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ABSTRACTThis thesis presents a method of deriving a performance metric for timed asynchronouscircuits called a stochastic cycle period, which uses analytical techniques combined withsimulation to capture the stochastic pro�le of the system. The stochastic cycle period isconstructed by �nding transition and steady-state probabilities in a reachability graph ofthe timed circuit. The transition and steady-state probabilities are used to obtain triggerprobabilities in the circuit implementation. The trigger probabilities are employed ina timing simulation to construct the stochastic cycle period of the timed speci�cation.Since this performance metric is a stochastic pro�le of the circuit behavior with regardsto its individual components, synthesis optimization e�orts can be focused on areas thatsigni�cantly improve the expected cost of a cycle in the system. This thesis presents somecase studies where the metric is used to evaluate and improve designs. The studies showthe potential of the performance metric and its import in the design process.
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CHAPTER 1INTRODUCTIONCrucial to the correctness of most digital circuits is the notion of global synchroniza-tion. Each computational stage in a design must be completed before the fall of themallet on the drum, signifying the clock pulse, designating the time to start on the nextcomputation. This constant beat coordinates the global e�orts of the design to completeits intended task by ensuring that all components are working in step with each other.The idea of a governing global clock orchestrating the movements of data in a system hasbeen the predominately used approach in the design of digital circuits, but due to recentadvances in the size and the complexity of these circuits, the realization of this ideologyis being challenged.Aspect ratios and design sizes have evolved at a phenomenal rate in digital circuitimplementations. No longer is it feasible to propagate a synchronizing signal from onearea of a chip to another in a negligible amount of time. Globally marching to the samebeat is not something that can easily be achieved in many designs. Clock skew derivedfrom wire delays has necessitated the revaluation of the traditional global synchronizationapproach to design.Asynchronous design styles were engendered before many synchronous techniques, butwere left to the wayside because of their perceived di�culty of implementation. Inherentto asynchronous design is the lack of a global synchronizing clock. Components in anasynchronous circuit operate as fast as they can and notify other components whenthey have completed their work. Since this type of design approach does not rely ona global clock to synchronize activities, it is being reconsidered as a possible solution tosynchronous design challenges.Many techniques exist for designing asynchronous circuits and each has its own merits[8]. However, the work presented in this thesis relies upon, and is an extension to, aspeci�c class of asynchronous circuits called timed asynchronous circuits [12, 14, 16].Important to this research is a general notion of a timed circuit and its position relative



2to other asynchronous methodologies. Timed circuits uphold a more realistic model ofcircuit behavior. Rather than restricting inputs and outputs to occur in tightly orderedbursts or to assume a possibly in�nite delay, timed circuits portray signals as being ableto happen within a �nite bounded window of time from when they become enabled,thus accounting for variations in signal propagation and generation delay. These timingassumptions can be used to aggressively design a circuit, eliminating extra circuitry thatmight have been needed had the timing assumptions not been in e�ect. Timed circuitsrely on the fact that a designer knows a priori the timing requirements and speci�cationsof the circuit and its environment; and through an iterative process, can re�ne thoseassumptions, thus arriving at a completed design. ATACS is a tool designed to take aspeci�cation of a control system annotated with timing assumptions [26] and output theresulting circuit. This tool uses many detailed algorithms to consider and verify thee�ects of the timing assumptions on a �nal implementation [3, 22].Pivotal to any computer aided design (CAD) tool is the ability to analyze the relativemerit of di�erent design incarnations at di�erent levels of the design process. ATACSprovides many methods of verifying and synthesizing timed circuits, but previously didnot provide any type of performance metric for evaluating design alternatives. Traditionalmethods of performance analysis involve the simulation of the design at di�erent levelsof the design process. Simulation is often slow, not comprehensive, and only shows anoverall performance of the design without indicating the relative performance of speci�csystem components. Without this information, it is di�cult to know where to improvean unoptimized circuit or which design alternative to use when confronted with severalchoices.This research presents a method of deriving a performance metric for timed asyn-chronous circuits which does not rely solely on simulation, but uses analytical techniquescombined with simulation to capture the stochastic pro�le of the system. Not only doesthis metric evaluate the relative overall computational performance of the speci�cation,but it shows the contribution of individual components to the overall performance metric.This type of information aids the designer in �ltering out less e�cient solutions and helpsexpose the e�ects of local synchronization points in highly concurrent systems. Since theperformance metric shows a stochastic form of the circuit behavior with regards to itsindividual components, optimization e�orts can be focused in highly probable areas ofthe circuit, yielding increased computational performance in the average case.



31.1 Performance AnalysisMeasuring performance in an asynchronous circuit is an elusive task. The delay in atimed asynchronous circuit is a complex function of process variation, data, and operatingenvironment. The multitudinous dependencies in the circuit make it convenient to use astochastic model. With a stochastic model, transitions are presupposed to occur withina designer speci�ed time window and the actual �ring time is a random variable whosetendencies can be described with basic probability theory. Therefore, a good performancemetric is one that can be applied at several levels of the design process, shows howmuch work or progress an implementation is making relative to some performance criteria(speed, area, power, etc.), and brings to light the e�ects of the stochastic personality ofthe system.This thesis merges the cycle period metric from [5] and the Markovian analysis from[2] to de�ne the stochastic cycle period performance metric, which can be used for theanalysis of timed asynchronous systems with choice and bounded delay. The stochasticcycle period is a measure of the expected value of the delay between two consecutiveoccurrences of any transition in a cycle of the speci�cation and can be applied to anyclass of timed circuits where such a transition can be identi�ed. The metric is composed ofweighted delays on trigger signals in the actual gate implementation of the speci�cation.This detailed information targets areas in circuits where resources can be invested togain signi�cant improvements in the average-case or expected performance of the imple-mentation. The stochastic cycle period metric can be directly applied in many di�erentfacets such as comparing protocols, �nding better state variable insertion points [9], pinreordering, transistor sizing, guiding decomposition, etc. In order to legitimate the metric,this thesis presents case studies showing how the stochastic cycle period can be used toevaluate designs and guide implementation decisions. The case studies demonstrate theability of the performance metric to correctly identify better implementations of timedcircuit speci�cations. 1.2 Related WorkA plethora of research exists studying various methods of performance analysis formany classes of asynchronous circuits. The worked described in this thesis relies largelyupon results from the network world [10, 18] and key methods developed in [5, 24]. Burnsin [5] legitimates the cycle period and latency functions as good performance metrics



4for quasi-delay-insensitive and speed-independent circuits. Burns presents a series ofde�nitions and proofs that relate the minimum timing simulation to the cycle periodor latency of the asynchronous system through a linear timing function. He proposesmethods and algorithms for �nding the cycle period in choice-free event-rule systems.Burns proves the cycle period metric to be a convex function and proposes an algorithmfor optimizing the function to increase the speed of the circuit subject to a variety ofconstraints. Burns models delay as being �xed and does not consider delay variationin the circuit. All performance metrics are, therefore, upper bounds on the worst-caseperformance of the circuit and do not take into account the nature of delay variation andchoice behavior indigenous to asynchronous systems when analyzing and optimizing animplementation.Beerel in [2] presents a method of optimizing the decomposition and technologymapping of burst-mode circuits using information derived from stochastic analysis ofthe system. By modeling the circuit as a Markov process, a long-term or steady-statebehavior of the system can be discovered through analysis. A signal on a gate that isthe latest arriving signal most of the time (also known as a trigger or causal signal),can be placed near the output of the gate, causing the gate to switch faster. Thiswork establishes stochastic analysis as a viable source of information to guide circuitoptimization in burst-mode circuits. Further work in [24, 25] presents implicit and stringcompression techniques for managing memory requirements and increasing convergencerates when analyzing large Markovian systems. Unique to the work in [2] is the useof discrete methods to �nd the timed reachable states of the system. Discrete statespace exploration methods are proven to produce a number of states that is exponentialin the size of the delays and the discretization constant. Implicit methods and stringcompression are introduced into the Markovian analysis as a means of dealing with themonolithic state space. It is important to note that work presented in this thesis does notuse discrete methods of timed state space exploration, but rather uses methods rooted ingeometric timing regions and partial orders. These methods produce signi�cantly smallerhighly periodic state spaces which are exploited to avoid many size and convergence issuesin the Markovian analysis that are commonly encountered with discrete methods.



51.3 ContributionsThe signi�cant contributions of this thesis include the following: the augmentation ofPetri nets to include various bounded distributions and timing information, the de�ni-tion and derivation of transition probabilities in reachability graphs, the de�nition andderivation of trigger probabilities in timed circuits, and the stochastic cycle period as aperformance metric for circuits with bounded time delays and choice.In deriving the stochastic cycle period, this thesis presents an exact de�nition ofconditional transition probabilities in timed systems and suggests three methods of ap-proximating its value. The �rst method is simulation based and best approaches exacttransition probabilities. The second method is an exponential approximation of thetransition probabilities that draws upon Markovian theory to model the system as acontinuous time Markov process. The �nal method is a burst-mode heuristic whichoperates on a general class of timed circuits and is shown to be exact for timed circuitsthat support a basic burst-mode speci�cation requirement. Each method is implementedin ATACS and evaluated in the case studies.The method of analyzing and optimizing timed circuits presented in this thesis isimplemented in the tool ATACS and several practical examples are analyzed and optimizedby the tool, the results of which are presented in this thesis. This thesis shows the relativemerits of this type of approach and exposes both its strength and weaknesses for futureconsiderations. 1.4 Thesis OverviewThe organization of this text is as follows: Chapter 2 presents a formal de�nition ofthe timed stochastic Petri net, which is the event model used to represent a timed circuit.Chapter 3 discusses transition probabilities in reachability graphs. It presents a de�nitionfor the exact value of the transition probabilities and de�nes three methods for approxi-mating the exact values: a simulation based method, an exponential approximation, anda burst mode heuristic. Chapter 4 is an overview of methods to �nd long-term behaviorof the timed speci�cation. This includes a simulation based method and a Markovianapproach. Chapter 5 combines the methods in Chapters 3 and 4 to create the stochasticcycle period. This is done by �rst de�ning trigger probabilities and then presenting amethod of �nding the stochastic cycle period. At this point several case studies areevaluated in Chapter 6 to try and expose the import of the stochastic cycle period as a



6performance metric. This chapter is designed to illustrate the strengths and weaknessesof this approach to performance analysis. Chapter 7 concludes the thesis by summarizingthe works completed. A brief analysis of the results is presented, as well as suggestionsfor future work and extensions to this research.



CHAPTER 2EVENT SYSTEM MODELAll work presented in this thesis is rooted in an event-based paradigm representingan asynchronous speci�cation. This model is systematically derived from hand shakingexpansions composed in VHDL as shown in [26] and is represented in a form thatlends itself to easy manipulation by existing algorithms found in ATACS. ATACS' internaldepiction of the aggregate is built upon an event system �rst proposed by Winskel in [23],that was incrementally refashioned by [5, 12, 21] to arrive at its contemporary embodimentas a timed event-rule (ER) structure and is a representation able to deal with complexhighly concurrent timed systems. Unique to the timed ER structure is the representationof timing requirements as bounded delays having a lower and upper bound which mustbe satis�ed before an event can occur.Closely related to the timed ER structure, but distinctly di�erent and more widelyused, is a Petri net. Since a Petri net is a model that is generally understood andaccepted, this thesis describes the maturation of the stochastic cycle period using a Petrinet system. This fundamental change of syntactic expression is done in an e�ort to betterconvey the core of this research, while preserving the semantic impetus of the underlyingrepresentation. For speci�c di�erences between the two representation, the reader isreferred to Appendix A.2.1 Timed Stochastic Petri NetsCompulsory to the syntactic transformation of timed ER structure is an augmentationof the basic Petri net model to accept timing and stochastic information. This is done byamending the Petri net models described in [10, 11] to incorporate the semantics of thetimed ER structure and allow for bounded stochastic distributions on places, creating theTimed Stochastic Petri Net or TSPN. Where possible, common Petri net notation willbe used. Formally, a TSPN system is a modi�ed one-safe Petri net represented with the6-tuple hP; T; F;Mo;�;�i where



8� P is the set of places;� T is the set of transitions, T \ P = ;;� F � (P � T ) [ (T � P ) is the 
ow relation;� Mo � P is the initial marking;� � : P ! pdf , maps each place to a bounded probability distribution function;� � : P � T ! <, maps place transition pairs to real numbers used in resolvingcon
icts.The preset of a transition t 2 T is the set of all places in the 
ow relation that preceedt (i.e. �t = fp 2 P j (p; t) 2 Fg) and the postset of t is the set of all places in the 
owrelation that follow t (i.e. t� = fp 2 P j (t; p) 2 Fg). Similarly, the preset of a place p 2 Pis the set of all transitions in the 
ow relation that preceed p (i.e. �p = ft 2 T j (t; p) 2 Fg)and the postset of p is the set of all transitions in the 
ow relation that follow p (i.e.p� = ft 2 T j (p; t) 2 Fg). A marking or a state M in a TSPN is M � P , where eachp 2 M is a marked place. With a marking M , the untimed enabled function is de�nedto return the set of transitions Te that have all places in their presets marked in M orTe(M) = ft 2 T j 8p 2 �t; p 2Mg.The � function maps a bounded delay distribution onto places. It is used for reacha-bility analysis, simulation, and performance analysis. Implemented distributions includeuniform, truncated normalized Gaussian, and singular (i.e U(l; u), N(l; u; �; �), and S(l)).Formally, when a token arrives in a place p, a random value is sampled from �(p) to obtaina time when the token becomes available to transitions in p�. As time advances tokensbecome available and are placed into the set Pa. In this model, an interleaving semanticsis enforced and therefore, if it is ever the case where two or more places should becomeavailable at the same time, then they are randomly sequenced to be made available one ata time. When a su�cient number of tokens are in Pa to satisfy the �t of some transition,then the transition t instantly �res.If it is ever the case that the number of available transitions to �re is greater that one(i.e. jTe(Pa)j > 1), then the TSPN has con
icting transitions available and arbitration isrequired before the system can move forward. A con
ict arises from a choice-point in thePetri net where timing considerations are not able to arbitrate the transition selection



9and an appeal must made to � for knowledge on how to proceed. The responsibilityof � is to provide a choice distribution for transitions which are enabled by a commonplace in the TSPN. Given a marking M , a set of available places Pa � M , and a placep 2 Pa, where p is the last place to be made available through time and p causes multipletransitions Te(Pa) to become available, then the probability of any transition t 2 Te(Pa)is Prft j Pa; pg = 8<: 0 if t =2 Te(Pa),�(p;t)Pt02Te(Pa) �(p;t0) otherwise.which is the conditional probability of t given that p is the last place made available in Pa.From this, con
ict is resolved by correctly sampling the conditional distribution to selecta transition to �re. Note that � has no range restrictions due to the normalization processin the probability calculation. This type of choice resolution maintains a semblance ofuser speci�ed con
ict behavior when timing fails to arbitrate the choice. In addition, thismodel can address known types of choice places which arise in Petri net representations.Figure 2.1 shows possible choice structures that can be conceived in a TSPN model.Unique choice is a non-con
icting choice, meaning that the composition or structure ofthe net restricts either the left or the ride side to receive a token, but never both. Free,extended free, and controlled choice represent con
icting choice, meaning that two ormore transitions can become enabled with a single place becoming available. For the caseof free choice, when place 1 becomes available, the probability of a+ and b+ isPrfa+ j f1g; 1g = �(1; a+)�(1; a+) + �(1; b+)= 0:70:7 + 0:3= 0:7Prfb+ j f1g; 1g = 0:3For extended free choice, the interleaving semantics restricts two places from becomingenabled at the same instance, so either the left or the right place becomes available lastand the structure is reduced to free choice. Controlled choice is resolved with eithertiming or probability. With timing it is possible to have the situation where place 2 is inthe available set Pa and place 1 or place 3 is then added to Pa. In this case, Pa is eitherf1; 2g or f2; 3g and no choice exists, so only one transition (a+ or b+) is enabled to �re.
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Figure 2.1. Supported choice structures in the TSPN model.If it is ever the case that Pa contains places f1; 3g when place 2 becomes available, thenthe conditional probability of each enabled transition (a+ and b+ is computed asPrfa+ j f1; 2; 3g; 2g = �(2; a+)�(2; a+) + �(2; b+)= 4545 + 69= 0:395Prfb+ j f1; 2; 3g; 2g = 0:605:The con
ict is resolved by sampling the conditional distribution to correctly choose oneof the clashing transitions to �re.The function Cp(M;M 0) is de�ned to identify marking pairs that are connected via atransition enabled by a choice place and returns that place if it exists, otherwise it returnsthe empty set. This function is formally de�ned as follows:Cp(M;M 0) = fp 2M j M t!M 0 2 � ^ p 2 �t ^ 9t0 2 T : p 2 �t0 ^ t0 2 Te(M)g:By the semantic de�nition of the TSPN with regards to allowable choice constructs,jCp(M;M 0)j for all (M;M 0) pairs must be equal to one or zero, meaning that the functionwill return a single place or the empty set. In the case of extended free choice, the systemrestricts the two free choice places from every containing a token at the same time,therefore such a marking does not exist in the RG.
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done-/1Figure 2.2. The TSPN for the sbuf-send-pkt2 circuit from the post o�ce chip.Figure 2.2 shows the TSPN for the sbuf-send-pkt2 circuit from the post o�ce chip[6]. The sbuf-send-pkt2 circuit is used as a working example throughout the developmentof the stochastic cycle period. The circuit contains three free choice places: 0 (initiallymarked), 4, and 10. The choice distributions on each place are annotated with a 0:99 and0:01 split denoting that most of the time the circuit is processing packets and that thecompletion of the transmission or the rejection of a packet is rare when compared to thereceiving of packets. For simplicity and clarity of presentation, all delays are describedwith uniform distributions. 2.2 ReachablilityThe timed reachability set of markings from Mo is the set of markings that arereachable subject to the bounded timing constraints on places as de�ned by � andis found using methods described in [3, 4, 12] which are implemented in ATACS. Thereachability graph is a labeled directed graph described by the tuple RG = h�;�i, where



12� � is the set of timed reachable markings, and� � � �� �� T is the edge relationship denoted by (M;M 0; t) or M t!M 0.A RG derived from a TSPN can be manipulated in many di�erent ways. The excitedmarkings of t in a TSPN is the set of all markings that have tokens su�cient for t tobe untimed enabled to transition or EM(t) = fM 2 � j t 2 Te(M)g. The predecessorof a marking M , Pred(M), is the set of all markings which lead to M; and successorsof M , Succ(M), is the set of all markings which can be reached from M by �ring asingle enabled transition in M . Formally, Pred(M 0) = fM 2 � j M t! M 0 2 �g andSucc(M) = fM 0 2 � j M t!M 0 2 �g.The RG generated by ATACS for the sbuf-send-pkt2 is shown in Figure 2.3. Becauseof the simplicity of the circuit, its RG closely resembles its TSPN speci�cation. Theonly di�erence is seen in the concurrent burst of signals that result from the transitionack+/1, where the RG shows all possible interleaving of the three concurrent signalsreq-/2, ackline-/2, and done-. In this example,EM (done-) = ff13; 15; 17g; f13; 16; 17g; f14; 16; 17ggSucc(13; 15; 17) = ff14; 15; 17g; f13; 16; 17g; f13; 15; 18ggPred(13; 15; 17) = ff12gg :
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Figure 2.3. The RG for the sbuf-send-pkt2 circuit from the post o�ce chip.



CHAPTER 3TRANSITION PROBABILITIESIn a highly concurrent timed system, each marking of the RG can have multipletransitions leaving it. Transition probabilities denote the relative importance or frequencyof each of these transitions. The probabilities are used to identify highly probablemarkings, as well as the relative importance of each transition in the timed circuitspeci�cation.In a RG, the probability of a transition from a given marking is not dependent solely onthe given marking. This stems from the natural dependence of transitions on the placesin their preset and the amount of time those places have had tokens. In an implementedfree running timed circuit, when the circuit arrives at a marking M , each place p 2 Mhas a real valued timer associated with it showing the amount of time which must expirebefore its token is available to a transition and a transition cannot be enabled to �re untila su�cient number of tokens in �t have become available. The value that each of thesetimers must achieve is determined by the function �(p) at the time when p is added to amarking following the �ring of a transition. From this point, an arbitrary number of pathsexist which arrive at markings that have a su�cient number of tokens available to �re t.In a concurrent system, a markingM can be reached by a myriad of traces with each tracehaving a unique set of available tokens and timer values. This implies that reaching astate where previous trace history can be ignored is highly unlikely, making the transitionprobabilities from the markingM dependent on the order of markings the circuit followedto get toM and the unique timer values associated with each p 2M . This type ofmemoryor trace dependence in the system makes timed circuits computationally challenging toanalyze. If the trace dependence can be mitigated, then transition probabilities can bee�ciently derived.To remove trace dependence of transition probabilities in RGs, the Markov memo-ryless property is enforced. The Markov memoryless property or single-step transitionprobability states that given the edge Mn t!Mn+1 2 �, then the probability of Mn+1 is



15solely dependent on the current marking Mn and not any markings that preceded Mn.Formally, if M is a random variable for a marking, thenPrfMn+1 j M0;M1; : : : ;Mng = PrfMn+1 j Mng;where the n subscript denotes a transition �ring moving the circuit into a new marking[10, 20]. In this way, time is not used to evidence progress in the system, rather progressis monitored by the �ring of transitions.For the memoryless property to hold in a timed circuit, PrfMn+1 j Mng must bede�ned to return the average value of the probability of moving to Mn+1 by consideringall possible paths that arrive at Mn. In this way, the single-step transition probabilitiesrepresent an expected value elicited from all possible trace scenarios. From this, timedcircuits are modeled as being memoryless by considering variable length traces andvariable numbers of timer values while deriving the single-step transition probabilitiesin the RG. Depending on the amount of memory used, the transition probabilities movecloser to, or farther away from, their exact average values. Formally, the exact averagevalues for the single-step transition probabilities are de�ned as follows: let � 2 xn be atrace in the set of all traces of length n that are possible in the RG. Let count(�; 
) bea function that returns the number of times the edge 
 occurs in �. Then, the averagevalue of the single-step transition probability for a given trace � isPrfMn+1 j Mn; �g = count(�;Mn t!Mn+1)P8Mn t0!M 02� count(�;Mn t0!M 0) :which is the sum of all edges in the trace moving from Mn to Mn+1 divided by all edgesin the trace starting at Mn. Now let the function Prf�g return the probability of a trace� 2 xn, then the exact average value of the single-step transition probabilities can bede�ned as the expected value of trace dependent single-step transition probabilities asthe trace length approaches in�nity orPrfMn+1 j Mng = limn!1 X8�2xn PrfMn+1 j Mn; � = �g �Prf�g:This paper presents three methods of estimating transition probabilities in a RG andeach re
ects a di�erent level of memory used in the system. The stochastic simulationmethod has memory that is proportionate to the amount of time that the simulation isrun and the number of times that the simulation is run. Transition probabilities from



16simulation most closely match their actual average values. An exponential approximationis at the other extreme where no memory is used in calculating the transition probabilities.In the middle is the burst-mode heuristic, which has a limited amount of memory that ituses when �nding the transition probabilities. Each of these methods have merits whichare described in later sections.Transitions probabilities are referenced by the function 	 : ���! <, known as thetransition probability function, and 	(M;M 0) is the probability of moving from M toM 0 on the next transition t given that the system is currently in M .3.1 Simulation of Transition ProbabilitiesStochastic simulation to �nd the transition probability function uses a maximumamount of memory to compute average values of the single-step transition probabilities byusing a very long simulation trace. When using a simulation based approach to computesystem metrics, regenerative stochastic simulation is typically preferred to avoid serialcorrelation. Regenerative stochastic simulation is often referred to as the Monte-Carlomethod and is the process of running several random experiments until the average valueof the experiments converges [18].The Monte-Carlo method is not easily implementable for a RG. This is due to thecontinuous nature of timed circuits. Requisite to the Monte-Carlo method is the randomexperiment. The random experiment must have a de�nitive beginning and ending state.This implies that the system must reach a state where past history is irrelevant to futurebehavior. From this point, another random experiment can be started that is independentof the experiment that preceded it. For a RG, the system would need to start from someinitial markingMo and simulate transition �rings until it returns back toMo with identicaltimer values for all p 2 Mo. Unfortunately, the probability of ever reaching a recurrentmarkingMo with identical timer values for all p 2Mo is extremely small for most systems.Therefore, the Monte-Carlo method is not easily implemented for a general class of timedcircuits without �rst identifying a recurrent marking that when reached by the systemwill always have identical timer values for all its places. Such markings do exist in timedburst-mode speci�cations with input to output causality.A timed burst-mode circuit has several markings that serve as synchronization pointswhere all timer values are set to zero (i.e. a new burst becomes enabled). With a timedburst-mode circuit, it is possible to begin and end a random experiment on a marking



17where a new burst in enabled, but this is a very narrow class of circuits that is to restrictiveto specify highly concurrent systems. Therefore, to implement the Monte-Carlo methodfor a broad range of design styles it is necessary to �rst identify a burst marking whereall places in the marking have timer values of zero. The frequency of these markings ingeneral circuits and how they are identi�ed in the RG are open research questions forfuture analysis. Therefore, stochastic simulation is used over the Monte-Carlo method inthis application.The stochastic simulation of a TSPN with a given RG is the process of �ring transi-tions and 
owing tokens from the initial markingM =Mo as illustrated by the algorithmSimulate in Figure 3.1. In the algorithm Simulate, Qp is a set of (p; �) pairs that acts as anordered queue to store places that are not yet available to transitions. If when selecting aplace to make available from the delay set Qp multiple places are found to have the same� value, then the system randomly picks a place to insert into the available set Pa using auniform distribution based on the cardinality of the set of places with equal delay times.This random break of a tie is necessary to deal with places that have singular distributionson the same point. In this way, each place is equally likely to become available �rst. Thesimulation process proceeds until the edge counters divided by their appropriate markingcounters converge to within a user speci�ed tolerance. By convergence it is meant thatthe di�erence between results at time n and the results at time n + k where k is some�xed amount of time or number of transitions falls within a user speci�ed tolerance ofpercent change.As an example of the simulation process, Figure 3.2 shows a portion of the TSPN andRG for the sbuf-send-pkt2 circuit introduced in Section 2.2. The simulation has beenrunning for some time. Qp and Pa are presently empty and the current markingM is f10g.On line 2 of the Simulate algorithm, 10 is the only place in M so line 3 assigns � = 35,which is a random value sampled from �(10) = U(0; 100). Line 4 sets Qp = f(10; 35)g.Line 5 sets (p0; �0) = (10; 35) as the next token to become available, Qp is made emptyby line 6, Pa = f10g by line 7, and time is advanced on line 8. The enabled set Te(f10g)is fdone+/1,ackline-/1g moving the algorithm past the conditional clauses of lines 9 and10 to line 11. The Prfdone+/1 j f10g; 10g = 0:01 and Prfackline-/1 j f10g; 10g = 0:99.For this example, the random sample from the distribution returns t to be done+/1. Theedge counter for (f10g; f12g; done+/1 ) and the marking counter for f10g is incrementedin the RG and M is set to f12g on lines 14 and 15. The preset of done+/1 is f10g



18Algorithm 3.1.1 Simulate( TSPN, RG ) f1: M =Mo ; Qp = ; ; Pa = ; ;do f2: foreach p 2M : p =2 Qp f3: � = a random delay value from the distribution �(p);4: Qp = Qp [ (p; �);g5: select (p; �) 2 Qp : 8(p0; �0) 2 Qp : � � �06: Qp = Qp � (p; �);7: Pa = Pa [ p;8: advance time by subtracting � from each entry (p0; �0) 2 Qp ;9: if jTe(Pa)j > 0 then f10: if jTe(Pa)j > 1 then f11: 8t 2 Te(Pa) use Prcft j Pa; pg to construct a probability distribution and12: select t 2 Te(Pa) according to the distribution;g13: else t is set to the element in Te(Pa) ;14: record( M t!M 0 );15: M =M 0 ;g16: Pa = Pa � Pa \ �t ;17: gwhile(not converged);g Figure 3.1. Procedure to simulate a TSPN and RG.and Pa is once again set to empty on line 16. At this point, the system has not yetconverged and the algorithm returns control to line 2. The algorithm processes place 12and �res ack+/1, after whichM = f13; 15; 17g. The loop on line 2 executes on each placein M so when it completes Qp = f(13; 650); (15; 1230); (17; 1333)g. Place 13 is selectedto be made available and time is advanced by 650 leaving Qp = f(15; 580); (17; 683)g.Transition req-/2 �res and place 14 is added to M and a new entry in Qp is addedmaking Qp = f(15; 580); (17; 683); (14; 630)g. Place 15 is made available �ring ackline-/2 and Qp is updated as f(17; 103); (14; 50); (16; 1345)g. Place 14 is the next place tobecome available and it does not cause a transition to �re, so the simulation continuesby making 17 available, which does �re a transition and adds a new entry to Qp makingQp = f(17; 1242); (18; 756)g. In this way the Simulate algorithm makes available places18 and 17 to transitions, at which point ack-/2 �res moving the system back to the initialmarking ready to start the entire process again. An interesting note about this example isthat it contains properties necessary for the Monte-Carlo method, which means that there
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Figure 3.2. A portion of the TSPN and RG for the sbuf-send-pkt2 circuit.exists a regenerative marking in the RG where past history is irrelevant. Such a markingis the initial marking. Each time the system reaches the initial marking a new simulationcould be started which is independent of the previous trace history. Unfortunately, suchmarkings do not always exist in a general class of circuits.3.2 Exponential ApproximationThe exponential approximation method does not consider any previous history inthe RG when calculating transition probabilities and in essence, models the TSPN asa Continuous Time Markov Chain (CTMC) [20]. A CTMC is represented with anin�nitesimal generator or transition rate function Q, where Q(M;M 0) is the rate of



20occurrence of M going to M 0 and the rate is inversely related to the expected value of anegative exponential random variable. By virtue of the negative exponential distribution,this method models the system as being truly memoryless.In the simulation formulation of Section 3.1, the system considers the time at whichplaces become available to transitions. When a su�cient number of places are available toa transition to enable it to �re, it �res immediately. The ultimate goal of the simulationis to record the �ring of transitions and movements of the system from one markingto another in the RG. The movement of places from a marking into the available set issecondary information only used to determine the actual �ring of transitions. Similarly, ina CTMCmodel, information on the probability of the system moving from one marking toanother is desired. To gain this type of insight, the transition rate function must considerthe rate of occurrence of each transition in a marking, rather than the rate at whichplaces become available in a marking. While the rate of places becoming available in amarking indirectly determines the rate of transitions from the marking, the two CTMCmodels yield very di�erent information about the longterm and transitional behavior ofthe system. If the CTMC considered the rates of places becoming available, it could notreport movement between markings in the RG, which is the necessary information forthe transition probabilities. Why is this the case? In order to model places becomingavailable in a CTMC, a state in the CTMC would need to be a marking paired with anavailable set. This allows the CTMC to change states as places in a marking move into theavailable set. The problem now becomes a question of mapping transition probabilitiesbetween states in the CTMC to transitions probabilities between markings in the RG.Methods of accomplishing the mapping without introducing new behaviors in the systemare as yet, elusive and not obvious. Therefore, it is necessary to consider the rate oftransitions from markings in the the CTMC model.For a CTMC modeling the rate of transitions from markings, it is requisite to assumethat all places in each marking necessary to enable a transition to �re from that markingbecome available together at the same time, causing the transition to instantly happen.This rate is the rate of occurrence of a transition from that marking and is used to buildthe transition rate function for the CTMC. Ignoring con
ict, the rate of a transitioncan be de�ned as the inverse of the expected time at which a transition's entire presetbecomes available (E[�(�t)]). From this it is implied that the exponential approximationassumes that 8(p; p0) 2 �t:�(p) = �(p0) = �(t). Meaning that the expected time for p



21to become available is equal to the expected time for p0 to become available for all (p; p0)in the preset of t. The result of this assumption is that the expected time to becomeavailable for any p in �t is the expected time at which the transition t will occur. Usingthis assumption, the function �(t) is de�ned to return �(p) where p is any place in �t andthe expected value of �(t) (E[�(t)]) returns the expected time at which the transitiont will occur. This assumption limits the ability to associate unique distributions withcausal transitions while deriving transition probabilities. With this, the transition ratefunction Q for a CTMC model of a TSPN is de�ned asQ(M;M 0) = 8><>: 1E[�(t)] if M t!M 0 2 �,�PM 00 6=M Q(M;M 00) if M =M 0,0 otherwise.To incorporate con
ict into the CTMC model, it is necessary to correctly distributerate amongst con
icting transitions. A choice place as presented in Section 2.1 is alocation in the TSPN where multiple transitions are enabled by a common place. Atsuch a point, the exponential approximation again assumes that all places necessary to�re any of the con
icting transitions become available at the same time. Therefore, allcon
icting transitions �re at the same rate. However, this is incorrect since only one ofthe enabled con
icting transitions can be allowed to �re and each should �re at a di�erentrate. Therefore, it is necessary to adjust the rate for each transition to re
ect the usersupplied �ring distribution described by the � function. For each transition t enabled incon
ict by a common place p, the rate of t is found by multiplying the rate of p by thenormalized value in �(p; t). This essentially creates from the rate of the place the ratesof the transitions enabled by the place, which is consistent with the CTMC model. Thefunction Q can now be de�ned to correctly deal with choice as follows:
Q(M;M 0) = 8>>>>>>>>><>>>>>>>>>:

1E[�(t)] if M t!M 0 2 � ^Cp(M;M 0) = ;;� 1E[�(Cp(M;M 0))]� � �(Cp(M;M 0);t)Pt02Cp(M;M0)��(Cp(M;M 0);t0) if M t!M 0 2 � ^Cp(M;M 0) 6= ;;�PM 00 6=M Q(M;M 00) if M =M 0,0 otherwise.The function Cp(M;M 0) is de�ned in Section 2.1 to identify marking pairs that areconnected via a transition enabled by a choice place and returns that place if it exists,otherwise it returns the empty set.



22As an example of the Q function, consider the partial TSPN and RG for the sbuf-send-pkt2 circuit in Figure 3.2. For the marking M = f10g containing a free choice, thefunction Cp(M; f12g) and Cp(M; f6g) both return the place f10g, soQ(M; f12g) = 1E[�(10)] ��(10; done+/1 )= 150 � 0:01Q(M; f6g) = 1E[�(10)] ��(10; ackline-/1 )= 150 � 0:99Similarly, for the marking M = f13; 15; 17g, M does not contain a choice place so Qvalues do not use case two, but use cases one and three as follows: Q(M; f13; 15; 18g) =Q(M; f13; 16; 17g) = Q(M; f13; 15; 18g) = 11000 . Q(M;M) = � 31000 .Since Q is de�ned to return rates of transitions in a system, transition probabilities ina markingM are related to the sojourn time or the amount of time that the system spendsin M . Thus, if the system is considered after some discrete amount of time, there is anon-zero probability of the system remaining in its current marking and not changingstate, since there is a real valued rate of transition to itself. In order to remove theself-loop transition rate from the system, the sojourn time in each marking is extendedto be in�nitely long. It his way, the system is forced to �re a real transition leaving themarking. Time has now been abstracted away from the model and only transitions areconsidered as progress markers, creating the Embedded Markov Chain (EMC) in Q. TheEMC of Q is a discrete Markov process that represents the probability of moving froma given state to another state on the next transition, which is precisely the single-steptransition probabilities of the system. The function 	 is now de�ned as the EMC of Qby the following 	(M;M 0) = ( Q(M;M 0)�Q(M;M) if M 6=M 0,0 otherwise.As an example of the 	 function, for the partial marking graph shown in Figure 3.2,the values of 	 for the marking M = f13; 15; 17g can be found as: 	(M; f13; 15; 17g) =	(M; f13; 16; 17g) = 	(M; f13; 15; 18g) = 10003000 , and 	(M;M) = 0.3.3 Burst-mode HeuristicThe burst-mode heuristic de�nition of 	 uses a limited amount of memory or historyin calculating transition probabilities. This stems from the observation that burst-mode



23circuits contain synchronization points between input and output bursts where all timerson places are set. As new bursts become enabled, it is only necessary to consider �ringsequences from the enabling points of the bursts to calculate transition probabilities. Fora pure burst-mode speci�cation [6, 17] (one that does not include directed don't cares), thetransition probabilities are exact, since traces before bursts do not contain informationpertinent to the �rings in the current burst. Exactness is assured with the assumption ofoutput to input causality in the burst-mode speci�cation and that all outputs within aburst enable the same input burst. With this assumption, as a speci�cation digresses fromthe burst-mode ideology, the transition probabilities may quickly diverge from their exactvalues. This is a direct result of the burst mode heuristic assuming that timers on placesenabling transitions in a burst are all set at the same time, because all transitions becameenabled together as part of the burst. As an example, a portion of the sbuf-send-pkt2circuit is speci�ed as two communicating burst-mode state machines as shown in Figure3.3 where the input ack+/1 enables the outputs req+/2, ackline/2, and done+; andtogether they enable the input burst of ack-/2. In this example, there is no notion of onetimer being set at a di�erent instance than another timer within the same burst. Thebehavior of the heuristic in a non-burst-mode circuit is to try and identify bursts in theRG. However, in a non-burst-mode circuit, new transitions may become enabled inside ofwhat the heuristic considers an uncompleted burst. At this point, the heuristic believes ithas found a new burst, so all transitions in the new burst have the timers in their presetsreinitialized (i.e. a completely new burst has become enabled at that point).Before the burst-mode heuristic is de�ned, it is necessary to present a few supportde�nitions and functions. A path is de�ned as a sequence of markings connected bytransitions (i.e. (M1;M2; : : : ;Mn) such that 8i < n : Mi t! Mi+1 2 �). A burst-pathis de�ned as a path such that the transitions enabled in each marking is a supersetof the enabled transitions in the next marking in the sequence (i.e. (M1;M2; : : : ;Mn)is a path such that 8i < n : Te(Mi) � Te(Mi+1)). A maximal burst-path is a burst-path such that there doesn't exist a marking with an edge to the �rst marking in thesequence whose enabled transitions are a superset of the enabled transitions found inthe �rst marking in the sequence. (i.e. (M1;M2; : : : ;Mn) is a burst-path such that:9M 0 : M 0 t! M1 2 � ^ Te(M 0) � Te(M1)). The superset burst function, Sup(M), is afunction that returns the marking M 0 which contains the maximal superset of enabledtransitions in M de�ned as
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Figure 3.3. A partial burst mode speci�cation of the sbuf-send-pkt2 circuit with itsTSPN and RG.Sup(M) =M1 : (M1;M2; : : : ;Mn) is a maximal burst-path containing M:If it is ever the case in a non-burst-mode speci�cation that it is possible to have multiplemaximal burst-paths for M , the function arbitrarily selects a single M 0 to return asSup(M). In the implementation, the selection is based on the order in which the statesare examined during the calculation and is completely arbitrary, but once the selectionis made it is consistent in returning the same value from that moment forward. Also fora non-burst-mode speci�cation, if a marking M 0 is returned from Sup(M) and M 0 is amarking where transitions have become enabled inside of an incomplete burst, then alltimers are reset in M 0 in the calculation of 	 values from M . The e�ect of this is that



25places that have been waiting for some time to become available are assumed to havejust barely been added to the marking M 0 as part of a new burst starting at that point,thus moving them from a higher probability of becoming available to a lower probability.The �red function, Tf (M;M 0), returns the set of transitions which must have �red forthe system to move from the marking M to M 0 and is de�ned asTf (M 0;M) = � Te(M 0)� Te(M) if Te(M) � Te(M 0),; otherwise.Note that Tf returns the empty set when Sup(M) is not strictly a superset of M . And�nally, the probability function, Pr(t j M), returns the probability of a transition t givena marking M de�ned asPr(t j M) = Z 10 �(t)0@ Yt02Te(M);t0 6=t (1� Ft0(t))1A0B@ Yt002Tf (Sup(M);M)Ft00(t)1CA dt;where Ft0(t) = R t0 �(t0)dt0, Ft00(t) = R t0 �(t00)dt00, and each integral is calculated numericallyusing Simpson's method [19]. Intuitively, the function Pr(t jM) calculates the probabilityof t �ring given that all other transitions enabled in M do not �re and given that alltransitions in the �red set forM do �re. As with the exponential approximation in Section3.2, it is assumed that all p 2 �t have equal �(p) functions and therefore �(t) = �(p)where p is any place in �t. In this integral, it is important to note that each internalintegral must be evaluated at each step of the external integral making the probabilitycalculation somewhat costly and that the integral must be carefully partitioned to avoidintegrating across discontinuities caused by the bounded nature of the pdfs. The burst-mode function de�nition of 	, ignoring choice, is now constructed as follows:	(M;M 0) = ( Pr (t j M) if M t!M 0 2 �,0 otherwise.As an example of the burst-mode heuristic, ignoring choice, for the TSPN and RG inFigure 3.3, the calculation of the probability for M = f14; 15; 17g and M 0 = f14; 15; 18gproceeds as follows: since M b"! M 0 2 �, the �rst case holds for 	. For the integrals,Te(M) = fdone-/1,ackline-/2g, Sup(M 0) = f13; 15; 17g, and Tf (Sup(M 0);M) = freq-/2g. Let t = done-/1, t0 = ackline-/2, and t00 = req-/2, then	(M;M 0) = Pr(t = done-/1 j M = f14; 15; 18g)= Z 1400600 �(t)�1� Z t600�(t0 = ackline-/2 )dt0� �



26�Z t600�(t00 = req-/2 )dt00� dt= Z 1400600 �(p17)�1� Z t1 �(p15)dt0��Z t2 �(p13)dt00� dt= 0:5;where � maps the places P17, P15, and P13 to the uniform distribution U(600; 1400) asshown in Figure 3.3.Choice is introduced into the burst-mode heuristic by altering how con
icting tran-sitions are dealt with in a manner similar to that presented in Section 3.2. In essence,a perspective shift must take place to �rst consider the probability of a single placebecoming available causing a single transition to �re, rather then considering each enabledtransition separately. Why is this necessary? Because in reality, only a single transitionis allowed to �re when multiple transitions are enabled in con
ict. The probabilityof each enabled con
icting transition is �rst dependent on the probability of the placeenabling the transitions becoming available. Therefore, if the system �rst calculates theprobability of the place enabling the con
icting transitions becoming enabled, it then cancorrectly assign probabilities to each of the con
icting transitions using the � functionas shown in Section 3.2. This approach preserves the semantics of the TSPN modelby �rst considering the probability of the place becoming available and then weightingthat probability with the normalized user supplied �ring distribution in �. For a place penabling con
icting transitions, the probability of p given a marking M where p 2M isPr(p j M) = Z 10 �(p)0@ Yt02(Te(M)�p�) (1� Ft0(t))1A0B@ Yt002Tf (Sup(M);M)Ft00(t)1CA dt:The complete de�nition of 	 for the burst-mode heuristic handling choice can now bede�ned as follows:	(M;M 0) = 8>>>>>>><>>>>>>>: Pr (t j M) if M t!M 0 2 � ^Cp(M;M 0) = ;;P r (Cp(M;M 0) j M) � �(Cp(M;M 0);t)Pt02Cp(M;M0)��(Cp(M;M 0);t0) if M t!M 0 2 � ^Cp(M;M 0) 6= ;;0 otherwise.where the function Cp(M;M 0) is identi�es marking pairs that are connected via a tran-sition enabled by a choice place and is formally described in Section 2.1.



CHAPTER 4STEADY-STATE DISTRIBUTIONSTransition probabilities provide information at a micro-level when considering thecircuit. By this, it is meant that transition probabilities show the stochastic behaviorof the circuit in a �xed area of the circuit. Given that the system is in the markingM , the transition probabilities give the probability of the system moving to the markingM 0. This is information that is local to M and does not shed light as to the relativeimportance of M in the system.For a clearer stochastic pro�le of the system, a macro-level understanding of the circuitbehavior must be obtained. This is achieved through the steady-state distribution, whichrepresents the long-term behavior of the system and indicates the markings that areimportant or highly probable. The steady-state distribution answers the question, \Whatis the relative import of a markingM when compared to another markingM 0 in the RG?"This macro-level information is paramount in deriving the stochastic cycle period and canbe discovered by two di�erent and distinct methods: simulation and Markovian analysis.For a RG, its steady-state distribution is referred to as � and is the relation � � ��<,where �(M) is the probability of M relative to all the other markings in the system.4.1 Stochastic SimulationThe method of stochastic simulation to �nd � is very similar to the method ofstochastic simulation to de�ne the transition function 	 in Section 3.1, only di�erentvalues are tracked as the simulation proceeds. As transitions �re into new markings,the system increments the counter associated with the new marking, and increments aglobal counter which records the total number of transitions that have occurred in thesimulation. Like the method described in Section 3.1, the simulation terminates when thesteady-state distribution �, found by dividing the marking counters by the total numberof transitions in the system, converges to within a user speci�ed tolerance.



284.2 Markovian AnalysisSince the transition function 	, in essence, is a model of the RG as a Discrete TimeMarkov Chain (DTMC), where 	 is the transition matrix of the RG, it is possible tosolve for steady-state distribution directly using Markov techniques. However, before 	can be analyzed, it is necessary to insure that is is irreducible, otherwise 	 cannot beanalyzed with Markovian methods. Note that for 	 representing the transition relationsin a RG, 	 is ergodic meaning that the steady-state solution does change through time[1]. This ensures that a steady-state solution exists if the DTMC is irreducible.By de�nition, a DTMC is irreducible if and only if it contains a single stronglyconnected component [20]. If 	 contains several strongly connected components, therelation is reducible and cannot be analyzed. Therefore, the RG is divided into itsstrongly connected components Sc before analysis proceeds using Tarjan's algorithm aspresented in [19]. After the RG has been partitioned, each connected set of markingssc is unioned into Sc. Each sc 2 Sc is then analyzed and those which are not closed(meaning sc contains an edge M t!M 0 such that M 2 sc^M 0 =2 sc) are removed from Scas transient components, because when considering the long-term behavior of the system,the markings contained in the non-closed sets have zero probability in �. Therefore, eachconnected component sc remaining in Sc can now be treated as a separate DTMC.A strongly connected component sc with positive recurrent markings is said to be ap-cyclic DTMC. The periodicity of a p-cyclic DTMC can be exploited to converge to asteady-state solution p times faster than normal iterative methods, where p is the periodof sc. Therefore, sc is divided into its periodic classes and analyzed to �nd � using thereduced power method as presented in [20]. An important property of p-cyclic systems isthat for allM t!M 0 2 sc, the amounts of time taken for the ith and the (i+1)th cycle oft are equal [5, 20], meaning that all transitions in the strongly connected component havethe same cycle period. This property is utilized in Chapter 5 to solve for the stochasticcycle period of sc. From this point on, it is assumed that after the transient analysis,only a single strongly connected component exists in Sc, which in practice, is usually thecase. If it is ever the case that more than one strongly connected component exists withpositive recurrent markings, then each component is analyzed and reported separately.4.2.1 Power AnalysisMarkov chain analysis to �nd a steady-state distribution for the probability of beingin marking Mi after any transition t is done by taking the one-step transition probabil-



29ities  (1)ij in 	(1) (represented in matrix form) and an initial marking distribution �(0)(represented in vector form) and calculating the n-step transition probability of being inmarking Mi at transition step n as n ! 1, denoted by �. There are several methodsfor calculating steady-state probabilities. Direct methods solve the equation � = �	subject to the constraint Pi �i = 1, which can be done with Gaussian elimination, LUdecomposition, or other methods. But these algorithms su�er possible rounding erroraccumulation and large memory resource requirements.In general, � can be found using iterative methods. These methods are based onthe following idea: If 	(1) = 	1 is the single-step transition probability matrix, then	(2) = 	2 is the two-step transition probability matrix, and 	(n) = 	n is the n-steptransition probability where 	(n) means that 	 is raised to the nth power. Therefore,if 	n is calculated as n ! 1, it will converge to a point where 	n = 	n+1. From this,the steady-state distribution can be calculated as: � = �(0)	n, where n is the number ofsteps required for 	 to converge. This approach will e�ectively �nd � in n matrix-matrixmultiplications and a single vector-matrix multiplication. Unfortunately, as the squaringprocess continues, the 	 matrix begins to �ll, until it reaches its steady-state where it iscompletely full with n� n entries. This basic method obliterates the sparseness of the 	matrix, has slow convergence rates, and su�ers from rounding error accumulation [20].The power method is an extension to the basic iterative method, but does not changethe values in the 	 matrix. The power method stems from the following observation�(n+1) = �(n)	:To �nd a steady-state solution to the Markov chain it is su�cient to apply successivevector-matrix multiplications on the 	 matrix until the following relation holds� = �	;at which time a convergence point is reached yielding the steady-state distribution. Whilethis might take more iterations, it is substantially more memory e�cient than the previousmethod because it does not incrementally �ll the 	 matrix, thereby taking full advantageof its sparse representation. Moreover, the initial values of � can be seeded with anapproximation of the steady-state distribution, giving faster convergence rates becausethe algorithm starts closer to the actual solution.



304.2.2 Reduced Power AnalysisAs stated previously, RGs often have the property that upon leaving a given markingMi, there is some multiple of p single-step transitions that return back to marking Mi,through all paths in the graph. When this occurs, the graph is said to be periodic of periodp or p-cyclic [20]. The periodic nature of the Markov chain can be used to divide thesystem into periodic classes, which are subsets of the original matrix. The steady-stateanalysis can then be applied to the smaller subsets of the transition matrix making theconvergence rate go p times faster, where p is the cycle period of the Markov chain.To apply the reduced power method on a periodic Markov chain, the transition matrix	 must be changed into the normal form for periodic systemsS = 0BBBBBBBB@ 0 S1 0 : : : 0 00 0 S2 : : : 0 00 0 0 : : : 0 0... ... ... . . . ... ...0 0 0 : : : 0 Sp�1Sp 0 0 : : : 0 0
1CCCCCCCCA ;where S1 � � �Sp are the periodic classes of the matrix P . A periodic class Si is a maximalset of markings that can be reached in exactly i transitions from an initial marking or setof markings. The periodicity p of a Markov chain is determined by the number of distinctperiodic classes which it contains. The periodic classes are found using an algorithmpresented in [20] shown in Figure 4.1. The algorithm systematically steps through thetransition matrix from an initial marking Mo. As it traverses the matrix, it calculatesperiodic pre-classes that represent the sets of markings which are exactly k steps fromMoand stores each period class in the set W . When the algorithm �nds a marking which is amember of a previous pre-class, it computes the period p for the matrix as the di�erencebetween the two pre-classes plus one and updates the 
ow relation F , which shows themovement between periodic classes.. If multiple values of p are found for the matrix,the actual period for the matrix becomes the greatest common denominator of all thedi�erent p values. Once the p value for the matrix is known, it can be used to fold thepre-classes into periodic classes, which can be arranged in the normal form S. For theRG of a timed C-element in Figure 4.2, the algorithm proceeds by �rst setting W1 = f0gand the other variables as shown in step 1. The �rst loop on line 3 sets M = 0. Thestep of line 4 is executed two times for markings 1 and 2. Since both markings 1 and 2are not found in any other pre-classes, after the loop on line 4 completes, W2 = f1; 2gand F = f(W1;W2)g. The algorithm proceeds in this manner until in completes with



31Algorithm 4.2.1 Periodic Analysis( TSPN, RG ) f1: W1 =Mo ; W =W1 ; F = ; ; k = 1 ;2: Wk+1 = ; ;3: foreach M 2Wk f4: foreach M 0 2 � : M !t M 0 2 � f5: if 9k0 � k : M 0 2Wk0 then6: F = F [ f(Wk;Wk0)g ;7: else8: Wk+1 =Wk+1 [ fM 0g ;gg9: if Wk+1 6= ; then f10: W =W [Wk+1 ;11: F = F [ f(Wk;Wk+1)g ;12: k = k + 1 ;13: Goto 2 ;g 14: else15: return(W;F; k) ;g Figure 4.1. Procedure to calculate the pre-classes of an RG.W = f S1 = f0g; S2 = f1; 2g; S3 = f3g; S4 = f4; 5gg (Si denotes the location in thepermuted normal form of a periodic system) and F = f (W1;W2); (W2;W3); (W3;W4);(W4;W1)g. The period is derived by �rst building a set of potential periods which arefound by looking a the members of F and considering possible periods from memberswhose di�erence in subscript pairs is greater than 1 or formally,Period = fjk0 � kj j (Wk;Wk0) 2 F ^ k0 � k > 1g:The actual period of the RG for the C-element is now computed as the greatest commondivisor of the Period set. As a note, the sbuf send pkt2 circuit from the post o�ce chiphas a period of 2 and is not shown here as an example due to its complexity.With the Markov system in the normal form S, the reduced power method is appliedby stepping through each of the periodic classes as follows:xp = xpSpS1S2 � � �Sp�1 = xpRp;where x(0)p = 1(Number of classes in Sp) p:
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4 : 0.028 5 : 0.139Figure 4.2. The probability annotated RG for a timed C-element with periodic classes.Once the steady-state distribution xp is known, the distributions for the other periodicclasses are found from the following relationx1 = xpSpx2 = x1S1... ... ...xp�1 = xp�2Sp�2xp = xp�1Sp�1:The application of one step of the reduced power method is equivalent to p steps ofthe power method. The number of computations performed on each iteration of the twomethods is identical, but the reduced method converges p times faster. Moreover, thepower method is not able to handle periodic systems, thereby limiting its applications.



CHAPTER 5STOCHASTIC CYCLE PERIODThe stochastic cycle period is a metric that conveys performance information byweighting the contribution of each causal signal in the RG. The contribution of a triggertransition, in this application, is delay, but this could be set to other metrics such aspower. A trigger or causal transition is the last transition to occur which causes anothertransition to �re (i.e. the late arriving signal on a gate) and is determined by the lastp 2 �t to be made available. Trigger signals must always be included in the timedcircuit implementation. If other signals are required for hazard-freedom, those signals arereferred to as context signals and by de�nition, can never be causal signals. Therefore,while their presence a�ects the delay of a gate, they never trigger the gate to transition.From this, the cycle period in a circuit is controlled by the set of trigger transitions thatoccur in the cycle.The stochastic cycle period (�) is now de�ned as a weighted sum of cost metrics thatrepresent the expense of a trigger occurring on the cycle according to some cost function,� = Xu;v2T wuv�uv;where wuv is the relative weight of transition u being trigger to v, and �uv is the cost ofu being trigger for v. Since relative weights are shown on trigger transitions in the cycle,the circuit can be optimized to favor transitions which make signi�cant o�erings to theoverall cycle period. Since each possible trigger in the cycle is considered and weighted,the metric provides a stochastic pro�le of the cycle period which re
ects the notion ofaverage cycle time.The calculation of �, the stochastic cycle period, is a two stage a�air. The �rst stageuses 	 and �, the transition probabilities and steady-state distribution respectively, toderive the possible trigger transitions in the cycle of sc with the probability of thosetriggers actually occurring. The second stage uses the trigger set with their probabilities



34in a timing simulation of the TSPN. The timing simulation engenders �, which is astochastic picture of triggers that regulate the cycle period of the TSPN.5.1 Trigger ProbabilitiesThe trigger probabilities show the probability of one transition causing another tran-sition in the circuit implementation and the transitions by de�nition must appear in thesynthesized circuit for the TSPN. If the probability of each trigger transition is known,triggers with high probabilities can be moved near the output of a gate. Furthermore, ifa trigger is shown to have zero probability, it is possible to optimize the speci�cationby tightening timing assumptions such that the trigger is no longer required in theimplementation. The trigger probabilities, as well as the stochastic cycle period, aremetrics created to expedite this type of aggressive circuit designThe trigger probability function relies upon the transition probability function 	 andthe steady-state distribution � to calculate long-term transition probabilities. The long-term transition probabilities are then used in computing the actual trigger probabilities.Trigger probabilities are implemented by the function � : T � T ! <, where �(t; t0)returns the probability of t0 being triggered by t and is de�ned as�(t; t0) = PM t!M 02�(t0)�(M)	(M;M 0)PM t00!M 02�(t0)�(M)	(M;M 0) ;where �(t0) = fM t!M 0 2 � j M =2 EM(t0) ^M 0 2 EM(t0)g:In other words, �(t; t0) (i.e. the probability of t causing t0) is the sum of the long-termprobabilities of all edges moving into the excited markings for t0 on t, normalized by thesum of the long-term probabilities of all transitions moving into the excited markings fort0. The calculation is facilitated by the parameterized function �(t; t0) which returns theset of marking pairs (M;M 0) such that M is not in the excited markings of t0 and M 0 isin the excited markings for t0 and an edge M t00!M 0 exists in the set of all edges � 2 RG.As an example of the function � consider the partial RG shown in Figure 5.1. Thecalculation of �(rdy�; req+) proceeds as follows�(rdy-,req+) = �(M5)	(M5;M6)�(M5)	(M5;M6) + �(M13)	(M13;M6) + �(M15)	(M15;M14)= 0:065060:06506 + 0:03483518 + 0:000105
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req+ : 1.000

M14 : 3.850e-04
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Figure 5.1. A partial RG with its steady-state distributions and transition probabilities.� 0:651:Similarly,�(ack-,req+) = �(M13)	(M13;M6) + �(M15)	(M15;M14)�(M5)	(M5;M6) + �(M13)	(M13;M6) + �(M15)	(M15;M14)= 0:03483518 + 0:0001050:06506 + 0:03483518 + 0:000105� 0:349:Although not shown by this example, it is interesting to note that although a transitionis included in the trigger set of a gate implementation by synthesis, it is possible that thetransition has a very small probability of ever occurring. This type of information can beused to further optimize timed circuits moving low probability triggers away from outputsor by alter the timing assumptions in the speci�cation enough to exclude the signal fromthe trigger set. The easiest optimization is to move the low probability triggers away fromoutput in the circuit implementation. A portion of the sbuf-send-pkt2 RG is in Figure5.2 showing the excitation region for the transition rejpkt+/1 and the markings movinginto the excitation region with their steady-state and transition probabilities. The triggerprobabilities for rejpkt+/1 are
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Figure 5.2. A portion of the sbuf-send-pkt2 RG with its steady-state distributions andtransition probabilities. �(ack-/1,rejpkt+/1 ) = 0:490�(ack-/2,rejpkt+/1 ) = 0:504�(rejpkt-/1,rejpkt+/1 ) = 0:006:An implementation of of the circuit for the rejpkt+/1 transition would be best optimizedif the rejpkt-/1 transition is placed as close to the power rail as possible because rejpkt+/1rarely, if ever, is triggered by the rejpkt-/1 transition. This transistor also becomes a goodcandidate for sizing if the rejpkt+/1 transition needs to be made faster. By increasingthe size of the transistor switched by rejpkt-/1, the total resistance that must be drivento charge the rejpkt+/1 node is lowered. In this way, trigger signals can be better placedand sized in circuit implementations to yield better average case performance. The onemissing link in this optimization methodology is a way to guide the designer to thosesignals in the circuit implementation that can have the most signi�cant contribution to theoverall performance of the circuit. To optimize every single signal in an implementation iswasteful, since resources are expended in optimizing signals that do not make signi�cantcontributions to circuit performance



375.2 Timing SimulationThe stochastic cycle period provides information to a designer showing which signalsin a circuit actually control the overall circuit performance and is found through a timingsimulation. The timing simulation concept is introduced to the asynchronous communityin [5] as a method for �nding the cycle period of a choice-free event-rule system. Theidea is to record the time at which each transition occurs in the cycle and using the timeof one instance of a transition in the cycle to the next instance of the same transitionin the next cycle, it is possible to converge to an average cycle period if enough cyclesare considered. Since the event-rule model is based on constant delays and does containstochastic information, transitions that are triggered by multiple transitions use the maxfunction to choose which transition would actually be the trigger. An example of a simplecon
ict-free timing simulation for a C-element shown in Figure 5.3 follows:�(c #; i) = �i�(a "; i) = �(c #; i) + �c#a"�(b "; i) = �(c #; i) + �c#b"�(c "; i) = max (�(a "; i) + �a"c"; �(b "; i) + �b"c")�(a #; i) = �(c "; i) + �c"a#�(b #; i) = �(c "; i) + �c"b#�(c #; i) = max (�(a #; i) + �a#c#; �(b #; i) + �b#c#)= �(i+ 1);where i represents the cycle period index and � is the cycle period. Substituting in thetimes for each transition in the timing simulation and solving for �, the cycle period ofthe C-element becomes� = max(�c#a" + �a"c"; �c#b" + �b"c") +max(�c"a# + �a#c#; �c"b# + �b#c#):Note that � in this simulation converges in a single cycle to the upper bound on theworst-case performance of the speci�cation and is composed of the trigger signals usedin the implementation of the circuit. Unfortunately, not all circuits are this simple andmany require several cycles before they converge.The natural extension to the timing simulation is to replace the maximum values withstochastic information showing the contribution of each possible delay in the cycle period.
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Figure 5.3. A simple two input C-element with its TSPN.With this substitution, the cycle period of the C-element becomes� = wa"c"(�c#a"+�a"c")+wb"c"(�c#b"+�b"c")+wa#c#(�c"a#+�a#c#)+wb#c#(�c"b#+�b#c#);which is the stochastic cycle period of the circuit, a weighted sum of delays. Each weightin the stochastic cycle period denotes the contribution of the associated delay to theexpected delay of a single cycle of the circuit.Con
ict is introduced into the stochastic cycle period calculation by altering what theperformance metric means when con
ict is present. As stated previously, the stochasticcycle period is a measure of the expected delay of a single cycle of any cyclic transitionin the circuit. What is the cycle period of a circuit with con
icting transitions? Sincethe cycle period of a particular signal is dependent on the arbitration of the con
ict, itsvalue may or may not converge to a steady state in a simulation ( i.e. the cycle periodis not ergodic ). Looking at the sbuf-send-pkt2 circuit in Figure 5.4, the time betweenconsecutive instances of done+/1 is dependent on the number of packets received aswell as the number of times packets are rejected. The actual value of this delay cannotbe enumerated without making the con
ict resolution completely deterministic. Sincepreserving the stochastic model of the con
ict is important, the delay dependence of thecycle period on the con
ict resolution is addressed by altering the behavior of the choicepoints. This is done by making all choice points concurrent branches. How does thisa�ect the cycle period? The stochastic cycle period of the circuit is now the expected



39delay of the circuit as if all transitions are executed once, and those that are in con
ictare executed concurrently. The stochastic cycle period can now be used to look at delaysin cycles in the circuit created by con
ict and weight their importance to the overallperformance of the circuit by considering their frequency of occurrence using the con
ictdistributions provided in � in the TSPN model. This e�ectively preserves the stochasticmodel of the con
ict representation. As an example, consider the following portion of atiming simulation for the sbuf send pkt2 circuit in Figure 5.4...�(sendline+/1 ; i) = wreq+/1 sendline+/1 (�req+/1 sendline+/1 + �(req+/1 ; i))�(ackline+/1 ; i) = wsendline+/1 ackline+/1 �(�sendline+/1, ackline+/1 + �(sendline+/1 ; i)) +wsendline+/2 ackline+/1 �(�sendline+/2, ackline+/1 + �(sendline+/2 ; i))�(rejpkt+/2 ; i) = wsendline+/1 rejpkt+/2 �(�sendline+/1, rejpkt+/2 + �(sendline+/1 ; i)) +wsendline+/2 rejpkt+/2 �(�sendline+/2, rejpkt+/2 + �(sendline+/2 ; i))...�(req+/1 ) = wack-/2 req+/1 �(�ack-/2, req+/1 + �(ack-/2 ; i)) +wack-/1 req+/1 �(�ack-/1, req+/1 + �(ack-/1 ; i))...In the partial simulation, the two concurrent transitions ackline+/1 and rejpkt+/2 areexecuted concurrently as if they had been concurrently enabled instead of enabled incon
ict. Later in the simulation, when the time for req+/1 is computed, it is importantto note that req+/1 is still triggered by either ack-/1 or ack-/2. Even though thetwo con
icting transitions are now concurrent, the location where the con
icting pathsconverge retains its original semantic structure. Therefore, req+/1 is allowed to �re wheneither ack+/1 or ack+/2 �re. The expected delay of req+/1 is correct due to the fact that
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done-/1Figure 5.4. The TSPN for the sbuf-send-pkt2 circuit from the post o�ce chip.each possible delay value for req+/1 is weighted and the weights are calculated to re
ectthe probability of each possible delay when considering the original semantic meaning ofthe con
ict where the two paths began.The weights (wuv) of each contributing member in the stochastic cycle period arefound using the timing simulation and the function �, which returns trigger probabilities.As the timing simulation proceeds, the time at which transitions occur is calculated byweighting the time of the enabling transition t and delay of the enabled transition t0 whentriggered by t, by the probability of t being the trigger for t0. For the C-element in Figure5.3, the time of the ith transition of c " would now be calculated as�(c "; i) = �(a "; c ")(�(a "; i) + �a"c") + �(b "; c ")(�(b "; i) + �b"c"):From this it is possible to derive � and the weights wuv of each of the contributingmembers in the stochastic cycle period by selecting an arbitrary cyclic transition x in



41the simulation and di�erencing the time of its ith �ring by the time of its 1st �ring anddividing by i� 1 or � = limi!1 �(x; i)� �(x; 1)i� 1 ;which is precisely the average cycle period for a con
ict-free system where i is the numberof cycles. If con
ict is present in the system, then it is the average cycle period of thesystem is all con
ict points are considered as concurrent branches as state previously.The timing simulation can now be applied to �nding the stochastic cycle period byestimating the �ring times of each transition in the cycle using the trigger probabilitiesand looking at the average weights generated by di�erencing two consecutive occurrencesof an arbitrary cyclic transition. This process proceeds the weights converge to within auser speci�ed tolerance of percent change.To further aid the designer in quickly evaluating the performance of a design, anotherperformance metric derived from the stochastic cycle period is provided by the system.The cycle metric is the expected value of the stochastic cycle period when the expectedvalue of each of the contributing transitions is used for the alpha terms. Formally,cm = X(u;v)2T wuvE[�(u � \ � v)];where E[�(u � \ � v)] is the expected delay time from the place connecting u and v. Ina con
ict-free system, the cycle-metric is the expected delay of a cycle as computed bythe stochastic cycle period. When con
ict is present, the cycle metric is the expecteddelay of the circuit if all choice points are converted to concurrent branches. To gauge thee�ectiveness of the stochastic cycle period and cycle metric in estimating the expectedcycle time of a con
ict-free system, a secondary simulation is used to estimate the limitingprocess for the exact average value of the cycle period. This simulation proceeds asdescribed in Section 3.1 only the time of a single transition is recorded at each instanceof its occurrence. In this way the limit is calculated by di�erencing the time of the ithand (i+ n)th occurrence of the transition and dividing by n� 1, where n is the numberof occurrences observed in a very long simulation. This simulation is not applicable tosystems that have or can have con
icting transitions. Such a simulation has the potentialof not converging and if it does converge, the reported delays will signi�cantly di�er fromone simulation to another.



CHAPTER 6CASE STUDIESThree types of circuits are presented to show three applications of the stochastic cycleperiod �. First, handshaking protocols are examined and evaluated in passive activebu�er control circuits. In this study, � is shown to be able to correctly identify thebetter protocols. And second, two versions of a latch controller are examined to evaluateprotocols and to choose optimal pin assignments. In this example the stochastic cycleperiod is not only used for �nding good pin orderings but it is also used in manipulatingtiming assumptions in the speci�cation to simplify the �nal circuit implementation. Thelast case study is an example of con
ict and shows the e�ect of optimization on and o�the highly probable path.6.1 Passive Active Bu�erBurns in [5] evaluated every possible interleaving of a simple four phase handshakingprotocol in a passive active bu�er control unit using his cycle period. A �xed environ-ment delay of 40 time units is used for all examples except those with isochronic forks(pab a1,pab pa, and pab c8) which use an environment delay of 30 time units. All gatesare assigned a delay of 10 time units. The timed versions of these circuits are given uniformdelays with bounds that are �20% of the �xed delays (U(32; 48),U(24; 36),U(8; 12)).Table 6.1 shows the cycle metric computed from the stochastic cycle period comparedto Burns' cycle period. The limit is the simulated actual value of the cycle period.The simulation column is the cycle metric for the stochastic cycle period found usingstochastic simulation for 	 and � while the other columns represent the analyticalmethods of �nding 	 and �. To be able to correctly compare results, the delay fromBurns' symbolic cycle period equations is computed using the single valued delay numbersand the resultant delay is then divided by the apparent number of unrollings used in�nding his cycle period. In the table, pab c4, pab c3, and pab b1 are shown to be betterinterleavings by all methods of deriving the stochastic cycle period and by Burns' cycle



43period. This shows the cycle metric from the stochastic cycle period to correctly trackand correlate with Burns' results.Table 6.1. Protocol analysis of passive active bu�er controllers.Examples limit simulate burst-mode exponential burnspab c4 105 99 99 99 100pab c3 110 107 101 103 102pab b1 109 109 102 104 102pab pla 120 120 107 116 105pab pa 120 120 120 120 120pab c8 121 119 119 119 128pab a1 122 120 120 120 128pab b2 150 150 150 150 150pab c5 153 150 150 150 160
6.2 Latch ControllersIn [7] several versions of a latch controller are presented. Timed versions of thesecircuits model all delays with uniform distributions which have time windows that are�20% of the SPICE'ed delay values shown in [7] and the input delays are set so thatATACS produces the circuit shown in [7]. The stochastic cycle period analysis of thesimple and enhanced latch controllers shows the enhanced controller to be 1.41 timesfaster than the simple controller, which correlates to the 1.47 times speedup shown inthe SPICE results. As an interesting aside, the stochastic cycle period is the averagedelay of the circuit in a steady-state behavior, as opposed to a SPICE result, which isthe cycle period as determined by the time at which inputs are speci�ed to occur. Theweights of the stochastic cycle period are shown on the STG in Figure 6.1. The weightsare derived using the exponential approximation for transition probabilities and showthe critical components of the cycle. The pin orderings for the circuit implementation inFigure 6.1 can be determined by examining the weights on the STG. According to theweights, the delay for the transition A+ is largely controlled by the trigger D+ and bothD+ and A+ make signi�cant contributions to the cycle period and therefore, D+ shouldbe near the output of the gate implementing A+ to optimize its performance. For thefalling transition A-, D- controls the delay and thus D- should be near the output of thegate. The transition E+ is triggered by Rin+ and A-, but Rin+ is not directly on the
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Figure 6.1. The STG and circuit implementation of an enhanced latch controllercourtesy of [7].critical path, so A- is moved near the output of the gate implementing E+. Accordingly,E- is triggered by Rin- and Lt+, but Rin- has negligible weight and is therefore not acontributor to the cycle period, so Lt+ should be moved near the output of the gate forE-. Finally, for the gate implementing Lt, the weights show Aout- to rarely contribute tothe length of the cycle period, so A+ should be placed near the output of Lt to speedupthe Lt+ transition.The weights from the stochastic cycle period can also be used to identify trigger signalsthat do not contribute to the cycle period. In this example, transitions Rin- and Aout+make negligible o�erings to the delay of the cycle. If the bounded delays for Aout+ andRin- are tightened, then it might be possible to remove them from the gates implementingA- and E- respectively. To verify this hypothesis, the timing assumptions for Aout+ andRin- are modi�ed to re
ect a new upper bound that is lower than the previous upperbound by about 0.5%. The new circuit generated by ATACS no longer includes the twosignals in the implementation of A- and E-. This shows how the stochastic cycle periodand the trigger probabilities can be used to order pins and possibly restrict out triggersin timed circuitsTo show the speed of the analytical methods on a larger example, three enhanced latchcontrollers are chained together in a pipeline. In this con�guration, ATACS �nds 453 statesand using analytical methods is able to calculate the transition probabilities, �nd thesteady-state distribution, calculate the trigger probabilities, and run the timing simulationin under 20 seconds, while the simulation of the transition probabilities and the steady-



45state distribution takes 38 minutes. The weights in the stochastic cycle period generatedby the analytical methods correctly identify the critical path and mark the correct signalsas contributing more delay to the cycle period than other signals. However, due to thelimited amount of trace information used by the analytical methods in calculating theaverage transition probabilities, the ratio of the weights may signi�cantly di�er whencompared to the ratio of weights generated with the simulated probabilities. Finally allmethods estimated the cycle period delay to within 6% of the delay calculated by thesimulated limit. 6.3 Con
ictAs an example of the e�ect of con
ict on the stochastic cycle period calculation, thechoice points in the sbuf-send-pkt2 circuit from the post o�ce chip are annotated witha 99%/1% split as shown in Figure 6.2. The stochastic cycle metric for the circuit isreported as 4146.7 time units. If the ackline-/2 transition on the low probability path ofthe circuit is optimized to have a delay distribution equal to U(300,1000), then the valueof cycle metric remains unchanged. This is expected since the contribution of ackline-/2to the cycle period is insigni�cant. If, on the other hand, the sendline+/2 transition onthe highly probable path is optimized to have a delay distribution equal to U(800,2000),then the resulting cycle period is 3553.47, which is a signi�cant speedup in the cycleperiod of the circuit. This demonstrates the ability of the cycle period to respond tooptimizations on the most probable paths in the circuit and correctly deal with userspeci�ed choice distributions. The only aspect not captured by the metric is the numberof times inner loops a con
ict locations are executed. This type of information cannot bycaptured by the stochastic cycle period.
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CHAPTER 7CONCLUSIONS AND FUTURE WORKThis thesis presents the stochastic cycle period as a metric to analyze performancein timed asynchronous circuit. The method uses simulation and analytical techniquescombined with stochastic information to de�ne the components in the critical path of aspeci�cation along with their contribution to the overall delay of the circuit. The stochas-tic cycle period is derived using transition probabilities in the TSPN representation ofthe timed circuit, the steady-state distribution of the RG for the circuit, the triggerprobabilities found using the long-term probabilities, and �nally a timing simulation ofthe circuit. Several case studies have been described where the stochastic cycle period isused to identify better handshaking protocols and to improve �nal circuit implementationsthrough pin reordering and gate selection. Future work includes improving the simula-tion method for �nding transition probabilities and steady-state distributions by usingregenerative methods [1]. While simulation is not the solution to trace dependence in thetimed circuit, it does provide the most accurate estimates of the exact average values ofthe transition probabilities and deserves further study. Other work includes improvingthe burst-mode heuristic to consider a limited set of traces in non-burst-mode circuits.In this way, some marking history can be recouped in calculating transition probabilities.Finally, future work includes the automation of transistor sizing and adjustment of otherlow level parameters using the stochastic cycle period.



APPENDIXCONFLICT SEMANTICSAll of the algorithms presented in this thesis are actually implemented to work ontimed event-rule (ER) structures, [13] which can be automatically generated from somehigher level language such as CSP[15] or VHDL [27]. Timed ER structures and Petrinets can represent an equivalent set of speci�cations, but ER structures have a somewhatmore concise representation [23].A timed ER structure S can be represented with the tuple hA;E;R;#i where:1. A is the set of atomic actions;2. E � A� (N = f0; 1; 2:::g) is the set of events;3. R � E �E �N � (N [ f1g) is the set of rules;4. # � E �E is the conflict relation:The set A contains the atomic actions possible in the system. The occurrence of anaction is an event and is denoted (a; i) where a is the action and i is an occurrence indexfor the action. The rule set R represents a causal dependence between events. Eachrule, of the form he; f; l; ui is composed of an enabling event e, an enabled event f, and abounded timing constraint hl; ui. A rule states that the enabled event cannot occur untilthe enabling event has occurred. Ignoring con
ict for the moment, if n rules enable thesame event, then that event cannot occur until all n enabling events have occurred. Arule is enabled if its enabling event has occurred. The timing constraint places a lowerand upper bound on the timing of a rule. A rule is satis�ed if the amount of time whichhas passed since the enabling event has exceeded the lower bound of the rule. A rule issaid to be expired if the amount of time which has passed since the enabling event hasexceeded the upper bound of the rule. Again ignoring con
ict, an event cannot occuruntil all rules enabling it are satis�ed. An event must always occur before every ruleenabling it has expired. Since an event may be enabled by multiple rules, it is possible
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Figure A.1. The timed ER structure for a simple c-element.that the di�erence in time between the enabled event and some enabling events exceedthe upper bound of their timing constraints, but not for all enabling events.The con
ict relation is added to model disjunctive behavior and choice. When twoevents e and e0 are in con
ict, (denoted e#e0), this speci�es that either e can occur or e0can occur, but not both. Taking the con
ict relation into account, if two rules have thesame enabled event and con
icting enabling events, then only one of the two mutuallyexclusive enabling events needs to occur to cause the enabled event. This models a formof disjunctive causality. Inherently disjunctive behavior, or true OR causality, cannotcurrently be modeled, but we are working on techniques to address this. Choice is modeledwhen two rules have the same enabling event and con
icting enabled events. In this case,only one of the enabled events can occur.Figure A.1 shows an example of a timed ER structure for a simple two input c-element.Events are the vertices and the rules that relate them are the edges. A '#' below a vertexindicates that the events enabled by this vertex are in con
ict. Tokens can be used toindicate that a rule's enabling event has �red. Each rule has a delay range associatedwith it as shown in the �gure.In most instances, the semantics of the timed ER structure closely resemble those of



50the TSPN. There is, however, a speci�c construct in the two representations which doesnot preserve semantic equality amongst the two paradigms. This notable construct is thefree and extended free choice structures in the TSPN. Free and extended free choice, aspresented in Section 2.1, cannot be exactly represented in the timed ER structure. Anexample of this nuance is shown in Figure A.2, which shows the standard con
ict modelused in the timed ER structure. In this examples, the '#' symbol denotes that eventsa+ and b+ are in con
ict with each other. The system should only allow one of the twoevents to �re, not both. As shown, the timed ER structure places timing constraintson edges between nodes. The edges are referred to as rules and the nodes as events.Rules retire in the same manner as places becoming available to transitions in the TSPN.When enough rules have retired su�cient to enable an event, then the event instantly�res. Since each rule has a timing constraint, a true con
ict construct where two eventsare enabled to occur at the same instance is not easily created in the timed ER structureideology. All choice resolution is resolved through timing constraints, meaning that in asystem simulation, the system chooses a time for each rule to retire and the �rst eventto have a su�cient number of rules retired to enable it to �re, �res. Since the timed ERstructure uses an interleaving semantics equivalent to the TSPN, the probability of twoevents becoming enabled to �re at the exact same instance is assumed to be zero, unlessa singular distribution is used. If singular distributions are used on the rules enablingthe con
icting events, then the delay for either of the two events from enabling to �ringbecomes �xed, because both rules must be singular on the same point to force a con
ict,thus omitting the stochastic model of the �ring delay times.In contrast, con
ict in the TSPN world can only exist at a free or extended free choiceconstruct in the net, as shown in Figure A.2. Con
ict at a choice construct in a TSPN isresolved through a user supplied distribution as discussed in Section 2.1. In a simulationof a TSPN when the choice place receives a token, the system obtains a time for thattoken to become available to transitions from its respective distribution. When that tokenbecomes available, it enables two transition to �re at the same instance. Since only onetoken is available, only one transition can �re. The system chooses which transition to �reaccording to the user supplied distribution. This model is distinctly di�erent than thatof the timed ER. The timed ER structure samples a time for each rule to resolve con
ictwhere the TSPN selects a time for the common place and uses a choice distribution toresolve con
ict. This semantic di�erence forces the introduction of a specialized construct
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Figure A.2. Free choice structure in a TSPN and timed ER structure.in the timed ER structure to preserve semantic equivalence to the TSPN.Figure A.2 shows a free choice construct in a timed ER structure that is semanticallyequivalent to the free choice construct in a TSPN. When the event c+ �res, the $ eventis scheduled to �re at a time determined by its respective distribution. When the $ event�res, it enables two events that, by their respective distributions (singularities at point0), must �re instantly. This forces a con
ict in the system between the events a+ andb+, which cannot be resolved through timing consideration. Therefore a user supplieddistribution is used to choose which event to �re. In this example, the $ event is a systemevent that is used only to mark that enough time has transpired to simultaneously enableevents a+ and b+ and is analogous to a place becoming available to transitions in theTSPN model. In this way choice semantics are preserved in the TSPN and timed ERstructure representations and the stochastic delay model is retained in the timed ERstructure con
ict representation.
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