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ABSTRACT

With advances in technologies such as high throughput data collection and

genome sequencing methods, the Human Genome Project which, among other

things, determined the human DNA sequence and identified all the genes in human

DNA was completed at least two years ahead of time. As these technologies are

becoming more accurate, efficient, and cost effective and a massive amount of

genomic and proteomic data are becoming available at a rapid pace, we are now

in the position to face the challenge to understand how these genes coupled with

environmental stimuli orchestrate the regulation of cell-level behaviors. However,

understanding such complex systems is very expensive and is most likely imprac-

tical with wet-lab experiments alone as the amount and the complexity of data

substantially increase, requiring the integration of computational methods to make

the process more efficient.

To allow for substantial acceleration in computational analysis, this dissertation

develops a model abstraction methodology for biochemical systems which system-

atically performs various model abstractions to reduce the complexity of compu-

tational biochemical models. Our methodology is particularly useful for systems

with small molecular counts that require the discrete and stochastic representation

and thus demand substantial computational requirements. As a case study, this

dissertation illustrates the application of individual abstraction methods to such

systems. Furthermore, it demonstrates the application of collective abstraction

methods at various accuracy levels to temporal behavior analysis of several genetic

regulatory networks. This dissertation shows that analysis time of biologically

relevant properties of such genetic regulatory networks can be improved from days

of work to minutes of work using our methodology while maintaining reasonable

accuracy.
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CHAPTER 1

INTRODUCTION

Traditional molecular biology typically focuses on identifying individual genes

and proteins and studying their specific functions in isolation. While this approach

provides great details of components of biological systems, it has limitations in

explaining how a biological system operates through interactions and networks of

such components. Thus, it is difficult to predict with this approach, for example,

how a cell would respond to perturbations in some genes or proteins.

Systems biology, on the other hand, examines the dynamics and interactions

of biological components, and focuses on understanding of systems-level biological

properties. A systems biology approach streamlines understanding of a biological

system at the systems level by connecting the interdependent, component-level

knowledge of the system such as the properties of genes and proteins, while such

a systems-level understanding cannot be reductionistically deduced from the col-

lection of components in the system alone. Thus, this approach can lead to better

insights as to how living systems operate, and in turn, it can potentially have

significant impacts on understanding how to control and engineer living systems

to do useful things. However, living systems are very complex and understanding

such complex systems is very expensive and is most likely impractical with wet-lab

experiments alone, requiring the integration with computational approaches to

reduce the number of experiments. Computational methods are used in systems

biology, for example, to collect a large amount of data from a biological system, to

infer computational models that can explain the data produced by the biological

system, and to quantitatively analyze the temporal behavior of such computational

models.
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Computational modeling and simulation methodologies can facilitate building

concepts of complex biological systems mathematically and validating them effi-

ciently. Dynamics of a biological system represented in a computational model

can be tested and validated against the corresponding empirical observations via

simulation. Thus, tightly integrating computational approaches into the process

of analyzing biological systems can help scientists further biological insights of

such dynamical systems [67]. Figure 1.1 depicts the idealized workflow of this

integrative systems biology approach. First, the initial knowledge and assumptions

of a biological system are represented by various computational models. These

models are then utilized to obtain computational results via simulation or other

computational analysis methods. Only those models whose computational results

are found to be consistent with the experimental facts are then further considered

and utilized for more extensive system analysis. The successive experiments are

those that eliminate the inadequate models. Thus, the successful models are

assumed to be consistent with the current experimental knowledge. This process

can be cycled again and again to explore and corroborate new biological hypotheses,

gaining deeper understanding of biological systems [67, 68].

Thanks to advances in technologies, in genetic regulatory networks—where,

for instance, high-throughput gene expression analysis methods are available and

a vast amount of quantitative data has been collected—the information required

for building quantitative models of genetic regulatory networks can be obtained,

making the systems biology approach very promising.

1.1 Computational Modeling and Analysis

Numerous methods have been proposed for modeling genetic regulatory net-

works [64, 12]. Traditionally, biochemical systems are modeled and analyzed within

the continuous-deterministic, classical chemical kinetics (CCK) framework based on

the law of mass action where the dynamics of a well-stirred system are described

by a set of ordinary differential equations (ODEs). However, the limitations of

the CCK analysis have been broadly accepted [9, 40, 97, 102, 103]. In particular,
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Figure 1.1. Idealized systems biology workflow. First, the initial knowledge and
hypotheses of a biological system are conceptualized using various computational
models. These models are then utilized to obtain computational temporal behavior
results via simulation. Only those models whose computational results are found
to be consistent with the experimental facts are then further considered for more
extensive system analysis. The successful models are assumed to be consistent
with the current experimental knowledge. In order to further test the possible
models of the system and eliminate the inadequate models, new focused experiments
are applied to the system to obtain more biological knowledge. This process can
be cycled again and again to explore and corroborate new biological hypotheses,
gaining deeper understanding of biological systems.

given the same initial condition, the CCK analysis of biochemical systems always

produces the same results as it neglects fluctuations. Such treatment, nevertheless,

can be justified when the molecular populations are very large, and hence a CCK

analysis may provide the most efficient approach to determine the time evolution

of a system in such cases. However, many regulatory components in biological

systems can be present in amounts too small to simply neglect the effects of inherent

fluctuations [80, 58, 92, 24, 86]. Moreover, if a system being analyzed has multiple

steady states, the traditional ODE approach may not be able to provide an accurate

time evolution of a system since it cannot capture spontaneous transitions between

steady states [54, 50].

In order to more accurately predict the temporal behavior of biochemical sys-

tems without acquiring more information on a biological system such as the posi-

tions and the velocities of every molecule, the stochastic chemical kinetics (SCK)

framework can be used [57]. SCK describes the time evolution of a well-stirred
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biochemical system as a discrete-state jump Markov process that is analytically

governed by the chemical master equation (CME) [55]. Assuming that the system

is spatially homogeneous, this SCK approach describes the time evolution of a bio-

chemical system at the individual reaction level by exactly tracking the quantities

of each molecular species and by treating each reaction as a separate random event.

However, directly obtaining the solution of the CME of any realistic system, either

analytically or numerically, is not feasible due to its intrinsic complexity. Since

the solution of CME is rarely available in realistic biochemical systems, the time

evolution of moments is also generally infeasible to compute from the CME.

To overcome this, several methods have been introduced to approximate the

time evolution of moments of the process without solving the CME [54, 6]. Such

approximations are very useful to efficiently understand the mean behavior, stan-

dard deviation, skewness, etc., as well as to potentially characterize the time

evolution of the asymptotic probability distribution of the system states. However,

utilizing such methods alone may come across difficulties in quantitative analyses

of some biologically relevant properties based on stochastic competition such as

probabilistic analysis of lysis/lysogeny developmental pathways in bacteriophage

λ-infected Escherichia coli [9]. Furthermore, since the complexity of the moment

evolution equations may significantly increase as the size of the system increases

[54], such approaches may be unwieldy for large-scale biological systems.

Instead of attempting to solve the CME, exact discrete-stochastic numerical

realizations of a system dynamics via Gillespie’s stochastic simulation algorithm

(SSA) [52], which is derived from the same premise as the CME, are often used to

infer the temporal system behavior with a much smaller memory footprint. This

Monte Carlo simulation approach is useful to intuitively observe the trend of system

dynamics, which may be possible with as few as tens of numerical realizations. Fur-

thermore, in silico experiments via Monte Carlo simulation come with potentially

unlimited controlling capabilities and abilities to capture virtually any dynamical

properties of the system, making a number of qualitative and quantitative analyses

which cannot be done in wet-lab experiments possible. Unfortunately, the compu-
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tational requirements of the SSA can be substantial due largely to the fact that it

not only requires a potentially large number of simulation runs in order to estimate

the system behavior at a reasonable degree of statistical confidence, but it also

requires every single reaction event to be simulated one at a time.

1.2 Abstraction

Ultimately, given the substantial computational requirements of stochastic sim-

ulations and comparative complexities of in situ genetic regulatory networks, ab-

straction is absolutely essential for efficient computational analysis. This abstrac-

tion can be achieved either during the simulation or the modeling stage.

Simulation abstraction approximates the exact SSA to accelerate the simulation

process while the complexity of a model is left unchanged. This approach typically

involves runtime identification of reaction events that can be skipped without signif-

icant effects on the system behavior, and the usage of an approximated simulation

procedure that accelerates the simulation process by sacrificing the exactness. An

example of this simulation abstraction is Gillespie’s explicit τ -leaping method [56].

This method approximates the number of firings of each reaction in a predefined

interval rather than executing each reaction individually. Although this simulation

abstraction is very promising for many applications, the strict CME-level model

requirements may not be suitable for a large, systems-level model as the underlying

system complexity does not change with this approach.

Model abstraction transforms a low-level model to a higher-level model, making

computational analysis more efficient and the complexity of the system lower.

While the detailed reaction-level representations of biomolecular networks allow for

very comprehensive descriptions of biological systems, such low-level models may

lead to substantial computational costs and may obscure the understanding of the

overall system structure and interdependency of the components. Thus, going to a

higher-level representation and abstracting away dynamically insignificant reactions

or species in order to reduce the complexity of the system can help make the

overall systems biology analysis more efficient, as well as make crucial components
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and interactions of a system more intuitive. This could be accomplished through

a variety of techniques depending on the structure of the system and what the

assumptions are. Although many model abstractions have long been in wide use

individually, their traditionally manual transformation becomes increasingly more

tedious and demanding as multiple methods are collectively applied to a particular

biological system. The problem becomes even more acute as the size of the network

increases, eventually rendering it intractable and potentially leading to significant

errors in large model transformations.

1.3 Systematic Model Abstraction

To address these issues surrounding model abstraction of complex systems, this

dissertation presents a generalized model abstraction methodology that systemati-

cally reduces the small-scale complexity found in biochemical systems represented

by REaction-Based (REB) models (i.e., models composed of a set of chemical

reactions) while broadly preserving the large-scale system behavior. Thus, this

approach alleviates the abstraction problems by systematically testing network

patterns and characteristics to determine which abstraction methods are applicable

[73, 74]. Furthermore, this approach allows one to scan through the effective levels

of abstraction and to optimize model transformation for efficiency-versus-accuracy

by first adjusting the various precision criteria in individual abstraction methods

and then performing transformation accordingly.

Our methodology—outlined in Figure 1.2—begins with a REB model, which

could be simulated via the SSA or one of its variants though at a substantial

computational cost. To reduce the cost of computational analysis, the original REB

model is simplified by applying abstraction methods that mainly attempt to reduce

the number of reactions and species based on the structure of the model and the

abstraction criteria. The result is an abstracted REB model with fewer reactions

and species, which substantially lowers the cost of stochastic simulation. To further

reduce the complexity of the system as well as analysis time, this abstracted REB

model can be automatically translated into a finite state system (FSS) model by
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Figure 1.2. Automated model abstraction tool flow.

representing the dynamics of the system states (i.e., molecular population levels in

the system) by a finite state graph. This model can then be efficiently analyzed,

for example, using a Markov chain analysis method.

Whereas we believe that our model abstraction methodology can, in theory,

be applied to any biochemical networks, this dissertation concentrates on genetic

regulatory networks as a proof of concept to evaluate our methodology, which

includes abstraction methods tailored to reduce the computation time of temporal

behavior analysis of such networks. This dissertation therefore exemplifies the

applicability of our model abstraction methodology to genetic regulatory networks

as case studies.

1.4 Contributions

The major contributions of this dissertation are the development of a systematic

model abstraction methodology for genetic regulatory networks and the develop-

ment of an automated modeling and temporal behavior analysis tool for biochemical

systems. The modeling and analysis tool, which we call REB2SAC, implements

the systematic model abstraction methodology along with a variety of efficient

computational analysis methods that can take advantage of the simplified model

[73, 74]. Thus, REB2SAC streamlines the computational analysis of biochemi-

cal systems and, in turn, the process of systems biology research. Furthermore,

REB2SAC takes as an input a REB model formated in the systems biology markup

language (SBML), an emerging standard computer-readable format for representing
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models of biochemical reaction networks [42]. Thus, genetic regulatory network

models which are built using SBML-compliant modeling tools such as BioSPICE’s

PathwayBuilder [16] and CellDesginer [44] can be easily applied to construct models

that the tool can analyze. Also, REB2SAC has been integrated into a graphical

user interface tool called BioSim [2], bringing more user friendliness which is crucial

for biologists to concentrate on biology problems without dealing with computer

science problems.

In addition, contributions are made by analyzing real biological systems using

REB2SAC. Doing so allows us to not only evaluate the model abstraction methodol-

ogy in terms of accuracy and speedup by comparing original, detailed models with

corresponding abstracted models but also to provide the computational biology

community with genetic regulatory network models in SBML format, together with

analysis results.

1.5 Dissertation Outline

This dissertation is organized as follows. First, it presents the background

information on modeling and analysis of genetic regulatory networks. Chapter 2

overviews genetic regulatory networks. It introduces several key features of genetic

regulatory networks that are acknowledged in later chapters. In Chapter 3, an

overview of chemical kinetics is described. The CCK model and the SCK model are

first discussed, and then the derivation of the SSA along with several approximation

methods of the discrete-stochastic simulations are presented in this chapter.

Next, this dissertation presents our model abstraction methods. The REB model

abstraction methods are described in Chapter 4. This chapter first formally defines

the REB model, and then presents derivations as well as algorithms of several major

REB model abstraction methods. This dissertation then describes the FSS model

transformation in Chapter 5. This chapter first formally defines the FSS model, and

then describes several temporal behavior analysis methods using the FSS model.

Furthermore, it presents two abstraction methods to transform a REB model into

a FSS model.
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Case studies for our methodology are presented next. Chapter 6 illustrates

the applications of individual REB model abstraction methods, and presents the

simulation results. Chapter 7 presents more comprehensive analysis of our method-

ology by collectively applying the abstraction methods to produce various levels of

abstracted models of a couple of genetic regulatory networks. Biologically relevant

properties of such genetic regulatory networks are computationally obtained from

each resolution of the models, and the results are compared with those from the

experimental methods.

Finally, this dissertation concludes in Chapter 8 by summarizing the work and

presenting the potential future work.



CHAPTER 2

GENETIC REGULATORY NETWORKS

Cells are the fundamental building blocks of all living organisms, providing

structures and specialized functions. Genetic regulatory networks control the levels

of gene expression and protein synthesis via interactions of DNA, RNA, and pro-

teins, as well as other constitutive molecules, and play crucial roles in development

and maintenance of cells’ actions and properties. Thus, understanding of the

structures as well as the dynamics of genetic regulatory networks can lead to

significant insights as to how a living system operates under various conditions.

This chapter is intended to provide a brief overview of genetic regulatory networks.

Section 2.1 overviews the flow of genetic information, explaining the basic elements

and the steps required to express or turn on genes. Section 2.2 describes the

mechanisms of gene regulation. Section 2.3 then overviews analysis of genetic

regulatory networks generated using, among other things, a vast amount of gene

expression data that have been generated with high throughput data collection

methods.

2.1 The Flow of Genetic Information

Proteins carry out most of the work in cells and are required for the structures

and functions of cells. Thus, direct actions and properties of a cell are mainly

determined by the proteins it contains. Proteins are differentiated according to

their large range of functions in a cell. For example, some proteins called enzymes

accelerate chemical reactions, while some other proteins provide structure and

support for cells. However, one thing proteins generally cannot do is to reproduce

themselves. When a cell needs more proteins to maintain or change its phenotype,

it uses the hereditary material known as deoxyribonucleic acid (DNA).
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Most of the instructions needed to direct synthesis of proteins is encoded in

DNA. DNA is the blueprint of life for all living organisms where nearly every cell

in a living system has the same information. DNA is a nucleic acid molecule that

encodes genetic information in the sequences of four chemical units (bases): adenine

(A), guanine (G), cytosine (C), and thymine (T). DNA is usually double stranded

whereby the sequences of base pairs are arranged so that A is always paired with

T and G is always paired with C. DNA contains a number of segments called genes

that encode instructions to produce single-stranded nucleic acid molecules called

ribonucleic acids (RNAs). The type of RNA that encodes the instructions to make

a protein is called messenger RNA (mRNA).

The process of the production of RNA and proteins from DNA is known as

gene expression. The framework for the flow of genetic information is specified

by the central dogma of molecular biology [34]. In particular, the flow of genetic

information is from DNA to mRNA, and then from mRNA to proteins. These two

steps in gene expression are known as transcription and translation. In prokaryotic

cells in which the genetic material is in the cytoplasm, both transcription and

translation take place in the cytoplasm. In the case of an eukaryotic cell in which the

genetic information is contained inside a membrane-bound nucleus, transcription

takes place inside the nucleus while translation takes place in the cytoplasm.

In transcription, one of two DNA strands is used as a template to create a

complementary strand of RNA. DNA is unwound and genes along one strand of

DNA are transcribed into RNA molecules, which is directed by an enzyme called

RNA polymerase (RNAP). The process of transcription starts with the binding of

RNAP to a region of DNA located near the beginning of a gene called a promoter

as shown in Figure 2.1. RNAP binds and unbinds to promoters rapidly where the

RNAP binding rate is mainly determined by the promoter affinity strength. When

RNAP binds to a promoter site, the DNA is still double-stranded (“closed”). Thus,

this structure of RNAP and wound DNA is known as a closed complex. RNAP then

unwinds double-stranded DNA to make genetic information of a gene available to

transcribe. This complex of RNAP and unwound DNA is known as an open complex.
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Figure 2.1. Transcription initiation. RNAP binds to a promoter to initiate
transcription of the downstream gene.

By forming an open complex, RNAP becomes ready to read information encoded

on one side of the DNA to generate a complementary strand of RNA. Following this

initiation, as depicted in Figure 2.2, RNAP travels along the gene and synthesizes

RNA as it moves until it sees the stop signal encoded in a segment of DNA called

a terminator. At the terminator, RNAP falls off from the DNA and releases the

RNA.

Following transcription, mRNA then moves to interact with a protein-RNA

molecular complex called a ribosome, which produces proteins using amino acids

delivered by transport RNA (tRNA) in the cytoplasm. Each sequence of three bases

in mRNA, called a codon, codes for a specific amino acid, and a chain of amino

acids is assembled to produce a protein.

2.2 Regulation of Gene Expression

With recent advances in technology and sciences, whole genome (all of an

organism’s genetic material) sequences of many organisms have been revealed.

For example, the completion of the Human Genome Project has determined the

sequences of 3 billion base pairs and identified around 25,000 genes in the human

genome [13, 111]. While all the cells in the human body have largely the same DNA,

their structures and functionalities can be diverse. For example, the properties of
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Figure 2.2. Synthesis of mRNA. RNAP travels along the gene and synthesizes
RNA as it moves until it sees the terminator sequence, and RNAP falls off the DNA
and releases the RNA at the terminator.

a skin cell are very different from those of a brain cell. This is because a skin

cell produces only the proteins appropriate for that cell by precisely expressing a

subset of the 25,000 genes that is different from a subset of genes expressed in a

brain cell. However, considering about 20,000 genes that even a simple organism

like Caenorhabditis elegans (roundworm) has [100] and the number of genes in

the human genome, the number of genes alone does not determine the structural
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and functional complexities of organisms. It has been suggested that the key to

higher morphological and behavioral complexity is greater elaborate regulation

of gene expression [76]. It has been experimentally shown that the process of

gene expression can be highly nondeterministic in living cells [40]. Although such

fluctuations limit the precision of gene expression, they can play a critical role in

cell-to-cell variation where some species exploit the variations via nondeterministic

process of gene expression when they are advantageous for their survival [81, 9].

Although gene expression can be regulated at each step of transcription and

translation, the heart of regulation to, for example, adapt phenotypes in response

to environmental stimuli comes from the transcription initiation where transcrip-

tion factors and cis-regulatory DNA elements control when and how genes are

transcribed and in turn proteins are synthesized [37, 77, 31, 36, 63]. Transcription

factors are largely regulatory proteins that can control the rate of transcription by

occupying cis-regulatory elements on DNA. Negative transcription factors called

repressors prevent transcription of genes upon binding to the corresponding cis-

regulatory elements, while positive transcription factors called activators enhance

transcription of genes. Cis-regulatory elements on DNA include promoters and

operators. Operators are regulatory sequences of DNA that are usually located near

the corresponding promoters of genes to which transcription factors can bind to re-

press or activate transcription. These critical transcription regulatory components

can be present in very low counts in a cell [60], contributing to the nondeterministic

effects in gene expression [80, 40, 103].

Figure 2.3 shows a relatively simple two-gene system to illustrate the mechanism

of genetic regulatory networks. In this network, a piece of DNA contains two genes:

a and b. Suppose proteins A and B , the products from genes a and b, are not present

in the system, and the promoter for gene a has a higher affinity to RNAP binding

than the promoter for gene b at the basal rate. Transcription of gene a is then

initiated much more frequently than that of gene b, causing gene a to be expressed

and protein A to be synthesized more often at this configuration. Protein A is an

activator of transcription of gene b and it can occupy the operator site of gene b
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Figure 2.3. Two-gene system to illustrate the mechanism of gene expression
regulation. Protein A activates expression of gene b, while protein B represses
expression of gene a.

to increase the expression rate of gene b. Thus, protein B can be synthesized at a

higher level. Two copies of protein B can dimerize and form a B2 molecule, and

this B dimer can act as a repressor of transcription of gene a by occupying the

operator site of gene a. Consequently, at high levels of protein B , protein A is

rarely produced, and with degradation, the level of protien A becomes so low that

protein A can no longer effectively occupy the operator site of gene b to activate

the expression of gene b. Thus, with limited production at its basal rate, protein

B degrades, allowing gene a to be expressed once again.

2.3 Network Analysis

Advances in technologies such as DNA sequencing and gene expression profiling

methods [79, 104] contribute to increase throughput of generation of data required

for systematic approaches to understand genetic regulatory networks. A vast

amount of data collected by such technologies can be used to catalog a list of
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components of a genetic regulatory network and infer the structure of that network.

However, elucidating genetic regulatory networks only via wet-lab experiments can

be a daunting task, and complexity of this task substantially increases as the

amount of collected data increases and as the network being analyzed becomes more

complex. For example, just to find out the causal relationship between genes a and

b of the genetic regulatory network in Figure 2.3 may require many experiments.

In order to infer that protein A activates the expression of gene b, gene a can be

mutated or knocked out [113] and the expression level of gene a can be compared

between the wild-type cell and gene-a-mutated one. If the expression level of gene

b is higher in the wild-type cell, then it can be concluded that the participation of

protein A increases the expression of gene b, which, in turn, allows one to infer that

protein A directly activates the expression of gene b. However, other hypotheses

can be made to explain the causality. For example, one hypothesis would be that

protein A activates the expression of another gene, say gene c, and protein C

activates the expression of gene b. Another alternative hypothesis would be that

protein D binds to the operator site of gene b to repress the transcription and A

binds to protein D at a high affinity rate to prevent protein D from binding to the

operator site of gene b, causing an increase in expression of gene b by the presence

of protein A. To test these hypotheses, for example, genes c and d can be knocked

out, and expression of gene b can be profiled for each hypothesis. However, testing

and (in)validating every single hypothesis via wet-lab experiments in a brute-force

fashion is extremely time consuming and expensive. This is especially true for

large-scale or systems-level biological networks where it is impossible to generate

and test all possible hypotheses manually in the wet-lab.

Computational modeling and analysis can be applied to generate and screen

hypotheses, which can stimulate the development of new experiments and effectively

reduce the number of experiments to test hypotheses [67, 33]. The first step

of such a computational systems biology approach to understanding of genetic

regulatory networks is to construct computational models encapsulating hypotheses

and explaining experimental facts such as gene expression data. This can be
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done using various machine learning and data mining techniques [14, 43, 117].

Once quantitative computational models are constructed, they can be utilized to

analyze the temporal behavior via simulation, allowing the hypothesis and assump-

tions encapusulated in each model to be analyzed and screened. Furthermore, a

computational modeling and analysis approach comes with potentially unlimited

controlling capabilities and abilities to capture virtually any dynamical properties

of the system, making possible a number of qualitative and quantitative analyses

which cannot be done in wet-lab experiments. Since quantitative data required to

support systematic construction of such computational models are now becoming

available via high-throughput molecular biology methods, this computational ap-

proach is now becoming possible and is able to provide useful biological insights

[20, 38, 9, 116]. Furthermore, it can be used, for example, to apply an engineering

approach to more efficiently and effectively analyze how a genetic regulatory net-

work can be controlled and designed to achieve specific functions [21, 8]. Therefore,

computational modeling and analysis can revolutionalize the way biological systems

are analyzed and contribute to further understanding of such systems.



CHAPTER 3

CHEMICAL KINETICS

In order to describe the time evolution of a biochemical system quantitatively,

the use of a mathematical model is essential. This chapter presents an overview

of chemical kinetics models. Section 3.1 describes the chemical reactions that are

the fundamental processes to transition a biochemical system’s states. Section 3.2

presents the traditional classical chemical kinetics (CCK) model to describe the dy-

namics of a well-stirred biochemical system continuously and deterministically. Sec-

tion 3.3 describes the stochastic chemical kinetics (SCK) approach, which describes

the time evolution of a well-stirred biochemical system as a discrete-stochastic

process. Finally, Section 3.4 presents various approximated simulation methods

to facilitate efficient analysis of SCK models.

3.1 Chemical Reactions

A chemical reaction is a process in which a subset of species in a system is

chemically changed into another subset of species in the system. For example, the

chemical reaction:

2s1 + s2 → s3 (3.1)

consumes two molecules of s1 and one molecule of s2 and produces one molecule

of s3 . In chemical reactions, species that are consumed (i.e., species that are

shown on the left side of the arrow) are called reactants, while species that are

produced (i.e., species on the right side of the arrow) are called products. Thus, in

Reaction 3.1, species s1 and s2 are the reactants and species s3 is the product. A

number that appears in front of a species such as 2 in species s1 in Reaction 3.1 is the

stoichiometry, which represents the quantitative relationships between the reactants
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and products in chemical reactions. If a species is not preceeded by a number in a

chemical reaction such as s2 and s3 in Reaction 3.1, then the stoichiometry of that

species is implicitly understood as 1 in that reaction.

Chemical reactions can be either elementary reactions which cannot be broken

down into smaller reaction steps or a collection of elementary reactions. Since

Reaction 3.1 is a trimolecular reaction which involves three molecules as the re-

actants and requires a reactive collision of three molecules, it is highly unlikely,

if not impossible, to occur in one step physically, and thus it is not strictly an

elementary reaction. However, such reactions are sometimes approximated as

elementary reactions.

Unlike a trimolecular reaction, a bimolecular reaction, which occurs as a con-

sequence of a reactive collision of two molecules, is an elementary reaction. For

example, a chemical reaction of the form:

2s1 
 s2 (3.2)

is a bimolecular reaction which takes two molecules of s1 and produces one molecule

of s2 , and vice versa. Bimolecular reactions such as Reaction 3.2 are known as

dimerization reactions since two molecules of the same species produce a dimer

form. Reaction 3.2 has a double arrow indicating that it is a reversible reaction

in that both the forward and backward reactions are possible. Essentially, in most

chemical reactions, reversible reactions are the norm and irreversible reactions can

be viewed as special cases of reversible reactions in which the forward directional

reaction dominates that of the reverse direction.

Unimolecular reactions are also elementary reactions. A unimolecular reaction

converts one molecule of a species into one or more molecules of (an)other species.

For example, a reaction of the form:

s1 → s2 (3.3)

is a unimolecular reaction which converts a single molecule of species s1 into a single

molecule of species s2 .
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In general, by defining vr
ij as:

vr
ij ≡ the stoichiometry of species si as a reactant in reaction rj , (3.4)

and vp
ij as:

vp
ij ≡ the stoichiometry of species si as a product in reaction rj , (3.5)

reaction rj in a chemically reacting system of N species {s1 , . . . sN} has the form:

vr
1js1 + vr

2js2 + · · ·+ vr
NjsN 
 vp

1js1 + vp
2js2 + · · ·+ vp

NjsN . (3.6)

If species si does not participate in reaction rj as a reactant, then vr
1j is set to 0.

Similarly, if si is not produced by reaction rj , then vp
1j is set to 0.

3.2 Classical Chemical Kinetics

In order to quantitatively analyze the dynamics of a chemically reacting system,

each state transition must be quantitatively specified, and thus, chemical kinetics

must be specified. CCK considers each reaction as an event that proceeds con-

tinuously in a well-stirred system where a large number of molecules are involved,

and, in turn, the reaction rate is viewed as the speed of changes in the states

of the participating species per unit time. Traditionally, the time evolution of a

well-stirred biochemical system is described by a set of coupled, ordinary differential

equations (ODEs) which are based on CCK. This approach can thus take advantage

of the well-established theory in numerical solutions of the initial value problem of

ODEs to analyze the dynamics of biochemical systems [94, 66].

3.2.1 The Law of Mass Action

The foundation of CCK is the law of mass action. The law of mass action

states that the time-rate (i.e., the speed) of a chemical reaction is proportional to

the product of the concentrations (i.e., number of molecules divided by the volume)

of the reactant molecules in that reaction. In other words, according to the law

of mass action, there exists a proportionality constant such that the product of
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such a constant and the concentrations of the reactant molecules form the reaction

rate. Note that even though it is called a “law,” the law of mass action is a useful

model, rather than a law, that can provide a good approximation for a well-stirred

system, the dynamics of which can be relatively well-estimated without knowing the

position and the velocity of each molecule in the system [65, 41]. Also, the law of

mass action is only applicable to elementary reactions. Thus, a very detailed-level

system description is required to construct mass action kinetics models.

With the law of mass action, Reaction 3.1 can identify its reaction rate V to be

V = k1x1
2x2 (3.7)

where xi is the concentration of species si and the constant k1 is called a rate

constant. To show that a reaction is treated as an elementary reaction and the

mass action kinetics is applied to it, the corresponding rate constant is usually

given with the directional arrows. For example, Reaction 3.1 with mass action

kinetics is shown as:

2s1 + s2
k1−→ s3 . (3.8)

Reaction rates of CCK have the units of concentration per unit time. Thus,

the rate constants of trimolecular reactions—such as Reaction 3.8—have the unit

(concentration2 × unit time)−1, while the rate constants of bimolecular reactions

have the unit (concentration × unit time)−1. In general, the rate constant of

a reaction with n molecules of reactants has the unit (concentrationn−1 × unit

time)−1.

Reversible reactions have two rate constants; one is for the forward rate constant

and the other is for the backward rate constant. For example, Reaction 3.2 with

the forward rate constant k2 and the backward rate constant k−2 is depicted by

2s1
k2



k−2

s2 . (3.9)

The reaction rate V of Reaction 3.9 is then derived via the law of mass action to

be:

V = k2x1
2 − k−2x2. (3.10)
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In general, suppose reaction rj has the form of Reaction 3.6 and reaction rj is an

elementary reaction with k+ as the forward rate constant and k− as the backward

rate constant. Then, using the law of mass action, the reaction rate Vj of reaction

rj is described by:

Vj = k+

N
∏

i=1

xi
vr

ij − k−

N
∏

i=1

xi
v

p
ij (3.11)

where xi is the concentration of species si . If reaction rj is an irreversible reaction,

then k− is set to 0, making the second term on the right hand side in Equation 3.11

vanish.

3.2.2 Ordinary Differential Equation Model

Suppose Reactions 3.8 and 3.9 are the only reactions that occur within a chem-

ically reacting system. Then, since two molecules of species s1 are consumed by

Reaction 3.8, and two molecules of species s1 are consumed by the forward reaction

of Reaction 3.9 and two molecules of species s1 are produced by the backward

reaction of Reaction 3.9, the change of the concentration of s1 in this system over

unit time is specified as:

dx1

dt
= −2k1x1

2x2 − 2k2x1
2 + 2k−2x2. (3.12)

Similarly, one molecule of species s2 is consumed by Reaction 3.8, and one molecule

of species s2 is both produced and consumed by Reaction 3.9. Thus, the differential

equation for the change of the concentration of species s2 with respect to time is

dx2

dt
= −k1x1

2x2 − k2x1
2 + k−2x2. (3.13)

Since species s2 only participates in Reaction 3.8 as a reactant, and one molecule

of species s2 is consumed by it, the differential equation of the concentration of

species s3 becomes

dx3

dt
= k1x1

2x2. (3.14)

Therefore, the ODE model that describes the dynamics of the system of species s1 ,

s2 , s3 with Reactions 3.8 and 3.9 consists of the set of Equations 3.12, 3.13, and

3.14.
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In general, suppose N chemical species {s1 , . . . , sN} in a chemically reacting

system interact via M reaction channels {r1 , . . . , rM} where each rj has the form

of Reaction 3.6. Then, by defining vij as:

vij ≡ vp
ij − vr

ij (3.15)

where vr
ij and vp

ij are from Equations 3.4 and 3.5, respectively, the change of the

state of species si by reaction rj per unit time can be quantified by vijVj where Vj is

the reaction rate of reaction rj . Therefore, by denoting xi to be the concentration

of species si , the ODE model of this system can be specified as:

dxi

dt
=

M
∑

j=1

vijVj, 1 ≤ i ≤ N. (3.16)

3.2.3 Limitations of CCK

Although biochemical systems have traditionally been analyzed via CCK, there

are several limitations in this approach that may be critical to some biochemi-

cal systems such as genetic regulatory networks. The implication of CCK is a

continuous-deterministic process description of the time evolution of a biochemical

system. Representing each concentration of species in continuum states can be

justified when the molecular populations of the species are very large. In such

cases, the relative change of molecular populations by each reaction is so small that

it can be viewed as a continuous change. Also, when this large-molecular-population

assumption holds in a biochemical system, the relative fluctuation of each molecular

population—which can be empirically estimated roughly as the inverse square root

of its mean population—becomes so small that it can be safely neglected. Thus,

the dynamics of the system can be described by a deterministic process and CCK

analysis may provide the most efficient approach to determine the average time

evolution of a system under such conditions.

However, if a biochemical system includes some species with small molecular

counts, then the fundamental assumption of CCK is violated and the computational

analyses may not be able to capture the true dynamic behavior of such systems
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[109, 83, 52]. Furthermore, if a biochemical system with a highly nonlinear behavior

has multiple steady states such as the bistable Schlögl reactions [105], the CCK

approach may not be able to provide an accurate system description since it cannot

capture spontaneous transitions between steady states [54, 114, 50, 47].

3.3 Stochastic Chemical Kinetics

Unlike CCK, SCK describes the time evolution of a chemically reacting system

by a discrete-stochastic process. SCK considers N chemical species {s1 , . . . , sN}
which interact through M irreversible, elementary-reactions {r1 , . . . , rM} inside

a well-stirred, chemically reacting system with a constant volume Ω in thermal

equilibrium at some constant temperature. With these assumptions, it describes the

time evolution of the system within the discrete-stochastic framework in continuous

time. This section presents an overview of SCK, which is based on the work of

Gillespie [52, 53, 55, 57].

3.3.1 System State

The most exact way to simulate the dynamics of a molecular system is molecular

dynamics where movements of every molecule in the system are tracked [57]. The

system state of molecular dynamics is the positions and velocities of every molecule

in the system where the dynamics of the system state are described by capturing

every movement and every collision of molecules in the system. While this ap-

proach can show the time evolution of species’ populations as well as the spatial

distribution of each species, acquiring such detailed knowledge and performing such

computationally expensive simulations may be infeasible.

By making the well-stirred assumption, SCK as well as CCK can greatly simplify

the complexity of models. With this assumption, the spatial property of a system

is ignored and the system state of SCK is defined to be simply the populations of

species in the system. Thus, by denoting X(t) ≡ (X1(t), . . . , XN(t)), the system

state vector that represents the number of molecules of each si , the evolution of
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X(t), given that X(t0) = x0 (for t ≥ t0) can be probabilistically described rigorously

for each reaction event.

3.3.2 Propensity Function

In SCK, each reaction rj is viewed as a discrete random event that changes the

system state by vj ≡ (v1j , . . . , vNj), called the state change vector, whose ith element

vij is defined in Equation 3.15. Thus, given the system is in state x ≡ (x1, . . . xN )

where xi is the molecular population of species si , the system jumps to state x+vj

as a consequence of a single rj reaction event. The time that the next event of

reaction rj occurs is governed by function aj , which is called the propensity function

of reaction rj , and it is defined as follows:

aj(x)dt ≡ the probability that, given X(t) = x, reaction rj will occur

inside Ω in the next infinitesimal time interval [t, t + dt)
(3.17)

where the infinitesimal time dt is taken to be so small that at most one reaction

event occurs within the interval. Thus, the strict requirement of SCK is that each

reaction rj shall be an elementary reaction. Since the propensity function is the

basis of the discrete-stochastic process of SCK, it may be said to be the fundamental

premise of stochastic chemical kinetics. The propensity function of each reaction

rj is quantified by first defining a specific probability rate constant cj such that:

cjdt ≡ the probability that a randomly chosen combination of

reactant molecules of rj inside Ω at time t will transform

via rj within the next infinitesimal time dt.

(3.18)

Suppose reaction rj is a unimolecular reaction and in the form of Reaction 3.3.

Then, from Definition 3.18, the propensity function is defined as aj(x) = cjx1. The

value of cj for a unimolecular reaction rj turns out to be the same as the reaction

rate constant from CCK.

Suppose reaction rj is a bimolecular reaction of the form s1 + s2
cj−→ · · · . Then,

by assuming that the system is well-stirred or spatial-homogeneous, the propensity

function takes the form of cjx1x2. In this case, cj is numerically the same as kj/Ω,

and thus, the propensity function equals the reaction rates via CCK.
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If, however, reaction rj is a dimerization reaction of the form 2s1
cj−→ · · · , the

propensity function becomes aj(x) =
cj

2!
x1(x1−1) and the relationship between the

specific probability rate constant and the classical reaction rate constant becomes

cj = 2kj/Ω. Also, if reaction rj is a trimerization reaction 3s1
cj−→ · · · and if it

is assumed to be an elementary reaction, then the propensity function of reaction

rj becomes aj(x) =
cj

3!
x1(x1 − 1)(x1 − 2) where cj = 3!kj/Ω2. In general, the

propensity function for an n-merization reaction: ns1
cj−→ · · · becomes aj(x) =

cj

n!
x1!

(x1−n)!
, and the relationship between kj and cj becomes cj = n!kj/Ωn−1. Thus,

in these n-merization reactions, while the reaction rates via CCK are not equal to

the corresponding propensity functions, they approximate the propensity functions

very well. This is especially true when the molecular counts are relatively high.

This type of approximation is commonly applied to propensity functions, allowing

biochemical system models to be numerically analyzed via both CCK and SCK

approaches conveniently.

3.3.3 Chemical Master Equation

By assuming that a system is well-stirred—through either external force or many

non-reactive collisions in the system—after each reaction event, the current molec-

ular population is the only information that matters in the propensity functions.

This means that a system transition depends on the current state of the system and

does not depend on the history of the system. In other words, X(t) is a Markov

process. Moreover, since each propensity function does not explicitly depend on

time—by assuming Ω and the system temperature are constant throughout the

system evolution—the stochastic process X(t) is said to be temporally homogeneous.

The implication is that the time evolution of X(t) can be described by a temporally

homogeneous jump Markov process.

To analytically describe the very Markov process defined by SCK, let P (x, t |
x0, t0) be the probability such that:

P (x, t | x0, t0) ≡ the probability that X(t) = x given X(t0) = x0. (3.19)
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Then, the evolution of the probability P (x, t | x0, t0) characterizes the temporal

behavior of a biochemical system via SCK.

To express how P (x, t | x0, t0) evolves, two cases are considered as depicted in

Figure 3.1. If X(t) = x, then, as shown in Figure 3.1(a), the probability of the

state transitioning to state x+vi in the next infinitesimal time dt is aj(x)dt for all

j ∈ [1, M ]. In other words, the probability that, given X(t) = x, X(t + dt) = x

is 1 −∑M

j=1 aj(x)dt. On the other hand, if X(t) = x − vi, then the probability

of the system transitioning to state x at time t + dt is aj(x − vi)dt as shown in

Figure 3.1(b). Therefore, the conditioned probability P (x, t + dt | x0, t0) can be

expressed as:

P (x, t + dt | x0, t0) = P (x, t | x0, t0)

[

1−
M

∑

j=1

aj(x)dt

]

+
M

∑

j=1

[P (x− vj, t | x0, t0)aj(x− vj)dt].

(3.20)
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Figure 3.1. (a) Transitions from state x and (b) transitions to state x.
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In this equation, the first term of the right hand side is the probability of the

system staying in state x in the next infinitesimal time, and the second term is the

probability of the system moving to state x in the next infinitesimal time. Taking

the limit: dt→ 0 and rearranging Equation 3.20 gives the forward chemical master

equation (CME):

∂P (x, t | x0, t0)

∂t
=

M
∑

j=1

[P (x− vj, t | x0, t0)aj(x− vj)− P (x, t | x0, t0)aj(x)].

(3.21)

Although the integral of the CME gives the probability P (x, t | x0, t0) that

captures the evolution of a biochemical system, directly obtaining the solution

of the CME of most realistic systems, either analytically or numerically, is not

feasible [114, 47]. This is because Equation 3.21 is actually a set of coupled,

ordinary differential equations for each system state, and the system-state-space

is usually very large, if not infinite, for realistic systems. For example, if a simple

biochemical system contains 10 species, each of whose maximum molecular count

can be determined to be 99, then the state space of this system is at most 1020,

and it is too large to obtain P (x, t | x0, t0) either analytically or numerically.

3.3.4 Stochastic Simulation Algorithm

Due to its intrinsic complexity, the CME itself may not be particularly useful

for analyzing the temporal behavior of biochemical systems. In 1976, Gillespie

introduced a Monte Carlo simulation algorithm called the stochastic simulation

algorithm (SSA) to numerically simulate the temporally homogeneous jump Markov

process that represents a well-stirred chemically reacting system [52, 53]. The SSA

is said to be exact in the sense that it does not approximate infinitesimal time

increments dt by small but finite time steps ∆t, and that it faithfully corresponds

to the probability distribution function described by the SCK.

Although the SSA neither tries to solve the CME nor utilizes the CME for

numerical simulation, it is derived from the same premise from which the CME is

derived—i.e., the propensity functions and the state change vectors. It defines a
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probability density function p(τ, j | x, t) such that

p(τ, j | x, t)dτ ≡ the probability that, given X(t) = x, the next reaction

in Ω will occur in the infinitesimal time interval

[t + τ, t + τ + dτ), and it will be rj .

(3.22)

Thus, to generate an exact Monte Carlo procedure (i.e., the SSA), samples of the

random variable that are distributed according to the probability density function

p(τ, j | x, t) must be accurately generated. One way to do this is to describe

p(τ, j | x, t) as the product of two probability density functions. Since τ and j

in p(τ, j | x, t) are independent in a temporally homogeneous process, this joint

probability density function can be expressed as:

p(τ, j | x, t) = p1(τ | x, t)× p2(j | x, t), (3.23)

where p1(τ | x, t) is a probability density function that can be used to answer “when

the next reaction will occur” and p2(j | x, t) is a probability density function that

can be used to answer “what the next reaction will be” based on the definition of

Equation 3.22. Here, since X(t) is a temporally homogeneous jump Markov process,

the probability density function p1(τ | x, t) must be exponentially distributed with

the decay constant a0(x) where:

a0(x) ≡
M

∑

j=1

aj(x), (3.24)

and the probability density function p2(j | x, t) becomes statistically independent

on the next reaction time, and simply a probability of rj being chosen out of all the

reactions. Therefore, these functions can be expressed as:

p1(τ | x, t) = a0(x) exp (−a0(x)τ), (3.25)

p2(j | x, t) =
aj(x)

a0(x)
, (3.26)

and the Monte Carlo procedure of using Equations 3.25 and 3.26 is called the direct

method [52]. The direct method generates samples of the random variable τ which

is distributed according to Equation 3.25 via

τ =
− ln (n1)

a0(x)
(3.27)
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and it then generates samples of the random variable j which is distributed accord-

ing to Equation 3.26 via

j = smallest integer satisfying

j
∑

µ=1

aµ(x) ≥ n2a0(x) (3.28)

where n1 and n2 are random numbers from the standard unit distribution.

The algorithm shown in Figure 3.2 outlines the algorithm for the direct method.

First, Algorithm 3.3.1 initializes the time and state (line 1). Then, it repeats the

sequence of evaluating all the propensity functions for the current state, calculating

a0(x) (line 3), generating both τ and j according to Equations 3.27 and 3.28,

respectively (lines 4-6), and updating the time and state based on τ and vj (line

7). This loop is run until the termination condition such as a time limit is satisfied

(line 8).

Although Algorithm 3.3.1 is simple and easy to implement, the temporal be-

havior analyses of biochemical systems via the SSA may be very expensive. This

is because the SSA can only solve the time evolution of the Markov state density

function P (x, t | x0, t0) statistically, and it may require a potentially large number

of simulation runs in order to estimate the system behavior to a reasonable degree of

statistical confidence. Furthermore, the SSA requires every single reaction event to

be simulated one at a time. Therefore, each simulation run may require a significant

amount of time, especially for realistic biochemical systems.

Algorithm 3.3.1 Gillespie’s direct method

1: initialize: t← t0, x← x0

2: repeat

3: evaluate all propensity functions and calculate a0(x)
4: pick 2 unit uniform random numbers n1 and n2

5: set τ ← − ln (n1)/a0(x)
6: set j ← smallest integer satisfying

∑j
µ=1 aµ(x) ≥ n2a0(x)

7: update: t← t + τ , x← x + vj

8: until simulation termination condition is met

Figure 3.2. Algorithm for Gillespie’s direct method.
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To alleviate the runtime of the stochastic simulation, Gibson and Bruck have

introduced a streamlined implementation of the SSA known as the next reaction

method, which requires only one standard unit random number asymptotically per

state transition, as opposed to two in the direct method, and uses clever data

structures so that the propensity functions are re-evaluated only when required

[49]. However, it has been shown that the optimized direct method is more efficient

than the next reaction method for most realistic systems due to the high cost of

maintaining the data structure of the next reaction method [29].

3.4 Approximated Discrete-Stochastic Simulations

Due to substantially high computational demands of the SSA, approximation—

which can accelerate the simulation process by sacrificing the exactness of the

SSA—is absolutely essential for efficient and effective temporal behavior analyses of

realistic biochemical systems. This section presents such approximation methods.

3.4.1 The Bunker et al. Method

Bunker et al. introduced a discrete simulation method in 1974 [23]. Although

their method was introduced prior to the introduction of the SSA, it can be viewed

as an approximation of the SSA. The core difference between the Bunker et al.

method and the SSA is that the former calculates the mean τ instead of sampling

τ according to the probability density function p(τ, j | x, t). Hence, it can avoid

the random number generation for sampling τ , requiring generation of only one

random number per state transition as opposed to two in the direct method of the

SSA.

The mean τ is calculated according to:

〈τ〉 =

∫ ∞

0

τ ′a0(x) exp(−a0(x)τ ′)dτ ′ =
1

a0(x)
. (3.29)

Thus, computing 〈τ〉 is easier and faster than computing a sample value of τ . Even

though this Bunker et al. method should be faster than the SSA, it still simulates

every reaction event one at a time. Thus, the computational cost of its simulation

can be very expensive. Especially when the value of a0(x) is very large due to, for



32

example, inclusion of fast reactions in a system, the mean τ becomes so small that

a substantial number of state transitions is required for simulation of such systems

via the Bunker et al. method.

3.4.2 The τ-leaping Methods

To overcome the inefficiency of simulating reaction events one at a time, Gillespie

has introduced an approximation method known as the τ -leaping method [56]. The

basic idea of the τ -leaping method is to approximate the number of firings of each

reaction in a preselected time interval τ rather than individually executing each

reaction event. Thus, if τ is selected to be large enough to leap many reaction

events, then the simulation process accelerates drastically. However, in order for

the τ -leaping method to approximate the SSA well, the leaping time τ must be

chosen so that the following Leap Condition is satisfied.

Definition 3.1 (Leap Condition) A condition that requires τ to be so small that

changes in the values of the propensity functions of each reaction in the interval

[t, t + τ ] are kept minimal.

With this condition being satisfied, the system advancement from time t to time

t + τ can be well-approximated by the equation:

X(t + τ) = x +

M
∑

j=1

vjPj(aj(x), τ), (3.30)

where Pj(aj(x), τ) is a Poisson-distributed random variable which gives the number

of the rj reaction events that fire in the time interval [t, t + τ) using aj(x)dt as the

probability of an rj reaction event to fire in any infinitesimal time dt. In the

limit: τ → 0, this approach becomes equivalent to the SSA. However, in that

limit—or near that limit where τ is approximated by a very small but finite ∆t

in numerical simulations—the τ -leaping method would be painfully slow and even

slower than the SSA because most reactions do not occur in such a small time

interval. Therefore, the τ -leaping method should not be used if τ is found to be

less than a few multiples of 1/a0(x) [57].
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The core of the τ -leaping method is the selection of τ . Hence, there have been

a number of techniques introduced to improve the original τ -selection to improve

the leaping method itself. For example, Gillespie and Petzold have introduced a

method to estimate the largest value of τ by choosing an accuracy control ε to

bound the change in the value of the propensity function by εa0(x) where ε ∈ (0, 1]

[51]. Cao et al. have further improved the τ -selection by uniformly bounding the

relative changes in the values of the propensity functions [28].

There are other variants of τ -leaping methods. For example, several τ -leaping

methods are introduced to avoid having a molecular population go negative, which

may happen in the original τ -leaping method [112, 32, 26]. The implicit τ -leaping

method is introduced to better accommodate systems with stiff conditions where

reactions with widely different time scales are present [98]. The trapezoidal τ -

leaping method [30] is, then, proposed to have a better accuracy and stiff stability

properties than the explicit and the implicit τ -leaping methods by adapting the

trapezoidal rule [10] for solving continuous-deterministic ODEs.

While the τ -leaping methods are very promising for some systems, they may

not perform well for systems with fast reactions driven by species present in very

small counts. This is because, in such systems, the leaping time τ which satisfies

the Leaping Condition is so small that leaping many reaction events is not feasible.

In such cases, the exact SSA usually performs better than the τ -leaping methods.

3.4.3 Slow-Scale SSA

In simulation of biochemical systems with very large time scale differences such

as those often found in complex regulatory systems, some reactions take place

much less frequently than some other reactions. Furthermore, it is often the case

that firings of the slow reactions have greater impact on the system’s behavior

than the fast reactions. Thus, in order to observe interesting temporal behavior

of systems essentially controlled by firings of the slow reactions via the SSA, much

of the computational time must be spent executing the fast yet less important

reactions. In order to accelerate this inefficient simulation process of the SSA in
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such situations, Cao et al. introduced an approximate simulation method called

the slow-scale SSA (ssSSA) [27]. The main idea of the ssSSA is to skip over the

expensive fast reactions and simulate only the slow reactions.

The ssSSA partitions a system into a fast subsystem and a slow subsystem.

This is done by first partitioning M reactions in a system to a set of the fast

reactions: Rf ≡ {r f
1 , . . . , r f

Mf
} and a set of the slow reactions: Rs ≡ {r s

1 , . . . , r s
Ms
}

where Mf + Ms = M . It then partitions N species in the system into a set of the

fast species: Sf ≡ {s f
1 , . . . , s f

Nf
} and a set of the slow species: Ss ≡ {ss

1 , . . . , ss
Ns
}

where Nf + Ns = N . A fast species s ∈ Sf is defined in such a way that there

exists a reaction r ∈ Rf such that the state of species s is changed by reaction r .

Conversely, a slow species s ∈ Ss is defined so that, for all reactions R ∈ Rf , the

state of species s is not changed by reaction r . From the definition of Sf and Ss,

therefore, a Markov process X(t) can be partitioned into the fast subsystem Xf (t)

and the slow subsystem Xs(t).

Since Xf (t) and Xs(t) are usually coupled and thus non-Markovian processes,

working with these subsystems is notoriously difficult. To approximate Xf(t) by

a Markov process, a virtual fast process X̂f(t) is introduced. The process X̂f (t) is

composed of the fast species and the fast reactions. In other words, all the slow

reactions are ignored in X̂f(t). Thus, X̂f (t) is a Markov process because it does

not depend on slow reactions for state transitions and because the state variables

for slow species in every propensity function of the fast reactions become constant

with the constraint.

Suppose the system is in state (xf ,xs) at time t. Then, the propensity function

of a slow reaction r s
j is specified as as

j(x
f ,xs). Now, since X̂f (t) is a fast process

by definition, the probability distribution of the fast species can be assumed to

move to the stationary distribution P̂ (xf ′ ,∞ | xf ,xs) before the next slow reaction

event fires. Thus, by letting dst be the infinitesimal time on the time scale of the

slow reactions but very large compared to that of the fast reactions, the probability

that one slow reaction r s
j event occurs in [t, t + dst) can be well approximated by

ās
j(x

f ,xs)dst where the slow-scale propensity function ās
j(x

f ,xs) is defined as:
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ās
j(x

f ,xs) ≡
∑

xf ′

P̂ (xf ′ ,∞ | xf ,xs)as
j(x

f ′,xs). (3.31)

Therefore, the slow-scale propensity functions can be used to predict when and

which slow reaction event fires next, and update xf and xs accordingly. Further-

more, a sample of P̂ (xf ′,∞ | xf ,xs) can be used to update xf to approximate the

changes from the fast reactions.

Although the ssSSA can efficiently approximate the stochastic simulation of

some systems with large time scale differences, it has several limitations. For

example, it is not feasible to compute P̂ (xf ′,∞ | xf ,xs) for most systems, and thus

the stationary distribution usually has to be computed approximately. Also, since

the propensity functions of some reactions can change drastically in each simulation,

computationally expensive partitioning of reactions and species may need to be

performed frequently in such situations. Furthermore, because the number of

species and reactions is not reduced by this method, the complex procedure of

the ssSSA may have difficulty in simulating large-scale biochemical systems.



CHAPTER 4

REACTION-BASED ABSTRACTION

In well-stirred chemical and biological molecular systems, including genetic reg-

ulatory networks which this dissertation focuses on, reaction-based (REB) represen-

tations typically provide the most detailed level of specification for the underlying

system structure and dynamics [15]. REB abstraction methods are used to reduce

a REB model’s size by merging reactions, removing irrelevant reactions, etc. Our

tool REB2SAC includes several such techniques to facilitate efficient analysis of

biochemical systems [73, 74]. Each REB abstraction method traverses the graph

structure of the REB model and applies transformations to it when the respective

conditions are satisfied. The result is a new REB model with fewer reactions

and species. This chapter first defines the REB model formally in Section 4.1.

Section 4.2 then describes the modeling assumptions that are made so that the

algorithms of our abstraction methods can be presented without having to deal

with all the possible modeling scenarios. Finally, this chapter presents the main

REB abstraction methods that we have implemented.

4.1 Reaction-Based Model

The REB model is a bipartite weighted directed graph that connects species

based on the interactions that they can have via a set of reaction channels in

a system. Thus, it can describe both the CCK model and the SCK model. A

REB model can be encoded in an emerging standard, the Systems Biology Markup

Language (SBML) [42]. Thus, REB models can be conveniently constructed using

SBML-compliant modeling tools such as PathwayBuilder [16] and CellDesigner [44].

The use of this standardized format has the advantage of allowing for easy exchange

of computational models by researchers as well as the ability to analyze models by
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a variety of SBML-compliant analysis tools. The REB model is formally defined as

follows.

Definition 4.1 (REB model) A REB model is specified with 〈S,R,Rrev,E,K〉
where S is the set of species nodes, R is the set of reaction nodes, Rrev ⊆ R is the

set of reversible reactions, E : ((S×R) ∪ (R× S))→ N is a function that returns

the stoichiometry of the species with respect to a reaction, and K : R→ (R|S| → R)

are the kinetic rate laws for the reactions.

For example, a REB model with two reactions r1 and r2 of the form:

r1 : s1 + s2
k1



k−1

s2 + s3

r2 : s1 + s3
k2−→ 2s1 + s2

contains the following sets:

S = {s1 , s2 , s3},

R = {r1 , r2},

Rrev = {r1},

E = {((s1 , r1 ), 1), ((s2 , r1 ), 1), ((s3 , r1 ), 0),

((r1 , s1 ), 0), ((r1 , s2 ), 1), ((r1 , s3 ), 1),

((s1 , r2 ), 1), ((s2 , r2 ), 0), ((s3 , r2 ), 1),

((r2 , s1 ), 2), ((r2 , s2 ), 1), ((r2 , s3 ), 0)},

K = {(r1 → ((|s1 | , |s2 | , |s3 |)→ (k1 |s1 | |s2 | − k−1 |s2 | |s3 |))),

(r2 → ((|s1 | , |s2 | , |s3 |)→ (k2 |s1 | |s3 |)))}.

In the kinetic rate law, |s| is a variable that represents the state of species s . In

other words, in CCK analysis, |s| usually represents the concentration of species s ,

while in SCK analysis, |s| represents the molecular count of species s . Similarly,

the units for the rate constants, kj, are adjusted based on the analysis. Note that

|s|0 is used to denote the initial state of species s . Also note that the user can

specify a set of interesting species (i.e., Si ⊆ S), which should never be abstracted

so that they can always be analyzed.
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To simplify the description of the algorithms in this dissertation, this section

introduces several sets. Rr
s, Rp

s , and Rm
s are the sets of reactions in which species

s appears as a reactant, product, and modifier, respectively. Here, a reactant is a

species that is consumed by a reaction, a product is a species that is produced by

a reaction, and a modifier is a species that is neither produced nor consumed by

a reaction, as defined in the SBML standard [42]. Similarly, Sr
r, Sp

r , and Sm
r , are

the sets of species that appear in reaction r as a reactant, product, and modifier,

respectively. These sets are defined formally below:

Rr
s = {r ∈ R | E(s , r) > E(r , s)},

Rp
s = {r ∈ R | E(r , s) > E(s , r)},

Rm
s = {r ∈ R | E(s , r) > 0 ∧ E(s , r) = E(r , s)},

Sr
r = {s ∈ S | E(s , r) > E(r , s)},

Sp
r = {s ∈ S | E(r , s) > E(s , r)},

Sm
r = {s ∈ S | E(s , r) > 0 ∧ E(s , r) = E(r , s)}.

In these definitions, a species is considered a reactant of a reaction only if the

net change of the state of that species by a reaction is negative. Similarly, it is a

product only if the net change of the state of that species by a reaction is positive.

Finally, it is considered a modifier if it is used in a reaction but the state of that

species is not changed by that reaction. Thus, the REB model for our example

includes the following nonempty sets:

Rr
s1

= {r1}, Rp
s1

= {r2}, Rp
s2

= {r2},

Rm
s2

= {r1}, Rr
s3

= {r2}, Rp
s3

= {r1},

Sr
r1

= {s1}, Sp
r1

= {s3}, Sm
r1

= {s2},

Sr
r2

= {s3}, Sp
r2

= {s1 , s2}.

4.2 Modeling Assumptions for Abstraction

To simplify the description of the algorithms of several abstraction methods, a

couple of assumptions are made to restrict the presentation of an input REB model.
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The first assumption is that the kinetic law expression of an n-merization reaction

of the reactant s always has the term |s|n even when a REB model is used for SCK

analysis. For example, a REB model with a reaction r of the form:

2s1
k1−→ s2 (4.1)

contains the following kinetic law set:

K = {(r → ((|s1 | , |s2 |)→ (k1 |s1 |2)))}.

In the case of SCK analysis, a stricter requirement is that the kinetic law expression

of rection r be k1 |s1 | (|s1 | − 1). However, by assuming that |s1 | is relatively high,

the relative error between k1 |s1 | (|s1 | − 1) and k1 |s1 |2:

ε =
|s1 |2 − |s1 | (|s1 | − 1)

|s1 | (|s1 | − 1)
(4.2)

becomes very small. For example, even when |s1 | is as low as 10, the relative

error ε becomes 0.11, and if |s1 | is 100, then ε becomes 0.01. Thus, we make this

simplification throughout this dissertation to keep several model abstractions of a

REB model interchangeable between the CCK analysis and the SCK analysis. Note

that, for the SCK model, a stricter model can be generated by simply replacing

|s|n with
∏n−1

i=0 (|s| − i).

The second assumption is that reactions are modeled as reversible reactions

whenever possible. From the definition of the REB model, the same biochemical

process can be represented by different REB models. However, it is usually the

case that only a handful of such models biochemically make sense. For example,

the following reversible reaction system:

s1 + s2 
 s3 (4.3)

can be represented by three different REB models. The first way is to represent

this system by a model with a reversible reaction with species s1 and s2 as the

reactants (i.e., Rrev = {r1},Sr
r1

= {s1 , s2},Sp
r1

= {s3}). The second way is to

represent the reaction system by a model with a reversible reaction with species
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s1 and s2 as the products (i.e., Rrev = {r1},Sr
r1

= {s3},Sp
r1

= {s1 , s2}). The

third way is to represent the system by a model with a pair of two reactions (i.e.,

R = {r1 , r2},Rrev = ∅). However, if the modeler’s intention is to treat s1 and s2 as

the reactants and s3 as the product, then it is typically the case that the modeler

chooses the first REB model to represent this reaction system.

Modeling biochemical systems using Rrev with the species in the correct order

has the advantage of allowing our abstraction methods to correctly identify which

ones should be the reactants and which ones should be the products based on the

flow of the overall reaction process that the user has intended to model. Thus, our

abstraction methods assume that reversible reactions are modeled using Rrev with

correctly specifying the forward reactions and the backward reactions. This means

that, if there exist irreversible reactions rf and rb such that

|Sr
rf
| > 0 ∧ |Sr

rb
| > 0 ∧ Sr

rf
= Sp

rb
∧ Sp

rf
= Sr

rb
∧ Sm

rf
= Sm

rb
,

then these reactions are assumed to be modeled by combining the forward reaction,

rf , and the backward reaction, rb , to form a reversible reaction.

Owing to this constraint, while the dynamics of each species s ∈ S in the

corresponding ODE model can be simply described as:

d |s|
dt

=
∑

r∈R

(E(r , s)− E(s , r))K(r), (4.4)

each reversible reaction must first be split into a pair of forward and backward

reactions in order to analyze the temporal behavior of a REB model via the

SSA. This can be achieved by performing the algorithm shown in Figure 4.1.

Algorithm 4.2.1 iterates on each reversible reaction r . It first creates a backward

reaction r ′ (line 2). Based on the reactants, products, and modifiers of reaction

r , then, the products, reactants, and modifiers of reaction r ′ are generated (lines

3-5). This algorithm assumes that the kinetic law of each reaction r is in the form

of “expressionf − expressionb”. It then splits the kinetic law expression into the

forward kinetic law expression and the backward kinetic law expression to put them

into reactions r and r ′, respectively (lines 6-8). Finally, it sets Rrev to be an empty

set and returns the new model (lines 10-11).
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Algorithm 4.2.1 Split reversible reactions
Model SplitReversible(Model M)

1: for all r ∈ Rrev do

2: M ← addReaction(M, r ′)
3: ∀s ∈ Sr

r. M ← addProduct(M, s, r ′,E(s, r))
4: ∀s ∈ S

p
r . M ← addReactant(M, s, r ′,E(r , s))

5: ∀s ∈ Sm
r . M ← addModifier(M, s, r ′ ,E(s, r))

6: “expressionf − expressionb” ← K(r)
7: K(r)← “expressionf”
8: K(r ′)← “expressionb”
9: end for

10: Rrev ← ∅
11: return M

Figure 4.1. Algorithm to split reversible reactions.

Using the REB model with Rrev being empty, the SSA can be more efficiently

performed than the original direct method [52]. This is because the structure of

the REB model enables one to easily determine which species’ states are affected

by the firing of a reaction event. Thus, similar to the data structure used in the

next reaction method [48, 49], it can minimize the number of evaluations to update

the value of each propensity function for each step. Figure 4.2 shows the algorithm

for a more efficient direct method using the REB model where S ≡ {s1 , . . . , sN}
and R ≡ {r1 , . . . , rM}. Algorithm 4.2.2 first initializes the time variable and state

variables of each species (line 1). It then evaluates all the propensity functions

based on the current species’ state, puts the value of the propensity function of rj

into aj, and calculates the sum of all the propensity functions a0 (lines 2-3). Next,

it picks two unit uniform random numbers, and uses them to find the next reaction

time and which reaction is the next reaction (lines 5-7). Based on the selected

reaction rj ′, the state of each species that is used as either a reactant or product is

updated (lines 8-10). At this point, if the termination condition is satisfied, then the

simulation ends here (lines 11-12). If not, then the kinetic law is updated for each

reaction aj that uses as a reactant, product, or modifier any species whose state is

just changed, and the values of a0 and each aj are also updated (lines 13-22). It then
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Algorithm 4.2.2 Direct method using the REB model

1: t← t0, ∀i ∈ [1, N ]. |si | ← |si |0
2: evaluate K(rj ) for all j ∈ [1,M ] and put the value in aj

3: a0 ←
∑

j aj

4: pick 2 unit uniform random numbers n1 and n2

5: τ ← − ln (n1)/a0

6: j′ ← smallest integer satisfying
∑j′

j=1 aj ≥ n2a0

7: t← t + τ
8: for all s ∈ (Sr

rj′
∪ S

p
rj′

) do

9: |s| ← |s|+ E(rj ′ , s) −E(s, rj ′)
10: end for

11: if simulation termination condition is met then

12: exit

13: else

14: Q← ∅
15: for all s ∈ (Sr

rj′
∪ S

p
rj′

) do

16: Q← Q ∪Rr
s ∪R

p
s ∪Rm

s

17: end for

18: for all j such that rj ∈ Q do

19: evaluate K(rj ) and put the value in a′

20: a0 ← a0 + (a′ − aj)
21: aj ← a′

22: end for

23: go to line 4
24: end if

Figure 4.2. Algorithm for a more efficient direct method using the REB model.

goes back to line 4 and repeats the process (line 23). This simulation algorithm is

implemented in REB2SAC to accommodate an optimized version of the SSA for the

REB model data structure. This simulation method is used for efficient analyses

of various biochemical systems [74, 75, 72, 14, 87].

4.3 Michaelis-Menten Approximation

This section considers the following bimolecular enzymatic reaction scheme:

E + S
k1



k−1

C
k2−→ E + P (4.5)

where E , S , C , and P represent an enzyme, a substrate, an enzyme-substrate

complex, and a product, respectively. This enzymatic reaction scheme specifies the
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transformation of a substrate, S , into a product, P , catalyzed by an enzyme, E ,

where E has one active site to which S can bind to form C . Because characteristics

of such enzymatic reactions can be ubiquitously found in biochemical systems,

understanding of such mechanism may be crucial to elucidate how component-level

dynamics play a role in an overall system behavior. Unfortunately, it is often

the case that these enzymatic reactions come with very rapid complex formation

and complex breakup reactions compared with the production formation, resulting

in very large time scale differences which can significantly contribute to higher

computational costs for both CCK and SCK analyses. Therefore, abstracting away

such expensive enzymatic reactions is essential for efficient analysis of biochemical

systems.

Since Reaction 4.5 has four species, the CCK model of this reaction scheme has

four differential equations. However, by assuming that the states of the species in

Reaction 4.5 are not changed by other reactions, the following mass conservations

can be established to reduce the number of equations:

Etot = |E | (t) + |C | (t), (4.6)

Stot = |S | (t) + |C | (t) + |P | (t) (4.7)

for all t ≥ 0 where Etot and Stot are constants. Thus, using these mass conservation

equations, the CCK model of Reaction 4.5 is governed by the following two ordinary

differential equations:

d |C |
dt

= k1(Etot − |C |)(Stot − |C | − |P |)− (k−1 + k2) |C | , (4.8)

d |P |
dt

= k2 |C | . (4.9)

The relationship between an enzyme E and a substrate S in this enzymatic

reaction scheme was first proposed and its CCK model was developed by Henri in

the early 20th century [62]. Due to the analytical difficulty of following the dynamic

behavior of the enzymatic reaction, Michaelis and Menten then studied the enzyme

action by measuring the initial reaction rate, instead [84]. This Michaelis and
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Menten (MM) reaction eliminates the formation of complex C , and its kinetics

describes the speed of the product formation solely based on S as:

d |P |
dt

=
Vmax |S |
K + |S | (4.10)

where Vmax ≡ k2Etot is a constant specifying the maximum speed and K is another

constant. Hence, it can facilitate better analytical understanding of the dynamic

behavior of an enzymatic reaction by eliminating the intermediate species and by

reducing the dimensionality of the system. Furthermore, unlike the parameters of

Reaction 4.5: k1 and k−1, the parameters, K and Vmax, can actually be measured

experimentally. Thus, a MM reaction can be constructed and simulated even

when full knowledge of the underlying enzymatic reaction is not available and the

enzymatic reaction cannot be analyzed quantitatively at that level of detail.

Briggs and Haldane introduced the theoretical basis of the MM reaction by

assuming that the changes in |C | over time is minimal on the time scales of

interest (i.e., d|C |
dt
≈ 0) [22]. This approximation is known as the quasi-steady-state

approximation (QSSA), and it generates Equation 4.10 by replacing K with KM

where KM ≡ (k−1 +k2)/k1 which is known as the MM constant. The application of

the QSSA in Reaction 4.5 can be justified with singular perturbation theory which

states that the error from the QSSA estimate is small when the condition

Etot

|S |0 + KM

� 1 (4.11)

is satisfied [107, 65].

In SCK, this type of approximation had not been given much consideration until

recently. However, this has changed due to the substantial computational demands

of the SSA. Aside from the advantage of reducing dimensionality of the system, one

major advantage of the stochastic version of QSSA is that it can substantially reduce

the simulation time by removing the fast reactions (i.e., the complex formation and

the complex breakup). Thus, to facilitate more efficient temporal behavior analysis,

extended MM approximations have been applied to several biochemical systems

[7, 9, 116]. Also, the mathematical justification for the application of the QSSA
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within the SCK framework has been investigated to establish a theoretical basis to

illustrate how the QSSA can be applied to the SSA [96, 101]. Since the dimension

of the model can be reduced using Equations 4.6 and 4.7, the CME of Reaction 4.5

becomes:

∂Pr(c, p; t)

∂t
= k1(Etot − c + 1)(Stot − c− p + 1)Pr(c− 1, p; t)

+ k−1(c + 1)Pr(c + 1, p; t) + k2(c + 1)Pr(c + 1, p− 1; t)

− [k1(Etot − c)(Stot − c− p) + (k−1 + k2)c] Pr(c, p; t),

(4.12)

where Pr(c, p; t) is the probability that |C | (t) = c and |P | (t) = p.

The derivation of the stochastic QSSA model of Reaction 4.5 begins by assuming

that the net rate change of the probability distribution of |C | becomes approxi-

mately zero for the time scales of interest. From this assumption, the reversible

reaction to form and break up complex C can be removed, and the kinetic law for

the production reaction can be approximated by replacing |C | by its average 〈|C |〉
to form: k2〈|C |〉. It turns out that Condition 4.11 is still valid for the condition of

the stochastic QSSA [96, 101]. And in that situation, the average |C | can be well

approximated as:

〈|C |〉 ≈ Etot |S |
KM + |S | . (4.13)

Thus, Equation 4.12 can be approximated by the QSSA to be:

∂Pr(s, p; t)

∂t
=

k2Etot(s + 1)

KM + (s + 1)
Pr(s + 1, p− 1; t)− k2Etots

KM + s
Pr(s, p; t), (4.14)

where Pr(s, p; t) is the probability that |S | (t) = s and |P | (t) = p. Therefore,

conveniently, the QSSA can be applied to both the CCK model and the SCK

model to reduce the model complexity.

Figure 4.3 shows a graphical representation of a more complex competitive

enzymatic reaction to illustrate the application of the QSSA. In this graphical

representation, a reaction that is connected to a species with a double arrow is a

shorthand to show a reversible reaction, and species connected to a reaction with

letters, r, p, and m are a reactant, a product, and a modifier for that reaction,

respectively. In Figure 4.3(a), the substrates S1 and S2 compete to bind to the
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Figure 4.3. Quasi-steady-state approximation: (a) the original model, and (b) the
abstracted model.

enzyme E to produce products P1 and P2 by first forming complexes C1 and

C2 , respectively. An extended form of the QSSA can be applied to this network to

remove this enzyme, its complex forms, and the reactions that form these complexes.

Importantly, this also clarifies the essential biological meaning of the process by
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removing intermediate steps, which may otherwise obscure the functional logic of

the mechanism. The resulting abstracted reaction model is shown in Figure 4.3(b).

The algorithms shown in Figure 4.4 implement the QSSA for multiple alternative

substrate systems [73, 74] which is a generalization of the complete characteriza-

tion of enzyme-substrate and enzyme-substrate-competitor reactions [106]. First,

Algorithm 4.3.1 considers each species, s , as a potential enzyme. Each species is

checked using Algorithm 4.3.2. If s is an interesting species or does not occur as a

reactant in any reaction, then s is not considered further (line 2). Otherwise, each

reaction, r1 , in which s is a reactant is considered in turn. If r1 is not reversible,

does not have two reactants, or does not have a rate law of the right form (i.e.,

k1 |s| |s1 | − k−1 |sc|), then again s is not considered further (line 4). Reaction r1

combines s and s1 into a complex sc . If the initial molecule count of this complex

is not 0, sc is an interesting species, sc does not occur as a reactant or product in

exactly one reaction, or occurs as a modifier in any, then again this approximation is

terminated for s (lines 5-6). The reaction r2 converts sc into a product and releases

the enzyme s . If this reaction is reversible, does not have exactly one reactant and

no modifiers, does not have s as a product, has more than two products, or does

not have a rate law of the form, k2 |sc|, then s is not considered further (lines 7-9).

Finally, it checks the validity of the quasi-steady-state assumption by comparing

the ratio of |s| and the sum of |s1 | and KM to the predefined threshold constant T1

(line 10). For each reaction, a configuration is formed that includes the substrate s1 ,

complex sc , constant k1/(k−1 + k2), production rate constant k2, complex forming

reaction r1 , and product forming reaction r2 (line 11). If Algorithm 4.3.2 terminates

successfully (i.e., returns a nonempty set of configurations, C), then Algorithm 4.3.3

is called to apply the transformation to the REB model. First, it loops through

the set of configurations to form an expression that is used in the denominator in

each new rate law as well as forming a list of all the substrates that bind to the

enzyme s (lines 1-6). Next, for each configuration (s1 , sc, K1, k2, r1 , r2 ), it makes the

substrate s1 a reactant for r2 , makes all other substrates modifiers for r2 , creates
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Algorithm 4.3.1 Standard quasi-steady-state approximation
Model StandardQSSA(Model M)

1: for all s ∈ S do

2: C← QSSAConditionSatisfied (M, s)
3: if C 6= ∅ then M ← QSSATransform(M, s,C)
4: end for

5: return M

Algorithm 4.3.2 Check the conditions for QSSA
Configs QSSAConditionSatisfied(Model M, Species s)

1: C← ∅
2: if (s ∈ Si) ∨ (|Rr

s| = 0) then return ∅
3: for all r1 ∈ Rr

s do

4: if (r1 6∈ Rrev) ∨ (|Sr
r1
| 6= 2) ∨ (K(r1) 6= “k1 |s| |s1 | − k−1 |sc | ”) then return ∅

5: if (|sc|0 6= 0) ∨ (sc ∈ Si) then return ∅
6: if (|Rr

sc
| 6= 1) ∨ (|Rm

sc
| 6= 0) ∨ (Rp

sc | 6= 1) then return ∅
7: {r2} ← Rr

sc

8: if r2 ∈ Rrev) ∨ (|Sr
r2
| 6= 1) ∨ (|Sm

r2
| 6= 0) then return ∅

9: if (s /∈ S
p
r2) ∨ (|Sp

r2 | 6∈ {1, 2}) ∨ (K(r2) 6= “k2 |sc| ”) then return ∅
10: if |s|0/(|s1 |0 + (k−1 + k2)/k1) > T1 then return ∅
11: C← C ∪ {(s1 , sc , k1/(k−1 + k2), k2, r1 , r2 )}
12: end for

13: return C

Algorithm 4.3.3 Perform the QSSA transformation
Model QSSATransform(Model M, Species s, Configs C)

1: Exp Z ← 1
2: L← ∅
3: for all (s1 , sc ,K1, k2, r1 , r2 ) ∈ C do

4: Z ← Z + (K1 ∗ |s1 |)
5: L← L ∪ {s1}
6: end for

7: for all (s1 , sc ,K1, k2, r1 , r2 ) ∈ C do

8: M ← addReactant(M, s1 , r2 ,E(s1 , r1 ))
9: ∀m ∈ L \ {s1}. M ← addModifier(M,m, r2 , 1)

10: K(r2)← (k2 ∗ |s|0 ∗ ke ∗ |s1 |)/Z
11: M ← removeSpecies(M, sc)
12: M ← removeReaction(M, r1 )
13: end for

14: M ← removeSpecies(M, s)
15: return M

Figure 4.4. Algorithms to perform the quasi-steady-state approximation.
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a new rate law for r2 , and removes species sc and reaction r1 (lines 7-13). Finally,

this algorithm removes the enzyme, s (line 14).

If the complex C dissociates into E and S much faster than it is converted

into the product P (i.e., k−1 >> k2), then the formation of the complex can be

seen to equilibrate with the breakup of the complex on the time scales of the

production reaction. Thus, a more aggressive approximation known as the rapid

equilibrium approximation can be applied to further reduce the complexity of the

kinetic law in such situations. This approximation transforms an enzymatic one-

substrate reaction to the MM form with K ≡ k−1/k1 in Equation 4.10.

4.4 Production-Passage-Time Approximation

While the QSSA and the rapid equilibrium approximation can significantly

reduce the complexity of a computational model, these approximation methods

may not perform well in terms of accuracy when the underlying hypotheses are

violated. To better accommodate such cases, we have developed an approximation

method called production-passage-time approximation (PPTA) which can reduce

the simulation time of enzymatic reaction models while maintaining better accuracy

in more general settings [72]. Our new approach approximates the passage time

of the complex C which is destined to turn into the product P , and only tracks

such instances of C . Thus, the PPTA eliminates the substrate-complex loop by

removing the fast complex breakup reaction, allowing a substantial acceleration in

stochastic simulations of enzymatic reactions.

To describe the PPTA method, this section introduces several notations and

assumptions. Let irreversible reactions r1 , r−1 , and r2 be the complex formation re-

action, the complex breakup reaction, and the production reaction in Reaction 4.5,

respectively. Then, the enzymatic reaction scheme contains the following propensity

functions for each reaction ri :
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K(r1)(X) ≡ a1(X) = k1 |E | |S | (4.15)

K(r−1)(X) ≡ a−1(X) = k−1 |C | (4.16)

K(r2)(X) ≡ a2(X) = k2 |C | (4.17)

where X = (|E | , |S | , |C | , |P |). Reaction 4.5 is considered to have the initial

condition: X(t0) = xt0, where xt0 = (Etot, Stot, 0, 0), Etot ≥ 1, and Stot ≥ 1.

Let x∞ = (Etot, 0, 0, Stot), then the probability that X(t) = x∞ given X(t0) = xt0

approaches 1, as t → ∞. In other words, in any simulation run, the enzymatic

reaction process always reaches x∞ eventually. In order for each numerical realiza-

tion of X(t) to transition from xt0 to x∞, S must be transformed into C at least

Stot times and C must be converted into P exactly Stot times. Thus, let x(i)(t) be

the i-th sample trajectory of X(t) given that X(t0) = xt0 and Ti be a set of time

instances such that each time instance, tij , represents the time point where the j-th

reaction event occurs in x(i)(t). Then, the statement ∀i. |Ti| ∈ [2Stot,∞) must

be true. In other words, it takes at least 2Stot reaction events for X to transition

from xt0 to x∞ in any simulation run. Intuitively, if k−1 � k2, then C tends to

be consumed by r2 rather than r−1 , making the size of each Ti close to the lower

bound 2Stot. On the other hand, if k−1 � k2, then C is more likely to be consumed

by r−1 , and in consequence each |Ti| is very likely much greater than 2Stot, making

the computational cost of simulations significantly higher.

Our new PPTA approach minimizes the number of reaction events that fire

through the passage of each x(i)(t) to x∞ by preventing each x(i)(t) from revisiting

the same state. Thus, it guarantees that ∀i. |Ti| = 2Stot. This is achieved by

eliminating r−1 and approximating transitions of each x(i)(t) using only complex-

formation and production reactions. In other words, the PPTA approximates the

passage time of the formation of each C molecule which leads to a production of

P , and only keeps track of such instances of formation of C , rather than explicitly

also simulating the formation of C molecules that are destined to dissociate into

E and S molecules. Therefore, the PPTA can accelerate the stochastic simulations
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of Reaction 4.5, especially when k−1 � k2 where the reduction in each |Ti| by this

new approach is substantial.

Let us first consider the special case where the total molecular count of the

enzyme is 1 (i.e., Etot = 1), and describe the derivation of the PPTA model.

This section then extends this special case to more general cases where the total

molecular count of the enzyme is greater than 1 (i.e., Etot > 1).

When Etot is 1, the enzyme state for all t ≥ 0 is defined by |E | (t) = 1− |C | (t).
Also, r1 is only enabled when E is active (i.e., |E | (t) = 1), and r−1 and r2 are

only enabled when C is active (i.e., |C | (t) = 1). In this case, X(t) can be seen as

a temporal-homogeneous birth-death Markov process Y(t) with 2Stot + 1 states as

shown in Figure 4.5. Each state σ ∈ [0, 2Stot] of Y(t) can then be mapped onto a

system state xσ of X(t) by the relationship:

xσ ≡
(

(σ + 1) mod 2, Stot −
⌈σ

2

⌉

, σ mod 2,
⌊σ

2

⌋)

. (4.18)

Thus, if Stot is 100, for example, there are 201 states in this process, and state

11 represents the vector x11 = (0, 94, 1, 5). For all t > t0, the probability that

Y(t) = σ given that Y(t0) = 0 is the same as the probability that X(t) = xσ

given that X(t) = xt0 , and with the initial condition X(t0) = xt0 , each simulation

run of Y(t) starts in state 0, and eventually ends up in state 2Stot. Since E is

active only in even numbered states in this process, r1 can fire only in these states

except in state 2Stot. Similarly, C is active only in odd numbered states, so r−1

ONMLHIJK0
λ0 ++ONMLHIJK1

λ1 //
µ1

kk ONMLHIJK2
λ2 ++ · · · λn−3 //
µ3

kk WVUTPQRSn− 2
λn−2 -- WVUTPQRSn− 1

λn−1 //
µn−1

mm
ONMLHIJKn

Figure 4.5. The state graph of the birth-death process of Reaction 4.5 when
Etot = 1. This birth-death process has n + 1 states where n = 2Stot, and
each state σ can be mapped onto a system state of X(t) by the relationship
xσ ≡ ((σ + 1) mod 2, Stot − dσ/2e, σ mod 2, bσ/2c). Transition rate λσ is a1(xσ)
if σ is an even number, and a2(xσ) if σ is an odd number. Transition rate µσ is
a−1(xσ) if σ is an odd number and 0 otherwise.
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and r2 can fire in these states. Thus, let Σe be a set of even numbered states

{2m | 0 ≤ m ≤ Stot}, Σe′ be a set of states Σe \ {2Stot}, and Σo be a set of odd

numbered states {2m + 1 | 0 ≤ m < Stot}. Then, the σ → σ + 1 transition rate λσ

becomes:

λσ =

{

a1(xσ) if σ ∈ Σe′ ,

a2(xσ) if σ ∈ Σo,
(4.19)

whereas the σ → σ − 1 transition rate µσ becomes:

µσ =

{

a−1(xσ) if σ ∈ Σo,

0 if σ ∈ Σe.
(4.20)

Suppose Y(t) starts in state σ0 where σ0 ∈ Σe′ . Then, the average waiting time

that Y(t) spends in states σ0 and σ0 + 1 for each simulation run is equivalent to

t(σ0; σ0 → σ0 + 2) and t(σ0 + 1; σ0 → σ0 + 2), respectively, where t(σj ; σi → σk) is

the mean time that Y(t) spends in state σj in the course of a (first) passage from

σi to σk. In other words, using the variable t(σj ; σi → σk),

t(σ0; σ0 → σ0 + 2) ≡ t(σ0; 0→ 2Stot), (4.21)

t(σ0 + 1; σ0 → σ0 + 2) ≡ t(σ0 + 1; 0→ 2Stot), (4.22)

since the transitions: σ0 → σ0 − 1 and σ0 + 2 → σ0 + 1 are not allowed in Y(t).

To find out the mean waiting times in states σ0 and σ0 + 1 using the pedestrian

approach [54], then, variables: v(σ) and v+(σ) are defined. The variable v(σ) is

defined as the average number of visits by Y(t) to state σ in the course of a first

passage from state 0 to state 2Stot while v+(σ) is defined as the average number of

transitions σ → σ + 1 taken by Y(t) in the course of a first passage from state 0 to

state 2Stot. Using these variables, the probability that Y(t) moves to state σ0 + 2

from state σ0 + 1 at the very next jump can be expressed as v+(σ0 + 1)/v(σ0 + 1).

Since this probability can also be expressed as λσ0+1/(λσ0+1 + µσ0+1), and since

v+(σ0 + 1) is 1, the following equation holds:

v(σ0 + 1) =
(λσ0+1 + µσ0+1)

λσ0+1
. (4.23)
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Because state σ0 +1 can only be visited from state σ0 in Y(t), v+(σ0) must be equal

to v(σ0 +1). Furthermore, since the transition from state σ0 to state σ0− 1 cannot

occur in Y(t), v(σ0) must be equivalent to v(σ0 + 1). Therefore,

v(σ0) =
(λσ0+1 + µσ0+1)

λσ0+1

. (4.24)

Now, let T (σ) be a random variable which represents the pausing time in state σ

in Y(t). Then, since Y(t) is a temporally homogeneous birth-death Markov process,

T (σ) must be a random variable which is necessarily exponentially distributed with

parameter (λσ + µσ). Then, the mean pausing times in states σ0 and σ0 + 1 can be

expressed, respectively, as:

〈T (σ0)〉 =

∫ ∞

0

tλσ0 exp(−λσ0t)dt =
1

λσ0

, (4.25)

〈T (σ0 + 1)〉 =

∫ ∞

0

t (λσ0+1 + µσ0+1) exp (− (λσ0+1 + µσ0+1) t) dt

=
1

λσ0+1 + µσ0+1

.

(4.26)

Since t(σj ; σi → σk) can be formulated as the product of 〈T (σj)〉 and v(σj), the

mean waiting times that Y(t) spends in states σ0 and σ0 + 1 can be expressed as:

t(σ0; 0→ 2Stot) =
λs0+1 + µσ0+1

λσ0+1λσ0

=
a2(xσ0+1) + a−1(xσ0+1)

a2(xσ0+1)a1(xσ0
)

, (4.27)

t(σ0 + 1; 0→ 2Stot) =
1

λσ0+1
=

1

a2(xσ0+1)
. (4.28)

Using this information, Y(t) can be approximated by creating a temporally

homogeneous birth Markov process Y′(t) with the same state space where the

mean waiting time in each state σ is t(σ; 0→ 2Stot) derived from Y(t). Figure 4.6

shows the state graph of Y′(t). Since the waiting time in each state σ in Y′(t)

is exponentially distributed, the σ → σ + 1 transition rate λ′
σ is the reciprocal of

t(σ; 0→ 2Stot). Thus, λ′
σ is a1(xσ)a2(xσ+1)/(a−1(xσ+1) + a2(xσ+1)) if σ ∈ Σo and

a2(xσ) if σ ∈ Σe′ . Therefore, using the PPTA, Reaction 4.5 with Etot being 1 is

approximated by a new reaction scheme:

E + S
k1′−→ C

k2−→ E + P (4.29)

where k1′ = k1k2/(k−1 + k2).
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ONMLHIJK0
λ′
0 //ONMLHIJK1

λ′
1 //ONMLHIJK2

λ′
2 // · · · λ′

n−3 // WVUTPQRSn− 2
λ′

n−2 // WVUTPQRSn− 1
λ′

n−1 //ONMLHIJKn

Figure 4.6. The state graph of the pure birth process of the PPTA model when
Etot = 1. This birth process has the same state space as the birth-death process in
Figure 4.5.

When Etot > 1, Reaction 4.5 is considered as a set of enzymatic reactions as

follows:

Ei + S
k1

�
k−1

Ci
k2−→ Ei + P , 1 ≤ i ≤ Etot (4.30)

where |Ei | (t0) = 1 and |Ci | (t0) = 0 for each i. Although simulations of this process

are definitely slower than that of X(t), this transformation itself does not require

any approximation since k1 |E | |S | ≡
∑Etot

i=1 k1 |Ei | |S |, k−1 |C | ≡
∑Etot

i=1 k−1 |Ci |, and

k2 |C | ≡
∑Etot

i=1 k2 |Ci |. Thus, by applying the PPTA to each of the transformed

enzymatic reactions, Reaction 4.5 can be approximated by

Ei + S
k1′−→ Ci

k2−→ Ei + P , 1 ≤ i ≤ Etot, (4.31)

which can now be represented using Reaction 4.29. This implies that the accuracy

of the PPTA for the Etot > 1 case is based on that of the PPTA of the Etot = 1

case, and that the PPTA model provides the most accurate results if Etot = 1.

The two parameters in a PPTA model: k1′ and k2 can be derived from KM , and

Vmax as follows:

k1′ =
Vmax

KMetot

and k2 =
Vmax

etot

. (4.32)

Unlike the parameters k1 and k−1, the parameters KM and Vmax can actually be

measured experimentally. Thus, a PPTA model can be constructed and simulated

even when full knowledge of the underlying enzymatic reaction is not available and

the enzymatic reaction cannot be analyzed quantitatively at that level of detail.

This is also true for a QSSA model as its MM form only requires KM and Vmax

parameters; however, since a PPTA model does not assume that the intermediate
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species is in quasi-steady state, a PPTA model may perform better than a QSSA

model in terms of accuracy, especially in the pre-steady state phase.

Figure 4.7 shows a graphical representation of the PPTA model of the com-

petitive enzymatic reaction shown in Figure 4.3 to illustrate the application of the

PPTA. By applying the extended form of the PPTA to this competitive enzymatic

reaction, the reactions to break up complexes C1 and C2 are removed and the two

complex formation reactions are approximated.

Figure 4.8 shows the algorithm to perform the PPTA on bimolecular enzymatic

reactions. First, Algorithm 4.4.1 considers each species, s , as a potential enzyme

(line 1). Each species is checked using Algorithm 4.4.2, and if Algorithm 4.4.2

terminates successfully (i.e., returns a nonempty set of configurations, C), then

Algorithm 4.4.3 is called to apply the transformation to the REB model (lines 2-3).

Algorithm 4.4.1 ends by returning a new model M (line 5). Algorithm 4.4.2 first

checks to see if s is an interesting species or does not occur as a reactant in any
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Figure 4.7. Production-passage-time approximation of a competitive enzymatic
reaction.
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Algorithm 4.4.1 PPTA for bimolecular enzymatic reactions
Model PPTAMethod(Model M)

1: for all s ∈ S do

2: C← PPTAConditionSatisfied(M,s)
3: if C 6= ∅ then M ← PPTATransform(M,s,C)
4: end for

5: return M

Algorithm 4.4.2 Check the pattern for PPTA
Configs PPTAConditionSatisfied(Model M, Species s)

1: C← ∅
2: if (s ∈ Si) ∨ (|Rr

s| = 0) then return ∅
3: for all r ∈ Rr

s do

4: if (r 6∈ Rrev) ∨ (|Sr
r| 6= 2) ∨ (K(r) 6= “k1 |s| |s1 | − k−1 |sc | ”) then return ∅

5: if (|sc|0 6= 0) ∨ (sc ∈ Si) then return ∅
6: if (|Rr

sc
| 6= 1) ∨ (|Rm

sc
| 6= 0) ∨ (Rp

sc | 6= 1) then return ∅
7: {rp} ← Rr

sc

8: if (rp ∈ Rrev) ∨ (|Sr
rp
| 6= 1) ∨ (|Sm

rp
| 6= 0) then return ∅

9: if (s /∈ S
p
r2) ∨ (|Sp

rp | 6∈ {1, 2}) ∨ (K(rp) 6= “k2 |sc | ”) then return ∅
10: C← C ∪ {(s1, k1k2/(k−1 + k2), r)}
11: end for

12: return C

Algorithm 4.4.3 Perform the PPTA model transformation
Model PPTATransform(Model M, Species s, Configs C)

1: for all (s1, k1′ , r) ∈ C do

2: Rrev ← Rrev \ {r}
3: K(r)← k1′ |s| |s1 |
4: end for

5: return M

Figure 4.8. Algorithms to perform production-passage-time approximation for
bimolecular enzymatic reactions.

reaction; then s is not considered further (line 2). Otherwise, each reaction, r , in

which s is a reactant is considered in turn. If r is not reversible, does not have two

reactants, or does not have a rate law of the right form (i.e., k1 |s| |s1 | − k−1 |sc|),
then again s is not considered further (line 4). Reaction r combines s and s1 into a

complex sc. If the initial molecule count of this complex is not 0, sc is an interesting

species, sc does not occur as a reactant or product in exactly one reaction, or occurs
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as a modifier in any, then again this approximation is terminated for s (lines 5-6).

The reaction rp converts sc into a product and releases the enzyme s . If this reaction

is reversible, does not have exactly one reactant and no modifiers, does not have s

as a product, has more than two products, or does not have a rate law of the form,

k2 |sc|, then s is not considered further (lines 7-9). For each reaction, a configuration

is formed that includes the substrate s1 , complex sc, constant k1k2/(k−1 + k2),

complex forming reaction r , and product forming reaction rp (line 10). After the

successful loop of complex formation reaction, it returns the set of configurations

C (line 12). Algorithm 4.4.3 loops through the set of configurations to modify

the complex formation reactions. For each configuration (s1 , sc, k1′, r), it removes

reaction r from the set of reversible reactions, and changes the kinetic law of r

according to the PPTA (lines 1-4). It then returns the new model M (line 5).

4.5 Operator Site Reduction

REB models of genetic networks generally include multiple operator sites which

transcription factors may occupy. It is often the case that the rates at which

transcription factors bind and unbind to these operator sites are rapid with respect

to the rate of open complex formation (i.e., initiation of transcription). It is also

typically the case that the number of operator sites is much smaller than the

number of RNA polymerase (RNAP) and transcription factor molecules. Therefore,

a method similar to the QSSA and the rapid equilibrium approximation called

operator site reduction can be used to systematically merge reactions and remove

operator sites and their complexes from REB models. Note that this method may

also be applicable to other molecular scaffolding systems such as those found in

signal transduction networks.

The first step in this transformation is to identify operators within the REB

model. This is done by assuming that an operator is a species small in number that

is neither produced nor degraded. Suppose our algorithm has identified an operator

O, and there are N + 1 configurations in which transcription factors and RNAP

can bind to it. Let Oi, Ki, and Xi with i ∈ [1, N ], be the i-th bound complex
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of the operator O, the equilibrium constant for forming this configuration—which

is the ratio of the forward rate constant and the backward rate constant—and

the product of the states of the substrates for each component of the complex

in this configuration, respectively. Let O0 be the operator in free form (i.e., not

bound to anything). Let Ci with i ∈ [0, N ] be each of the operator configurations.

Then, assuming rapid equilibrium, the probability of this operator being in each

configuration is:

Pr(Ci) =

{

1
Z

if i = 0
Ki·Xi

Z
if 1 ≤ i ≤ N

where Z = 1 +
∑N

j=1 Kj ·Xj. This probability is the same as the equilibrium

statistical thermodynamic model when Ki = exp(∆Gi/RT ) where ∆Gi is the

relative free energies for the i-th configuration, R is the gas constant, and T is

the absolute temperature [7]. Assuming that Otot = |O0 |0, then |Oi | = Pr(Ci)Otot

is the fraction of operators in the i-th configuration.

Figure 4.9(a) shows the graphical representation of a detailed REB model which

describes transcriptional gene regulation to produce protein P based on the con-

figurations of operator site O bindings. The top three reversible reactions involve

the binding of RNAP , an activator A, and repressor R to O while the bottom

two irreversible reactions result in the production of n molecules of the protein P .

In this example, there are 4 configurations of the operator, namely, O , Ca , Cb ,

and Cr . This network has eight species and eight irreversible reactions. Assuming

that the operator-binding and unbinding rates are much faster than those of open

complex formation, our method can apply operator site reduction. Figure 4.9(b) is

the result of applying this abstraction method to Figure 4.9(a). The result has only

three species and two reactions. The transformed model represents the probability

of O being in a configuration that results in production of P instead of modeling

every binding and unbinding of transcription factors and RNAP to the promoter

precisely.

The algorithms shown in Figure 4.10 implement operator site reduction. First,

Algorithm 4.5.1 considers each species, s , as a potential operator site. Each species
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Figure 4.9. Operator site reduction: (a) original model and (b) abstracted model.
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Algorithm 4.5.1 Operator site reduction
Model OpSiteReduction(Model M)

1: for all s ∈ S do

2: C← OpSiteConditionSatisfied(M, s)
3: if C 6= ∅ then M ← OpSiteT ransform(M, s ,C)
4: end for

5: return M

Algorithm 4.5.2 Check the conditions for operator site reduction
Configs OpSiteConditionSatisfied(Model M, Species s)

1: C← ∅
2: if |s |0 > maxOperatorThreshold then return ∅
3: if (s ∈ Si) ∨ (|Rp

s | 6= 0) then return ∅
4: for all r1 ∈ Rr

s do

5: if (r1 6∈ Rrev) ∨ (|Sr
r1
| < 2) ∨ (|Sp

r1
| 6= 1) then return ∅

6: if (K(r1) 6= “kf

∏

s′∈Sr
r1

|s ′|E(s′,r1) − kr |sc |”) then return ∅
7: if (sc ∈ Si) ∨ (|Rp

sc
| 6= 1) ∨ (|Rr

sc
| 6= 0) then return ∅

8: for all r2 ∈ Rm
sc

do

9: if (|Sr
r2
| 6= 0) ∨ (|Sm

r2
| 6= 1) ∨ (|Sp

r2
| 6= 1) ∨ (K(r2) 6= k2 |sc |) then return ∅

10: end for

11: e← (kf/kr)
∏

s′∈(Sr
r1

\{s}) |s ′|
E(s′,r1 )

12: C← C ∪ {(sc, e, r1 )}
13: end for

14: return C

Algorithm 4.5.3 Perform transformation for operator site reduction
Model OpSiteTransform(Model M, Species s, Configs C)

1: Exp Z ← 1
2: L1 ← ∅, L2 ← ∅
3: for all (sc, e, r1 ) ∈ C do

4: Z ← Z + e
5: L1 ← L1 ∪ Sr

r1
, L2 ← L2 ∪ {r1}

6: end for

7: for all (sc, e, r1 ) ∈ C do

8: for all r2 ∈ Rm
sc

with K(r2) = k2 |sc | do
9: ∀m ∈ L1. M ← addModifier(M,m, r2 , maxr∈L2

(E(m, r)))
10: K(r2)← (k2 ∗ |s |0 ∗ e)/Z
11: end for

12: end for

13: ∀(sc , e, r1 ) ∈ C. M ← removeReaction(M, r1 )
14: ∀(sc , e, r1 ) ∈ C. M ← removeSpecies(M, sc)
15: M ← removeSpecies(M, s)
16: return M

Figure 4.10. Algorithms for operator site reduction.
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is checked using Algorithm 4.5.2. First, it is assumed that the molecule count of

operator sites is small, so if s has an initial molecule count greater than a given

threshold, then it is assumed not to be an operator site (line 2). Next, if s is an

interesting species or occurs as a product in any reaction, then s is not considered

further (line 3). Otherwise, each reaction, r1 , in which s is a reactant is considered

in turn. If r1 is not reversible, has less than two reactants, does not have exactly

one product, or does not have a rate law of the right form, then again s is not

considered further (lines 5-6). Each reaction, r1 , combines the potential operator

site, s , with RNAP and/or transcription factors forming a complex, sc. If sc is an

interesting species, sc does not occur as a product in exactly one reaction, or occurs

as a reactant in any, then again this approximation is terminated for s (line 7). The

species sc may appear as a modifier in any number of reactions that result in the

transcription and translation of proteins. Each of these reactions, r2 , is checked

that it has no reactants, only one modifier, only one product, and a rate law of the

right form (lines 8-10). For each complex, sc, a configuration is formed that includes

the complex sc, an equilibrium expression for this configuration, and the complex

forming reaction r1 (lines 11-12). If Algorithm 4.5.2 terminates successfully, then

Algorithm 4.5.3 is called to apply the transformation to the REB model. This

algorithm is very similar to the one for the QSSA. Again, it loops through the set

of configurations to form an expression that is used in the denominator in each

new rate law as well as forming lists of all the transcription factors that bind to

the operator site s and all the binding reactions (lines 1-6). Next, it considers each

configuration, (sc, e, r1 ). For each reaction r2 in which sc appears as a modifier,

it adds all the transcription factors as modifiers and creates a new rate law for r2

(lines 8-12). It then removes all the reactions r1 and species sc in the configuration

from the model (lines 13 and 14). Finally, at the end, this algorithm removes the

operator site, s (line 15).
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4.6 Dimerization Reduction

Dimerization is another type of reaction that often involves only regulatory

molecules and could thus frequently proceed very rapidly compared to the rate of

transcription initiation. Therefore, it might also be useful to abstract away these

reactions whenever possible by using a version of rapid-equilibrium constraints. Let

us consider a reversible reaction that forms a dimer sd from two molecules of species

sm as shown in Figure 4.11. Then, the dimerization reduction method is used to

remove this fast reaction and to express dimer and monomer forms of species in

terms of a state variable |st | which represents the total number/concentration of the

monomer molecules. Thus, the relationship of |st |, |sm |, and |sd | can be specified

as:

|st | = |sm |+ 2 |sd | . (4.33)

In a deterministic process, the dimerization reduction can be achieved by as-

suming that the forward and backward reactions are in equilibrium and the net

change of |sm | and |sd | becomes zero. Thus, by assuming that |sm | and |sd | are in

steady state, the equation:

smOO

2r
��

k+ |sm |2 − k− |sd |OO
p

��
sd

Figure 4.11. Dimerization reaction which forms a dimer sd from two molecules of
species sm . Constants k+ and k− are the forward rate constant and the backward
rate constant of the dimerization reaction, respectively.
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|sd | = Ke|sm |2 (4.34)

where Ke is the equilibrium constant for dimerization (i.e., Ke = k+/k−) can be

established. Using Equations 4.33 and 4.34, the following equation can be derived:

Ke|st |2 − (4Ke |st |+ 1) |sd |+ 4Ke|sd |2 = 0. (4.35)

Solving Equation 4.35, |sm | and |sd | can be expressed in terms of |st | as follows:

|sm | =
1

4Ke

(

√

8Ke |st |+ 1− 1
)

, (4.36)

|sd | =
|st |
2
− 1

8Ke

(

√

8Ke |st |+ 1− 1
)

. (4.37)

In a stochastic process, a stricter requirement of the SCK demands that the

propensity function of the forward reaction be k+ |sm | (|sm | − 1). By assuming that

|sm | is practically always greater than 1, however, this can be commonly approx-

imated as k+ |sm |2 as shown in Figure 4.11. The derivation of the dimerization

reduction in a SCK model begins with replacing |sm | and |sd | with their means,

〈|sm |〉 and 〈|sd |〉, respectively. Thus, Equation 4.33 for the conservation relationship

can be adapted for |st |, 〈|sm |〉, and 〈|sd |〉 becomes:

|st | = 〈|sm |〉+ 2〈|sd |〉. (4.38)

Also, the time derivative equation of 〈|sd |〉 is obtained as follows:

d〈|sd |〉
dt

= k+〈|sm |2〉 − k−〈|sd |〉. (4.39)

Now, since the time scale of the dimerization reaction is typically much faster than

that of other reactions which change the states of sm and sd , in the time scale

of the slow reactions, 〈|sm |〉 and 〈|sd |〉 rapidly moves to a stationary state where

d〈|sd |〉
dt

becomes zero. Thus, by letting 〈|sm |∞〉 and 〈|sd |∞〉 be the stationary states

of 〈|sm |〉 and 〈|sd |〉, respectively, a quadratic equation of 〈|sd |〉 can be obtained as

follows:

Ke|st |2 − (4Ke |st |+ 1)〈|sd |∞〉+ 4Ke〈|sd |∞
2〉 = 0. (4.40)
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In order to obtain an approximate solution of 〈|sd |∞〉 from Equation 4.40, mean of

|sd |∞
2 is approximated by the square of 〈|sd |∞〉 (i.e., 〈|sd |∞

2〉 ≈ 〈|sd |∞〉2), which

gives

Ke|st |2 − (4Ke |st |+ 1)〈|sd |∞〉+ 4Ke〈|sd |∞〉2 = 0. (4.41)

This can be justified on the grounds for large |st | where the standard deviation of

|sd | is very small compared with its average. Therefore, by solving Equation 4.41,

〈|sm |∞〉 and 〈|sd |∞〉 are expressed in terms of |st | in the same way as the approximate

CCK model.

As an example, consider a REB model including a dimerization reaction of

species A shown in Figure 4.12(a). This species can only effectively degrade in the

monomer form (reaction r1), but it is transcriptionally active (reactions r3 and r4)

A ii

2r

))SSSSSSSSSSSSSSSS

r

wwnnnnnnnnnnnnnn

r1: kd·|A| r2: k+·|A|2−k−·|A2 |OO
p

��
A2

m

kkkkkkkkkkkkkkkk

m

SSSSSSSSSSSSSSSS

r3: f3(··· ,|A2 |,··· ) r4: f4(··· ,|A2 |,··· )

(a)

r1′ : kd·
1

4Ke

(√
8Ke|At |+1−1

)

At
roo

2m

kkkkkkkkkkkkkkkkkk

2m

SSSSSSSSSSSSSSSSSS

r3′ : f3(··· ,
|At |
2

− 1
8Ke

(√
8Ke|At |+1−1

)

,··· ) r4′ : f4(··· ,
|At |
2

− 1
8Ke

(√
8Ke|At |+1−1

)

,··· )

(b)

Figure 4.12. Dimerization reduction: (a) original model, and (b) abstracted
model.
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only as |A2 |, its dimer form, (reaction r2). Using Equations 4.36 and 4.37, the

reactions r1, r3, and r4 can be transformed to r1′, r3′ , and r4′, respectively, with

kinetic laws that are now all expressed in terms of |At |, the total amount of A,

as shown in Figure 4.12(b). Note that the dimerization reaction r2 is eliminated

completely.

The algorithm to perform dimerization reduction is shown in Figure 4.13. First,

Algorithm 4.6.1 is used to identify a dimerization reaction. It checks each reversible

reaction, r, using Algorithm 4.6.2. A dimerization reaction must include exactly

one reactant, one product, and no modifiers (line 1). It must also have a rate law of

the right form (line 2). The dimerization reduction also requires that the monomer

is never used as a modifier, and that there is only one reaction (this one) which

consumes two molecules of the monomer and produces one molecule of the dimer

(lines 3-5). If these conditions are met, a record is made of the monomer species sm,

dimer species sd, and equilibrium constant k+/k− (line 6). The transformation is

performed by Algorithm 4.6.3. First, a new species st is introduced into the model

with an initial concentration |sm |0 + 2|sd |0 (lines 1-2). Next, sm is replaced by st in

each reaction in which sm is a reactant, and the rate law is updated as described

in Equation 4.36 (lines 3-6). The dimer sd is also replaced with st in the reactions

in which it appears as a reactant or modifier, and the rate law is updated using

Equation 4.37 (lines 7-11). Finally, the species sm, the species sd, and reaction r

are all removed from the model (lines 12-14).

4.7 Modifier Constant Propagation

In order to increase the understandability of a REB model as well as the

efficiency of its temporal behavior analysis, it is essential to remove all unimportant

species that do not contribute to the dynamics of a system. To systematically

inspect and remove species whose states are statically known to stay unchanged

in simulation, this section develops an abstraction method called modifier constant

propagation. Modifier constant propagation traverses a REB model, and finds a

species s which is only used as a modifier. It then substitutes a constant |s|0 for
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Algorithm 4.6.1 Dimerization reduction
Model DimerReduction(Model M)

1: for all r ∈ Rrev do

2: C ← DimerConditionSatisfied(M, r)
3: if C 6= nil then M ← DimerTransform(M, r,C)
4: end for

5: return M

Algorithm 4.6.2 Check the conditions for the dimerization reduction
Record DimerConditionSatisfied(Model M, Reaction r)

1: if (|Sr
r| 6= 1) ∨ (|Sp

r | 6= 1) ∨ (|Sm
r | 6= 0) then return nil

2: if (K(r) 6= “k+ |sm |2 − k− |sd | ”) then return nil

3: {sm} ← Sr
r, {sd} ← S

p
r

4: if (E(sm, r) 6= 2) ∨ (E(r, sd) 6= 1) then return nil

5: if (|Rm
sm
| 6= 0) ∨ (|Rp

sd | 6= 1) then return nil

6: return 〈sm, sd, k+/k−〉

Algorithm 4.6.3 Perform the dimerization reduction transformation
Model DimerTransform(Model M, Reaction r, Record 〈sm, sd,Ke〉)
1: M ← addSpecies(M,st)
2: |st |0 ← |sm |0 + 2|sd |0
3: for all r ′ ∈ Rr

sm
do

4: M ← addReactant(M,st, r
′,E(sm, r′))

5: replace |sm | with 1
4Ke

(

√

8Ke |st |+ 1− 1
)

in K(r′)

6: end for

7: for all ∀r′ ∈ (Rr
sd
∪Rm

sd
) do

8: if r′ ∈ Rr
sd

then M ← addReactant(M,st, r
′, 2E(sd, r

′))
9: if r′ ∈ Rm

sd
then M ← addModifier(M,st, r

′, 2E(sd, r
′))

10: replace |sd | with |st |
2 − 1

8Ke

(

√

8Ke |st |+ 1− 1
)

in K(r′)

11: end for

12: M ← removeSpecies(M, sm )
13: M ← removeSpecies(M, sd )
14: M ← removeReaction(M, r)
15: return M

Figure 4.13. Algorithm to perform dimerization reduction.
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|s| in kinetic law expressions of the reactions that use s as a modifier. Therefore,

since |s| is no longer used to influence any kinetic laws, species s is safely removed

from a REB model by this method.

Figure 4.14 illustrates an application of modifier constant propagation. In a

REB model shown in Figure 4.14(a), species s1 is used as a modifier in reactions

r1 and r2 . And unlike the other three species in this REB model, species s1 is not

used as a reactant or a product. Thus, by applying modifier constant propagation,

this REB model can be transformed to a REB model shown in Figure 4.14(b).

Even when modifier constant propagation cannot reduce the structure of a

detailed REB model, it may be used in combination with other abstraction methods

to further reduce the complex of an abstracted REB model. For example, as

s1

m
m

PPPPPPPPPPPPP s2

m

��

r

((PPPPPPPPPPPPP

r1: f1(|s1 |)

p

��

r2: f2(|s1 |,|s2 |)

p

��

r3: f3(|s2 |)

s3 s4

(a)

s2

m

��

r

((PPPPPPPPPPPPP

r1: f1(|s1 |0)

p

��

r2: f2(|s1 |0,|s2 |)

p

��

r3: f3(|s2 |)

s3 s4

(b)

Figure 4.14. Modifier constant propagation: (a) original model with s1 being used
only as a modifier and (b) abstracted model.
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Figure 4.15. A REB model after applying modifier constant propagation to a
REB model shown in Figure 4.9(b).

illustrated in a REB model in Figure 4.9(b), after applying operator site reduction,

it is often the case that RNAP is only used as a modifier. Thus, by applying

modifier constant propagation, |RNAP | can be replaced with a constant RNAPtot

where RNAPtot = |RNAP |0. Therefore, as shown in Figure 4.15, a REB model

in Figure 4.9(b) can be reduced to three species and two reactions as a result of

modifier constant propagation.

The algorithm shown in Figure 4.16 implements modifier constant propagation.

Algorithm 4.7.1 first iterates on every species s such that species s is not used as

a reactant nor a product in any reaction (line 1). For each s , the kinetic laws for

reactions that use s as a modifier to replace |s| with a constant whose value is set

as |s|0, and species s is removed from the model (lines 2-3).

Algorithm 4.7.1 Modifier constant propagation
Model ModConstProp(Model M)

1: for all s ∈ {s ′|(Rr
s′ = ∅) ∧ (Rp

s′
= ∅)} do

2: ∀r ∈ Rm
s . replace |s| with a constant whose value is |s|0 in K(r)

3: M ← removeSpecies(M, s)
4: end for

5: return M

Figure 4.16. Algorithm for modifier constant propagation.
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4.8 Similar Reaction Combination

A REB model may contain multiple reactions whose structures are very similar.

Thus, combining such reactions using another abstraction method called similar

reaction combination can improve the complexity of a REB model by reducing

the number of reactions in a REB model. It can also result in a reduction of the

computational costs for evaluating kinetic laws by reducing redundant kinetic law

expressions. In the context of genetic regulatory networks, an abstracted REB

model of transcriptional gene regulation often has protein synthesis mechanisms at

a basal rate and enhanced or reduced rates due to transcription factors binding

to operator sites. These mechanisms can be represented in structurally similar

reactions whose kinetic laws typically contain redundant expressions. Thus, with

this method, such protein synthesis mechanisms can be combined into one reaction

with a computationally much less expensive kinetic law expression.

Similar reaction combination transforms a REB model by first searching for

structurally similar reactions and replaces them with one reaction. Here, reactions

r1 and r2 are defined to be structurally similar if reactions r1 and r2 have the same

reactants, products, and modifiers with the same stoichiometries. In other words,

if the condition:

∀s ∈ S. E(s , r1 ) = E(s , r2 ) ∧ E(r1 , s) = E(r2 , s) (4.42)

is satisfied, then reactions r1 and r2 are structurally similar. An implication of

Condition 4.42 being satisfied is that firings of both reactions r1 and reaction r2

are guaranteed to result in the same state transition of a REB model. Thus, these

reactions can be combined to introduce a new reaction rc such that

∀s ∈ S. E(s , rc) = E(s , r1 ) ∧ E(rc, s) = E(r1 , s) (4.43)

K(rc) = K(r1) + K(r2). (4.44)

With Conditions 4.42 and 4.43, it is implied that

∀s ∈ S. E(rc, s)− E(s , rc) = E(r1 , s)−E(s , r1 ) = E(r2 , s)− E(s , r2 ). (4.45)
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Thus, with Conditions 4.44 and 4.45, the ODE model of the combined reactions

is identical to the original one. Hence, the similar reaction combination method

can be used without making any approximation in the continuous-deterministic

analysis case. In the case of SCK analysis via the SSA, suppose reactions r1 and

r2 are structurally similar. Then, from Condition 4.44, the probability that either

reaction r1 or reaction r2 is chosen to be the next reaction to fire becomes:

Prob(r1 or r2 ) =
K(r1)

∑

r∈R K(r)
+

K(r2)
∑

r∈R K(r)
=

K(rc)
∑

r∈R K(r)
. (4.46)

Thus, the probability of firing an event of the newly introduced reaction rc is

identical to the probability of firing an event of either reaction r1 or r2 . Similarly,

from Condition 4.44, the computation of the next reaction time τ in the direct

method of the SSA does not change before and after the reaction combination as the

sum of the propensity functions does not change. Furthermore, from Condition 4.45,

the state transitions via the combined reaction rc are the same as that of reactions

r1 and r2 . Therefore, this method itself does not make any approximation for the

SCK analysis as well.

To illustrate an application of similar reaction combination, Figure 4.17 shows a

REB model that is abstracted from the REB model in Figure 4.15 by using similar
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Figure 4.17. A REB model after applying similar reaction combination to a REB
model shown in Figure 4.15.
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reaction combination. In this reduced REB model, the two reactions to produce

n molecules of protein P are combined into one reaction. Since the kinetic laws

of the two reactions have the same denominator, the combined reaction is able to

simplify its kinetic law, making its evaluation faster than that of the two original

kinetic laws.

Figure 4.18 shows the algorithms to implement similar reaction combination for

irreversible reactions. Note that, though this algorithm only targets irreversible

reactions, it does not present a limitation in its applicability by first transforming

all reversible reactions to irreversible reactions using, for example, Algorithm 4.2.1.

Algorithm 4.8.1 loops over irreversible reactions. For each irreversible reaction r1 ,

if r1 has not been combined by another reaction, then each irreversible reaction r2

that is different from r1 and has not already been combined into another reaction

is examined to test if Condition 4.42 between reactions r1 and r2 is satisfied (lines

1-4). If reactions r1 and r2 can be combined, then the kinetic law of r1 is changed

by Algorithm 4.8.2 to reflect the kinetic law of the combined reaction, and r2 is

put into a set of combined reactions (lines 6-7). After the loop, all the substituted

reactions are removed from the model and the new model is returned (lines 12-13).

Algorithm 4.8.2 examines the structure of the kinetic law expressions e1 and e2,

and attempts to simplify the expression of the sum of e1 and e2. If e1 and e2 are

both division expressions and they have the common denominator ed, then their

numerators are combined using Algorithm 4.8.2 to form en and the expression en/ed

is returned (lines 1-3). If e1 and e2 are both multiplication expressions and they have

the common term ec, then their other terms are combined using Algorithm 4.8.2

to form es and the expression ec × es is returned (lines 4-6). If the structures of e1

and e2 do not satisfy these two cases, then the expression e1 + e2 is simply returned

(lines 7-9).

4.9 Stoichiometry Amplification

One approximation approach to lower the computational costs for stochastic

simulation is to advance the system and time faster. This can be achieved by
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Algorithm 4.8.1 Similar reaction combination
Model SimRxnComb( Model M )

1: L← ∅
2: for all r1 ∈ R \Rrev do

3: if r1 6∈ L then

4: for all r2 ∈ (R \Rrev) \ {r1} do

5: if (r2 6∈ L) ∧ (∀s ∈ S. E(s, r1 ) = E(s, r2 ) ∧E(r1 , s) = E(r2 , s)) then

6: K(r1)← CreateCombExpression(K(r1),K(r2))
7: L← L ∪ {r2}
8: end if

9: end for

10: end if

11: end for

12: ∀r ∈ L. M ← removeReaction(M, r)
13: return M

Algorithm 4.8.2 Create combined kinetic law expression
Exp CreateCombExpression( Exp e1, Exp e2 )

1: if ∃ e1n, e2n, ed. (e1 = “e1n / ed”) ∧ (e2 = “e2n / ed”) then

2: en ← CreateCombExpression(e1n, e2n)
3: return en / ed

4: else if ∃ e1s, e2s, ec. (e1 = “ec × e1s”) ∧ (e2 = “ec × e2s”) then

5: es ← CreateCombExpression(e1s, e2s)
6: return ec × es

7: else

8: return e1 + e2

9: end if

Figure 4.18. Algorithm to perform similar reaction combination for irreversible
reactions.
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applying an abstraction method called stoichiometry amplification which increases

E(r , s)−E(s , r) for each reaction r and its participant species s while reducing the

sum of the values of the propensity functions,
∑

r∈R K(r) [75]. The stoichiometry

amplification with amplification factor of n where n is an integer greater than one

transforms a REB model as follows. For each reaction r , K(r) is reduced by the

factor n, and the stoichiometries of each species s in reaction r , E(r , s) and E(s , r)

are amplified by the factor n. From this definition, this abstraction method does

not change the CCK model of a REB model since, for each species s ,

∑

r∈R

(E(r , s)− E(s , r))K(r) =
∑

r∈R

(nE(r , s)− nE(s , r))
K(r)

n
. (4.47)

In other words, the time derivative of each |s| is identical before and after the

application of stoichiometry amplification. Therefore, there is no good reason to

apply this abstraction method to a REB model in the case of the CCK analysis.

In the SCK analysis via the SSA, on the other hand, stoichiometry amplification

can significantly reduce the computational requirements. To show this, the applica-

tion of stoichiometry amplification is illustrated in Figure 4.19. Figure 4.19(a) shows

a reaction that converts one molecule of species s1 and two molecules of species s2

into one molecule of species s3 with the kinetic law f(|s1 | , |s2 |). By applying the

stoichiometry amplification with amplification factor of n, this reaction is abstracted

to the reaction shown in Figure 4.19(b) where n molecules of s1 and 2n molecules

of s2 are converted into n molecules of s3 with the kinetic law 1
n
f(|s1 | , |s2 |). This

implies that it only takes one reaction event for species s3 in the abstracted model

to transition to the state |s3 |0 + n from |s3 |0 while the same transition requires n

reaction events in the original model in the SCK analysis via the SSA, provided

that |s1 |0 ≥ n and |s1 |0 ≥ 2n. Hence, on average, the application of stoichiometry

amplification with amplification factor n can give the stochastic simulation of an

abstracted model as much as n-times speedup compared with the simulation of

its original model by reducing the number of the kinetic law evaluations n times.

Furthermore, the stoichiometry amplification can be used to help reduce the state

space of the system [75].
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Figure 4.19. Stoichiometry amplification: (a) original model and (b) abstracted
model.

For the analysis of the mean temporal behavior, the application of this abstrac-

tion method is mathematically justified when the change in the value of each kinetic

law via the amplification is not significant. For example, in the reaction model in

Figure 4.19(a), suppose the system is in a state where |s1 | = σ1, |s2 | = σ2, and

|s3 | = σ3. Then, since the next reaction time is exponentially distributed in the

SCK model, by letting T (s ; n1 → n2) be the random variable describing the time

for species s to transition from state n1 to state n2, the average time for species s3

to transition from σ3 to σ3 + n can be specified by
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〈T (s3 ; σ3 → σ3 + n)〉 =

n−1
∑

i=0

1

f(σ1 − i, σ2 − 2i)
. (4.48)

Here, if the value of f(σ1, σ2) is very close to that of f(σ1− i, σ2−2i) for any i from

1 to n− 1, f(σ1, σ2) can be safely substituted for f(σ1 − i, σ2 − 2i). Consequently,

the average of T (s3 ; σ3 → σ3 + n) can be well approximated as:

〈T (s3 ; σ3 → σ3 + n)〉 ≈
n−1
∑

i=0

1

f(σ1, σ2)
=

n

f(σ1, σ2)
. (4.49)

Therefore, using the propensity function that is reciprocal of the approximate

〈T (s3 ; |s3 | → |s3 |+ n)〉 as obtained via the stoichiometry amplification with ampli-

fication factor n, the mean time evolution of the reaction model in Figure 4.19(a)

can be well approximated by that in Figure 4.19(b).

The algorithm to apply stoichiometry amplification to all the reactions in a

REB model is shown in Figure 4.20. Algorithm 4.9.1 first obtains the amplification

factor n (line 1). It then loops over the reactions to transform the REB model. For

each reaction r , it reduces the kinetic law expression of reaction r by the factor

n, and the stoichiometry of each species in reaction r is amplified by the factor n

(lines 2-8). Finally, it returns the updated model (line 9).

Algorithm 4.9.1 Stoichiometry amplification
Model StoichAmp( Model M )

1: let n be the amplification factor
2: for all r ∈ R do

3: K(r)← K(r)/n
4: for all s ∈ S do

5: E(r , s)← nE(r , s)
6: E(s, r)← nE(s, r)
7: end for

8: end for

9: return M

Figure 4.20. Algorithm to perform stoichiometry amplification to all the reactions.
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4.10 Irrelevant Node Elimination

In a large system, there may be species that do not have significant influence on

the species of interest, Si. This is especially true when a computational model of a

biological system is automatically generated from its experimental data, whereby,

unlike species in hand-crafted pathway-specific models, some species may appear

to be uncoupled. Even when all the species in the original model are coupled, after

applying abstractions, a species may no longer influence the species of interest. In

such cases, computational performance can be gained by removing such irrelevant

species and reactions. Irrelevant node elimination performs a reachability analysis

on the REB model and detects nodes that do not influence the species in Si. For

example, in Figure 4.21(a), s6 is the only species in Si. Therefore, the production
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Figure 4.21. Irrelevant node elimination: (a) original model and (b) after
reduction.
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and degradation reactions of s6, r3 and r2, must be relevant. The reaction r3 uses

s3 as a reactant and s2 as a modifier, so these species are relevant too. Since s2 is

relevant, the degradation reaction of s2, r1, is also relevant. This reaction uses s1 as

a modifier, so s1 is relevant. Using these deductions, irrelevant nodes elimination

results in the reduced model shown in Figure 4.21(b).

Whereas the irrelevant node elimination guarantees that all the removed nodes

are irrelevant to the species in Si by statically analyzing the structure of the model,

there may still be nodes in the transformed model that can be safely removed

without any significant effect on the model. In such cases, a more extensive and

expensive dynamic analysis such as sensitivity analysis [35, 59] can be applied to

further reduce the model complexity.

Figure 4.22 shows algorithms for irrelevant node elimination. Algorithm 4.10.1

is only concerned with the case where interesting species are specified by the user.

Thus, it first checks whether or not Si is empty (line 1). The algorithm initializes

the set of irrelevant nodes, V, to contain all the species and reactions (line 2). For

each interesting species, s , it then removes from V the relevant nodes by calling

Algorithm 4.10.2 (lines 3-5). Finally, it removes irrelevant species and reactions

from the model and returns the new model (lines 6-8). Algorithm 4.10.2 considers

species s if it is still in V (i.e., if s is still considered as an irrelevant species) (line

1). It first removes s from V (line 2). Then, for each reaction r such that r can

change the state of s , Algorithm 4.10.3 is called to remove any relevant nodes from

V (lines 3-5). Finally, it returns the updated V (line 6). Algorithm 4.10.3 acts in a

similar fashion as Algorithm 4.10.2. It considers reaction r if it is still in V, and if

r is in V, then r is removed from V (lines 1-2). For each species s such that |s| is
used in the kinetic law of reaction r , Algorithm 4.10.2 is called to remove relevant

nodes from V (lines 3-5). Finally, it returns the updated V (line 6).
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Algorithm 4.10.1 Remove irrelevant nodes
void IrrelevantNodeElim( Model M )

1: if (Si = ∅) return M
2: V← (S ∪R)
3: for all s ∈ Si do

4: V← FindIrrelevantSpecies(M, s, V)
5: end for

6: ∀r ∈ (V ∩R). removeReaction(M, r)
7: ∀s ∈ (V ∩ S). removeSpecies(M, s)
8: return M

Algorithm 4.10.2 Find irrelevant species
Set FindIrrelevantSpecies( Model M, Species s, Set V )

1: if (s 6∈ V) return V

2: V← V \ {s}
3: for all r ∈ (Rr

s ∪R
p
s ) do

4: V← FindIrrelevantReaction(M, r, V)
5: end for

6: return V

Algorithm 4.10.3 Find irrelevant reactions
Set FindIrrelevantReaction( Model M, Reaction r, Set V )

1: if (r 6∈ V) return V

2: V← V \ {r}
3: for all s ∈ (Sr

r ∪ Sm
r ∪ S

p
r ) do

4: V← FindIrrelevantSpecies(M, s, V)
5: end for

6: return V

Figure 4.22. Algorithms to perform irrelevant node elimination.



CHAPTER 5

STATE-BASED ABSTRACTION

In the SCK analysis via the SSA, the temporal behavior is estimated by gen-

erating n sample trajectories of the system as outcomes of n simulation runs.

Intuitively, as n → ∞, this approach gives the best estimate of the temporal

behavior. Indeed, at this limit, if the system has a finite variance, the central limit

theorem guarantees that the distribution of the n-sample average is asymptotically

normal, and the standard error, SE , which measures the difference between the

estimated mean temporal behavior from the n Monte Carlo simulation runs and

the true mean temporal behavior of the system is formulated as SE = σ̂/
√

n

where σ̂ is the estimated standard deviation. This implies that, as n → ∞, the

numerical estimation reflects the true mean behavior. This also shows that, in

order to decrease the uncertainty involved in the numerical estimation of temporal

behavior N times, the number of simulation runs must be increased N2 times.

Instead of taking this potentially very expensive approach, the abstracted chemical

master equation (CME) can be directly solved to estimate the time evolution of the

probability distribution [116, 75, 93, 85].

This chapter presents several such abstraction methods to transform a REB

model into a state-based model called the finite state system model (FSS model)

to further improve the numerical analysis time. Section 5.1 formally defines the

FSS model, and Section 5.2 describes several analysis methods for the FSS model.

Section 5.3 then presents an abstraction method to transform a REB model into

a FSS model. Section 5.4 presents another transformation method to further

reduce the analysis time by generating a reduced FSS model called the stochastic

asynchronous circuit model (SAC model).
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5.1 Finite State System Model

The FSS model is a state-based, continuous-time discrete-event system where

the stochastic state transition of each species is restricted to a finite state space

unlike most state transitions in a REB model. By making each species’ state space

finite, the overall system space of the FSS model becomes also finite. Thus, the

state space of a FSS model can be explicitly specified. The FSS model compactly

represents a time-homogeneous, discrete-state, Markov process in a finite state

space whereby state transitions are decided based on the information on the current

state. Therefore, while a system described using the FSS model can be analyzed

via stochastic simulation methods such as the SSA, it can also be analyzed using a

Markov chain analysis method [110]—albeit possibly requiring a substantial amount

of memory to generate all the underlying system states—to directly obtain the

solution of an abstracted CME. The FSS model is formally defined as follows.

Definition 5.1 (FSS model) A FSS model is specified with 〈Z, z0, zmax,C〉 where

Z ≡ (Z1, . . . , Zn) is a vector of non-negative integer random variables, z0 is the vec-

tor containing the values of Z at time 0, zmax is the vector whose i-th element, zi
max,

specifies the maximum value that random variable Zi can take, and C ≡ {c1, . . . , cm}
is the set of guarded commands that change the values of the random variables. The

system state space of Z, Σz, is specified as

Σz = {z | ∀i. zi ∈ [0, zi
max]}.

Z(t) specifies the system state at time t. Thus, for each Zi, the probability that

Zi(t) > zi
max or Zi(t) < 0 is zero for any t ≥ 0. When the system is in state z,

each guarded command, cj, has a form:

Gj(z)
qj−→ Z = z + uj

where the function Gj(z) : {0, . . . , zi
max}n 7→ {0, 1} is the guard for cj when the

system state is z, qj is the transition rate for cj, and uj is an n-dimensional vector

whose i-th element has the value added to Zi as a result of cj.
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Let [[bool -exp]] be an operator that takes a Boolean expression, bool -exp, and

evaluates to 1 if bool -exp is true and 0 otherwise. Then, the guard, Gj(z), of each

guarded command, cj , has the form:

Gj(z) =
∏

i∈Nj

[[zi = vi
j ]] (5.1)

where the expression [[zi = vi
j ]] results in 1 if the current state of Zi is equal to

the value specified by the constant vi
j otherwise results in 0, and Nj is a subset

of [1, n]. Each guarded command, cj, is required to change the state of Z. Thus,

each Nj must satisfy the condition |Nj| > 0 ∧ |Nj| ≤ n. If the system state is z at

time t (i.e., Z(t) = z), cj can be executed if its guard is satisfied (i.e., Gj(z) = 1).

The result of executing the guarded command in time step τ is that a new state

is reached in which Zi(t + τ) = z + uj. Note that Gj(z) can be efficiently encoded

in the state graph of a FSS model by using the connection from state z to state

z + uj as an indicator so that Gj(z) is evaluated to 1 if there is a transition edge

from state z to state z + uj otherwise to 0.

From the definition of the FSS model, the probability that, given the system is

in state z, cj is executed and Z moves to state z + uj within the next infinitesimal

time step dt is:

P (cj, dt | z) = Gj(z) · qj · dt. (5.2)

Consequently, the probability that no transition is taken within the next time step

dt is:

1−
[

m
∑

k=1

Gk(z) · qk · dt

]

. (5.3)

Thus, from these equations, the time evolution equation of P (z, t | z0) which

describes the probability that Z(t) = z given Z(0) = z0 for all t ≥ 0 can be

deduced as:

P (z, t + dt | z0) = P (z, t | z0)

[

1−
m

∑

j=1

Gj(z)qjdt

]

+
m

∑

j=1

[P (z− uj, t | z0)Gj(z− uj)qjdt].

(5.4)
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By taking the limit: dt→ 0, and rearranging Equation 5.4, the following abstracted

CME represented by a FSS model can be obtained:

∂P (z, t | z0)

∂t
=

m
∑

j=1

[Gj(z− uj)qjP (z− uj, t | z0)−Gj(z)qjP (z, t | z0)]. (5.5)

5.2 Finite State System Model Analysis

This section presents several methods to analyze the time evolution of a system

described by a FSS model. It first describes a Monte Carlo simulation approach for

the FSS model to infer temporal behavior of the system from sample trajectories.

It then describes Markov chain analysis methods to directly solve Equation 5.5 to

obtain the time evolution of the probability distribution.

5.2.1 Stochastic Simulation of the FSS Model

A stochastic simulation of a process described using a FSS model begins in the

state z0 at time 0 and selects either a guarded command to execute or no guarded

commands to execute in a small time step ∆t. If a guarded command is executed

at time t1, then the system moves to a new state so that Z(t1) = z1. It then

recalculates all the transition probabilities, and continues until terminated. This

simulation process is inexact and inefficient since ∆t is not a true infinitesimal, yet

for a sufficiently small ∆t most simulation steps do not result in a state change.

Hence, as with a REB model, the exact SSA [53, 54] which skips over the time

steps where no state change occurs can be used instead for a more efficient Monte

Carlo simulation of a FSS model. The SSA for a FSS model uses the expression

Gj(z)qj as the transition rate for the guarded command, cj, when the system state

is z, which is analogue to the propensity function in the SSA for a REB model.

The algorithm for the stochastic simulation of a FSS model using the direct

method of the SSA [52] is described in Figure 5.1. Algorithm 5.2.1 first initializes

the time t to 0 and the system state z to z0 (line 1). Then, it repeats the sequence

of calculating a0 by summing up Gk(z)qk for k from 1 to m (line 3), picking two

unit uniform random numbers n1 and n2 (line 4), computing the next transition

time τ and the index of the next guarded command j (lines 5-6), and updating
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Algorithm 5.2.1 Direct method using the FSS model

1: t← 0, z← z0

2: repeat

3: a0 ←
∑m

k=1 Gk(z)qk

4: pick 2 unit uniform random numbers n1 and n2

5: τ ← − ln (n1)/a0

6: j ← smallest integer satisfying
∑j

µ=1 Gµ(z)qµ ≥ n2a0

7: t← t + τ , z← z + uj

8: until simulation termination condition is met

Figure 5.1. Algorithm for the direct method using the FSS model.

the time t and the current state z (line 7). This loop is run until the termination

condition is satisfied (line 8).

5.2.2 Markov Chain Analysis of the FSS Model

In addition to stochastic simulation, a system can be analyzed by solving the

abstracted CME that a FSS model represents. This is because, by the definition of

the FSS model, Equation 5.5 is a set of ODEs with a finite set of equations and a

finite system state space, |Σz|, making a numerical solution of the abstracted CME

possible. Since it is most likely the case that a biochemical system represented by

a FSS model is very sparse meaning that the majority of cj ∈ C have Gj(z) equal

to 0 for each given state z, efficient iterative methods can be applied to the state

graph of an underlying continuous-time Markov chain to solve Equation 5.5 [110].

The time evolution of P (z, t + ∆t | z0) is generated by approximating the

infinitesimal time step dt in Equation 5.4 by finite time step ∆t as:

P (z, t + ∆t | z0) = P (z, t | z0)

[

1−
m

∑

j=1

Gj(z)qj∆t

]

+
m

∑

j=1

[P (z− uj, t | z0)Gj(z− uj)qj∆t].

(5.6)

This can be numerically computed using various methods for the initial value

problem of ODEs [110, 94]. Figure 5.2 shows the algorithm of a simple iterative

method [110] to estimate the time evolution of the probability distribution of a
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Algorithm 5.2.2 Iterative method using the FSS model

1: ∆t←
(

α maxz∈Σz (
∑m

j=1 Gj(z)qj)
)−1

2: t← 0
3: for all z ∈ Σz do

4: P (z, t)← 0
5: end for

6: P (z0, t)← 1
7: repeat

8: for all z ∈ Σz do

9: P (z, t + ∆t)← P (z, t)[1 −∑m
j=1 Gj(z)qj∆t]

10: P (z, t + ∆t)← P (z, t + ∆t) +
∑m

j=1 Gj(z− uj)qjP (z− uj, t)∆t
11: end for

12: t← t + ∆t
13: until t ≥ tmax

Figure 5.2. Algorithm for a simple iterative method using the FSS model.

system using a FSS model. This generates the time evolution of the probability

that Z(t) = z, P (z, t), for all z ∈ Σz given that P (z0, 0) = 1 up to the time limit,

tmax. This algorithm is based on the forward Euler method where the time step,

∆t, is chosen to be:

∆t =
1

α maxz∈Σz
(
∑m

j=1 Gj(z)qj)
(5.7)

where α ≥ 1 is the accuracy factor that can be set by the user. Note that the

higher the value of α is, the higher the accuracy becomes for the computation of

P (z, t) albeit with more expensive computational costs. Algorithm 5.2.2 first sets

∆t using Equation 5.7 (line 1). The algorithm initializes time t to 0 and P (z, t) to

1 if z = z0 otherwise to 0 (lines 2-6). It then iterates the process of computing the

probability distribution of the next time step until t reaches the time limit. For

each state z, P (z, t + ∆t) is calculated by subtracting from P (z, t) the probability

to move from z to other states and adding the probability to move to z from other

states (lines 7-11). After the probabilities of all the states are calculated for this

iteration, t is updated to be t + ∆t (line 12).

Sometimes, the required result from the computational analysis of a FSS model

is only the estimate of the stationary probability of a system, P (z,∞ | z0), which
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describes the probability that Z(t) = z as t approaches infinity given that initially

Z(0) = z0. In the limit t → ∞, the biochemical system equilibrates, and thus the

change in the probability over time becomes zero for all system states. Thus, from

Equation 5.5, this results in the derivation of the following equation:

m
∑

j=1

[Gj(z− uj)qjP (z− uj,∞ | z0)−Gj(z)qjP (z,∞ | z0)] = 0. (5.8)

This equation can be once again numerically solved using an iterative method. To

do that, let us first introduce a probability density function P (z, k | z0) which

specifies the probability that the system is in state z in k state transitions given

that the system is initially in state z0. Since a FSS model is a Markov process,

the average transition time of cj when the system is in state z is 1/
∑m

µ=1 Gµ(z)qµ.

Thus, by replacing each ∆t for a cj event firing in Equation 5.6 with its average

transition time, the time evolution equation of P (z, k | z0) becomes:

P (z, k + 1 | z0) =
m

∑

j=1

[

P (z− uj, k | z0)
Gj(z− uj)qj

∑m

µ=1 Gµ(z− uµ)qµ

]

. (5.9)

This equation eliminates the term involving P (z, k | z0) on the right-hand side

as 1 − ∑m

j=1

[

Gj(z)qj/(
∑m

µ=1 Gµ(z)qµ)
]

is zero. This makes sense since, if the

system were in state z after the k-th jump, the system could not be in state z

after the k + 1-th jump. When, for all z in Σz, P (z, k + 1 | z0) = P (z, k | z0), the

changes in the probability distribution become zero, satisfying Equation 5.8. There-

fore, a stationary distribution can be obtained by iterating k until the condition:

∀z. P (z, k + 1 | z0) = P (z, k | z0) is satisfied.

Figure 5.3 shows an algorithm to generate a stationary probability distribution

of Z given that Z(0) = z0, assuming that there is a stationary probability distri-

bution. Note that, though we have not encountered this situation in analysis of

biochemical systems, it is possible that a FSS model does not have a stationary

probability distribution for a given initial state. To anticipate such cases, the

algorithm can be extended to check if the probability distribution can converge

within the maximum transition step, kmax. Algorithm 5.2.3 first sets a transition

counter k to 0, and initializes the probability distribution so that P (z, k | z0) is
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Algorithm 5.2.3 A stationary probability distribution

1: k ← 0
2: for all z ∈ Σz do

3: P (z, k | z0)← 0
4: end for

5: P (z0, k | z0)← 1
6: repeat

7: for all z ∈ Σz do

8: P (z, k + 1 | z0)←∑m
j=1

[

P (z− uj, k | z0)
Gj(z−uj)qj

∑m
µ=1 Gµ(z−uµ)qµ

]

9: end for

10: k ← k + 1
11: until ∀z ∈ Σz. P (z, k | z0) ≈ P (z, k − 1 | z0)

Figure 5.3. Algorithm for a simple iterative method to obtain a stationary
probability distribution using the FSS model.

1 if z = z0 and 0 otherwise (lines 1-5). It then repeats the process of computing

P (z, k + 1 | z0) using Equation 5.9 and incrementing k until P (z, k | z0) converges

(lines 6-11).

5.3 Finite State System Model Transformation

This section presents a technique to transform a REB model, MR, into a FSS

model, MF . In order to describe this transformation, without loss of generality,

let us suppose that MR has S ≡ {s1 , . . . , sn} where the state of each species si

can be changed by some reaction (i.e., |Rr
si
| + |Rp

si
| > 0), R ≡ {r1 , . . . , rm′} where

each reaction rj can change the state of some species (i.e., |Sr
rj
| + |Sp

rj
| > 0), and

Rrev = ∅. Then, MF has Z ≡ {Z1, . . . , Zn} where each Zi specifies |si |, and each zi
0

in z0 is |si |0. Each zi
max in zmax is set by the user input specifying the upper limit

molecular count of si .

For the generation of the guarded commands, C ≡ {c1, . . . , cm}, each reaction

rj first constructs a set of indices, Ij, such that

Ij = {i ∈ [1, n] | E(si , rj ) > 0 ∨E(rj , si) > 0}. (5.10)

Hence, the set Ij contains all the indices of the species that participate in reaction

rj . Here, let Ẑj be the set of random variables {Zi′ | i′ ∈ Ij}, and Σẑj
be a subset
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of Σz such that

Σẑj
≡ {z = (if i ∈ Ij then zi ∈ [0, zi

max] else zi = 0)}

∩ {z ∈ Σz | K(rj )(z) > 0}

∩ {z ∈ Σz | ∀i. zi ≤ zi
max − [E(rj , si)− E(si , rj )]}

∩ {z ∈ Σz | ∀i. zi ≥ [E(si , rj )−E(rj , si)]}.

(5.11)

In other words, Σẑj
is a subset of Σz which has every state z in which, using the

value of each zi for |si |, a reaction rj event can fire with a non-zero transition rate

to move to a state where the new value of each Zi is at most zi
max and at least

0, provided that the states of species that do not participate in reaction rj are

fixed to be 0 (i.e., zi = 0 if i 6∈ Ij). Then, each reaction rj generates guarded

commands using the information on each state in Σẑj
, resulting in as many as

|Σẑj
| guarded commands. Each guarded command, cµ, from state zµ ∈ Σẑj

is used

for the transition event of reaction rj in states where only the value of Zi′ ∈ Ẑj is

constrained by the i′-th element of zµ, zi′

µ . The guard, Gµ(z), checks if the condition

to enable the transition event, cµ, is satisfied in state z. This condition can only be

satisfied when

∀i′ ∈ Ij. zi′ = zi′

µ (5.12)

is true. To generate the form of Equation 5.1, thus, Nµ is set so that Nµ is equal to

Ij, and each vi
µ is the constant whose value is specified by zi

µ. The transition rate

of cµ, qµ, is computed by evaluating K(rj ) using the value of zµ. The increment

vector, uµ, specifies the increment of the system state as a result of the firing of

one cµ event. Thus uµ is generated so that the i-th element of uµ is specified as:

ui
µ = E(rj , si)− E(si , rj ). (5.13)

To illustrate the FSS model transformation of a REB model, consider a REB

model, MR, which has the following structure:
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S = {s1 , s2 , s3},

R = {r1 , r2 , r3 , r4},

Rrev = ∅,

E = {((s1 , r1 ), 0), ((s2 , r1 ), 0), ((s3 , r1 ), 0), ((r1 , s1 ), 2), ((r1 , s2 ), 0), ((r1 , s3 ), 0),

((s1 , r2 ), 1), ((s2 , r2 ), 1), ((s3 , r2 ), 0), ((r2 , s1 ), 0), ((r2 , s2 ), 1), ((r2 , s3 ), 0),

((s1 , r3 ), 0), ((s2 , r3 ), 1), ((s3 , r3 ), 0), ((r3 , s1 ), 0), ((r3 , s2 ), 0), ((r3 , s3 ), 0),

((s1 , r4 ), 1), ((s2 , r4 ), 0), ((s3 , r4 ), 0), ((r4 , s1 ), 1), ((r4 , s2 ), 0), ((r4 , s3 ), 1)},

K = {(r1 → ((|s1 | , |s2 | , |s3 |)→ f1())),

(r2 → ((|s1 | , |s2 | , |s3 |)→ f2(|s1 | , |s2 |))),

(r3 → ((|s1 | , |s2 | , |s3 |)→ f3(|s2 |))),

(r4 → ((|s1 | , |s2 | , |s3 |)→ f4(|s1 |)))},

where f1() > 0, f2(|s1 | , |s2 |) is greater than 0 if |s1 | > 0, otherwise it is 0,

f3(|s2 |) is greater than 0 if |s2 | > 0, otherwise it is 0, and f4(|s1 |) is greater than

0 if |s1 | > 0, otherwise it is 0. To better understand the structure of MR, its

graphical representation is shown in Figure 5.4. Since MR has three species, the

transformation of MR into its corresponding FSS model, MF , begins by having

Z = {Z1, Z2, Z3}. In this transformation, suppose the initial states of s1 , s2 , and

r1 : f1()

2p

��

r4 : f4(|s1 |)

p

��
s1

m
iiiiiiiiiiiiiiiiiii

r

��

s2
m

rrrrrrrrrrr
r

$$JJJ
JJ

JJ
JJ

J s3

r2 : f2(|s1 |,|s2 |) r3 : f3(|s2 |)

Figure 5.4. The graphical representation of REB model MR.
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s3 are 0, 10, and 0, respectively, and the upper limit molecular counts of s1 , s2 ,

and s3 are all 10. Then, by definition, z0 = (0, 10, 0) and zmax = (10, 10, 10).

To generate the set of the guarded commands for reaction r1 , I1 is constructed

first. Since reaction r1 is not influenced by any species in the model, I1 becomes

{1}. This implies that Ẑ1 = {Z1}. Also, since reaction r1 only involves species

s1 and E(r1 , s1 ) − E(s1 , r1 ) = 2, from Definition 5.11, Σẑ1
includes the states to

change the value of Z1 from 0 to 8. This means that Σẑ1
can be obtained as:

Σẑ1
= {(z1, 0, 0) | z1 ∈ [0, 8]}. (5.14)

Thus, since |Σẑ1
| = 9, nine guarded commands are generated from reaction r1 , each

of which has the transition rate f1() and the increment vector (2, 0, 0). Therefore,

the nine guarded commands have the following structure:

∀k1 ∈ [0, 8]. [[z1 = k1]]
f1()−−→ Z = z + (2, 0, 0). (5.15)

Reaction r2 involves two species where s1 is used as a reactant and s2 is used as

a modifier. Thus, I2 becomes {1, 2}, resulting in Ẑ2 = {Z1, Z2}. Since r2 changes

only the state of species s1 where one molecule of s1 is consumed per reaction event

(i.e., E(s1 , r2 )− E(r2 , s1 ) = 1), Σẑ2
is described as:

Σẑ2
= {(z1, z2, 0) | z1 ∈ [1, 10] ∧ z2 ∈ [0, 10]}. (5.16)

This implies that |Σẑ2
| = 110. Hence, reaction r2 generates 10× 11 = 110 guarded

commands, each of which has the increment vector of (−1, 0, 0). Therefore, the 110

guarded commands generated by reaction r2 have the following structure:

∀k1 ∈ [1, 10], k2 ∈ [0, 10]. [[z1 = k1]]× [[z2 = k2]]
f2(k1,k2)−−−−−→ Z = z + (−1, 0, 0).

(5.17)

In order to generate the guarded commands from reaction r3 , once again, the

set of participant species’ indices is first examined. Since reaction r3 involves only
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species s2 , I3 = {2} and Ẑ3 = {Z2}. Furthermore, since at least one molecule of s2

is needed to fire a reaction r3 event, Σẑ3
is obtained as:

Σẑ3
= {(0, z2, 0) | z2 ∈ [1, 10]}. (5.18)

Thus, there are 10 guarded commands generated by reaction r3 , each of which has

the increment vector of (0,−1, 0). Therefore, the 10 guarded commands of r3 have

the following structure:

∀k2 ∈ [1, 10]. [[z2 = k2]]
f3(k2)−−−→ Z = z + (0,−1, 0). (5.19)

Finally, the guarded commands from reaction r4 are generated by carrying out

the same procedure. First, the sets, I3 = {1, 3}, and Ẑ3 = {Z1, Z3}, are determined

because reaction r4 uses species s1 as a modifier to produce species s3 . Since

f4(|s1 |) = 0 when |s1 | = 0, and the upper limit molecular count of s3 is 10,

Σẑ4
= {(z1, 0, z3) | z1 ∈ [1, 10] and z1 ∈ [0, 9]}. (5.20)

This implies that reaction r4 generates 10 × 10 = 100 guarded commands where

each guarded command has the increment vector of (−1, 0, 0). Therefore, the 100

guarded commands generated have the following structure:

∀k1 ∈ [1, 10], k3 ∈ [0, 9]. [[z1 = k1]]× [[z3 = k3]]
f4(k1)−−−→ Z = z + (0, 0, 1). (5.21)

5.4 N-ary Transformation

While the FSS model transformation method described in the previous section

provides a means to analyze the time evolution of biochemical systems by directly

solving the CMEs, this method is proven to be inefficient for systems with very

large system state space. Even for a system of 10 species where each has an upper

limit molecular count of 99, the FSS model transformation can generate up to 1020

states. Constructing such a state graph for temporal behavior analysis is infeasible

for most computers. Thus, the FSS model transformation method should not be

used in such cases.
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To more aggressively reduce the state space of a FSS model, this section develops

another transformation method called n-ary transformation. The n-ary transfor-

mation transforms a REB model to a reduced FSS model called the stochastic

asynchronous circuit model (SAC model). A SAC model describes the state of each

species by n-ary or Boolean levels instead of molecular counts, resulting in further

reduction of states per species. Thus, it can further improve the analysis time. For

example, suppose a system has 10 species, each of whose states can be qualitatively

described as “low,” “medium,” and “high.” Then, with the n-ary transformation,

a SAC model with at most 103 states can be generated. Therefore, this model can

be efficiently analyzed, for example, using Markov chain analysis methods within

the asynchronous circuit analysis tool ATACS [1].

Aside from the conditions required for the FSS model transformation, the n-ary

transformation requires the REB model to satisfy the property that all reactions

should have either one reactant or one product, but not both. In other words, the

condition:

∀r ∈ R. |Sr
r|+ |Sp

r | = 1 (5.22)

must be satisfied in order for a REB model to be transformed into a SAC model.

Thus, each guarded command in a SAC model, cj, comes with the following restric-

tion on the increment vector, uj:

∃i. (ui
j > 0) ∧ (∀k 6= i. uk

j = 0). (5.23)

Thus, the SAC model is a subset of the FSS model whereby each guarded command

changes the value of exactly one random variable as a result of its execution.

This is often the case after applying the REB abstractions described earlier. If

Condition 5.22 does not hold, however, it can be made to hold using reaction

splitization. One form of reaction splitization is called single reactant single product

reaction splitization, which splits an irreversible reaction with a single reactant and

a single product into an irreversible reaction with no reactant and a single product

and an irreversible reaction with a single reactant and no product. In order to
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illustrate this transformation, consider the reaction shown in Figure 5.5(a). This

reaction converts species s1 into species s2 with a rate law f(|s1 |). After splitization,

this is transformed into the two reactions shown in Figure 5.5(b). This includes a

degradation reaction for s1 and a production reaction for s2 , with the same rate

law. In addition, there are also multiple reactants reaction splitization to split a

reaction with multiple reactants into multiple reactions with a single reactant and

multiple products reaction splitization that splits a reaction with multiple products

into multiple reactions with a single product, as illustrated in Figure 5.6.

When a REB model satisfies Condition 5.22, it can be transformed into a SAC

model with the n-ary transformation. The transformation begins by identifying the

states of each species. Let Ai ≡ {A0
i , A

1
i , . . . , A

Ni

i } be a set with Ni elements that
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Figure 5.5. Single reactant single product reaction splitization: (a) original
reaction and (b) split-up reactions.
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Figure 5.6. Multiple reactants and products reaction splitization. Multiple reac-
tants reaction splitization: (a) original reaction and (b) split-up reactions. Multiple
products reaction splitization: (c) original reaction and (d) split-up reactions.

partitions the states of species si such that ∀j. Aj
i = [θj

i , θ
j+1
i ) where θ0

i = 0, and

θNi+1
i = ∞. We call A0

i , . . . , A
Ni

i critical intervals and θ0
i , . . . , θ

Ni

i critical levels of

species si . Depending on the nature of the application, the critical levels can be

either specified by the user and taken to be model inputs—such as might be the case

when our system is utilized by an expert already familiar with the in situ behavior

of the underlying regulatory network—or estimated automatically from the kinetic

rate laws. The SAC model treats each Aj
i as one state. Thus, Ni describes the

highest state for species si in a SAC model, and thus, in the FSS model notation,

Ni is in fact zi
max in that, for all t ≥ 0, Zi(t) ≥ 0 ∧ Zi(t) ≤ Ni. The initial state

of Zi, zi
0, is determined by examining each critical interval, Aj

i for the condition:

|si |0 ∈ Aj
i . Then, zi

0 is set to the index of the critical interval that satisfies this

condition.

In Ai, if θj+1
i − θj

i � 1 for some j in [1, Ni], then our method can collapse many

states in Aj
i into one state for species si , resulting in significant improvement in
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analysis time. On the other hand, if ∀j ∈ [1, n]. θj+1
i − θj

i = 1, then each state of

the SAC model describes a molecular count, resulting in the same precision in the

state space of species si as the FSS model.

In order to identify the critical levels of species si , our method first automatically

finds all reactions with kinetic rate laws that include a denominator term of the

form K |si |n. For each such reaction, one critical level of si is generated with the

form n
√

a/(K − aK) where a is an amplifier in the range [0.5, 1.0) selected by the

user. Figure 5.7(a) shows two reactions that have kinetic rate laws containing |s1 |
terms. Assuming that amplifier a equals 0.5, these two reactions imply the following

four critical levels:

0, k−4

k4
, k−2

k2·RNAPtot
, and k−3

k3
. (5.24)

These levels come from the fact that θ0 is by definition 0, the denominator of the

left reaction rate law in Figure 5.7(a) has the term k4/k−4 |s1 |, and the denominator

of the right reaction rate law has two terms of this form, k2/k−2 |s1 |RNAPtot and

k3/k−3 |s1 |.
After the critical levels of each species are identified and in turn z0 and zmax

are all determined, the guard, Gµ(z), for cµ is generated for each reaction in a

similar way as the FSS model transformation. Suppose species s1 is an activator

in reaction r1 for the production of s2 as shown in Figure 5.7(b) where its kinetic

law, f(|s1 |), is always greater than 0 if |s1 | ≥ 0. Also, suppose that three critical

levels are used for both species s1 and s2 , that is, the critical levels of s1 and s2 are

(0, θ1
1, θ

2
1), and (0, θ1

2, θ
2
2), respectively.

In the n-ary transformation, definition of Σẑj
is slightly different from the FSS

model transformation so that

Σẑj
≡ {z = (if i ∈ Ij then zi ∈ [0, zi

max] else zi = 0)}

∩ {z ∈ Σz | K(rj )(z) > 0}

∩ {z ∈ Σz | ∀i. zi ≤ zi
max − [[E(rj , si)−E(si , rj ) > 0]]}

∩ {z ∈ Σz | ∀i. zi ≥ [[E(si , rj )− E(rj , si) > 0]]}.

(5.25)
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Figure 5.7. (a) Critical level identification. (b) Production of s2 with activator
s1 . f(|s1 |) > 0 if |s1 | ≥ 0.

Thus, since r1 is a production reaction for species s2 where Σẑ1
is obtained as:

Σẑ1
= {(z1, z2, . . . , zn) | z1 ∈ [0, 2] and | z2 ∈ [0, 1]}, (5.26)

the legal transition that Z2 can take are only two: 0 → 1 and 1 → 2 for each

possible state of Z1. Therefore, the guarded commands for r1 are below:
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[[z2 = 0]]× [[z1 = 0]]
q1−→ Z = z + u

[[z2 = 0]]× [[z1 = 1]]
q2−→ Z = z + u

[[z2 = 0]]× [[z1 = 2]]
q3−→ Z = z + u

[[z2 = 1]]× [[z1 = 0]]
q4−→ Z = z + u

[[z2 = 1]]× [[z1 = 1]]
q5−→ Z = z + u

[[z2 = 1]]× [[z1 = 2]]
q6−→ Z = z + u

where u ≡ (u1, . . . un) has u2 = 1 and ∀i 6= 2. ui = 0.

The final step to generate a SAC model is to assign a transition rate, qi, to each

guarded command. For simplicity, Ni Boolean variables B1
i . . . BNi

i are introduced

for the generation of the rate to change the state of Zi. The relationship between

Zi and B1
i . . . BNi

i is:

Zi(t) = z iff (∀j ∈ [1, z]. Bj
i (t) = 1) ∧ (∀j ∈ [z + 1, Ni]. Bj

i (t) = 0). (5.27)

Thus, the time evolution of |si | can be approximated using B1
i . . . BNi

i as

|si | (t) ≈ (θNi

i − θNi−1
i )BNi

i (t) + · · ·+ (θ2
i − θ1

i )B
2
i (t) + (θ1

i − θ0
i )B

1
i (t). (5.28)

Taking the derivative of the mean of |si | (t) with respect to the mean of Bj
i (t) results

in:

∂〈|si | (t)〉
∂〈Bj

i (t)〉
≈ (θj

i − θj−1
i ). (5.29)

Using this approximation, the time derivative of 〈Bj
i 〉 is:

d〈Bj
i (t)〉
dt

=
∂〈Bj

i (t)〉
∂〈|si | (t)〉

d〈|si | (t)〉
dt

≈ 1

θj
i − θj−1

i

d〈|si | (t)〉
dt

. (5.30)

Notice 〈Bj
i (t)〉 is a continuous variable in the range [0, 1]. By letting 〈Bj

i (t)〉 be the

probability that Bj
i = 1 at t, our method finds the transition rate functions for Bj

i

to move from 0 to 1 and from 1 to 0 from the rate laws of reactions that change
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the value of |si |. The transition rate function of a guarded command changing the

value of Bj
i , which is generated from reaction r , is:

f =
E ·K(r)

θj
i − θj−1

i

where E =

{

E(si , r) if si is a reactant of r,

E(r , si) if si is a product of r.
(5.31)

Finally, our method must evaluate the transition rate functions with appropriate

values to generate the transition rates. Suppose reaction rj uses |si | in its kinetic

law. Then, to generate the transition rate for the guarded command when Zi = z,

our method uses θz
i as the value of |si | to evaluate K(rj ). For example, the transition

rates of the guarded commands in Figure 5.7(b) are derived from K(r1). Since the

derived transition rate function is f(|s1 |)/(θµ
2 − θµ−1

2 ) for µ ∈ [1, 2], the transition

rates for the guarded commands for reaction r1 are:

q1 = f(0)/θ1
2,

q2 = f(θ1
1)/θ

1
2,

q3 = f(θ2
1)/θ

1
2,

q4 = f(0)/(θ2
2 − θ1

2),

q5 = f(θ1
1)/(θ2

2 − θ1
2),

q6 = f(θ2
1)/(θ2

2 − θ1
2).



CHAPTER 6

MODEL ABSTRACTION RESULTS

As a case study, this chapter illustrates the application of our tool to various

small systems to facilitate efficient analysis of temporal behavior. Section 6.1

describes an application of our abstraction methods to enzymatic reaction systems.

Section 6.2 illustrates an application of the operator site reduction. The results

from an application of the dimerization reduction are considered in Section 6.3.

Finally, Section 6.4 exemplifies the application of the stoichiometry amplification.

Each model used in this chapter is encoded in SBML [42] and simulated for 1,000

runs using an optimized SSA implementation within REB2SAC [74] on a 3GHz

Pentium4 with 1GB of memory. Usefulness of model abstractions for each system

is reported by comparing the speedup, which is measured based on the runtime of

each original model, and the accuracy, which is measured by the mean and standard

deviation of the time evolution.

6.1 Enzymatic Reaction Abstraction Results

This section presents the REB model abstraction results from various systems

containing an enzymatic reaction scheme. This section first considers three models

of the single enzymatic reaction system. It then considers the enzymatic futile cycle

motif which can be ubiquitously seen in biological systems including GTPase cycles,

mitogen-activated protein kinase cascades, and glucose mobilization [102]. Finally,

it considers a more complex competitive enzymatic reaction.

6.1.1 Single Enzymatic Reaction

The single enzymatic reaction scheme shown in Figure 6.1 is first used to

analyze the results of several enzymatic reaction abstraction methods. As with
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Figure 6.1. The single enzymatic reaction scheme.

most enzymatic reaction systems, this system has the following initial condition:

|E |0 = Etot, |S |0 = Stot, |C |0 = 0, |P |0 = 0. (6.1)

Three models with different parameter value sets are generated from this system,

each of which is simulated by applying both the QSSA and the PPTA methods to

compare their results with those from the original model. In addition, in order to

compare the speedup gained by our abstractions with that by the ssSSA, the first

two models are chosen to be the ones that are used to help illustrate the application

of the slow-scale SSA in enzymatic reaction systems [25].

The first model of the single enzymatic reaction scheme has the following initial

condition and the reaction rate constants:

Etot = 220, Stot = 3000, k1 = 0.01, k−1 = 100.0, k2 = 0.01. (6.2)

This system is simulated for 20,000 time units and each data point is plotted every

100 time units. Figure 6.2 shows the results from the original model, the QSSA

model, the PPTA model, and the QSSA model of this system. The estimated
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Figure 6.2. Comparison of the original enzymatic reaction model, its PPTA model,
and its QSSA model with initial conditions: Etot = 220, Stot = 3000 and the rate
constants: k1 = 0.01, k−1 = 100.0, k2 = 0.01. (a) Mean of |S |. (b) Mean of |P |.
(c) Standard deviation of |S |. (d) Standard deviation of |P |.

means |S | and |P | are shown in Figures 6.2(a) and (b), and the estimated standard

deviations of |S | and |P | are shown in Figures 6.2(c) and (d), respectively.

The simulation results from the QSSA model are in very close agreement with

those from the original model. The average time evolution of the PPTA model

is also in very close agreement with that of the original model. The standard

deviation produced via the simulation of the PPTA is slightly lower than that of

both the original model and the QSSA model throughout; however, considering

the ratio of the standard deviations—which are relatively low—and the average

molecular counts—which are very high—the results from the PPTA model are still

very accurate. Both the QSSA and the PPTA result in substantial speedup as
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shown in Table 6.1. While the entire simulation of the original model takes 68.58

hours, that of the PPTA model takes only 22.8 seconds, achieving 10,800 times

speedup. The QSSA model produces an even higher speedup. It requires only 9.2

seconds for the simulation, resulting in 26,765 times speedup. Furthermore, since

the speedup gained by the ssSSA is 950 on this model, both the PPTA and the

QSSA methods are able to outperform the slow-scale SSA by an order of magnitude

while maintaining a high degree of accuracy.

The second enzymatic reaction model has a lower total enzyme count, a higher

complex dissociation rate constant, and a higher production rate constant as follows:

Etot = 10, Stot = 3000, k1 = 0.01, k−1 = 600.0, k2 = 0.1. (6.3)

This model illustrates a case where the average of |C | (t) remains less than 1 as

the maximum reaction rate of r1 (i.e., k1EtotStot) is less than k−1. This model

is simulated for 80,000 time units and each data point is again plotted every 100

time units. Figures 6.3(a) and (b) show the estimated means of |S | and |P |, and

Figures 6.3(c) and (d) show the estimated standard deviations of |S | and |P |,
respectively.

Both the means and the standard deviations from the QSSA model as well as

the PPTA model track those from the original model very well while, at the same

Table 6.1. Speedup gained by the ssSSA, the QSSA, and the PPTA on various
systems involving enzymatic reaction. The results of the ssSSA are from Cao et al.
(2005) [25].

Original QSSA PPTA ssSSA

Single enzymatic reaction 1
Time 68.58h 9.2s 22.8s –

Speedup 1 26,765 10,800 950

Single enzymatic reaction 2
Time 27.63h 8.5s 17.9s –

Speedup 1 11,582 5,500 400

Single enzymatic reaction 3
Time 34.69s 1.07s 1.72s –

Speedup 1 32 20 –

Enzymatic futile cycle
Time 17.73h 53.43s 87.51s –

Speedup 1 1,194 729 –

Competitive enzymatic reaction
Time 65.16m 63.24s 35.78s –

Speedup 1 62 109 –
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Figure 6.3. Comparison of the original enzymatic reaction model, its PPTA model,
and its QSSA model with initial conditions: Etot = 10, Stot = 3000 and the rate
constants: k1 = 0.01, k−1 = 600.0, k2 = 0.1. (a) Mean of |S |. (b) Mean of |P |.
(c) Standard deviation of |S |. (d) Standard deviation of |P |.

time, the simulation time of those abstractions are substantially reduced compared

with that of the original model as shown in Table 6.1. Whereas the simulation

of the original model takes 27.63 hours, that of the QSSA model and the PPTA

model takes only 8.5 seconds and 17.9 seconds, respectively. Thus, the QSSA and

the PPTA methods are able to improve the computation performance by a factor of

11,582 and 5,500, respectively. Furthermore, since the speedup of the ssSSA is only

400 on this model, both methods are once again able to outperform the ssSSA by

an order of magnitude in terms of acceleration. Therefore, for the first two models

of the single enzymatic reaction, the QSSA would be the most efficient and effective

abstraction as it achieves the highest speedup while maintaining accuracy.
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However, since a PPTA model does not assume that the intermediate species

is in quasi-steady state, a PPTA model may perform better than a QSSA model

in terms of accuracy, especially in a case where the pre-steady state transition is

crucial for a prediction of system behavior. For example, suppose a single enzymatic

reaction model has the following initial conditions and rate constants:

Etot = 25, Stot = 50, k1 = 100.0, k−1 = 10.0, k2 = 0.1. (6.4)

Then, since Etot is arguably much smaller than Stot, the QSSA could be applied

to safely approximate the temporal behavior of the underlying enzymatic reaction.

However, in this model, the propagation effects of the pre-steady state dynamics are

rather important, making any QSSA-based models unable to describe the temporal

behavior well. Therefore, as shown in Figure 6.4, the averages as well as the

standard deviations of the time evolution of this single enzymatic reaction system

are captured more accurately by the PPTA model than by the QSSA model. While

both model abstractions result in an order of magnitude speedup, the QSSA still

achieves slightly higher speedup than the PPTA as shown in Table 6.1.

6.1.2 Enzymatic Futile Cycle

The enzymatic futile cycle system consists of two instances of the single enzy-

matic reaction as shown in Figure 6.5(a). One is to transform S into P catalyzed by

E1 , and the other one is to transform P into S catalyzed by E2 . Thus, the original

model of the enzymatic futile cycle system has six species and six irreversible reac-

tions. Since this motif is found in many biological systems [102], abstracting away

low-level detail of the motif such as unproductive substrate-complex cycles may

provide a significant improvement in performance of the overall system behavior

analysis. With the PPTA method, unproductive dissociation reactions are removed,

transforming the enzymatic futile cycle model into a model with six species and

four irreversible reactions shown in Figure 6.5(b). The QSSA further reduces the

complexity of the enzymatic futile cycle system by removing the two enzymes and

the two intermediate species, resulting in two species and two reactions as shown

in Figure 6.5(c).
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Figure 6.4. Comparison of the original enzymatic reaction model, its PPTA model,
and its QSSA model with initial conditions: Etot = 25, Stot = 50 and the rate
constants: k1 = 100.0, k−1 = 10.0, k2 = 0.01. (a) Mean of |S |. (b) Mean of |P |.
(c) Standard deviation of |S |. (d) Standard deviation of |P |.
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Figure 6.5. The enzymatic futile cycle system. (a) Original model (b) PPTA
model (c) QSSA model.
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The original enzymatic futile cycle model and the two abstracted models are

simulated for 300 time units with one time unit plot-interval to analyze the accuracy

as well as the performance gain of the enzymatic reaction model abstractions with

the initial conditions:

(|S |0, |P |0, |E1 |0, |E2 |0, |C1 |0, |C2 |0) = (0, 100, 10, 20, 0, 0), (6.5)

and the rate constants:

k1 = 103; k−1 = 1.5× 103; k2 = 2; k3 = 103; k−3 = 5× 102; and k4 = 1. (6.6)

Since each numerical simulation of the two models starts with no copies of S and

10 copies of E1 , this system illustrates a case where substrate is initially lower

than the catalyzing enzyme. Furthermore, since this is a closed system, from the

conservation law, the condition:

|S | (t) + |P | (t) + |C1 | (t) + |C2 | (t) = 100 (6.7)

is satisfied for all t ≥ 0. Thus, this enzymatic futile cycle system illustrates an

applicability of the PPTA as well as the QSSA when the numbers of both substrate

and enzyme molecules are very low.

Figure 6.6 shows the results from the original model, the QSSA model, and

the PPTA model of this enzymatic futile cycle system. The time evolutions of

the estimated means of |S | and |P | are shown in Figures 6.6(a) and (b), while the

estimated standard deviations of |S | and |P | are shown in Figures 6.6(c) and (d),

respectively. From these figures, it is clear that the PPTA model approximates

the original enzymatic futile cycle model better than the QSSA model. The QSSA

model, however, has a better improvement in the computational performance than

the PPTA model as shown in Table 6.1. While the simulation of the original model

takes 17.73 hours, that of the PPTA model and the QSSA model takes only 87.51

seconds and 53.43 seconds, which represents speedup factors of more than 729 times

and 1,194 times, respectively.
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Figure 6.6. Comparison of the original enzymatic futile cycle model, its PPTA
model, and its QSSA model. The initial conditions: |S |0 = 0, |P |0 = 100,
|E1 |0 = 10, |E2 |0 = 20, |C1 |0 = 0, |C2 |0 = 0, and the rate constants: k1 = 1.0×103,
k−1 = 1.5 × 103, k2 = 2.0, k3 = 1.0 × 103, k−3 = 5.0 × 102, k4 = 1.0 are used.
(a) Mean of |S |. (b) Mean of |P |. (c) Standard deviation of |S |. (d) Standard
deviation of |P |.

6.1.3 Competitive Enzymatic Reaction

To show the applicability of the abstraction methods in a more complex enzy-

matic reaction system, a biochemical system with seven species and 12 irreversible

reactions whose graphical representation is shown in Figure 6.7(a) is considered.

This system includes a competitive enzymatic reaction where the two substrates,

S1 , and S2 , compete to bind to enzyme, E , to produce products, P1 , and P2 ,

respectively. Also, this system contains basal reactions to transform S1 and S2 into

P1 and P2 , respectively, without being catalyzed by E . Moreover, since substrates
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Figure 6.7. A biochemical system with a competitive enzymatic reaction. (a)
Original model (b) PPTA model (c) QSSA model.
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S1 and S2 are often produced and consumed via various reactions, this system

contains reactions to model productions and consumptions of S1 and S2 . The

PPTA method of this system removes the substrate-dissociation reactions from C1

and C2 as illustrated in Figure 6.7(b), resulting in a model with seven species and

10 irreversible reactions. The QSSA method further reduces the complexity of

the system by removing more species and reactions in the competitive enzymatic

reaction as illustrated in Figure 6.7(c), resulting in a model with four species and

eight irreversible reactions.

The three models of this system are simulated using the following initial condi-

tions:

(|E |0, |S1 |0, |S2 |0, |P1 |0, |P2 |0, |C1 |0, |C2 |0) = (10, 0, 0, 0, 0, 0), (6.8)

and the rate constants:

kb1 = 2 · 10−5; k1 = 102; k−1 = 102; k2 = 0.1; kp1 = 10; kd1 = 0.2;

kb2 = 10−5; k3 = 200; k−3 = 102; k4 = 0.15; kp2 = 10; and kd2 = 0.2.
(6.9)

The values of rate constants for the productions and consumptions of S1 and S2

are chosen so that the consumption rate constants are relatively high to capture

isolation of substrates from binding to the enzyme and so that both substrates are

present in low counts throughout the simulations. In other words, for all t ≥ 0,

〈|S1 | (t)〉 ≤ 100 and 〈|S2 | (t)〉 ≤ 100. (6.10)

The values of basal transformation rate constants kb1 and kb2 are chosen so that

basal transformation rates are much smaller than those from the catalyzed reactions

when the substrates are present in low counts. In other words,

k2Etot � 100kb1 and k4Etot � 100kb2. (6.11)

Figure 6.8 shows the results from the simulations of the three models. The

estimated means of |S1 | and |S2 | are shown in Figures 6.8(a) and (b), while the

estimated standard deviations of |S1 | and |S2 | are shown in Figures 6.8(c) and

(d). In this system, both the means and the standard deviations of |S1 | and |S2 |
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Figure 6.8. Comparison of the original model of competitive enzymatic reaction
model, its PPTA model, and its QSSA model. The initial conditions: |E |0 = 10
and 0 molecule for the rest of the species, and the rate constants: kb1 = 2 · 10−5,
k1 = 102, k−1 = 102, k2 = 0.1, kp1 = 10, kd1 = 0.2, kb2 = 10−5, k3 = 200, k−3 = 102,
k4 = 0.15, kp2 = 10, kd2 = 0.2 are used. (a) Mean of |S1 |. (b) Mean of |S2 |.
(c) Standard deviation of |S1 |. (d) Standard deviation of |S2 |.

from the PPTA model and the QSSA model track those from the original model

very well with a substantial improvement in simulation time as shown in Table 6.1.

Unlike the other enzymatic reaction systems presented in this section, however, the

PPTA model achieves a higher speedup compared with the QSSA model in this

system. While the simulation of the the QSSA model takes 63.24 seconds achieving

62 times speedup compared with that of the original model, the simulation of the

PPTA model takes only 35.78 seconds, achieving 109 times speedup. Thus, for

this competitive enzymatic reaction model, the PPTA is able to outperform the
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QSSA model in terms of speedup. One interpretation of this result is that, while

the QSSA model can advance the time step further in each reaction event than

the PPTA model, the evaluations of the kinetic laws of the reduced competitive

enzymatic reactions in the QSSA require higher computational costs due to the

complexity of the denominator term, resulting in just enough overhead for the

PPTA model to outperform the QSSA model.

6.2 Operator Site Reduction Results

This section illustrates the application of the operator site reduction. For this

analysis, a system for a synthesis of protein P based on the binding configuration

of the operator site, O , is considered. In this system, the operator site is assumed

to have five operator-binding states, Ci, i ∈ [0, 4], each of which specifies whether

or not its configuration based on an occupation of two repressors, R1 and R2 , one

activator, A, and RNAP on the operator region can lead to a production of P as

depicted in Table 6.2. Here, the operator state C0 represents the state in which

O is not bound to any species. When the operator is in this state, P cannot be

synthesized. Binding of A and RNAP to O forms an operator complex C1 which

can lead to a synthesis of P . A synthesis of P is also possible from a complex C2

which is formed by binding of RNAP to O . The binding of repressor species to O

Table 6.2. Configuration of the operator site for a case study of the operator site
reduction. Each state specifies if a given species is bound (i.e., ◦) or not bound
(i.e., –). It also specifies if that operator state can lead to a synthesis of protein or
cannot lead to any protein production (i.e., ×).

State A RNAP R1 R2 Synthesis

C0 – – – – ×
C1 ◦ ◦ – – P
C2 – ◦ – – P
C3 – – ◦ – ×
C4 – – – ◦ ×
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forms complexes which prevent A or RNAP from binding to O . Thus, the operator

states, C3, and C4, do not lead to a production of P .

This system is first modeled using only elementary reactions as shown in Fig-

ure 6.9(a). This model has 10 species and 10 irreversible reactions. By applying

our operator site reduction to this model, the size of the model is then reduced to

five species and two irreversible reactions as shown in Figure 6.9(b). These two

models are simulated for 1, 000 time units. In order to analyze how the level of the

activator influences the protein synthesis, each model is simulated for two different

values of |A|0. The first simulation has |A|0 = 10 to examine a case where the

activator level is low, while the second one has |A|0 = 100 to examine a case where

the activator level is high. For both sets of simulation, the rest of the species are

initialized so that:

(|O |0, |R1 |0, |R2 |0, |RNAP |0) = (1, 50, 100, 30), (6.12)

while the other species are initially set to 0. In each simulation, the values of the

unbinding rate constants, k−i, i ∈ [1, 4] are all set to 1.0, while the other rate

constants are defined as follows:

k1 = 0.1; k2 = 0.001; k3 = 0.2; k4 = 0.05; k5 = 0.01; and k6 = 0.001. (6.13)

Figure 6.10 shows the results from the simulation of the original model and the

abstracted model for the |A|0 = 10 case and the |A|0 = 100 case. Figure 6.10(a)

shows the mean time evolution of |P | while Figure 6.10(b) shows the time evolution

of the standard deviation of |P |. These results indicate that, for both levels of |A|0
in this system, the abstracted model approximates the original model very well.

Furthermore, the abstracted model is able to achieve significant acceleration for the

simulation. While the entire simulation of the original model takes 25.66 seconds,

that of the abstracted model takes only 0.55 seconds, which represents more than

46 times speedup.
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Figure 6.10. Simulation results of the original model and the abstracted model
shown in Figure 6.9. (a) Mean of P and (b) standard deviation of P .
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6.3 Dimerization Reduction Results

To illustrate the application of the dimerization reduction, consider the model

shown in Figure 6.11(a). This model includes a dimerization reaction that produces

a dimer, A2 , from a monomer, A, with the forward rate constant, kf , and the reverse

rate constant, kr. In this model, only the monomer form of A can degrade with

rate constant kd. Also included in this model is a production of species P which

uses A2 as a modifier to enhance the rate of the production. This model has three

species and four irreversible reactions. By applying the dimerization reduction, this

model can be transformed to the model shown in Figure 6.11(b). This abstracted

model expresses the states of the monomer and the dimer in terms of the total

molecular counts in order to reduce the complexity of the model to two species and

two irreversible reactions.

These two models are simulated for 100 time units to obtain the time evolution

of P . Each simulation starts with the state where each of the initial molecular

counts is given by:

(|A|0, |A2 |0, |P |0) = (100, 0, 0). (6.14)

The parameters of the two models are first chosen to be as follows:

kf = 1.0; kr = 10.0; kd = 0.05; and kp = 0.01. (6.15)

Then, another set of simulation runs is performed by changing kf to be 10.0 for

both the original model and the abstracted model. These results are shown in

Figure 6.12. Figure 6.12(a) represents the time evolution of the average of P , while

Figure 6.12(b) represents the mean time evolution of the standard deviation of

P . For both values of kf , the average behavior of P from the abstracted model

tracks that from the original model very well. The standard deviation, on the other

hand, may seem different. However, the shapes and the trends of the standard

deviations obtained from the two models are very similar, and, considering the value

of the standard deviations over the averages, the abstracted model approximates the

original model relatively well. Furthermore, the speedup gained by the dimerization
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Figure 6.12. Simulation results of the original model and the abstracted model
shown in Figure 6.11. (a) Mean of P and (b) standard deviation of P .
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reduction in this system is significant. While the entire simulation of the original

model takes 675.97 seconds, that of the abstracted model takes only 2.08 seconds,

achieving close to 325 times speedup.

6.4 Stoichiometry Amplification Results

This section exemplifies an application of the stoichiometry amplification by

using the Lotka model [78] whose graphical representation is depicted in Figure 6.13.

The Lotka model, which possesses remarkable dynamical properties, has been used

for a case study of the SSA [53]. This model can be interpreted as a predator-prey

ecosystem in which the behavior of two competing species is governed [115]. In this

predator-prey interpretation, species Y1 is viewed as a predator, while species Y2

is viewed as a prey. Hence, the reaction that takes one molecule of Y1 and one

molecule of Y2 to produce two molecules of Y2 can be seen as a reproduction of a

predator by feeding on a prey. Species X̄ represents food for a prey species which

is assumed to be controlled to be in a constant amount. Thus, the reaction that

takes one molecule of Y1 and one molecule of X̄ to produce two molecules of Y1

and one molecule of X̄ can be seen as a reproduction of a prey by feeding on its

food. Species Z represents the number of dead predators by natural causes. Thus,

the reaction that takes one molecule of Y2 to produce one molecule of Z can be

viewed as the eventual demise of a predator.

This Lotka model is used to illustrate an application of the stoichiometry am-

plification, which is indicated by the amplification factor, a, in Figure 6.13. Three

different amplification factors, 2, 5, 10, are used to compare the simulation results

with the original model (i.e., a = 1). Each model is simulated for 0.1 time units

from the initial state:

(
∣

∣X̄
∣

∣

0
, |Y1 |0, |Y2 |0, |Z |0) = (1, 1000, 1000, 0). (6.16)

The parameters of each model are set as follows:

k1 = 10.0; k2 = 0.01; and k3 = 10.0. (6.17)

The simulation results are shown in Figure 6.14. The time evolutions of the mean
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Figure 6.14. Simulation results of the Lotka model with the stoichiometry
amplification. (a) Mean time evolution of Z (b) standard deviation.
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and the standard deviation of Z for each model are presented in Figure 6.14(a)

and Figure 6.14(b), respectively. It is clear from these figures that the mean

time evolution of Z from each amplified model tracks that from the original model

very well. The standard deviation of Z , on the other hand, has some perceptible

differences between the amplified models and the original model. Figure 6.14(b)

shows that, the higher the amplification factor is, the larger the standard deviation

tends to be. However, the differences in the the standard deviation are very small

considering the value of the mean as shown in Figure 6.15, which presents the ratio

of the standard deviation and the mean over time. The computational performance

gained by the stoichiometry amplification is significant. The entire simulation of

the original model takes 11.11 seconds, while that of the stoichiometry of 2 takes

only 5.90 seconds. The stoichiometry of 5 and 10 can further shorten the simulation

time to be 2.71 seconds and 1.81 seconds, respectively. Thus, the speedup factor

of the stoichiometry amplification on the Lotka model is roughly the same as the

amplification factor.
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CHAPTER 7

GENETIC REGULATORY NETWORK

ANALYSIS

Both the REB abstraction methods and the FSS abstraction methods coupled

with temporal behavior analysis methods are implemented in our automated mod-

eling and analysis tool called REB2SAC [73, 74] which is integrated within our

BioSim tool [2] that provides a user-friendly graphical user interface. This chapter

presents the application of our tool to the analysis of realistic genetic regulatory

networks. Section 7.1 presents the analysis of temperature control in expression

of type 1 pili using our model abstraction and compares computational (in silico)

results with experimental results. Section 7.2 applies our tool to a larger genetic

regulatory network model to examine the phage λ lysis/lysogeny decision switch.

Models of both systems are available for download at [2].

7.1 Temperature Control in the E. coli Fim Switch

Type 1 pili are the foremost virulence factor in Uropathogenic Escherichia coli

(E. coli), which is believed to be responsible for 70-90 percent of urinary tract

infections [116]. The pili are 1-2µm long and 7nm-thick helical rods with a 3nm-

wide tip, which contains two adapter proteins and adhesins capable of mediating

E. coli attachment to the mannose-containing receptors found on the surface of

many host tissue cells [116, 71]. Type 1 pili are thus thought to aid the infection

and colonization process by enhancing the ability of E. coli to stick to host cells

and by thus enabling them to colonize the bladder. However, while pili provide a

means for infection, there are some disadvantages for E. coli in being piliated. For

example, a highly piliated population leads to preferential activation of the host

immune system, which can rapidly clear the infection.
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The expression of type 1 pili in E. coli is phase variable, with cells randomly

switching between fimbriate (ON) and afimbriate (OFF) phases based on environ-

mental conditions [45, 82, 61]. This phase variation is driven by the inversion

of a 314bp chromosomal region known as the fimbriation (fim) switch, which

contains the promoter for fimA and other genes encoding structural pili subunits

[5, 39, 82]. The inversion requires either FimB or FimE site-specific recombinases

[69]. Whereas protein FimB promotes recombination with little orientational bias,

protein FimE promotes recombination largely in the ON-to-OFF direction [19].

The empirical observations such as [45] revealed that the inversion of the fim

switch is controlled by environmental conditions such as temperature and medium.

Their analysis showed, among other things, that the wild-type FimE -dependent

ON-to-OFF switching frequency decreases as the temperature increases in both

defined-rich and minimal media, while the FimB-promoted switching frequency

increases as the temperature increases from 28 ◦C to 37 ◦C, and then decreases as

the temperature continues to increase from 37 ◦C to 42 ◦C in both media. The

experimental results also indicate that the wild-type ON-to-OFF switching rate is

much faster than FimB-promoted switching rate alone, allowing E. coli to rapidly

undergo afimbriation under appropriate conditions.

Figure 7.1 shows the basic genetic network controlling type 1 fimbriae phase

variation. When the switch is in the ON position, as shown in Figure 7.1, the

transcription of genes fimA through fimH can be initiated since the corresponding

promoter located within the fim invertible element is in the correct orientation. On

the other hand, when the switch is in the OFF position, the promoter is in the

opposite orientation, and the transcription of the corresponding genes cannot be

initiated. Global regulator proteins, Lrp, H -NS , and IHF also play important roles

in the regulation of the fim switch inversion system by, among other things, acting as

sensors of the environmental conditions. For example, H -NS acts in a temperature-

dependent manner when it binds to the regions containing promoters of genes fimB

and fimE and represses the expression of those genes [88]. Additionally, Lrp binds to

the 3 Lrp-sites and changes fim switching rates [17, 46, 99]. Since H -NS also down-
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Figure 7.1. Type 1 pili genetic regulatory network (based on [116, 89, 99, 18]).
Structural pili subunits are encoded by fimA and other downstream genes which
are transcribed only when the fim switch is in the ON position. Recombinases
FimB and FimE bind to the four adjacent half-sites and invert the switch with
different rates. FimE is strongly biased in the ON-to-OFF direction, while FimB
is close to fair. A small protein H-NS acts in a temperature-dependent manner
and represses the expression of the two recombinases. Lrp stimulates and inhibits
switching based on its occupancy at 3 Lrp sites [99]. It has been further proposed
that IHF is needed for any observable phase variation as it plays a structural role
during switching via the ability to introduce sharp bends into the DNA [18].

regulates the expression of lrp [91, 11], Lrp also acts effectively in a temperature-

dependent manner. Finally, it is shown that IHF binds to both IHF I and IHF II

and is required for any observable phase variation in part by playing a structural

role in the switching via the ability to introduce sharp bends into the DNA [18].

Wolf and Arkin studied the behavior of the fim system and ascertained the im-

portance of discrete and stochastic mechanisms in its dynamics [116]. In particular,

the fim element inversion events are manifestly discrete and stochastic—randomly

promoted by FimB and FimE bindings to the four adjacent DNA half-sites, IRL

and IRR, and regulated by the corresponding Lrp or IHF occupancies of cis-

regulatory genomic elements present in low integer counts. Our computational

analysis is interested in examining how different temperature settings (28 ◦C, 37 ◦C,

and 42 ◦C) quantitatively affect the wild-type and fimB -promoted ON-to-OFF

inversion of the fim switch in minimal medium. The goal of our analysis is to

quantitatively determine the effect of temperature on the ON-to-OFF switching

probability both total and FimB-driven over one cell generation, and to compare it
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with the experimental results in minimal medium [45]. To address the significant

computational challenges of the quantitative analysis of this system, REB2SAC is

utilized for system modeling and analysis at various levels of abstraction [74]. This

analysis expands our previous work [75] which studied the effect of H -NS and Lrp

levels on phase variation rates in E. coli using this model abstraction approach,

demonstrating significant acceleration in the analysis time.

For our analysis, a detailed kinetic and thermodynamic reaction-level model

of the fim switch inversion system is first developed. This models the regulation

of FimB and FimE states and the switch inversion based on the configuration

of various bindings of its regulatory proteins to the fim switch DNA region as

described in Appendix A. Our switch inversion model then exactly simulates

the discrete-stochastic behavior of this network at various temperature settings

in silico to compare the results with those derived from empirical observations [45]

by comparing the mechanism of ON-to-OFF switching probabilities. Our detailed

model contains 31 species and 52 irreversible reactions, and has been simulated

for 100,000 runs using our implementation of SSA for various temperature settings

(i.e., 28 ◦C, 37 ◦C, and 42 ◦C). Each simulation starts with the switch in the ON

position and is run for up to one cell generation of 20 minutes as in [116]. If the

switch moves to the OFF position within this time limit, then the simulation is

counted as an ON-to-OFF switching event. The ON-to-OFF switching probability

is calculated as the number of the ON-to-OFF switching events divided by the total

number of simulations with the same initial conditions. Alternatively, this could

be viewed as computing the total ON-to-OFF switching probability by summing

up the switching events through all possible transition states 3-8, while just the

FimB-driven events only include transitions for states 4, 7, and 8. Our results are

qualitatively and quantitatively consistent with those obtained with the empirical

observations [45] (see Table 7.1). The simulation of this model takes 30.5 hours on

a 3GHz Pentium4 with 1GB of memory.

To help substantially improve the speed and efficiency of the analysis of the

switching probability, the original model can be transformed into an abstracted
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Table 7.1. ON-to-OFF switching probability in minimal medium obtained with the
empirical method [45] and the computational methods from the detailed model and
the abstracted model at different temperatures. The results from the simulations
are given for a 95% confidence interval calculated using the binomial distribution.

probability per cell per cell generation (10−5):
28 ◦C 37 ◦C 42 ◦C

Empirical results
wild type 7,000 1,800 600

FimB-promoted 69 ± 26 110 ± 24 34 ± 28
Detailed model

wild type 7,305 ± 161 2,002 ± 87 608 ± 48
FimB-promoted 65 ± 16 97 ± 19 40 ± 12

Abstracted model
wild type 7,242 ± 161 2,000 ± 87 609 ± 48

FimB-promoted 71 ± 17 97 ± 19 49 ± 14

model by collectively using the abstraction methods within REB2SAC. For the

abstraction of the fim switch inversion model, the abstraction engine in REB2SAC

is configured as shown in Figure 7.2. First, the operator site reduction is applied to

see if any transcriptional regulator binding/unbinding reactions can be reduced (line

1). With this abstraction method, the production reaction scheme of FimB and

FimE (Figure A.1) as well as the fim element configuration subnetwork (Table A.3)

can be reduced. Then, modifier constant propagation is applied to the model to

see if any species can be removed (line 2). With this method, |H -NS | and |RNAP |
can be replaced with constants whose values are set to the corresponding initial

concentrations so that H -NS and RNAP are removed from the model.

Algorithm 7.1.1 Model FimAbstractionEngine(Model M)

1: M ← OpSiteReduction(M)
2: M ←ModifierConstantProp(M)
3: return M

Figure 7.2. Top level abstraction algorithm for fim switch inversion model.
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After applying the abstractions in Figure 7.2, our original model with 31 species

and 52 irreversible reactions is transformed to a model with 3 species (i.e., FimB ,

FimE , and switch), and 10 reactions whose structure is shown in Figure 7.3.

This highlights an additional benefit of abstraction in facilitating a higher level

view of the network being analyzed, since it removes the low level details such

as intermediate species and reactions that involve them. This makes it easier

to visualize crucial interactions including identification of the key species that

ultimately inhibit and/or activate transcription. The REB2SAC tool can also

output the abstracted model as SBML to allow it to be visualized or further

analyzed using any SBML compliant tool. Finally, REB2SAC can output the model

in presentation MathML to visualize complex rate laws using an XML/HTML

browser.

In order to compare the abstracted model with the original one, we have per-

formed the same number of simulations using the same simulator on the same

computer, and similarly computed the wild-type and FimB-promoted ON-to-OFF

switching probabilities for one cell generation in minimal medium. The results

from the abstracted model are in close agreement with those from the detailed
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one as shown in Table 7.1, and thus are also closely comparable with the results

from the empirical analysis [45]. However, the computational gains from the model

abstraction are significant. The abstracted model simulation of 100,000 runs takes

only 1.85 hours, which is a speedup of about 16 times compared with the runtime

of the original model simulation.

The results from both the detailed and the abstracted model are generated

via 100,000 simulation runs for each temperature setting, making the standard

errors associated with the estimated wild-type ON-to-OFF switching probabilities

in the range of 10−4 to 10−3. To further improve the computational time of wild-

type switching probability analysis without dealing with a statistical uncertainty

involved in Monte Carlo simulation approach, a FSS model of the switch inversion

system is automatically generated from the abstracted switch inversion model using

REB2SAC. To allow for a relatively wide range of fluctuations in the levels of FimB

and FimE , the upper limit molecular counts of the recombinases are set to be

double their initial molecular counts (Table A.2). Since species switch only has two

states, OFF and ON, the upper limit molecular count of this species is set to one.

Then, the numbers of system states at the temperature setting of 28 ◦C, 37 ◦C, and

42 ◦C become 59,898, 25,326, and 13,446, respectively. The wild-type switching

probability can then be analyzed by iterating the probability distribution for one

cell generation time, and calculating the sum of the probabilities of the states where

the fim switch is ON. Figure 7.4 shows the comparison of the results. The results

are in very close agreement with those from the other computational model and, in

turn, with the empirical observation from [45]. The entire FSS model analysis of

the three temperature settings takes only 3 minutes, achieving a total speedup of

more than 600 times compared with the 100,000 stochastic simulation runs of the

original model.

7.2 Phage λ Developmental Pathway

Another genetic regulatory network to which we applied REB2SAC is the phage

λ lysis/lysogeny developmental pathway in E. coli. Phage λ is a virus that infects
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E. coli cells to multiply itself. There are two strategies that this phage can take to

replicate itself as shown in Figure 7.5. One is called lysis where the phage creates

copies of itself inside the cell and bursts the cell to escape and infect other cells. The

other one is a more passive approach called lysogeny where the phage integrates its

DNA into the host chromosome and replicates its DNA through cell division.

The genetic circuit controlling the phage λ lysis/lysogeny decision is shown in

Figure 7.6. The key proteins involved in the phage λ lysis/lysogeny developmental

decision are CI , Cro, N , CII , and CIII . The lysis/lysogeny decision is a race

conditon between CI and Cro. A high concentration of CI leads to the lysogenic

pathway, while a high concentration of Cro leads to the lytic pathway. The core

component of the genetic circuit is the three operator sites called the λ switch to

which CI and Cro dimers can competitively bind to influence the activities of the

promoters PRM and PR [95]. Binding of the CI dimer to the λ switch in wild

type setting represses the transcription of the cro gene by preventing RNAP from

binding to PR. When the concentration of CI dimer is low, it tends to occupy only

one operator site in the λ switch, which turns on the expression of gene cI from

PRM only at a very low basal rate. When the concentration of CI dimer is medium,

it tends to occupy two operator sites in the λ switch, activating the expression of

cI from PRM . However, when the concentration of CI dimer is high, it tends to

occupy all three operator sites in the λ switch, which represses the expression of

cI from PRM by preventing RNAP from binding to PRM . Binding of Cro dimer

to the λ switch in the wild type represses the transcription of cI by preventing

RNAP from binding to PRM . When the concentration of Cro dimer is low, it tends

to occupy only one operator site in the λ switch; it turns on the expression of cro

from PR at a high basal rate. On the other hand, when the concentration of Cro

dimer is high, it tends to occupy all three operator sites in the λ switch, which

prevents the expression of cro from PR.

Immediately after the infection, there are no CI and Cro molecules in the cell

[9]. In this condition, while CI can be synthesized from two promoters, PRM , and

PRE , the synthesis of Cro is higher than that of CI since the basal transcription rate
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Lysogenic Pathway Lytic Pathway

Figure 7.5. Phage λ lysis/lysogeny developmental pathway. Phage λ has two
pathways to multiply itself called the lytic pathway and the lysogenic pathway.
In the lytic pathway, the phage first creates proteins needed for formation of new
viruses. It then replicates its DNA to create new viruses inside the cell. These
viruses burst the cell to escape to infect other cells. In the lysogenic pathway, the
phage integrates its DNA into the host chromosome. It then replicates its DNA
passively via cell division.
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Figure 7.6. Phage λ decision circuit. The key proteins involved in the phage
λ lysis/lysogeny developmental decision are CI, Cro, N, CII, and CIII. The ly-
sis/lysogeny decision is a race conditon between the states of CI and Cro. A high
concentration of CI leads to the lysogenic pathway, while a high concentration
of Cro leads to the lytic pathway. In order for the phage to take the lysogenic
pathway, antiterminator, N, needs to be synthesized at the early stage of the cell
cycle. This antiterminator can help RNAP go through the termination sites, TL1

and TR1, facilitating transcriptions of genes cII and cIII. CIII can prevent CII
from degrading by binding to proteases P1 and P2 [9], and CII activates the
transcription of cI from the PRE promoter. Further description of the genetic
circuit can be found in [9] (courtesy of [3]).
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of cro is higher. Thus, the favored outcome of the lysis/lysogeny decision is lysis at

the early stage of the decision. In order for the phage to take the lysogenic pathway,

the enhanced transcription of cI from the PRE promoter which is activated by the

presence of CII is required. For this to happen, the antiterminator, N , needs to be

synthesized at the early stage of the decision so that it can help RNAP go through

the termination sites, TL1 and TR1 to facilitate synthesis of CII and CIII at the

early stage of the decision. Since CIII can prevent CII from degrading, a high

concentration of CIII can lead to a high concentration of CII .

We have constructed a REB model for the phage λ decision circuit system

which is described in Appendix B. Our initial REB model includes 55 species and

69 reactions, and the set of interesting species, Si, includes CI and Cro. This

model is then automatically abstracted using REB2SAC. The abstraction engine in

REB2SAC is configured for the phage λ decision circuit model so that it collectively

applies REB abstraction methods as shown in Figure 7.7.

The seven abstraction methods, irrelevant node elimination (line 3), modifier con-

stant propagation (line 4), rapid equilibrium approximation (line 5), standard

quasi-steady-state approximation (line 6), operator site reduction (line 7), similar

reaction combination (line 8), and dimerization reduction (line 9), are applied

iteratively until there is no change in the model. Irrelevant node elimination and

Algorithm 7.2.1 Model LambdaAbstractionEngine(Model M)

1: repeat

2: M ′ ←M
3: M ← IrrelevantNodeElim(M)
4: M ←ModifierConstantProp(M)
5: M ← RapidEqApprox(M)
6: M ← StandardQSSA(M)
7: M ← OpSiteReduction(M)
8: M ← SimilarReactionComb(M)
9: M ← DimerReduction(M)

10: until M ′ = M
11: return M

Figure 7.7. Top level abstraction algorithm of the phage λ decision circuit model.
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modifier constant propagation are applied first to reduce the complexity of the

model without compromising accuracy. The rapid equilibrium approximation is

applied before the standard quasi-steady-state approximation so that, whenever the

model contains patterns that match the conditions for both methods, the former

has precedence in order to reduce the complexity of the reaction rate laws. The

similar reaction combination is applied right after the operator site reduction to

immediately combine the structurally similar reactions that are often generated by

operator site reduction. The dimerization reduction is placed after operator site

reduction since an operator site with a dimer molecule as a transcription factor

cannot be reduced otherwise. After collectively applying the REB abstraction

methods, the REB model is reduced to only 5 species and 11 irreversible reactions as

shown graphically in Figure 7.8. This figure shows the biological gene-regulatory

network of the phage λ lysis/lysogeny decision circuit, and it is quite similar to

the high-level hand-generated diagram in Figure 7.6. The structure of this graph,

however, is automatically generated using abstractions from the low level model.

The goal of our analysis using this computational model is to determine the

probability that the lysogenic pathway is chosen under various conditions. For

example, it has been shown experimentally that the probability of lysogeny in-
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creases as the multiplicity of infection (MOI)—the number of phages simultaneously

infecting the same cell—increases [70]. Thus, our analysis first predicts the effects

of MOI on the probability of lysogeny. For this analysis, both the original model

and the abstracted one are simulated for 10,000 runs using the same simulator,

an optimized implementation of SSA within REB2SAC, on a 3GHz Pentium4 with

1GB of memory to have a reasonable statistical confidence as well as to measure the

speedup gained via abstractions. Each simulation is run for up to one cell cycle while

tracking the number of molecules of CI and Cro. If the number of CI molecules

exceeds 328 (i.e., 145 CI dimers) before the number of Cro molecules exceeds 133

(i.e., 55 Cro dimers), then the simulation run is said to result in lysogeny [9]. The

simulations are run for MOIs ranging from 1 to 50. While the simulation of the

original REB model takes 56.5 hours, the abstracted model takes only 9.8 hours,

which is a speedup of more than 5.7 times. Figure 7.9(a) shows the probability of

lysogeny for MOIs from 0 to 10 for both the original REB model and the abstracted

one. The results are nearly the same, yet with a substantial acceleration in runtime.

The n-ary transformation is able to automatically convert our reduced REB

model for the phage λ decision circuit into a SAC model. However, since the

species CI and Cro influence many reactions, our automated analysis finds that 10

critical levels are needed for species CI and 10 are needed for species Cro. This is

too many critical levels for the Markov chain analyzer within ATACS. Fortunately,

many of these critical levels are very close together and can be combined with little

loss in accuracy. Therefore, while we decided to use nine levels for species CI and

four levels for CII, we used only two levels for each of the species Cro, N, and CIII.

We analyzed the SAC model using Markov chain analysis. The probability of

lysogeny is calculated by summing the probability of states that reach the highest

level of CI. We compare our results with both experimental data and previous

simulations performed by Arkin et al. on a complete master equation model. The

experimental results are from Kourilsky [70]. Since it was not practical to measure

the number of phages that infect any given cell, Kourilsky measured the fraction of

cells that commit to lysogeny versus average phage input (API) (i.e., the proportion
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of phages to E. coli within the population). Kourilsky performed experiments for

both “starved” E. coli and those in a “well-fed” environment. He found that the

fraction that commits to lysogeny increases with increasing API, and that this

fraction increases by more than an order of magnitude in a starved environment

over a well-fed environment.

To map simulated MOI data onto API data, Arkin et al. used a Poisson distri-

bution of the phage infections over the populations:

P (M, A) =
AM

M !
e−A (7.1)

Flysogens(A) =
∑

M

P (M, A) · F (M) (7.2)

where M is the MOI, A is the API, and F (M) is the probability of lysogeny

determined by Markov analysis. We also used this method to map our MOI

data. The results are shown in Figure 7.9(b). The individual points represent

experimental measurements while the lines represent simulation results. Both the

Arkin et al. simulation and our SAC model results track the starved data points

reasonably well. Our SAC model results, however, are found in less than 7 minutes

of computation time on a 3GHz Pentium4 with 1GB of memory. While modern

computer technology and algorithmic improvements would greatly improve the

simulation time of the Arkin et al. model, these results would still take several

hours to generate on a similar computer to ours. Another notable benefit of our

SAC method is that it can also produce simulation results for the well-fed case in

about 7 minutes. These results could likely not be generated even today using the

Arkin et al. master equation simulation method, since the number of simulation

runs necessary is inversely proportional to the probability of lysogeny (i.e., about

two orders of magnitude greater in the well-fed case than in the starved one).



CHAPTER 8

CONCLUSIONS

Systems biology—albeit still its infancy—has the potential to revolutionize how

biological research is conducted. As more and more critical biological data are

becoming available at a rapid pace and as the biological questions being addressed

are becoming more complex and challenging, integration of computational methods

with the process of biological research becomes more imminent. Consequently,

development of efficient and effective computational analysis is crucial to the success

of systems biology research to gain further understanding of systems-level biological

properties and to apply such knowledge to better control the functions of biological

systems. This dissertation has introduced one such methodology and illustrates

its usefulness by applying it to a number of systems. This chapter concludes the

dissertation by first summarizing the dissertation in Section 8.1, and then presenting

possible future work in Section 8.2.

8.1 Summary

This dissertation presents a general methodology for systematically and au-

tomatically abstracting the complexities of large-scale biochemical reaction-based

networks. The REB model abstractions significantly facilitate efficient temporal

behavior analysis of such systems by substantially reducing the problem dimension-

ality in both species and reactions, thus potentially allowing for both simulation

time acceleration and computability gains while facilitating a high-level view of the

network. To improve the numerical analysis time, a REB model can be further

abstracted to a FSS model to allow for state space exploration based temporal

behavior analysis approach on the underlying Markov chain. The system state space

can be more aggressively reduced by transforming a REB model to a SAC model,
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enabling further improvement in the computational analysis time. Furthermore,

since our approach allows for multiple levels of abstraction, it is broadly applicable

to a wide range of biological systems and their representations—from CCK models

to SCK models—including the genetic regulatory networks upon which we have

chosen to focus in this dissertation.

The abstraction methods presented in this dissertation coupled with a num-

ber of temporal behavior analysis methods are implemented in our modeling and

analysis tool REB2SAC [73, 74]. By performing these transformations systemati-

cally and automatically and allowing an easily-configurable reduction control using

REB2SAC, accuracy and efficiency of modeling biochemical systems at various lev-

els of resolution can be significantly improved. Furthermore, to achieve better user

experience of the tool, REB2SAC is integrated into a graphical-user-interface-based

analysis tool called BioSim [2].

As a case study, we have illustrated applications of individual REB abstraction

methods using small systems. This reveals that each abstraction method—even

applied alone—has the potential to substantially accelerate the simulation time

while maintaining a reasonable accuracy. Furthermore, we have collectively applied

several abstraction methods within REB2SAC to systems-level analysis of a couple

of genetic regulatory networks.

These preliminary results are promising. In the analysis of temperature control

of expression of type 1 pili in E. coli, we have quantitatively estimated and analyzed

the temperature effects on the wild-type and FimB-promoted ON-to-OFF switching

probabilities in minimal medium, which are shown to be consistent with those ex-

pected empirically from [45]. Furthermore, using REB2SAC, we have demonstrated

how the models with various levels of abstraction can be generated and utilized to

obtain results that agree with those from the original fim switch inversion model

at two orders of magnitude improvement in computational performance. In the

analysis of the phage λ developmental pathway, we have demonstrated that the

probabilities of lysogeny for various MOI points obtained from the original phage

λ circuit model can be approximated well by the results from the abstracted model
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with substantial computational gain. Furthermore, using the SAC model of the

phage λ decision circuit, we are able to estimate the experimental results of the

fraction of lysogens over API under various conditions [70]. The SAC model results

are generated in a matter of minutes while the simulation results of REB models

with a reasonable statistical confidence would have taken many hours to generate.

Therefore, from case studies, among other things, we are able to: (1) ascertain

the internal self-consistency of our approach by successfully cross-validating each

abstraction level output against the results of the full underlying SCK model

simulations; and (2) accurately estimate the biologically relevant properties, which

typically require substantial numbers of hours of computation time via the original

REB representation, yet could be computed in only minutes using our abstraction

approach.

8.2 Future Work

Although our automatic and systematic modeling and analysis methodology for

biochemical systems has demonstrated its effectiveness and usefulness, it can be im-

proved in many ways. This section summarizes several such research investigations

that we believe deserve some attention.

8.2.1 New Modeling Language

While standardized biochemical modeling languages such as SBML provide a

framework to, for example, ease exchange of models and development of modeling

and analysis tools, they come with some disadvantages. One such limitation of

SBML when it comes to automatic and systematic model abstraction is that it

cannot—without using proprietary annotations—specify types of reactions due to

its low level representation of species’ interactions to attempt to accommodate

many biochemical systems. Thus, using SBML as an input language to REB2SAC,

a heuristic approach such as identification of an enzyme species must be added

to the algorithms of various enzymatic reaction model abstractions. If, however,

a modeling language is capable of expressing which interaction is an enzymatic
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reaction and which species is used for an enzyme of a given enzymatic reaction,

then implementation of automated model abstraction can become much easier.

Such a high-level specification is particularly useful for representing transcriptional

genetic regulatory networks whereby cis-regulatory element configurations can be

clearly and compactly specified without introducing complex species. Thus, it

provides the user with a better interpretability of models. Therefore, developing

such a higher-level representation language that addresses the issues concerning

automatic generation of various abstracted models, coupled with a compiler that

transforms such a language to SBML, can be very useful.

8.2.2 More Abstraction Methods

REB2SAC can be improved by developing more abstraction methods. These

methods can be system-specific or generalized. While the advantage of general-

ized abstraction methods is apparent, system-specific abstraction methods can be

tremendously useful since each system has different types of assumptions as well

as species’ interactions. For example, a metabolic pathway has many sequential

reactions to transfer energies, which may be very different from reactions often

seen in genetic regulatory networks. Thus, tailored model abstraction methods for

each system may be able to substantially reduce the complexity of a given system

compared with generalized abstraction methods.

8.2.3 Intelligent Abstraction Selection

In the current REB2SAC, although there is a default setting, the user chooses

which abstractions to apply and in what order. While this provides a great flexibil-

ity in the selection of abstraction methods, this requires the user to be familiar

with the low-level details such as what each abstraction method does and the

unique identifier of each abstraction method. This may not be practical as the

number of abstraction methods increases. Thus, if the tool itself is able to decide

which abstractions to apply based on accuracy and efficiency criteria that the user

specifies, then the usability of the tool increases tremendously. This requires an
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intelligent abstraction selection which statically determines that set of abstraction

methods produces a model whose results closely satisfy the user’s demands. This

means, for example, that, given an enzymatic reaction model, the tool systemati-

cally determines from the model structure, the initial condition, and the parameter

values whether or not its PPTA model produces more accurate results than its

QSSA model.

8.2.4 Spatiotemporal Model Abstraction

Throughout this dissertation, regardless of a CCK model or a SCK model, our

abstraction methodology makes the well-stirred assumption. While this assumption

significantly reduces the complexity of a model, it may not be able to capture

characteristics of an in vivo biochemical system where localizations play a crucial

role in its system behavior. In such cases, in order to more accurately predict the

system behavior, spatial properties must be included in a computational model,

resulting in a substantial increase in complexity. Thus, systematic and automatic

abstraction of such spatiotemporal models is believed to be very promising.

8.2.5 More Case Studies

In this dissertation, we have primarily focused on genetic regulatory networks

because of, among other things, data availability. The two networks used in

Chapter 7 are among the most well-studied systems, which is appropriate for

the proof of concept of our abstraction methodology. Thus, in order to further

analyze the usefulness of our methodology, it can be applied to other biochemical

systems such as other genetic regulatory networks, signal transduction networks,

and metabolic networks. For example, we are in the process of applying our

methodology to three more biological systems to facilitate efficient computational

analysis. The first system is for a design of a genetic Muller C-element using

transcriptional regulatory elements [87]. The second system is to analyze how to

optimize a nonviral polymeric nucleic acid delivery to the nucleus for drug effects

[118]. The third system is the MAP kinase cascade subsystem, in which the scaffold
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called Ste5 binds to various proteins whereby combinatorial explosion via different

complex formations provides significant computational challenges [4]. Such case

studies provide not only more in silico predictions on biologically relevant properties

but also better insights into which directions this research should take.



APPENDIX A

FIM SWITCH INVERSION MODEL

The detailed fim inversion model uses a low-level reaction-based representation,

which describes reaction-scale molecular process abstraction that generally satisfies

the Markovian requirement of the SSA. The switch inversion system described here

consists of two major subnetworks: the production-degradation model for FimB

and FimE ; and the model describing the configuration of the fim switch itself

(Figure 7.1). Both are subject to external control by the global regulator proteins:

H -NS , IHF , and Lrp. As a further simplification, E. coli is assumed to be a cylinder

2µm long and 1µm in cross-sectional diameter in minimal medium conditions. Thus,

the concentration of one molecule of species is set as 1nM throughout, and the effects

of leucine on Lrp binding is ignored. This appendix describes how the detailed

model is constructed via each of the constitutive subnetworks. It also describes

how the values of the parameters and initial concentrations are determined for each

temperature setting.

A.1 FimB and FimE Regulation Model

A small protein H -NS represses the expression of both fimB and fimE by

occupying the DNA regions containing the fimB and fimE promoters and by

preventing RNAP from binding [89]. The reaction subnetwork of this process is

given in Figure A.1.

Importantly, H -NS activity is controlled, in part, by the ambient temperature,

and consequently, so is the production of FimB and FimE . It has been further

reported that the hns gene is auto-regulated and that the concentration of H -NS

generally remains constant, except during cold shock [11]. Thus, it must be changes

in promoter site binding/unbinding rates, rather than the variations in the concen-
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Figure A.1. Detailed model subnetwork of FimB and FimE regulation. Repres-
sion of fimB and fimE transcription by H-NS is represented by binding of H-NS
to their promoter sites, which prevents binding of RNAP.
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tration of H -NS that are responsible for the thermo-regulation of fimB and fimE

expression. Furthermore, although the transcription of both fimB and fimE is

repressed by H -NS , this effect varies with temperature. From 30 ◦C to 37 ◦C, the

expression of fimB increases about two-fold (119 vs. 195 Miller units), while the

expression of fimE decreases about four-fold (226 vs. 61 Miller units) [89]. This

reveals that the up-regulation of FimB by H -NS is induced by higher temperatures,

as is the case for a number of proteins due to a decrease in the concentration of the

oligomeric H -NS , which has a higher affinity for binding to DNA [90].

To estimate the H -NS rate constants for binding and unbinding to PB (i.e., k2

and k−2) at 28 ◦C, 37 ◦C, and 42 ◦C, our model uses KD values for the interaction

of H -NS with DNA at 25 ◦C, 37 ◦C, and 42 ◦C from S. typhmurium [90]. The

H -NS rate constants involved in PE (i.e., k4 and k−4) are inferred analogously,

though unlike the fimB case the negative modulation by H -NS is reduced at higher

temperatures. At 28 ◦C, fimE is estimated to produce 200 proteins in one cell

generation, while at 37 ◦C, it produces 61 proteins. These numbers are chosen to

be comparable with the ratio of the fimE expression data at 30 ◦C and 37 ◦C from

[89]. To reduce the FimE production even further at 42 ◦C, fimE is assumed to

produce 25 proteins. The KD values of H -NS binding to PB and PE used in our

model are shown in Table A.1. The binding rate constants are derived from these

KD values by assuming a rapid unbinding rate and by setting the unbinding rate

constant to 10s−1.

The initial concentration of RNAP is chosen to be 30nM, which is the same

as the one in the phage λ developmental decision pathway model in E. coli [9].

The initial concentration of H -NS as well as the RNAP binding and unbinding

Table A.1. KD for H-NS binding to cis elements.

Temperature ( ◦C) KD at PB (µM) KD at PE (µM)

28 260 442
37 442 80
42 735 30
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rate constants for both promoter sites (i.e., k1, k−1, k3, and k−3) are derived by

assuming 50 percent occupancy of H -NS and 25 percent occupancy of RNAP at

PB at 37 ◦C. This configuration is found to be effective to model the thermo-

regulation of fimB and fimE expression by H -NS . While the obtained H -NS

amount is significantly higher than the number reported in [11] (i.e., 14,000), this

may be explained by, for example, our insufficient knowledge of the underlying

H -NS dimerization and tetramerization and using the total H -NS concentration

to model the thermo-regulation.

The value of k5 is derived by assuming that FimB is produced around 200 times

in one cell generation at 37 ◦C. Using this value, fimB produces approximately 400

proteins in one cell generation in hns-negative type at 37 ◦C. Thus, the ratio of the

FimB productions in the hns-negative type and the wild type at 37 ◦C is closely

comparable with the one in the gene expression data from [89]. The production

rate constant of FimE (i.e., k6) is chosen to be the same as that of FimE .

Our model also includes degradation reactions for FimB and FimE as shown in

Figure A.1. The value of the degradation rate constant of FimB (i.e., kd1) is chosen

so that its production reaction and the degradation reaction equilibrate when the

concentration of FimB is 100nM at 37 ◦C. This number is chosen as the best fit

from the range of 1–100nM thought to be a reasonable value for |FimB | and |FimE |
[116]. The degradation rate constant of FimE (i.e., kd2) is then given the same value

as that of FimB .

The initial concentrations of the two recombinases are determined by first

running an ODE simulation of the FimB and FimE regulation model for a two

cell generation time span, given each recombinase concentration is initially set to

0nM. The concentrations of the two recombinases are then retrieved at the end

of the simulation run for each temperature setting. The concentrations of FimB

and FimE obtained from this scheme, shown in Table A.2, are designated as initial

concentrations.
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Table A.2. Initial concentrations of FimB and FimE for each temperature.

Temperature ( ◦C) |FimB |0 (nM) |FimE |0 (nM)

28 74 100
37 100 31
42 124 13

A.2 The fim Switch Configuration Model

The second major subnetwork includes binding/unbinding reactions for the fim

DNA element, which can lead to an ON-to-OFF switch inversion. These reactions

are reverse-engineered from the thermodynamic states of various fim DNA element

configurations, as discussed below, based on Gibbs free energy, ∆G, values given

in [116]. Table A.3 lists the 18 states of the fim switch configuration, given that

the switch is in the ON position. In this table, IRX represents both IRL and IRR

sites shown in Figure 7.1, where the two recombinases can bind so as to invert the

fim switch, IHF -X corresponds to the two IHF binding sites, IHF I and IHF II,

and Lrp-X represents the three Lrp sites: Lrp-I, Lrp-II, and Lrp-III. The symbols,

i, j, k, and m, represent the numbers of molecules of IHF , FimB , FimE , and

Lrp bound to the switch DNA region, while kp represents the switching reaction

rate constant. Since only states 3-8, where IHF is bound to IHF -X and either

recombinase species is bound to IRX , are configured to invert the fim switch from

ON to OFF, the values of kp are set to 0 for states 1-2, and 9-18, while the values

of kp for states 3-8 are derived using our qualitative knowledge on the switching

regulation, and chosen so that results from our detailed model fit the empirical

results. For example, since the switching rates are faster when Lrp occupies Lrp-I

and/or Lrp-II , but not Lrp-III , the values of kp(5) are chosen to be much greater

than those of kp(3) and kp(6).

The detailed fim switch configuration model is constructed by first reverse-

engineering the underlying reactions from the equilibrium statistical thermodynam-

ics model, where the probability of each switch DNA configuration is defined by

the parameters shown in Table A.3. This is accomplished by using the hypothesis
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Table A.3. State table for the ON state DNA binding of the fim switch based on
[116].

State IHF -X IRX Lrp-X ∆G (kcal) kp (s−1) i j k m
1 - - - 0 0 0 0 0 0
2 IHF - - −13 0 1 0 0 0
3 IHF FimE - −23 6.53e-8 1 0 1 0
4 IHF FimB - −23 6.5e-7 1 1 0 0
5 IHF FimE Lrp −47 3.0e-4 1 0 1 2
6 IHF FimE Lrp −59.3 8.0e-5 1 0 1 3
7 IHF FimB Lrp −47 3.7e-6 1 1 0 2
8 IHF FimB Lrp −59.3 7.5e-7 1 1 0 3
9 - FimE - −10 0 0 0 1 0
10 - FimB - −10 0 0 1 0 0
11 - FimE Lrp −34 0 0 0 1 2
12 - FimE Lrp −46.3 0 0 0 1 3
13 - FimB Lrp −34 0 0 1 0 2
14 - FimB Lrp −46.3 0 0 1 0 3
15 - - Lrp −24 0 0 0 0 2
16 - - Lrp −36.3 0 0 0 0 3
17 IHF - Lrp −37 0 1 0 0 2
18 IHF - Lrp −49.3 0 1 0 0 3
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that the binding and unbinding reactions are much more rapid as compared to

the associated switching or gene expression rates [7]. Then, the corresponding

binding and unbinding reactions are estimated from the standard free energy re-

lationship, ∆G = −RT ln (kf/kr) using a rapid unbinding rate constant of 1.0s−1.

For example, the reaction-based model for switch state 6 is reverse-engineered as

shown in Figure A.2. In this reaction scheme, the new species Pfim represents

the open binding sites, while S6 corresponds to the bound configuration where

one molecule of IHF binds to IHF -X , one molecule of FimE binds to IRX , and

three molecules of Lrp bind to Lrp-X . In other words, S6 could be thought of as

the switching dynamics analog of the closed-complex configuration in transcription

modeling. The association and dissociation rate constants for binding are deduced

from ks6/k−s6 = exp(−∆G31b/RT ).

The temperature effect in the modeling of the fim switch configuration is ex-

pressed by directly changing the initial concentration of Lrp. Furthermore, in our
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Figure A.2. Detailed model reaction of the fim switch inversion through state 6.
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model, the concentration of Lrp is quantified for each temperature setting based

on the temperature tuning mechanism of Lrp as illustrated in Figure A.3. The

concentration of Lrp at 37 ◦C is chosen to be 5nM as this value is determined to be

the physiologic concentration of free Lrp in the cell at 37 ◦C in [116]. The concen-

tration of Lrp at the other two temperature settings is set so that it qualitatively

agrees with the observation on the temperature tuning mechanism in [116]. At

28 ◦C, |Lrp|0 is set to 2nM so that Lrp molecules are unlikely to occupy Lrp-I and

Lrp-II, and moreover to prevent Lrp molecules from binding to Lrp-III, while, at

42 ◦C, |Lrp|0 is set to 20nM so that Lrp molecules are likely to occupy all three Lrp

binding sites.
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Figure A.3. Temperature tuning mechanism of Lrp. At very low concentration,
Lrp is unlikely to occupy the Lrp binding sites, and the fim switching rate is low.
When the concentration is around 5nM, Lrp tends to occupy Lrp-1 and/or Lrp-2
but not Lrp-3, and this configuration activates the switching. As the concentration
of Lrp increases even further, Lrp is likely to occupy Lrp-3 as well as Lrp-1 and
Lrp-2, and this inhibits the switching.



APPENDIX B

PHAGE λ DECISION CIRCUIT MODEL

Our phage λ lysis/lysogeny decision circuit model is based on [108, 9] and

includes the five genes: cI ; cro; cII ; cIII ; and N, and four promoters: PRM ;

PR; PRE ; and PL which are depicted in Figure 7.6. This appendix presents the

chemical reaction level representation of our phage λ decision circuit model. The

reactions shown in Figure B.1 model the behavior of the PRE promoter where CII

protein activates the production of CI protein. The dimerazation and degradation

reactions for CI and Cro are shown in Figure B.2. The production and degradation

model of the protein N is shown in Figure B.3. The production of the CIII protein

from promoter PL is modeled with the reactions shown in Figure B.4. The CII

production model is shown in Figure B.5. Our degradation mechanism of CII and

CIII is shown in Figure B.6. Figure B.7 presents reactions for the configuration of

the λ switch (i.e., OR), and Figure B.8 shows the rate constants of the λ switch

model.



154

PRE + RNAP
KORE2←→ PRE ·RNAP

PRE + CII
KORE3←→ PRE · CII

PRE + CII + RNAP
KORE4←→ PRE · CII · RNAP

PRE · RNAP
kPREb−→ PRE ·RNAP + 10CI

PRE · CII · RNAP
kPRE−→ PRE · CII · RNAP + 10CI

Constant V alue Constant V alue
KORE2 0.01 kPREb 0.00004 s−1

KORE3 0.00726 kPRE 0.015 s−1

KORE4 0.00161

Figure B.1. Chemical reaction network model of the promoter PRE .

2CI
K2←→ CI2

2Cro
K5←→ Cro2

CI
k1−→ ()

Cro
k4−→ ()

Constant V alue
k1 0.0007 s−1

K2 0.1
k4 0.0025 s−1

K5 0.1

Figure B.2. Model for CI and Cro dimerazation and degradation.
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OL + Cro2
KOL2←→ OL · Cro2

OL + CI2
KOL4←→ OL · CI2

OL + 2Cro2
KOL7←→ OL · 2Cro2

OL + CI2 + Cro2
KOL8←→ OL · CI2 · Cro2

OL + 2CI2
KOL10←→ OL · 2CI2

OL + RNAP
KOL6←→ OL ·RNAP

OL · RNAP
kPL−→ OL ·RNAP + 10N

N
k7−→ ()

Constant V alue Constant V alue
KOL2 0.4132 KOL8 0.014
KOL4 0.2025 KOL10 0.058
KOL6 0.6942 kPL 0.011 s−1

KOL7 0.0158 k7 0.00231 s−1

Figure B.3. Model for N production from promoter PL and N degradation.

NUTL + N
KNUT←→ NUTL · N

OL · RNAP + NUTL
0.2∗kPL−→ OL · RNAP + NUTL + 10CIII

OL · RNAP + NUTL · N kPL−→ OL · RNAP + NUTL · N + 10CIII

Figure B.4. Model for CIII production from promoter PL. Note that KNUT is 0.2.
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NUTR1 + N
KNUT←→ NUTR1 · N

NUTR2 + N
KNUT←→ NUTR2 · N

NUTR3 + N
KNUT←→ NUTR3 · N

NUTR4 + N
KNUT←→ NUTR4 · N

OR12 · RNAP + NUTR1
0.5∗kPR−→ OR12 · RNAP + NUTR1 + 10CII

OR12 · RNAP + NUTR1 · N kPR−→ OR12 · RNAP + NUTR1 · N + 10CII

OR · 2RNAP + NUTR2
0.5∗kPR−→ OR · 2RNAP + NUTR2 + 10CII

OR · 2RNAP + NUTR2 · N kPR−→ OR · 2RNAP + NUTR2 · N + 10CII

OR · CI2 · RNAP + NUTR3
0.5∗kPR−→ OR · CI2 ·RNAP + NUTR3 + 10CII

OR · CI2 · RNAP + NUTR3 · N kPR−→ OR · CI2 ·RNAP + NUTR3 · N + 10CII

OR · Cro2 · RNAP + NUTR4
0.5∗kPR−→ OR · Cro2 · RNAP + NUTR4 + 10CII

OR · Cro2 · RNAP + NUTR4 · N kPR−→ OR · Cro2 · RNAP + NUTR4 · N + 10CII

Figure B.5. Model for CII production from OR operator (KNUT = 0.2).

CII + CIII

K8k10|CII|
1+K11|CIII|←→ CIII

CIII
k13−−→ ()

Constant V alue
K8 0.001
k10 8.0s−1

K11 0.001
k13 0.002s−1

Figure B.6. Model for CII and CIII degradation.
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OR + CI2
KOR2←→ OR · CI2

OR + Cro2
KOR5←→ OR · Cro2

OR + RNAP
KOR8←→ OR3 ·RNAP

OR + RNAP
KOR9←→ OR12 · RNAP

OR3 · RNAP
kP RMb−→ OR3 ·RNAP + 10CI

OR12 · RNAP
kP R−→ OR12 · RNAP + 10Cro

OR + 2CI2
KOR10←→ OR · 2CI2

OR + 2Cro2
KOR13←→ OR · 2Cro2

OR + CI2 + Cro2
KOR17←→ OR · CI2 · Cro2

OR + 2RNAP
KOR16←→ OR · 2RNAP

OR + CI2 + RNAP
KOR23←→ OR · CI2 · RNAP

OR + Cro2 + RNAP
KOR26←→ OR · Cro2 · RNAP

OR + RNAP + CI2
KOR24←→ OR · RNAP · CI2

OR13 + RNAP + CI2
KOR25←→ OR13 · RNAP · CI2

OR + RNAP + Cro2
KOR27←→ OR · RNAP · Cro2

OR · 2RNAP
kP RMb−→ OR · 2RNAP + 10CI

OR · 2RNAP
kP R−→ OR · 2RNAP + 10Cro

OR · CI2 · RNAP
kP R−→ OR · CI2 · RNAP + 10Cro

OR · Cro2 · RNAP
kP R−→ OR · Cro2 · RNAP + 10Cro

OR · RNAP · CI2
kP RM−→ OR · RNAP · CI2 + 10CI

OR13 · RNAP · CI2
kP RMb−→ OR13 · RNAP · CI2 + 10CI

OR · RNAP · Cro2
kP RMb−→ OR · RNAP · Cro2 + 10CI

OR + 3CI2
KOR29←→ OR · 3CI2

OR + 3Cro2
KOR30←→ OR · 3Cro2

OR + 2CI2 + Cro2
KOR31←→ OR · 2CI2 ·Cro2

OR + CI2 + 2Cro2
KOR34←→ OR · CI2 · 2Cro2

OR + RNAP + 2CI2
KOR37←→ OR · RNAP · 2CI2

OR + RNAP + 2Cro2
KOR38←→ OR · RNAP · 2Cro2

OR + RNAP + Cro2 + CI2
KOR39←→ OR · RNAP · Cro2 ·CI2

OR + RNAP + CI2 + Cro2
KOR40←→ OR · RNAP · CI2 ·Cro2

OR ·RNAP · 2CI2
kP RM−→ OR · RNAP · 2CI2 + 10CI2

OR ·RNAP · 2Cro2
kP RMb−→ OR · RNAP · 2Cro2 + 10CI

OR · RNAP · Cro2 · CI2
kP RMb−→ OR · RNAP · Cro2 ·CI2 + 10CI

OR · RNAP · CI2 · Cro2
kP RM−→ OR · RNAP · CI2 ·Cro2 + 10CI

Figure B.7. Model for the λ switch.



158

Constant V alue Constant V alue
KOR2 0.2165 KOR27 0.01186
KOR5 0.449 KOR29 0.00081
KOR8 0.1362 KOR30 0.00069
KOR9 0.69422 KOR31 0.02133
KOR10 0.06568 KOR34 0.00322
KOR13 0.03342 KOR37 0.0079
KOR16 0.09455 KOR38 0.00026
KOR17 0.1779 KOR39 0.00112
KOR23 0.00967 KOR40 0.00008
KOR24 0.0019 kPRMb 0.001s−1

KOR25 0.02569 kPRM 0.011s−1

KOR26 0.25123 kPR 0.014s−1

Figure B.8. Constants for the λ switch model.
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