Computer Aided Synthesis and Verification of Gate-Level Timed Circuits

Abstract

In recent years, there has been a resurgence of interest in the design of asynchronous circuits due to their ability to eliminate clock skew problems, achieve average case performance, adapt to processing and environmental variations, provide component modularity, and lower system power requirements. Traditional academic asynchronous designs methods use unbounded delay assumptions, resulting in circuits that are verifiable, but ignore timing for simplicity, leading to unnecessarily conservative designs. In industry, however, timing is critical to reduce both chip area and circuit delay. Due to a lack of formal methods that handle timing information correctly, circuits with timing constraints usually require extensive simulation to gain confidence in the design. This thesis bridges this gap by introducing timed circuits in which explicit timing information is incorporated into the specification and utilized throughout the design procedure to optimize the implementation. Our timed circu…

Type
Chris Myers
Chris Myers
Department Chair / Professor

Related