identify bit patterns that could have a binary condition of 1100 for

node 0, node 2, primary input a, and primary input d, respectively. The only state

where this condition can occur is state 00101. Thus, the gc22 library element must

also be rejected as a potential match.

The rejection of a potential cover is a conservative estimate in cases where

stability is concerned. Nodes under consideration could be stable but the abstrac-

tion algorithms of Chapter 3 may provide insufficient information to determine

stability with certainty. Thus, any indication of instability when an internal node

is considered for short-circuits must be treated conservatively.

5.4 Matching Common-Inputs

The final issue addressed by the matching algorithm is that of matching library

elements with common-inputs. Common-inputs occur when a library cell decom-

position places the same input on different leaves. Normally, this cannot happen in

tree-based matching, with the exception of primary inputs, because a common-input

on an internal node of the subject graph would fanout to multiple nodes. However,

tree-based decompositions can accommodate common-inputs providing equivalent

subnetworks drive the internal nodes where the common-inputs are placed.

An example of a common-input library cell is that of the XOR function. In

a decomposition allowing reconvergent fanout, the decomposition shown in Fig-

ure 5.15(a) is acceptable. However, in a tree-based system, the decomposition

required is shown in Figure 5.15(b). This places an additional constraint on the

matching algorithm in that both nodes labeled a in Figure 5.15(b) must be driven

by equivalent subnetworks, as must both nodes labeled b.

This common-input situation occurs fairly frequently in timed asynchronous

technology-mapping, particularly when gC’s are present in the library. The re-

quirement that equivalent subnetworks drive common-inputs in tree-based designs

often results in many gC’s of this type being rejected as potential matches. However,

gC’s with common-inputs provide a significant benefit in that they eliminate the

90

b

u

a

(a)

a
b

b
a

u

(b)

Figure 5.15. XOR decompositions. (a) Reconvergent fanout XOR decomposition.
(b) Tree-based XOR decomposition.

possibility of short-circuits in the transistor stack. This is shown in Figure 5.16

where f set
u = ab and f reset

u = āc̄. Figure 5.16(a) shows the logical decomposition

and Figure 5.16(b) shows the CMOS level implementation. It is easily seen in

Figure 5.16(b) that the common-input a prevents any short-circuit from occurring

in the transistor stack.

Once it has been determined that the subnetworks driving common-input pins

are equivalent, only one instance of the subnetwork needs to be included in the

covered netlist. This is equivalent to gate-sharing and decreases the number of cells

a

u

−

+

c

a

b

gC

(a)

a

b

c

u

weak

(b)

Figure 5.16. gc22 library element structure. (a) Logical decomposition. (b)
CMOS level implementation.

91

in the final netlist.

The algorithm for matching common-inputs is shown in Figure 5.17. The

algorithm takes as inputs a decomposed form of a library element, dl, and a netlist,

pn. Note that when this algorithm is called from the matcov algorithm of Figure 5.1,

dl has already been matched to a subgraph of pn, rooted at the head of pn.

The first step of the algorithm of Figure 5.17 is to create a product, inputprod,

formed from the input set of the library element, dl. For instance, the input set for

the gC element shown in Figure 5.18(a) is {{p},{q},{r}} and inputprod = pqr. The

next step is to make a node list of all the nodes in pn that map to each literal of

inputprod. For example, the input literal p of Figure 5.18(a) maps to internal node

0 and primary input a in Figure 5.18(b). These two nodes are then checked to see

if the subcircuits driving them are equivalent. If they are not equivalent, as is the

case here, then this library cell is rejected as a potential match.

As is illustrated in Chapter 4, the permuting of inputs potentially increases the

number of matches when using libraries with common-input cells. For instance, the

pattern graphs of Figure 5.18(a) and 5.18(c) are structurally equivalent, the only

difference being that the inputs have been permuted. Now, when the common-input

algorithm of Figure 5.17 is run using the pattern graph of Figure 5.18(c), the node

list created for the p input of Figure 5.18(b) is internal node 2 and primary input d.

common input (dl,pn) {
inputprod = find inputs(dl)
foreach lit ∈ inputprod {
nodelist = make nodelist(lit,dl,pn)
if (|nodelist| 6= 1) then {

node0 = nodelist(0)
foreach node ∈ {nodelist - nodelist (0)}

if !(struct match(node0,node)) then
return FALSE

}
}
return TRUE

}

Figure 5.17. Algorithm for common-input matching.

92

gC

r
p

u

−

p
q

+

(a)

a

xgC
a

−

+

d

d

108

21

9
7

6543

11

0

(b)

gC u

q

r −

p

p

+

(c)

Figure 5.18. Common-input matching example. (a) Pattern graph with f set
u = pq

and f reset
u = p̄r̄. (b) Ebergen output x. (c) Pattern graph with permuted inputs.

Once the double buffer driving node 2 is removed, these two nodes are equivalent

and the algorithm returns TRUE.

CHAPTER 6

EXPERIMENTAL RESULTS

This chapter presents the results achieved by running a number of examples

through the algorithm implementation. The first results presented are those relating

to verification runs measured against other industry tools. These are followed by

results of the matching and covering phases of the technology-mapping flow using

increasing complexities of libraries. Finally, this chapter concludes with several

short case studies, each elaborating on an interesting aspect of the completed work.

6.1 Verification

6.1.1 Verification of Benchmark Files

The gate-level timing verification method described in this dissertation has been

implemented and tested on numerous examples. Table 6.1 compares the new gate-

level timing verification method using standard benchmarks against results for the

timed automata tool KRONOS [80], a conservative approximation method described

in [85], and the ATACS explicit state timing verifier [86]. All runtimes are specified

in CPU seconds. For KRONOS runtimes, an entry with a question mark indicates

the amount of time after which the verification ran out of memory. The runtimes

for KRONOS and Pena’s methods are taken from their papers while the runtimes for

ATACS and the new method are from a 900 MHz Pentium 4 with 256MB of memory.

For the new method, an entry of n/a indicates that this example has an internal

cycle and cannot be analyzed using the new method. For the smaller examples, the

new method has comparable and usually better runtimes than the other methods.

However, for larger examples with more concurrency such as trimos-send, the new

method is more than two orders of magnitude faster than KRONOS, 25 times faster

94

T
a
b
le

6
.1

.
C

om
p
ar

is
on

of
st

an
d
ar

d
b
en

ch
m

ar
k
s

ag
ai

n
st

ot
h
er

ti
m

in
g

ve
ri

fi
ca

ti
on

to
ol

s.

K
R

O
N

O
S

P
E

N
A

A
T
A

C
S

N
ew

M
et

h
o
d

E
x
am

p
le

G
at

es
T

im
e(

s)
T

im
e(

s)
T

im
e(

s)
M

em
(M

B
)

T
im

e(
s)

M
em

(M
B

)
H

az
ar

d
s

al
lo

c-
ou

tb
ou

n
d

11
0.

09
3

0.
33

5.
6

0.
09

2.
9

0/
0

ch
u
13

3
9

0.
63

1
0.

16
3.

0
0.

11
2.

2
1/

1
co

n
ve

rt
a

12
0.

19
12

0.
24

3.
8

0.
11

1.
8

2/
2

d
ff

6
0.

19
3

0.
12

2.
5

n
/a

n
/a

3/
?

eb
er

ge
n

9
0.

14
1

0.
15

3.
0

0.
13

1.
8

3/
3

h
al

f
7

0.
41

1
0.

13
2.

2
0.

08
1.

5
1/

1
m

p
-f
or

w
ar

d
-p

k
t

10
0.

24
5

0.
17

3.
5

0.
10

2.
5

0/
0

n
ow

ic
k

10
0.

05
3

0.
20

3.
8

0.
10

2.
0

0/
0

rc
v
-s

et
u
p

6
0.

22
1

0.
16

3.
2

0.
08

1.
8

0/
0

rp
d
ft

8
2.

93
2

0.
30

4.
0

0.
10

1.
9

1/
2

sb
u
f-
ra

m
-w

ri
te

17
31

.7
7

41
5

0.
32

5.
8

0.
20

3.
7

1/
2

sb
u
f-
re

ad
-c

tl
10

0.
13

2
0.

14
3.

3
0.

10
2.

5
0/

0
sb

u
f-
se

n
d
-c

tl
13

54
0.

49
0.

65
6.

1
0.

10
2.

8
1/

1
sb

u
f-
se

n
d
-p

k
t2

13
0.

07
10

3
0.

42
6.

6
0.

10
3.

1
0/

1
v
m

e
12

0.
39

30
0.

39
4.

9
n
/a

n
/a

1/
?

m
r1

16
60

7.
43

31
7

0.
30

5.
1

n
/a

n
/a

0/
?

ts
en

d
-b

m
12

58
9.

56
46

5.
32

8.
6

n
/a

n
/a

1/
?

m
m

u
22

59
5.

09
?

48
0

0.
53

7.
1

n
/a

n
/a

0/
?

m
r0

20
59

3.
24

?
48

0.
55

7.
1

n
/a

n
/a

0/
?

ra
m

-r
ea

d
-s

b
u
f

17
67

8.
48

?
55

0
0.

34
6.

0
0.

18
3.

4
0/

0
tr

im
os

-s
en

d
24

58
0.

33
?

12
7

10
.7

25
.0

4.
87

3.
6

5/
5

95

than Pena’s tool, and twice as fast as the explicit state method in ATACS. In addition,

the new method shows some reduction in memory usage as compared to the ATACS

explicit state timing verifier. This reduction in run time and memory usage is

directly related to the reduced complexity of the state graph, as stated earlier.

Since the goal of this portion of the research is to determine which gates have

hazards on their outputs, the explicit method in ATACS is configured to continue

after finding one hazard and identify all hazards. It should be noted that KRONOS

did not check for hazards, but instead is only checking conformance while Pena’s

tool halts after a hazard is found. The last column of the table indicates the

number of gates that have hazards found by the explicit state method and the new

method. Despite being a conservative approximation, the new method found the

exact number of hazards in most cases. However, in three examples, rpdft, sbuf-

ram-write, and sbuf-send-pkt2, the new method found one additional false hazard.

These false hazards and why they occur are explained by example in Section 6.4.1.

6.1.2 Verification Using Decomposed Circuits

The key advantage of this new method is its ability to be able to efficiently

verify circuits with a large number of internal signals. In order to demonstrate this,

a few benchmark circuits derived from a variety of sources are selected and shown in

Table 6.2, and gate-level circuits are derived for them that use only 2-input NAND

Table 6.2. Comparison for decomposed netlists.

ATACS New Method
Example Gates CPU Time(s) Mem(MB) CPU Time(s) Mem(MB) Hazards
scsiSV 18 1.35 7.9 0.13 1.3 0/0
slatch 29 33.5 53.4 0.15 1.8 0/0
lapbsv 37 20.0 41.5 0.17 1.3 0/0
elatch 38 183 229 0.28 1.8 0/0
cnt3 80 >1000 >256 0.24 1.7 ?/15
srgate 85 >1000 >256 0.29 2.3 ?/0
selopt 164 >2000 >256 0.90 3.3 ?/46
cnt11 213 >2000 >256 1.20 4.8 ?/78

96

gates and inverters. In all the examples, the new method is still able to check for

hazards in 1.2 seconds or less while, for the largest examples, the explicit state

method cannot complete.

6.1.3 Timed and Untimed Stabilization

The new verification method uses a combination of timed and untimed algo-

rithms to determine hazard-freedom for each node and each output in a netlist. It

is found that stabilizations in the state graph due to timing occur much more fre-

quently than do stabilizations using untimed (speed-independent) methods. These

results are shown in Table 6.3 and they are not surprising because the delays used

in the base-function library elements are fairly small (but physically practical) so

circuit delays in the decomposition, up to the node of interest, are often small and

stabilization through the state graph occurs reasonably quickly.

The surprising result here is how effective the timed stabilization algorithms are.

Table 6.3. Hazard comparison based on stabilization method.

One method Timed/
Example Gates Untimed Timed Untimed

alloc-outbound 11 6 0 0
chu133 9 7 1 1
converta 12 8 2 2
ebergen 9 4 3 3
half 7 7 1 1
mp-forward-pkt 10 6 0 0
nowick 10 7 0 0
ram-read-sbuf 17 13 0 0
rcv-setup 6 5 0 0
rpdft 8 8 2 2
sbuf-ram-write 17 12 2 2
sbuf-read-ctl 10 6 0 0
sbuf-send-ctl 13 11 1 1
sbuf-send-pkt2 13 11 1 1
trimos-send 24 18 5 5

97

The numbers in the last three columns indicate how many nodes in each circuit are

found to be hazardous. When untimed stabilization alone is used, in all cases but

one, over half the nodes are hazardous. When timed stabilization only is used, this

number is reduced considerably. The last column indicates the results achieved by

first running timed stabilization, followed by untimed stabilization. Note how timed

stabilization alone gives identical results to the case where timed stabilization is

followed by untimed stabilization. This is a potentially significant finding in that it

says, at least for these examples, that there is no need to do untimed stabilization.

Since untimed stabilization may need to be iterated (unlike timed stabilization),

a cost savings in computation time, without apparent loss of accuracy, occurs if

timed stabilization is run by itself.

6.2 Matching and Covering

The matching and covering algorithms require implementation libraries that

contain cells with known area and delay parameters. In this section, definitions

are given for libraries that are created and used to test the new algorithms. Then,

results are presented of how effective the new algorithms are at producing hazard-

free implementations with increasing complexities of libraries. Next, results are

presented showing the effect of various parameter shifts in trying to find an optimum

matching and covering while doing hazard-aware matching. Finally, the cost of

using hazard-freedom as a primary metric is measured against area and delay

optimized implementations.

The matching and covering results are divided into three parts. First, an

untimed synthesis and untimed verification of the decomposition is followed by

an untimed verification of the covered netlist. This data represents the speed-

independent implementation of the example suite. Second, an untimed synthesis

and untimed verification of the decomposition is followed by a timed verification of

the covered netlist. This gives some insight into how effective the algorithms are at

producing hazard-free circuits in the presence of a large number of hazards. Third,

a timed synthesis and timed verification of the decomposition is performed followed

98

by a timed verification of the covered netlist. This data represents the thrust of this

research, that is, taking timing into all steps of the technology-mapping process in

an attempt to show that some or all speed-independent hazards will not manifest

due to timing.

6.2.1 Implementation Libraries

In order to determine how best to find hazard-free coverings for decomposed

netlists, four different libraries are created with increasing order of complexity.

Each library adds a basic new structure and each succeeding library is a superset

of the preceding library. These four libraries are the base-function, combinational,

single-stack, and common-input libraries. It should be noted that a fifth library,

a full-implementation library, could be created that contains some additional cells

that have been customized to fully implement f set
u or f reset

u or both. Many of these

cells would rely heavily on the atomic gate assumption and would likely embed

inverters and additional logic. These types of cells place additional design burdens

on the physical design and layout process. Since one of the goals of this work is to

use standard library cells whenever possible, every effort is made to avoid the use

of these customized cells, noting that it is possible to eliminate all hazards from a

circuit implementation by using library elements that are functionally equivalent

to the synthesis output.

The first library consists of the base-function set of an inverter, 2-input NAND,

CEL, plus a plain gC to be used where short-circuits are not present. Using this

library creates a covered netlist that is equivalent to the decomposition, leaving all

internal nodes exposed. The resulting verification of the covered netlist mirrors the

hazards found during the verification of the decomposed netlist.

The combinational library adds to the base-function library a basic set of com-

binational cells. These include 2-, 3-, and 4-input cells for AND, OR, NAND, and

NOR functions. In addition, there are a variety of other combinational functions

such as XOR, XNOR, AOI, and OAI. The total number of cells in this library

including common-input permutations is 82.

The single-stack library adds to the combinational library a set of cells that

99

implement single-stack gC’s. All single-stack cells are implemented, from one input

to each of the set and reset stacks to four inputs each. This library can implement

large portions of the decomposition but is subject to short-circuit problems. An

example cell is shown in Figure 6.1(a). There are an additional 15 cells added to

the combinational library but there are no additional common-input cells added.

The common-input library adds to the single-stack library a set of gC cells

with up to four inputs each on the set and reset stacks, just like the single-stack

library elements. The difference here is that from one to all four of the inputs

can be common between the set and reset stacks. An example cell is shown in

Figure 6.1(b). With the number of common-input permutations necessary to do

efficient matching, the number of cells in this library increases to 3133.

6.2.2 Matching Using Speed-Independent Synthesis

Table 6.4 compares the reduction in the number of hazards as the complexity of

the library available for matching increases. The example suite is a subset of those

used in Tables 6.1 and 6.2. These examples are synthesized and the decomposition

is verified speed-independently using the ATACS tool. The covered netlist is then

verified in two separate runs, once speed-independently and once using timing. The

numbers in Table 6.4 represent the number of hazardous nodes left in the covered

netlist after final verification. It should be noted that two examples, srgate and

a

b

c

u
d

weak

(a)

a

b

c

u

weak

(b)

Figure 6.1. Example library cells. (a) Single-stack. (b) Common-input.

100

Table 6.4. Hazard reduction for speed-independent synthesis.

(Untimed Verification) (Timed Verification)
Example Sim Com SS CI Sim Com SS CI

alloc-outbound 14 0 0 0 0 0 0 0
chu133 26 4 4 4 4 0 0 0
converta 45 5 5 5 0 0 0 0
ebergen 26 4 4 3 7 2 2 0
half 17 2 2 2 0 0 0 0
mp-forward-pkt 21 2 2 2 0 0 0 0
nowick 24 2 2 2 0 0 0 0
ram-read-sbuf 31 2 2 2 0 0 0 0
rcv-setup 21 2 2 2 0 0 0 0
rpdft 43 5 5 5 0 0 0 0
sbuf-ram-write 33 4 4 4 0 0 0 0
sbuf-read-ctl 14 2 2 2 0 0 0 0
sbuf-send-ctl 25 4 4 4 5 0 0 0
sbuf-send-pkt2 40 6 6 6 0 0 0 0
trimos-send 121 26 26 28 42 8 8 5

scsiSV 23 4 4 4 0 0 0 0
slatch 14 6 6 6 0 0 0 0
lapbsv 26 2 2 2 0 0 0 0
elatch 24 8 8 8 0 0 0 0
cnt3 60 5 5 4 12 0 0 0
cnt11 177 17 17 15 52 2 2 2

selopt, are unable to synthesize in under 1000 CPU seconds and are not shown in

Table 6.4.

The data in Table 6.4 are divided into two sets. The four abbreviations in the

second row of Table 6.4 for each data set represent the library used. For example,

the Sim column represents data taken using the simple library. Both sets of data are

compiled with the hazard-aware match coefficients w1, w2 = (-1,+1) as explained

in Section 5.2. This combination of coefficients is the case where the matching

algorithm works to avoid encapsulating nodes with monotonicity hazards while at

the same time avoiding leaving any nodes with acknowledgment hazards exposed.

As expected, the speed-independent synthesis creates a hazard landscape with

101

a considerable number of hazardous nodes in the decomposition, as evidenced by

the number of hazards in the leftmost Sim column. The purpose of this data

comparison is to see how effective the hazard-aware matching algorithms perform

in the presence of a significant number of hazardous nodes when timing is not

used. The numbers in the four leftmost columns of Table 6.4 indicate the number

of hazardous nodes remaining in the mapped netlist when timing is not used in

verifying the mapped netlist. The numbers in the four rightmost columns indicate

the number of hazardous nodes remaining in the mapped netlist when timing is

used in verifying the covered mapped netlist.

The data for untimed verification in Table 6.4 show that it is nearly impossible

to produce a hazard-free circuit without using timing. In only one instance, alloc-

outbound, did the algorithms produce a hazard-free circuit with speed-independent

verification. The data for timed verification in Table 6.4 show that in all but

two examples, using timing information produces a hazard-free circuit. Another

interesting aspect to note is that nearly all hazard reduction from the initial hazard

landscape occurs when the combo library is used. The data for both timed and

untimed verification shows that the single-stack library has absolutely no effect on

reducing hazards. While this is true for these examples, this library did, on occasion,

reduce the number of gates in the final netlist over the number from the combo

library, although there is no reduction in the number of hazards. The common-input

library has a positive, although minimal, effect in reducing the number of hazardous

nodes in both cases.

6.2.3 Matching Using Timed Synthesis

The data in Table 6.5 are compiled using timing in all steps of synthesis and

technology-mapping. The libraries and examples are the same as those used in

Table 6.4. In addition, the two files srgate and selopt, are able to synthesize when

timing is used. Once again, the numbers in Table 6.5 represent the number of

hazardous nodes left in the covered netlist after final verification of the covered

netlist. Due to timing, only a handful of circuits have hazardous nodes in the

102

Table 6.5. Hazard reduction for timed synthesis.

Example Simple Combo S-Stack Com-Inps

alloc-outbound 0 0 0 0
chu133 0 0 0 0
converta 0 0 0 0
ebergen 7 2 2 0
half 0 0 0 0
mp-forward-pkt 0 0 0 0
nowick 0 0 0 0
ram-read-sbuf 0 0 0 0
rcv-setup 0 0 0 0
rpdft 0 0 0 0
sbuf-ram-write 0 0 0 0
sbuf-read-ctl 0 0 0 0
sbuf-send-ctl 5 0 0 0
sbuf-send-pkt2 0 0 0 0
trimos-send 21 3 3 0

scsiSV 2 0 0 0
slatch 0 0 0 0
lapbsv 2 0 0 0
elatch 0 0 0 0
cnt3 21 0 0 0
cnt11 52 0 0 0
srgate 0 0 0 0
selopt 126 19 19 17

decomposition (as revealed by mapping with the Simple library) and a completely

hazard-free mapping is found in all cases except for one, selopt. It is clear when

comparing Tables 6.4 and 6.5, that utilizing timing during synthesis and technology-

mapping is crucial to the goal of producing hazard-free implementations when using

technology-dependent libraries.

6.2.4 Hazard-Aware Matching

The results shown in Tables 6.4 and 6.5 are computed based on hazard opti-

mization using fixed values of w1 and w2 shown in Equation 5.1. These weighting

103

factors are used in an effort to find a hazard-free solution when the final netlist

has remaining hazards. Table 6.6 shows the results for various values of w1 and w2

when the example circuits are synthesized and verified speed-independently. The

numbers in Table 6.6 indicate the number of hazardous nodes remaining in the

netlist following final verification. Since there is little difference between the results

using the combo and the common-input libraries of Table 6.4, Table 6.6 shows the

results using the common-input library.

It should be noted that data using timed verification are not shown in Table 6.6

because there is virtually no effect on the number of hazards in the final netlist

Table 6.6. Hazard reduction using various weighting factors.

(w1,w2)
Example (0,0) (-1,0) (0,1) (1,1) (-1,1) (-1,2)

alloc-outbound 7 3 0 0 0 0
chu133 4 10 4 4 4 4
converta 11 16 5 2 5 5
ebergen 5 8 3 5 3 3
half 4 8 2 2 2 2
mp-forward-pkt 5 11 2 4 2 2
nowick 4 2 2 2 2 2
ram-read-sbuf 7 12 2 2 2 2
rcv-setup 2 2 2 2 2 2
rpdft 4 9 4 4 5 4
sbuf-ram-write 5 13 4 5 4 4
sbuf-read-ctl 4 4 2 4 2 2
sbuf-send-ctl 2 13 2 2 4 4
sbuf-send-pkt2 8 12 6 6 6 6
trimos-send 24 45 28 24 28 24

scsiSV 5 8 4 4 4 4
slatch 3 8 3 6 6 6
lapbsv 2 10 2 2 2 2
elatch 6 11 7 8 8 8
cnt3 11 20 6 4 4 4
cnt11 20 40 15 17 15 15

total 143 265 105 109 110 105

104

based on the coefficients. This is not surprising since timed stabilization has shown

all along that it verifies hazard-free in most examples. The analysis now moves

column by column through Table 6.6.

The first column, where w1,w2 = (0,0) represents the case where there is ab-

solutely no hazard awareness during matching. The matching then is optimized

based on a secondary cost factor, in this case area. Good results under these

conditions are pure luck and more often than not the number of hazards in the final

circuit is high in comparison to other coefficient pairs. The second column, where

w1,w2 = (-1,0), represents the case where decisions are based only on monotonicity

hazards. The minus sign on the w1 coefficient indicates that leaving monotonicity

hazards exposed (the lower the number the better) is desirable. The results here,

and also in column one, indicate that ignoring acknowledgment hazards when

making matching choices yields poor results. Column three, w1,w2 = (0,1) is

the case where nodes causing monotonicity hazards are ignored and matches that

leave acknowledgment hazards exposed are penalized. In most cases, but not all,

this column is a definite improvement over columns one and two. Column four

sets both w1 and w2 to one, which penalizes exposed hazardous nodes and also

penalizes exposed monotonicity nodes. In other words, this column attempts to

encapsulate as many hazards as possible. The results here are mixed. In some cases

there is an improvement over column three, in other cases there are worse results.

Column five is a duplicate of the results of the speed-independent verification

portion of Table 6.4. Column six, where w1,w2 = (-1,2), gives twice the weight

to discouraging leaving acknowledgment hazards exposed as opposed to leaving

monotonicity hazards exposed. In general, the results of this column are a slight

improvement over that of column five, indicating again that perhaps the removal

of acknowledgment hazards is more important than tinkering with monotonicity

hazards.

In all the results of Table 6.6, it has become clear that there is no holy grail for

optimizing the matching of all circuits with one set of coefficients. Some weights

work better on some circuits than other weights do. The total number of hazardous

105

nodes shown in the last row gives a little more insight into which column is best,

although these numbers can be skewed by examples with a large number of hazards.

On average, the lowest number of hazards is seen for (0,1) and (-1,2) coefficient

pairs, with the next best pairs being (1,1) and (-1,1). Clearly, the first two columns

are cases to avoid.

Another way to interpret the results of Table 6.6 is to consider in how many

examples one pair of coefficients outperforms another pair. Table 6.7 shows how

the w1,w2 = (0,1) compares to the other five coefficient pairs. A win means that

the final verification produced fewer hazardous nodes.

The following four observations are made from comparing the data in Tables 6.6

and 6.7:

• The results of columns one and two in Table 6.6 clearly indicate that acknowl-

edgment hazards must be encapsulated.

• The strong showing of the w1,w2 = (-1,2) pair suggests that more weight be

given to addressing acknowledgment hazards than addressing monotonicity

hazards.

• The strongest coefficient pair of w1,w2 = (0,1) suggest that perhaps mono-

tonicity hazards could be ignored altogether.

• Since no one coefficient pair always produced the best results, and since the

hazard verification algorithms have proven to be fast and efficient, it may be

Table 6.7. Comparing w1,w2 = (0,1) by wins and losses.

(w1,w2) Wins Losses

0,0 13 2
-1,0 19 0
1,1 7 3
-1,1 4 1
-1,2 3 2

106

prudent to try multiple runs during technology mapping and pick the best

result.

6.2.5 Short-Circuit Rejection for gC’s

It is pointed out in Section 5.3 that all gC library elements must pass a short-

circuit check to be considered as a best match. The data shown in Table 6.8

indicate the percentage of gC elements that structurally match a portion of the

subject graph but are rejected due to short-circuit problems.

Table 6.8. Short-circuit rejection of gC’s.

State Struct SC Reject
Example Outputs Matches Reject (%)

alloc-outbound 3 5 3 60
chu133 2 4 2 50
converta 3 14 1 7
ebergen 2 8 4 50
half 2 4 3 75
mp-forward-pkt 3 9 8 89
nowick 3 5 4 80
ram-read-sbuf 4 19 12 63
rcv-setup 1 4 4 100
rpdft 0 0 0 100
sbuf-ram-write 3 10 2 20
sbuf-read-ctl 3 7 4 57
sbuf-send-ctl 3 7 4 57
sbuf-send-pkt2 3 5 3 60
trimos-send 6 24 18 75

scsiSV 3 8 8 100
slatch 2 4 3 75
lapbsv 3 7 7 100
elatch 2 8 6 75
cnt3 4 21 13 62
cnt11 8 49 0 0
srgate 1 1 1 100
selopt 5 21 21 100

total 69 244 131 53.7%

107

Nearly all of the example circuits in Table 6.8 have multiple state-holding out-

puts. The exceptions are rcv-setup and srgate, each of which has one state-holding

output, and rpdft, which has no state-holding outputs. There are six examples

where every gC element that matches structurally is rejected because of short-circuit

problems. In these cases, all of the state-holding outputs are implemented with

CEL’s. In one example, cnt11, there are no short-circuit problems found for any

of the structural matches. Of the eight outputs in this cnt11, all are implemented

with some type of gC gate.

6.3 The Cost of Hazard-Freedom

Although hazard-freedom must be the driving cost factor behind this research,

it is interesting to evaluate the penalty paid for this focus. To measure what is

sacrificed to gain hazard-freedom, the example suite is run through the implemen-

tation, letting area and delay be the primary cost factors. This gives optimum area

and delay numbers, relegating hazard-freedom to a secondary consideration for the

purposes of comparison.

Table 6.9 shows the cost of reducing hazards measured against area and delay

for speed-independent synthesis and verification. The leftmost column of data

represents the initial number of hazards in the decomposition. The next four

columns, under the title of Area Emphasis, show the increase in area needed to

reduce the number of hazards in the final netlist. Under the subtitle of Hazards,

the leftmost column, (Area), indicates the number of hazards left when area is the

primary cost factor. The Haz column indicates the number of hazards left when

hazard reduction is the primary cost factor and minimizing area is the secondary

cost factor. The next two columns show the increase in area as the penalty paid

to achieve this reduction in the number of hazards. Note that in all cases except

one, elatch, the number of hazards remains the same or is reduced. The average

reduction in the number of hazards is 28.2 percent (142 to 102) at an average area

increase of 5.5 percent (6748 to 7116). The four rightmost columns show the cost

in circuit delay in order to achieve a reduction in the number of hazards. Here,

108

Table 6.9. Cost of hazard reduction for untimed synthesis and verification.

Area Emphasis Delay Emphasis
Init Hazards Area Hazards Delay

Example Haz Area Haz Area Haz Del Haz Del Haz

alloc-outbound 14 7 0 344 376 4 0 42 44
chu133 26 4 4 172 172 4 4 30 30
converta 45 10 4 392 416 9 4 37 44
ebergen 26 5 5 216 240 6 4 26 32
half 17 4 2 144 148 4 2 16 20
mp-forward-pkt 21 5 2 280 312 5 2 38 44
nowick 24 4 2 432 440 5 2 40 40
ram-read-sbuf 31 7 2 428 488 7 2 52 60
rcv-setup 21 2 2 112 112 2 2 19 19
rpdft 43 4 4 216 232 8 5 19 21
sbuf-ram-write 33 5 4 304 320 5 4 44 48
sbuf-read-ctl 14 4 2 264 272 4 2 38 40
sbuf-send-ctl 25 2 2 280 280 4 2 41 43
sbuf-send-pkt2 40 8 6 388 396 11 7 52 56
trimos-send 121 24 24 804 804 32 24 90 102

scsiSV 23 5 4 264 312 9 4 30 36
slatch 14 3 3 156 156 3 3 22 22
lapbsv 26 2 2 212 212 6 2 28 30
elatch 24 6 7 184 232 6 7 24 28
cnt3 60 11 6 352 384 11 6 43 52
cnt11 177 20 15 804 812 23 16 102 109

total 825 142 102 6748 7116 168 104 833 920

the two columns under the subtitle of Hazards show that again, in all cases except

for elatch, the number of hazards is reduced or remains the same. The average

reduction in the number of hazards is 38.1 percent (168 to 104) at an average delay

increase of 10.4 percent (833 to 920).

Table 6.10 shows the same type of data as that seen in Table 6.9, only this

time the results are computed using timed synthesis and verification. As seen

in Table 6.5, the number of initial hazards is considerably fewer than found in

speed-independent analysis. There are eight example circuits in Table 6.10 with

109

Table 6.10. Cost of hazard reduction for timed synthesis and verification.

Area Emphasis Delay Emphasis
Init Hazards Area Hazards Delay

Example Haz Area Haz Area Haz Del Haz Del Haz

alloc-outbound 0 0 0 328 328 0 0 40 40
chu133 0 0 0 160 160 0 0 26 26
converta 0 0 0 368 368 0 0 37 37
ebergen 7 0 0 172 172 0 0 26 26
half 0 0 0 104 104 0 0 14 14
mp-forward-pkt 0 0 0 272 272 0 0 37 37
nowick 0 0 0 424 424 0 0 39 39
ram-read-sbuf 0 0 0 320 320 0 0 43 43
rcv-setup 0 0 0 112 112 0 0 19 19
rpdft 0 0 0 216 216 0 0 19 19
sbuf-ram-write 0 0 0 292 292 0 0 40 40
sbuf-read-ctl 0 0 0 228 228 0 0 33 33
sbuf-send-ctl 5 0 0 244 244 0 0 36 36
sbuf-send-pkt2 0 0 0 388 388 0 0 52 52
trimos-send 21 0 0 444 444 0 0 54 54

scsiSV 2 0 0 280 280 0 0 32 32
slatch 0 0 0 152 152 1 1 22 22
lapbsv 2 0 0 200 200 0 0 28 28
elatch 0 0 0 192 192 0 0 22 22
cnt3 21 0 0 352 352 0 0 43 43
cnt11 52 2 0 720 752 0 0 100 100
srgate 0 0 0 336 336 0 0 31 31
selopt 126 19 17 672 744 22 17 84 96

total 236 21 17 5584 5698 23 18 771 783

initial hazards and a hazard-free implementation is found in all but two of these

using area as the primary cost factor. When using hazard reduction as the primary

cost factor, Table 6.10 shows there is only one example, selopt, that can not be

implemented hazard-free. Here, there is also an area penalty paid to reduce the

number of hazards. Note that when no initial hazards are present, the algorithms

optimize on the secondary cost factor. Thus, the area numbers are identical when

no initial hazards are present in the decomposition. In the case of the four rightmost

110

columns in Table 6.10, the delay numbers are identical except in the one case where

hazards are reduced, selopt. Note also that a hazard is created in the slatch example

where one is not present initially. This is due, in both cases, to a monotonicity

violation that is created as a result of the mapped circuit.

The area numbers for Tables 6.9 and 6.10 are computed by summing the individ-

ual areas of all outputs for the given example. This summation represents the total

area for the mutually exclusive cones of logic for each output because gate-sharing

is not implemented. The delay numbers for Tables 6.9 and 6.10 are computed

by summing the maximum individual delays of all outputs for the given example.

This summation represents the cumulative delay for the mutually exclusive cones

of logic for each output. These numbers, in no way, take into account any parallel

or concurrent operation of the individual outputs of any one example. It should

be noted that the hazard-aware matching coefficients w1,w2 are set to (0,1) when

compiling the data in Tables 6.9 and 6.10. This pair of coefficients gives the best

results for the matching algorithms as seen in Table 6.7.

Clearly, the data in Tables 6.9 and 6.10 shows that the initial number of

hazardous nodes in the decomposition plays a large role in determining whether

or not a hazard-free solution can be achieved, and the area and delay penalty paid

for doing so. Tables 6.9 and 6.10 also show that timed synthesis and verifica-

tion outperform speed-independent synthesis and verification in terms of creating

hazard-free implementations.

6.4 Case Studies

There are three short case studies presented in this section, each illustrating an

interesting aspect of the technology-mapping work: false hazards, nonpropagating

internal hazards, and a nonoptimized hazard cover.

6.4.1 False Hazards

It is observed in Sections 6.1.1 and 6.1.2 that false negative hazards, although

infrequent, do occur. This is a result of the abstraction method, which limits

the visible states to those contained in the Complex Gate Equivalent state graph.

111

Between any two states in this state graph, a number of internal signals can be

undergoing an ordered sequence of transitions. The stabilization algorithms do

not always find internal nodes to be stable and if more than one input to a gate

is unstable in the same state and a forcing side input cannot be found, than a

monotonicity hazard is reported.

The example used in Section 3.2.3 is shown again in Figure 6.2, where the

false hazard reported on output node t in state 10001 caused by fanin b58 is now

investigated. Starting in state 00001, signal b58 is low and signals b55 and output t

are high. When signal d rises and and the circuit moves to state 10001, signal b55

is enabled to fall (through 2 gate delays) and signal b58 is enabled to rise (through

3 gate delays). However, the algorithm is not able to determine the order in which

these internal nodes actually switch.

After the timed and untimed stabilization has been completed for the circuit

in Figure 6.2, the stability information for state 10001 is shown on each internal

node. Note that all external signals are stable at the values in the state vector. For

the internal signals, a U indicates that this node is unstable and a 0 indicates that

the node has stabilized at that value. Note also that all gates have at least one

stable input except for the gate driving the output t. The algorithm to check for

monotonicity hazards in Chapter 3 indicates that the output t has a monotonicity

0

b48
b58 U

U

U

U

0

U

0

b49

b50

b47

b51

b55

a

b
c
d

t

Figure 6.2. False hazard example using circuit rpdft.

112

hazard in state 10001 and it is caused by the b58 input.

To explore why this hazard is false, the full timed state graph for the region

of interest must be examined. This state graph is shown in Figure 6.3. Note that

between the time signal d rises and state 10001 is entered, and signal b rises when

state 10001 is exited, internal signals b47, b50, b58 rise, and signals b55 and b48 fall.

It is clear from this state graph that signal b55 falls before b58 rises. Thus, there is

no actual state in this state graph where the ambiguity in Figure 6.2 is present.

6.4.2 Nonpropagating Acknowledgment Hazard

The intent of the verification portion of this research is to identify nodes where

hazardous behavior is occurring. Then, the matching and covering phase of the

design flow tries to find a circuit covering such that these hazardous nodes are

removed. However, it is known that hazardous activity on internal nodes does not

necessarily mean that the circuit fails. In other words, if hazards on internal nodes

do not propagate to the output, the circuit as a whole may not be hazardous.

100011000011

d+

b47+

b55−

b58+

b+

000001000011

100001000011

100001001011

100011001011

100010001011 100011001001

100010001001

100010011001

101010011001

b50+

b47+ b50+

b48−

b55− b48−

Figure 6.3. Full timed state graph for the region of interest in circuit rpdft.

113

An example of one such circuit (there are many) is shown in Figure 6.4(a).

This circuit is called half and is taken from the examples used by the KRONOS tool.

Figure 6.4(b) shows the state graph for the half circuit. Note that in the state

graph, stability information for internal nodes x94 and x96 is placed in square

brackets next to each state. After circuit verification, it is found that node x96

has an acknowledgment hazard between states 0101 and 0111. This is seen in the

c x100

x98

x92

x94

x96 d

c
b

d

b
c

d

a

d
c

(a)

d+

abcdState =

a−

a−

b+

0000

1100

1000

b+

[11]

[11]

c+

b− a+

a+ b−
d−

c−

d− b−

0101

0111

0011 1111

1011 1110

1010

[11]

[U1]

[0U]

[0U]

[01]

[U1]

[11]

[11]

0100[U1]

(b)

Figure 6.4. Nonpropagating acknowledgment hazard example. (a) half circuit.
(b) half state graph.

114

state graph by noticing that node x96 is unstable in both of these states but its

evaluation changes, that is, x96 evaluates to 0 in state 0101 but evaluates to 1 in

state 0111. As is shown in the algorithm of Figure 3.11, an acknowledgment hazard

is reported between two states under these conditions.

After circuit verification, it is also found that the output d is hazard-free. In

other words, the acknowledgment hazard on node x96 did not propagate to the

output. This is because the output is held in a high state by node x94, which is

stable at 0 during the state transition from 0101 to 0111.

The point of this example is that it may be possible to declare some circuits

hazard-free even when there is hazardous activity on internal nodes. One reason

this is often the case is because of blocking side inputs such as in the example of

Figure 6.4. However, during matching and covering, the circuit may be broken

up in such a way that the internal nodes with hazardous activity can propagate

their hazardous behavior to the output. This topic is mentioned in the future work

section of Chapter 7 because it may be possible to develop algorithms that identify

nonpropagating hazardous activity that has no effect on primary outputs.

6.4.3 Nonoptimum Covered Circuit

It is suspected that requiring hazard-freedom to be the primary cost factor

during the matching and covering of circuits often leads to results that are nonop-

timum from an area and/or delay perspective. This turns out to occur in some

cases, but not as many as expected. Frequently, the examples that are run through

the supporting software have identical coverings independent of which cost factor

is primary and which is secondary. It is seen that circuits with a large number of

hazardous nodes are much more likely to have a hazard-based cover that is area

or delay suboptimal. One example, with a small number of nodes and hazards, is

shown in Figure 6.5, and illustrates the difference in matching when optimizing for

area vs. optimizing for hazard-freedom.

This example is the output req from a file named alloc-outbound. After verifi-

cation, the circuit shown in Figure 6.5(a) is found to have two nodes with acknowl-

edgment hazards and one node with a monotonicity hazard. After setting w1,w2 to

115

A

y0

y1 req

ack A

M

(a)

ack

req
M

y1

y0

A A

(b)

A

y0

y1

A

M
req

ack

(c)

Figure 6.5. Nonoptimum covered circuit example. (a) Example circuit req. (b)
Cover based on hazard-awareness. (c) Cover based on area minimization.

-1,1 in Equation 5.1, the hazard-aware matching algorithms of Section 5.2 produce

the covering shown in Figure 6.5(b). Note that the two acknowledgment hazards

are ignored because the buffer is removed from the final netlist. Also note that

the monotonicity hazard is left exposed in the covering. Verification on this newly

covered netlist is found to be hazard-free.

The covering shown for the circuit in Figure 6.5(c) represents area optimization,

and there is no hazard-awareness when choosing the covering elements. This

covering is done by setting w1,w2 to 0,0 in Equation 5.1. This area covering leaves

one acknowledgment hazard exposed and verification performed on the covered

circuit indicates this acknowledgment hazard is present in the covered netlist. In

addition, a new monotonicity hazard has been created on the output req.

CHAPTER 7

CONCLUSIONS

In asynchronous circuits, hazards must be avoided and care must be taken

during technology-mapping to not introduce hazards in the design. Therefore, an

asynchronous technology-mapper requires a method to rapidly determine when a

gate-level transformation of the netlist has introduced a hazard and to provide a

method to safely map this netlist to a hazard-free implementation. The technology-

mapper described in this dissertation demonstrates that synchronous technology-

mapping can be used with small modifications to accommodate the presence of

hazards. This approach makes the efficient technology-mapping of gate-level timed

asynchronous circuits possible.

7.1 Summary

This work adapts the synchronous design flow for use in the ATACS technology-

mapping tool. Algorithms are developed for the decomposition of a netlist that

uses unbalanced trees and inverter pairs for the netlist representation. Next,

algorithmic definitions are created for acknowledgment and monotonicity hazards.

Then, the theory and algorithms are developed and implemented for an efficient

gate-level verifier that checks each node in a netlist for hazards, and annotates

these nodes with this hazard information. This method uses a cube approximation

of the internal signal behavior in order to avoid generating an explicit state graph

representing the switching behavior of the internal signals. The experimental

results for this verifier show that this new method can be substantially faster than

previous gate-level timing verification tools. While this new verification method

is conservative and thus can report some incorrect hazards, the number of such

false negative results is small. This hazard verification method scales well to larger

117

circuits in that it can verify examples with more than 150 gates in less than a

second while previous methods fail to complete.

The synchronous technology-mapping algorithms for matching and covering are

then developed to provide optimum choices when hazards are present in the netlist.

Since asynchronous circuits are sensitive to glitches at all times, the primary ob-

jective is to map the netlist decomposition to library cells in a hazard-free manner.

There is particular interest in implementing libraries with gC cells because of their

compact nature and wide use in asynchronous designs. All circuit implementations

using gC’s require checking for short-circuit conditions in the mapped circuits. The

number of gC library cells rejected as potential matches due to short-circuit issues

is significant, 53 percent, on the example circuits that are tested.

The next step is to add gC cells with common-inputs to the library. These

types of cells have no short-circuit issues but the common-inputs must be mapped

to equivalent subnetworks. It is found that for circuits where hazards are present,

increasing the complexity and number of cells in the library, in most cases, reduces

the number of hazards present in the final netlist. The use of hazard-freedom as

a primary requirement on occasion leads to solutions that are not area or delay

optimized. However, the number of such circuits is small and a correct solution is

usually found. There is a small number of circuits where a hazard-free mapping

could not be found without adding custom cells to the library. These custom cells

are typically multiple-stack gC’s that cover the entire set or reset portion of the

circuit, which is equivalent to providing a library cell that implements the synthesis

output. These types of cells place a large burden on the physical design process

because of a greater amount of embedded logic and the more liberal use of the

atomic gate assumption.

The new algorithms developed during the course of this research include gate-

level hazard verification using explicit timing, algorithms to identify acknowledg-

ment and monotonicity hazards, algorithms to perform short-circuit checks for

libraries containing gC elements, and algorithms for hazard-aware matching and

covering.

118

There are four significant contributions of this research to the body of knowledge

concerning technology-mapping of timed asynchronous circuits. First, it is shown

that the synchronous technology-mapping flow can be adapted for use in timed

asynchronous circuits. Second, efficient gate-level hazard verification algorithms

using timing are developed that allow for alternative implementations to be con-

sidered. Third, algorithms and methods are developed to utilize gC’s in circuit

solutions. Fourth, the investigation of a range of technology-dependent libraries

for circuit implementation shows that nearly all circuits can be implemented in a

technology-dependent, hazard-free manner.

7.2 Current Relevance

As technology pushes deeper into submicron territory, some of this work ebbs

in its usefulness while other parts become more applicable. For instance, current

device geometries and the laws of physics make library elements with 4-device stacks

impractical. The resulting reduction in library components of this type likely means

a more difficult implementation of a hazard-free circuit. On the other hand, smaller

and faster circuits means that an atomic gate may be easier to build, allowing for

a richer set of library cells with various encapsulated logic.

The use of area and delay as primary or secondary cost factors is also becoming

somewhat outdated. Designs are seldom as performance driven today as they are

power driven [87]. The design goal is to get the most performance within a power

budget. This leads to the possibility of power dissipation, loading, and perhaps

logical effort [84], as serious contenders for consideration as primary cost factors.

The synchronous designer can benefit from this work. By following the syn-

chronous technology-mapping flow, it is likely that synchronous designers can utilize

some of the algorithms developed to enhance their designs, as long as the circuit

can be cut at the primary outputs. For instance, the reduction of hazards is directly

related to the reduction of undesirable transitions (read glitches), and can have a

significant affect in reducing power dissipation in synchronous circuits. In addition,

gC’s are a superset of domino and footed domino circuits, a widely used design

119

architecture, which also needs to be short-circuit aware. Short-circuit checks can

help determine if the footer gate is necessary and if not, additional stack depth can

be used to increase the amount of implemented logic.

Designers adhering to speed-independent styles may also benefit from this work.

Speed-independent libraries are often customized and large, with many elements

encompassing large amounts of logic. This places a significant design burden on

the physical design effort and requires liberal use of the atomic gate assumption.

This work makes it possible to explore the implementation of speed-independent

designs with more standard libraries.

7.3 Future Work

This research has produced a design flow that can, in nearly all cases, provide

hazard-free technology-mapping of timed circuits. There are still issues left that

would be interesting to investigate.

7.3.1 False Hazards

There appears to be sufficient information to determine whether a reported

hazard is false or not. When an acknowledgment hazard is found on a node n, the

state transition, (s,t,s′), where the hazard occurs is reported. For monotonicity

hazards, the state s and input v that cause the monotonicity violation on node

n are reported. In either case, this information can be used to create an error

trace from the initial state. This error trace can then be used to perform a guided

simulation of the circuit to detect if the hazard can occur or not. While in theory,

this simulation could result in a full state space exploration, it is likely only to

require exploration of a small subset of the state space to determine if the hazard

is false or not.

7.3.2 Reordering of Inputs

Although it is mentioned briefly in this research, the effects of reordering the

inputs on the decomposition have not yet been fully investigated. The examples

presented indicate that the reordering step has an effect on the netlist timing that

120

likely leads to a change in the hazard landscape. It may also be possible to examine

the nature of input transitions and use the work in [64] to determine a potentially

hazard-free decomposition. This future work would also include the identification

of context and trigger signals for the netlist under consideration and place these

signals wisely in the decomposition [76].

7.3.3 Inertial Delay Models

The use of inertial delay models could possibly lead to circuits with fewer

hazards. There have been a number of monotonicity hazards close to where the

primary inputs are applied, particularly where asymmetry exists in the number of

inverters. The new method of internal node abstraction requires that any timing

violation be treated as a hazard. However, under an inertial delay model, timing

violations that are short could possibly be filtered out.

7.3.4 Hazard-Dependent Behavior

The algorithms developed in this work determine hazard-freedom for each node

individually without regard to the hazard behavior of predecessor nodes in the

circuit. It would be interesting to investigate further whether there is a connection

between a node that is hazardous and successor nodes. For instance, any acknowl-

edgment hazard at the input to an inverter causes the node at the output of the

inverter to be hazardous as well. The verification results in this regard always agree

with a full state-space verification so it is assumed that independent treatment of

nodes is acceptable. Any stabilization due to timing does not change but untimed

stabilization could produce interesting results.

7.3.5 Acknowledgment Hazards

There seems to be some promise in further investigating whether or not acknowl-

edgment hazards that do not manifest on a primary output are problematic. The

speed-independent model has been used that reports an acknowledgment hazard

if a transition on any internal node is not acknowledged by a primary output.

However, internal transitions that are blocked from reaching the output by forcing

121

side-inputs may not cause incorrect circuit behavior.

7.3.6 Inverter Pair Insertion

The presence of monotonicity hazards indicate timing relationships between

inputs to a gate that behave like race conditions. Lavagno et al. [74] encountered

similar conditions in their bounded wire delay model and inserted delays at the

appropriate places until the hazards disappeared. It would be interesting to consider

the same technique with an eye toward removing the monotonicity hazard by

inserting time delay elements in the fanin causing the hazard. This technique

is viable because the efficient gate-level hazard verification can quickly determine

if, and when, the hazards disappear.

7.3.7 Other Input Forms

As it currently stands, this work is limited to designs specified as time Petri

nets. The size and number of examples could be widely expanded by providing

support for other input specifications of which several are level-ruled Petri nets,

signal transition graphs, and VHDL netlists.

7.3.8 Internal Cycles

The range of examples could also be increased if was possible to provide algorith-

mic support to handle circuit representation forms that are not tree-based. These

examples would not require the cutting of circuits at primary outputs. Rather,

circuits could contain internal cycles and reconvergent fanout.

REFERENCES

[1] C. J. Myers, Computer-Aided Synthesis and Verification of Gate-Level Timed
Circuits. PhD thesis, Dept. of Elec. Eng., Stanford University, Oct. 1995.

[2] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J. Myers, K. Y. Yun, R. Koi,
C. Dike, and M. Roncken, “An asynchronous instruction length decoder,”
IEEE Journal of Solid-State Circuits, vol. 36, pp. 217–228, Feb. 2001.

[3] J. Hartmanis and R. Stearns, Algebraic Structure Theory of Sequential Ma-
chines. Prentice-Hall, 1966.

[4] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, 1978.

[5] G. D. Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, “Optimal state
assignment for finite state machines,” in Proc. International Conf. Computer-
Aided Design (ICCAD), pp. 269–295, IEEE Computer Society Press, 1985.

[6] T. Villa, A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli, “Symbolic
two-level minimization,” in Proc. International Conf. Computer-Aided Design
(ICCAD), pp. 692–708, IEEE Computer Society Press, 1997.

[7] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli, Synthesis of
FSMs: Logic Optimization. New York, New York: Kluwer, 1997.

[8] R. K. Brayton, R. Camposano, G. D. Micheli, R. H. J. M. Otten, and J. van
Eijndhoven, “The yorktown silicon compiler system,” in Silicon Compilation
(D. Gajski, ed.), Addison Wesley, 1988.

[9] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Eang, “Mis:
A multiple-level interactive logic optimization system,” IEEE Transactions on
Computer-Aided Design, vol. 6, pp. 1062–1081, Nov. 1987.

[10] J. Darringer, D. Brand, W. Joyner, and L. Trevillyan, “LSS: A system for
production logic synthesis,” IBM J. Res. Develop., Sept. 1984.

[11] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel, “SOCRATES: A system
for automatically synthesizing and optimizing combinational logic,” in 23rd
Design Automation Conference, pp. 79–85, IEEE/ACM, 1986.

[12] D. Subcommittee, “Ieee standard vhdl language reference manual,” Technical
Report IEEE Std 1076-1987, University of California, Davis, Mar. 1988.

[13] D. Thomas and P.R.Moorby, Verilog Hardware Description Language. Dor-
drecht, Netherlands: Kluwer, 1991.

123

[14] P. Merlin and D. J. Faber, “Recoverability of communication protocols,” IEEE
Trans. on Communication, vol. COM-24, no. 9, pp. 1036–1043, 1976.

[15] D. L. Dill, “Timing assumptions and verification of finite-state concurrent
systems,” in Proceedings of the Workshop on Automatic Verification Methods
for Finite-State Systems, 1989.

[16] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, “POSET timing and its
application to the synthesis and verification of gate-level timed circuits,” IEEE
Transactions on Computer-Aided Design, vol. 18, pp. 769–786, June 1999.

[17] T. G. Rokicki, Representing and Modeling Circuits. PhD thesis, Stanford
University, 1993.

[18] T. G. Rokicki and C. J. Myers, “Automatic verificaton of timed circuits,”
in International Conference on Computer-Aided Verification, pp. 468–480,
Springer-Verlag, 1994.

[19] W. Belluomini and C. Myers, “Verification of timed systems using posets,”
in International Conference on Computer Aided Verification, Springer-Verlag,
1998.

[20] W. Belluomini, Algorithms for Synthesis and Verification of Timed Circuits
and Systems. PhD thesis, Department of Computer Science, University of
Utah, Sept. 1999.

[21] W. Belluomini and C. J. Myers, “Timed state space exploration using posets,”
IEEE Transactions on Computer-Aided Design, vol. 19, pp. 501–520, May
2000.

[22] W. Belluomini and C. J. Myers, “Timed circuit verification using tel struc-
tures,” IEEE Transactions on Computer-Aided Design, vol. 20, pp. 129–146,
Jan. 2001.

[23] E. Mercer, Correctness and Reduction in Timed Circuit Analysis. PhD thesis,
Department of Computer Science, University of Utah, Dec. 2002.

[24] T. Yoneda and B. Schlingloff, “Efficient verification of parallel real-time sys-
tems,” in Formal Methods in System Design (C. Courcoubetis, ed.), Kluwer
Academic Publishers, 1997.

[25] P. A. Beerel, T. H.-Y. Meng, and J. Burch, “Efficient verification of deter-
minate speed-independent circuits,” in Proc. International Conf. Computer-
Aided Design (ICCAD), pp. 261–267, IEEE Computer Society Press, Nov.
1993.

[26] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng, “Checking combinational
equivalence of speed-independent circuits,” Formal Methods in System Design,
Mar. 1998.

124

[27] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H. Freeman and Company, 1979.

[28] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York, New
York: McGraw-Hill, Inc., 1994.

[29] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms.
Boston: Kluwer Academic Publishers, 1996.

[30] K. Keutzer, “DAGON: Technology binding and local optimization by DAG
matching,” in 24th Design Automation Conference, pp. 341–347, IEEE/ACM,
1987.

[31] F. Mailhot, “Algorithms for technology mapping based on binary decision
diagrams and on boolean operations,” IEEE Transactions on Computer-Aided
Design, vol. 12, pp. 599–620, May 1993.

[32] R. Rudell, Logic Synthesis for VLSI Design. PhD thesis, U. C. Berkeley, Apr.
1989.

[33] F. Mailhot, Technology Mapping for VLSI Circuits Exploiting Boolean Prop-
erties and Operations. PhD thesis, Stanford University, Dec. 1991.

[34] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Tech. Rep. UCB/ERL M92/41,
University of California, Berkeley, May 1992.

[35] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang,
“Technology mapping in mis,” in Proc. International Conf. Computer-Aided
Design (ICCAD), pp. 116–119, IEEE Computer Society Press, 1987.

[36] C. R. Morrison, R. M. Jacoby, and G. D. Hachtel, “TECHMAP: Technology
mapping with delay and area optimization,” in Logic and Architecture Syn-
thesis for Silicon Compilers (G. Saucier and P. M. McLellan, eds.), pp. 53–64,
North-Holland, 1989.

[37] M. Zhao and S. S. Sapatnekar, “A new structural pattern matching algorithm
for technology mapping,” in Proc. ACM/IEEE Design Automation Conference,
pp. 371–376, IEEE Computer Society Press, 2001.

[38] H. Sato, N. Takahashi, Y. Matsunaga, and M. Fujita, “Boolean technology
mapping for both ecl and cmos circuits based on permissable functions and bi-
nary decision diagrams,” in Proc. International Conf. Computer-Aided Design
(ICCAD), pp. 286–289, IEEE Computer Society Press, 1990.

[39] J. R. Burch and D. F. Long, “Efficient boolean function matching,” in Proc.
International Conf. Computer-Aided Design (ICCAD), pp. 408–411, IEEE,
Nov. 1992.

125

[40] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang, “Q-modules:
Internally clocked delay-insensitive modules,” IEEE Transactions on Comput-
ers, vol. C-37, pp. 1005–1018, Sept. 1988.

[41] J. C. Ebergen, Translating Programs into Delay-Insensitive Circuits, vol. 56 of
CWI Tract. Centre for Mathematics and Computer Science, 1989.

[42] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in Proceed-
ings of an International Symposium on the Theory of Switching, pp. 204–243,
Harvard University Press, Apr. 1959.

[43] D. E. Muller, “Asynchronous logics and application to information processing,”
in Proceedings of a Symposium on the Application of Switching Theory to Space
Technology, pp. 289–297, Stanford University Press, 1962.

[44] I. Kimura, “Extensions of asynchronous circuits and the delay problem I: Good
extensions and the delay problem of the first kind,” Journal of Computer and
System Sciences, vol. 2, pp. 251–287, Oct. 1968.

[45] I. Kimura, “Extensions of asynchronous circuits and the delay problem II:
Spike-free extensions and the delay problem of the second kind,” Journal of
Computer and System Sciences, vol. 5, pp. 129–162, Apr. 1971.

[46] P. Siegel and G. D. Micheli, “Decomposition methods for library binding
of speed-independent asynchronous designs,” in Proc. International Conf.
Computer-Aided Design (ICCAD), pp. 558–565, Nov. 1994.

[47] P. Beerel and T.-Y. Meng, “Automatic gate-level synthesis of speed-
independent circuits,” in Proc. International Conf. Computer-Aided Design
(ICCAD), pp. 581–587, IEEE Computer Society Press, Nov. 1992.

[48] P. A. Beerel and T. H.-Y. Meng, “Logic transformations and observability
don’t cares in speed-independent circuits,” in Proceedings of TAU 1993, Sept.
1993. Participant’s proceedings.

[49] S. M. Burns, “General condition for the decomposition of state holding el-
ements,” in Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, IEEE Computer Society Press, Mar. 1996.

[50] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor, and
A. Yakovlev, “Decomposition and technology mapping of speed-independent
circuits using Boolean relations,” IEEE Transactions on Computer-Aided De-
sign, vol. 18, Sept. 1999.

[51] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev,
“Logic decomposition of speed-independent circuits,” Proceedings of the IEEE,
vol. 87, pp. 347–362, Feb. 1999.

126

[52] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man, “A generalized state
assignment theory for transformations on signal transition graphs,” in Proc.
International Conf. Computer-Aided Design (ICCAD), pp. 112–117, IEEE
Computer Society Press, Nov. 1992.

[53] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,
“A region-based theory for state assignment in speed-independent circuits,”
IEEE Transactions on Computer-Aided Design, vol. 16, pp. 793–812, Aug.
1997.

[54] P. Siegel, G. D. Micheli, and D. Dill, “Automatic technology mapping for
generalized fundamental-mode asynchronous designs,” in Proc. ACM/IEEE
Design Automation Conference, pp. 61–67, June 1993.

[55] C. J. Myers, Asynchronous Circuit Design. John Wiley & Sons, July 2001.

[56] D. A. Huffman, “The synthesis of sequential switching circuits,” J. Franklin
Institute, March, April 1954.

[57] S. H. Unger, Asynchronous Sequential Switching Circuits. New York: Wiley-
Interscience, John Wiley & Sons, Inc., 1969.

[58] K. Stevens, “Private communication,” Sept. 2000. Ken Stevens is with Intel
Corporation.

[59] B. Coates, A. Davis, and K. Stevens, “The Post Office experience: Designing a
large asynchronous chip,” Integration, the VLSI journal, vol. 15, pp. 341–366,
Oct. 1993.

[60] A. Davis, B. Coates, and K. Stevens, “The Post Office experience: Design-
ing a large asynchronous chip,” in Proc. Hawaii International Conf. System
Sciences, vol. I, pp. 409–418, IEEE Computer Society Press, Jan. 1993.

[61] A. Davis, B. Coates, and K. Stevens, “Automatic synthesis of fast com-
pact asynchronous control circuits,” in Asynchronous Design Methodologies
(S. Furber and M. Edwards, eds.), vol. A-28 of IFIP Transactions, pp. 193–207,
Elsevier Science Publishers, 1993.

[62] A. Davis, “Synthesizing asynchronous circuits: Practice and experience,”
in Asynchronous Digital Circuit Design (G. Birtwistle and A. Davis, eds.),
Workshops in Computing, pp. 104–150, Springer-Verlag, 1995.

[63] K. Y. Yun, D. L. Dill, and S. M. Nowick, “Practical generalizations of
asynchronous state machines,” in Proc. European Conference on Design Au-
tomation (EDAC), pp. 525–530, IEEE Computer Society Press, Feb. 1993.

[64] P. S. K. Siegel, Automatic Technology Mapping for Asynchronous Designs.
PhD thesis, Stanford University, Feb. 1995.

127

[65] W.-C. Chou, P. A. Beerel, and K. Y. Yun, “Average-case technology mapping
of asynchronous burst-mode circuits,” IEEE Transactions on Computer-Aided
Design, vol. 18, pp. 1418–1434, Oct. 1999.

[66] K. Y. Yun and D. L. Dill, “Automatic synthesis of extended burst-mode
circuits: Part i (specification and hazard-free implementation),” IEEE Trans-
actions on Computer-Aided Design, vol. 18, pp. 101–117, Feb. 1999.

[67] K. Y. Yun and D. L. Dill, “Automatic synthesis of extended burst-mode cir-
cuits: Part ii (automatic synthesis),” IEEE Transactions on Computer-Aided
Design, vol. 18, pp. 118–132, Feb. 1999.

[68] K. W. James and K. Y. Yun, “Average-case optimized transistor-level technol-
ogy mapping of extended burst-mode circuits,” in Proc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems, pp. 70–79,
1998.

[69] J.-L. Yang, Transistor-Level Technology Mapping for Extended Burst-Mode
Asynchronous Designs. PhD thesis, University of Utah, Dec. 2003.

[70] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,”
IEEE Transactions on VLSI Systems, vol. 1, pp. 106–119, June 1993.

[71] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, “Automatic synthesis of gate-
level timed circuits with choice,” in Advanced Research in VLSI, pp. 42–58,
IEEE Computer Society Press, 1995.

[72] L. Lavagno, Synthesis and Testing of Bounded Wire Delay Asynchronous
Circuits from Signal Transition Graphs. PhD thesis, University of California,
Berkeley, Nov. 1992.

[73] L. Lavagno, N. Shenoy, and A. Sangiovanni-Vincentelli, “Linear programming
for hazard elimination in asynchronous circuits,” Journal of VLSI Signal
Processing, vol. 7, pp. 137–160, Feb. 1994.

[74] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Synthesis of hazard-
free asynchronous circuits with bounded wire delays,” IEEE Transactions on
Computer-Aided Design, vol. 14, pp. 61–86, Jan. 1995.

[75] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Algorithms for
synthesis of hazard-free asynchronous circuits,” in Proc. ACM/IEEE Design
Automation Conference, pp. 302–308, IEEE Computer Society Press, 1991.

[76] C. J. Myers, P. A. Beerel, and T. H.-Y. Meng, “Technology mapping of timed
circuits,” in Asynchronous Design Methodologies, IFIP Transactions, pp. 138–
147, Elsevier Science Publishers, May 1995.

[77] E. Mercer, C. Myers, and T. Yoneda, “Improved poset timing analysis in timed
petri nets,” in The Tenth Workshop on Synthesis and System Integration of
MIxed Technologies (SASIMI 2001), October 2001.

128

[78] J. Ebergen and S. Gingras, “A verifier for network decompositions of command-
based specifications,” in Proc. Hawaii International Conf. System Sciences,
vol. I, IEEE Computer Society Press, Jan. 1993.

[79] G. Gopalakrishnan, E. Brunvand, N. Michell, and S. Nowick, “A correctness
criterion for asynchronous circuit validation and optimization,” IEEE Trans-
actions on Computer-Aided Design, vol. 13, pp. 1309–1318, Nov. 1994.

[80] M. Bozga, H. Jianmin, O. Maler, and S. Yovine, “Verification of asynchronous
circuits using timed automata,” in Electronic Notes in Theoretical Computer
Science (O. M. Eugene Asarin and S. Yovine, eds.), vol. 65, Elsevier Science
Publishers, 2002.

[81] S. Yovine, “Private communication,” July 2002. Sergio Yovine is with VER-
IMAG.

[82] M. Shams, J. Ebergen, and M. Elmasry, “A comparison of CMOS implemen-
tations of an asynchronous circuits primitive: the C-element,” in International
Symposium on Low Power Electronics and Design, pp. 93–96, Aug. 1996.

[83] A. Aho and S. Johnson, “Optimal code generation for expression trees,”
Journal of the ACM, vol. 23, pp. 499–501, June 1976.

[84] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS
Circuits. Morgan Kaufmann Publishers, Inc., 1999.

[85] M. A. Peña, J. Cortadella, A. Kondratyev, and E. Pastor, “Formal verification
of safety properties in timed circuits,” in Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp. 2–11, IEEE
Computer Society Press, Apr. 2000.

[86] C. J. Myers, W. Belluomini, K. Killpack, E. Mercer, E. Peskin, and H. Zheng,
“Timed circuits: A new paradigm for high-speed design,” in Proc. of Asia and
South Pacific Design Automation Conference, pp. 335–340, Feb. 2001.

[87] K. Stevens, “Private communication,” Aug. 2004. Ken Stevens is with Intel
Corporation.

