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ABSTRACT

Analog circuit design is traditionally done by expert designers in an ad hoc manner

heavily dependent on simulation. This methodology has worked successfully for many

years, but process variation and design complexity are prompting designers to explore new

techniques. Formal methods are being used successfully to aid in the complex validation

problem for digital circuits. This dissertation presents formal methods for analog and

mixed-signal (AMS) circuits.

This dissertation describes the development of a formal model, labeled hybrid Petri

nets (LHPNs), appropriate for the modeling and verification of AMS circuits. An LHPN is

a Petri net variant capable of modeling both continuous and discrete quantities. Creating

an LHPN model of an AMS circuit by hand is a complicated and error prone exercise

that requires expert knowledge. This is unacceptable for practical adoption of the LHPN

model and its associated analysis methods. For this reason, this dissertation introduces

an automatic LHPN model generation method. The method uses a set of simulation

traces and a desired system property to generate an LHPN modeling the behavior of the

simulation traces. The model generator can also be used to generate abstract Verilog-AMS

or VHDL-AMS models suitable for use in system-level simulations.

Formal verification of a property over the entire state space of an LHPN model is com-

plicated by the infinite state of the model. For this reason, the infinite states of the model

are grouped into potentially finite groups of equivalent states for verification. Difference

bound matrices (DBMs), a restricted form of convex polygons, are used to represent these

equivalent classes of infinite states. Reachability analysis using DBMs is very efficient at

the cost of exactness. This dissertation presents algorithms for conservative state space

analysis and verification of LHPNs.

Finally, these methods are demonstrated on several case studies of AMS circuits from

both academia and industry. The formal verification methods demonstrate the ability

to find bugs missed by standard simulations. The abstract modeling methods show the

promise of using automatically generated abstract models by demonstrating up to 40x

speedup for some examples.
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CHAPTER 1

INTRODUCTION

Electronic computing devices are becoming increasingly complex and pervasive in

today’s society. These devices are used in a wide range of applications such as digital

cameras, mobile phones, automobiles, airplanes, satellites, medical monitoring equipment,

etc. Some of these devices are more safety critical than others, but even nonsafety critical

devices must function properly a high percentage of the time to be competitive in an

increasingly crowded marketplace. These devices are largely composed of digital circuits.

Therefore, significant effort and progress has been made in the modeling and verification

of digital circuits [50, 49, 31, 32, 40, 95, 122]. Although analog circuits do not make

up a large portion of these systems, they play an important role when interfacing with

the inherently analog environment. As a result, it is critical that the analog circuits and

the circuits interfacing the analog circuits to the digital circuits, mixed-signal circuits,

function properly. Therefore, this dissertation focuses on the modeling and verification

of analog and mixed-signal (AMS) circuits.

1.1 AMS Circuit Design and Verification

Methodology

During the past decade, AMS design has undergone dramatic changes fueled largely by

an increase in the complexity of the circuits and the variability of the semiconductor fab-

rication processes. Over the years, AMS designers have developed a design methodology

based on a high level of designer skill, creativity, and experience. This design methodology

relies heavily on simulation to verify the correctness of the circuit. As the complexity

and variability increase, this simulation based methodology becomes impractical.

The increased circuit complexity comes from two major sources, algorithmic com-

plexity and modes of operation [33]. A powerful example that illustrates the increase in

algorithmic complexity is the analog to digital converter (ADC). Initially, ADCs found

on integrated circuits were flash ADCs. Flash ADCs do an analog to digital conversion
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in a single ADC clock cycle, but the drawback of flash ADCs is that they require

one comparator per bit of resolution. To help mitigate the area cost of flash ADCs,

dual-slope ADCs that require less hardware but require three cycles per conversion were

developed. Successive approximation ADCs followed. They do a conversion requiring

the same number of cycles as the bits in the output but do not require any extra

hardware for the extra bits of resolution. Currently, the state of the art ADC is a

∆Σ ADC [29, 79, 22, 19] that uses complex digital signal processing algorithms and may

require hundreds or thousands of cycles to do a single ADC conversion. This increase in

algorithmic complexity results in an increase in simulation time which stands in conflict

to the reduced time to market for today’s designs.

The modes of operation for AMS circuits are increasing because today’s designs need

to operate over a wide range of conditions and protocols to be compatible with the

large number of applications where they may be used. This is due in part to the cost

of a large analog design. If a company is going to justify the cost for a large analog

design, it is necessary that the design operate in many potential products. For instance,

a mobile phone receiver must support a number of communication protocols, operate

over a wide range of operating conditions (temperature, humidity, etc.), and be as power

efficient as possible while remaining responsive to the user. Each of the growing number

of modes needs to be verified for proper operation. Power down modes can be particularly

problematic as they are often similar to initialization sequences which are notoriously long

and difficult to verify using standard simulation techniques.

Process variation is increasing the difficulty of AMS circuit design and verification.

In the past, AMS designers only needed to ensure that their designs operated properly

for nominal conditions and a handful of global variations. With the increased variability

of modern semiconductor processes, designers must ensure that the design works over a

growing range of process variations and environmental conditions. There are two primary

methods of characterizing a design over a range of variation, corner simulation and Monte

Carlo simulation. Corner or PVT (Process, Voltage, and Temperature) simulations are

intended to characterize the design for global variation. Ideally, simulations for all

different combinations of extreme variations for process, voltage, and temperature are

performed. Traditionally, process corners are run for fast and slow NMOS and PMOS

devices. For instance, if simulations are run for fast and slow process corners for both

NMOS and PMOS devices, temperature extremes, and voltage extremes for a single
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supply voltage this would require 24 or 16 simulations. Doing sixteen simulations is

not unreasonable, but the number of simulations required is exponentially related to the

number of sources of variation. In modern processes, the number of sources of variation is

increasing. The sources of process variation are increasing as designs are simulated with

variations for resistances, capacitances, etc. as well as the number of voltage sources.

This often results in the designer running only a subset of the variation space because it

would take too long to run all possible corners.

Monte Carlo simulation [110] is used to help designers understand the effects of

local parameter variations. For instance, it is common for designers to run Monte

Carlo simulations for a range of threshold voltages particularly when the circuit involves

matched pairs of transistors. The number of simulations required for adequate confidence

results using Monte Carlo simulation is situational but typically on the order of hundreds

to thousands of simulations. The number of Monte Carlo simulations designers are using

is also increasing as the sources for local variation increase.

These complexity and variability issues are compounded by the ad hoc nature of

today’s analog verification methodology. Figure 1.1 illustrates a typical analog design

methodology. The system-level specification is set by the system architects based on

customer requirements, industry standards, architectural explorations, etc. Individual

subsystem specifications and even topologies may be provided for critical subsystems by

the architects. After the architectural decisions have been made, the design team lead

assigns each designer a block of the system to design and verify. Each designer derives

the block-level specification from the provided system-level specification for his individual

blocks. The designer then begins the process of designing a circuit to meet the specifica-

tion for the nominal case. This design is done using a set of simulations deemed adequate

to characterize the system by the designer. Once the design is satisfactorily operating at

the nominal case, the designer begins the iterative optimization process. Optimization

characterizes the design by exploring the operation over ranges of both global and local

variation in an attempt to center the design within the variation space. Once the designer

is satisfied with the circuit optimization, he declares the design complete.

This process has worked well for a number of years, but it is beginning to show signs

of inadequacy. As the level of complexity grows in ways described previously, this largely

ad hoc process is not able to cope with the decreasing time to market and the increasing

cost of respins, redesigns that require a change to the mask set used in semiconductor
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Figure 1.1. A block diagram describing the analog design process.
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fabrication. In addition to needing improved simulators or simulation techniques, the

AMS design process is in need of design automation particularly in the verification arena.

It is possible for designers to create an automated suite of simulations for a given circuit

although each simulation still needs to be checked individually by a designer to verify

the correctness of the result. The number and type of simulations used to verify a given

circuit is not regulated by any quantitative measures. It is difficult to communicate

the verification effort and completeness to managers or other team members. All of

these issues often result in costly design respins. For cutting edge analog circuits, it

is not uncommon to see five to six respins which is incredibly expensive and makes

many complex designs unprofitable. Automated verification tools bring the promise of

allowing the designer to specify the design constraints in a standard format then letting a

tool run the needed simulations and automatically check that the design constraints

are satisfied, provide quantitative measures of verification quality understandable by

team leaders and other designers, and decrease the number of respins required. The

tools are not meant to replace the designer but instead automate standard parts of the

design process enabling the designer to spend more time doing actual design. Moving

forward, the two primary challenges for AMS verification are creating abstract models

for AMS circuits and developing efficient, automated verification methodologies. These

new solutions cannot come quickly enough as illustrated by a flamboyant quote from

Sandipan Bhanot, CEO of Knowlent, “If the digital designers did verification the way

analog designers do verification, no chip would ever tape out” [148].

1.2 AMS Circuit Modeling

Having access to models at many levels of abstraction is an important component of an

efficient verification strategy. Given several levels of abstraction, the verification engineer

can verify properties at the appropriate level of abstraction thus increasing the efficiency

of verification. Digital systems typically have RTL-level, switch-level, transistor-level,

and layout-level models available. Increasingly, digital designs also have word-level and

transaction-level models available to verification engineers. In the digital domain, these

models also have the advantage that when moving from one level of abstraction to the

next, the model is often automatically generated and provably equivalent to the model

in the next level of abstraction. In contrast, AMS circuits have transistor-level and

layout-level models available. There are instances when an RTL-level model is available
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to the designer, but the RTL-level model is not automatically generated nor provably

equivalent to the transistor-level model. AMS RTL-level models are manually created by

designers who are expert in both AMS design and AMS hardware description language

(HDL) creation. It should be noted that within the AMS modeling community, the term

RTL-level model is not used. The term macromodel is used to mean a simplified model

that captures only the essential behavior—but not necessarily the implementation—of

the circuit for the given application.

The AMS modeling community understands these issues and has taken steps to

improve the situation. The creation of AMS extensions to common digital HDLs in

the form of Verilog-AMS [2] and VHDL-AMS [85] is a positive step. However, much of

the work done by the AMS modeling community is still tied to SPICE-accurate abstract

modeling. The SPICE simulator uses device-level transistor models (e.g., BSIM3) to

simulate the behavior of individual transistors with high accuracy to the physical world.

Significant effort is involved in creating accurate device models. Designers depend on

and are accustomed to the accuracy of these models. As a result, the AMS modeling

community strives to produce abstract models that accurately mimic the device-level

model behavior. While this level of accuracy is comfortable for the designers, it is not

always the best level of abstraction for verification. For instance, RTL-level models cannot

be used to verify timing sensitive properties, but they can be used to verify much of the

general functionality. Our work proposes an efficient method to automatically generate

abstract AMS circuit models. These models may not accurately capture device-level

behavior but do capture system-level behaviors.

1.2.1 Linear Systems

Macromodel creation for linear systems is a well understood discipline with a strong

foundation [130, 123, 13, 129]. The majority of macromodeling methods for linear systems

involve model order reduction (MOR) where the dimensionality of the state space or order

of the model is reduced while accurately maintaining the important system dynamics.

These methods have been successful because the MOR methods employed substantially

reduce the order of the system. While the methods have been successful and are used

to analyze systems such as networks of interconnect, there are still issues to be resolved

namely in regard to efficiency, stability, and extensions for parametrized models [45, 147].
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1.2.2 Nonlinear Systems

Unfortunately, any system containing a transistor is nonlinear, and creating macro-

models for arbitrary nonlinear systems is far from a solved problem. There are promising

solutions for weakly nonlinear system [35, 99, 128] and specific circuits such as PLLs

and oscillators [98, 159] although these solutions do not work with a standard SPICE

simulator. Investigations into the general macromodeling problem for nonlinear circuits

have encountered scalability, efficiency, and global accuracy problems [136, 135, 153, 154].

Specifically, the MOR methods applied to nonlinear circuits do not reduce the models as

strongly as when these methods are applied to linear circuits. Furthermore, for nonlinear

circuits, there is no guarantee that a reduced order model will require less simulation

time. Many of the MOR methods for nonlinear systems involve characterizing the circuit

for parts of the operation space [153, 135]. If the simulation using the reduced order

model deviates too far from the characterized operation space, the model accuracy suffers

dramatically. Steps have been taken to address this problem [154], but model generation

efficiency remains an issue due to the number of simulations required to characterize the

circuit.

1.3 AMS Circuit Verification

Traditional verification of AMS circuits is intimately connected to the design of AMS

circuits. In contrast, digital designs have distinct design and verification phases where

different engineers perform design and verification. AMS verification needs to move in

this direction, but tool support is needed first. The verification community has produced

a number of interesting solutions to aid in automating the AMS workflow [146, 164], but

there is still significant work to be done. The remainder of this section discusses several

formal and semiformal approaches to AMS circuit verification.

Formal methods have become essential to verify a number of scenarios that arise in

digital design. These techniques are not directly applicable to AMS circuits due to the

need to represent continuously varying quantities and high dimension nonlinear dynamics.

AMS circuits are also very sensitive to environmental fluctuations which do not affect

digital circuits as dramatically due to the digital abstraction. It is these challenges that

have prompted the recent efforts by the AMS verification community.
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1.3.1 Automated Theorem Proving

Automated theorem provers are software systems developed to automatically or more

often with the aid of a user, devise deductive proofs for mathematical theorems. These

tools are notoriously difficult to operate by the novice user, but they are used in industry

to verify specific circuit types such as floating point arithmetic units. Due to the ability

of these tools to reason about linear arithmetic on real numbers, there have been several

attempts to use these tools to verify properties of AMS designs.

In [60], Gosh et al. use the PVS proof checker to verify that synthesized circuits

conform to a user provided behavioral description of the DC and small signal behavior

of the circuit. This technique can be applied to designs done using traditional analog

design methodologies but requires that the designer provide a piecewise linear behavioral

description of the circuit as well as a structural specification. This paper presents results

for three different designs containing small numbers of op amps, resistors, and transistors.

Hanna has explored modeling the nonidealities of digital circuits without the tradi-

tional binary abstraction [72]. The specification of the correct analog-like response of the

circuit to an input sequence is conservatively encapsulated in a rectilinear region of space.

This specification is verified against the implementation using proof techniques. Hanna

extends this work in [73] where the analog nature of the circuits can be specified using

a combination of piecewise linear or rectilinear specifications. This new work also moves

away from the theorem proving approach and proposes the use of constraint satisfaction

techniques to improve efficiency and automation.

In [4], Al-Sammane et al. propose a symbolic verification methodology for AMS

circuits that given a description of the circuit and a set of properties can extract a set

of recurrence equations. The computer algebra system Mathematica is used to prove the

properties about the recurrence relations using an induction verification strategy. In this

work, the AMS circuit is described using differential algebraic equations for the analog

parts of the circuit and an RTL-level description of the digital parts of the circuit. This

methodology is used to prove the stability of a third order ∆Σ modulator.

A method for verifying custom SRAM and flash memories using the ACL2 theorem

prover [92] is described by Ray and Bhadra in [133]. The authors develop behavioral

descriptions in the form of finite state machines (FSMs) for generic memory components

such as the bitcell and sense amp. These component FSMs are composed to form an

entire memory system. ACL2 is used to prove properties about the entire memory system.
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1.3.2 Model Checking

Model checking [40] is the process of automatically determining if a model conforms

to a given property. This is done via state space exploration or reachability analysis.

Although model checking has been reasonably successful for digital circuits [41, 93, 131],

there has been very little work on model checking for AMS circuits until recently. One

of the major challenges in model checking AMS circuits is that continuous values such

as voltages and currents must be tracked accurately complicating an already expensive

state space exploration process. As a result, the primary difference in the model checking

work for AMS circuits is the way that the different methods represent the state space.

A secondary difference between the methods is the model used. Any model used for

AMS verification must be able to model both continuous and discrete dynamics as well

as the interactions between the two. The types of continuous dynamics allowed vary from

method to method due in large part to the types of continuous dynamics supported by

the state space exploration algorithms. An expanded discussion of model differences can

be found in Section 2.2.

One of the first works to apply model checking to analog circuit models is the work by

Kurshan and McMillan [96]. Finite state models are abstracted from analog circuit models

using homomorphic (behavior-preserving) transformations. Given the finite state model

of the analog circuit, standard finite state model checking techniques can be used to prove

properties about the analog circuit of interest. The complexity of this method comes in

reducing the continuous models to the finite state models. The reduction method involves

dividing the state space into boxes and then integrating the nonlinear circuit model for

fixed time steps to determine the possible transitions between the boxes. The applicability

of this work to analog circuits is demonstrated by verifying a Seitz arbiter.

The work by Greenstreet in [65, 66, 67, 160] improves upon the work in [96]. In

[65], a method to map continuous trajectories onto discrete behaviors using topological

properties of the continuous model is presented. This method is superior to the homo-

morphic reductions used by [96] because it avoids the potentially negative interactions

between box size and step size that can reduce model quality. The work in [66, 67, 160]

incrementally improves upon the the state space representation method eventually settling

on the projectagon representation presented in [160]. The verification of a high speed

toggle circuit requiring seven dimensions is verified which demonstrates the efficiency

and scalability of the projectagon state space representation.



10

Using a similar idea to Kurshan, McMillan, and Greenstreet, the work by Hartong,

Hedrich, and Barke creates a Boolean abstraction for the system and then uses standard

digital verification methods to do the analysis [74, 75]. This Boolean abstraction is created

by automatically partitioning the continuous state space into boxes and treating each box

as a discrete state. This partitioning method uses heuristics to create more boxes in the

nonlinear regions to capture the correct behavior while reducing the number of boxes

in linear regions to improve runtime. Each box is encoded using a Boolean encoding to

create the Boolean abstraction used for model checking. The transitions between the

boxes are found by selecting points within the box and using simulation to determine

which boxes are reachable from the selected points. Properties are specified using basic

CTL with additional greater than and less than operators. This approach is implemented

in the Amcheck tool [76] and used to verify a tunnel diode oscillator circuit. Hendricx

and Claesen have also applied Boolean based approaches to AMS verification with similar

success [80].

Although Krogh, Chutinan, Silva et al. designed CheckMate to verify hybrid systems

[42, 145, 144, 37], it has been applied to verify AMS circuits [71]. CheckMate follows

an approach similar to [74, 75], but uses flowpipe approximations, which are sequences

of polyhedra that follow the natural contour of the vector field [39], to create a sound

abstraction of the continuous dynamics. Using the flowpipes method, the state space

is partitioned dynamically as it is explored. In this way, only reachable portions of

the state space are partitioned. The transitions between the partitions are constructed

from the flows. The CheckMate tool is implemented within MATLAB using Simulink

and Stateflow blocks to specify the design and properties. CheckMate properties are

specified using ACTL or by labeling the appropriate states in the finite abstraction as

reach or avoid states. The tool has been used to verify a tunnel diode oscillator and a

∆Σ ADC.

Frehse’s PHAVer model checker extends the work done by CheckMate. It analyzes

linear hybrid automata models of AMS circuits using convex polyhedra to represent the

continuous state space [55, 57, 58]. To improve the approximations of the continuous

trajectories, PHAVer uses a combination of forward and backward reachability [56]. While

these polyhedra can still become quite complex, one unique feature of PHAVer is that it

allows for performance to be tuned at the expense of a conservative state space. PHAVer

demonstrates the effectiveness of this approach on several benchmark examples including
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the verification of the amplitude and phase jitter of a tunnel diode oscillator and a

switched buffer network.

The d/dt tool designed by Asarin, Dang, and Maler was also originally developed to

verify hybrid systems [16]. Recent work [43] extends the reachability analyses for linear

[14] and nonlinear [15] ordinary differential equations to differential algebraic equations

using methods similar to those in [96, 75]. The reachability computation employs convex

polyhedra computed using face lifting [44]. This method uses optimal control instead of

reachability analysis to verify bounded safety properties for both a low pass filter and ∆Σ

ADC. Recent work by Girard extends this tool to work with zonotopes for more efficient

reachability analysis [61].

Zaki et al. present a refined approximation for the reachability calculation by using

Taylor approximations over interval domains [163]. They use this technique along with

symbolic analysis to do bounded model checking of safety and liveness properties.

Walter et al. have developed labeled hybrid Petri net (LHPN) analysis tools using

binary decision diagrams (BDDs) [156] and an satisfiability modulo theories (SMT) solver

[155]. The LHPNs are translated to a symbolic model that is used to verify safety

properties specified in TCTL using a BDD engine or a bounded SMT engine. The BDD

algorithm is theoretically exact, but due to the high memory requirement of adding

transitivity constraints the algorithm can be made conservative and more efficient by

reducing the number of transitivity constraints added. The SMT based engine uses

bounded model checking to verify properties on bounded length traces. The algorithm is

exact for a given trace length.

1.3.3 Equivalence Checking

Equivalence checking is the process of exhaustively proving that two different system

models are equivalent. In most cases, the two system models are at different levels of

abstraction. Equivalence checking has seen widespread adoption with digital systems due

to its efficiency and ease of use. Again, the digital abstraction dramatically decreases

the level of complexity for the method. In digital designs, proving equivalence can be as

simple as proving that two systems implement the same Boolean function. The meaning

of equivalence for two analog circuits is less clear.

In [24], Balivada et al. describe an equivalence checking approach that involves com-

paring the transfer function of the circuit implementation against the transfer function

of the circuit specification for linear circuits. The transfer functions are extracted and
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then transformed into the discrete Z-domain where they can be represented in terms

of digital adders, multipliers, and delay elements. The transient behavior of these two

digital descriptions are compared using BDDs and considered equivalent if they produce

the same results within a given tolerance. The key to this method is the transfer to the

Z-domain where it is critical to preserve the differences between the two specifications.

This work is extended by Seshadri et al. in [142] to verify the conformance between the

two transfer functions which avoids the problematic transfer to the Z-domain.

An approach based on sampling the state spaces and computing the differences in the

vector fields is presented by Hedrich and Barke in [77]. Direct comparison of the vector

fields is usually not possible, so nonlinear transformations are applied to the sample state

spaces to enable this comparison. The difference between the two designs is presented

as an explicit error measure. Finding correct transforms is nontrivial, so heuristics are

presented to select the transforms. Unfortunately, poor transforms affect the soundness

of the methodology.

Using interval arithmetic, Hedrich and Barke present a method to prove that linear

circuits satisfy a specification in a given frequency range over a range of parameters [78].

The description of the linear analog circuits can be a transfer function or extracted from

a netlist using symbolic analysis methods. Equivalence checking is done by testing the

inclusion of the value sets of the transfer functions for the specification and the implemen-

tation. To maintain the soundness of the verification, an over-approximation is selected

for the implementation and an under-approximation is selected for the specification.

An equivalence checking approach to verify VHDL-AMS designs is presented by Salem

in [141]. This methodology involves using traditional digital equivalence checking, a

set of rewrite rules, and simulations to check the equivalence of simple VHDL-AMS

specifications. The designs are partitioned into digital and analog components. The

digital components are verified using traditional digital equivalence checking. The analog

components are simplified using rewrite rules and equivalence checked using pattern

matching. To enhance the methodology, comparators are added to the outputs of the

system and verified for equivalence during simulation runs.

1.3.4 Lightweight Verification

The methods described previously in this section work well on small or heavily ab-

stracted examples and have shown some promise to work on larger circuits. One challenge

for these methods is the significant effort required to create an appropriate abstract formal
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model for each circuit of interest. These methods also suffer from high computation costs

when analyzing the model. The more accurately the method explores the state space of

the system, the more computationally intensive it is. In response to these challenges, there

has been recent work in verifying formal properties within the framework of simulation.

Dastidar et al. generate a finite state machine (FSM) from a systematic set of simu-

lation traces [46]. Their FSM includes currents, voltages, and time as state variables to

generate an acyclic FSM. The state space of the system is divided into symmetric state

divisions. After each delta time step, the current state of the simulator is determined and

rounded to the center of the appropriate state division. The simulator is then started from

this point and run for the next delta time step. This process continues until the global

time reaches a user specified maximum. Properties are verified on the FSM model. These

properties are specified in Ana CTL, a CTL-like temporal logic with specific extensions

for specifying properties of analog circuits.

In [64, 54], Girard, Fainekos, and Pappas present methods to verify safety properties

[64] and LTL specifications [54] for linear systems using a finite set of simulation traces.

This is done by sampling the set of initial states then running a finite length simulation

for each sample. Using bisimulation theory [62, 63], the robustness of the set of simulation

trajectories with respect to the property can be bounded. If the robustness measure is high

enough, then the property can be proven. If the robustness measure is not high enough,

the method must refine the sampling of the initial states. Bounds for the maximum

number of required simulations can be computed.

Drawing inspiration from [91], Donzé and Maler present a method to verify safety

properties of dynamical systems using a finite number of simulations [53]. The algorithm

uses a set of initial conditions and a set of bad states. The algorithm selects an appropriate

sample point within the set of initial conditions and performs a transient simulation for

a bounded time period. Based on the sensitivity analysis of the trace, the system can

be declared safe or may require further simulations. The algorithm is guaranteed to

terminate using a finite number of simulations.

The work presented by Nahhal and Dang uses coverage measures for hybrid systems

to guide test generation based on the rapidly-exploring random tree algorithm [120, 119].

The goal of this work is to verify the correctness of high percentage of the reachable

state space via simulations generated by the algorithm. Quantification of the exploration

completeness is done using coverage metrics based on the star discrepancy measure from
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statistics.

The work by Nickovic, Maler, and Pnueli presents the Analog Monitoring Tool (Amt)

and its underlying technology [106, 121, 107]. Amt checks STL/PSL specifications on

simulation traces. The STL/PSL specification language is a combination of STL [105]

and PSL [1] with extensions to support checking analog properties. Amt has been used

in case studies to verify properties of flash memory [121] and DDR2 DRAM [88] with

varying levels of success.

In [165], Zaki et al. propose a run-time verification methodology based on monitoring

the behavior of analog circuits using interval analysis. Given the system description, its

specification described by nonlinear differential equations, and timed CTL formulas, the

authors build a timed automata monitor which can detect bad behavior within a specified

period of the interval arithmetic simulations.

Al-Sammane et al. use PSL properties to monitor AMS designs [3]. The PSL proper-

ties are used to generate monitors for discrete-time designs. This limits the applicability

of the method although the method does use unmodified PSL.

1.4 Contributions

The research in this dissertation describes improved tools and methodology for the

verification of AMS circuits. There are five contributions: a new hybrid Petri net model,

labeled hybrid Petri nets (LHPNs), capable of modeling AMS circuits; an automated

abstract model generation technique for LHPNs, VHDL-AMS, and Verilog-AMS; a novel

method called warping which enables difference bound matrices (DBMs) to represent

LHPNs; model checking algorithms for LHPNs using DBMs; and application of a new

simulation aided verification (SAV) methodology to academic and industrial benchmarks.

The first contribution is the development of a new hybrid Petri net model, LHPNs,

capable of modeling AMS circuits [101]. Designers use several types of models for

verification, but none of them are amenable to formal methods and easily generated from

common representations used by AMS designers. The development of LHPNs provides a

model expressive enough to model AMS circuits at several levels of abstraction yet simple

enough to be analyzable by formal verification tools. The introduction of a VHDL-AMS to

LHPN compiler that translates behavioral VHDL-AMS models to LHPNs creates a path

to obtain formal models from a modeling formalism used by designers. Transformations

from LHPNs with ranges of rates to LHPNs with constant rates enables the use of LHPN
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models by a wider range of analysis engines.

The second contribution is an automated abstract model generation technique for

LHPNs, VHDL-AMS, and Verilog-AMS [103, 102, 100]. AMS designers do not tradi-

tionally use models amenable to formal analysis, so obtaining formal models for use by

formal verification tools is a challenge. An automatic model generation methodology

generates the needed formal models in the form of LHPNs from a set of simulation

traces. This automatic model generation technique leverages previously executed sim-

ulations to quickly provide up-to-date formal models for verification. Abstract AMS

models are also needed for use by designers in system-level simulations. Using the same

model generation methodology, additional algorithms generate both VHDL-AMS and

Verilog-AMS system-level models for use in system-level verification. These models do

not achieve SPICE-level accuracy, but they are much more efficient. This efficiency

enables system-level verification not possible using previous abstract models. Coverage

metrics based on the value of each simulation quantify the quality of the resultant model.

The third contribution is a method called warping which enables DBMs, a restricted

form of polygons developed for analysis of timed systems, to represent the state space

of the LHPN model. The difficulty of representing LHPNs using DBMs is that DBMs

do not support variables changing at nonintegral rates. Warping employs variable sub-

stitution followed by conservative encapsulation of the polygon produced by the variable

substitution within a polygon that can be represented as a DBM.

The fourth contribution is a method for model checking LHPNs using DBMs [104, 101].

Due to the complexity of doing state space analysis of systems containing both continuous

and discrete dynamics it is critical to have an efficient state space representation. Very

efficient algorithms for state space exploration and model checking of LHPNs enable the

analysis of system-level descriptions. To achieve efficiency, the algorithms are conser-

vative which may result in false negative verification results. An error trace generation

methodology enables designers to quickly examine verification failures for validity.

The fifth contribution is the application of the verification methodology to several

academic and industrial benchmarks. These benchmarks demonstrate the applicability

of the previously described methodology to AMS circuits. The academic benchmarks

include several classical examples from hybrid systems theory as well as a tunnel diode

oscillator and switched capacitor integrator example. Finally, verification results obtained

for two industrial examples, a PLL phased detector and a CMOS ring oscillator with
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feedforward inverters, show the promise of this methodology.

1.5 Dissertation Overview

The remainder of this dissertation is divided into five chapters describing the contribu-

tions of this dissertation. Figure 1.2 is a block diagram for the LHPN Embedded/Mixed-

signal Analyzer (LEMA) tool which implements the algorithms presented in this disserta-

tion. The chapters describe the different components of LEMA and how they interact to

form a SAV verification methodology for AMS circuits.

Chapter 2 describes the LHPN model. Several modeling formalisms for hybrid systems

and AMS circuits are discussed with the aid of the switched capacitor integrator circuit

example. This discussion is followed by a description of the LHPN syntax and semantics.

A brief discussion of translation methods to LHPNs from VHDL-AMS follows. This chap-

ter concludes with a discussion of LHPN transformations that enable the LHPN model

to be analyzed by state space exploration engines supporting only constant rate changes.

This description includes a discussion of limitations introduced by the transformation.

Chapter 3 describes the Model Generator block in Figure 1.2. Obtaining abstract
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Figure 1.2. A block diagram describing LEMA.
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models of AMS circuits for use in both formal verification and system-level simulation

is critical to improving AMS verification. This chapter describes an automatic model

generation method that uses simulation traces, thresholds on the signal levels of the

system variables, and a safety property to generate Verilog-AMS, VHDL-AMS, and

LHPN models of the circuit. The Verilog-AMS and VHDL-AMS models are intended

to be used in standard simulators to perform highly efficient system-level simulation.

The LHPN models are for use in formal verification. This chapter concludes with a

description of the coverage metrics developed to aid in model quality quantification during

the model generation process. These coverage metrics provide our SAV methodology with

a quantitative measure of the value of each additional simulation to the model quality.

Chapter 4 introduces DBMs as a state space representation for LHPN reachability. A

method called warping is presented that enables the use of DBMs to represent states of

LHPNs that contain nonintegral rates.

Chapter 5 describes an efficient DBM-based state space exploration algorithm for

LHPNs. DBMs have been used previously for timed circuit verification. This chapter

explains extensions to timed circuit algorithms enabling the analysis of LHPNs where

variables can change at nonintegral rates. This chapter concludes with a discussion of a

method to generate error traces when a counterexample is found.

Chapter 6 discusses the performance of the SAV methodology presented in this dis-

sertation on several industrial and academic examples. This chapter begins by examining

the modeling and verification of several classical examples in hybrid systems theory. Next,

two examples developed in academia are analyzed, a tunnel diode oscillator and a switched

capacitor integrator. This chapter concludes with the analysis of two industrial examples,

a PLL phase detector and a CMOS ring oscillator with feedforward inverters. These

results highlight the progress that has been made as well as directions for future work.

Chapter 7 summarizes the contributions of this work. It discusses how the SAV

methodology can be successfully integrated into an industrial AMS workflow. The disser-

tation concludes with a description of potential future work in AMS verification. There

are several directions that can be undertaken with regard to model generation and abstrac-

tion, coverage metrics, an AMS property specification language, AMS circuit monitors,

stability verification, improved performance of the state space analysis algorithms, and

embedded software verification.



CHAPTER 2

LABELED HYBRID PETRI NETS

Traditionally AMS circuit designers have used SPICE-based models for design. SPICE

models are based on differential equations which can accurately represent the continuous

behavior of AMS circuits. While differential equations are amenable to simulation,

they are not directly analyzable using state space exploration techniques. For this

reason, a different modeling formalism is needed to represent AMS circuits when used in

conjunction with formal verification tools.

This chapter introduces a switched capacitor integrator circuit that serves as a mo-

tivating example throughout this dissertation. In this chapter, the switched capacitor

integrator circuit is used to compare and contrast several hybrid systems modeling for-

malisms. This chapter also introduces a new modeling formalism, Labeled Hybrid Petri

Nets (LHPNs), which can be generated from VHDL-AMS descriptions using a compiler.

An LHPN transformation method to enable analysis of LHPNs by state space exploration

methods that only support constant rates concludes the chapter.

2.1 Motivating Example

To concretely illustrate concepts throughout this dissertation, the switched capacitor

integrator circuit shown in Figure 2.1 is used as a motivating example. Switched capacitor

integrator circuits function as a component in many AMS circuits such as ADCs and

DACs. Although only a small piece of these complex circuits, the switched capacitor

integrator proves to be a useful example illustrating the type of problems that can

be present in AMS circuit designs. Discrete-time integrators typically utilize switched

capacitor circuits to accumulate charge. Capacitor mismatch can cause gain errors in

the integrators. Also, the CMOS switch elements in switched capacitor circuits inject

charge when they transition from closed to open. This charge injection is difficult to

control with any precision, and its voltage-dependent nature leads to circuits that have

a weak signal-dependent behavior. This can cause integrators to have slightly different
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Figure 2.1. A schematic diagram of a switched capacitor integrator circuit.

gains depending on their current state and input value. Circuits using integrators run

the risk of the integrator saturating near one of the power supply rails. It is essential

to ensure that this never happens during operation under any possible permutation of

component variations. Therefore, the verification property for this circuit is whether or

not the output voltage, Vout, can rise above 2000 mV or fall below −2000 mV.

The input to the switched capacitor integrator circuit is a 5 kHz square wave with a

low value of −1000 mV and a high value of 1000 mV. The circuit integrates this input

square wave to produce a triangle wave at the output. For the given parameters, the

output rate of change (slew rate) is ±20 mV/µs. The op amp in the circuit is connected

in an inverting configuration such that when Vin is positive, Vout is decreasing, and when

Vin is negative, Vout is increasing. Transistors Q1 and Q2 in conjunction with capacitor C1

form the switched capacitor part of the circuit. This switched capacitor component acts

like a resistor. In fact, the behavioral models in this chapter make this simplification and

replace the switched capacitor with a resistor. For this example, let us assume that due

to noise and uncertainty in model parameters that the output slew rate has a variance

of ±10 percent (i.e., ±(18 to 22) mV/µs). This circuit, therefore, must be verified for all

values in this range [116].

To investigate the potential for failure using simulation, the designer would char-

acterize the behavior of the circuit using the process described in Section 1.1. This

characterization begins by running a simulation under nominal conditions. The simulation
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results under nominal conditions for the switched capacitor integrator circuit do not

indicate a potential for failure as shown by the simulation trace in Figure 2.2. The

characterizing simulations should also explore the global extremes of the variation or

corner cases. A simulation for the circuit with a slew rate of ±22 mV/µs is shown in

Figure 2.3, and a simulation with a slew rate of±18 mV/µs is shown in Figure 2.4. Neither

of these simulations shows the potential for error. An experienced analog designer would

recognize the potential for charge injection and run random simulations to characterize

the amount of charge injection. A random simulation for the switched capacitor integrator

where the rate of change for Vout is varied randomly between ±18 to 22 mV/µs is shown in

Figure 2.5. Although the waveform shows some fluctuation in the value of Vout, the results

do not show a failure. A very specific simulation such as the one shown in Figure 2.6 is

required to show the failure via simulation. In the failing simulation, the rate of change

for Vout always increases faster than it decreases causing charge to build up on capacitor

C2, and the integrator to saturate.
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Figure 2.2. A simulation of the switched capacitor integrator circuit under nominal
conditions, an output slew rate of ±20 mV/µs.



21

-1000

-500

0

500

1000

0 500 1000 1500 2000

V
o
u
t

(m
V

)

Time (µs)

Figure 2.3. A simulation of the switched capacitor integrator circuit with an output
slew rate of ±22 mV/µs.
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Figure 2.4. A simulation of the switched capacitor integrator circuit with an output
slew rate of ±18 mV/µs.
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Figure 2.5. A random simulation of the switched capacitor integrator circuit with a
variable output slew rate.

-1000

-500

0

500

1000

1500

2000

0 500 1000 1500 2000

V
o
u
t

(m
V

)

Time (µs)

Figure 2.6. A worst case simulation of the switched capacitor integrator circuit showing
saturation of the op amp.
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2.2 Related Work

AMS circuits contain both digital and analog components. The digital components

lend themselves to being modeled as a sequence of discrete events while the analog com-

ponents are modeled as continuous flows. The class of systems that involve interactions

between continuous and discrete dynamics are called hybrid systems. Several hybrid

system models have been proposed and provide inspiration for the LHPN model presented

in this chapter.

2.2.1 Hybrid Systems Modeling Languages

As hybrid systems (control systems, embedded systems, AMS circuits, etc.) become

more common and complex, specialized modeling languages have been developed to

support the design and verification of hybrid systems. Hybrid systems have the unique

feature that continuous and discrete dynamics must interact. These modeling languages

support the unique nature of this modeling and analysis problem.

Charon [9] is a hybrid systems modeling language that supports hierarchical specifi-

cations and modular simulation. Charon is designed to support state-of-the-art modeling

concepts such as encapsulation, reuse, preemption, and hierarchy. The goal of the

language is to be rich enough to support high-level modeling yet formal enough to support

analysis. Although the language is full featured, it has not been adopted by industry.

The Mathworks tools Simulink and Stateflow are commonly used in industry for

high-level modeling, simulation, and verification of hybrid systems. Simulink provides

a graphical environment to model and design systems using a combination of library

elements and custom blocks. Stateflow adds the ability to create complex state machines

and flow charts that can be used in the Simulink simulation environment. While very

popular, most models produced by Simulink are not well suited for formal analysis of

hybrid systems although work has been done using Simulink as a frontend for the formal

verification tool CheckMate [37].

VHDL is a commonly used digital hardware description language (HDL) [86]. Rec-

ognizing the need for modeling AMS circuits, extensions for AMS modeling were added

to VHDL resulting in the VHDL-AMS language [85]. To enable the modeling of AMS

circuits, VHDL-AMS adds the quantity annotation which is used to specify continuously

varying variables represented by real numbers, and break statements are used to initialize

these real quantities. Real quantities are assigned a rate of change using the ’dot operator

within simultaneous if-use and case-use statements. Conditions on real quantities are
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specified using ’above. The rates of real quantities are updated using simultaneous

statements such as the if-use and case-use. Figure 2.7 shows a VHDL-AMS description

for the abstract behavior of the switched capacitor integrator. In our example, the

Boolean signal Vin represents the input voltage while the continuous quantity Vout

represents the output voltage. Vout is initialized to −1000 mV using a break statement.

The Boolean signal Vin determines the rate of Vout using the if-use statements in our

example. When Vin is 0, Vout increases at a rate between 18 and 22 mV/µs, and when Vin

is 1, Vout decreases at a rate between−22 and−18 mV/µs. This is accomplished using the

span procedure, defined in Section 2.4 as an extension to the nondeterminism package

from [114]. This procedure accepts two real values and returns a random value within

that range. In our example, the process statement controls Vin, and it uses the assign

procedure from the handshake package [114]. This procedure performs an assignment to

a signal and at some random time within a bounded range specified by its parameters and

waits until the assignment has been performed before returning. The assert statement

is used to specify the properties to verify. These properties can be arbitrary Boolean

equations on the signal values and ’above tests of continuous quantities. In our example,

the assert statement checks if Vout falls below −2000 mV or goes above 2000 mV using

the ’above construct. Although assert statements only allow for the specification of

time-domain safety properties, it should be noted that this includes bounded response

time properties. Such properties can be specified by introducing a clock (a continuous

variable that increases at rate 1), and asserting that some state is reached before the

clock exceeds some value.

Verilog is another common digital HDL that has extensions for AMS circuits in the

form of Verilog-AMS [84, 2]. Figure 2.8 is a Verilog-AMS description of the switched

capacitor integrator circuit. Verilog-AMS adds a real data type to model continuous

values. In the description of the switched capacitor integrator, both Vin and Vout are

represented using real variables. Vin is an input to the system. Vout is calculated by

the code and is an output of the system. The rate of Vout is also represented using a

real variable, Vout rate. Initialization of the real variables is done in an initial step

block which initializes Vout to −1 V and Vout rate to 0.02 V/µs. In Verilog-AMS there

are two types of conditionals for real quantities, cross and if. The language definition

of the cross statement requires the simulator to adjust its time step to determine the

exact crossing point of the conditional while the if statement has no such requirement.
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library IEEE;
use IEEE.std logic 1164.all;
use work.nondeterminism.all;
use work.handshake.all;
entity integrator is
end integrator;
architecture switchCap of integrator is

quantity Vout:real;
signal Vin:std logic:=’0’;

begin
break Vout=> -1000.0; --Initial condition

if Vin=’0’ use
Vout’dot == span(18.0,22.0);

elsif Vin=’1’ use
Vout’dot == span(-22.0,-18.0);

end use;
process begin
assign(Vin,’1’,100,100);
assign(Vin,’0’,100,100);

end process;
assert (Vout’above(-2000.0) and

not Vout’above(2000.0))
report "Error: The output voltage saturated."
severity failure;

end switchCap;

Figure 2.7. A behavioral VHDL-AMS description of the switched capacitor integrator
circuit.

The cross statement also specifies the direction of crossing. A ’1’ represents crossing

from below the threshold, and a ’−1’ specifies a crossing from above the threshold. A

’0’ executes the block whenever the threshold is crossed regardless of the direction. The

timer construct can be used to update the value of a continuous variable at a given time

step. Real variables used outside the system must be output to the external system using

the transition construct. The speed at which this transition occurs can be specified.

This description uses these constructs to create a behavioral description of the switched

capacitor integrator.

2.2.2 Automata Based Models

Timed automata [8, 5] are a mature modeling formalism with a strong theoretical

background and adoption in niche industrial settings. There are several mature tools
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‘include "disciplines.h"
module swCap(Vin io,Vout io);

inout Vout io;
electrical Vout io;
real Vin var, Vout var, Vout rate;
analog begin
@(initial step) begin
Vin var = -1.00;
Vout var = -1.00;
Vout rate = 0.020;

end
@(cross(Vin var-0.0,-1)) begin
Vout rate = 0.020;

end
@(cross(Vin var-0.0,1)) begin
Vout rate = -0.020;

end
@(timer(0.0,100e-06)) begin

if (Vin var > 0)
Vin var = -1.0;

else
Vin var = 1.0;

end
@(timer(0.0,1e-06)) begin
Vout var = Vout var + Vout rate;

end
V(Vout io) <+ transition(Vout var,1p,1p,1p);

end
endmodule

Figure 2.8. A behavioral Verilog-AMS of the the switched capacitor integrator circuit.

available for verifying systems modeled by timed automata [125, 162, 12]. While it

is possible to model some hybrid systems using timed automata or extensions of timed

automata [146], the model is obviously limited as only a single continuous quantity (time)

is available. The model works well for real-time systems and a restricted class of hybrid

systems but is not powerful enough to model hybrid systems in general.

Hybrid automata are a generalization of timed automata which allow each variable to

have its own rate of change [7, 6]. The rate can be specified by any mathematical equation

and may depend on the value or rate of other variables. This generality allows hybrid

automata to accurately model even nonlinear hybrid systems. Due to this generality,

hybrid automata are a popular model and are supported by tools such as HyTech [81,
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10, 6], CheckMate [42, 145, 144, 37], red [158], d/dt [16], and PHAVer [55, 56, 57,

58]. However, the generality is a challenge because analyzing a very general model is

computationally expensive. In fact, most tools only support a subset of the features of

hybrid automata.

A linear hybrid automata (LHA) model of the switched capacitor integrator circuit is

shown in Figure 2.9. This example helps illustrate the syntax and semantics of a restricted

subset of hybrid automata, LHA. A formal definition of LHA can be found in [10]. LHA

have two types of data variables X = {x1, x2, . . . , xn} and Ẋ = {ẋ1, ẋ2, . . . , ẋn} where ẋi

refers to the first derivative of xi with respect to time. In Figure 2.9, X = {Vout , clk}; Ẋ =

{V̇out , ˙clk}; and the initial values for Vout and clk are −1000 mV and 0 µs, respectively.

The vertices in an LHA graph are called control locations. Figure 2.9 has two control

locations labeled low and high, and the location low is initially active. LHA have

transitions to move between control locations. In Figure 2.9, there are two transitions:

t1 = (low,high) and t2 = (high, low). LHA have invariants over the data variables in

the system. If the automaton is in location v, inv(v) may force a transition to occur by

preventing time from progressing beyond a point in which inv(v) is true. An example of

an invariant in Figure 2.9 is 0 µs ≤ clk ≤ 100 µs in location low. This invariant has the

effect of preventing clk from exceeding the value of 100 µs by stopping time or forcing a

transition to be taken. Each variable in each control location v may have a range of rates

of the form ẋk := [lk, uk] which assigns an inclusive range of rational values between lk

and uk to ẋk. When assigning a single rate, the abbreviated form ẋk := ak is used. For

example, location low in Figure 2.9 has ranges of rates of V̇out := [18, 22] mV/µs and
˙clk = 1. Each transition may have an action that is executed when the transition is taken.

The action is a guarded command act(t) = (guard(t) → assign(t)) where guard(t) is a

Boolean formula of predicates on the data variables and assign(t) is a set of data variable

assignments of the form xk := [lk, uk] which assigns an inclusive range of rational values

between lk and uk to xk. When assigning a single value, the abbreviated form xk := ak is

used. In Figure 2.9, the action for the transition between low and high is clk = 100 µs

→ clk := 0 µs where clk = 100 µs is the guard and clk := 0 µs is the assignment.

Formal semantics for hybrid automata are given in [10]. Intuitively, transitions in

LHA are controlled by a combination of guards and invariants. While in a location,

the data variables change at their specified rate as long as the invariant is satisfied. If

progress would violate the invariant, time progression is halted. In Figure 2.9, beginning
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V̇out := [−22,−18]

high

0 ≤ clk ≤ 100

Vout = −1000 ∧ clk = 0

0 ≤ clk ≤ 100

low
clk = 100 → clk := 0

clk = 100 → clk := 0
∧ ˙clk = 1 ∧ ˙clk = 1

V̇out := [18, 22]

Figure 2.9. A hybrid automata model of the switched capacitor integrator circuit.

in location low with Vout equal to −1000 mV and clk equal to 0 µs, Vout is increasing

at a rate between 18 and 22 mV/µs for 100 µs. Once clk equals 100 µs, the enabling

condition on the transition between low and high becomes enabled and the transition

occurs before clk increases beyond 100 µs which would violate the invariant. While in

location high, Vout decreases at a rate been 18 and 22 mV/µs until clk equals 100 µs.

At this point, a transition into the low state occurs and the process repeats.

2.2.3 Petri Net Based Models

Time/Timed Petri nets (TPNs) [109] are Petri net based formalisms used to model

timed circuits and systems. TPNs extend traditional Petri nets (PNs) [124] by adding

timers to the transitions/places of the net. These formalisms are well researched and

several tools have been developed to support analysis of TPNs [161, 115, 28]. Similar

to timed automata, TPNs do not have the modeling power necessary to model hybrid

systems but have provided inspiration for the development of hybrid Petri net (HPN)

models.

While PNs require a discrete number of tokens be removed upon firing a transition,

continuous Petri nets (CPNs) [47] allow a real valued number of tokens to be removed

upon a transition firing. The notion of CPNs is extended to timed continuous Petri

nets (TCPNs) which remove a real valued number of tokens after a delay. The TCPN

formulation results in a model where tokens are removed at a given rate of change which

is an important part of an HPN model.

The hybrid net condition/event system (HNCES) model [34] extends previously de-

veloped PN models. This model takes TPNs and CPNs and allows them to interact via

condition and event signals. This is done by adding input and output conditions and

events to a TPN or CPN. For example, a CPN may have a condition that triggers an
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output event when a continuous state reaches a given threshold. The conditions and

events of the TPNs and CPNs are connected to form an HNCES. These connections

between the discrete and continuous dynamics allow HNCES to model hybrid systems.

An HPN model using both PNs and CPNs is presented in [48]. This formulation

allows transitions to be enabled or disabled by incoming arcs from both PNs and CPNs.

The discrete part of the net influences the continuous part by enabling or disabling a

continuous transition (flow) based upon its marking. Continuous quantities may also

be used to enable or disable discrete transition firings. When the value of a continuous

place reaches a specific value it enables the firing of a discrete transition. In this model,

continuous markings may be converted into discrete markings and vise versa.

Another set of HPN models are based on stochastic Petri nets [36]. The two models,

fluid stochastic Petri nets (FSPNs) [83] and first-order hybrid Petri nets (FOHPNs) [23],

are very similar. Both models allow continuous and discrete places to be connected via

transitions. The main difference between FSPNs and FOHPNs is that the rates in FSPNs

are piecewise constant functions defined by the marking of the entire net, but the rates

in FOHPNs are specified by a vector of constants.

During the evolution of our HPN model, we created timed hybrid Petri nets (THPNs)

which are similar to HNCES. THPNs are described briefly using a THPN model of the

switched capacitor integrator in Figure 2.10. For a complete description of THPNs see

[104]. Similar to the HPN model in [48], THPNs are composed of a discrete PN and

a CPN. Discrete places are depicted as circles, discrete transitions as solid boxes, and

markings as solid circles (see discrete place pI and discrete transition DecL in Figure 2.10

where pI is initially marked). When a discrete transition fires, it removes one token from

each of the incoming places and adds one token to each of the outgoing places. Arcs from a

discrete place to a discrete transition are also annotated with a bounded delay assignment

(arc (rP1, IncU ) in Figure 2.10 has a bounded delay assignment of [0, 100]). Once the

discrete transition becomes enabled, it fires between the lower and upper delay values.

Graphically, continuous places are depicted as double circles, continuous transitions are

depicted as empty boxes, and each continuous transition is annotated with its flow rate.

For example, continuous place Vout is initially −1000 mV and continuous transition iL has

a rate of 18 mV/µs in Figure 2.10. Continuous transitions fire continuously while they

contain tokens. The flow rate of a continuous place is determined by adding the rates of all

enabled incoming transitions and subtracting the rates of all enabled outgoing transitions.
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[0, 0]

[0, 0]

[0, 100]

[0, 100]

22

18

18

22

[0, 0][100, 100]

iL

dL

IncL

iU

dU

pI

Vout = −1000

IncU

DecU

DecL

Vout ≤ −2000

[0, 0]
Vout ≥ 2000

pD

rP1

rP3

rP4

fail2fail1

rP2

[0, 0]
[0, 0]

[100, 100]

Figure 2.10. A THPN model of the switched capacitor integrator circuit.

The discrete PN and the CPN communicate via arcs denoted as dashed lines. An arc

from a continuous place to a discrete transition is annotated with an enabling condition

and a bounded delay assignment as demonstrated by (Vout, fail1) in Figure 2.10. The

discrete transition fires between the lower bound and the upper bound of the delay after

the enabling condition becomes true. An arc from a discrete transition to a continuous

place enables the continuous transition when the discrete place is marked. For example,

arc (rP1, iL), is initially enabled. Arcs from discrete transitions to continuous places add

a single token to the continuous place when the discrete arc fires. Arcs from continuous

transitions to discrete places are not allowed.

The semantics of THPNs are illustrated using the THPN for the integrator shown in

Figure 2.10. In the initial state, Vout increases with a rate of 18 mV/µs. After a period

of 0 to 100 µs, IncU fires which causes Vout to begin to increase with a rate of 22 mV/µs.
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After 100 µs of Vout increasing, the transition DecL fires resulting in Vout beginning to

decrease at a rate of 18 mV/µs which it does for 0 to 100 µs. When DecU fires, Vout

begins to decrease with a rate of 22 mV/µs. Finally, after 100 µs of decrease, IncL fires

returning the LHPN to its initial discrete marking. fail1 and fail2 are transitions used to

remove tokens from places pI or pD when Vout exceeds 2000 mV or goes below −2000 mV.

The firing of a fail transition causes the model to deadlock.

2.3 Labeled Hybrid Petri Nets: Syntax

This chapter presents a new HPN model, LHPNs, developed to represent AMS circuits

and inspired by features in both hybrid Petri nets [48] and hybrid automata [7, 6]. While

the hybrid automata model is probably the most common model used in hybrid system

modeling and verification, we found it inadequate for our purposes. The creation of hybrid

automata models is cumbersome and nonintuitive due to the guard/invariant interactions

required to move from one control location to another. More importantly, it is difficult

to automatically generate hybrid automata models from AMS-HDL code and simulation

traces. HPNs and THPNs are also powerful enough to model AMS circuits and formal

enough to be used for formal verification but are cumbersome to generate from AMS-HDL

code and simulation traces. LHPNs are a model that is powerful enough to model AMS

circuits, formal enough to be used for formal verification, and amenable to automatic

model generation/compilation.

An LHPN is a tuple N = 〈P, T,B, V, F, L,M0, S0, Q0, R0〉:

• P is a finite set of places;

• T is a finite set of transitions;

• B is a finite set of Boolean signals;

• V is a finite set of continuous variables;

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• L is a tuple of labels defined below;

• M0 ⊆ P is the set of initially marked places;

• S0 is the set of initial Boolean signal values;

• Q0 is the set of initial ranges of values for each continuous variable; and

• R0 is the set of initial ranges of rates for each continuous variable.
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A key component of LHPNs are the labels. The labels permitted in LHPNs are

represented using a tuple L = 〈En,D ,BA,VA,RA〉:

• En : T → P labels each transition t ∈ T with an enabling condition;

• D : T → |Q| × (|Q| ∪ {∞}) labels each transition t ∈ T with a lower and upper

bound [dl, du] on the delay for t to fire;

• BA : T → 2(B×{0,1}) labels each transition t ∈ T with Boolean signal assignments

made when t fires;

• VA : T → 2(V×Q×Q) labels each transition t ∈ T with continuous variable assign-

ment ranges, consisting of a lower and upper bound [al, au], that are made when t

fires;

• RA : T → 2(V×Q×Q) labels each transition t ∈ T with range of rates, consisting of

a lower and upper bound [rl, ru], that are assigned when t fires.

The enabling condition is defined using a restricted set of hybrid separation logic (HSL)

formulas from the set P which are a Boolean combination of Boolean signals and separa-

tion predicates (inequalities relating continuous variables to constants). These formulas

satisfy the following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | vi ≥ ki

where bi is a Boolean signal, vi is a continuous variable, and ki is a rational constant in Q.

Since nonstrict inequalities are not supported by the DBM-based state space exploration

analyzer presented in Chapter 4, the negation of ≥ inequalities represent ≤ inequalities.

Figure 2.11 shows an LHPN model for the switched capacitor integrator. The LHPN

controlling the rate of change for Vout is shown in Figure 2.11a. This LHPN represents

the behavior that relates the value of the input to the rate of change of the output. The

LHPN in Figure 2.11a has a single place and two transitions. The LHPN is composed

of a variable representing the digital value of Vin; a rate variable for Vout, V̇out; and two

rate Boolean signals representing the current rate of Vout, bVout [18,22] and bVout [−22,−18].

The enabling condition on transition t0 becomes true when Vin is false, and bVout [18,22] is

false. The assignment on the transition assigns the rate of Vout to [18, 22] as well as the

corresponding rate Boolean signals. As a result, transition t0 changes the rate of Vout to

[18, 22] when Vin is low and the rate is not already set to [18, 22]. Transition t1 is similar

except it changes the rate of Vout to [−22,−18] when Vin becomes true.
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p2

p1

t3
t2

[100, 100] 〈Vin := T 〉

[100, 100] 〈Vin := F 〉

t1
p0

t0

bV out [−22,−18] := T 〉

{¬Vin ∧ ¬bV out [18,22]}

bV out [−22,−18] := F 〉

{Vin ∧ ¬bV out [−22,−18]}

〈V̇out := [18, 22], bV out [18,22] := T,

〈V̇out := [−22,−18], bV out [18,22] := F,

S0 = {¬Vin,¬fail , bV out [18,22],¬bV out [−22,−18]}
R0 = {V̇out = [18, 22]}
Q0 = {Vout = −1000}

[0, 0]〈fail := T 〉

t4

p3

{¬(Vout ≥ −2000) ∨ Vout ≥ 2000}

(a)

(c)

(b)

(d)

Figure 2.11. An LHPN model of the switched capacitor integrator circuit. (a) The
LHPN controlling the rate of change for variable Vout. (b) The LHPN changing the
Boolean signal Vin. (c) The LHPN checking for saturation. (d) The initial values for
Vout, its rate of change, and the Boolean signals.
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The input waveform for the switched capacitor integrator is a 5 kHz square wave. This

square wave input is represented using the LHPN in Figure 2.11b. In this LHPN, delay

bounds are used in conjunction with Boolean signal assignments to model the periodic

square wave input. Transition t2 waits for exactly 100 µs then sets the Boolean value of

Vin to true. Transition t3 also waits for exactly 100 µs then sets the Boolean value of Vin

to false.

The LHPN representing the property to be verified is shown in Figure 2.11c. This

LHPN is enabled by the complement of the property. In this case, it becomes enabled

when Vout falls below −2000 mV or exceeds a value of 2000 mV. When this enabling

condition is true, transition t4 fires and sets the Boolean signal fail to true indicating a

failure of the system. The final component to the LHPN model is the initial conditions

found in Figure 2.11d. These indicate that the initial value, Q0, of Vout is −1000, the

initial rate, R0, of Vout is [18, 22], and the initial Boolean values, S0, are false for Vin,

fail, and bVout [−22,−18] and true for bVout [18,22].

2.4 Labeled Hybrid Petri Nets:

VHDL-AMS Compiler

The LHPN model is designed to be readily generated from VHDL-AMS behavioral

descriptions of AMS circuits. Using a subset of VHDL-AMS, AMS designers can create

abstract behavioral descriptions of AMS circuits which can be formally verified using

LEMA’s VHDL-AMS to LHPN compiler and one of our LHPN state space exploration

engines. The VHDL-AMS to LHPN compiler uses a method similar to the one in [166].

Each discrete value is modeled using a signal of type std logic and each continuous value

is modeled using a quantity of type real. The initialization of discrete variables is done

in the declaration while the initialization of continuous variables uses break statements.

The assignments to discrete quantities are specified within process statements without

sensitivity lists. A process statement can include wait, signal assignment, if-then,

case, and while-loop statements. Signal assignment statements use the assign proce-

dure defined in the the handshake package [114]. The assign procedure performs an

assignment to a signal at some random time within a bounded range specified by its

parameters and waits until the assignment has been performed before returning. The

assignments of rates to real quantities uses the ’dot notation within simultaneous if-use

and case-use statements. The span procedure, defined in Figure 2.12 as an extension
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to the nondeterminism package from [114], assigns a range of rates to a continuous

variable by taking two real values and returning a random value within that range. To

test the current value of discrete quantities, if-use statements and guard procedures

are used. The guard procedure, defined in the handshake package, checks the value of a

Boolean signal. If the Boolean signal is already the specified value, the procedure returns.

Otherwise, the guard procedure waits for the Boolean signal to become the specified

value before returning. There are two variants of the guard procedure, guard or and

guard and. The guard or procedure takes a set of signals and values, and returns when

one of the signals match the specified value. The guard and procedure takes a set of

signals and values, and returns when all of the signals match their specified values. The

’above statement is used to test the value of real quantities.

Properties are specified using assert statements. These properties can be arbitrary

Boolean equations on the signal values and ’above tests of continuous quantities. Al-

though assert statements only allow for the specification of time-domain safety prop-

erties, it should be noted that this includes bounded response time properties. Such

properties can be specified by introducing a clock (a continuous variable that increases

at rate 1), and asserting that some state is reached before the clock exceeds some value.

The LHPN in Figure 2.11 is automatically generated from the VHDL-AMS model of

the switched capacitor integrator circuit in Figure 2.7. The break statement sets the

initial value of Vout to −1000 mV as specified in Q0 of Figure 2.11d. The declaration of

Vin sets its initial value to false as specified in S0 of Figure 2.11d. The if-use statement

impure function span(constant lower : in real;
constant upper : in real)

return real is
variable result : real;
variable tmp real : real;
variable seed1 : integer := 844396720;
variable seed2 : integer := 821616997;

begin
uniform(seed1, seed2, tmp real);
result := (tmp real * (upper - lower) + lower);
return result;

end span;

Figure 2.12. VHDL-AMS code for the span procedure.
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compiles into the LHPN in Figure 2.11a. The if clauses compile into enabling conditions.

For example, t0 is enabled by ¬Vin which corresponds to the if statement, and t1 is

enabled by Vin which corresponds to the elsif statement. The rate assignment of Vout

is accomplished using rate assignments, on transitions t0 and t1. Transition t0 assigns a

rate of [18, 22] which corresponds to the rate assigned when Vin is false, and transition

t1 assigns a rate of [−22,−18] which corresponds to the rate assigned when Vin is true.

The rate Boolean signals, bVout [18,22] and bVout [−22,−18], are added by the compiler to

prevent vacuous firings of transitions t0 and t1. One rate Boolean signal is required for

each rate assignment in the corresponding if-use statement.

The process statement compiles into the LHPN in Figure 2.11b. The timing bounds

in the assign statement are compiled into a delay bound on the transitions, [100, 100]

on t2 for example. The assignment in the assign statement translates into a Boolean

signal assignment such as 〈Vin := T 〉 on t2. The assignments in the process statement

are executed in a perpetual loop, so the corresponding LHPN is also a loop.

The assert statement compiles into the LHPN shown in Figure 2.11c. The transi-

tion t4 becomes true when the complement of the assert statement is satisfied. When

transition t4 is enabled, it fires immediately, and sets the Boolean signal fail to true

indicating a failure.

The items in the initial state not specified in declarations are derived from the initial

state of the LHPN using the specified initial values. For instance, when considering the

if-use statement if Vin is false the rate of change for Vout is [18, 22]. This is reflected

in the initial state, R0, where Vout = [18, 22]. Based on the initial rate assignment, the

compiler derives the initial values for the rate Boolean signals.

2.5 Labeled Hybrid Petri Nets: Semantics

The state of an LHPN is defined using a 7-tuple of the form λ = 〈M,S,Q,R,RR, I, C〉

where:

• M ⊆ P is the set of marked places;

• S : B → {0, 1} is the value of each Boolean signal;

• Q : V → Q is the value of each continuous variable;

• R : V → Q is the rate of each continuous variable;

• RR : V → Q×Q is the current range of possible rates for each continuous variable;
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• I : vi ≥ ki → {0, 1} is the value of each inequality;

• C : T → Q is the value of each transition clock.

The current state of an LHPN can change via a transition firing or time advancement.

Every transition t ∈ T has a preset denoted by •t = {p | (p, t) ∈ F} and a postset

denoted by t• = {p | (t, p) ∈ F}. A transition t ∈ T is enabled when all the places in

its preset are marked (i.e., •t ⊆ M), and the enabling condition on t evaluates to true

(i.e., Eval(En(t), S,Q) where the function Eval evaluates a restricted HSL formula for

a given state). The function EN (M,S,Q) returns the set of enabled transitions for the

given state. When a transition t becomes enabled, its clock is initialized to zero. The

transition t can then fire at any time after its clock satisfies its lower delay bound and

before it exceeds its upper delay bound (i.e., dl(t) ≤ C(t) ≤ du(t)) as long as it remains

continuously enabled.

From a state λ, a new state λ′ can be reached by firing a transition t found in

EN (M,S,Q). When a transition fires, the marking is updated by removing all tokens from

places in the preset of t and adding tokens to all places in the postset of t. Boolean signal,

value, rate, and rate range assignments associated with transition t are executed. The

span function selects a value in the range of possible values.1 The values of all inequalities

are checked and updated accordingly based on changes that may have happened via the

Boolean signal or value assignments. Clocks associated with newly enabled transitions

are reset to 0. This new state is formally defined as follows:

• M ′ = (M − •t) ∪ t•;

• S′(bi) =

{
s if ∃(bi, s) ∈ BA(t)
S(bi) otherwise

• Q′(vi) =

{
span(al, au) if ∃(vi, al, au) ∈ VA(t)
Q(vi) otherwise

• R′(vi) =

{
rl if ∃(vi, rl, ru) ∈ RA(t)
R(vi) otherwise

• RR′(vi) =

{
(rl, ru) if ∃(vi, rl, ru) ∈ RA(t)
RR(vi) otherwise

1Note that using the span function to select a specific a value results in a less precise (and less
complex) semantics than those described in [157]. Namely, the semantics disallow traces that may
be explored using our DBM-based state space exploration engine. However, allowing for [al, au]
is easily handled in our DBM-based analysis method.
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• I ′(vi ≥ ki) = (Q′(vi) ≥ ki)

• C ′(ti) =


0 if ti ∈ EN (M ′, S′, Q′)

∧ ti 6∈ EN (M,S,Q)
C(ti) otherwise

In a state λ, time can advance by any value τ which is less than τmax(λ). The value

of τmax(λ) is the largest amount of time that may pass before a transition is forced to fire

(i.e., the clock associated with it exceeds its upper bound) or an inequality changes value

(i.e., its continuous variable’s value vi crosses the constant ki). It is defined as follows:

τmax(λ) = min


C(ti)− du(ti) ∀ti ∈ EN (M,S,Q)
ki−Q(vi)
R(vi)

∀vi ≥ ki ∈ I.
I(vi ≥ ki) 6= (R(vi) ≥ 0)

When time advances by τ , the values of continuous variables are updated by adding

the current value of the variable to τ multiplied by the current rate. The rate is changed to

a potentially new rate between the lower and upper bound of the rate range. Inequalities

are updated based on the new values of the continuous variables. If the newly updated

inequalities have enabled transitions, the clocks for these newly enabled transitions are

set to 0. The value of τ is added to the current value of all other clocks. The marking,

Boolean signals, and rate ranges are unaffected. The new state after time advancement

τ is defined formally as follows:

• M ′ = M

• S′ = S

• Q′(vi) = Q(vi) + τ ·R(vi)

• R′ = span(rl, ru)

• RR′ = RR

• I ′(vi ≥ ki) =

{
R(vi) ≥ 0 if Q′(vi) = ki

I(vi ≥ ki) otherwise

• C ′(ti) =


0 if ti ∈ EN (M ′, S′, Q′)

∧ ti 6∈ EN (M,S,Q)
C(ti) + τ otherwise

The semantics of the LHPN model are illustrated using the LHPN example in Fig-

ure 2.11. In the initial state, p0, p1, and p3 are marked; Vin and bVout [−22,−18] are false;
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bVout [18,22] is true; Vout is −1000; and the rate of Vout is 18 to 22 mV/µs. The only

transition enabled in the initial state is t2 which limits the advancement of time to 100 µs

due to its delay bound. This time advancement allows the value of Vout to be 800 mV

if the rate of change for Vout is 18 mV/µs. Transition t2 fires after 100 µs. The firing of

t2 removes the token from place p1 and places it in place p2 as well as assigning Vin to

true. When Vin becomes to true, transition t1 becomes enabled and fires in zero time

changing the rate of Vout to −22 to −18 mV/µs and assigning bVout [18,22] to false and

bVout [−22,−18] to true. At this point, the only enabled transition is t3 which has a delay

bound of [100, 100]. Therefore, time advances 100 µs before transition t3 must fire. When

t3 fires, Vin is assigned to false. This enables t0 to fire in zero time and change the rate

of Vout to 18 to 22 mV/µs. Operation continues in this manner until the predicate on

transition t4 becomes true. At this point, transition t4 fires setting the Boolean signal

fail to true indicating a failure of the system.

2.6 LHPN Expansion for Constant Rates

The LHPNs generated from the VHDL-AMS compiler include ranges of rates. These

LHPNs cannot be directly analyzed using LEMA’s DBM-based model checker described in

Chapter 4. To enable analysis of these LHPN models using the DBM-based approach, a

piecewise approximation of the range of rates is created by performing a transformation on

the LHPN. The transformation of the LHPN can be performed on every LHPN generated

by LEMA’s VHDL-AMS compiler and model generator. In general, there are restrictions on

the types of LHPNs that can be transformed. There are two requirements for an LHPN

to be transformed. The first requirement is that the rates for a given variable must only

be assigned in one connected LHPN component. The second requirement is that the

initial rate assignment must be consistent with a valid non-initial rate assignment for the

initial marking. All LHPNs that satisfy these constraints may be transformed.

There are three cases. When the range of rates are nonnegative or nonpositive, this

transformation initially sets the rate to the minimum of the absolute value of the rate

bounds, min(|rl| , |ru|). The rate is allowed to change to the maximum of the absolute

value of the rate bounds, max(|rl| , |ru|), at any time while the transition remains enabled.

After the rate changes to its upper bound, it is not allowed to change back to its lower

bound. Figure 2.13 illustrates three possible paths explored with this approximation

using a variable whose rate of change is between 18 and 22 mV/µs and value is initially
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Figure 2.13. An example of the piecewise approximation used by LHPN expansion for
nonnegative and nonpositive ranges of rates.

−1000 mV. The dashed line represents the path where the rate remains at the lower

bound, 18 mV/µs, for the entire period. The dotted line represents the path where

the rate immediately changes to the upper bound, 22 mV/µs. The solid line represents

the path where the change to the upper bound of the rate happens at 50 µs. This

approximation enables the analysis algorithm to represent all terminal paths in the model

although it does not represent all intermediate paths. Note that nonpositive rate ranges

are also handled in this way.

Figure 2.14 demonstrates how the transformation proceeds when the rate being trans-

formed is either nonnegative or nonpositive. In this case, a single transition and Boolean

signal are added, t1 and r0. The original rate assignment is changed to the minimum of

the absolute value of the rate bounds (i.e., 〈ȧ := 1〉), and the associated Boolean signal

is set to true on the originating transition (i.e., 〈r0 := T 〉). The new transition, t1, is

enabled to fire any time after the Boolean signal r0 is true. When transition t1 fires,

the rate is set to the maximum of the absolute value of the rate bounds (i.e., 〈ȧ := 2〉),
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and the Boolean signal r0 is set to false (i.e., r0 := F ) to prevent vacuous firings of the

transition.

Figure 2.15 illustrates why it is necessary to use the absolute value of the range of

rates. In this case, if the absolute value is not used, a spurious deadlock results. An

example where deadlock can occur is in Figure 2.15b. Deadlock occurs if transition t0

fires and zero time later t2 fires. When t2 fires, the enabling condition {a ≥ 5} is still true

p0 p0
{r0}[0,∞]

〈ȧ := 2, r0 := F 〉

t0 〈ȧ := 1, r0 := T 〉

t1

(a) (b)

t0〈ȧ := [1, 2]〉

Figure 2.14. A template for transforming LHPNs where the range of rates are nonneg-
ative or nonpositive. (a) Original LHPN. (b) Transformed LHPN.

t1

〈ȧ := −2, r0 := T 〉
{a ≥ 5}

{¬a ≥ 3}
(b)

t0

p0

〈ȧ := [−2, 0]〉
{a ≥ 5}

(a)
t1{¬a ≥ 3}

p0
{r0}[0,∞]

〈ȧ := −2, r0 := F 〉

t0

t2

〈ȧ := 0, r0 := T 〉

t1

{a ≥ 5}

{¬a ≥ 3}
(c)

p0
{r0}[0,∞]

〈ȧ := 0, r0 := F 〉

t0

t2

Figure 2.15. A template for transforming LHPNs where the range of rates is nonpos-
itive. (a) Original LHPN. (b) Transformed LHPN without using absolute value before
comparison. (c) Transformed LHPN using a correct transform.
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because no time has passed. When t2 fires, a stops moving which prevents the enabling

condition {¬a ≥ 3} on t1 from being satisfied. From this state, the LHPN has no possible

events resulting in a deadlock. The correct transformation in Figure 2.15c uses the upper

bound of zero for the rate in t0 (i.e., 〈a := 0〉), and the lower bound for the rate assignment

of t2 (i.e., 〈a := −2〉). Deadlock does not occur using this transformation. When t0 fires,

a is stopped and can remain stopped for an infinite amount of time. The difference from

Figure 2.15b is that t2 can fire and set the rate of a to −2 allowing a to decrease and

eventually satisfy the enabling condition of t1.

When rates span zero, the method used to achieve all possible final values sets the

rate to zero initially. The rate is subsequently allowed to change to be either positive

or negative but not both. Figure 2.16 illustrates the functionality of this method using

a variable with a range of rates from −10 mV/µs to 10 mV/µs that is initialized to

0 mV/µs. If the rate changes to the negative bound of −10 mV/µs immediately, the

most negative trace is produced. This is shown by the decreasing solid line that reaches

−1000 mV in Figure 2.16. If the converse is true, and the positive rate change to 10 mV/µs

occurs immediately the most positive possible value, 1000 mV, is reached as shown by

the increasing solid line in Figure 2.16. If the rate stays at zero for a period of time

then changes to either the positive or negative bound an intermediate trace value results.

These intermediate traces are illustrated using the dashed lines in Figure 2.16. If the rate

remains at zero for 50 µs then changes to 10 mV/µs a value of 500 mV is reached. If

the rate remains at zero for 75 µs then changes to −10 mV/µs a value of −250 mV is

reached. The final case in Figure 2.16 is when the rate does not change and a value of

zero is reached as shown by the dotted line. Again all terminal paths are represented,

but the transformed LHPN does not represent all intermediate paths.

Figure 2.17 depicts the second template which uses the method presented for rates

spanning zero. This template requires the addition of two transitions and one Boolean

signal, t1, t2, and r0, respectively. The rate of the originating transition, t0, is set to zero

(i.e., 〈ȧ := 0〉), and the associated Boolean signal is set to true (i.e., 〈r0 := T 〉). The

rates of the two additional transitions are set to the lower and upper bounds, respectively.

Each of the newly added transitions are enabled when the associated Boolean signal is

true and set this signal to false upon firing to prevent both the positive and negative

rate from occurring in the same trace.
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Figure 2.16. An example of the piecewise approximation used by LHPN expansion for
ranges of rate that span zero.

{r0}[0,∞]

t0 〈ȧ := 0, r0 := T 〉

{r0}[0,∞]

〈ȧ := 5, r0 := F 〉 〈ȧ := −2, r0 := F 〉
t1t2

p0

t0〈ȧ := [−2, 5]〉

p0

(a)

(b)

Figure 2.17. A template for transforming LHPNs where the range of rates spans zero.
(a) Original LHPN. (b) Transformed LHPN.
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Figure 2.18 demonstrates how the transformation proceeds when the place has mul-

tiple different incoming rates for the same variable. Each transition is transformed

separately using one of the three templates described previously. A different Boolean

signal is used for the two transitions which enables the LHPN to track which transition

firing caused the rate assignment, and therefore, which rate assignment is allowed in the

current state.

Figure 2.19 depicts the third template which ensures that the rate can change even

when an explicit assignment is not made. For every transition in a rate changing LHPN

that does not have a rate assignment for each variable whose rate is changed in the LHPN,

the rate from the previously made rate assignment is propagated forward. In Figure 2.19,

transition t1 does not have a rate assignment. In the transformed net, the rate from t0

is propagated forward to allow a rate change to the upper bound in place p1. In general,

the additional transitions must be propagated along all paths in the LHPN until a new

rate assignment is encountered for the given variable along each path.

The LHPNs in Figure 2.20 show the result of the LHPN expansion for constant rates

applied to the LHPN in Figure 2.11a. In Figure 2.20a, the rate assignment on t0 is

changed from [18, 22] to 18 in Figure 2.20b. Upon firing t0, the Boolean signal r0 is set

to true enabling the firing of t5. The delay bound on t5 is [0,∞] allowing t5 to fire at

any time in the future while the enabling condition remains satisfied. When t5 fires it

p0

t0 t1〈ȧ := [3, 5]〉 〈ȧ := [1, 2]〉

{r1}[0,∞]{r0}[0,∞]

〈ȧ := 5, r0 := F, r1 := F 〉 〈ȧ := 2, r0 := F, r1 := F 〉
t3t2

t1 〈ȧ := 1, r1 := T 〉〈ȧ := 3, r0 := T 〉 t0

p0

(b)

(a)

Figure 2.18. An example of an LHPN transformation where the LHPN has multiple
different incoming rates for the same continuous variable. (a) Original LHPN. (b)
Transformed LHPN.
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t0

p0

〈ȧ := [1, 2]〉
{a ≥ 5}

t1{¬a ≥ 3}

p0
{r0}[0,∞]

t0

t2

t1

{a ≥ 5}

p1

(a) (b)

p1
{r0}[0,∞]

t3

〈ȧ := 1, r0 := T 〉

〈ȧ := 2, r0 := F 〉

〈ȧ := 2, r0 := F 〉

{¬a ≥ 3}

Figure 2.19. An example of an LHPN transformation where the LHPN does not have
a rate assignment on every transition. (a) Original LHPN. (b) Transformed LHPN.

sets the rate to the upper bound, 22, and sets the Boolean signal r0 to false preventing

vacuous rate assignments. A similar transformation is performed on transition t1.

As this expansion is an approximation, it is possible that the approximation may

add the potential for a false positive verification result. Namely, the introduction of the

approximation may lead the verification engine to find that an LHPN satisfies a property

when a failure exists. A specific type of property is required to expose this type of failure.

The property requires that the system take a specific trajectory through the state space

and check this trajectory in at least two locations. For example, the LHPN in Figure 2.21a

has a failure. Initially, t0 fires setting V1 to zero and V2 to zero. Next, t5 fires setting the

rate of V1 to one, and the rate of V2 to the range of one to two. If V2 moves at a rate of

one for the next five time units, V1 is five and V2 is five. After five time units, the rate of

V2 changes to two and remains stable at two for five time units. At the end of ten time

units V1 is ten and V2 is fifteen. This state enables the firing of t1. After firing t1, the

rate of V2 changes back to one. When another ten time units pass V1 is twenty and V2 is

twenty-five. This state results in the firing of t4 which indicates a failure.

The LHPN in Figure 2.21a is transformed into the LHPN of Figure 2.21b using the

transforms described in this section. The failure demonstrated on the original LHPN is

no longer present in the transformed LHPN. Initially, t0 fires and sets V1 to zero and

V2 to zero. Next, t5 fires setting the rate of V1 to one, the rate of V2 to one, and r0 to
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t1
p0

t0 {Vin ∧ ¬bV out [−22,−18]}

bV out [−22,−18] := T 〉

bV out [−22,−18] := F 〉

{¬Vin ∧ ¬bV out [18,22]}
〈V̇out := [18, 22], bV out [18,22] := T,

Q0 = {Vout = −1000}

〈V̇out := [−22,−18], bV out [18,22] := F,

R0 = {V̇out = [18, 22]}
S0 = {¬Vin,¬fail , bV out [18,22],¬bV out [−22,−18]}

(a)

t1
p0

t0

{r0}[0,∞]

{r1}[0,∞] r1 := T 〉

r1 := F 〉

t6

t5

bV out [−22,−18] := T, r0 := F,

bV out [−22,−18] := F, r0 := T,

〈V̇out := 18, bV out [18,22] := T,

{¬Vin ∧ ¬bV out [18,22]} 〈V̇out := 22, r0 := F 〉

{Vin ∧ ¬bV out [−22,−18]}
〈V̇out := −22, bV out [18,22] := F,

Q0 = {Vout = −1000}

〈V̇out := −18, r1 := F 〉

R0 = {V̇out = 18}
S0 = {¬Vin,¬fail , bV out [18,22],¬bV out [−22,−18], r0,¬r1}

(b)

Figure 2.20. LHPNs demonstrating ranges of rates transformed to piecewise constant
rates that change nondeterministically. (a) Original LHPN from Figure 2.11a. Parts b
and c are not shown because they do not change. (b) Transformed LHPN.
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true. After five time units, V1 is five and V2 is five. At this time, t6 could fire setting

the rate of V2 to two and the Boolean signal v0 to false. Note that if t6 fires later or

does not fire, then t1 does not become enabled and t2 fires also avoiding the failure. After

another five time units, V1 is ten and V2 is fifteen. In this state, transition t1 fires. Time

advances by ten time units at which point V1 is twenty and V2 is thirty-five. Transition

t4 is not allowed to fire. The constant rate expansion of the LHPN has eliminated the

failure. This demonstrates the potential introduction of false positives using the LHPN

expansion approximation. However, in many cases this approximation is suitable and

does not allow the potential for false positive traces. In our investigations, we have never

encountered a real property with such a false positive.
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S0 = {¬fail}
R0 = {V̇1 = 0, V̇2 = 0}

t1

t3

t2

t0

p0

p1

p2

〈V1 := 0, V2 := 0〉

{V1 ≥ 20 ∧ V2 ≥ 30}

{V1 ≥ 10∧

¬V2 ≥ 15}

{V1 ≥ 10 ∧ V2 ≥ 15}

〈fail := T 〉 t4
{V1 ≥ 20 ∧ ¬V2 ≥ 30}

〈V̇1 := 1, V̇2 := [1, 2]〉 t5

p4

p3

Q0 = {V1 = 0, V2 = 0}

(a)

t1

t3

t2

t0

p0

p1

p2

〈V1 := 0, V2 := 0〉

t5

p4

p3

〈V̇1 := 1, V̇2 := 1, r0 := T 〉

t6
{r0}

{V1 ≥ 20 ∧ V2 ≥ 30}

{V1 ≥ 10∧

¬V2 ≥ 15}

{V1 ≥ 10 ∧ V2 ≥ 15}

〈V̇2 := 2, r0 := F 〉[0,∞]

〈fail := T 〉 t4
{V1 ≥ 20 ∧ ¬V2 ≥ 30}

Q0 = {V1 = 0, V2 = 0}
R0 = {V̇1 = 0, V̇2 = 0}

S0 = {¬fail ,¬r0}

(b)

Figure 2.21. LHPNs demonstrating the potential for false positive results using the
range of rate expansion technique. (a) Original LHPN with a failure. (b) Transformed
LHPN without a failure.



CHAPTER 3

ABSTRACT MODEL GENERATION

Chapter 2 introduces a method to automatically obtain formal LHPN models from

VHDL-AMS descriptions. While this method is effective because the design has already

been abstracted by an expert, it is uncommon for AMS designers to create behavioral

HDL models of their designs. These manually abstracted models tend to get out of date

as the system evolves during the design process, but automatically generated abstract

models can be easily updated. AMS designers typically work at the transistor-level

using a SPICE (differential equation) simulator [118, 117, 132]. This chapter begins by

revisiting the motivating example of the switched capacitor integrator using SPICE-level

simulation. Next, this chapter covers a simulation aided verification (SAV) methodology

to automatically generate abstract HDL and LHPN models from sets of simulation traces.

This chapter concludes with a presentation and discussion of coverage metrics appropriate

for the SAV methodology.

3.1 Motivating Example

Chapter 2 presents several behavioral models for the switched capacitor integrator

circuit (Figure 2.1). This chapter focuses on the transistor-level model of the circuit.

Figure 3.1 shows a plot of SPICE simulation data for Vout from the switched capacitor

integrator circuit under nominal conditions. Comparing this waveform to the behavioral

model’s nominal waveform in Figure 2.2 highlights the accuracy difference in the models.

The waveform produced by the SPICE simulation has a stair step artifact from the

accurate representation of the switched capacitor. While this level of accuracy may be

important for design and verification of some properties, it is not necessary to verify the

saturation property described previously.

In the behavioral model of the switched capacitor integrator circuit, the designer had

direct control over the output slew rate. This control allows straightforward exploration

of the effects of different output slew rates of the system. Using the transistor-level
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Figure 3.1. A SPICE simulation of the switched capacitor integrator circuit under
nominal conditions, a C2 value of 25 pF.

model, the designer has only indirect control over the output slew rate. This rate is

indirectly controlled using the value of capacitance for capacitor C2. Assuming variance

in capacitance values, the designer may run several simulations for different capacitance

values to understand the effects of such variation. Figure 3.2 and Figure 3.3 show two

such SPICE simulations with capacitance values for C2 of 23 pF and 27 pF, respectively.

The 23 pF capacitor simulation has a faster output slew rate than the nominal condition

while the 27 pF simulation has a slower output slew rate. Note that none of these three

simulations demonstrate a failure of this circuit. This chapter presents a method that

uses two of the three SPICE simulations presented to create an LHPN model that reveals

the potential for failure.

3.2 Related Work

As system complexity continues to increase, the need for models at many levels of

abstraction is increasing. System-level verification requires system-level simulation which

is not feasible within the time constraints imposed by today’s design schedules using an
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Figure 3.2. A SPICE simulation of the switched capacitor integrator circuit with a C2

value of 23 pF.
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Figure 3.3. A SPICE simulation of the switched capacitor integrator circuit with a C2

value of 27 pF.
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unabstracted model. Currently, the most common approach to creating abstract models

is manual abstraction of SPICE or Simulink models. Manual abstraction is an iterative

process that is often time intensive and error-prone. Automatic abstraction methods are

needed to improve the quality of AMS verification [140].

The success of abstract modeling techniques for AMS circuits depends on the complex-

ity of the system. For purely digital systems, the assumption of digital circuit behavior

greatly simplifies the complexity and has led to successful abstraction techniques. For

AMS systems, there are four major classes of circuits: linear time-invariant (LTI), linear

time-varying (LTV), nonlinear, and oscillatory. Automatic abstract model generation

techniques have been developed for each class of circuit with varying levels of success.

LTI systems are the simplest class of circuits, and automatic abstraction techniques

have proven to be most successful for LTI systems. An LTI system is composed of only

resistors, inductors, and capacitors. The focus of the modeling work for LTI systems has

been on interconnect as there is a great need to compactly model distributed interconnect

networks such as clock distribution trees. Therefore, the goal of LTI abstract modeling

is to reduce the number of variables required to represent an LTI system while still

maintaining the important behaviors. In [130], the authors present asymptotic waveform

evaluation (AWE) as a method to automatically abstract LTI systems. AWE produces

abstract models whose behavior is nearly identical to the full system in time that is

roughly linear to the size of the unabstracted system. The main drawback to AWE is that

the abstract models produced by AWE become increasingly inaccurate as their size in-

creases above about ten variables. To address this numerical inaccuracy, Krylov-subspace

methods were introduced [68, 13]. While Krylov-subspace based abstraction methods are

very effective, they do not guarantee the important properties of passivity and stability.

A passive system cannot generate energy internally, and for LTI systems, passivity

guarantees stability. Several Krylov-subspace based methods have been developed that

guarantee passivity of the abstract model [123, 21, 59]. While the Krylov-subspace

methods are computationally efficient, they are not optimal. In other words, they do

not minimize the model error for a model of a given size. To address the optimality

concerns, abstraction methods for LTI systems based on truncated balance realizations

(TBR) have been proposed [70]. TBR methods are not as computationally efficient as

Krylov-subspace methods, so recent work has focused on combining Krylov-subspace

techniques with TBR [90] as well as extending these more efficient methods to creating
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parametrized models for use in design space exploration [45, 147].

While the work on LTI systems is promising, AMS circuits are composed largely of

nonlinear components. There is a class of nonlinear circuits which includes switched-

capacitor and sampling circuits that can be modeled as LTV systems. To create abstract

models of LTV systems, the LTV systems are reformulated as an LTI system with addi-

tional artificial inputs to represent the time variation [139]. The different LTI abstraction

methods have been used successfully within this framework [138, 139, 126].

Abstraction of nonlinear systems is the key to abstract modeling of AMS designs. Even

for weakly nonlinear systems where AMS designers intend that their circuits operate

in a linear way (e.g., linear amplifiers), it is critical to model the nonlinearities of the

devices as the designer is often trying to minimize these effects. There are also many

systems that exhibit and exploit highly nonlinear behavior such as ADCs, oscillators,

and PLLs. No technique currently exists that is capable of producing accurate abstract

models for general nonlinear systems, but methods do exist that take approximations

of the original system and create abstractions of these approximations. There are a

number of methods to abstract weakly nonlinear systems by leveraging LTI abstraction

techniques and then accounting for the distortions introduced by the weak nonlinearities

of the circuit [127, 128, 99].

The primary approach to creating abstract models of strongly nonlinear systems is

to approximate the nonlinear system using a composition of piecewise linear (PWL)

segments. This is advantageous because if it is assumed that each segment is linear

then linear abstraction methods can be used within each segment. Given this method,

the challenge is creating and composing these PWL segments. The trajectory PWL

(TPWL) method proposed in [134] uses existing LTI abstraction methods to create

abstracted linear models for each segment and stitches them together using a scalar

weight function to create the final system model. The weakness of TPWLs is that they

do not capture higher order derivative information well. This makes them a poor choice

to model many nonlinear systems as higher order dynamics are common and often critical

to correct behavior. To address this problem, piecewise polynomial (PWP) techniques are

introduced that use weakly nonlinear abstraction techniques to create the abstractions for

each segment [52]. One major difficulty encountered by the TPWL and PWP methods is

the large number of training simulations required to create the model. Scalable trajectory

models are introduced [153, 154] that use data mining techniques to reduce the number of
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simulations required for the training input. Although scalable trajectory models decrease

the training complexity, it still remains unacceptably high, and input selection is difficult

for complex dynamics.

Oscillatory behavior is a particularly difficult simulation and modeling challenge.

Specialized simulators are often used to accurately simulate oscillators. The same has

held true for abstraction techniques as specialized abstract models in the phase domain

have been most successful for creating abstract models of oscillatory behavior [98, 159].

Coverage metrics quantify how well a set of simulations explores the state space of a

system. Finding a set of simulations that thoroughly explores the state space is useful

for characterizing abstract model quality. Understanding the design coverage of the set

of simulations used to generate the model is also important to the SAV methodology

presented in this chapter. When the verifier returns a verification result for a given model,

it is important to understand what that result actually means. Namely, the completeness

of the result depends on the completeness of the simulations used to build the abstract

model. Ideally, a model generator would compute a set of coverage metrics that describe

the model quality. Coverage metrics for digital systems have received significant attention

[150] while little work has been done for analog coverage metrics [143, 120, 119, 89].

Sha et al. propose code coverage metrics for Verilog-A in [143]. The authors apply

standard code coverage metrics to Verilog-A code in the form of statement coverage,

decision coverage, and condition coverage. Statement coverage measures whether each

line of code is executed. Decision coverage measures whether each conditional statement

is executed for all truth values. Condition coverage measures whether all possible com-

binations of complex conditional statements are executed. A new coverage metric for

analog circuits is proposed, frequency coverage. The frequency coverage metric measures

the proportion of the frequency space that is covered with respect to the poles and zeroes

of the circuit. There is some difficulty in obtaining the poles and zeroes. Solutions are

provided for simple cases, but the complexity of these solutions grows quickly for more

complex circuits.

The work by Nahhal and Dang in [120, 119] presents coverage measures for hybrid

systems to guide test generation based on the rapidly-exploring random tree algorithm.

This coverage measure is state-based and defined using the star discrepancy from statis-

tics. The methodology is tested using two examples from hybrid systems theory which

shows the potential for the methodology to scale to higher dimensional systems.
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The notion of a robust test is introduced by Julius et al. in [89]. Particularly for

AMS circuits, it is possible that one test may be representative of many other tests. A

robust test is one where a slight but quantifiable perturbation in the model or initial

conditions is guaranteed to result in a trace with the same qualitative properties as the

nonperturbed trace. The qualitative properties can be safety properties. This paper

presents several strategies to discover a robust neighborhood of initial states that can

provide good coverage for the entire design space. This methodology is tested using

hybrid system benchmarks where it does not achieve fifty percent coverage after hundreds

of simulations.

3.3 Abstract Model Generation

Our modeling work differs from the previous work in several ways. The most pro-

nounced differences are the accuracy of the abstract model and the use of nondetermin-

ism. Previous methods attempt to abstract the model while maintaining transistor-level

accuracy. The abstract models produced by LEMA’s model generator do not attempt

to maintain this level of accuracy but do model ranges of parameters and conditions

using nondeterminism. They are intended to be used in system-level simulations to verify

properties such as connectivity between the digital and analog circuits or for use in formal

verification. As a result, these models are less general, but the model generation process

and simulations using these models are much more efficient.

During the course of traditional analog circuit verification, designers run many differ-

ent simulations to verify that the circuit meets its specification. The goal of this work is to

automatically generate abstract models from this simulation data. The generated circuit

models are conservative and model all the provided simulation traces plus additional

behavior. Due to the use of simulations already produced by the designer, no additional

simulation time is required. However, the quality of the model is directly related to the

simulations used to create it. If the designer has inadequately simulated the design, the

model may not exhibit the full behavior of the system. In this case, there is a potential

that the actual circuit may have a failing behavior that is not included in the generated

model. To help address this issue, Section 3.4 discusses the use of coverage metrics.

Two simulations of the switched capacitor integrator are used to concretely illustrate

the model generation process. In particular, the switched capacitor integrator is simulated

with capacitance values of 23 pF (Figure 3.2) and 27 pF (Figure 3.3) for capacitor C2.
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The simulation data are recorded for the nodes representing the input voltage, Vin, and

output voltage, Vout, during a 400 µs transient simulation for each capacitance value.

Part of the data from these simulations are shown in Tables 3.1 and 3.2.

Algorithm 3.1 describes the process of taking simulation data and generating an

abstract model. The inputs to the algorithm are Var , Σ, θ, propHSL, ws, ε, ratio,

τmin, nonC, sig, and sep. Each variable ν ∈ Var is a design variable in the system

being modeled. Σ is the set of time series simulation traces. Each trace σ ∈ Σ is an

n-tuple 〈τ, ν0, . . . , νn〉 where τ ∈ R is the timestamp for the data points (ν0, . . . , νn) ∈ Rn

where νi ∈ Var and n is |Var |. For example, in Table 3.1 the first column is τ ; the

second column is ν0; and the third column is ν1. To access the timestamp for data

point i the notation σi(τ) is used. Similarly, to access the data value i for variable ν

the notation σi(ν) is used. In Table 3.1, σ1(τ) is 0.51 µs and σ1(Vout) is −999 mV. θ

is the set of thresholds on the signal levels of the design variables in Var . Thresholds

are used during the model generation process to divide the state space of the design

into regions of operation and do not need to be equidistant. Increasing the number of

thresholds increases both the complexity and accuracy of the model. The thresholds,

θ, for each variable ν are 〈θ0(ν), . . . , θm(ν)〉 where θ0(ν) is −∞ and θm(ν) is ∞. If the

value of the variable is limited then θ0(ν) is set to the lower limit and θm(ν) is set to the

upper limit. The thresholds are used to group the simulation data into regions ξ, where

ξi(ν) = [θi(ν), θi+1(ν)). The lowest region for a variable is ξ0(ν) and the highest region

is ξm−1(ν). propHSL is a safety property specified using a restricted HSL formula. The

remaining parameters to genModel, ws, ε, ratio, τmin, nonC , sig , and sep, are optional

parameters that can be specified to configure the model generation process. The default

values for these optional parameters are shown in Table 3.3. ws is the window size used in

rate calculation and has a default value of 200. ε, ratio, and τmin are used in the detection

of digital-like signals and have default values of 0.1, 0.8, and 5e-6, respectively. nonC is

a function that maps a signal to a set of non-causal signals (i.e., nonC :Var → 2Var ).

sig and sep are used in the normalization process and have default values of 2 and 1,

respectively.

In Algorithm 3.1, each data point for each variable for each simulation trace σi(ν) is

given a region assignment reg i based on the thresholds (lines 2-3). The variable’s rate

assignment at data point i is accessed using the notation reg i(ν) and is an integer value

between 0 and |ξ(ν)|. In Table 3.1, the fourth column represents the region assignment,
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Table 3.1. A partial simulation result with C2 = 23 pF for the switched capacitor
integrator circuit.

Time Vin Vout Region ∆Vin/∆t ∆Vout/∆t
(µs) (mV) (mV) (mV/µs) (mV/µs)
0.00 -1000 -1000 00 -40.07 21.85
0.51 -1000 -999 00 0.0 21.74

...
...

...
...

...
...

28.52 -1000 -391 00 0.0 23.74
32.00 -1000 -304 00 - -
35.01 -1000 -217 00 - -
38.51 -1000 -174 00 - -
41.54 -1000 -87 00 - -
45.00 -1000 5 01 0.0 21.72
48.01 -1000 43 01 0.0 21.18

...
...

...
...

...
...

100.48 -1000 1173 01 - -
100.50 -1000 1174 01 - -
100.54 -840 1174 01 - -
100.62 -520 1176 01 - -
100.78 120 1176 11 275.00 -21.08
101.00 1000 1174 11 0.0 -21.74
101.03 1.0 1173 11 0.0 -21.74

...
...

...
...

...
...

154.48 1000 11 11 - -
154.98 1000 0.3 11 - -
155.48 1000 -11 10 0.0 -21.74
155.98 1000 -21 10 0.0 -21.74

...
...

...
...

...
...

199.98 1000 -978 10 - -
200.00 1000 -978 10 - -
200.04 840 -979 10 - -
200.12 520 -980 10 - -
200.28 -120 -981 00 -275.00 21.08
200.50 -1000 -978 00 0.0 21.74
200.53 -1000 -976 00 0.0 21.74

...
...

...
...

...
...

400.00 1000 -957 10 - -
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Table 3.2. A partial simulation result with C2 = 27 pF for the switched capacitor
integrator circuit.

Time Vin Vout Region ∆Vin/∆t ∆Vout/∆t
(µs) (mV) (mV) (mV/µs) (mV/µs)
0.00 -1000 -1000 00 -227.85 18.14
0.50 -1000 -999 00 0.0 18.52

...
...

...
...

...
...

37.54 -1000 -296 00 0.0 19.17
41.00 -1000 -222 00 - -
43.82 -1000 -185 00 - -
46.72 -1000 -148 00 - -
49.54 -1000 -74 00 - -
53.00 -1000 17 01 0.0 17.49
55.82 -1000 37 01 0.0 17.40

...
...

...
...

...
...

100.48 -1000 851 01 - -
100.50 -1000 852 01 - -
100.54 -840 852 01 - -
100.62 -520 853 01 - -
100.78 120 854 11 275.00 -17.96
101.00 1000 852 11 0.0 -18.52
101.03 1000 850 11 0.0 -18.52

...
...

...
...

...
...

146.48 1000 10 11 - -
146.98 1000 0.3 11 - -
147.48 1000 -9 10 0.0 -18.52
147.98 1000 -18 10 0.0 -18.52

...
...

...
...

...
...

199.98 1000 -981 10 - -
200.00 1000 -981 10 - -
200.04 840 -982 10 - -
200.12 520 -983 10 - -
200.28 -120 -984 00 -275.00 17.96
200.50 -1000 -981 00 0.0 18.52
200.53 -1000 -980 00 0.0 18.52

...
...

...
...

...
...

400.00 1000 -963 10 - -
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Table 3.3. Default values for the model generator’s optional parameters.

Parameter Default Value
ws 200
ε 0.1

ratio 0.8
τmin 5e-6

nonC ∅
sig 2
sep 1

Algorithm 3.1: genModel(Var ,Σ, θ, propHSL,ws, ε, ratio, τmin,nonC , sig , sep)

N := null;1

forall σ ∈ Σ do2

reg := assignRegions(σ,Var , θ);3

rate := calculateRates(σ,Var ,ws, reg);4

(dmv , start , end) := detectDMV(σ,Var , ε, ratio, τmin);5

N := updateLHPN(N,Var , σ, reg , rate, dmv , start , end ,nonC , θ);6

N := addPseudoRegions(N,Σ, θ);7

writeNormalizedLHPN(N , propHSL, sig , sep);8

writeVHDLAMS(N , propHSL);9

writeVerilogAMS(N );10

so reg |σi| is 10; reg |σi|(Vin) is 1. Next, ranges of rates are calculated for each continuous

variable within each region (line 4). The algorithm assumes nothing about the dependence

or independence of the rates. Each rate is calculated individually for each region for each

simulation trace. The variable’s region assignment at data point i is accessed using the

notation ratei(ν). In Table 3.1, the fifth column represents the rate assignment for Vin, so

rate0(Vin) is −40.07 mV/µs. It is expected that the rates change during different phases

of operation. For this reason, it is important that thresholds are selected to separate the

different phases of operation into distinct regions. At this point, continuous variables

which are mostly stable but occasionally change are identified as variables that can be

approximated by discrete transitions, discrete multi-valued (DMV) variables (line 5). The

variable dmv is the set of variables detected as DMV variables. All of this information is

collected for the current simulation trace and combined with the information from other

simulation traces in the LHPN representing the system model (line 6). Many continuous

quantities are bounded by physical limits. For instance, the voltage in a circuit is often

bounded by the voltage rails. Pseudo-regions are added to restrict the continuous values
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to such predefined limits (line 7). Finally, the abstract models are generated (lines 8-10).

Selecting quality thresholds is a critical step in the model generation process. As

the number of variables and the complexity of the system increases, this becomes a

tedious and error prone task. A tool to automatically select optimal thresholds using

optimization algorithms aids in the selection of thresholds. The purpose of automatic

threshold generation is to suggest a set of thresholds that can then be verified and

adjusted, if needed, by the designer. The tool currently supports two cost functions

and a single optimization algorithm. The two supported cost functions produce models

whose data points are evenly distributed across the regions and regions whose rates span

a minimal distance. A greedy algorithm is used as the optimization function. The tool is

designed to make adding cost functions and optimization algorithms easy. Although, still

in its infancy, this tool has been used to guide threshold selection for several examples.

3.3.1 Assigning the Regions

The first step of Algorithm 3.1 is to assign the data to regions based upon the user-

provided thresholds (line 3). In this example, the thresholds chosen for both Vin and

Vout are 0 V. Algorithm 3.2 analyzes each variable in the system at each time point in a

simulation trace to assign the appropriate region encoding (lines 1-2). The region value

is assigned based upon the location of the data point to the threshold values for the

given variable (lines 3-5). The result of Algorithm 3.2 for the 23 pF simulation is shown

graphically in Figure 3.4. Initially, both Vin and Vout are below the threshold of 0 V

resulting in a region assignment of 〈00〉, where the order of the variables is 〈VinVout〉. Vout

rises, crosses the threshold, and moves the system into region 〈01〉. Vin then rises and

moves the system into region 〈11〉. Region assignment proceeds in this manner for the

remainder of the simulation trace. In the data shown in Tables 3.1 and 3.2, each digit

in the fourth column represents the region for that time point. For instance, at time

100.62 µs in Table 3.1, the region assigned is 〈01〉 indicating that Vin is below 0 V and

Vout is above 0 V. When Vin moves above 0 V at time 100.78 µs, the region assignment

changes to 〈11〉.

3.3.2 Calculating the Rates

After regions have been assigned to each data point, the rates are calculated for each

region using Algorithm 3.3, calculateRates. A rate is calculated for each eligible data
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Figure 3.4. The results of the region assignment algorithm for the switched capacitor
integrator example.

Algorithm 3.2: assignRegions(σ,Var ,θ)

forall ν ∈ Var do1

forall i ∈ [0, |σ|] do2

forall j ∈ [0, |ξ(ν)|] do3

if σi(ν) ∈ ξj(ν) then4

reg i(ν) := j;5

return reg ;6

point in the trace (line 1). Not all points are eligible for rate calculations due to a low

pass filtering technique used to smooth edge effects caused by region boundaries and

transitory pulses. The low pass filtering uses a sliding window approach. The size of the

window, ws, is an optional configuration parameter. The sliding window approach works

by calculating the rate of change for a variable between the current point and a point

ws points further in time if all points between are in the same region (lines 2-4). For

instance, in Table 3.1, the rate of Vout is calculated for 28.52 µs but not for 32.00 µs.

A rate is not calculated for 32.00 µs because the value of Vout that is ws points later is
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in a different region. For example, using a value of four for ws, the rate of change for

Vout at time 28.52 µs in Table 3.1 is calculated by looking at its value at this time point

and the value four points later, 41.54 µs. This value is determined to be 23.74 mV/µs.

When the algorithm moves to calculate the rate for the next point, 32.00 µs, it finds that

the data point four points later is in a different region and does not calculate a rate for

the 32.00 µs point. A similar condition exists in Table 3.2 where a rate is calculated for

37.54 µs but not for 41.00 µs.

Algorithm 3.3: calculateRates(σ,Var ,ws, reg)

forall i ∈ [0, |σ| − ws] do1

if ∀ j ∈ [0,ws].reg i = regj then2

forall ν ∈ Var do3

ratei(ν) := (σi+ws(ν)− σi(ν))/(σi+ws(τ)− σi(τ));4

return rate;5

3.3.3 Extracting Discrete Multivalued Variables

In AMS designs, it is expected that digital signals are present. To take advantage

of the digital abstraction and reduce analysis complexity, digital-like signals are detected

and modeled discretely. Instead of allowing them to change with a specific rate, a constant

value can be directly assigned to the variable at a specified time after entering a region.

A DMV variable is detected when it remains constant for a specified ratio of time with

respect to the total time for the simulation. Remaining constant is defined as staying

within an ε bound for a minimum time, τmin. This condition is illustrated in Figure 3.5.

Initially, the signal is constant within the lower ε bound. Then, it leaves the lower ε

bound represented by the first light gray region and is considered unstable. It enters the

upper ε bound for a brief period represented by the dark gray region. The period does

not exceed τmin, so the signal is not considered stable at that point. The signal settles

at the upper ε bound before falling again. Algorithm 3.4 describes the DMV detection

algorithm, detectDMV. The algorithm tests each variable in the trace separately (line 2).

The analysis begins with the first point and checks to see if the second point is equivalent

within the specified ε bound (lines 3-7). If it is within the ε bound, the next point is

tested. This occurs until a point is found that is not equivalent. When this occurs, the

time elapsed between the initial point and the current position is tested (line 8). If this
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ε

ε

Figure 3.5. An illustration of a DMV variable.

time, σj(τ)−σi(τ), is greater than τmin, the value is added to the running total of constant

time, tconst (lines 8-9). The start and end points for the constant run of the variable ν

are also recorded (lines 10-11). When all points have been analyzed, the ratio of constant

time, τconst, to total time for the trace, σ|σ|(τ), is calculated. If this ratio exceeds the

specified ratio, the variable is added to the set of DMV variables (lines 12-13). In the

switched capacitor integrator example, the square wave input voltage, Vin, is an example

of a DMV variable. This can be inferred from Table 3.1 as Vin is largely constant.

Algorithm 3.4: detectDMV(σ,Var , ε, ratio, τmin)

start, end = ∅;1

forall ν ∈ Var do2

i, j, τconst := 0;3

while i < |σ| do4

i := j;5

while (|σi(ν)− σj+1(ν)| ≤ ε
2 ∧ j < |σ|) do6

j := j + 1;7

if (σj(τ)− σi(τ)) ≥ τmin then8

τconst := τconst + (σj(τ)− σi(τ));9

start(ν) = start(ν) ∪ i;10

end(ν) = end(ν) ∪ j;11

if (τconst/σ|σ|(τ)) ≥ ratio then12

dmv := dmv ∪ ν;13

return (dmv ,;14

3.3.4 LHPN Generation

After the needed information has been calculated for a trace, updateLHPN shown in Al-

gorithm 3.5 updates the LHPN, N , with the new information. The updateRegionGraphs

function shown in Algorithm 3.6 examines each region in the simulation trace adding
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new regions and updated the rates of currently existing regions. The updateDMVGraphs

function shown in Algorithm 3.7 adds information to the graphs for DMV variables

(line 2). The initial value, rate, and region for each variable in each simulation trace

are also recorded in the LHPN, N (lines 3-6).

Algorithm 3.5: updateLHPN(N,Var , σ, reg , rate, dmv , start , end ,nonC , θ)

updateRegionGraphs(N,σ, reg , rate, θ);1

updateDMVGraphs(N,σ, reg , dmv , start , end ,nonC );2

forall ν ∈ Var do3

Q0(N)(ν) := Q0(N)(ν) ∪ σ0(ν);4

R0(N)(ν) := R0(N)(ν) ∪ rate0(ν);5

M0(N)(ν) := M0(N)(ν) ∪ p(reg0(ν));6

return N ;7

The updateRegionGraphs algorithm shown in Algorithm 3.6 updates the LHPN with

region information from each simulation trace. The notation p(reg i) returns the place

representing reg i. Similarly, the notation t(reg i, regj) returns the transition between the

place representing reg i and regj . The newT function takes the LHPN, a source place,

a sink place, a delay bound, the thresholds, and an enabling condition. The function

updates the flow relation, delay bounds, enabling condition, and rate assignments for

the LHPN before returning the newly created transition. The let notation is used for

convenience to demonstrate the contents of a tuple (line 1). The null value is used to

initialize nonset based data types to an initial value (line 2). The algorithm then begins

updating the regions for each data point in the given trace (line 3). A node in the graph

is added for the new region if the region has not been found previously (lines 4-5). For

example, Figure 3.6 contains four places p3 − p6 representing the four different regions

discovered, 00, 01, 11, and 10. While in this example a place is created for every possible

region assignment, in larger examples, many regions may never be encountered during

simulation. Places are not generated for these unreached regions. If not previously seen,

transitions between the current region and the previous region are created using newT and

added to the set of transitions (lines 6-7). It is theoretically possible that this process

could result in a fully connected graph, but in practice this is highly unlikely. The delay

for the transition is set to [0,0] to make it fire immediately as the state of the system moves

from one region to the next. The diffR function determines the differences between the
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two regions for use in generating the enabling condition. Each transition is given an

enabling condition representing the threshold that is being crossed in the move from the

first region to the second, {Vin ≥ 0} on t3. In Figure 3.6, there are transitions from

00 to 01, from 01 to 11, from 11 to 10, and from 10 to 00. This cycle can be seen in

Figure 3.4. The rate of change for the continuous variables in each region is recorded

if it is outside the current range (lines 8-13). These rates are stored on the transitions

between regions as shown in Figure 3.6. The range of rates for each region found from

these two simulation runs for Vout from the switched capacitor integrator are shown in

Table 3.4.

The updateDMVGraphs algorithm shown in Algorithm 3.7 updates the LHPN with

DMV variable information from each simulation trace. The function examines the simu-

〈V̇out := [−24,−17]〉
p2

p1

t2
t1

[100, 101]

[99, 100]

〈Vin := [999, 1000]〉

〈Vin := [−1000,−999]〉

p0

t0

{(¬Vout ≥ −2000) ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

(b)

(c)

(01)p3

(00)p6

p4(11)

p5(10)

t4

t6

t5

t3

〈V̇out := [17, 24]〉

〈V̇out := [−24,−17]〉

(a)

{Vin ≥ 0} [0, 0]

Q0 = {Vout = −1000, Vin = −1000}; R0 = {V̇in = 0, V̇out = [17, 24]}

{¬Vin ≥ 0} [0, 0]

{Vout ≥ 0}[0, 0]

〈V̇out := [17, 24]〉
{¬Vout ≥ 0}[0, 0]

Figure 3.6. The LHPN for the switched capacitor integrator after updateLHPN.

Table 3.4. Rates for Vout from the switched capacitor integrator circuit used by the
LHPN in Figure 3.6.

Region Place Range of rates Comment
00 p6 [17,24] Vin < 0 V; Vout < 0 V
01 p3 [17,24] Vin < 0 V; Vout ≥ 0 V
11 p4 [-24,-17] Vin ≥ 0 V; Vout ≥ 0 V
10 p5 [-24,-17] Vin ≥ 0 V; Vout < 0 V
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Algorithm 3.6: updateRegionGraphs(N,σ, reg , rate, θ)

let N = (P, T,B, V, F,En, D,BA,VA,RA,M0, S0, Q0, R0);1

regprev := null;2

forall i ∈ [0, |σ|] do3

if p(reg i) 6∈ P then4

P := P ∪ newP(reg i);5

if t(p(regprev), p(reg i)) 6∈ T ) then6

T := T ∪ newT(N, p(reg i), p(regprev), (0, 0), θ, diffR(reg i, regprev));7

forall t ∈ T do8

if (t, p(reg i)) ∈ F then9

if ratei < rl(t) then10

rl(t) := ratei;11

if ratei > ru(t) then12

ru(t) := ratei;13

regprev := reg i;14

lation trace looking for constant runs in the simulation trace marked using the start and

end sets created by detectDMV. The algorithm begins by initializing the previous value

variable and looping through each DMV variable (lines 2-3). Given a DMV variable ν, the

algorithm begins with the first time value in the start set (lines 4-5). When a start point

is found, the algorithm then searches for the next end point (lines 6-7). Once the start

and end points are found, the enabling region and delay range are calculated, and the

range of values for the given variable in the given constant run are extracted (lines 8-10).

To determine the enabling region, the causal event set must be determined (line 8). The

causal event set is determined by finding the region previous to the one where the constant

run begins. The set of variables that remain constant between the regions is the causal

set. If no variables are constant, then the previous region is examined, etc. The delay

range is calculated using the calcD function (line 9). The lower bound of the range is

calculated from the time the trace enters the previous region until the previous constant

run ends. The upper bound of the range is calculated from the previous region until the

start of the current constant run. This range allows for the variable to change in the

uncertain region between constant runs. Vin is a DMV variable in the switched capacitor

integrator example and changes to its high value in region 11. The previous region is 01.

In this case, Vin would be assigned to change to its high value based on the time Vout

crosses above the threshold of zero. This simplistic causal calculation may result in the

incorrect or inconsistent choice for a causal event. For example, although a change on
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Vout may appear to cause Vin this is not the case. This choice would result in a poor

model as the rate of change of Vout would affect the time when Vin changes making Vin

much less periodic. Therefore, a refinement to this first method is used. The user can

specify the fact that there is not a causal relationship between two variables in nonC. As

a result, these noncausal variables are ignored in the causal region calculation. If Vout

is specified as noncausal in the previous example, Vin is the only remaining variable. If

Vin is causal only with itself then the delay value is the amount of time Vin remains at a

given value.

The value range is calculated by extracting the minimum and maximum values in

the constant run. If a place does not already exist for this value range, then a new

one is created (lines 11-12). For the integrator, place p1 is added for Vin equal to

[−1000,−999] mV, and p2 is added to represent that Vin is equal to [999,1000] mV.

The next step is to create a transition between the current place and the previous place

if one does exist (lines 13-14). Finally, the value and delay assignments are updated

(lines 15-22). For the integrator example, the LHPN generated to control Vin is shown in

Figure 3.6b. Vin is set to [−1000,−999] mV and remains there for 100 µs to 101 µs after

which it changes to [999,1000] mV and remains there for 99 µs to 100 µs as indicated in

Figure 3.6.

3.3.5 Pseudo-regions

Although the model is built directly from simulation traces, during reachability anal-

ysis it is possible for the analysis to leave the regions explored by the simulation traces.

Leaving the regions explored by the simulation traces can be useful in finding errors, but

it may also exceed physical limitations (e.g., the voltage supply rail). Pseudo-regions

are used to allow the model to leave regions exhibited by the simulation traces while

remaining within physical bounds. As an example, consider a two variable system with a

single threshold on each variable and the physical limitation that both variables remain

between −1 and 1. In this case, there are four potential regions of operation labeled

a-d in Figure 3.7. Rates for each variable in each region as well as the direction of

transitions found between the regions are calculated during the model generation process.

To add the limiting behavior to the model, our method adds pseudo-regions e-p shown in

Figure 3.7 using dotted lines. These pseudo-regions would not be reachable via simulation

as the simulator imposes the appropriate physical limits on the circuit. The state space
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Algorithm 3.7: updateDMVGraphs(N,σ, reg , dmv , start , end ,nonC , θ)

let N = (P, T,B, V, F,En, D,BA,VA,RA,M0, S0, Q0, R0);1

valprev := null;2

forall ν ∈ dmv do3

while start(ν) 6= ∅ do4

i = min(start(ν));5

start(ν) = start(ν)− i;6

j = min(end(ν));7

end(ν) = end(ν)− j;8

regEn := calcEn(σ, i,nonC (ν));9

(τl, τu) := calcD(σ, i, j, regEn, end);10

(val l, valu) = val := extractVals(σ, ν, i, j);11

if p(val) 6∈ P then12

P := P ∪ newP(val);13

if t(valprev, val) 6∈ T then14

T := T ∪ newT(N, p(valprev, val), (τl, τu), θ, diffR(regEn, reg i));15

if val l < al(t(valprev, val)) then16

al(t(valprev, val)) := val l;17

if valu > au(t(valprev, val)) then18

au(t(valprev, val)) := valu;19

if τl < dl(t(valprev, val)) then20

dl(t(valprev, val)) := τl;21

if τu > du(t(valprev, val)) then22

du(t(valprev, val)) := τu;23

valprev := val ;24

exploration engine for LHPNs, however, does not impose these same physical limitations

and as such may end up exploring these pseudo-regions. In these pseudo-regions, the

rate of change for the limited variable is modified to prevent the continuous variable

from moving farther into a region of physical impossibility. For instance, in region a, if y

increases above its upper threshold then it moves to pseudo-region f where it is prevented

from increasing any further by changing ẏ = [−5, 5] to ẏ = [−5, 0]. In region a, it is

impossible for x to decrease below its limit as the rate of change for x is always positive. In

this case, the rate is copied directly into pseudo-region i. The rates for all pseudo-regions

are calculated in a similar manner. Figure 3.7 represents the possible paths through

regions of operation by annotating the boxes with directional arrows. These arrows

indicate potential transitions between regions of operation. The solid arrows represent

transitions observed in the simulation data used to generate the model. The dashed

arrows represent transitions between observed regions of operation and pseudo-regions.
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Figure 3.7. An example of a two variable system where each variable has a single
threshold and an upper and lower value limit.

These transitions have not been observed in the simulation data but are possible based

on the rates.

This box-like representation translates into a structurally similar LHPN as shown in

Figure 3.8. Each region translates to a place in the LHPN while each arrow translates to

a transition. The enabling conditions for each transition are derived from the thresholds

and limits. For instance, when moving from region a to region b the enabling condition

on the transition is {x ≥ 0} as x must cross 0 to change regions. The rate assignments

are set to the rates calculated for the place where the transition leads. In the transition

from region a to b, the rate is set to 〈ẋ := [−5,−2], ẏ := [2, 7]〉, the rate of change for

place pb.

The addition of pseudo-regions and their associated transitions is done using Algo-

rithm 3.8. The algorithm examines each variable of each node in the graph (line 2-5).

For a given variable, if the rate of change for the variable is negative then a transition to

a region with a lower threshold should be found or created (lines 6-18). The region(p)

notation returns the region value for the given place. If there is a node where all variables

of the system are in the same region except the selected variable, and the selected variable
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Figure 3.8. An LHPN for the regions graph shown in Figure 3.7.
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is in a region with a lower threshold then an edge in the graph is added between those

two nodes (lines 11-13). If a node with a lower threshold region for the selected variable

is not present, a pseudo-region is added and an edge is added between the original node

and the new node representing the pseudo-region (lines 14-18). In the pseudo-region, the

rate of change is adjusted to prevent the variable from decreasing further in that region

(line 17). A similar procedure is used if the rate of change for the selected variable is

positive in the selected node (lines 19-31).

3.3.6 Writing Normalized LHPN Models

Since LEMA’s DBM-based analyzer only supports integers, the values in the graph data

structure must be normalized to produce a model analyzable by the DBM-based analyzer.

The normalization process begins by scaling the minimum rate such that its integer value

is represented using sig values. For instance, if sig is two and the minimum rate is 0.02

then all rates would be scaled by a factor of 1000 resulting in 0.02 being a rate of 20.

If this process results in the maximum rate overflowing the integer space, LEMA reports

an error and terminates. The next step is to adjust the constant values so that at least

one integral time unit passes as a variable progresses between the thresholds at the new

rates. The scaling of the constants involves scaling both thresholds and constant values

for DMV variables such that there are sep orders of magnitude between the rates and

constants. For instance, if the rate for a continuous variable is 20 and the thresholds are

0 and 1, the variable would pass between the thresholds in less than one time unit which

poses a problem for the integer-based analysis. In this case, if the value of sep is one, the

constants would be scaled to 0 and 100. This would now require five time units for the

variable to pass between the thresholds.

Given the LHPN model generated in the previous steps, this structure is output

verbatim. Additionally, an LHPN to check the safety property is created. This LHPN

has a single initially marked place and a single transition. The transition’s enabling

condition is the complement of the safety property. This transition has a delay of [0,0]

and indicates a failure when it fires by setting the Boolean signal fail to true. Therefore,

to verify this safety property, a model checker only needs to determine if there exists any

state in which this transition can fire. For the integrator example, the LHPN generated

to check if the circuit can saturate is shown in Figure 3.6c.
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Algorithm 3.8: addPseudoRegions(N,Σ, θ)

let N = (P, T,B, V, F,En,D,BA, V A,RA,M0, S0, Q0, R0);1

forall p ∈ P do2

forall t ∈ T do3

if (p, t) ∈ F then4

forall v ∈ V do5

if rl(t, v) < 0 then6

pnew := p;7

regionv(pnew) := regionv(pnew)− 1;8

foundRegion := False;9

while ¬foundRegion do10

if pnew ∈ P then11

newT(N, p, pnew, (0, 0), θ, diffR(region(p), region(pnew));12

foundRegion := True;13

else if regionv(pnew) = −1 then14

P := P ∪ pnew;15

newT(N, p, pnew, (0, 0), θ, diffR(region(p), region(pnew));16

rmRateLtZero(pnew, F, v);17

foundRegion := True;18

regionv(pnew) := regionv(pnew)− 1;19

if ru(t, v) > 0 then20

pnew := p;21

regionv(pnew) := regionv(pnew)− 1;22

foundRegion := False;23

while ¬foundRegion do24

if pnew ∈ P then25

newT(N, p, pnew, (0, 0), θ, diffR(region(p), region(pnew));26

foundRegion := True;27

else if regionv(pnew) = m then28

P := P ∪ pnew;29

newT(N, p, pnew, (0, 0), θ, diffR(region(p), region(pnew));30

rmRateGtZero(pnew, F, v);31

foundRegion := True;32

regionv(pnew) := regionv(pnew)− 1;33

return N ;34
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3.3.7 Writing VHDL-AMS Models

There two types of system models produced by the model generator based on how

the system variables are modeled. The first type is a self-contained model that can be

simulated without the aid of an external test bench. The second type is an abstract

model intended to replace the transistor-level model, so it contains the same inputs and

outputs as the original circuit. These two model types are derived based on user provided

classification of the system variables. The user can classify a system variable as one of

three types: input, output, or internal. Input variables are not modeled by the system,

but the resulting model contains an input port where the system expects to receive

external input for this variable (e.g., from a test bench). Output variables are modeled

and assigned to an output port. Internal variables are used in the model but no input or

output ports are provided. Any unclassified variables are unmodeled and not included in

the model generation process.

Figure 3.9 is the VHDL-AMS description created by the model generator when Vin

and Vout are marked internal. The creation of a VHDL-AMS description from the graph

begins by creating a real quantity for each internal variable in the system. In this

case, real variables are created for Vin and Vout. Each of these variables is assigned an

initial value using a break statement which is −1000 mV for both Vin and Vout. DMV

variables, Vin in this case, are assigned an initial rate of 0.0 using the ’dot notation. This

initial rate of 0.0 is never changed in the remaining description. The rates for non-DMV

variables are set with nested if-use statements based upon the threshold values for each

region. For instance, the if statement models region 00 where both Vin and Vout are

below zero. The rate is set to [17, 24] is this region as indicated by Table 3.4. The

VHDL-AMS description supports ranges of rates using the span procedure, defined in

Section 2.4, that accepts two real values and returns a random value within that range.

The constant value assignments for DMV variables are specified using process statements

without sensitivity lists. The wait statement waits for the proper Boolean condition and

then waits for a range of delays before performing the assignment. In this example, the

Boolean condition is implicit, so Vin is assigned to 1000 mV in 100 to 101 µs after it goes

low and then assigned a value of −1000 mV in 99 to 100 µs after it goes high. Finally,

assert statements are used to describe basic safety properties about the system using the

restricted HSL grammar presented previously. For this example, the assert statement is

used to check if Vout falls below −2000 mV or goes above 2000 mV.
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library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity swCap is
end swCap;
architecture behavioral of swCap is

quantity Vin:real;
quantity Vout:real;

begin
break Vin => -1000.0;
break Vout => -1000.0;
Vin’dot == 0.0;
if not Vin’above(0.0) and not Vout’above(0.0) use
Vout’dot == span(17.0,24.0);

elsif not Vin’above(0.0) and Vout’above(0.0) use
Vout’dot == span(17.0,24.0);

elsif Vin’above(0.0) and Vout’above(0.0) use
Vout’dot == span(-24.0,-17.0);

elsif Vin’above(0.0) and not Vout’above(0.0) use
Vout’dot == span(-24.0,-17.0);

end use;
process begin

wait for Vin’above(0.0);
wait for delay(100,101);
break Vin => 1000;
wait for Vin’above(0.0);
wait for delay(99,100);
break Vin => -1000;

end process;
assert (Vout’above(-2000.0) and not Vout’above(2000.0))

report "Error: The output voltage saturated."
severity failure;

end behavioral;

Figure 3.9. VHDL-AMS code for the switched capacitor integrator circuit when both
Vin and Vout are marked as internal variables.
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Figure 3.10 is the VHDL-AMS code generated when Vin is marked as an input variable

and Vout is marked as an output variable. In this case, Vin is exposed externally as an

in real port, and Vout is exposed externally as an inout real port. Because Vin is an

input to the system, no value or rate assignments for Vin are generated. As an output,

the value and rate assignments for Vout remain the same as in the previous example.

library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity swCap is

port(
quantity Vin:in real;
quantity Vout:inout real;

);
end swCap;
architecture behavioral of swCap is
begin

break Vout => -1000.0;
if Vin’above(0.0) and Vout’above(0.0) use
Vout’dot == span(-24.0,-17.0);

elsif Vin’above(0.0) and not Vout’above(0.0) use
Vout’dot == span(-24.0,-17.0);

elsif not Vin’above(0.0) and Vout’above(0.0) use
Vout’dot == span(17.0,24.0);

elsif not Vin’above(0.0) and not Vout’above(0.0) use
Vout’dot == span(17.0,24.0);

end use;
assert (Vout’above(-2000.0) and not Vout’above(2000.0))

report "Error: The output voltage saturated."
severity failure;

end behavioral;

Figure 3.10. VHDL-AMS code for the switched capacitor integrator circuit when Vin
is modeled as an input and Vout is modeled as an output.

3.3.8 Writing Verilog-AMS Models

In addition to producing self-contained and test bench style models, LEMA’s model

generator can produce both deterministic and nondeterministic models. The Verilog-AMS

model generation supports range of rates (nondeterminism) using the $rdist norm()
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function, but the model presented in this section is generated using the deterministic

model generation option. As a result, ranges are averaged in this Verilog-AMS model

as well as other deterministic models produced by the model generator. Figure 3.11

is Verilog-AMS code for the switched capacitor integrator circuit where Vin is marked

as an input and Vout is marked as an output. Model generation begins by creating a

top level inout variable for each input or output variable in the graph. Vin io and

Vout io are the top level variables in the Verilog-AMS description. This is the only

information provided by the Verilog-AMS model for input variables. The real variables

of the form 〈varname〉 var are created to hold the current value of each output or internal

variable, Vout var for the switched capacitor integrator example. Variables with a rate

(non-DMV variables) are also provided a real variable to store the current rate, for

example Vout rate.

The initial conditions for each variable and rate are set in the initial step statement.

Each edge containing a rate or constant value assignment is translated into a cross

statement. The parameters for the cross statement are extracted from the nodes between

the edge. The source and sink nodes are compared. The variable for the changing region is

set as the compare variable. The threshold representing the division between the changing

regions is the numerical value. The direction of the cross statement is calculated based

on the signal’s direction. If the signal is increasing, a ’1’ is used, and if the signal is

decreasing, a ’-1’ is used. In Figure 3.11, the first cross statement is created for an edge

where Vin changes from 1000 mV to −1000 mV by crossing the 0 V threshold. As a result,

Vin io is the compare variable; 0.0 is the numerical value; and ’-1’ is the direction. The

sink place sets the rate of Vout to 0.020, so this assignment is made to Vout rate in the

execution block of the cross statement. If there are multiple differences, an if statement

is used in place of the cross statement. The if statement is considered a less optimal

solution as it has a weaker interaction with the simulator and does not provide a method

to specify the direction of signal change. A global timer is added to update all rates at

an appropriate interval. For the switched capacitor integrator, an interval of 1 µs is used

to update the value of Vout var based on Vout rate. Finally, a transition statement is

added for each output variable to quickly transition the value of the internal variable to

the external interface.
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‘include "disciplines.h"
module swCap(Vin io,Vout io);

inout Vin io, Vout io;
electrical Vin io, Vout io;
real Vout var, Vout rate;
analog begin
@(initial step) begin
Vout var = -1.00;
Vout rate = 0.020;

end
@(cross(V(Vin io)-0.0,-1)) begin
Vout rate = 0.020;

end
@(cross(V(Vin io)-0.0,1)) begin
Vout rate = -0.020;

end
@(timer(0.0,1e-06)) begin
Vout var = Vout var + Vout rate;

end
V(Vout io) <+

transition(Vout var,1p,1p,1p);
end

endmodule

Figure 3.11. Verilog-AMS code for the switched capacitor integrator circuit using the
deterministic model generation option when Vin is modeled as an input and Vout is
modeled as an output.

3.4 Coverage Metrics

Coverage information can be extracted from a set of simulations and is key to LEMA’s

abstract model generation methodology. We have done some initial investigation into

coverage metrics by implementing a metric where each simulation trace is given a score

and uncrossed thresholds are reported. A higher score is achieved by a simulation trace

that exhibits behavior not previously seen. From the perspective of the LHPN model,

new behavior is entering a previously unvisited region, taking a previously untaken region-

to-region transition, or altering the range of a recorded value (rate, constant value, or

delay). A metric of this type gives a qualitative measure of the utility of an additional

simulation trace. This type of metric could be used as an aid to determine the benefit

of doing further simulations. Uncrossed thresholds potentially indicate an inadequate

simulation set as the thresholds should characterize the operating regions of the system.
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The simulation set should provide information for all operating regions of the system.

The coverage score for a given simulation is calculated using the following formula

with unity weights: cvg := p · wp + t · wt + c · wc + d · wd where:

• p is the number of new places;

• wp is the places weight;

• t is the number of new transitions;

• wt is the transitions weight;

• c is the number of times a range of rate or constant value is updated;

• wc is the rates and constant values weight;

• d is the number of times a delay range is updated; and

• wd is the delay weight;

For the integrator example, using just the simulation trace shown in Table 3.1 with

C2 equal to 23 pF would result in an LHPN with the same structure but different rates

as the LHPN shown in Figure 3.6 and produce a coverage score of 200 using weights

of one. Adding the simulation trace shown in Table 3.2 with C2 equal to 27 pF results

in the exact same LHPN structure, but the ranges of rate for Vout would be changed.

Therefore, the value of the second trace run is only 94. Finally, if a third trace with

C2 equal to 25 pF is added at this point, the resulting LHPN would not change at all

as the rates generated from this trace would be contained in those generated from the

first two. Therefore, this trace adds no new knowledge, so the coverage metric would say

that it has no value. As a final example, if a trace is added that changes Vin to be twice

the frequency (i.e., it changes every 50 µs), it now becomes possible for Vin to change

before Vout goes above 0V. This means that the LHPN generated would now have a new

transition from p6 to p5. This LHPN would also have a wider range of delays for when

Vin changes. Therefore, this additional trace results in a score of 67.



CHAPTER 4

DIFFERENCE BOUND MATRICES

Formal verification has the promise of verifying properties over the entire state space

of the design including ranges of variation in parameters and initial conditions. It is

used with great success in several industrial settings for digital circuits. This success

for digital circuits has prompted exploration of formal verification for AMS circuits. A

major hurdle for formal verification of AMS circuits is that AMS circuits complicate an

already complex state space exploration process by requiring continuous quantities such

as voltages and currents to be tracked accurately during state space exploration. As a

result, one key component to the state space exploration process of AMS circuits is the

state space representation.

This chapter discusses several state space representations for AMS circuits and hybrid

systems reachability analysis. Next, the chapter introduces difference bound matrices

(DBMs), the state space representation used by LEMA’s DBM-based model checker. DBMs

are the key to the efficient state space representation used in LEMA’s DBM-based model

checker. A novel development which enables the state space exploration of LHPNs using

DBMs is the process of warping. This chapter concludes with a derivation of the algorithm

for warping DBMs.

4.1 Related Work

Model checking is a common approach to formal verification of hybrid systems. One

key component to any model checking algorithm is the state space representation. The

major criteria in selecting a state space representation are the ability to accurately

represent the state space and efficiently manipulate the representation. These two criteria

are in conflict as accurate models are computationally expensive to manipulate and store.

Numerous state space representations have been proposed, and the remainder of this

section discusses the most prominent representations.

Hybrid systems can contain nonlinear dynamics, so it is ideal if the state space rep-
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resentation is able to exactly or very accurately represent nonlinear polygons. Level sets

are represented using Hamilton-Jacobi equations which allows them to exactly represent

nonlinear dynamics with discontinuities [113]. While very accurate, the method is not

very efficient. Results are presented on hybrid systems examples with three states and

three dimensions which require over an hour to complete reachability analysis.

As a result of the high complexity required to exactly model the nonlinear dynamics

of the system, the majority of hybrid systems state space representations approximate

the nonlinearities of the state space using a form of convex polygons. A convex polygon

is a polygon where for any two points within the polygon, the midpoint of a line drawn

between the two points is also in the polygon. Representing the state space as arbitrary

convex polygons is the most accurate and expensive way to represent a nonlinear state

space while being limited to convex polygons. This method is employed in many different

ways [81, 55, 158, 156, 157, 155]. Initially, in [81] arbitrary convex polygons were repre-

sented using inequalities of variables and integer constants. This method was inefficient

and prone to integer overflow. The work in [55] refined the method in [81] by employing

the Parma Polyhedra Library [20] to help mitigate the integer overflow problems. Another

feature of [55] is that the accuracy of the convex polyhedra can be tuned to improve

efficiency. Because binary decision diagrams (BDDs) are used successfully to represent

and manipulate the state space for digital systems, there are several methods that use

BDDs [156, 157] or a BDD-like data structure, hybrid restriction diagrams (HRDs) [158],

to represent and manipulate the state space. The BDD-based algorithm manipulates

the state space by creating BDD nodes representing linear inequalities then performing

standard BDD operations. HRDs represent conjunctions of convex polyhedra which may

actually be concave. A satisfiability modulo theories (SMT) solver is used to explore a

bounded version of the state space represented directly using inequalities representing

arbitrary convex polyhedra [155]. While arbitrary convex polyhedra are a good choice

from an accuracy standpoint, they are not very efficient.

During state space exploration, each state space exploration step requires that the

reachability algorithm union the new state with the states found in previous iterations.

This can be an expensive operation. To help ease the computation involved in the union

operation, flowpipes [38, 39] and orthogonal polyhedra [14] are proposed. Flowpipes are

sequences of arbitrary convex polyhedra. Even though efficiency is gained by a simpler

union operation the number of faces required to accurately represent the state space grows
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prohibitively fast. To improve efficiency at the cost of accuracy, orthogonal polyhedra are

finite unions of hyperrectangles. A hyperrectangle is an n-dimensional polygon using only

90◦ angles. Hyperrectangles are efficient to represent, but a large number of rectangles

must be used to ensure an accurate approximation.

Oriented hyperrectangles [149] and octagons [111, 112] are proposed for improved

efficiency over arbitrary convex polyhedra. Oriented hyperrectangles are hyperrectangles

that have been rotated in space to represent the state space more accurately and efficiently

than hyperrectangles that must conform to a predetermined orientation. Octagons obtain

their efficiency by limiting the number of sides of each convex polygon to eight in two

dimensions. These polyhedra can be represented by conjunctions of inequalities of the

form ±x± y ≤ c.

As finding the right balance between efficiency and accuracy for convex polyhedra

has proven difficult, several representations not based on convex polyhedra have been

proposed. Ellipsoids [97, 30] are arbitrary elliptical surfaces. They are attractive because

they handle increased dimensions efficiently. They lose accuracy due to the fact that

unions of ellipsoids are not ellipsoids and as a result, conservative state space must be

added to maintain the representation. In [151], it is proposed to use eigenvectors to

represent the state space. These are only approximate for linear systems and thus add

another level of approximation to the reachability analysis.

Recently, two promising state space representations have been proposed, projectagons

[160] and zonotopes [61]. Projectagons are bounded polygons able to represent high

dimensional, nonconvex state spaces thus addressing many accuracy concerns. Projec-

tagons are formed by the intersection of a collection of prisms. Reachability results

are provided for a seven-dimensional example. Zonotopes are proposed to address the

computational concerns. Zonotopes are centrally symmetric convex polyhedra. They

can also be represented as the Minkowski sum of a finite set of line segments. This

property makes the union and intersection operations required by reachability analysis

very efficient.

4.2 State Representation

To analyze and verify properties of LHPNs, reachability analysis needs to be per-

formed. This analysis is complicated by the fact that LHPNs have an infinite number of

states. Therefore, to perform reachability analysis on LHPNs, it is necessary to represent
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this infinite number of states using a finite number of state equivalence classes called state

sets. Based upon their success in several timed circuits verification tools [161, 115, 28],

LEMA’s DBM-based analysis method uses zones defined using DBMs to represent the

continuous portion of the state space. DBMs are a restricted set of convex polygons

that only allow 45◦ and 90◦ angles. This allows them to represent the state space more

accurately than hyperrectangles and more efficiently than arbitrary convex polyhedra.

The state sets for LEMA’s DBM-based analyer are represented with the tuple ψ =

〈M,S,Q,R, I, Z〉 where:

• M ⊆ P is the set of marked places;

• S : B → {0, 1} is the value of each Boolean signal;

• Q : V → Z× Z is the value of each inactive variable;

• R : V → Z is the rate of each continuous variable;

• I : vi ≥ ki → {0, 1} is the value of each inequality;

• Z : (T ∪ V ∪ {x0})× (T ∪ V ∪ {x0}) → Z is a DBM composed of active transition

clocks, active continuous variables, and x0 (a reference variable which is always 0).

State sets and states differ in two ways. In a state set, inactive continuous variables

(i.e., R(v) = 0) may have a range of values, and a DBM Z represents the ranges of values

for clocks and active continuous variables. In the algorithms describing manipulation of

state sets, there are several notations used to access pieces of the state set. The notations

ql(v) and qu(v) are used to access the lower and upper values of variable v in the set of

inactive continuous variables Q. The notation R(v) is used to access the current rate for

the variable v. The notation v(i) is used to access the variable of inequality i and k(i)

is used to access the constant value of inequality i. The notation x ∈ Z checks if the

DBM Z is defined for x where x is a transition clock or continuous variable. The notation

Z ∪ x indicates that another dimension is added to the DBM to accommodate the new

transition clock or variable x while Z − x indicates that x’s dimension has been removed

from the DBM. More notation is given for accessing the components of the DBM in the

next section which provides an in depth discussion of DBMs.



83

4.3 Difference Bound Matrices

DBMs are a restricted form of convex polygons [51, 27, 137]. DBMs are restricted to

using only 45◦ and 90◦ angles to form the convex polygons. This restriction means that

states must evolve at a rate of one. Convex polygons are represented using a conjunction

of inequalities of the form xi − xj ≤ ki where xi or xj is the value of a transition’s

clock or a continuous variable, and ki is a constant value or the symbol ∞ representing

unboundedness. xi or xj can also be x0 which is a reference variable that is always zero.

For example, the convex polygon in Figure 4.1a can be specified using the equations in

Figure 4.1b.

DBMs organize the sets of inequalities into an n-dimensional square matrix where n is

the number of variables plus 1 (x0). Figure 4.2a shows this organization. The inequalities

in the matrix describe the separation between each of the variables in the polygon. The

diagonal of the matrix is the separations between the variable and itself. Therefore, the

diagonal in a valid DBM is filled with constants of zero. The first row of the matrix

contains the lower bounds of the variables (i.e., x0 − x ≤ −2 and x0 − y ≤ −4). The

equation x0 − vi ≤ ki simplifies to vi ≥ ki when x0 is replaced with zero (i.e., x ≥ 2

and y ≥ 4). The first column of the matrix contains the upper bounds of the variables,

(0, 0)

y
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4

8

(a)

x0 − x ≤ −2
x− x0 ≤ 8
x0 − y ≤ −4
y − x0 ≤ 8
x− y ≤ 5
y − x ≤ 2

(b)

Figure 4.1. A convex polygon and a set of inequalities to describe the polygon. (a)
A convex polygon that can be represented using a DBM. (b) A system of inequalities
describing the convex polygon in Figure 4.1a.
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(i.e., x − x0 ≤ 8 and y − x0 ≤ 8). The equation vi − x0 ≤ ki simplifies to vi ≤ ki when

x0 is replaced with zero, (i.e., x ≤ 8 and y ≤ 8). The remaining matrix entries contain

separations between the variables in the DBM, (i.e., x− y ≤ 5 and y − x ≤ 2).

Given this organization for a DBM, the representation can be simplified by represent-

ing the inequalities using only the constants as shown in Figure 4.2b. It should be noted

that the top row contains the negative of the lower bound for the variables. The notation

nlb(Z, x) accesses the negative of the lower bound for x in Z (i.e., nlb(Z, x) = −2 for

the DBM in Figure 4.2b) and ub(Z, x) accesses its upper bound (i.e., ub(Z, x) = 8 for the

DBM in Figure 4.2b). The notation Z(i, j) is used to access the DBM entry containing

the separation between i and j (i.e., Z(x, y) = 5 for the DBM in Figure 4.2b).

To perform reachability analysis, it is necessary to union the newly found state into

the previously explored state space. The union operation requires comparing DBMs. To

efficiently perform these comparisons, a canonical form of a DBM is needed. For DBMs,

canonicity is achieved when all bounds are maximally tight [51]. Maximal tightness is

achieved by running Floyd’s all pairs shortest path algorithm on the DBM as shown in

the recanonicalize function in Algorithm 4.1.

Algorithm 4.1: recanonicalize(Z)

forall xi ∈ Z do1

forall xj ∈ Z do2

forall xk ∈ Z do3

if Z(xj , xk) > Z(xj , xi) + Z(xi, xk) then4

Z(xj , xk) := Z(xj , xi) + Z(xi, xk)5

return Z;6


x0 x y

x0 − x0 ≤ 0 x0 − x ≤ −2 x0 − y ≤ −4
x− x0 ≤ 8 x− x ≤ 0 y − x ≤ 2
y − x0 ≤ 8 x− y ≤ 5 y − y ≤ 0


(a)


x0 x y
0 −2 −4
8 0 2
8 5 0


(b)

Figure 4.2. A set of inequalities and the corresponding DBM. (a) Inequalities organized
in the n-dimensional matrix form used by DBMs. (b) The DBM for the inequalities in
Figure 4.2a.



85

The comparisons between DBMs in the union operation are used to exclude duplicate

zones as well as zones that are smaller. To perform these comparisons, equality and subset

relations for DBMs are defined. All other relationships (i.e., ⊃,⊆,⊇) can be defined in

terms of the equality and subset relations. Given a canonical form of the DBM, equality

of two DBMs is determined using Algorithm 4.2. Two DBMs are equal when they contain

the same variables and all entries are equal. To test equality, equalDBM verifies that both

DBMs are the same size and contain the same variables (lines 1-4). For a given variable,

the lower bounds, upper bounds, and separations between variables must also be equal

between the two zones (line 4).

Algorithm 4.2: equalDBM(Z1, Z2)

if |Z1| = |Z2| then1

forall xi ∈ Z1 do2

forall xj ∈ Z1 do3

if xi 6∈ Z2 ∨ Z1(xi, xj) 6= Z2(xi, xj) then4

return False;5

return True;6

return False;7

One DBM is considered to be a subset of another DBM if the two DBMs are not equal

and all bounds on all variables are smaller or the same. One subtlety to this definition

is that if a quantity does not appear in the zone, it is considered to be unbounded. For

example, the DBM in Figure 4.3b is a subset of the DBM in Figure 4.3a. The DBM in

Figure 4.3b is equivalent except for the variable y. In this case, y is considered unbounded

meaning that the DBM in Figure 4.3b represents a subset of the state space represented

by the DBM in Figure 4.3a. Algorithm 4.3 shows the algorithm to determine if Z1 is a

subset of Z2. The DBMs are compared to ensure that Z2 contains all variables contained

in Z1 (lines 1-3). Finally, the separations between all common variables are checked to

ensure that the values for Z1 are less than or equal to the values in Z2 (lines 1-3). If all

of these checks are satisfied, Z1 is a subset of Z2 (line 5).
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x0 x
0 −2
8 0


(a)


x0 x y
0 −2 −4
8 0 2
8 5 0


(b)

Figure 4.3. A DBM and its subset. (a) A DBM. (b) A subset of the DBM in Figure 4.3a.

Algorithm 4.3: subsetDBM(Z1, Z2)

forall xi ∈ Z1 do1

forall xj ∈ Z1 do2

if xi 6∈ Z2 ∨ Z1(xi, xj) ≤ Z2(xi, xj) then3

return False;4

return True;5

4.4 Warping DBMs

The state space of an LHPN cannot be represented exactly in a DBM due to the

requirement that all dimensions advance at rate one in a DBM. While clocks associated

with transitions always increase at rate one, continuous variables may increase or decrease

with any rate. Therefore, an approximation is necessary to analyze such a state space

using DBMs. When a continuous variable advances with a rate other than one, a variable

substitution is performed which has the effect of warping the DBM in the given dimension

such that it advances with rate one. For example, in Figure 4.4a, a zone with two

continuous variables, x and y, is shown. If x begins increasing at a rate of 2 and y

begins increasing with a rate of 3, the warp occurs by substituting x with x
2 and y with

y
3 . This has the effect of warping the zone as shown in Figure 4.4b. Since a DBM can

only represent polygons made with 45◦ and 90◦ angles, the zone in Figure 4.4b must be

conservatively encapsulated in a larger zone which satisfies this requirement. The lighter

gray box in Figure 4.4c shows the encapsulation that includes this zone while using only

45◦ and 90◦ angles. The final result of the zone being warped is shown in Figure 4.4d.

When a rate is negative, the DBM is first warped as described above and the resulting

zone is then warped into the negative space. Warping into the negative space is accom-

plished by first swapping the lower and upper bounds in the zone. In the resulting zone,

all 45◦ angles become 225◦ angles which cannot be represented in a DBM. This can be



87

3

x
y

9

2 10

(a)

y
3

3

5x
2

(b)

y
3

3

5x
2

(c)

y
3

3

5x
2

(d)

Figure 4.4. Warping a zone by positive rates in two dimensions.

seen in the darker box shown in Figure 4.5a. To address this problem, the algorithm

must encapsulate the zone in a rectangle. The gray box in Figure 4.5b is the result of

this encapsulation.

The following derivation explains the formal basis for warping the DBM. This deriva-

tion is done for the case of two dimensions. Cases that involve dimensions greater than

two can be simplified to multiple applications of the two dimensional case.

Figure 4.6a is a zone whose DBM representation is shown in Figure 4.6b. The distances

necessary for the warp calculations can be derived from Figure 4.6a using simple algebra,

the slope-intercept equation (y = mx + b), and the fact that the slopes are always one.

The result of these derivations is shown below.
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d1 = y1 − b1 − x1

d2 = x1 + b2 − y1

d3 = x2 − y2 + b2

d4 = y2 − x2 − b1

5

-3

-y3

x
2

(a)

5

-3

-y3

x
2

(b)

Figure 4.5. Warping a zone by a negative rate.

(0, 0)

y

x

d1

d4

x2x1

b1

y2

d2

d3

b2

y1

(a)

Z =

 0 −x1 −y1

x2 0 −b1
y2 b2 0



(b)

Figure 4.6. A DBM and its corresponding zone. (a) A DBM representing the zone in
Figure 4.6a. (b) A zone represented by the DBM in Figure 4.6b.
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Given the above information, the zone is ready to be warped in both the x and y

dimensions. α and β are ratios where the numerator is the old warp value and the

denominator is the new warp value for the given dimension. The zone is warped by α

in the x dimension and β in the y dimension as shown in Figure 4.7 for the α > β case

and Figure 4.8 for the β > α case. The dark gray box represents the exact result of the

warp while the light gray triangles indicate the space that is added to allow the warped

polygon to fit within the restrictions imposed by the DBM representation. The first step

in the calculation of the new zone is scaling the upper and lower bound by α and β as

shown below.

x′1 = αx1

x′2 = αx2

y′1 = βy1

y′2 = βy2

To finish the warp calculation, the equations to calculate the values for the y intercepts,

b′1 and b′2, must be derived. The derivations follow using the b = y − mx form of the

slope-intercept equation for a line where the slope is one. These calculations are dependent

(0, 0)

y

x
αx2

b′1

βd2b′2

βd4

αx1

βy1

βy2

Figure 4.7. The zone from Figure 4.6a scaled by α in the x dimension and β in the y
dimension where α > β. The lighter polygon represents the new zone which encapsulates
the warped zone.
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on the relative values of α and β. When α > β the calculation of the new zone proceeds

as follows:

b′1 = (βy2 − βd4)− αx2

= βy2 − β(y2 − x2 − b1)− αx2

= βy2 − βy2 + βx2 + βb1 − αx2

b′1 = βx2 + βb1 − αx2

b′2 = (βy1 + βd2)− αx1

= βy1 + β(x1 + b2 − y1)− αx1

= βy1 + βx1 + βb2 − βy1 − αx1

b′2 = βx1 + βb2 − αx1

Similarly, the zone could be warped such that β > α as shown in Figure 4.8. The

calculation of b′1 and b′2 in this situation is performed as follows:

(0, 0)

y

x

b′1

b′2

αx1 αx2

βy1

βy2
αd3

αd1

Figure 4.8. The zone from Figure 4.6a scaled by α in the x dimension and β in the y
dimension where β > α. The lighter polygon represents the new zone which encapsulates
the warped zone.
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b′1 = βy1 − (αx1 + αd1)

= βy1 − αx1 − α(y1 − b1 − x1)

= βy1 − αx1 − αy1 + αb1 + αx1

b′1 = βy1 − αy1 + αb1

b′2 = βy2 − (αx2 − αd3)

= βy2 − αx2 + α(x2 − y2 + b2)

= βy2 − αx2 + αx2 − αy2 + αb2

b′2 = βy2 − αy2 + αb2

Note that when α = β, both b′1 and b′2 reduce to:

b′1 = αb1 = βb1

b′2 = αb2 = βb2

The equations presented for the calculations of b′1 and b′2 can be parameterized into a

single function to simplify the implementation of this derivation. The equation is shown

in Equation 4.1.

warp(z1, z2, r1, r2) = r1 · z2 − r1 · z1 + r2 · z1 (4.1)

It may also be necessary to scale a zone by a negative amount. In this case, the zone

is first scaled by the absolute value of the warp value using the appropriate equations

shown above. The next step involves the swapping of the values for the dimension(s) being

warped negatively. In the equations shown below, the y dimension is being negatively

warped and similar equations can be used when the x dimension is negatively warped.

x′1 = x1

x′2 = x2

y′1 = −y2

y′2 = −y1

b′1 = −y1 − x2

b′2 = −y2 − x1

The new zone is approximated with a rectangle as shown in Figure 4.9. The box

encapsulation is a direct result of moving from a positive warp to a negative warp where
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(0, 0) x

d1

d4

x2x1
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−y2

−y1

b′1

b′2

y

Figure 4.9. A zone warped from positive space into negative space.

the 45◦ angles of the zone in the positive space become unrepresentable 225◦ angles after

the negative warp. These 225◦ angles are converted to 90◦ angles to be represented by

the zone resulting in additional state space being conservatively introduced.

LEMA’s DBM-based model checker only supports integer values in the DBM. This

restriction does not modify the state space exploration process for systems with variables

changing only at a rate of one. However, when it is necessary to warp the DBM, the

algorithms must be modified to ensure a conservative state space is represented. The

problem arises because of the divide operation required by warping. To ensure that

a conservative state space is found, two different divide functions are used, cdiv and

fdiv. The cdiv function takes two integer values, performs a floating point division, and

returns the ceiling of the result (i.e., dx/ye). The fdiv function works the same as the

cdiv function except it returns the floor of the division (i.e., bx/yc).

This preceding derivation explains the formal basis for the dbmWarp algorithm, Algo-

rithm 4.4, and in particular the warp function. The mapping between the variables used

in the derivation and Algorithm 4.4 are as follows:
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−x1 = nlb(Z, x)

x2 = ub(Z, x)

−y1 = nlb(Z, y)

y2 = ub(Z, y)

−b1 = Z(x, y)

b2 = Z(y, x)

First, the algorithm performs the warping and encapsulation for positive rates (lines 1-

12). After a variable has been warped, it is said to be in warped space. The third loop in

Algorithm 4.4 is used when a rate is negative which requires that the values calculated

in the previous parts of the algorithm to be warped into the negative warped space (lines

13-18). The resulting DBM Z is recanonicalized and returned (lines 19-20). The warp

function used in Algorithm 4.4 is shown in Equation 4.1.

Algorithm 4.4: dbmWarp(R,R′, Z)

forall {x, y}|x ∈ Z, y ∈ Z, x 6= y do1

α := |fdiv(R(x), R′(x))|;2

β := |fdiv(R(y), R′(y))|;3

if α > β then4

Z(x, y) := warp(ub(Z, x), Z(x, y), β, α);5

Z(y, x) := warp(nlb(Z, x), Z(y, x), β, α);6

else7

Z(x, y) := warp(nlb(Z, y), Z(x, y), α, β);8

Z(y, x) := warp(ub(Z, y), Z(y, x), α, β);9

forall x ∈ Z do10

nlb(Z, x) := cdiv(|R(x)|, |R′(x)|)∗ nlb(Z, x);11

ub(Z, x) := cdiv(|R(x)|, |R′(x)|)∗ ub(Z, x);12

forall x ∈ Z do13

if R(x)/R′(x) < 0 then14

Z := swap(Z,nlb(Z, x),ub(Z, x));15

forall y ∈ Z do16

if x 6= y ∧ y 6= x0 then17

Z(x, y) := Z(y, x) := ∞;18

Z := recanonicalize(Z);19

return (R′, Z);20
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4.5 Updating the State Set

After defining DBMs and introducing the notion of warping, the remaining algorithms

for updating the state set can be described. Another set of basic operations on Z are

the addition and removal of transition clocks and variables. The algorithm to add a

transition clock to Z, addT, is shown in Algorithm 4.5. The transition clock is first added

to Z (line 1). Then the remaining entries in Z for the newly added transition clock are set

to unbounded for other variables and zero when the variable relates to itself (lines 2-7).

Algorithm 4.5: addT(Z, t)

Z = Z ∪ ct;1

forall xi ∈ Z do2

if xi = ct then3

Z(ct, xi) := 0;4

else5

Z(ct, xi) := ∞;6

Z(xi, ct) := ∞;7

return Z;8

Algorithm 4.6 shows how a variable is added to Z using addV. The variable is inserted

into Z (line 1). The remainder of the algorithm sets the correct values of the entries in Z.

If the rate of the variable is greater than zero then the value of the variable’s minimum

value (i.e., ql(v)) divided by the rate is placed in the lower bound of the DBM and the

variable’s maximum value (i.e., qu(v)) divided by the rate is placed in the upper bound of

Z (lines 2-4). Due to the fact that the bounds are swapped for negative rates, the process

described above is opposite when the rate is less than zero (lines 5-7). Note that cdiv

ensures that the variable is conservatively represented. For example, a value of 13 being

warped by two would result in an exact value of 6.5. Using the cdiv function results in

the conservative value of 7. To finish adding the variable, the separation between the

newly added variable and the other variables in the DBM is set to unbounded and the

relationship between the variable and itself is set to zero (lines 8-13).

The rmT algorithm removes transition clocks from the DBM (i.e., Z = Z − ct).

Removing a variable from the DBM is just the opposite of adding a variable to the DBM.

Algorithm 4.7, rmV, performs a variable substitution out of the warped space (lines 1-6).

The variable is then removed from the DBM (line 7).
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Algorithm 4.6: addV(Q,R,Z, v)

Z := Z ∪ v;1

if R(v) > 0 then2

nlb(Z, v) := cdiv(ql(v), R(v));3

ub(Z, v) := cdiv(qu(v), R(v));4

else5

nlb(Z, v) := cdiv(qu(v), R(v));6

ub(Z, v) := cdiv(ql(v), R(v));7

forall xi ∈ Z do8

if xi = v then9

Z(v, xi) := 0;10

else11

Z(v, xi) := ∞;12

Z(xi, v) := ∞;13

return (Q,Z);14

Algorithm 4.7: rmV(Q,R,Z, v)

if R(v) > 0 then1

ql(v) := nlb(Z, v) ∗R(v);2

qu(v) := ub(Z, v) ∗R(v);3

else4

ql(v) := ub(Z, v) ∗R(v);5

qu(v) := nlb(Z, v) ∗R(v);6

Z = Z − v;7

return (Q,Z);8

Algorithm 4.8 describes the algorithm to perform variable assignments, doVarAsgn.

Each variable assignment on the given transition is done by removing the variable from Z,

making the assignment, and adding the variable back into Z. The removal and addition are

necessary to maintain the consistency of the relationships between the assigned variables

and other members of Z. The procedure to assign rates and Boolean signals only assigns

the rates and Boolean signals, and no additional state updates are needed.
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Algorithm 4.8: doVarAsgn(Q,R,Z,VA, t)

forall (v = [al, au]) ∈ VA(t) do1

(Q,Z) = rmV(Q,R,Z, v);2

Q(v) = (al, au);3

(Q,Z) = addV(Q,R,Z, v);4

return (Q,Z);5



CHAPTER 5

DBM-BASED MODEL CHECKER

Model checking is a promising approach to formally verify AMS circuits. A number

of different approaches and tools have been developed for AMS circuit model checking.

Several decisions are made when developing an AMS circuit model checker, namely the

model to be analyzed, the state space representation, and the types of properties that

can be verified.

This chapter discusses several model checking tools for hybrid systems and AMS

circuit verification. Next, this chapter introduces a set of algorithms to perform reach-

ability analysis of constant rate LHPNs using DBMs based upon a reachability analysis

algorithm for analyzing timed systems [25, 26]. This chapter includes an error trace

generation method for LHPNs and concludes with an example of reachability analysis on

the motivating example.

5.1 Related Work

Chapter 2 discusses the pros and cons of the different models with respect to efficiently

representing hybrid systems and creating formal models from commonly used modeling

formalisms. When selecting a model for use in reachability analysis, one concern is

the decidability of the model. In [82], Henzinger et al. provide a thorough exploration

of the decidability of the reachability problem for hybrid system models and identify

a boundary between decidability and undecidability. There are two constraints that

must hold for a hybrid system model to be decidable. The first is that the values of two

continuous variables with different rates are never compared. The second is that whenever

a continuous variable’s rate changes, the continuous variable must be reinitialized. These

constraints make reachability analysis of most hybrid system models, including LHPNs,

undecidable.

The two major property classifications are safety properties and liveness properties.

Safety properties specify that nothing bad happens and can be checked on finite traces.
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Liveness properties specify that something good happens eventually and are satisfied by

infinite traces. A class of liveness properties, bounded liveness properties, are bounded

by time. These bounded liveness properties are represented as safety properties because

they can be checked using finite traces. For simplicity, most hybrid system verification

tools only support safety properties and possibly bounded liveness properties.

To illustrate how these considerations work in practice, the remainder of this section

discusses the implementation of several tools for hybrid system and AMS circuit verifica-

tion. HyTech [81, 10, 6] and red [158] are tools that operate on linear hybrid automata

(LHA). LHA are a restricted set of hybrid automata that only allow rates governed by

linear constraints on the variables and their first derivatives. Nonlinear behaviors can be

approximated by LHA using piecewise linear envelopes to approximate the nonlinearities.

The differences in these tools become evident when examining how the state space is

represented in the tool. Both tools use convex polyhedra in the state space exploration,

but red uses HRDs to represent sets of convex polyhedra as concave polyhedra. The

red tool only verifies safety properties while HyTech supports the verification of safety

properties and time-bounded properties. Both methods perform exact reachability.

TReX [12] is a modular tool supporting any type of data structure that provides

a symbolic representation structure, a symbolic successor/predecessor function, and an

extrapolation procedure. It can be exact or not based on the exactness of the given data

structures and functions. TReX checks safety properties and generates a symbolic graph

of the reachable state space which can be processed by other tools. An example of a

model supported by TReX is parametric difference bound matrices (PDBMs) [11]. This

model is not a true hybrid model, but it is more powerful than timed automata. PDBMs

can be used to analyze linear and a subset of nonlinear constraints. There is, however,

only a single continuous quantity available in the analysis which is limiting.

The d/dt tool [16] operates on a restricted set of hybrid automata that allow rate

equations described by linear differential equations. This model is more complicated than

LHA but does not directly model nonlinear dynamics. Convex polyhedra are also used

by d/dt to perform the individual state exploration steps, but orthogonal polyhedra are

used to represent the entire state space. The reachability analysis is approximate and

can verify safety properties.

CheckMate [42, 145, 144, 37] uses polyhedral-invariant hybrid automata (PIHA) as

a model. PIHA support a very general set of rate values including ordinary differential
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equations to verify safety properties. The verification procedure is conservative and uses

flowpipe approximations, which are unions of convex polyhedra, to explore the state

space. False negatives are handled by a partition refinement procedure that depends on

a test of bisimulation. Due to the refinement procedure, Checkmate can perform exact

reachability analysis. However, the iterative process to find a bisimulation might not

terminate and in this case the reachability analysis is conservative.

PHAVer extends the work done by CheckMate. It analyzes LHA models of AMS

circuits using arbitrary convex polyhedra to represent the exact continuous state space

[55, 56, 57, 58]. While arbitrary convex polyhedra are quite complex, one unique feature of

PHAVer is that it allows for performance to be tuned at the expense of a conservative state

space by reducing the accuracy of the polyhedra. PHAVer demonstrates the effectiveness

of this approach by verifying safety properties on several benchmark examples.

Two reachability analysis methods for hybrid net condition/event systems (HNCESs)

are proposed in [34]. The first method is a predicate-transformation method based

on LHA reachability algorithms. The second method is a path-based approach that

enumerates all possible firing sequences of the discrete transitions. Both algorithms verify

safety properties using constraint solving.

Amcheck divides the continuous state space into regions and represents each region in a

Boolean manner [76]. From this decomposition, it creates a transition relation by selecting

test points in each region to determine reachable next states. This Boolean abstraction

allows it to model check safety properties using standard Boolean based approaches.

While the model checking algorithms are exact, the approximation of the original system

is conservative and may be very inaccurate.

LEMA’s BDD-based model checking engine uses BDDs to represent the exact state

space of the LHPN model [156]. This exact representation is very expensive, so the model

checking engine is implemented in a conservative manner to reduce the complexity. To

avoid the complexity of a full state space exploration, LEMA’s SMT-based bounded model

checker verifies safety properties on bounded length traces of the system [155]. The

SMT-based method is exact, but only for the bounded length of the trace. Results of

both model checking engines verifying safety properties on several benchmark examples

demonstrate the effectiveness of this method.
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5.2 Reachability Analysis of LHPNs Using DBMs

The top-level algorithm for LEMA’s DBM-based model checker is shown in Algo-

rithm 5.1. The modelCheck algorithm takes as inputN , Tfail, allowDeadlock , and propCTL.

N is the LHPN representing the system being model checked. tfail is a set of transitions

that when fired indicate a failure of the system. The set of fail transitions may be empty.

The value of allowDeadlock indicates whether the reachability analysis should stop upon

finding a deadlock in the system. If the Boolean variable is true then the reachability

algorithm continues upon finding a deadlock. Deadlock often indicates a problem in the

model, but there are situations where a model may contain an intended deadlock (e.g., a

system that terminates). propCTL is a CTL property that if provided is checked against

the state space of the LHPN model found by the reachability algorithm.

The model checking algorithm, Algorithm 5.1, performs reachability analysis on the

LHPN (line 2). The let notation is used for convenience to demonstrate the contents of

the tuple (line 1). This notation is used similarly in algorithms throughout the remainder

of this chapter. If a CTL property has been specified, it is checked on the state space

returned by the reachability algorithm (lines 3-4). If the CTL property fails then a pair

of error traces are generated (lines 5-6).

Algorithm 5.1: modelCheck(N,Tfail, allowDeadlock , propCTL)

let N = (P, T,B, V, F,En, D,BA,VA,RA,M0, S0, Q0, R0);1

(Ψ,Γ, ψ0, (Λmax,Λmin)) := reach(N, tfail, allowDeadlock);2

if prop 6= ∅ then3

(fail , ψfail) := checkCTL(prop,Ψ,Γ);4

if fail then5

(Λmax,Λmin) := error(ψ0, ψfail,Ψ,Γ, V, T );6

Algorithm 5.2 describes LEMA’s DBM-based reachability algorithm for LHPNs. The

algorithm is a depth first search of the state space. The algorithm begins by constructing

the initial state set of the LHPN and adding it to the set of reachable state sets, Ψ

(lines 2-4). The reach algorithm then calls findPossibleEvents which determines all

possible sets of event sets, E , that can result in a new state set (line 6). Given this set of

event sets, an event set, E , is arbitrarily chosen by the select function (line 8). After the

selection of an event set, if event sets still remain in E , the remaining event sets and the

current state set are pushed onto the stack (lines 9-10). Given the current state set, ψ,
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and possible event set, E , the state set is updated (line 11). If the resulting state set has

not been seen before, it is added to the set of reachable state sets; an edge is added into

the state graph between the old and new state; the recently executed event set is checked

for failure transitions; new events are found; deadlock is detected; and the loop continues

(lines 12-22). If a failure trace has been fired or deadlock is found a pair of error traces are

created and the current state space and error traces are returned (lines 16-18 and 20-22,

respectively). If the state set has been seen before, an edge is added to the graph, the

stack is popped and the loop continues (lines 23-26). If the stack is empty, the reachable

state space has been found and is returned with an empty error trace (lines 27-28). The

remainder of this section explains these steps in more detail.

Algorithm 5.2: reach(N,Tfail, allowDeadlock)

let N = (P, T,B, V, F,En, D,BA,VA,RA,M0, S0, Q0, R0);1

ψ0 = (M,S,Q,R, I, Z) := initialStateSet(T, V,En,M0, S0, Q0, R0);2

ψ := ψ0;3

Ψ := {ψ};4

Γ := ∅;5

E := findPossibleEvents(T,En,D,R, I, Z);6

while true do7

E := select(E);8

if E − {E} 6= ∅ then9

push(E − {E}, ψ);10

ψ′ := updateState(T, V,En, D,BA,VA,RA, ψ,E );11

if ψ′ 6∈ Ψ then12

Ψ := Ψ ∪ {ψ′};13

Γ := Γ ∪ {(ψ,ψ′)};14

ψ := ψ′;15

if E ⊆ Tfail then16

(Λmax,Λmin) = error(ψ0, ψ,Ψ,Γ, T, V );17

return (Ψ,Γ, ψ0, (Λmax,Λmin));18

E := findPossibleEvents(T,En,D,R, I, Z);19

if E := ∅ ∧ ¬allowDeadlock then20

(Λmax,Λmin) = error(ψ0, ψ,Ψ,Γ, T, V );21

return (Ψ,Γ, ψ0, (Λmax,Λmin));22

else23

Γ := Γ ∪ {(ψ,ψ′)};24

if stack not empty then25

(E , ψ) := pop();26

else27

return (Ψ,Γ, ψ0, ∅);28
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5.2.1 Initial State Set Construction

In Algorithm 5.3, the initial state set ψ is constructed. First, the marking M is set

to the initial marking M0 (line 1). The Boolean signals S are set to their initial state

S0 (line 2). The rates R are set to their initial rates R0 (line 3). Initially, Q includes

inactive continuous variables set to their initial value, Q0, while the DBM Z includes

active continuous variables (i.e., R0(v) 6= 0) set to their initial value (lines 4-8). The

clocks for enabled transitions are set to zero and added to Z (lines 9-11). Finally, I

contains the initial value for all inequalities (i.e., I(i) = (Q0(v) ≥ k)) (lines 12-13). The

function ineq(En) returns the set of inequalities found on the enabling conditions in N .

Algorithm 5.3: initialStateSet(T, V,En,M0, S0, Q0, R0)

M := M0;1

S := S0;2

R := R0;3

forall v ∈ V do4

if R(v) 6= 0 then5

(Q,Z) := addV(Q0, R0, Z, v);6

else7

Q(v) := Q0(v);8

forall t ∈ T do9

if t ∈ EN (M0, S0, Q0) then10

Z := addT(Z, t);11

forall (v ≥ k) ∈ ineq(En) do12

I(v ≥ k) := Q0(v) ≥ k;13

return (M,S,Q,R, I, Z);14

5.2.2 Finding Possible Events

The findPossibleEvents algorithm shown in Algorithm 5.4 determines which events

are possible from the current state. There are two types of possible events: a transition

firing or an inequality changing value due to the advancement of time. Each event e is

grouped into an event set E . An event set is a set of events that must occur simultaneously

in the state space exploration. There are two types of event sets, a single transition and

a set of inequalities. Transitions are not grouped together in sets because the transition

clocks in the zone exactly measure their firing time. Because inequalities may include

variables that are in warped space, it may be necessary for sets of inequalities to happen
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simultaneously. This happens when the time at which the constant value of the inequality

is reached for two separate inequalities is indistinguishable in the warped space.

Algorithm 5.4: findPossibleEvents(T,En, D,R, I, Z)

E := ∅;1

forall t ∈ Z do2

if ub(Z, t) ≥ dl(t) then3

E := addSetItem(T,En, D,R,Z, E , t);4

forall i ∈ ineq(En) do5

if ineqCanChange(R, I, Z, i) then6

E := addSetItem(T,En, D,R,Z, E , i);7

return E ;8

A transition may fire anytime after the lower bound of the delay for that transition

has been reached, and it must fire before the upper bound of the delay is exceeded. The

notation used to access the lower bound of the delay is dl(t). The notation to access

the upper bound of the delay is similar, du(t). Clocks are activated when a transition

becomes enabled and only enabled transitions are in Z. Therefore, any transition in Z

whose clock can reach its lower bound may fire (i.e., ub(Z, t) ≥ dl(t)) (lines 2-4). An

inequality may change value when time can advance to the point where the value of the

continuous variable associated with the inequality crosses the constant in the inequality

(lines 5-7). This is determined in the ineqCanChange function by examining the current

values of R, I, and Z with respect to i.

Once an event has been selected as a possible event, the addSetItem function is called

to determine if this event can be the next to occur (lines 4 and 7). There are two possible

outcomes. The first outcome is that the newly found event cannot actually happen before

some other event already in the set of event sets E , and it is not added to the set. The

second outcome is that the newly found event can occur next, so it is added in the set

of event sets, E . Adding the newly found event to the set of event sets may cause other

events already in E to be removed from E as this newly added event may occur before

the previously added events.

The addSetItem function in Algorithm 5.5 divides the determination of whether an

item is added to the current set of event sets into three main cases: both are inequalities,

the new event is an inequality and the current event is a transition firing, and the
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new event is a transition firing and the current event is an inequality. The fourth

case when both events are transition firings does not need to be considered because

as mentioned previously, transition clocks are represented exactly in Z. The idea behind

the three functions to handle these three cases is to examine the results of a restrict

and recanonicalize for each event to determine which event actually happens first or if

the two events would happen at the same time and should be included in the same event

set.

The purpose of restrict is to modify Z to reflect that time must have advanced to

the point necessary for the events in the event set to have occurred (i.e., the clock for the

transition firing reaches its lower bound or the continuous variable reaches the constant in

an inequality). To restrict Z to the point where the clock for a transition firing reaches its

lower bound, the lower bound in Z for transition t is set to the lower bound of the delay

for transition t (i.e., nlb(Z, t) := dl(t)). To restrict Z to the point where a continuous

variable reaches the constant in an inequality, the lower bound in Z for v is set to the

result of the inequality’s constant k divided by the rate of change for the variable R(v)

(i.e., nlb(Z, v) := cdiv(k,R(v)).

Algorithm 5.5: addSetItem(T,En,D,R,Z, E , enew)

forall E ∈ E do1

forall e ∈ E do2

if enew ∈ ineq(En) ∧ e ∈ ineq(En) then3

(E , status) := happensFirstII(R,Z, enew, e,E );4

else if enew ∈ ineq(En) ∧ e ∈ T then5

(E , status) := happensFirstIT(D,R,Z, enew, e,E );6

else if enew ∈ T ∧ e ∈ ineq(En) then7

(E , status) := happensFirstTI(D,R,Z, enew, e,E );8

if status = NotPossible ∨ status = Possible then9

return E ;10

E = E ∪ {{enew}};11

return E ;12

The first case of addSetItem is executed when the newly found event and the event

currently under inspection are both inequalities (lines 3-4). This case results in the calling

of happensFirstII. The second case in addSetItem is executed when the newly found

event is an inequality, and the event currently under inspection is a transition (lines 5-6).

This case results in the calling of happensFirstIT. The third case in addSetItem is
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executed when the newly found event is a transition, and the event currently under

inspection is a inequality (lines 7-8). This case results in the calling of happensFirstTI.

Finally, if the status of the newly found event is decided, either Possible or NotPossible,

the function returns (lines 9-10). If the status of the newly found variable remains

Undecided after examining all of the event sets it is added to the set of event sets as

a new, singleton event set (line 11).

The happensFirstII function, shown in Algorithm 5.6, determines how the DBM

would be restricted for a change upon the corresponding inequalities for the newly found

event, inew, and the event under inspection, i (lines 3-4). If the inequalities are on the

same variable, then the restrict values can be compared directly using the compareSameV

function (line 6). If the two inequalities are on different variables, the determination of the

event firing becomes more complicated as shown in Algorithm 5.8, compareDifferentV

(line 8).

Algorithm 5.6: happensFirstII(R,Z, inew, i,E )

let i = (v ≥ k);1

let inew = (vnew ≥ knew);2

restrictVal := cdiv(k,R(v));3

restrictValnew := cdiv(knew,R(vnew));4

if vnew = v then5

return compareSameV(inew, i,E , restrictValnew, restrictVal);6

else7

return compareDifferentV(Z, inew, i,E , restrictValnew, restrictVal);8

The compareSameV function, shown in Algorithm 5.7, compares two inequalities on

the same variable based on their restrict values. If the restrict value for the newly found

event is greater (farther along in time) then it cannot happen first and is not added to

the set (lines 1-2). If the restrict value for the event under inspection is higher then it

cannot happen first and is removed from the event set, but nothing can be said about the

possibility or impossibility of the newly found event (lines 3-5). If neither of the previous

cases is true, then the two events are restricted to the same point in time and can happen

simultaneously, and the newly found event is added to the event set (lines 6-8).

The compareDifferentV function, shown in Algorithm 5.8, compares two inequalities

on different variables based on the values in Z after restrict and recanonicalize. If
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Algorithm 5.7: compareSameV(inew, i,E , restrictValnew, restrictVal)

if restrictValnew > restrictVal then1

return (E ,NotPossible);2

else if restrictVal > restrictValnew then3

E := E − {i};4

return (E ,Undecided);5

else6

E := E ∪ {inew};7

return (E ,Possible);8

the restrict value for the newly found event would result in the DBM entry for the variable

under inspection growing then the newly found event is not added to the set (lines 3-4

and 11-12). If the opposite case is true then the variable under inspection is removed

from the event set but nothing can be said about the newly found event (lines 5-10).

Finally, if the entries in the DBM would be equal, the newly found event is added to the

event set (lines 13-15).

Algorithm 5.8: compareDifferentV(Z, inew, i,E , restrictValnew, restrictVal)

let i = (v ≥ k);1

let inew = (vnew ≥ knew);2

if −restrictVal > −restrictValnew +Z(vnew, v) then3

return (E ,NotPossible);4

else if −restrictValnew > −restrictVal j +Z(v, vnew) then5

E := E − {i};6

return (E ,Undecided);7

else if restrictVal j > nlb(vnew) + Z(v, vnew) then8

E := E − {i};9

return (E ,Undecided);10

else if restrictValnew > nlb(v) + Z(vnew, v) then11

return (E ,NotPossible);12

else13

E := E ∪ {inew};14

return (E ,Possible);15

The happensFirstIT function, shown in Algorithm 5.9, determines how the DBM

would be restricted for a change upon the corresponding inequality for the newly found

event, inew, and the transition for the event under inspection, t (lines 2-3). If the value for

the newly found event is more restrictive than the value for the event under inspection,
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the event under inspection is removed from the event set but nothing can be said about

the newly found event (lines 4-6). If the newly found event is less restrictive then it is

found to be not possible and is not added (lines 7-8).

Algorithm 5.9: happensFirstIT(D,R,Z, inew, t,E )

let inew = (vnew ≥ knew);1

restrictVal := dl(t);2

restrictValnew := cdiv(knew,R(vnew));3

if −restrictValnew > −restrictVal + Z(t, vnew) then4

E := E − {t};5

return (E ,Undecided);6

else if restrictValnew > ub(Z, t) + Z(vnew, t) then7

return (E ,NotPossible);8

The happensFirstTI algorithm, shown in Algorithm 5.10, is very similar to the

happensFirstIT function where the result is either that the newly found event is not

possible or the event under inspection is removed from the set and nothing is decided

about the newly found event.

Algorithm 5.10: happensFirstTI(D,R,Z, tnew, i,E )

let i = (v ≥ k);1

restrictVal := cdiv(k,R(v));2

restrictValnew := dl(tnew);3

if −restrictVal > −restrictValnew + Z(tnew, v) then4

return (E ,NotPossible);5

else if restrictVal > restrictValnew + Z(v, tnew) then6

E := E − {i};7

return (E ,Undecided);8

The ineqCanChange function (called at line 6 of Algorithm 5.4) in Algorithm 5.11

is used to determine if a continuous variable can cross an inequality and result in an

inequality change event. Since the inequalities in LHPNs are restricted to greater than

or equal to, there are only two cases that need to be checked. In the first case, the rate

of change for the variable in the inequality is decreasing and the inequality is currently

true (line 2). This means that the value of the variable is greater than or equal to

the inequality’s constant but may decrease below that constant value and result in an
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inequality change. To test for this case, the upper bound for the variable is checked to see

if it can reach or has gone below the value of the inequality’s constant in warped space

(line 3). If the variable has decreased below the inequality’s constant, then the inequality

can change value, so true is returned (line 4). In the second case, the rate of change for

the variable is increasing and the inequality is false (line 2). This means that the value

of the variable is below the inequality’s constant but may increase above the inequality’s

constant and result in a inequality change. To test for this case, the upper bound of the

variable is checked to see if it can reach or has gone above the value of the inequality’s

constant in the warped space (line 3). If this case is true, then the inequality can change

value, so true is returned (line 4). The value false is returned in all other cases (line 5).

Algorithm 5.11: ineqCanChange(R, I, Z, i)

let i = (v ≥ k);1

if (R(v) < 0 ∧ I(i)) ∨ (R(v) > 0 ∧ ¬I(i)) then2

if ub(Z, v) ≥ fdiv(k,R(v)) then3

return True;4

return False;5

5.2.3 Updating the State

Algorithm 5.12 updates the state set, ψ, as a result of an event set, E . The algorithm

begins by calling restrict, shown in Algorithm 5.13 (line 2). Next, recanonicalize,

shown in Algorithm 4.1, applies Floyd’s all-pairs shortest path algorithm to restore Z to its

canonical form (line 3). When an inequality changes, the next step is to update the value

of I by complementing the value of the inequality in I (lines 5-6). When a transition fires

(line 7-8), the state update required is more involved as shown in fireTransition which

is described below in Algorithm 5.14 described below. Next, the transitions are checked

to see if any have become newly enabled or disabled (lines 9-13). A clock for a transition

t not in Z that is enabled must be added to Z while a clock for a transition t in Z that

is not enabled must be removed from Z. Finally, time is advanced using Algorithm 5.15,

Z is recanonicalized again, and the new state set is returned (lines 14-16).

The restrict function, shown in Algorithm 5.13, modifies Z to reflect that time

must have advanced to the point necessary for the events in the event set to have
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Algorithm 5.12: updateState(T, V,En,D,BA,VA,RA, ψ,E )

let ψ = (M,S,Q,R, I, Z);1

Z := restrict(T,D,Z,E );2

Z := recanonicalize(Z);3

forall e ∈ E do4

if e ∈ ineq(En) then5

I(e) := ¬I(e);6

else7

ψ := fireTransition(V,VA,RA,BA, ψ, e);8

forall t ∈ T do9

if t 6∈ Z ∧ t ∈ EN (M,S,Q) then10

Z := addT(Z, t);11

else if t ∈ Z ∧ t 6∈ EN (M,S,Q) then12

Z := rmT(Z, t);13

Z := advanceTime(En,D,R, I, Z);14

Z := recanonicalize(Z);15

return ψ;16

occurred (i.e., the clock for the transition firing reaches its lower bound (lines 2-4) or

the continuous variable reaches the constant in an inequality (lines 5-9)) as described

previously in Section 5.2.2.

Algorithm 5.13: restrict(T,D,Z,E )

forall e ∈ E do1

if e ∈ T then2

let t = e;3

nlb(Z, t) := dl(t);4

else5

let e = (v ≥ k);6

nlb(Z, v) := cdiv(k,R(v));7

if ub(Z, v) < cdiv(k,R(v)) then8

ub(Z, v) := cdiv(k,R(v));9

return Z;10

5.2.4 Firing a Transition

The updateState function calls fireTransition, shown in Algorithm 5.14, to fire

a transition t in state set ψ. This algorithm first updates the marking by removing the

tokens from all places in •t and adding tokens to all places in t• (line 2). Next, the
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transition clock for t must be removed from Z (line 3). Then, all assignments labeled on

t must be performed. This includes variable assignments, rate assignments, and Boolean

signal assignments using the algorithms described in Section 4.5 (lines 4-6). The rate

assignments may have activated or deactivated a continuous variable, so all continuous

variables are checked and added or removed from Z as necessary (lines 7-11). Finally, Z

is warped using Algorithm 4.4 to properly account for any rate changes that may have

occurred (line 12).

Algorithm 5.14: fireTransition(V,VA,RA,BA, ψ, t)

let ψ = (M,S,Q,R, I, Z);1

M := (M − •t) ∪ t•;2

Z := rmT(Z,t);3

(Q,Z) := doVarAsgn(Q,R,Z,VA, t);4

forall (v := r) ∈ RA(t) do R′(v) := r;5

forall (b := ba) ∈ BA(t) do S′(b) := ba;6

forall v ∈ V do7

if v 6∈ Z ∧R′(v) 6= 0 then8

(Q,Z) := addV(Q,R,Z, v);9

else if v ∈ Z ∧R′(v) = 0 then10

(Q,Z) := rmV(Q,R,Z, v);11

(R,Z) := dbmWarp(R,R′, Z);12

return ψ;13

5.2.5 Advancing Time

The updateState function calls advanceTime shown in Algorithm 5.15 to advance

time in Z. The idea behind advanceTime is that time should be allowed to advance as

far as possible without missing an event. To ensure that the firing of an enabled transition

t is not missed, advanceTime sets the upper bound value for the clock associated with t

to the upper delay bound for t (lines 1-2). To ensure that a change in inequality value

is not missed on a variable v, all inequalities involving variable v are checked by the

function checkIneq, and the largest amount of time that can advance before one of these

inequalities changes value is assigned to the upper bound value for v, (lines 3-4).

The checkIneq function, shown in Algorithm 5.16, determines the minimum amount

of time that can pass before a inequality can change. This is done for each variable

individually. The process checks every inequality involving the current variable (line 2).
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Algorithm 5.15: advanceTime(En,D,R, I, Z)

forall t ∈ Z do1

ub(Z, t) := du(t);2

forall v ∈ Z do3

ub(Z, v) := checkIneq(En,R, I, Z, v);4

return Z;5

Initially, the minimum value is set to ∞ or unbounded (line 1). For this reason, the cases

that result in an unbounded assignment are not shown (e.g., if the variable is increasing

and the upper bound of the DBM is greater than the inequality’s constant value in the

warped space). If the rate of change for the variable is increasing and the inequality is

not true, the algorithm determines how much time must pass until the inequality can

become true (lines 3-8). In the first case, if the upper bound of the DBM is less than

the inequality’s value in the warped space then the minimum value is the amount of time

required to reach the inequality’s constant value at the current rate of change (lines 5-6).

The final case is when the value is equal to the inequality’s constant. In this case the

current value of the DBM is reported as the minimum value (lines 7-8). A similar set

of cases are used when the variable’s rate of change is less than zero and the inequality

is true (lines 9-14). Once the minimum amount of time that can be advanced before a

change of inequality for the given variable is calculated, it is returned (line 15).

Algorithm 5.16: checkIneq(En,R, I, Z, v)

min := ∞;1

forall (vi ≥ ki) ∈ ineq(En).vi = v do2

if R(v) > 0 then3

if ¬I((vi ≥ ki)) then4

if ub(Z, v) < fdiv(ki, R(v)) then5

min := min(min,fdiv(ki, R(v)));6

else if nlb(Z, p) ≤ fdiv(ki, R(v)) then7

min := min(min,ub(Z, v));8

else9

if I((vi ≥ ki)) then10

if ub(Z, p) ≤ fdiv(ki(i), R(v)) then11

min := min(min,fdiv(ki(i), R(v)));12

else if nlb(Z, v) < fdiv(ki(i), R(v)) then13

min := min(min,ub(Z, v));14

return min;15
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5.2.6 Error Trace Generation

When a failure is found during state space exploration, the error function, shown

in Algorithm 5.17, is called. This algorithm creates a state set-based error trace Π

demonstrating the error condition (line 1). A state set-based error trace Π is an ordered

set of state sets ψ. From this state set-based trace, two state-based error traces (Λmax and

Λmin) are created showing the error. A state-based error trace Λ is an ordered set of pairs

(λ, τ) where λ is the state at time τ . These state-based traces can be used to generate

waveforms representing the error which designers can use to understand the failure and

correct the design or model. If the error trace is a false negative, an error created due to

the conservative exploration of the reachability algorithm, then the model can potentially

be refined to avoid the addition of the conservative state space. If the error trace is an

actual error the circuit should be corrected and a new model should be generated from

the corrected circuit.

Algorithm 5.17: error(ψ0, ψfail,Ψ,Γ, V, T )

Π := createErrorTrace(ψ0, ψfail,Ψ,Γ);1

Λmax := extractMaxTrace(Π, V, T );2

Λmin := extractMinTrace(Π, V, T );3

return (Λmax,Λmin);4

The createErrorTrace function, shown in Algorithm 5.18, finds the shortest path

from the initial state set, ψ0, to the fail state set, ψfail, given the set of state sets, Ψ, and

the set of edges between the state sets, Γ. The createErrorTrace algorithm begins by

doing a breadth first search of the entire state space while labeling each state set with the

number of state transitions it is away from the initial state set (lines 1-12). The labeling

happens by accessing and changing the level of a state set using the lvl function. Once

the state space has been labeled, the algorithm begins to create a trace, Π starting from

the fail state set ψfail (line 13). The shortest trace is found by searching for the state set

with the smallest level leading into the current state set (lines 15-20). When the state

with the minimum level is found it is pushed onto the trace stack and used as the previous

state in the next iteration (lines 20-21). When the initial state is found, the algorithm

returns the trace (line 22).

One difficulty in generating a state-based error trace is determining how much time

passes between states in the trace. The time between two state sets is calculated based on
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Algorithm 5.18: createErrorTrace(ψ0, ψfail,Ψ,Γ)

lvl := 0;1

lvl(ψ0) := lvl ;2

ψj := ψ0;3

while ψj 6= ψfail do4

lvl := lvl + 1;5

forall ψi ∈ Ψ do6

if lvl(ψi) = lvl − 1 then7

forall (ψi, ψj) ∈ Γ do8

if ψj = undef then9

lvl(ψj) := lvl ;10

if ψj = ψfail then11

break;12

Π := ψfail;13

ψprev := ψfail;14

while lvl > 0 do15

lvl := lvl − 1;16

forall ψi ∈ Ψ do17

forall (ψi, ψprev) ∈ Γ do18

if lvl(ψi) = lvl then19

ψprev := ψi;20

push(ψprev,Π);21

return Π;22

the change in value of a continuous variable and its rate of change or a persistent transition

clock. As a result of this dependency, an error trace cannot be generated for LHPN models

where there are no continuous variables in the system, where all continuous variables in the

system have a rate of zero, or there is not a transition clock persistent between two state

sets. Two state-based error traces are generated from the state set-based error trace. One

is the minimum path and the other is the maximum path. The actual property violation

is shown in one of the traces. Algorithm 5.19 shows how LEMA extracts the maximum

error trace given a state set-based failure trace, Π. Each state set ψ in the failure trace Π

is examined for an active variable (lines 5-6). An active variable is defined as a continuous

variable with a non-zero rate or a transition that is in both state sets. If an active variable

is not found, a failure results (lines 24-25). If an active variable is found, the time elapsed

between the current state and the next state is calculated using the values in both state

sets and the rate of the current state set. The time elapsed between the two state sets is

added to the total or global time, τ (line 8). The state λ is extracted from the state set

ψi. The extraction is trivial for Mλ, Sλ, Rλ, and Iλ (lines 9-10 and 16-17). The extraction



114

of Qλ is done by extracting the value from the upper bound of Zψ if present or from

Qψ if not present (lines 11-15). A similar process is used to extract Cλ although if the

transition is not found in Zψ no information is known, so the value of Cλ is set to ∞

for that transition (lines 18-22). This process continues until all state sets in the trace

Π have been analyzed. This process is similar for extracting minimal traces except the

lower bounds are extracted from Zψ and Qψ.

Algorithm 5.19: extractMaxTrace(Π, V, T )

letψ = (Mψ, Sψ, Qψ, Rψ, Iψ, Zψ);1

letλ = (Mλ, Sλ, Qλ, Rλ, RRλ, Iλ, Cλ);2

τ := 0;3

Λ := ∅;4

forall i ∈ len(Π)− 1 do5

v := findActiveVar(ψi,ψi−1);6

if v then7

τ := τ +

˛̨̨
ub(Zψi−1

,v)∗Rψi+1
(v)−ub(Zψi ,v)∗Rψi (v)

˛̨̨
Rψi (v)

;8

Mλ := Mψi ;9

Sλ := Sψi ;10

forall vj ∈ V do11

if vj ∈ Zψi then12

Qλ(vj) := ub(Zψi , vj) ∗Rψi(vj);13

else14

Qλ(vj) := quψi (vj);15

Rλ := Rψi ;16

Iλ := Iψi ;17

forall t ∈ T do18

if t ∈ Zψi then19

Cλ(t) := ub(Zψi , t);20

else21

Cλ(t) := ∞;22

Λ := Λ ∪ (τ, λ);23

else24

return ∅;25

return Λ;26

5.3 Reachability Analysis Example

Figure 5.1 is the LHPN for the switched capacitor integrator circuit generated by the

VHDL-AMS compiler and expanded using the LHPN constant rate transformation. This
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section uses this figure to illustrate the DBM reachability algorithm from Section 5.2.

In the initial state shown in Equation 5.2, Vout is between −1008 mV and −990 mV

(−56 ≤ Vout ≤ −55 with a warp of 18); V̇out is 18 mV/µs; bVout [18,22] is true; and Vin,

bVout [−22,−18], r0, and r1 are false. Initially the only enabled transition is t2. The clock

for t2, ct2 , is initialized to zero. In the first iteration of the algorithm, time is allowed

to advance up to but not cross the point where t2 must fire, (i.e., 100 µs) as shown in

Equation 5.3. If 100 µs have passed at a rate of 18 mV/µs, then Vout may be as high

as 800 mV. In this state, the DBM represents a range of values for ct2 between 0 µs

and 100 µs, and Vout is between −1008 mV and 810 mV. In this state, t2 is the only

enabled action and is therefore selected. When t2 fires, the state space exploration engine

determines that based on the delay bound of [100, 100] for t2 exactly 100 µs have passed.

This fact restricts the range of values for Vout to between 810 mV and 792 mV as shown

in Equation 5.4. This range represents the possibility that Vout has been increasing at

a rate of 18 mV/µs for 100 µs. Equation 5.4 shows the state of the LHPN after firing

t2 where t1 and t3 are enabled. t1 is enabled because Vin is set to true using a Boolean

signal assignment on t2. Transition t3 is enabled because the firing of t2 marks the place

in its preset. At this point in the state space exploration, the first negative half cycle of

Vin is complete.

The positive half cycle of Vin begins with the state in Equation 5.4. From this state,

it is possible to fire transition t1 or t3. The select function chooses to fire t1 which when

fired sets the rate of Vout to −22 mV/µs, bVout [18,22] to false, bVout [−22,−18] to true, and

r1 to true. This state is shown in Equation 5.5. Since t1 is no longer in Z to hold back

time, time is allowed to advance to the point where 100 µs can pass. This allows the

range of Vout to be between −1408 mV and 814 mV. In this state, the possible actions are

to fire transition t3 or t6. The firing of transition t6 is selected. The firing of t6 changes

the rate of Vout to −18 mV/µs and sets r1 to false as shown in Equation 5.6. After the

warp, the value of Vout is between −1422 mV and 828 mV. In this state, the only possible

action is to fire transition t3. Firing this transition restricts the values in the DBM to

the point where ct3 is 100 µs. Equation 5.7 shows that this restriction changes the value

of Vout to be between 972 mV and 1422 mV. The firing of t3 also sets Vin to false. This

ends the first cycle of Vin.

Equation 5.8 represents the state set several cycles later. In this state, the value of Vout

is between −1980 mV and 1650 mV. In this state, there are three possible actions: firing



116

p2

p1

t3
t2

[100, 100] 〈Vin := T 〉

[100, 100] 〈Vin := F 〉

t1
p0

t0

{r0}[0,∞]

〈V̇out := 22, r0 := F 〉

{r1}[0,∞]

〈V̇out := −18, r1 := F 〉
t6

t5{¬Vin ∧ ¬bV out [18,22]}
〈V̇out := 18, bV out [18,22] := T,

bV out [−22,−18] := F, r0 := T,

r1 := F 〉

{Vin ∧ ¬bV out [−22,−18]}
〈V̇out := −22, bV out [18,22] := F,

bV out [−22,−18] := T, r0 := F,

r1 := T 〉

{¬(Vout ≥ −2000) ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

t4

p3

S0 = {¬Vin, bV out [18,22],¬bV out [−22,−18], r0,¬r1}
R0 = {V̇out = 18}
Q0 = {Vout = −1000}

Figure 5.1. An LHPN demonstrating the DBM-based reachability algorithm.



117

transition t3, firing transition t6, or changing inequality Vout ≥ −2000. The inequality

change action is selected and changed resulting in the state shown in Equation 5.9. The

change of inequality has now enabled transition t4. The restrict step to acknowledge

the arrival of Vout at the constant value of −2000 mV results in a value of Vout between

−2002 mV between −1980 mV. The firing of t4 is selected and results in the analyzer

detecting a firing of a transition in the fail set.

The method used by extractMaxTrace and extractMinTrace is illustrated using

the state sets shown in Equations 5.2-5.5 as the state set-based trace Π. Equation 5.10

shows the initial state which corresponds to the state set in Equation 5.2. The state in

Equation 5.10 contains information for both the max and min trace by using a pair of

values for the parts of the state that differ between the traces. These value pairs are

enclosed in square brackets with the min trace values listed first. For example, τ may

vary between traces and is listed first in Equation 5.10 as [0,0]. Initially the value of Vout

is −990 mV for the max trace as shown in Equation 5.10. In the next state shown in

Equation 5.11, this value increases to 810 mV which is a change of 1800 mV at a rate of

18 mV/µs. Using the equation presented in line 8 of Algorithm 5.19, the value of τ is

calculated to be 100 µs. In the next state shown in Equation 5.12, the values for Vout in

the max trace do not change. The clock ct2 has fired after 100 µs, so the minimum value

has changed as expected by 100 µs and its state reflects this change. In Equation 5.13, the

rate of Vout has changed from 18 mV/µs to −22 mV/µs. The maximum trace is allowed to

move forward by 100 µs while the minimum trace is being held back as reflected by their

times and values. The extraction of a state-based error trace proceeds in this manner.

When finished the state-based error trace can be used to generate waveforms like the one

shown in Figure 5.2 to represent the error in a graphical manner familiar to designers.
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Figure 5.2. A waveform generated from an error trace produced by verification of the
switched capacitor integrator circuit.



119


x0 ct2 Vout

0 0 56
0 0 56

−55 −55 0


V̇out = 18, Vin = F

bVout [18,22] = T, bVout [−22,−18] = F

r0 = F, r1 = F

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.2)


x0 ct2 Vout

0 0 56
100 0 56
45 −55 0


V̇out = 18, Vin = F

bVout [18,22] = T, bVout [−22,−18] = F

r0 = F, r1 = F

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.3)


x0 Vout ct1 ct3
0 −44 0 0
45 0 45 45
0 −44 0 0
0 −44 0 0


V̇out = 18, Vin = T

bVout [18,22] = T, bVout [−22,−18] = F

r0 = F, r1 = F

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.4)


x0 Vout ct3 ct6
0 37 0 0
64 0 −36 −36
100 37 0 0
100 37 0 0


V̇out = −22, Vin = T

bVout [18,22] = F, bVout [−22,−18] = T

r0 = F, r1 = T

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.5)


x0 Vout ct3
0 46 0
79 0 −21
100 46 0


V̇out = −18, Vin = T

bVout [18,22] = F, bVout [−22,−18] = T

r0 = F, r1 = F

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.6)


x0 Vout ct0 ct2
0 −54 0 0
79 0 79 79
0 −54 0 0
0 −54 0 0


V̇out = −18, Vin = F

bVout [18,22] = F, bVout [−22,−18] = T

r0 = F, r1 = F

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.7)


x0 Vout ct3 ct6
0 75 0 0
90 0 2 2
100 75 0 0
100 75 0 0


V̇out = −22, Vin = T

bVout [18,22] = F, bVout [−22,−18] = T

r0 = F, r1 = T

Vout ≥ −2000 = T, Vout ≥ 2000 = F

(5.8)



x0 Vout ct3 ct6 ct4
0 −90 −88 −88 0
91 0 2 2 91
100 10 0 0 100
100 10 0 0 100
0 −90 −88 −88 0


V̇out = −22, Vin = T

bVout [18,22] = F, bVout [−22,−18] = T

r0 = F, r1 = T

Vout ≥ −2000 = F, Vout ≥ 2000 = F

(5.9)
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τ = [0, 0]
Mλ = {p0, p1, p3}

Sλ = {¬Vin, bVout [18,22],¬bVout [−22,−18],¬r0,¬r1}
Qλ = {Vout = [−1008,−990]

Rλ = {V̇out = 18}
Iλ = {Vout ≥ −2000,¬Vout ≥ 2000}

Cλ = {ct0 = ∞, ct1 = ∞, ct2 = [0, 0], ct3 = ∞, ct4 = ∞, ct5 = ∞, ct6 = ∞}

(5.10)

τ = [0, 100]
Mλ = {p0, p1, p3}

Sλ = {¬Vin, bVout [18,22],¬bVout [−22,−18],¬r0,¬r1}
Qλ = {Vout = [−1008, 810]

Rλ = {V̇out = 18}
Iλ = {Vout ≥ −2000,¬Vout ≥ 2000}

Cλ = {ct0 = ∞, ct1 = ∞, ct2 = [0, 100], ct3 = ∞, ct4 = ∞, ct5 = ∞, ct6 = ∞}

(5.11)

τ = [100, 100]
Mλ = {p0, p1, p2}

Sλ = {Vin, bVout [18,22],¬bVout [−22,−18],¬r0,¬r1}
Qλ = {Vout = [792, 810]}

Rλ = {V̇out = 18}
Iλ = {Vout ≥ −2000,¬Vout ≥ 2000}

Cλ = {ct0 = ∞, ct1 = [0, 0], ct2 = ∞, ct3 = [0, 0], ct4 = ∞, ct5 = ∞, ct6 = ∞}

(5.12)

τ = [101, 200.82]
Mλ = {p0, p1, p2}

Sλ = {Vin,¬bVout [18,22], bVout [−22,−18],¬r0, r1}
Qλ = {Vout = [814,−1408]}

Rλ = {V̇out = −22}
Iλ = {Vout ≥ −2000,¬Vout ≥ 2000}

Cλ = {ct0 = ∞, ct1 = ∞, ct2 = ∞, ct3 = [0, 100], ct4 = ∞, ct5 = ∞, ct6 = [0, 100]}

(5.13)



CHAPTER 6

RESULTS

Using the SAV methodology described in the previous chapters, LEMA can generate

abstract HDL models and LHPNs of hybrid systems and AMS circuits. The abstract HDL

models are simulated using standard HDL-based simulators. These simulation results are

compared against simulation results from the transistor-level models to quantify efficiency

and model quality. The LHPNs are used to formally verify safety properties of the

associated systems. This chapter presents results for several classic examples in hybrid

systems theory, a tunnel diode oscillator, two versions of the switched capacitor integrator,

a phase locked loop (PLL) phase detector, and a CMOS ring oscillator with feedforward

inverters. The results for these examples show the promise of the SAV methodology. All

results are run on a 2.16 GHz Intel Core 2 Duo with 2 GB of RAM.

6.1 Hybrid Systems Examples

In [6], the authors present several hybrid system examples that contain different hybrid

system dynamics. VHDL-AMS descriptions of three of these examples are compiled into

LHPNs and verified using LEMA’s DBM-based model checker described in Chapter 5.

Table 6.1 shows the results for several hybrid system benchmark examples using LEMA’s

DBM-based analyzer.

6.1.1 Water Level Monitor

The water level monitor is used to regulate the water level in a tank. The tank is

twenty-five meters tall, and the system must maintain the level of the water in the tank

such that the tank is never dry and never overflows. The tank contains a pump that fills

the tank at a rate of one meter/second. When the pump turns off the tank drains at a

rate of two meters/second. Changing between the modes of filling and draining the tank

requires between two and four seconds. Figure 6.1 is the VHDL-AMS description for the

water level monitor. The water tank and pump are modeled as well as the monitoring
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Table 6.1. Hybrid systems benchmark verification results for LEMA’s DBM-based verifier.

LEMA DBM-based
Example Zones Time(s) Verifies? Correct?
Water level monitor (2x) 10 0.03 Yes Yes
Water level monitor (1x) 11 0.04 Yes No
Temperature controller (80) 48 0.05 Yes Yes
Temperature controller (100) 50 0.06 No Yes
Billiards game (20,40) 154 0.06 Yes Yes
Billiards game (20,20) 20 0.05 No Yes

system. The monitoring system detects when the water level increases above twenty

meters and turns off the pump. The monitoring system turns on the pump when the

tank level drops below ten meters. This VHDL-AMS description (water level monitor

(2x)) compiles into an LHPN with eight places and seven transitions and verifies after

finding ten zones in 0.03 seconds.

A false negative result from LEMA’s DBM-based model checker is produced by changing

the numbers in the water level monitor to approximately half of their value. If the

controller waits until 11 meters to begin closing the valve, 5 meters to begin opening the

valve, the valve closing time requires 1-2 seconds, and the tank size is 14 meters a false

negative failure results. This failure happens because the water level in the tank should

be between twelve and thirteen meters when the water starts draining. When the water

starts draining, the rate changes to two. When the zone is warped to represent this state,

a value of thirteen (i.e., 6.5 in a warped space of two) cannot be represented because of

the integer approximation. The value of thirteen is conservatively approximated to be

fourteen (i.e., 7 in a warped space of two) which causes the failure.

6.1.2 Temperature Controller

The next example is a temperature controller that controls the temperature of a

reactor using two independent control rods. The goal of the system is to maintain

the temperature within a safe range. Figure 6.3 is the VHDL-AMS description for the

temperature controller. When the temperature t reaches its maximum value, 1100, one

of the rods must be inserted to begin cooling the system. If the first rod is inserted,
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library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity waterLevel is
end waterLevel;
architecture monitor of waterLevel is

quantity y:real;
signal inc:std logic := ’1’;

begin
break y => 2.0;
if inc = ’1’ use
y’dot == 1.0;

elsif inc = ’0’ use
y’dot == 2.0;

end use;
process begin

wait until y’above(20.0);
assign(inc,’0’,2,4);
wait until not y’above(10.0);
assign(inc,’1’,2,4);

end process;
assert (y’above(1.0) and not y’above(25.0))

report "Error: Overfill/underfill of the tank."
severity failure;

end monitor;

Figure 6.1. VHDL-AMS code for the water level monitor.

Q0 = {y = 2} R0 = {ẏ = [1, 1]} S0 = {inc, ẏ[1,1],¬ẏ[−2,−2]}

p3

[0, 0]〈fail := T 〉 t4

(c)

{¬(y ≥ 1) ∨ y ≥ 25)}

p1

[2, 4]〈inc := T 〉 [2, 4]〈inc := F 〉
{y ≥ 20}

t3 t2

(b)

{¬y ≥ 10}

p2

p0

{inc ∧ by [1,1]} [0, 0]

{¬inc ∧ by [−2,−2]} [0, 0]

(a)

〈ẏ := [−2,−2], by [−2,−2] := T, by [1,1] := F 〉

〈ẏ := [1, 1], by [−2,−2] := F, by [1,1] := T 〉

t0

t1

Figure 6.2. An LHPN model of the water level monitor compiled from the VHDL-AMS
code in Figure 6.1.
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library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity temperature is
end temperature;
architecture monitor of temperature is

quantity t, timer1, timer2:real;
signal x1, x2:std logic := ’1’;
signal ratebool1, ratebool2:std logic := ’0’;

begin
break t => 0.0, timer1 => 80.0, timer2 => 80.0;
break timer1 => 0.0 when ratebool1 = ’1’ and not t’above(250.0);
break timer2 => 0.0 when ratebool2 = ’1’ and not t’above(250.0);
timer1’dot == 1.0;
timer2’dot == 1.0;
if ratebool1 = ’0’ use

if ratebool2 = ’0’ use
t’dot == 32.0;

else
t’dot == -10.0;

end use;
else

if ratebool2 = ’0’ use
t’dot == -25.0;

else
t’dot == 0.0;

end use;
end use;
rods:process begin

wait until t’above(1100.0);
if timer1’above(80.0) then
assign(ratebool1,’1’,0,0);
wait until not t’above(250.0) and not timer1’above(80.0);
assign(ratebool1,’0’,0,0);

elsif timer2’above(80.0) then
assign(ratebool2,’1’,0,0);
wait until not t’above(250.0) and not timer2’above(80.0);
assign(ratebool2,’0’,0,0);

else
assign(ratebool2,’1’,0,0);
assign(ratebool1,’1’,0,0);

end process rods;
assert ratebool1=’0’ or ratebool2=’0’

report "Error: Reactor must shut down."
severity failure;

end monitor;

Figure 6.3. VHDL-AMS code for the temperature controller.
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the temperature decreases by 10 degrees/minute. If the second rod is inserted, the

temperature decreases by 25 degrees/minute. Once a rod is inserted, it remains inserted

until the temperature drops below 250 degrees. At this time, the rod is removed. After

a rod is removed, it cannot be used again for 80 minutes. The assertion verifies that the

reactor does not enter the shutdown condition due to the temperature exceeding 1100

degrees when a control rod is not available for cooling the reactor. The assert statement

does this by monitoring the values of the ratebool variables. When a ratebool variable

is 1 it indicates that the corresponding control rod is unavailable for use in cooling.

Therefore, the assert statement looks for a condition when both ratebool variables are

set to 1 indicating that neither rod is available to cool the reactor, if needed. This

condition results in a failure. The VHDL-AMS description compiles into an LHPN with

18 places and 19 transitions shown in Figure 6.4 and verifies after finding 48 zones in 0.05

seconds. If the time that the rod must remain unused is increased to 100, the temperature

controller fails verification after finding 50 zones in 0.06 seconds.

6.1.3 Billiards Game

The billiards game example consists of a billiards table 320 centimeters long by 120

centimeters wide. There are two balls, white and gray, with a 2 centimeter radius placed

on the table at (60,300) and (20,40), respectively. The gray ball is put into play and can

bounce off the walls of the table. The goal of the system is to show that the gray ball does

not strike the white ball as shown in Figure 6.5. Figure 6.6 is the VHDL-AMS code for

this example. In this code, the assert statement is used to notify the user when the gray

ball strikes the white ball. This is done by asserting that the asserting that the gray ball

does not enter the region of the table where the white ball resides. Since the white ball

resides at (60,300), if the gray ball enters the range of 58 to 62 in the x direction while

it is also in the range of 298 to 302 in the y direction a failure results. The VHDL-AMS

code is compiled into an LHPN with 15 places and 13 transitions shown in Figure 6.7.

The example shows that the gray ball does not strike the white ball after exploring 154

zones in 0.06 seconds. If the position of the gray ball is changed to (20,20) the verification

finds that the gray ball now strikes the white ball after exploring 20 zones in 0.05 seconds.
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[0, 0]
t0

p0

p1

p4 p5

t3

t4

t5

t6

{timer1 ≥ 80}
[0, 0]〈ratebool1 := T 〉

[0, 0]〈ratebool1 := F 〉

[0, 0]〈ratebool2 := T 〉

[0, 0]〈ratebool1 := T 〉

{¬timer1 ≥ 80

[0, 0]〈ratebool2 := T 〉

{¬t ≥ 250

[0, 0]〈ratebool2 := F 〉
t2

t1

p3

(a)

{¬timer1 ≥ 80
∧¬timer2 ≥ 80}

{¬t ≥ 250
∧¬timer1 ≥ 80}∧¬timer2 ≥ 80}

∧ timer2 ≥ 80}

{t ≥ 1100}

p6

t7
[0, 0]〈timer1 := 0〉

{ratebool1

(b)

∧¬t ≥ 250}

p7

t8
[0, 0]〈timer2 := 0〉

{ratebool2

(c)

∧¬t ≥ 250}

p8

t9
[0, 0]〈fail := T 〉

{ratebool1

(d)

∧ratebool2}

t12

t10

t11t13

〈ṫ := 32, bt32 := T, bt0 := F, bt−10 := F, bt−25 := F 〉

{¬ratebool1 ∧ ratebool2 ∧ ¬bt−10} [0, 0]

{¬ratebool1 ∧ ¬ratebool2 ∧ ¬bt32} [0, 0]

〈ṫ := −10, bt32 := F, bt0 := F,

〈ṫ := −25, bt32 := F, bt0 := F, bt−10 := F, bt−25 := T 〉
{ratebool1 ∧ ¬ratebool2 ∧ ¬bt−25} [0, 0]

{ratebool1 ∧ ratebool2 ∧ ¬bt0} [0, 0] p9

(e)

bt−10 := T, bt−25 := F 〉
〈ṫ := 0, bt32 := F, bt0 := T,

bt−10 := F, bt−25 := F 〉

R0 = {ṫ = 32, ˙timer1 = 1, ˙timer2 = 1}
Q0 = {t = 0, timer1 = 80, timer2 = 80}

S0 = {¬ratebool1 ,¬ratebool2 , bt32,¬bt0,¬bt−10,¬bt−25}

Figure 6.4. An LHPN model of the temperature controller compiled from the
VHDL-AMS description in Figure 6.3.
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x

y

320
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Figure 6.5. A possible trajectory for the gray ball in the billiards game example.

6.2 Tunnel Diode Oscillator

Figure 6.8 is a schematic diagram of a tunnel diode oscillator presented in [75]. The

numerical parameters used for this example are from [71]. The verification goal is to

ensure that Il oscillates for specific circuit parameters and initial conditions. This circuit

can be described with two differential equations:

dVc

dt
=

1
C

(−h(Vc) + Il)

dIl

dt
=

1
L

(−Vc −R · Il + Vin)

where h is a piecewise model of the tunnel diode behavior:

h(Vd) =



6.0105V 3
d − 0.9917V 2

d + 0.0545Vd

where 0 ≤ Vd ≤ 0.055
0.0692V 3

d − 0.0421V 2
d + 0.004Vd + 8.9579 · 10−4

where 0.055 ≤ Vd ≤ 0.35
0.2634V 3

d − 0.2765V 2
d + 0.0968Vd − 0.0112

where 0.35 ≤ Vd ≤ 0.50

The system is analyzed using a discretized model of the differential equations. Contin-

uous variables in LHPNs can only change at ranges of rates. Therefore, to analyze more

complicated systems, the continuous operating ranges must be decomposed into regions
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library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity billiards is
end billiards;
architecture balls of billiards is

quantity x, y:real;
signal xInc, yInc:std logic := ’1’;

begin
break x => 20.0;
break y => 40.0;
if xInc = ’1’ use
x’dot == 2.0;

else
x’dot == -2.0;

end use;
if yInc = ’1’ use
y’dot == 2.0;

else
y’dot == -2.0;

end use;
xcoord:process begin

wait until x’above(120.0);
assign(xInc,’0’,0,0);
wait until not x’above(0.0);
assign(xInc,’1’,0,0);

end process xcoord;
ycoord:process begin

wait until y’above(320.0);
assign(yInc,’0’,0,0);
wait until not y’above(0.0);
assign(xInc,’1’,0,0);

end process ycoord;
assert not x’above(58.0) or x’above(62.0) or

not y’above(298.0) or y’above(302.0)
report "Error: Reached white ball."
severity failure;

end balls;

Figure 6.6. VHDL-AMS code for the billiards game.
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S0 = {xinc, yinc, bx [1,1],¬bx [−1,−1], by [1,1],¬by [−1,−1]}

p4

p5

{¬y ≥ 0}
[0, 0]〈yinc := T 〉 [0, 0]〈yinc := F 〉

{y ≥ 8}
t7 t6

(d)

p2

p3

{¬x ≥ 0}
[0, 0]〈xinc := T 〉 [0, 0]〈xinc := F 〉

{x ≥ 3}
t5 t4

(c)

p0

t1

t0

〈ẋ := [−1,−1], bx [1,1] := F, bx [−1,−1] := T 〉
{¬xinc ∧ ¬bx [−1,−1]} [0, 0]

〈ẋ := [1, 1], bx [1,1] := T, bx [−1,−1] := F 〉
{xinc ∧ ¬bx [1,1]} [0, 0]

(a)

p6

t7

(e)

{x ≥ 6 ∧ ¬x ≥ 6 ∧ y ≥ 1 ∧ ¬y ≥ 1}
[0, 0]〈fail := T 〉

p1

t3

t2

〈ẏ := [−1,−1], by [1,1] := F, by [−1,−1] := T 〉
{¬yinc ∧ ¬by [−1,−1]} [0, 0]

〈ẏ := [1, 1], by [1,1] := T, by [−1,−1] := F 〉
{yinc ∧ ¬by [1,1]} [0, 0]

(b)

Q0 = {x = 0, y = 0}
R0 = {ẋ = [1, 1], ẏ = [1, 1]}

Figure 6.7. An LHPN model of the billiards game compiled from the VHDL-AMS
description in Figure 6.6.
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IlR L

CVin Vc

Figure 6.8. Tunnel diode oscillator circuit (Vin = 0.3 V, L = 1 µH, and C = 1 pF).

in which a range of rates can be calculated. This is illustrated as the continuous region in

Figure 6.9a is decomposed into the regions in Figure 6.9b using the differential equation

approximation method proposed by Walter in [157]. Any discretization method with the

goal of minimizing the resulting number of regions may be utilized; however, we require

that, regions must be rectangular in shape and have only a single neighboring region on

each side in each dimension. We use a discretization approach similar to that proposed in

[74, 75]. After decomposing the continuous domain into regions, a VHDL-AMS model is

created by hand using an architecture similar to that produced by LEMA’s model generator

as shown in Figure 6.10. The oscillation property is verified using an assert statement on a

watchdog timer. Each time Il goes below 0.3 mA (30000 in the VHDL-AMS code) or goes

above 0.7 mA (70000 in the VHDL-AMS code) the watchdog timer is reset. The assert

statement ensures that the value of the watchdog timer does not exceed the expected

period of oscillation.

In the model for the tunnel diode oscillator, sixteen discrete regions are required to

model the oscillatory/nonoscillatory behavior of the circuit resulting in a compiled LHPN

for the oscillatory version with 19 places, 30 transitions, and 32 unique rates with up to 3

digits of precision. Table 6.2 shows results from LEMA’s DBM-based analyzer, HyTech,

and PHAVer for two versions of the tunnel diode oscillator circuit. The property is verified

for a range of initial conditions in which Il is between 0.4 to 0.5 mA and Vc is between

0.4 and 0.47 V. As expected, the property verifies with R = 200Ω in 14.62 s after finding

17703 zones, and the property did not verify with R = 242Ω in 0.34 s after finding 1826

zones. HyTech [81] is unable to complete verification of the tunnel diode oscillator

due to arithmetic overflow errors. HyTech can complete analysis with less precision

on the rates, but the model of the circuit no longer produces oscillation. Therefore,
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Figure 6.9. Decomposing continuous flows into discrete regions. (a) Continuous flow
for dVC

dt . (b) Discretized flow for dVC
dt .
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library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity diode is
end diode;
architecture diode osc of diode is

quantity Vc, Il, watchdog, l:real;
begin

break Vc => span(400000.0,470000.0);
break Il => span(45000.0,55000.0);
break l => 1.0, watchdogA => 0.0 when not l’above(0.0) and
Il’above(70000.0);

break l => -1.0, watchdogA => 0.0 when l’above(0.0) and not
Il’above(30000.0);

watchdog’dot == 1.0;
if not Vc’above(10200.0) use

if not Il’above(4500.0) use
Vc’dot == -207.0;
Il’dot == 29.0;

elsif Il’above(6700.0) and not Il’above(38200.0) use
Vc’dot == -5.0;
Il’dot == 25.0;

elsif Il’above(40400.0) and not Il’above(103300.0) use
Vc’dot == 489.0;
Il’dot == 15.0;

elsif Il’above(105500.0) use
Vc’dot == 848.0;
Il’dot == 8.0;

end use;
elsif Vc’above(20400.0) and not Vc’above(163300.0) use

if not Il’above(4500.0) use
Vc’dot == -875.0;
Il’dot == 20.0;

elsif Il’above(6700.0) and not Il’above(38200.0) use
Vc’dot == -673.0;
Il’dot == 16.0;

elsif Il’above(40400.0) and not Il’above(103300.0) use
Vc’dot == -179.0;
Il’dot == 6.0;

elsif Il’above(105500.0) use
Vc’dot == 180.0;
Il’dot == -1.0;

end use;

Figure 6.10. VHDL-AMS code for the oscillating version of the tunnel diode oscillator.
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elsif Vc’above(173500.0) and not Vc’above(479600.0) use
if not Il’above(4500.0) use
Vc’dot == -287.0;
Il’dot == -3.0;

elsif Il’above(6700.0) and not Il’above(38200.0) use
Vc’dot == -85.0;
Il’dot == -7.0;

elsif Il’above(40400.0) and not Il’above(103300.0) use
Vc’dot == 409.0;
Il’dot == -17.0;

elsif Il’above(105500.0) use
Vc’dot == 768.0;
Il’dot == -24.0;

end use;
elsif Vc’above(489800.0) use

if not Il’above(4500.0) use
Vc’dot == -893.0;
Il’dot == -20.0;

elsif Il’above(6700.0) and not Il’above(38200.0) use
Vc’dot == -690.0;
Il’dot == -24.0;

elsif Il’above(40400.0) and not Il’above(103300.0) use
Vc’dot == -197.0;
Il’dot == -34.0;

elsif Il’above(105500.0) use
Vc’dot == 163.0;
Il’dot == -41.0;

end use;
end use;
assert not watchdog’above(18000.0)
report "Error: Current not oscillating."
severity failure;

end diode osc;

Figure 6.10 continued.
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Table 6.2. Tunnel diode oscillator circuit verification results.
LEMA DBM-based HyTech PHAVer

Example Zones Time(s) Ok? Time(s) Ok? Time(s) Ok?
Tunnel diode (osc.) 17703 14.62 Yes overflow N/A 72.8 Yes
Tunnel diode (non-osc.) 1826 0.34 No overflow N/A n.r. N/A

the verification results are incorrect. In [56], it is reported that PHAVer requires 72.8

seconds to verify the oscillating version of the tunnel diode oscillator, and results are

not reported for the nonoscillating version. This result shows the efficiency of LEMA’s

DBM-based model checker compared to a model checker that finds the exact state space.

Though runtimes are not reported for the Boolean mapping approach in [75], we believe

our analysis method is competitive in runtime, and that it is more accurate since the

continuous variables are modeled explicitly.

6.3 Switched Capacitor Integrator

Using LEMA’s model generator, two simulation traces of the switched capacitor inte-

grator for C2=23 pF and C2=27 pF result in the LHPN shown in Figure 3.6. Although

neither of the simulation traces indicates a problem with saturation of the integrator, a

state space analysis using the DBM-based model checker finds in less than a second that

there is a potential for the circuit to fail. This failure can occur when the integrator

charges the capacitor, C2, at a rate that is on average faster than the rate of discharge.

This situation causes charge to build up on the capacitor and eventually results in Vout

reaching a voltage above 2000 mV. The reason that this method can find this failure is

that the LHPN model represents not only each simulation trace, but also the union of

the traces. It is this behavior explored by unioning the traces that allows the analyzer to

find the flaw in the circuit.

Saturation of the integrator can be prevented using the circuit shown in Figure 6.11.

In this circuit, a resistor in the form of a switched capacitor is inserted in parallel with

the feedback capacitor. This causes Vout to drift back to 0 V. In other words, if Vout

is increasing, it increases faster when it is far below 0 V than when it is near or above

0 V. This behavior can be seen in the simulation traces in Figure 6.12 as a “bending”
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dVout/dt ≈ (±20− Vout/100) mV/µs

Φ1

Q1

Vin

freq(Vin) = 5 kHz
Vin = ±1000mV

Φ2

C1

Q2 Vout

C2

C2 = 25 pF

C1 = 1 pF

Φ1

Q3

Φ2

C3

C3 = 0.5 pF

Q4

freq(Φ1) = freq(Φ2) = 500 kHz

−

+

Figure 6.11. Schematic diagram of a corrected switched capacitor integrator circuit.

of the triangle wave as it moves away from zero. Using the same simulation parameters

and thresholds for this circuit, LEMA’s model generator obtains an LHPN with the same

structure as the one shown in Figure 3.6, but the ranges of rates for each region are

different as shown in Table 6.3. These differences mean that the slew rate changes as

Vout changes as evidenced by the rate change for each place as shown in Figure 6.13.

This LHPN also fails the property as the thresholds are too simple to capture the effect

of the additional switched capacitor. Due to the addition of this switched capacitor

resistor, the rate of change is now dependent on the value of Vout. In particular, this

variation slows the rate of the voltage change as it approaches the power supply rail.

This prevents saturation of the integrator. Based on this knowledge, the thresholds on

Vout are changed to −500 mV, 0 V, and 500 mV. These new thresholds result in the rates
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Figure 6.12. Simulation traces for the corrected switched capacitor integrator circuit.

Table 6.3. Rates for Vout from the corrected switched capacitor integrator circuit using
a threshold of 0 V.

Bin Place Range of rates Comment
00 p6 [18,32] Vin < 0 V; Vout < 0 V
01 p3 [9,22] Vin < 0 V; Vout ≥ 0 V
11 p4 [-22,-9] Vin ≥ 0 V; Vout ≥ 0 V
10 p5 [-32,-18] Vin ≥ 0 V; Vout < 0 V

shown in Table 6.4. Figure 6.14 shows the LHPN for this table, and this LHPN is found

to satisfy the property in less than a second using LEMA’s DBM-based model checker.

Table 6.5 summarizes the verification results for the switched capacitor integrator

circuit using LEMA’s model checking engines. All of the models verify as expected in

a short time using the DBM-based model checker. The BDD-based and SMT-based

engines require significantly more time to complete the verification. Also, it should be

noted that due to a conservative approximation, the BDD-based model checker produces

a false negative result on the VHDL-AMS version of the corrected switched capacitor
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t6

t3

p6(00)

p4(11)

p5(10)

t4

t5

〈V̇out := [−22,−9]〉

p3(01)

[0, 0]{¬Vin ≥ 0}

[0, 0]{Vin ≥ 0}

{Vout ≥ 0}[0, 0]

〈V̇out := [9, 22]〉
{¬Vout ≥ 0} [0, 0]

〈V̇out := [18, 32]〉

〈V̇out := [−32,−18]〉
p2

p1

[99, 100]
〈Vin := [−1000,−999]〉

t2
t1

〈Vin := [999, 1000]〉
[99, 101]

p0

t0

{(¬Vout ≥ −2000) ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

Initial values = {Vout = −1000 mV, Vin = −1000 mV}; Initial rates = {V̇in = 0, V̇out = [18, 32]}

Figure 6.13. An LHPN for the corrected switched capacitor integrator circuit using a
single threshold of 0 V for Vin and Vout.

Table 6.4. Rates for Vout from the corrected switched capacitor integrator circuit using
thresholds of −500 mV, 0 V, and 500 mV.

Bin Place Range of rates Comment
00 p9 [23,32] Vin < 0 V; Vout < −500 mV
01 p7 [18,27] Vin < 0 V; −500 mV ≤ Vout < 0 V
02 p5 [14,22] Vin < 0 V; 0 V ≤ Vout < 500 mV
03 p3 [9,16] Vin < 0 V; Vout ≥ 500 mV
10 p10 [-16,-9] Vin ≥ 0 V; Vout < −500 mV
11 p8 [-22,-14] Vin ≥ 0 V; −500 mV ≤ Vout < 0 V
12 p6 [-27,-18] Vin ≥ 0 V; 0 V ≤ Vout < 500 mV
13 p4 [-32,-23] Vin ≥ 0 V; Vout ≥ 500 mV
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〈V̇out := [−22,−14]〉

[99, 100]

[100, 101]
〈Vin := [999, 1000]〉

(b)

〈Vin := [−1000,−999]〉

[0, 0]〈fail := T 〉
{Vout ≤ −2000 ∨ Vout ≥ 2000}

(c)

p2

p8

p9

t9

t8

Q0 = {Vout = −1000, Vin = −1000}

S0 = {fail = F}
R0 = {V̇out = [26, 32]}

(a)

p1

p0

p2

p3
t3

p4

p6

p7

t0

t1

t2

p5

t4

t5

t6

t7

〈V̇out := [23, 32]〉

〈V̇out := [18, 27]〉

〈V̇out := [14, 22]〉

〈V̇out := [9, 16]〉

{¬Vin ≥ 0} [0, 0]

{Vin ≥ 0} [0, 0]

〈V̇out := [−32,−23]〉

〈V̇out := [−27,−18]〉
{¬Vout ≥ 500} [0, 0]

{Vout ≥ 500} [0, 0]

{Vout ≥ 0} [0, 0]

{Vout ≥ −500} [0, 0]

〈V̇out := [−16,−9]〉
{¬Vout ≥ −500} [0, 0]

{¬Vout ≥ 0} [0, 0]

Figure 6.14. An LHPN for the corrected switched capacitor integrator circuit example
using thresholds of −500 mV, 0 V, and 500 mV.
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integrator. Since the SMT-based model checker is a bounded model checker, the number

of iterations used to find an error or verify the property are listed. Finally, to explore

the scalability of our algorithms, Table 6.6 shows how the size of the LHPN and model

checking time scales as the number of thresholds increases. While runtime is increasing

quickly, it is still very small even for nine thresholds. The state space exploration engine’s

ability to scale is based upon the complexity of the state space. The complexity of the

state space is related to the number of continuous variables and number and complexity

of the rates of the continuous variables.

6.4 PLL Phase Detector

PLLs are notoriously difficult circuits to design and validate. There are a small number

of major components to a PLL which traditionally include a phase detector, low pass

filter, VCO, and a frequency divider. LEMA analyzes a phase detector as shown in the

schematic diagram of Figure 6.15. The phase detector is used to measure the phase

Table 6.5. Switched capacitor integrator circuit verification results for versions compiled
form VHDL-AMS and generated from SPICE simulations. OOM indicates that the
exploration ran out of memory.

DBM-based BDD-based SMT-based
Example Verifies? Zones Time(s) Time(s) Iterations Time(s)
VHDL-AMS [20,20] Yes 4 0.03 0.3 30 7.3
VHDL-AMS [18,22] No 11 0.04 1.2 15 0.85
Cor. VHDL-AMS Yes 266 0.35 7.7∗ 30 589.2
Original SPICE No 20 0.03 20.2 15 4.2
Cor. SPICE Yes 73 0.05 OOM 30 1406
* Verification result does not match the expected result.

Table 6.6. Scalability of LEMA’s DBM-based model checker as the number of thresholds
increase.

No. thresholds Places Transitions Model Checking Time
1 7 7 0.03s
3 11 11 0.06s
5 14 14 0.19s
7 18 19 0.31s
9 22 27 0.62s
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Figure 6.15. A schematic diagram for a PLL phase detector.

difference between two input signals and provide this information to the VCO. The VCO

uses this information to adjust the phase of the internal PLL clock in order to align the

phase of the two clock signals. The inputs to the phase detector are clk and gclk. The

output signals, up and down, are asserted to provide instruction on how to adjust the

VCO frequency.

The phase detector is simulated using a piecewise linear simulation input 1 µs long

representing reasonable clock skew for the clk input and a periodic clock signal for the

gclk input. The input waveforms are reversed and a second simulation is run. The phase

detector is simulated two more times using two periodic signals of fixed but different

periods. In one simulation, clk is leading and gclk is lagging. In the next simulation

that condition is reversed. These four simulations are used to build the LHPN and

Verilog-AMS models of the phase detector.

The Verilog-AMS and LHPN model are generated in approximately 20 seconds for the

phase detector example using the four simulations described previously. Eight variables

are required for model generation to accurately capture the state of the phase detector.

Four of the signals are the inputs, clk and gclk, and outputs, up and down, while the
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remaining four signals are chosen from the internal signals of the latches. It is logical

that signals from the state holding latches are required to delineate the states of the

phase detector. As all eight variables are digital signals, each variable is assigned a single

threshold equal to Vdd
2 .

Comparison between simulation times for the transistor-level design and the Verilog-

AMS model are performed using the same simulation inputs and simulator. Table 6.7

presents the results of these simulations. The first four simulations use one piecewise linear

input and one periodic input. The final table entry is a result for two periodic inputs.

Figure 6.16 shows a comparison of the waveforms produced by the two simulations. There

is a slight timing difference between the two waveforms, but the abstracted model is

accurate enough to be used in a system-level simulation.

The LHPN model of the PLL phase detector is composed of 69 places and 87 tran-

sitions. The property ¬(down ∧ up) verifies in 0.3 seconds. This property is a sanity

check on the outputs of the phase detector ensuring that down and up are not asserted

at the same time. A more complex property for the PLL phase detector is shown as

pseudocode in Figure 6.17. This pseudocode is a behavioral description of the correct

input/output operation of the phase detector. This property cannot be specified directly

in LEMA’s property language. To verify the property it is necessary to convert the property

to an LHPN with transitions used to indicate a failure of the property. The resulting

property LHPN is composed of 20 transitions and 14 places. The half of the property

LHPN that checks the first three lines of the property is shown in Figure 6.18. The

LHPN representing the bottom three lines of the property is similar. Composing these

property LHPNs with the LHPN model for the PLL phase detector results in an LHPN

that verifies correctly in 2.12 seconds.

Table 6.7. A comparison of simulation times between the transistor-level model and the
Verilog-AMS model of the PLL phase detector.

Sim Verilog-AMS (s) Transistor (s) Speed-up
0.5 µs 0.54 18.28 33.8
0.5 µs 0.54 17.92 33.2
1.0 µs 0.81 36.67 45.3
1.0 µs 0.81 40.46 49.9
2.0 µs 0.38 9.47 24.9
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Figure 6.16. A comparison of simulation waveforms from the transistor-level and
Verilog-AMS PLL phase detector models.

if gclk 1 → 0 then
if up = 1 then up = 0 within 5 ns
elsif down = 0 then down = 1 within 5 ns

if clk 1 → 0 then
if down = 1 then down = 0 within 5 ns
elsif up = 0 then up = 1 within 5 ns

Figure 6.17. A property to verify for the PLL phase detector.

6.5 CMOS Ring Oscillator with

Feedforward Inverters

Engineers at Rambus recently suggested investigating the modeling and verification

of the ring oscillator in Figure 6.19 [87]. Traditional CMOS ring oscillators are created

using an odd number of inverters in the ring. These oscillators have an oscillation period

of 2Nτd, where τd is an inverter delay. The period of oscillation can be reduced to Nτd

by using feedforward inverters to send the signal ahead in the ring [69]. An advantage of

using feedforward inverters is that the inverter ring can be designed to oscillate using an

even number of inverters. This allows for quadrature outputs (i.e., four outputs where each
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{vdown ≥ 1650}

p0
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Figure 6.18. An LHPN for the first three lines of the property in Figure 6.17.
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output is 90◦ degrees out of phase with the previous output). This is not possible with a

ring oscillator employing an odd number of inverters. Quadrature outputs are becoming

increasingly important in clock recovery and multiphase processor clocking. For these

reasons, Rambus uses this circuit in many of their VCO designs. Despite having an

essentially digital specification, this circuit requires an analog analysis, since its behavior

cannot be reasonably analyzed at the switch-level.

This circuit only oscillates for a particular range of ratios in transistor sizes for

the chain inverters to feedforward inverters. If the feedforward inverters (F1 − F4) are

much larger than the chain inverters (C1 − C4), the feedforward inverters overpower the

chain inverters and latch the values X and Y at opposite logical values. A simulation

using a ratio of chain to feedforward inverters of 0.39 exhibits this behavior as shown in

Figure 6.20. If the ratio is changed to 0.40, the circuit begins to oscillate slowly with

X leading Y as demonstrated by the simulation in Figure 6.21. As the ratio increases,

the speed of oscillation increases. Approximately in the middle of the range of oscillating

ratios, a ratio of 1.60, the simulation in Figure 6.22 demonstrates the stability of the

oscillator. As the ratio increases to 2.275, the chain inverters begin to overpower the

feedforward inverters, and the circuit struggles to start oscillating. It does eventually start

oscillating and is stable after the initial startup period as demonstrated in Figure 6.23.

Y

F1

F3

F2

C1 C2 C3 C4

F4

X

Figure 6.19. A schematic diagram of a CMOS ring oscillator with feedforward inverters
provided by Rambus. The chain inverters are labeled with Ci. The feedforward inverters
are labeled with Fi.
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Finally, Figure 6.24 shows the simulation results for a ratio of 2.30 where the chain

inverters overpower the feedforward inverters and produce the expected result for a ring

oscillator with an even number of inverters. In other words, the oscillator begins to

oscillate but reaches equilibrium with X and Y at opposite values and stops oscillating.

The behavior described above provides an interesting modeling and verification chal-

lenge. Using a single simulation, a designer may be convinced that the circuit oscillates.

However, if the circuit is on the edge of the oscillating ratio, it is possible that process

variation could cause regular failures of the circuit. Therefore, a model created from

simulations near the center of the oscillating transistor ratios should upon analysis find

that the circuit always oscillates. In contrast, a model generated from simulations near

the edge of the acceptable region should show the possibility of this failure. This result

makes the designer aware of the potential failure for the inverter sizes being used. The

designer could then do a set of simulations to characterize the oscillator and center the

circuit within the acceptable operating range.

LEMA’s model generator produces a model from the simulation data for the ring

oscillator. For example, the simulation data for the ratio of 1.60 produces the model

shown in Figure 6.25. The simulation data only include the variables X and Y because
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Figure 6.20. A CMOS ring oscillator simulation trace with a ratio of chain to feedforward
inverters of 0.39.
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Figure 6.21. A CMOS ring oscillator simulation trace with a ratio of chain to feedforward
inverters of 0.40.
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Figure 6.22. A CMOS ring oscillator simulation trace with a ratio of chain to feedforward
inverters of 1.60.
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Figure 6.23. A CMOS ring oscillator simulation trace with a ratio of chain to feedforward
inverters of 2.275.
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Figure 6.24. A CMOS ring oscillator simulation trace with a ratio of chain to feedforward
inverters of 2.30.
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other nodes in the inverter chain are correlated to X and Y . Correlated variables do

not add any useful information to the generated model. These correlation relationships

are determined manually through designer knowledge and experimentation. Following

the solid arrows in this model sequentially from p0 to p15 shows that X and Y oscillate

with X leading Y . Starting from p0 and moving to p4, X is decreasing as Y remains

largely stable. Because Y lags X, in the progression from p4 to p8, Y decreases while X

stabilizes. In the path from p8 to p12, X increases while Y is stable. To finish the cycle,

Y increases while X remains stable. This is the only path through the region space found

during the model generation. This single path indicates stable oscillation. The dashed

arrows have been added as described above to allow additional behaviors that may be

encountered during formal analysis of this model.

The simulation data for the ratio of 2.275 produce the model shown in Figure 6.26.

While this model still includes an oscillating path similar to the one in the previous

model, it also includes numerous other paths that represent potentially nonoscillating or

truncated oscillations. Since the regions are numbered in the order they are encountered,

the initial path through the regions from p0 to p11 shows truncated oscillations. A path

with nontruncated oscillations follows the following sequence: p0, p14, p2, p3, p4, p5,

p19, p15, p6, p12, p18, p16, p17, p9, p13, p11, and back to p0. The presence of truncated

and nontruncated oscillations should indicate to the designer that this set of transistor

ratios is potentially on the margin of correct operation, and that the ratios likely need to

be modified.

The major verification concern with the ring oscillator circuit is stability of oscillation.

From the models produced by LEMA’s model generator, it is possible to provide the designer

with a measure of stability for the circuit. Based on a stability assurance measure provided

by the verification tool for a given simulation, the designer would either be satisfied or

use additional simulations to characterize the design space. The model built from the

simulation with a ratio of 1.60 has a very high stability score as there is only a single

oscillatory path through the state space. The model built from the simulation with a ratio

of 2.275 would have a lower stability score as there are multiple oscillatory paths through

the state space. The stability score for the second model is still reasonably high as all

paths do oscillate. A model generated from a ratio of 2.30 would include paths through

the state space that terminate without full oscillation, so it would have the lowest score.
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Figure 6.25. An LHPN model of the ring oscillator for the simulation in Figure 6.22.
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Figure 6.26. An LHPN model of the ring oscillator for the simulation in Figure 6.23.



CHAPTER 7

CONCLUSIONS

The growing complexity of AMS circuits has led to a situation where traditional

verification techniques are allowing an unacceptable number of escaped bugs. Improved

verification tools and methodologies are needed for AMS circuits. This dissertation

describes tools and methodologies that improve upon the current state of the art for

AMS verification. A new modeling formalism for AMS circuits, LHPNs, can be compiled

from VHDL-AMS or automatically generated from simulation traces. Improved abstract

modeling is key to improving system-level simulation and verification. An automatic

model generation methodology to create abstract VHDL-AMS and Verilog-AMS models

from simulation traces provides improved abstract system-level models for simulation.

Formal methods can provide a higher level of verification assurance. DBM-based model

checking algorithms for LHPNs complete the path from simulation traces to formal

verification. The methods presented in this dissertation show promise to improve AMS

circuit verification on industrial examples.

7.1 Summary

This dissertation describes a new SAV methodology, implemented in LEMA, to verify

AMS circuits. The development of a formal AMS circuit model, LHPNs, amenable to

compilation and automatic generation is key. Previously developed modeling formalisms

can model AMS circuits but are difficult to generate. The ease of generating LHPNs

results in a compiler from VHDL-AMS to LHPNs as well as model generation techniques

from simulation traces to system-level VHDL-AMS models, system-level Verilog-AMS

models, and LHPNs.

One of the primary challenges facing formal methods for AMS circuits is the difficulty

of creating formal models from the circuit descriptions used by AMS designers. In the

simulation centric AMS design methodology, simulation data are not a commodity in short

supply. Using simulation data that are readily available, LEMA’s model generator creates
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formal models capable of verifying the AMS circuit under simulation. Furthermore,

simulation of entire AMS systems is not practical due to the lack of abstract models

available for AMS circuits. Using the same simulations, LEMA’s model generator creates

abstract VHDL-AMS and Verilog-AMS models. These models are composable into full

system models that can be simulated in a fraction of the time of the unabstracted

transistor-level model.

Another of the primary challenges facing formal methods for AMS circuits is the

complexity of performing state space exploration on AMS circuit models. LEMA’s DBM-

based model checking engine is an efficient model checker for LHPNs, representing AMS

circuits. By extending work in the timing verification community, the highly efficient

DBM representation can conservatively represent the continuous state space of LHPNs.

The conservative state space may lead to errors being reported that are not present in

the LHPN model. To help address these false negatives, LEMA produces error traces

representing the failure traces that can be inspected by the designer for validity.

The effectiveness of the SAV methodology supported by LEMA is evidenced through

the verification results on several benchmark examples. The ease of model generation

and efficiency of the DBM-based model checker make it possible for LEMA to successfully

analyze a variety of benchmark and industrial examples. The results of these examples

show the promise of this new SAV methodology as well as highlighting areas of future

work.

7.2 Future Work

While this dissertation describes progress in several areas of AMS circuit verification,

there is still significant work that needs to be done in order to make automated AMS

circuit verification practical for industrial use. This section proposes a number of areas

in need of further research.

7.2.1 Automated Model Abstraction

Our initial study of the ring oscillator in Section 6.5 is promising, but it has highlighted

several areas of future work for LEMA’s model generator. While the model generation

process itself is automated, there are several user decisions required to configure the

model generation process. The user must select a good set of design variables, thresholds

for these design variables, and a window size for rate generation. Ideally, the user would

select the minimal set of uncorrelated variables required to model the system. Modeling
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correlated variables increases the complexity of the LHPN model without adding any

additional information to the model. Support can be added to the model generator

to detect correlated variables and notify the user of this condition. Finding suitable

thresholds for each selected design variable can also be difficult. We have begun work

to automatically detect suitable thresholds given a user desired number of thresholds for

each selected design variable. This method uses an optimization algorithm to search for

the optimal set of thresholds in which the ranges on the rates are minimized. However,

improved optimization algorithms and cost functions are needed to determine the most

effective method for generating good thresholds. Finally, setting the window size for rate

generation affects both the rates and modeled regions. A window size should be large

enough to smooth out transitory pulses and other waveform artifacts, but it should be

small enough to include regions that are traversed quickly. This requirement may be

difficult to meet and modifying the model generation algorithm to employ a variable

window size may prove useful to address this problem.

A good abstract model only captures the behavior of the unabstracted model necessary

for the given application of the model. This concept is often discussed from the standpoint

of including the proper behaviors. For AMS circuits, there is a second measure of

abstraction which is the accuracy of the model. LEMA’s model generator can be modified to

provide a user configurable model accuracy. This adjustable accuracy could be achieved

through simplification of the rates and delays or by safe transformations of the model

that reduce the number of rates or delays through the combination of similar quantities.

One difficult issue facing the model generation community is the quantification of

model quality. For some of the abstraction methods for LTI systems, explicit error

bounds for the abstracted model can be automatically derived. For the majority of

abstraction methods there are no easily derivable error bounds. This results in model

quality comparisons like the one presented in Figure 6.16 where a simulation of the

abstracted and unabstracted model are compared qualitatively. This method of quality

comparison negates much of the benefit of the abstract model because both the abstracted

and unabstracted model must be simulated for every new use of the abstract model to

accurately understand the model behavior. There are several potential directions for this

work, but initially, the most fruitful direction may be to develop a standardized set of

simulations to characterize a model for a given circuit type or topology similar to the

method proposed in the Model QA Specification by the Compact Model Council [108].
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7.2.2 Coverage Metrics for AMS Circuits

The coverage metric proposed in Section 3.4 gives guidance as to whether a recently

added simulation provides additional information to the model generator, but it does

not suggest if further simulations should be done or which simulations should be done.

More sophisticated coverage metrics are needed to serve this purpose. Looking to digital

coverage metrics for inspiration has not proved to be a profitable approach. Most notions

of coverage for digital systems assume that each input combination may produce a unique

and interesting output combination or are related to the RTL code [150]. This digital

assumption does not hold for analog circuits whose output is often linearly related to

the input. AMS designers also spend significant effort characterizing their designs for

potential sources of variation. Coverage metrics for analog circuits need to account for

these characteristics of analog design and then quantify the value of a set of simulations

to explore the operating range of the circuit as well as the variation space. These metrics

could then be used to suggest or even automatically run simulations to improve the

model. For example, if a region is not visited during the current set of simulations, a new

simulation can be run that has initial values to place it within the previously unexplored

region.

Another approach to coverage metrics for AMS circuits would be to develop specialized

coverage metrics for specific types of circuits. The number of building blocks for analog

circuits is relatively small. It is reasonable to believe that a coverage metric could be

developed for each of the major building blocks. This metric could be tweaked based

on the topology of the specific circuit as well as the specific semiconductor fabrication

process being used. Development of these types of metrics would a be a nice first step

toward useful analog coverage metrics. These coverage metrics could then be analyzed

for common elements in an effort to build a generalized AMS coverage metric.

7.2.3 Counter-Example Guided Abstraction-Refinement

Another way to help improve the quality of the model generation by leveraging infor-

mation from the verification engine would be to use a counter-example guided abstraction-

refinement methodology. When the verification engine returns an invalid error trace,

the trace could be analyzed to determine the continuous variable and its value that

creates the error. New thresholds could then be added to this variable around this value

refining the model. More sophisticated approaches would likely also consider adding more
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continuous variables to the model or adjusting the window size used for rate generation.

This abstraction-refinement loop could then be continued until a valid error trace is found

or an adequately abstract model is verified.

7.2.4 False Negative Detection

Automatically determining if an error trace produced by LEMA is an actual error or a

false negative is important to increasing the utility of LEMA by designers. This is difficult to

do because LEMA explores the design space over ranges of parameters and initial conditions

while current SPICE simulators only support exploring traces for a single set of initial

conditions and parameters. This restriction by current SPICE simulators often makes it

impossible to correlate LEMA’s error trace back to the original model.

Recently, Tiwary et al. proposed an interval-based SPICE simulator, iSpice [152].

iSpice provides support for transient simulation over intervals for initial conditions and

parameters. This simulator provides a promising framework to check LEMA’s error traces

for false negative results. iSpice is not publicly available, but integrating iSpice with

LEMA should be explored.

7.2.5 AMS Property Specification Language

One key to verification is providing the verification engineer with a property specifi-

cation language expressive enough to capture the properties that need to be verified yet

simple enough to be easily learned and used. There are several property specification

languages in use for digital circuits such as PSL and SVA. These languages are not well

suited to AMS verification because AMS circuit verification involves continuous quantities

as well as frequency domain analysis.

The two primary efforts to develop an AMS circuit property specification language

are the development of Ana CTL [46] and STL/PSL [121]. Ana CTL provides operators

for capturing constant signals, delta changes between signals, finite values for a signal,

variables related by a given function, and variables related by a given waveform. STL/PSL

provides operators for capturing signals that are time shifted and relation of signals and

constants using +, −, and ×. It has been shown that these types of languages are more

useful than a standard digital property specification language, but they are still not able

to verify all necessary types of analog properties [87]. Therefore, extensions like those

suggested in [87] as well as the ability to verify properties in the frequency domain need

to be made to produce an industrial grade AMS property specification language.
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7.2.6 Assertion Based Verification for AMS Circuits

Assertion based verification (ABV) has become popular for digital circuits. This

technology can also be applied to AMS circuits with low overhead. In fact, there are

already industrial tools in this direction such as Mentor’s Eldo simulator which provides

user configurable monitoring to detect potential reliability failures. These features show

that ABV for AMS circuits should be capable of checking for functional failures as well

as reliability failures.

There are several bits of technology needed to provide an ABV infrastructure for

AMS circuits. One of the items is a property specification language for AMS circuits

as discussed in Section 7.2.5. Another item is simulator support for online detection of

assertion violations. There has been some work in this area [121], but further work is

needed. Finally, language support is needed for Verilog-AMS. VHDL-AMS provides a

facility to write assertions, but Verilog-AMS does not.

7.2.7 Automatic Stability Verification

Stability is a critical property for many complex AMS circuits such as PLLs and

oscillators. It is very difficult to verify the stability of these circuits using simulation due

to the number of simulations required to characterize their behavior over large ranges of

initial conditions and for long transient simulation times. The stability of these circuits

can be analyzed using phase portraits [94]. It is feasible to create an accurate model of

the circuit and then do state space exploration in the phase domain to prove the stability

or instability of these types of circuits [17, 18].

7.2.8 Embedded Software Verification

Another prominent form of hybrid systems are embedded systems, systems that

contain both AMS circuits and software. Preliminary efforts have shown that LHPNs can

be extended to model software at the assembly language level. Using LHPNs, properties

could be verified about the entire state space of embedded system. Further work is needed

in the mechanisms required to translate and abstract software to LHPNs.

Another method to verify embedded systems would be to develop compositional

verification techniques. The verification process would take verification results from the

AMS circuits using LHPNs and embedded software using current software verification

methodologies. After defining the software/hardware interface, the verification results

from the software and the hardware would be combined to verify the entire system. It
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is possible that due to the low-level nature of embedded software some of the current

software verification methods would need to be adapted to handle assembly language

software constructs.
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Normale Supérieure de Paris, France, 2004.

[113] Mitchell, I., and Tomlin, C. Level set methods for computation in hybrid
systems. In Hybrid Systems: Computation and Control (HSCC) (2000), N. A.



166

Lynch and B. H. Krogh, Eds., vol. 1790 of Lecture Notes in Computer Science,
Springer, pp. 310–323.

[114] Myers, C. Asynchronous Circuit Design. Wiley, 2001.

[115] Myers, C. J., Belluomini, W., Killpack, K., Mercer, E., Peskin, E., and
Zheng, H. Timed circuits: A new paradigm for high-speed design. In Proc. of
Asia and South Pacific Design Automation Conference (ASPDAC) (Feb. 2001),
ACM Press, pp. 335–340.

[116] Myers, C. J., Harrison, R. R., Walter, D., Seegmiller, N., and Little,
S. The case for analog circuit verification. Electronic Notes Theoretical Computer
Science 153, 3 (2006), 53–63.

[117] Nagel, L. SPICE2: A Computer Program to Simulate Semiconductor Circuits.
PhD thesis, University of California Berkeley, 1975.

[118] Nagel, L., and Rohrer, R. Computer analysis of nonlinear circuits, excluding
radiation (cancer). IEEE Journal of Solid-State Circuits 6, 4 (Aug. 1971), 166–182.

[119] Nahhal, T., and Dang, T. Guided randomized simulation. In Hybrid Systems:
Computation and Control (HSCC) (2007), A. Bemporad, A. Bicchi, and G. C.
Buttazzo, Eds., vol. 4416 of Lecture Notes in Computer Science, Springer, pp. 731–
735.

[120] Nahhal, T., and Dang, T. Test coverage for continuous and hybrid systems.
In Proc. International Conference on Computer Aided Verification (CAV) (2007),
W. Damm and H. Hermanns, Eds., vol. 4590 of Lecture Notes in Computer Science,
Springer, pp. 449–462.

[121] Nickovic, D., and Maler, O. AMT: A property-based monitoring tool for
analog systems. In Formal Modelling and Analysis of Timed Systems (FORMATS)
(2007).

[122] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. Solving SAT and SAT
modulo theories: from an abstract davis-putnam-logemann-loveland procedure to
DPLL(T). Journal of the ACM (JACM) 53, 6 (Nov. 2006), 937–977.

[123] Odabasioglu, A., Celik, M., and Pileggi, L. T. PRIMA: passive reduced-
order interconnect macromodeling algorithm. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 17, 8 (1998), 645–654.

[124] Petri, C. A. Communication with automata. Tech. Rep. RADC-TR-65-377, Vol.
1, Suppl 1, Applied Data Research, Princeton, NJ, 1966.

[125] Pettersson, P., and Larsen., K. G. Uppaal2k. Bulletin of the European
Association for Theoretical Computer Science 70 (Feb. 2000), 40–44.

[126] Phillips, J. R. Model reduction of time-varying linear systems using approxi-
mate multipoint krylov-subspace projectors. In Proc. International Conference on
Computer Aided Design (ICCAD) (1998), ACM Press, pp. 96–102.



167

[127] Phillips, J. R. Projection frameworks for model reduction of weakly nonlinear
systems. In Proc. Design Automation Conference (DAC) (2000), pp. 184–189.

[128] Phillips, J. R. Projection-based approaches for model reduction of weakly
nonlinear, time-varying systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 22, 2 (2003), 171–187.

[129] Phillips, J. R., and Silveira, L. M. Poor man’s TBR: a simple model reduction
scheme. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24, 1 (2005), 43–55.

[130] Pillage, L. T., and Rohrer, R. A. Asymptotic waveform evaluation for timing
analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 9, 4 (1990), 352–366.

[131] Prasad, M. R., Biere, A., and Gupta, A. A survey of recent advances in SAT-
based formal verification. International Journal on Software Tools for Technology
Transfer 7, 2 (Apr. 2005), 156–173.

[132] Quarles, T. L. Analysis of Performance and Convergence Issues for Circuit
Simulation. PhD thesis, University of California, Berkeley, Apr. 1989.

[133] Ray, S., and Bhadra, J. A mechanized refinement framework for analysis
of custom memories. In Formal Methods for Computer Aided Design (FMCAD)
(2007), IEEE Computer Society Press, pp. 239–242.
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