
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2858241

Analysis and Characterization of a Locally-Clocked Module

Article · August 2002

Source: CiteSeer

CITATION

1
READS

33

3 authors, including:

Kip Killpack

Intel

15 PUBLICATIONS 305 CITATIONS

SEE PROFILE

Erik Brunvand

University of Utah

117 PUBLICATIONS 1,342 CITATIONS

SEE PROFILE

All content following this page was uploaded by Erik Brunvand on 07 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2858241_Analysis_and_Characterization_of_a_Locally-Clocked_Module?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2858241_Analysis_and_Characterization_of_a_Locally-Clocked_Module?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kip_Killpack?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kip_Killpack?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Intel?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kip_Killpack?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Utah?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-5ea40279e5e6d44bd148cace9677af0a-XXX&enrichSource=Y292ZXJQYWdlOzI4NTgyNDE7QVM6MTQ5NjgxMjEyNDk3OTIwQDE0MTI2OTgxOTAzMzI%3D&el=1_x_10&_esc=publicationCoverPdf

ANALYSIS AND CHARACTERIZATION OF A

LOCALLY-CLOCKED MODULE

by

Kip C. Killpack

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Department of Electrical and Computer Engineering

The University of Utah

May 2002

Copyright c© Kip C. Killpack 2002

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Kip C. Killpack

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Chris J. Myers

Erik Brunvand

Reid R. Harrison

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Kip C. Killpack in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Chris J. Myers
Chair, Supervisory Committee

Approved for the Major Department

V. John Mathews
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

This thesis describes an evaluation of a locally-clocked module. Locally-clocked

modules can be used as synchronous datapath elements in synchronous systems or

as asynchronous elements in an asynchronous system. One key element of a locally-

clocked module is a stoppable ring oscillator (or stoppable clock). If locally-clocked

modules are to be used, their practicality must be quantified. Namely, it must be

shown that a reliable and useful stoppable clock can be built. This thesis presents

the design and evaluation of a fabricated locally-clocked sequential multiplier. The

multiplier is used as a driving example to evaluate local clocks. The design for

the stoppable clock is a hybrid of stoppable clocks from previous work. The same

gates that make up the critical path of the multiplier are used to make the delay

element of the stoppable clock. Although the stoppable clock is meant to track the

datapath under a wide range of voltages and temperatures, it is shown that the

clock requires tuning to match the critical path sometimes. This is due to the fact

that it is difficult to match the critical path exactly. In addition, some temperature

and voltage data points cause the cutoff path for the clock to be too slow. This

problem is fixed by slowing down the clock. Future designs can focus on speeding

up the cutoff path; thus, matching the critical path delay is the only limiting factor

on clock frequency. A 20-bit multiplier was fabricated through MOSIS using AMI’s

0.5µm process. The multiplier consumes 0.468 mm2 and contains 8190 transistors.

With a 5 volt power supply, the multiplier runs at 13.3 MHz and consumes 196.6

mW of power, while the stoppable clock runs at 174 MHz. This thesis presents

latency and power measurements for the multiplier and stoppable clock in addition

to a detailed analysis of stoppable clocks. Process variation is analyzed in that five

chips are tested and shown to have little variation in measured values.

To my family for their love and support

CONTENTS

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Our Work . 3
1.2 Contributions . 5
1.3 Thesis Outline . 6

2. MULTIPLIER AND TEST CIRCUITRY 7

2.1 Self-timed Datapath Elements . 7
2.2 Architecture . 9
2.3 Preliminary Analysis . 17
2.4 Test Circuitry and Test Board . 23

3. STOPPABLE CLOCK DESIGN . 28

3.1 Stoppable Clock Related Work . 28
3.2 Delay Element Related Work . 31
3.3 Our Stoppable Clock . 33
3.4 Delay Element Design . 36
3.5 Stoppable Clock Control . 40
3.6 Simulation of the Stoppable Clock . 47

4. EXPERIMENTAL RESULTS . 51

4.1 Proposed Experiments . 51
4.2 SPICE Simulation Results . 54
4.3 Measured Results . 56
4.4 Stoppable Clock Electrical Issues . 65
4.5 Discussion of Results . 74

5. CONCLUSIONS AND FUTURE WORK 76

REFERENCES . 80

LIST OF TABLES

2.1 Normalized energy estimates . 19

2.2 Normalized area estimates . 21

2.3 Normalized latency estimates . 22

2.4 3-bit linear feedback shift register output . 25

3.1 Critical path and delay element load comparison 40

3.2 Moore State Machine Encoding . 42

4.1 Local clock latency numbers from SPICE . 55

4.2 Multiplier latency numbers from SPICE . 55

4.3 Multiplier and local clock power numbers from SPICE 56

4.4 Measured local clock frequencies . 59

4.5 Measured local clock frequencies with tuning at 5 V 59

4.6 Measured working points for the local clock . 60

4.7 Measured multiplier latency numbers . 61

4.8 Measured multiplier latency numbers at 50◦ C on Tune 2 62

4.9 Measured power numbers on Tune 2 . 63

4.10 Measured power numbers when idle . 64

4.11 Improved sizing gC latency numbers from SPICE 69

LIST OF FIGURES

2.1 Architecture for the multiplier . 10

2.2 Selector B module . 11

2.3 Resolve module . 12

2.4 Shift register A and Decode A module . 14

2.5 Carry save adder shift register module . 15

2.6 Stoppable clock interface architecture . 16

2.7 Plot of energy estimates as word size increases 19

2.8 Plot of area estimates as word size increases . 21

2.9 Plot of latency estimates as word size increases 22

2.10 3-bit linear feedback shift register . 24

2.11 3-bit multiple input shift register . 26

3.1 Stoppable clock with an ME . 29

3.2 Stoppable clock with an And gate . 30

3.3 Stoppable clock with a gC . 31

3.4 Types of ring oscillators . 33

3.5 Initial stoppable clock design . 33

3.6 Local clock supporting an even number of pulses 35

3.7 Local clock supporting an even or odd number of pulses 36

3.8 The multiplier critical path . 37

3.9 Final stoppable clock design . 38

3.10 Tuning delay circuit . 38

3.11 The clock delay element . 39

3.12 Stoppable clock interface architecture . 41

3.13 Timing diagram for the stoppable clock interface 41

3.14 High level description of the clock control for use in ATACS. 43

3.15 Clock control circuit . 44

3.16 Bubble shuffled clock control with reset added. 45

3.17 Local clock timing assumption . 46

3.18 Asynchronous behavior of the control circuit. 47

3.19 SPICE simulation of clock interface at 5 V on the typical corner 48

3.20 SPICE simulation showing gclk rising before x falls 49

4.1 Alternative stoppable clock design with delay of inverters 53

4.2 Clock 1 output . 55

4.3 Die photo . 57

4.4 Free running clock after one hour . 66

4.5 A gC gate . 67

4.6 Simulation of gC keeper at 5 V VDD . 67

4.7 A gC gate with better sizing . 69

4.8 Local clock timing assumption . 70

4.9 Plot of frequencies for the three local clocks on Tune 0 73

ix

ACKNOWLEDGMENTS

Numerous people helped in the writing of this thesis and in developing the

research that went into it. I would like to thank those who played a significant role

in helping me complete this work. First, I am exceedingly grateful to my adviser

Chris Myers. He always made time to discuss the research I was doing. I’m thankful

for the productive meetings we had together. He guided me from my junior year

through graduation and has been a wonderful mentor and friend.

I am indebted to my other committee members, Erik Brunvand and Reid

Harrison. Meetings with them helped define the course of my research and gave me

many ideas for how to design and test my work. In addition, I am thankful to the

professors and teachers I have had throughout my education who taught me with

such skill.

I would also like to thank the previous and current people who work in my

office (Eric Peskin, Eric Mercer, Scott Little, Curt Nelson, Jie Dai, Hans Jacobson,

Jung-lin Yang, Yanyi Zhao, Nick Seegmiller, Robert Thacker, Wendy Belloumini,

Sung-Tae Jung, and Hao Zheng). I have become good friends with these people

and appreciate the fun times we had. There were many discussions with people

in the lab concerning my work. I appreciate the ideas and discussion that we had

together. In particular, Eric Mercer was a mentor during my first years in our

research lab. He became a great friend and biking partner.

Interaction with people in industry was also beneficial to this work. Keith

Davis and Gerald Wilson at SONIC Innovations are to be thanked for patiently

explaining their hearing aid design and giving motivation for researching low-power

multipliers. I’m thankful to Ken Stevens at Intel and the rest of the Strategic CAD

Lab people. Discussions with them helped refine the tests, results, and conclusions

of my work. And I could quit looking for a job and focus on finishing my school

work because the SCL hired me — thanks be to Intel and SCL.

My family was especially helpful in completing my education at the University

of Utah. They were always supportive and helped me through the tough times with

their love and patience. I’m also grateful to Snowbird for providing a reduced-price

student season pass, which only served to distract from my studies.

I am grateful to MOSIS for providing free fabrication of my chips. And also to

Gabe Tau’a and the rest of the ECE lab supervisors for making the long testing

hours bearable.

This work was made possible by grants from the Wayne Brown Fellowship,

National Science Foundation, and Intel Corporation.

xi

CHAPTER 1

INTRODUCTION

Portable digital assistants (PDAs) such as palm-pilots and cell phones are

becoming more prevalent in society today. In conjunction with PDAs, embedded

controllers and application specific integrated circuits (ASICs) are used in many

types of electronic devices. The core component of these types of products is a small

area and low power integrated circuit (IC). Small area budgets are required mainly

because these ICs are placed in extremely small casings and packages. In addition

to application size limitations, small ICs have a larger yield during manufacturing.

High yields on IC wafers allow companies to market their products at lower cost

and/or with higher profit margins. Much time is taken to increase yield because it

has a direct effect on profit.

In addition to effecting yield, area has an effect on power consumption. Large

area implies a large amount of capacitance due to routing wires. Power on a

digital IC is directly proportional to capacitance. Applications that use embedded

controllers and ASICs are required to run a long time on a limited amount of

battery power. Therefore, designers must take time to create low power solutions

in their circuits. The less power a design uses, the longer the design can run on a

battery. Even large-scale microprocessors are running into the problem that their

ICs consume too much power. Though in this case, the problem lies in dealing with

the heat generated due to power consumption. To help circuit designers meet their

power and area budgets, it is necessary to develop methodologies and circuit design

practices that facilitate low power and small area design.

One approach to achieving low power and small area circuits is to use Globally

Synchronous, Locally Synchronous (GSLS) systems. GSLS systems use a global

2

clock to initiate computation in locally-clocked modules. The global clock is gen-

erated by a crystal oscillator off-chip. The local clocks are generated by on-chip

stoppable ring oscillators (or stoppable clocks). Most synchronous designs use one

high frequency clock and subdivide it to lower frequencies as needed. Yet, driving

a high frequency clock across a chip can lead to a large power drain. Also the clock

must be set to the fastest frequency needed on chip. In GSLS systems, the global

clock may be set to a lower frequency while local clocks handle the high frequency

computations.

It is hypothesized that a chip composed of locally-clocked modules can lead

to a power savings. The power savings can come from three areas. First, the

global clock can be set to a lower frequency because the local clocks handle the

high frequency computation. Second, when a locally-clocked module has finished

its computation, its local clock is stopped. Energy is not wasted when the module

is not doing “real work.” Third, locally-clocked modules can be made as iterative

modules, thus decreasing their area. As stated before, area has a direct impact

on power consumption. It is true that iterative modules can be made without a

local-clock; however, they require a high frequency clock. If that high frequency

clock is not generated locally (as in GSLS systems), it must be generated on the

global level, which causes a significant power drain.

In a GSLS system, iterative modules can be used without requiring the power

drain of a high frequency global clock. If these iterative modules can be made

smaller than noniterative modules, they also have benefits for routing and schedul-

ing of resources. A small module resource may be duplicated numerous times on

the IC next to other modules that use it. This helps mitigate wiring delay which is

costly in deep submicron processes. Duplicating small module resources also helps

limit power consumption because there is less routing compared to sharing a single

resource. Scheduling of resources is also simplified if resources are duplicated rather

than shared.

Along with all the aforementioned benefits, some issues with GSLS systems must

be addressed. One part of GSLS systems that raises questions is the stoppable clock.

3

Generating a clock with gates on chip makes it questionable as to its reliability and

robustness. For example, stoppable clocks may or may not have good noise rejection

and clean edges. Stoppable clocks also have a lack of jitter-control. Future processes

may also affect stoppable clocks in adverse ways. Data must be collected on how

fast local clocks can run, how much tuning they need, how small locally-clocked

modules are, and how much power locally-clocked modules consume. This thesis

presents work done in evaluating some of the issues raised by stoppable clocks. A

detailed analysis of the electrical issues pertaining to stoppable clocks is presented.

Another aspect in the design of local clocks is that they are made with delay

elements meant to match the critical path delay. If the clock delay element does

not track the critical path under all conditions, tuning must be added to the clock.

How the clock is designed, determines how much tuning is required. This thesis

discusses how to design the clock to minimize the amount of necessary tuning. An

analysis is performed to see how closely the clock matches the critical path and

how much extra tuning is required. Matching the critical path delay under varying

conditions is useful for applications required to run at two different voltages under

various modes of operation. Only one clock is necessary, rather than two. Without

the local clock, two different frequencies would have to be available under the two

different operating conditions.

1.1 Our Work

This thesis presents the design and evaluation of a stoppable clock. The stop-

pable clock is a hybrid of stoppable clocks from previous work. In order to evaluate

stoppable clocks fully, a module for the clocks to synchronize is needed. This work

presents a locally-clocked sequential multiplier used as a driving example to analyze

stoppable clocks. The sequential multiplier presented can be used as a module in

a GSLS system. As preliminary work, the sequential multiplier is compared to a

combinational or parallel array multiplier. It is shown that the sequential multiplier

consumes less energy and takes up less area than the parallel array multiplier. Thus,

a sequential multiplier could benefit designs which have strict area and energy

4

budgets. It is a further benefit that the sequential design is made with a stoppable

clock, thus allowing the global clock to remain at a low frequency. To continue the

evaluation, a 20-bit multiplier and stoppable clock were fabricated through MOSIS

using AMI’s 0.5µm process. The multiplier and stoppable clock consume 0.468

mm2 and contain 8190 transistors.

The stoppable clock consists of two main units — a delay element, and a

control circuit. The control circuit is generated by ATACS, a tool for the synthesis

and verification of timed circuits [1]. Stoppable clocks require the use of timing

assumptions in order to function correctly. By using ATACS to generate the control,

the circuit works correctly as long as the timing assumptions are adhered to. The

delay element is designed using gates that match the gates on the critical path.

Thus, the delay element is meant to scale the same as the critical path under

various VDD, temperature, and process corners. SPICE simulations are presented

to show correct functionality of the stoppable clock.

Numerous experiments are performed to help quantify the robustness of the

stoppable clock and stoppable clock module. Simulated and measured latency and

power numbers for the multiplier and stoppable clock are presented. With a 5 volt

power supply, the multiplier runs at 13.3 MHz and consumes 196.6 mW of power,

while the stoppable clock runs at 174 MHz. With a 3.0 volt power supply, the

multiplier runs at 9.42 MHz and consumes 46.8 mW of power, while the stoppable

clock runs at 117 MHz. In addition to these data points, the clock is tested to see

if the delay element tracks the critical path gates under a wide range of voltages

and temperatures.

Several clocks are built on the chip to help analyze stoppable clocks. One

identical clock to the one that synchronizes the multiplier is placed on the opposite

side of the chip. This is used to evaluate process variation effects on the stoppable

clock. A third clock uses inverters rather than critical path gates. It is used to show

how inverters scale differently than critical path gates under different conditions.

Process variation is also evaluated in that five chips are tested and shown to have

little variation in measured values. Through this design a greater understanding of

5

locally-clocked modules is achieved.

1.2 Contributions

One contribution of this work is the evaluation of a particular locally clocked

example. In the stoppable clock design, the frequency of the clock is limited by two

factors — the cutoff path of the clock, and the ability to match the critical path

closely. Many factors make it difficult to match the critical path. For example,

the critical path has coupling capacitance and is affected by noise on parallel lines.

The current clock design does not make an attempt to match this. Because it is

not matched perfectly, some conservative delay must be added to the clock delay.

This ensures correct functionality even in the face of coupling capacitance; however,

if it is possible to match the critical path exactly, the conservative delay can be

removed. This speeds up the local clock, and hence the multiplier itself is faster.

Rather than making the clock completely devoid of conservative delay, the clock

has tuning built in which can be set to add or remove conservative delay. Although

the evaluated stoppable clock design is meant to track the datapath under a wide

range of voltages and temperatures, it is shown that the clock requires tuning to

match the critical path sometimes. This is because it is difficult to match the

critical path exactly. It is also shown that certain voltage and temperature data

points cause the cutoff path to be too slow. In these situations, clock tuning is

needed to slow the clock down such that the cutoff path becomes fast enough

relative to the local clock feedback. Future designs can focus on speeding up the

cutoff path; thus, matching the critical path delay is the only limiting factor on

clock frequency.

In ASIC and embedded controller design, there is a strict budget for area

and power consumption. In these applications, iterative modules could be ex-

tremely helpful due to their small area; however, iterative modules require high

frequency clocks. The work done for this thesis shows that the high frequency

clocks (230 MHz) can be generated locally through the use of stoppable clocks.

In this situation, the global clock can remain at a low frequency; therefore, the

6

design can use iterative modules without incurring a large power drain. In addition,

smaller modules are inherently lower power because they have less capacitance, and

power consumption on a digital IC is directly proportional to capacitance. Finally,

locally-clocked modules can turn the internal local clock off to save power. Thus,

stoppable clocks enable the use of GSLS systems which meet low power and small

area budgets.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 begins with an analysis of previous

multiplier research. It presents the architecture of our sequential multiplier and an

overview of the multiplier interface. Preliminary analysis and comparison of the

sequential multiplier to a parallel array multiplier comes next. Finally the test

circuitry and test board is described.

The local clock design is discussed in Chapter 3. It starts with a literature

survey of previous stoppable clock work. Then the architecture for our clock is

described. The design of the ATACS synthesized control follows. The delay element

design is discussed in this chapter. SPICE simulation results for the functionality

of the stoppable clock are also presented.

Chapter 4 discusses experimental results from a fabricated IC of the locally-

clocked multiplier. All proposed experiments are detailed first. SPICE simulation

results of the multiplier come next followed by actual measured results of the

multiplier. Then a detailed analysis of stoppable clocks is presented. This chapter

finishes with a brief discussion of the results.

Lastly, Chapter 5 gives concluding remarks. It gives a summary of the exper-

imental results, details the major contributions of this work, and discusses future

work in the area of stoppable clocks.

CHAPTER 2

MULTIPLIER AND TEST CIRCUITRY

In order to evaluate a stoppable clock fully, a module for the clock to synchronize

is needed. This chapter presents the design and analysis of a locally-clocked

sequential multiplier. This multiplier is used as a driving example to analyze

stoppable clocks. A discussion of previous self-timed datapath elements is included.

A locally-clocked multiplier is considered a self-timed module in that it generates

its own timing reference. The test circuitry for this multiplier is also discussed at

the end of this chapter.

2.1 Self-timed Datapath Elements

There has been a lot of work in the area of self-timed multipliers and asyn-

chronous datapath elements. Self-timed multipliers can be broadly grouped into two

categories: parallel array and serial-parallel (i.e., iterative or sequential). A parallel

array multiplier uses on the order of N2 full adders in an N × N configuration,

where N is the size of the operands. Array multipliers are often pipelined for

increased throughput [2, 3, 4, 5, 6, 7, 8]. The area impact of parallel array designs

can be reduced using Booth recoding [9] of radix-4 or greater; however, Booth

recoding does not affect the O(N2) area bound seen in full parallel array multipliers.

Self-timed and synchronous parallel array designs are compared in [10, 11] to show

the power savings found in self-timed design methodologies. Moreover, [11] shows

power consumption to be polynomial in both design styles. Although self-timed

parallel array designs are fast, they require a considerable amount of area. Thus,

they are not appropriate for strict area budget applications.

Iterative or serial-parallel multipliers use on the order of N full adders N times

to complete a multiplication. Iterative designs have significantly smaller area at the

8

expense of increased latency. In [12], a delay insensitive design style is utilized to

remove internal glitches on all wires, thus saving energy. Nevertheless, it requires

two wires to represent each bit in the multiplication, causing an increase in area.

Several self-timed designs are compared in [13], but all have a considerable area

penalty to achieve self-timing.

Work in [14] employs a bundled-data design style to implement an iterative

multiplier. This style removes the self-timed area overhead. Bundled-data designs

replace the traditional fixed frequency clock in synchronous design with individual

delay elements matched to the latency of each stage in the design. Each stage

signals the controller when it is done by using a delay element as a timing reference.

Furthermore, [14] matches critical path delays by building delay elements out of the

same gates that make up the critical path. They also match the same gate loads

that exist in the critical path. This allows the delay elements to scale evenly with

the critical path delay under voltage, temperature, and process variations. Work

in [14] further optimizes the iterative design by skipping iterations in the algorithm

according to the operands (i.e., a 0-bit in the multiplicand). Although [14] achieves

better area than [12], the control for the multiplier falls directly on the critical path.

This is because a control communication is required at each stage of the multiplier.

An alternative approach is to use a self-timed module such as the 54-bit divider

in [15]. This divider is used in the SPARC64 described in [16]. The divider uses

an iterative algorithm with dual-rail domino-logic to perform division. It is not

necessary to acknowledge back to the synchronous environment when the divide

has completed. Instead, the divider is timed such that it completes within a given

number of global clock cycles. A different solution along the same vein is to use

a locally-clocked module. An example of such is the 64-bit iterative multiplier

presented in [17]. The multiplier in [17] uses a stoppable clock to synchronize a

partial parallel array. With either iterative module, there is no need for a high

frequency global clock to synchronize iterations. This thesis is mainly concerned

with an analysis of stoppable clocks, and therefore a closer look at [17] is warranted.

In a full parallel array, area is bounded by O(N2) because for each bit of the

9

multiplicand there is a row of N full adders. The multiplier in [17] implements

several but not all rows of the parallel array and then iterates on those rows to

complete the multiply. This creates a small multiplier that still has acceptable

latency for a 64-bit word size. Looking at the extreme case in [17], the design

would use a single row of full-adders N
2

times. It is N
2

rather than N because of

the radix-4 Booth recoding that retires two bits at a time. The frequency of the

stoppable clock in [17] is matched to the worst-case critical path delay in the design.

When operands are ready to be multiplied, the clock is started, runs a fixed number

of iterations, and is stopped. The stoppable clock removes control overhead from

the critical path because communications are not required between each stage of

the design. When a clock pulse arrives at the latches, it is assumed that all stages

are ready for the next input.

The multiplier presented in this chapter uses a similar bundled data design style

to that of [14], however it removes control from the critical path through the use

of a stoppable clock as in [17]. Rather than generating a partial parallel array, this

work focuses on area by evaluating the extreme case of the design in [17]. This

extreme case uses a single row of full-adders on each iteration. In addition, the

stoppable clock in [17] is improved based on related work done on stoppable clocks

and delay elements. The multiplier presented in this chapter is also discussed in

[18].

2.2 Architecture

The micro architecture for the multiplier is found in Fig. 2.1. This multiplier

uses Booth recoding on the operands so that it can handle two’s complement

numbers without the need for pre or post calculations [9]. Radix-4 Booth recoding

is used because it cuts the number of iterations in half compared to radix-2 Booth

recoding. The multiples of B needed in radix-4 recoding are still easily computed

during iterations.

The Selector B block provides multiples of B to the Carry Save Adder Shift

Register block according to input from Decode A. The architecture of the Selector B

10

B
ne

g

N

N+1

run

stop

ne
w

A

3

1

B

reset

global
clock

2N

N

3

3

C(0...2N−1)

2

A

ResolveCarry Save Adder
Shift Register

Shift Register A

Partial Product
Summation

StateClock

Stoppable
Clock

S
el

ec
to

r
B

Decode A

lclk

MachineControl

Fig. 2.1. Architecture for the multiplier.

module is shown in Fig. 2.2. In this figure, the B operand comes in on the left,

is recoded according to Decode A signals, and goes out on the right to the Carry

Save Adder Shift Register. For radix-4 Booth recoding, the Selector B circuit must

produce the following multiples of the B operand: 0, B, −B, 2B, and −2B. The

multiplier uses a two’s complement representation, so generating the multiples of

B is a matter of inverting and shifting bits as appropriate. In order to complete

the two’s complement conversion for −B and −2B, a 1 must be added into the

low-order bit of the B operand. The block that handles this carry insertion is the

Resolve circuit.

Radix-4 Booth recoding retires two bits on each iteration; therefore, there are

situations when unresolved carries are shifted out of the Carry Save Adder Shift

11

B0

B1

BN−1

Bzero

Bzero

Bzero
BS0

BS1

BSN−1

BSN

B
n
eg

B
2
B

B
2
B

B
n
eg

B
2
B

B
n
eg

B
n
eg

B
2
B

Bzero

Fig. 2.2. Selector B module.

12

Register. These carries must be resolved before the two bits can be retired into

the final answer. The Resolve block takes a shifted out carry bit with two shifted

out sum bits and adds them to resolve the shifted out carry. The Resolve circuit

is shown in Fig. 2.3. The carry-out bit of this circuit is fed back around to the

same circuit to be added in on the next cycle. When the iterations are complete,

the carry-out bit of this circuit still needs to be resolved. Thus, it is passed to the

Partial Products Summation unit as a carry-in to that circuit. The Resolve circuit

generates two final answer bits on each cycle and passes them to Shift Register A

for temporary storage. As mentioned above, the Resolve circuit also injects a two’s

D Q

cl
r

lclk

D Q

cl
r

lclk

D Q

cl
r

lclk

D Q

cl
r

lclk

C
o

S

C
i

B
A F
u
ll

A
d
d
er

C
o

S

C
i

B
A F
u
ll

A
d
d
er

D Q

cl
r

lclk

CSA0

CSA1

CSA2

Bneg

R
es

ol
ve

0

R
es

ol
ve

1

P
P

S
C

o

Fig. 2.3. Resolve module.

13

complement carry when the B operand is negative. The Decode A block uses the

Bneg signal to tell Resolve when to do this.

The Shift Register A block, shown in Fig. 2.4, loads a new value of A when

beginning a multiply. On each cycle after that, the block shifts the current value

of A by two bits toward the least significant bit. In the figure, the Shift Register A

is shifting from top to bottom two bits at a time. The Shift Register A passes its

two low-order bits and the last shifted out bit to the Decode A block. The Decode

A block uses these three bits to determine the multiple of B to be added to the

running sum in the Carry Save Adder Shift Register. Shift Register A is also used

to temporarily store the final answer bits retired from the Resolve block during

iterations. Two answer bits are shifted in on each cycle. When the iterations are

completed, Shift Register A holds the lower N − 2 final answer bits.

The Carry Save Adder Shift Register consists of a single row of full adders fed by

flip-flops. Fig. 2.5 shows the interconnection between the full adders and flip-flops.

Rather than having the carries ripple through the row, a carry save interconnect

is used [19]. This means that carries are passed to flip-flops to be resolved on the

next cycle. Therefore the latency of each iteration is independent of the operand

width N . Shifting is performed each cycle by passing outputs of the full adders

to flip-flops two bits toward the least significant bit (LSB). In the figure, the most

significant bit (MSB) is on the top of the page, and the LSB is on the bottom.

The shift register must be sign extended when it shifts, so the inputs to the MSB

flip-flops come from feedback.

The first cycle after the local clock starts up is used to clear the Carry Save

Adder Shift Register while Shift Register A loads a new value of A in parallel.

For the iterations, the multiplier is broken into a three stage pipeline with locally-

clocked flip-flops. The first stage consists of Decode A and Selector B. The second

stage is the Carry Save Adder Shift Register. And the third stage is the Resolve

block. Shift Register A is not included in a stage because it is essentially a pipeline

latch between stages. The first stage has the longest latency and is therefore the

critical path.

14

lclk

Q D

lclk

Q D

lclk

Q D

lclk

Q D

lclk

Q D

lclk

Q D

lclk

Q D

Bneg

B2B

Bzero
A0

A1

A2

AN−3

AN−2

Resolve2

AN−1

Resolve1
CN−3

CN−2

CN−1

C0

D
ec

o
d
e

A n
ew

A
n
ew

A
n
ew

A
n
ew

A
n
ew

A
n
ew

A

cl
r

Fig. 2.4. Shift register A and Decode A module.

15

Full Adder

S Co

A B Ci

Q

D

Q

clr clr clr

lc
lk

lc
lk

lc
lk

D

Q

D

Q

D

Q

clr clr clr

lc
lk

lc
lk

lc
lk

D

Q

D

Q

D

Q

clr clr clr

lc
lk

lc
lk

lc
lk

D

Q

D

Q

D

Q

clr clr clr

lc
lk

lc
lk

lc
lk

D

Q

D

Full Adder

S Co

A B Ci

Full Adder

S Co

A B Ci

Full Adder

S Co

A B Ci

Full Adder

S Co

A B Ci

B
0

C
S
A

2

C
S
A

0

C
S
A

1

B
N
−

1
B

N
−

2

B
N

Fig. 2.5. Carry save adder shift register module.

16

Control for the sequential multiplier is shown in Fig. 2.6. The Reset signal is

a global reset signal that sets the local clock control in the initial start state. The

multiplier is then idle until gclk has a rising edge. A rising gclk causes run to

rise, which in turn starts the local clock. The local clock synchronizes a local state

machine that keeps track of iterations. When the correct number of iterations is

complete, the state machine raises the stop signal which causes run to fall, which

then stops the local clock. Then the cycle repeats as the multiplier is idle and waits

for a gclk rising edge. Thus the gclk signal acts as a start signal for the multiplier.

If it is necessary to keep the multiplier idle, the gclk signal can be gated off so

it produces no rising edges. The state machine in Fig. 2.6 is implemented in a

traditional synchronous manner. The Stoppable Clock and Clock Control blocks

are discussed further in Chapter 3.

When iterations have completed, the lower N−2 bits of the answer have already

been resolved and are held in Shift Register A. The Resolve block holds the next two

resolved answer bits, plus one unresolved carry bit. The Carry Save Adder Shift

Register holds the upper N final answer bits in unresolved form. The multiplier is

broken into a two stage pipeline clocked by the global clock — the iterative portion,

and the Partial Products Summation block. The final answer bits, are passed to the

Partial Products Summation block to be resolved on the next global clock cycle.

The Partial Products Summation block consists of a basic ripple-carry adder. It is

run

Stoppable

Clock

Clockreset

gclk

Statestop

Control Machine

lclk

Fig. 2.6. Stoppable clock interface architecture.

17

much faster than the iterative portion of the multiplier; therefore, it is not necessary

to optimize it.

2.3 Preliminary Analysis

A high-level analysis of this locally-clocked sequential multiplier is performed to

understand how it scales with word size. Estimates for latency, area, and energy are

calculated for the multiplier implemented at various word sizes. These estimates are

compared with similar estimates of a combinational full parallel array multiplier.

This is simply a baseline comparison to understand how the sequential multiplier

performs. It is assumed that the reader can relate other multiplier designs to the

combinational array for further comparisons.

The only difference in operation of the parallel array and the sequential multi-

plier is that the parallel array does multiplications on unsigned positive numbers

rather than signed two’s complement numbers. The array can be used to multiply

two’s complement numbers if the operands are converted to unsigned numbers first

and the final answer is converted back to a two’s complement number. These

sign-magnitude conversions are not included in the comparisons.

Timing numbers for gates used in these comparisons are from Atmel corpo-

ration’s 0.8µm process. SONIC Innovations used this process for the design of

one of their low voltage hearing aids. They provided timing numbers for a 0.8

shrink of their 0.8µm process gates with a VDD of 1.25 V [20]. These numbers are

incorporated in the simulations used to estimate energy consumption. They are

also used when estimating latency of the multipliers.

The energy per operation of the sequential multiplier is compared to that of

the combinational design. Energy is chosen over power for this comparison because

power depends on the average time it takes to perform an operation [21]. If the

parallel array is run at maximum speed, its power would be far above that of the

sequential design due to its higher frequency. Therefore, such a comparison can be

misleading. The energy per operation is independent of the amount of time each

design takes to complete and is akin to running each multiplier at the same global

18

clock frequency without any voltage scaling. An estimate of the energy consumed

per operation is obtained using simulation over a large set of random data.

Energy is consumed in a node when it switches either from high-to-low or low-

to-high. The amount of energy consumed in either case is

E =
1

2
CV 2,

where C is the output capacitance connected to that node and V is the voltage

swing of the transition. Energy consumed by an entire module is calculated as

Etotal =
1

2
V 2

∑

i

niCi,

where i ranges over all nodes in the module. V is the voltage swing that varies

depending on what VDD is set to. Ci is the capacitive load connected to the

output of node i. Since transistor sizing is not considered here, input capacitances

on gates are assumed to be equal for all gates. This reduces the capacitive load

calculation at node i to Ci = FOiCg, where FOi is the fanout of node i and Cg is a

constant gate input capacitance. The ni term is called the activity factor of node

i. The activity factor is defined to be the average number of times node i switches

(either high-to-low or low-to-high) during each multiply. Simulation of a large set

of random multiplies is used to find the ni term for each node of a module.

A plot of normalized energy estimates on the typical corner for various sizes of N

is found in Fig. 2.7. The normalization constant is the energy of the combinational

design on the typical corner for N = 12. Energy grows polynomially with word size

for both designs, but the coefficient for the sequential design is much smaller than

the combinational design. Table 2.1 shows normalized energy estimates for various

sizes of N and different process corners. The polynomial growth of energy for the

sequential design is most easily seen in the typical corner column of Table 2.1. The

self-timed design has polynomial growth for energy because it has on the order of

O(N) full adders used on the order of O(N) times.

19

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

N

E
ne

rg
y

N
or

m
al

iz
ed

Energy Profile for Parallel Array and Sequential Designs

Parallel Array
Sequential

Fig. 2.7. Plot of energy estimates as word size increases.

TABLE 2.1

Energy estimates normalized by N=12 combinational slow

Sequential Combinational
N Fast Typ Slow Fast Typ Slow

12 1.54 1.24 1.03 1.45 1.19 1.00
16 2.53 2.03 1.67 3.92 3.19 2.65
20 3.74 3.01 2.50 8.47 6.80 5.59
24 5.19 4.18 3.47 15.82 12.55 10.24
28 6.41 5.14 4.25 20.92 16.24 13.04
32 7.85 6.32 5.21 27.97 21.37 16.96

20

The combinational design has on the order of O(N2) full adders that switch

an average of O(N) times per multiply. It is important to note that the energy

estimates assume no correlation between the incoming operands, so the probability

of any input bit transitioning for subsequent multiplies is 50%. In many appli-

cations, there is less switching frequency due to inherent data correlation. Thus,

these energy estimates are conservatively large.

Fig. 2.8 shows the area plot of the sequential and combinational multiplier

designs. Area is measured in terms of transistor count. The value is calculated by

first counting each type of gate and flip-flop in each design. Each individual gate

count is multiplied by the number of transistors required to implement the gate or

flip-flop. The area calculation includes some electrical and fanout considerations

by conservatively adding buffer trees on high fanout nodes. This area calculation

does not account for the actual size of the transistors. In addition the area due

to routing is neglected and is assumed to be of equal cost in both designs. This

benefits the parallel array, which clearly has a larger routing penalty. As shown in

Fig. 2.8, the two designs have approximately equal area at N = 7. The area growth

of the sequential design is linear in N , while the combinational design follows N2.

Table 2.2 shows the transistor count for various sizes of N . The scale factor column

is the normalized area using the area of the sequential design at N = 12 as the

normalization constant.

The sequential design has an obvious advantage over the combinational design

in terms of area and energy consumption. Yet, this advantage comes at the cost

of a latency penalty. Latency numbers are found using paper and pencil methods.

The critical path in each design is calculated by hand. Then timing numbers

are applied to each gate on the critical path. The latency calculation takes into

account capacitive loading on large fanout gates. Fig. 2.9 shows the latency of each

design in nanoseconds for various sizes of N . The latency for both designs scales

linearly with N , but the sequential design has a larger constant. Table 2.3 shows

the normalized latency of the sequential design compared to the combinational

design. The normalization constant is 45.71ns. This constant is the latency of the

21

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

x 10
4

N

A
re

a
as

 to
ta

l t
ra

ns
is

to
r

co
un

t

Area Plot of Parallel Array and Sequential Designs

Parallel Array
Sequential

Fig. 2.8. Plot of area estimates as word size increases.

TABLE 2.2

Area estimates as number of transistors

Sequential Combinational
N Area Scale Area Scale

12 2400 1.00 6264 2.61
16 2840 1.18 11552 4.81
20 3280 1.37 18440 7.68
24 3720 1.55 26928 11.22
28 4160 1.73 37016 15.42
32 4600 1.92 48704 20.29

22

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

N

La
te

nc
y

in
 n

an
os

ec
on

ds

Latency Plot of Parallel Array and Sequential Designs

Parallel Array
Sequential

Fig. 2.9. Plot of latency estimates as word size increases.

TABLE 2.3

Latency estimates normalized by N=12 combinational fast

Sequential Combinational
N Fast Typ Slow Fast Typ Slow

12 3.36 7.12 20.10 1.00 2.10 5.97
16 4.22 8.95 25.18 1.35 2.85 8.10
20 5.08 10.77 30.26 1.71 3.60 10.20
24 5.95 12.60 35.35 2.06 4.35 12.32
28 6.81 14.42 40.43 2.42 5.09 14.44
32 7.67 16.25 45.52 2.77 5.84 16.56

23

combinational design on the fast corner for N = 12.

A few latency optimizations for the sequential multiplier exist. For example,

pipeline stages can be rearranged. Currently, the decode of A and selection of B

is extremely long compared to the other stages. It is possible to move the locally-

clocked pipeline latches or to implement time-sharing. Both options would allow the

local clock frequency to be increased. Another approach is to design with aggressive

circuit families. In the current implementation, the multiplier is restricted to use

only basic standard-cells. Moving to more aggressive circuit families would increase

design time and complexity. Since one of our goals is simplicity and ease of design,

these alternative circuit families are not considered here.

Preliminary latency, energy, and area estimates look favorable for a sequential

multiplier. Thus a locally-clocked module could be an advantage for power and

area critical systems. Even so, the high-level estimates are achieved through simu-

lation and paper and pencil methods. Actual fabrication is needed to confirm the

estimates made. In addition to verifying the estimates, fabrication helps determine

the pros and cons of using stoppable clocks.

2.4 Test Circuitry and Test Board

A 20-bit implementation of the multiplier presented in this chapter was fab-

ricated through MOSIS using AMI’s 0.5µm process. This section describes the

on-chip testing circuitry and test board. The operands of the multiplier can be

applied from three different sources: the off-chip operand bus, an operand latch

which latches from the operand bus, or a built in self-test (BIST) structure [22].

The BIST structure allows at-speed testing and generates a single pass/fail signal

on chip. With a functional BIST, the external test circuitry is less complicated.

The BIST is composed of two main parts: a test pattern generator and a result

evaluator.

An exhaustive test pattern generator can be made from an N-bit counter where

N is the desired width of the input. Nevertheless, a linear feedback shift register

(LFSR) is much smaller and easier to design. With appropriate feedback taps,

24

an LFSR has a period of 2N − 1. This type of LFSR is called a maximal-length

sequence generator or a pseudo-random number generator. Appropriate feedback

taps for LFSRs of size N = 3 to N = 168 are found in [23]. This reference also

contains a literature survey of the mathematics behind maximal-length sequences.

An example of a 3-bit LFSR of maximal-length is shown in Fig. 2.10. The output

sequence from this circuit is located in Table 2.4. The circuit cycles through all

eight possible 3-bit patterns except 0. The sequence is pseudo-random because it

is generated by a mathematically predictable circuit. Yet, for practical purposes it

is a random sequence.

To exhaustively test a 20-bit multiplier, a 40-bit LFSR is necessary. Unfortu-

nately, a 40-bit exhaustive test for this multiplier takes too long to be practical.

For example, with a 5 volt power supply the multiplier runs at 13.3 MHz and takes

23 hours to test 240 multiplies. At 1.6 V the multiplier runs at 3.13 MHz and takes

4 days to test! Rather, a 20-bit LFSR is designed to feed the B operand while

the A operand is held at one value. In this situation, it takes a tenth of a second

to test at 5 V VDD, and three tenths of a second to test at 1.6 V VDD. This

still gives excellent test coverage because of the iterative nature of the multiplier.

The A operand is decoded three bits at a time, and can be set to a value which is

decoded into all eight possibilities. Therefore, the B operand logic is exhaustively

tested with the LFSR, and the A decode logic is exhaustively tested by setting A

for maximal 3-bit decode sequences.

D Q

gclk

D Q

gclk

D Q

gclk

C
0

C
1

C
2

Fig. 2.10. 3-bit linear feedback shift register.

25

TABLE 2.4

3-bit linear feedback shift register output

C0 C1 C2

0 0 1
1 0 0
1 1 0
1 1 1
0 1 1
1 0 1
0 1 0
0 0 1

...

Even with 20-bit rather than 40-bit exhaustive tests, the test runs through

220 − 1 = 1, 048, 575 (or 1M) multiplies. It is impractical to store all multiply an-

swers on the chip. Rather than recording the answers off-chip at-speed, the answers

can be compressed into a single word through the use of a signature file. A signature

file is a multiple input shift register (MISR), which is a mathematical extension

of an LFSR. A mathematical evaluation of signature files is found in [24], which

also contains a survey of literature on signature files. A 3-bit MISR is shown in

Fig. 2.11. The result word is xor’ed into the LFSR along with the regular LFSR

feedback taps. A good signature must be generated either by a circuit known to be

correct, or through simulation. A C-code simulation of this multiplier and 20-bit

signature file is written to generate good signatures.

Compressing a sequence of 1M answers down to one causes a loss of information

which means that some faulty answers may not be detected. This is called aliasing

or fault masking. According to [24], if all possible errors are equally probable, the

probability of failing to detect an error (the aliasing probability) is

Pap =
undetectable errors

possible errors
=

2L−N − 1

2L − 1
,

where L is the length of the sequence and N is the size of the signature file. When

26

D Q

gclk

D Q

gclk

D Q

gclk

C
0

C
1

C
2

I 0

I 1 I 2

Fig. 2.11. 3-bit multiple input shift register.

L >> N , the probability reduces to

Pap ≈
1

2N
.

For a 40 bit signature file and a sequence of 1M multiplies, Pap ≈ 9.1 × 10−13.

Unfortunately, all possible errors are not equally probable, so Pap is higher but still

negligible.

The multiplier functionality is tested through the structures described above. In

addition to the functionality tests, latency and power numbers are desired. To test

power, the chip has three separate VDD lines: one for the multiplier, one for the

local clock, and one for the test circuitry. The measured average current draw on a

VDD line can be used to calculate average power for the circuit it feeds. Latency

is tested by routing clock control signals off-chip. One signal indicates when the

multiplier is done. This signal can be viewed on an oscilloscope to determine how

long the multiply takes.

For detailed testing of local clocks, three clocks are placed on the chip with

their outputs routed off-chip. A critical path delay signal is routed off-chip for

comparison to the local clock delays. Because of the BIST on-chip, the test board

is relatively simple to design. The main test board component is a 40-bit data path

bus. This bus can be driven by the signature file on-chip, the multiplier on-chip,

27

or by hex switches on the test board. The test board provides push-buttons for

single-stepping the multiplier. Many internal chip signals are routed to LEDs on the

test board for use in single-step mode. The multiplier latches can be synchronized

by the on-chip local clock or from off-chip during single-step mode.

The chip and test board have a feedback mode where the multiplier contin-

uously multiplies and the signature is checked every 1M multiplies. When used

in conjunction with the B operand pseudo-random number generator, this mode

gives a continuous pass/fail check. It can be used to test the multiplier while

changing variables such as VDD and temperature. With the test circuitry and test

board described here, a detailed analysis of the multiplier and stoppable clocks is

performed.

CHAPTER 3

STOPPABLE CLOCK DESIGN

High-level evaluation of the multiplier in Chapter 2 neglected the details of

the stoppable clock. This chapter focuses on the design of our stoppable clock.

It presents a literature survey of stoppable clock and delay element work. Then

the architecture for our clock is described, including the control and delay element

design. SPICE simulation results showing the functionality of the stoppable clock

are presented last.

3.1 Stoppable Clock Related Work

Stoppable clocks were used at Evans and Sutherland in the 1960’s [25, 26].

According to [25], “it is the clock pulses that are not generated that are the key

to the value of the stoppable clock.” Stoppable clocks have been further developed

for use in Globally Asynchronous, Locally Synchronous (GALS) systems [27, 28, 29,

30]. These systems use locally-clocked modules with two- or four-phase handshake

protocols between the modules. GSLS modules are similar to GALS modules in

their use of locally-clocked modules. Nevertheless, GSLS modules do not have

the overhead of asynchronous communication between modules. It is assumed

that GSLS modules have completed computation before the next global clock cycle

arrives. In addition, the interface to GSLS modules is different from that of GALS

modules and therefore requires further evaluation.

One major use for stoppable clocks is to avoid synchronization failure. When

inputs are asynchronous with respect to the clock, they can cause the input latches

to become metastable. Metastable latches can in turn cause a synchronization

failure if they do not stabilize before the inputs are needed locally. In order to

avoid synchronization failure, a stoppable clock can be used [31, 32, 27, 28, 33, 34].

29

When latches become metastable, the clock is stopped until the latches stabilize.

This is a way to synchronize independently clocked systems. GSLS modules exist

in a synchronous environment, so their inputs and outputs are synchronized to the

global clock. Therefore, synchronization failure is not an issue for GSLS modules

if set-up and hold times are not violated by the environment or the module itself.

Design of stoppable clocks is difficult due to timing assumptions [31, 35]. If the

signal used to stop the clock is asynchronous with respect to the local clock signal,

a mutual exclusion (ME) element is needed. The ME makes sure that clock pulses

and stop-clock signals do not cause the ring oscillator to generate runt pulses or

thin pulses. Runt pulses can be perceived in later circuitry as meaningful pulses

causing erroneous latching. One example of a stoppable clock with an ME is in

Fig. 3.1. The stop ack signal is necessary because there is no time constraint on

when the clock is cut off. It is only known to be cut off when stop ack rises.

If the ME in Fig. 3.1 were replaced with an And gate as in Fig. 3.2, it introduces

new timing constraints. If these timing constraints are violated, it is possible to

cause runt pulses and thin pulses on the lclk line. For instance, if stop goes high at

the same time, or just after A rises, a runt pulse occurs on lclk. If stop goes high

ME

A1

A2

R1

R2

stop ack

Odd number of inverters

lclk

stop

A

Fig. 3.1. Stoppable clock with an ME.

30

Odd number of inverters

lclk

stop

A

Fig. 3.2. Stoppable clock with an And gate.

any time while A is high, it forces lclk to go low; making a thin pulse. On the other

hand, if the stop signal going high is timed so that it comes some time after A goes

low, and some time before A goes high again, the ME can be replaced with an And

gate safely. In this situation, the stop signal is synchronized with the clock pulses.

This synchronized situation allows the design to remain in the standard-cell realm,

thus facilitating ease of design.

A third cutoff gate is shown in Fig. 3.3. This clock is presented in [35]. The

cutoff gate of this clock is a generalized C-element (gC). It eliminates one of the

timing constraints of the clock in Fig. 3.2. If stop goes high while A is high, the

gC waits until A goes low before cutting off the clock. Thus, the clock of Fig. 3.3

only constrains stop from going high too close to a rising edge on A.

An alternative system is proposed in [35]. It is a Globally Synchronous, Locally

Asynchronous (GSLA) system. In this system, a stoppable clock is distributed

to the entire synchronous design. Individual pipeline stages can be synchronous or

asynchronous. If local asynchronous modules are not done computing within a given

clock cycle, they stall the clock and therefore the entire design. This system, and

the others described above, bring up many issues pertaining to stoppable clocks.

Namely:

31

lclk

stop

A

weak

Odd number of inverters

Fig. 3.3. Stoppable clock with a gC.

• lack of jitter control,

• latency overhead for starting and stopping the clock,

• how to make the delay element,

• and how much tuning is needed.

This thesis addresses some of these very issues.

3.2 Delay Element Related Work

The core of an on-chip stoppable clock is a delay element. Tunable delay

elements and clocks are discussed in [28, 36, 37, 17]. An analog voltage is used

to set the delay in [28]; however, the circuitry for the delay is not standard-cell nor

is it easy to design and implement. The notion of taps on the delay line is introduced

in [36, 37, 17]. A set of signals are used to gate portions of the delay line to make

it faster or slower. Tuning is helpful when trying to match the delay to the critical

path of a fabricated chip. A stoppable clock that is self tuning is implemented in

[36]. The stoppable clock references an off chip crystal and calibrates itself. This

32

makes the internal clock have a fixed frequency. This method can be used to match

the critical path in the sequential multiplier of Chapter 2. Nevertheless, it adds an

unnecessary overhead of circuitry and design time when a tunable clock without a

fixed frequency also works.

The choice in gates for the delay element has a direct impact on the amount

of tuning the local clock needs. A chain of inverters can be used as a delay

element; however, inverters do not scale the same as the components on the critical

path. Process variation, temperature, and voltage swings have different effects

on gates of different types. To illustrate this point, timing numbers for Atmel

corporation’s 0.8µm process at 1.25 V are used again. With gates running at

the slow corner, it takes 18 inverters to match the worst-case critical path of the

sequential multiplier. In that same process, if all components are running at the

fast corner, 44 inverters are needed to match the worst-case critical path delay. One

solution to the mismatch in gate scaling is to make the ring oscillator delay out of

gates that match the critical path [14]. Fanout capacitance for each gate is also

duplicated to help ensure that the ring oscillator delay matches that of the critical

path throughout all conditions. If matching is done carefully, the tuning required

is lessened and possibly eliminated.

When matching with inverters, it is easiest to match half the critical path.

Then it requires two passes through an inverting delay element to generate one

clock cycle as in Fig. 3.4(a). This creates an approximate 50% duty cycle square

wave which makes using standard edge-triggered flip-flops possible. On the other

hand, when trying to match the critical path using similar gates, it is difficult to

design a two pass, 50% duty cycle delay. Two solutions exist when matching the

entire critical path delay using similar gates. In this situation, one pass through

the delay must equal one clock cycle and must trigger the flip-flops. Therefore,

a pulse can be sent through a noninverting delay element and to the flip-flops as

in Fig. 3.4(b). Unfortunately, rise and fall times differ enough that the pulse can

be lost or distorted within the delay element as it cycles. Another solution is to

send single transitions through the delay element and use double edge triggered

33

D-flip-flops (DETDFF) as in Fig. 3.4(c) [38]. These DETDFFs are two times as

big as standard D-flip-flops (DFF). The larger area also implies larger capacitance

which in turn implies more energy consumption for using DETDFFs. Rather, a

solution which is more area and energy efficient is sought for in our design.

3.3 Our Stoppable Clock

This thesis leverages stoppable clock and delay element related work to design

and evaluate a stoppable clock. The desirable characteristics from multiple stop-

pable clocks are combined into a full-featured clock design. Preliminary design of

the clock circuit is shown in Fig. 3.5. This stoppable clock uses a delay element

made from the same gates as those of the multiplier critical path. Thus one pass

through the delay element constitutes one clock cycle and must cause latching in

the flip-flops. To do this, a One-shot is placed on the output of the traditional

1

2
critical path delay

DFF

1 critical path delay

DFF

1 critical path delay

DETDFF

(a) (b) (c)

Fig. 3.4. Types of ring oscillators. (a) Delay made of inverters, single transitions
flowing through the delay, and standard DFFs used. (b) Delay made of critical path
gates, pulses flowing through the delay, and standard DFFs used. (c) Delay made
of critical path gates, single transitions flowing through the delay, and DETDFFs
used.

Critical Path Delay
One-Shot

Pulse Width Delay
n

lclk
Atuning

run

Fig. 3.5. Initial stoppable clock design.

34

ring oscillator — node A. Every transition that occurs on A causes the One-shot to

send a pulse to the flip-flops. In this way, standard DFFs are used and the entire

critical path is matched in the delay element. The One-shot delay adds to the start

up overhead of the local-clock, but in steady-state oscillating the One-shot has no

effect on performance. Additional buffers with taps are added to the delay element

to make the clock tunable from off chip after fabrication.

This clock is designed to synchronize a locally-clocked module in a GSLS system.

When the clock is idle, run is low. A global clock rising edge causes run to rise

which makes the local clock generate clock pulses. A local state machine causes

run to fall when the multiply is done. This local state machine is synchronized by

the local clock. The clock design in Fig. 3.5 does not use an ME to stop the clock.

It is able to do this because the cutoff signal (i.e., run falling) is synchronized with

the local clock. It is assumed that the local clock is stopped before the next global

clock rising edge.

One drawback to using an And gate as the cutoff gate is that the number of

pulses generated is always even. Fig. 3.6 illustrates this point. Every transition

on A in Fig. 3.6(a) causes a pulse on the lclk signal. Fig. 3.6(b) is a waveform

showing correct behavior because the run signal is lowered after an even number

of transitions on A. If an attempt is made to cut off the clock after five pulses, as

in Fig. 3.6(c), the And gate still causes a sixth transition on A. Not only is there

an extra pulse, but the extra pulse comes earlier than the sixth pulse should.

To overcome this drawback, a transparent latch is used as the cutoff gate.

Fig. 3.7(a) contains this more flexible local clock circuit. The waveform in Fig. 3.7(b)

shows how the circuit can accommodate an even or an odd number of pulses. After

three transitions on A, run is lowered, and the cutoff latch holds a high value. The

clock is started again by raising run. This time run is lowered after two transitions,

and the cutoff latch holds a high value again. This local clock works independent

of the parity of transitions on A or the initial value of A.

35

One-

Shot

Critical Path Delay

lclk

tuning

run

A

(a)

A

run

lclk

(b)

A

run

lclk

(c)

Fig. 3.6. Local clock supporting an even number of pulses. (a) The local clock
circuit. (b) Waveform showing an even number of pulses. (c) Waveform showing
an error.

36

One-

Shot

Critical Path Delay Trans-

parent lclk

tuning

run

A
ALatch

(a)

A

run

A

lclk

(b)

Fig. 3.7. Local clock supporting an even or odd number of pulses. (a) The local
clock circuit. (b) Waveform showing an even and odd number of pulses.

3.4 Delay Element Design

Our stoppable clock uses a delay element made from the same gates as those of

the multiplier critical path. The critical path of the multiplier is found in Fig. 3.8.

In this circuit, dec1 is routed across many bit-slices of the multiplier; therefore, dec1

is a long wire in layout. The final DFF in the figure is not part of the critical path

delay. Nevertheless, the setup time on this gate must be added to the overall delay

of the clock. It is noted that the critical path delay starts with a DFF. Making

the clock delay start with a DFF implies that the delay input must be pulsed. To

accomplish this, the feedback for the clock is taken from after the One-shot as

shown in Fig. 3.9. In the circuit of Fig. 3.9, the transparent latch and One-shot

add to the overall delay of the clock; therefore, the clock frequency is conservatively

slower. The circuit in Fig. 3.9 is the final clock design in use on the fabricated chip.

Clock tuning circuitry comes between the delay element and the transparent

latch; however, the tuning circuit is noninverting so it only serves to change the

delay latency. The clock tuner is shown in Fig. 3.10. The td01 and td02 gates

37

b
s1

long wire in layout

sr
a0

d
ec

0
d
ec

1

b
s0

lc
lk

D

Q
’Q

D
Q

Fig. 3.8. The multiplier critical path.

38

One-

Shot
lclk

Critical Path Delay Trans-

parent

run

tuning
Latch

Fig. 3.9. Final stoppable clock design.

T
un

e
3

T
un

e
2

T
un

e
1

T
un

e
0

Out

In td01 td02

Fig. 3.10. Tuning delay circuit.

are delay elements of about 1 ns and 2 ns respectively. The four tuning inputs

are one-hot encoded. The Tune 0 setting adds the minimal amount of conservative

tuning — a Nand2 and a Nand4. So the overall minimal conservative delay consists

of a Nand2, a Nand4, a transparent latch, and an Xor2 from the One-shot.

The circuit used to match the critical path delay of Fig. 3.8 is shown in Fig. 3.11.

Each gate acts like an inverter; including the mux which switches between the 0

input and the 2 input each cycle. With five inverters, the delay is an inverting

delay; thus, every clock cycle bs1 makes a new transition. The output of this delay

39

6 6 6

b
s0

b
s1

6

66

23 1 0

d
ec

1

sr
a0

d
ec

0
lc

lk

D

QQ

Fig. 3.11. The clock delay element used to match the multiplier critical path.

40

element is routed through the tuner and transparent latch to the One-shot so every

transition on bs1 is converted to a clock pulse.

The same gates as the critical path are used in the delay element except when

matching fanout loads. Rather, when matching fanout loads, large inverters are

used. These inverters are inv6 gates, meaning they are six times the size of a normal

inverter with six times the input capacitance. Another difference between the clock

delay and the critical path exists on the dec1 node. In the critical path, dec1 is a

long wire and therefore adds a large capacitive load. This load is calculated and

matched in the delay element using inverters. Other than this long wire, routing

capacitive load is neglected. Table 3.1 shows the comparison of loads between the

critical path and the delay element. As can be seen in this table, the delay element

is always slightly conservative when matching the load. The bs1 load is purposely

higher in the delay element to account for the setup time on the down-stream DFF.

With careful matching, the required amount of tuning is minimized.

3.5 Stoppable Clock Control

The stoppable clock interface is again presented for reference in Fig. 3.12. The

Stoppable Clock of this figure is described in the previous sections. The Clock

Control and State Machine blocks are described in this section. A timing diagram

for the interface is shown in Fig. 3.13. First, gclk causes the clock control to raise

TABLE 3.1

Critical path and delay element load comparison in fF

Multiplier Clock
Critical Delay

Node Path Element

sra0 299.73 333.72
dec0 482.04 485.13
dec1 618.00∗ 645.81
bs0 30.90 30.9
bs1 30.90 89.61

∗ 540.75 from gates and 77.25
from the long wire.

41

run

Stoppable

Clock

Clockreset

gclk

Statestop

Control Machine

lclk

Fig. 3.12. Stoppable clock interface architecture.

��������
��������
��������
��������

��������
��������
��������
��������

t
gclk

run

lclk

stop

Fig. 3.13. Timing diagram for the stoppable clock interface.

run which in turn causes the local clock to begin oscillating. The first local clock

pulse causes the state machine to move from its idle state; thus, stop is lowered.

After a specified number of clock cycles, the state machine enters the idle state

again; thus, stop is raised. A rising edge on stop causes the clock control to lower

run. Depending on the global clock frequency, the number of local clock pulses,

and the local clock frequency, run could fall before, during, or after the high-to-low

transition on gclk. Thus, the circuit causing run to fall must be independent of

the level of gclk and must ignore a falling edge on gclk. As stated previously, it is

assumed that the clock is done oscillating some time (i.e., t) before the next rising

edge of gclk.

The state machine is a Moore style state machine. Yet, stop must be hazard free

and monotonic because it affects hazard sensitive circuits. To make stop hazard

free, the state codes are Gray coded. Thus, every state change flips a single bit.

42

A single state-decoding Nor gate is used to generate stop. The state encoding is

shown in Table 3.2. In the idle state, stop is high. Every other state always has a

1 in it, so the stop Nor gate is held low. The transition of the final iterating state

to the idle state changes two state bits from 1 to 0, and the Nor gate changes to a

1 again.

The run signal is trickier to generate than the stop signal. A rising edge on

gclk causes run to rise. The gclk signal is not synchronized with lclk and can rise

or fall at any time. A rising edge on stop causes run to fall. The stop signal is

synchronized with lclk. To generate the clock control circuit, ATACS, a tool for the

synthesis and verification of timed circuits, is used [1]. ATACS takes a high level

description and generates a circuit. The high level description for the clock control

circuit is shown in Fig. 3.14.

The “process gclk environment;” and “process stop environment;” sections de-

fine the environment while the “process run;” section defines the behavior of run.

It is necessary to insert an internal state variable (x) so that run can be generated.

If it is assumed that stop will always rise after gclk is low, the state variable is

TABLE 3.2

Moore State Machine Encoding

State Encoding stop

Idle 0000 1
Initialize 0001 0
Iterating 0011 0

0111 0
0101 0
0100 0
0110 0
1110 0
1010 0

Iterating 1000 0
Final 1100 0
Idle 0000 1

...
...

...

43

module run;

process run;
∗ [[gclk]; run+; [∼ stop]; x−; [stop]; run−; [∼ gclk]; x +]

endprocess

process gclk environment;
∗ [gclk+; gclk −]

endprocess

process stop environment;
∗ [[run & gclk]; stop−; stop+; [∼ gclk]]

endprocess

endmodule

Fig. 3.14. High level description of the clock control for use in ATACS.

not needed. This involves adding timing assumptions to the design. These timing

assumptions are used by ATACS to make circuit optimizations. Given the high level

description, ATACS generates a production rule set (PRS). The PRS is implemented

using generalized C-elements (gC). It is shown that the run circuit is on the critical

path for cutting off the clock. Thus, a gC implementation is desirable because

it is faster than a standard C-element implementation. The PRS generated by

ATACS is in Fig. 3.15(a), and the gC implementation is in Fig. 3.15(b). The gC

implementation is modified on the fabricated design to add reset and to push

bubbles. The final circuit, shown in Fig. 3.16, generates ∼ run and ∼ x.

A major timing assumption of this stoppable clock is embedded in the cutoff

path. It is illustrated in Fig. 3.17. A formal definition of the timing assumption

is in Fig. 3.17(a). The order of timed events is shown in Fig. 3.17(b). First, a

lclk pulse is generated. At this point it starts traveling through the delay element.

Second, the state machine transitions to the idle state, and stop rises. Third, in the

clock control, the run signal rises. Fourth, the transparent latch is closed. Events

one through four must occur before cpd changes (i.e., event five). If run changes at

the exact time cpd changes, a runt pulse may appear after the latch which may or

may not fire the One-shot. If run changes too late, an extra lclk pulse is generated,

sending the multiplier control into the wrong state.

44

+x : (∼ gclk & ∼ run)
−x : (∼ stop)
+run : (gclk & x)
−run : (stop & ∼ x)

(a)

stop

∼ run

∼ gclk

∼ stop

x

gclk

run

weak

weak

x

(b)

Fig. 3.15. Clock control circuit. (a) Production rule set for the circuit. (b) gC
implementation of the production rule set.

45

∼
gc

lk

gc
lk

ru
n

∼
st

op

st
op

re
se

t

∼
ru

n

∼
x

w
ea

k

w
ea

k

Fig. 3.16. Bubble shuffled clock control with reset added.

46

Dt = Clock buffer tree latency
Ds = State-machine latency to raise stop
Dr = gC latency to raise run
Dc = Cutoff latch latency
De = Critical path delay latency
Assumption : Dt + Ds + Dr + Dc < De

(a)

DFF

One-

ShotLatch

Trans-
parentCritical Path Delay

1

4

3

2

5

Clock
Buffer
Tree

close latch

∼run

lc
lk

stop

cpd

∼ x is high

∼ x

(b)

Fig. 3.17. Local clock cutoff timing assumption. (a) Formal timing assumption.
(b) Events on the circuit.

47

It is interesting to note that the clock control exhibits 4-phase asynchronous

behavior. In the high level description, gclk is changed to req and x is changed to

ack. These changes are shown in Fig. 3.18. The req and ack 4-phase handshake

is displayed in large bold font. Note that ack (or x) is in negative phase. This

asynchronous behavior shows that x acts as a done signal; therefore, the multiplier

can be used in an asynchronous environment as well as a synchronous environment.

Taking a close look at Fig. 3.18 also indicates another timing constraint on subse-

quent multiplies: before gclk (or req) can rise to start a new multiply, x (or ack)

must rise signaling the end of a multiply. In a synchronous environment, the x

signal is ignored, and it is assumed that the multiplier is complete before the next

global clock rising edge. If the timing constraints in this section are met, the clock

control circuit works correctly. Simulations show that the designed circuits meet

these timing constraints.

3.6 Simulation of the Stoppable Clock

To show that the stoppable clock interface circuits meet the cutoff timing

constraint, SPICE simulation is used. Initially, SPICE simulation is done at the

schematic level. After the design is completed to layout, SPICE simulation is

performed on the parasitic extracted layout level. This level is much more accurate

and helps ensure that the circuits indeed meet the timing constraint. The local

clock interface circuit is simulated on three design corners (fast, typical, slow), and

three voltage levels (5, 3.3, 1.5). This makes a total of nine different simulations.

For the fast and typical corners, a temperature of 27◦ C is used. For the slow

corner, a temperature of 60◦ C is used. In the simulations, the local clock tuning

is set at minimum delay. Thus, the clock frequency is as close to the multiplier

process run;
∗ [[req]; run+; [∼ stop]; ack-; [stop]; run−; [∼ req]; ack+]

endprocess

Fig. 3.18. Asynchronous behavior of the control circuit.

48

critical path delay as it can be. Simulation of the parasitic extracted local clock

interface at 5 V on the typical corner is shown in Fig. 3.19. As this figure shows,

a rising edge on gclk causes ∼run to fall. When ∼run falls, x rises and the local

clock begins oscillating. The first local clock pulse causes stop to fall. The clock

oscillates for 11 pulses, and then stop rises. This causes ∼run to rise which cuts

off the clock and causes x to fall. Then the procedure repeats with the next gclk

rising edge.

The SPICE simulations for the schematic level show that the clock works cor-

rectly for all nine situations with the minimal tuning setting. Simulations of the

parasitic extracted layout show that the clock works correctly for all three corners

at 5 and 3.3 V. The fast and typical corners work down to 1.6 V and the slow corner

down to 1.7 V. With a voltage lower than that, the cutoff path is too slow, and the

Fig. 3.19. SPICE simulation of clock interface at 5 V VDD on the typical corner.

49

local clock generates too many pulses. If a lower voltage is needed, the interface

circuits must be redesigned and optimized such that the cutoff path is faster.

The additional clock tuning only serves to slow down the local clock; therefore,

it cannot cause the clock to fail the cutoff timing constraint. Instead, it makes the

clock more conservative and causes the cutoff timing assumption to be met with

greater ease. Yet, tuning the clock to be slower causes the multiplier to be slower.

This affects the second timing constraint mentioned in Section 3.5. It is stated

that before gclk can rise, x must rise. After the bubble reshuffle, the phase of x

is changed and the assumption becomes: before gclk can rise, x must fall. The

longer a multiply takes, the closer the x falling edge occurs to the gclk rising edge.

As shown in Fig. 3.20, when gclk rises before x falls, the multiplier ignores the

Fig. 3.20. SPICE simulation showing gclk rising before x falls.

50

gclk rising edge and remains idle for one gclk cycle. Note that x starts to fall at

49ns, but then gclk rises before x falls causing x to remain high. The multiplier

works correctly on the subsequent rising edge of gclk ; nevertheless it is still an error

because one multiply is not performed.

The SPICE simulations described in this section only serve to evaluate the

functionality of the local clock interface. More detailed SPICE simulations of the

multiplier and local clock are provided in Section 4.2.

CHAPTER 4

EXPERIMENTAL RESULTS

In order to quantify the pros and cons of using stoppable clocks, a locally-clocked

multiplier is fabricated. This chapter discusses experimental results from the fab-

ricated IC. The proposed experiments are described followed by SPICE simulation

and measured results. A detailed analysis of stoppable clocks is presented last.

4.1 Proposed Experiments

This section proposes experiments for evaluating the IC. Multiplier performance

and stoppable clock performance are analyzed. The two are intertwined such that

they cannot be evaluated separately.

To test multiplier functionality, single multiplies are fed in and the results are

checked. A more extensive test as described in Chapter 2 uses the pseudo-random

number generator and the signature file. The A operand is set to x65BC8 which

decodes the sequence 0,−2B, B,−B, 0,−B, 2B, B,−2B, 2B. The B operand comes

from the pseudo-random number generator. After 220−1 multiplies the signature is

checked. If the multiplier is not working correctly, the global and local clock can be

single stepped while viewing state machine bits on LEDs. Multiplier functionality is

measured at different voltages and temperatures. If the multiplier generates wrong

signatures, that point is noted as an error point that requires tuning.

Power consumption is calculated by measuring current draw on VDD. The A

operand is set to x74CEE, and the B operand is pseudo-random. The decode

sequence of A is −2B, 0,−B, 0, B,−B, B, B,−B, 2B. This sequence decodes a

different multiple of B on every cycle except one. Thus, the Shift Register A,

Decode A, and Selector B have close to worst-case switching frequency. Average

current is measured on the multiplier VDD and clock VDD lines. Then, the power

52

equation P = V I is applied. Power of an idle multiplier is also measured. Power

consumption for different voltages and temperatures are measured.

Latency numbers are measured on an oscilloscope by viewing gclk, the internal

variable x, and the local clock lclk. Remember that when x falls, the multiply

is done. The delay from a gclk rising edge to x falling is the multiplier latency.

The delay from a gclk rising edge to the first local clock pulse is the startup time.

The delay from the last local clock edge to x falling is the stop time. Startup

and stop times are control latency overhead. Latencies for different voltages and

temperatures are measured. The frequency of the local clock is measured by putting

the clock in free-running mode and viewing it on the scope. Local clock frequencies

for different voltages are measured.

Clock behavior is evaluated by viewing the clock while multiplying and in free

run mode. The clock is left in free run mode for a long time to see if it ever stops

oscillating. It is necessary to determine if the clock exhibits behavior that would

inhibit using the clock in a design. Clock behavior is analyzed at different voltages.

The critical path is matched in the local clock delay. If mismatch makes the

local clock faster than the multiplier critical path, the multiplier generates incorrect

values. In this case, the clock must be slowed down with tuning. Whenever a voltage

and temperature cause the multiplier to give incorrect results, the clock is slowed

down through tuning until the multiplier works. How much tuning is necessary is

analyzed and discussed. Ideally, the multiplier critical path delay is measured under

a variety of voltages and temperatures. This helps determine how the local clock

delay scales compared to the critical path delay and how much tuning is needed.

Unfortunately, the critical path signal does not appear clearly on an oscilloscope

except at very low voltages. At high voltages, the local clock frequency exceeds the

oscilloscope bandwidth. Thus, the only way to tell if the delay tracks the critical

path is if the multiplier multiplies correctly.

A second clock is placed on the chip to measure process variation. This clock is

identical to the original local clock that synchronizes the multiplier. The multiplier

clock is in the upper left-hand corner of the chip, while the second clock is in the

53

lower right-hand corner. It is hypothesized that process variation from one side

of the chip to the other may be insignificant. Thus, the clock can use the same

gates that exist on the critical path, and process variation does not cause enough

mismatch to cause multiply errors. Both clocks are routed to pins and the local

clock frequencies are measured on an oscilloscope over a wide voltage range.

A third clock, shown in Fig. 4.1, is also designed and placed on the chip. This

clock uses inverters for a delay element. The delay element is tuned to match 1

2

the critical path delay. Thus, it takes two passes through the delay element to

equal one clock pulse. The clock has a regular frequency every pulse. Rise and

fall time differences in the inverters only serve to change the duty cycle of the

third clock. This clock is used for comparison to the clock that synchronizes the

multiplier. The alternate clock is placed on the chip and its output is routed to

a pin for observation. It is hypothesized that this clock requires extreme amounts

of tuning to match the critical path delay. Ideally, this clock delay is compared to

the measured critical path delay. This shows how the multiplier critical path scales

compared to an inverter delay. As stated before, the critical path signal is only

measurable at low voltages. Thus, scale comparisons must be drawn from another

source. These comparisons come from comparing the frequency of the third clock

to the frequency of the other two clocks.

tuning

1

2
Critical Path Delay

lclk
∼ run

Fig. 4.1. Alternative stoppable clock design with delay of inverters.

54

4.2 SPICE Simulation Results

Latency and power numbers are initially calculated through SPICE simulation.

After the design is completed to the layout level, a parasitic extraction view is

generated. This view has parasitic capacitance, but not resistance because the

extraction process available extracts only capacitance. This view is used to perform

SPICE simulation on the multiplier design and local clock. The extracted view

behaves closest to the actual chip than any other view.

The extracted view is simulated on the three design corners (fast, typical, slow),

and at three voltage levels (5, 3.3, 1.6/1.7). As mentioned in Chapter 3, the fast and

typical corners do not work below 1.6 V. And the slow corner does not work below

1.7 V. This is due to the cutoff path being too slow below these voltage levels. For

the fast and typical corners, a temperature of 27◦ C is used. For the slow corner,

a temperature of 50◦ C is used. In the simulations, the local clock tuning is set at

minimum delay. Thus, the clock frequency is as close to the multiplier critical path

delay as it can be.

For clock 1 and clock 2, the time between every other pulse is shorter. An

exaggerated example of this is found in Fig. 4.2. The reason for this behavior

is because of the difference in rise and fall times in the local clock delay. One

pass through the delay is faster than the next. Then the two different delays are

repeated. Local clock period is calculated from the average of t1 and t2 in Fig. 4.2.

Local clock frequency is calculated from the inverse of the local clock period. The

duty cycle of clocks 1 and 2 is determined by the pulse width delay in the One-shot.

If the pulse width delay is equal to half the critical path delay, clocks 1 and 2 have

a 50% duty cycle. This is not likely to happen due to the different clock periods

every other cycle. SPICE latency numbers for the local clock are shown in Table

4.1. The width of local clock pulses is shown in the last column.

SPICE latency numbers for the multiplier are shown in Table 4.2. In this table,

the multiplier frequency is calculated as the inverse of the multiplier latency. The

lclk start and lclk stop columns show the control overhead for starting and stopping

the clock. The control overhead column shows the percentage of the multiplier

55

t2t1

lclk

Fig. 4.2. Clock 1 output.

TABLE 4.1

Local clock latency numbers from SPICE

lclk lclk lclk
Corner Temp VDD period frequency width

[◦C] [V] [nS] [MHz] [nS]

fast 27 5 3.58 279.14 0.51
typ 27 5 5.01 199.45 0.83
slow 60 5 7.40 135.19 1.32

fast 27 3.3 4.75 210.68 0.63
typ 27 3.3 7.15 139.78 1.12
slow 60 3.3 11.34 88.15 1.98

fast 27 1.6 13.19 75.82 1.45
typ 27 1.6 26.77 37.36 3.37
slow 60 1.7 43.37 23.06 6.51

TABLE 4.2

Multiplier latency numbers from SPICE

multiplier multiplier lclk lclk control
Corner Temp VDD latency frequency start stop overhead

[◦C] [V] [nS] [MHz] [nS] [nS] [%]

fast 27 5 42.19 23.70 4.20 2.17 15.10
typ 27 5 59.80 16.72 6.60 3.06 16.15
slow 60 5 88.18 11.34 9.68 4.53 16.11

fast 27 3.3 56.36 17.74 6.19 2.70 15.77
typ 27 3.3 85.13 11.75 9.39 4.20 15.96
slow 60 3.3 135.07 7.40 14.81 6.81 16.00

fast 27 1.6 156.25 6.40 17.12 7.24 15.59
typ 27 1.6 321.04 3.11 36.22 17.16 16.63
slow 60 1.7 527.09 1.89 61.02 32.36 17.71

56

latency in starting and stopping the clock. On the typical corner, the average

percentage of control overhead is 16.25%.

SPICE power numbers for the multiplier and local clock are shown in Table 4.3.

Both the A and B operands are set such that they generate maximum switching

frequency in the multiplier. Also, the clock is tuned to the fastest setting. Thus,

worst case power is calculated. The current draw on the multiplier and local clock

VDD lines is measured and averaged over the time when the multiplier is active.

The power equation P = V I is then applied to get the total power.

4.3 Measured Results

The 20-bit multiplier was fabricated through MOSIS using AMI’s 0.5 µm pro-

cess. The die size is 3 mm × 3 mm and has 84 pins. A die photo is shown in

Fig. 4.3. The entire design is standard-cell except for two gC gates in the clock

control. It is arguable that those gC gates are standard-cell in an asynchronous gate

library. In the cells, the transistor widths are 10.2 µm for the PMOS and 7.8 µm for

the NMOS. Transistor lengths are always the minimum 0.6 µm except in the weak

feedback inverter for the gC gates. The weak feedback inverters have a length of

4.8 µm. The core of the chip includes the multiplier, a local clock to synchronize the

TABLE 4.3

Multiplier and local clock power numbers from SPICE

mult lclk total total
Corner Temp VDD current current current power

[◦C] [V] [mA] [mA] [mA] [mW]

fast 27 5 87.05 22.57 109.60 548.10
typ 27 5 61.36 16.32 77.68 388.40
slow 60 5 42.70 11.53 54.23 271.15

fast 27 3.3 37.45 10.14 47.59 157.05
typ 27 3.3 24.91 6.895 31.81 104.96
slow 60 3.3 16.40 4.575 20.98 69.22

fast 27 1.6 5.437 1.527 6.964 11.14
typ 27 1.6 2.807 0.779 3.586 5.738
slow 60 1.7 1.969 0.544 2.513 4.272

57

Fig. 4.3. Die photo.

58

multiplier, and routing for multiplier control and the local clock. The core size is

819 µm × 572 µm = 0.468 mm2 and contains 8190 transistors. This section presents

measured latency and power values for the multiplier and stoppable clocks. The

local clocks are numbered 1 through 3. Local clock 1 is the clock that synchronizes

the multiplier. Local clock 2 is identical to local clock 1 and is placed on the

opposite side of the chip. Local clock 3 is the alternate clock with a delay made of

inverters. Tuning for the local clocks is labeled 0 through 3. Tune 0 is the fastest

setting and Tune 3 is the slowest. When performing high temperature testing, the

test equipment consists of a Tektronix TDS 224 oscilloscope, Agilent E3615A power

supply, Sigma Systems Model C4 temperature chamber, and Fluke 189 multimeter.

The Tektronix oscilloscope has a bandwidth of 100 MHz with 1 GSps. For all other

tests, the test equipment consists of an HP 54645D mixed-signal oscilloscope, HP

E3631A power supply, and HP 34401A multimeter. The HP oscilloscope has a

bandwidth of 100 MHz with 200 MSps.

Frequency numbers for the local clocks at different voltage levels are shown in

Table 4.4. These values come from measurements on chip number three at room

temperature. The clocks are set in free-run mode and the frequency is measured

on the oscilloscope. As stated before, rise and fall times for gates in the first

two local clocks differ enough that every other pulse is shorter. The frequency

reported is calculated from the average of the two periods. Comparing the measured

frequencies in Table 4.4 to the SPICE frequencies in Table 4.1, it is noticed that

clock 1 runs slightly above the typical corner, and clock 2 runs right on the typical

corner. It is interesting to note that although clocks 1 and 2 are identical, the

measured frequencies are different for all voltages except 0.5 V. On average, clock

2 is 16.9% slower than clock 1. This is consistent across all 5 chips. The clocks

are on different VDD lines; however, both lines have the same voltage level while

performing these experiments. Explanations and hypotheses for the mismatch are

discussed in Section 4.4.

To see how tuning changes the frequencies, the local clock frequencies are

measured at 5V with all possible tuning settings. All five chips are measured and

59

TABLE 4.4

Measured local clock frequencies

VDD clock 1 clock 2 clock 3
[V] [MHz] [MHz] [MHz]

5.0 230.7 195.0 290.5
4.5 219.4 177.3 276.0
4.0 195.4 164.6 256.3
3.5 176.4 154.5 235.7
3.0 152.4 135.8 204.5
2.5 128.0 102.8 163.8
2.0 86.5 74.3 116.3
1.5 43.3 38.0 60.8
1.0 5.25 4.75 7.65
0.5 171 Hz 173 Hz 245 Hz

the average frequency for each tuning setting is calculated. Table 4.5 shows the

average frequency for each tuning setting.

It is found that numerous voltage levels cause the local clock to fail. Most

of the failures are due to failing the cutoff timing constraint. At these voltage

levels, the cutoff path is too slow, so the local clock generates 12 or more pulses

on a multiply before it is cut off. But once the clock has generated 12 or more

pulses, the multiplier is in the wrong state and becomes unresponsive. In SPICE

simulations of Chapter 3, the clock was set to Tune 0 (i.e., the fastest setting) and

all corners worked down to at least 1.7 V. This is not the case on the actual chips.

For Tune 0, the local clock cutoff path is always too slow, and therefore the local

TABLE 4.5

Measured local clock frequencies with tuning at 5 V

Clock Tune 0 Tune 1 Tune 2 Tune 3
[MHz] [MHz] [MHz] [MHz]

1 227 215 174 125
2 188 181 155 116
3 295 257 161 88

60

clock does not function. Tune 1 and Tune 2 work for some voltage ranges, and

Tune 3 works from 5 V down to 1.14 V. Table 4.6 shows the voltage ranges for

each tuning setting which do not cause the local clock to fail. The ranges are an

average of the failure points for all five chips. The lowest voltage where the clock

still functions is 1.14 V. At this point the cutoff path is still working correctly, but

the gC gates in the local clock control quit working. Explanations and hypotheses

for why the clocks fail are presented in Section 4.4.

Measured multiplier latency numbers at room temperature are shown in Table

4.7. Only certain voltage levels and tuning settings work without local clock failures.

These levels and tuning settings are the ones tested and presented in Table 4.7. The

latency numbers are measured by viewing gclk, x, and lclk on an oscilloscope. It is

the same procedure as the SPICE calculations described in Section 4.2. The start

and stop local clock delays are independent of the tuning setting of the local clock.

Rather, they are determined by the voltage level. The control overhead at 1.2 V

is significantly higher than the other voltage levels. This is because at 1.2 V, the

gC gates are on the verge of failing and they become very slow. This is discussed

further in Section 4.4. There are slight errors in the latency calculations due to

pad delay. The global clock must be routed through a pad and pin to the internal

circuit, and x must be routed off chip through a pad and pin. Both of these delays

add to the latency calculation. The same situation exists for the local clock start

delay. The stop latency has an error if routing x off the chip has a different delay

than routing the local clock off the chip. However both of these signals come from

a similar portion of the chip and have pins close together.

TABLE 4.6

Measured working points for the local clock

Tune 0 Tune 1 Tune 2 Tune 3
[V] [V] [V] [V]

NA 5.00 - 3.84 5.00 - 3.63 5.00 - 1.14
3.06 - 2.46
1.64 - 1.14

61

TABLE 4.7

Measured multiplier latency numbers

multiplier multiplier lclk lclk control
Tuning VDD latency frequency start stop overhead

[V] [nS] [MHz] [nS] [nS] [%]

1 5.0 58.8 17.01 8.8 4.4 22.4
1 4.0 68.4 14.62 9.6 4.8 21.1

2 5.0 71.2 14.04 7.8 4.8 17.7
2 4.0 80.4 12.44 8.8 3.0 14.7
2 3.0 101.6 9.84 11.6 5.6 16.9
2 1.6 302.0 3.31 32.0 19.0 16.9
2 1.2 3260.0 0.306 1590.0 910.0 76.0

3 5.0 93.6 10.68 8.0 4.0 12.8
3 4.0 107.6 9.29 8.4 4.8 12.3
3 3.0 144.0 6.94 11.2 6.4 12.2
3 1.6 443.0 2.26 30.0 23.0 12.0
3 1.2 4220.0 0.237 1450.0 920.0 56.0

The multiplier functionality is tested in many ways. Initially, single multiplies

are fed in, and correct results are returned. A much more extensive test as described

in Chapter 2 is performed next. The A operand is set to x65BC8 which decodes

the sequence 0,−2B, B,−B, 0,−B, 2B, B,−2B, 2B. The B operand comes from

the pseudo-random number generator. After 220 − 1 multiplies the signature is

checked. The local clock is set on Tune 3 (i.e., the slowest setting) so that multiplier

functionality is tested independent of clock issues. Again, the correct signature is

generated for all voltages tested.

Testing multiplier functionality at faster speeds is also performed. While multi-

plier latency and power numbers are measured, a pass/fail multiplier functionality

test is performed. For the pass/fail test, the A operand is set to x74CEE while the

B operand comes from the pseudo-random number generator. The decode sequence

of A is −2B, 0,−B, 0, B,−B, B, B,−B, 2B. This sequence decodes a different

multiple of B on every cycle except one. Thus, the Shift Register A, Decode A, and

Selector B have close to worst-case switching frequency. A signature calculated

62

with a C program is latched into a comparison register. Every 220 − 1 multiplies,

the signature file is checked against the comparison register and a pass/fail latch

is updated. Then the signature file is reset. Thus, a continuous pass/fail check is

performed and the pass/fail latch is routed off chip for observation. It is found that

Tune 1 generates an incorrect signature for all voltages measured. This implies that

the local clock frequency with Tune 1 is too fast compared to the multiplier critical

path. When the local clock is set on Tune 2 and Tune 3, the multiplier generates a

correct signature for all voltage levels and temperatures tested. The local clock is

designed such that Tune 0 matches the multiplier critical path conservatively. Tune

1 is even more conservative than Tune 0. Thus, it is surprising that Tune 1 is too

fast compared to the critical path. Explanations and hypotheses for the mismatch

are presented in Section 4.4.

Measured multiplier latency numbers at higher temperatures are presented in

Table 4.8. The test board is placed in a temperature chamber and the temperature

is set to 50◦ C. This temperature is chosen based on temperature restrictions on

the 10x probes. The gclk, x, and lclk signals are again viewed on an oscilloscope.

The multiplier only generates correct results for Tune 2 and the slower Tune 3.

Thus, high temperature latency numbers are generated only for Tune 2. At 50◦ C,

the multiplier works down to 1.06 V. The high temperature latency numbers are

slower than room temperature latency numbers except at extremely low voltages.

At 1.12 V, the high temperature latency numbers are actually faster than at room

TABLE 4.8

Measured multiplier latency numbers at 50◦ C on Tune 2

multiplier multiplier lclk lclk control
VDD latency frequency start stop overhead
[V] [nS] [MHz] [nS] [nS] [%]

5.00 74 13.51 7 4 14.8
3.00 106 9.43 10 6 15.1
1.60 312 3.20 28 24 16.6
1.12 1250 0.800 150 130 22.4
1.06 3540 0.282 1320 660 55.9

63

temperature. This is because the gCs are not on the verge of failing at 1.12 V; thus,

start and stop times at 1.12 V are not as drastic.

Power consumption numbers are calculated by measuring the current draw on

the multiplier and local clock VDD lines while continuously multiplying. The

A operand is set to x74CEE, and the B operand is pseudo-random. Thus, the

pass/fail test is performed while measuring power numbers. The A operand decodes

a different multiple of B on nearly every cycle, so the Shift Register A, Decode A,

and Selector B have close to worst-case switching frequency. Average current is

measured on the multiplier VDD and clock VDD lines. Then, the power equation

P = V I is applied. Power consumption is affected by the frequency of gclk. When

measuring power, the frequency of gclk is set conservatively such that the local clock

does not fail and the multiplier generates a correct signature. The measured power

numbers for both room temperature and 50◦ C are found in Table 4.9. Even though

the multiplier is running slower at 50◦ C, it consumes nearly the same amount of

power as at room temperature.

These power numbers are significantly smaller than the SPICE simulation power

numbers of Table 4.3. This is due to three factors. First, the local clock is set

to Tune 2, and therefore the multiplier runs slower and draws less current over

TABLE 4.9

Measured power numbers on Tune 2

mult average average
Temp VDD freq current power
[◦C] [V] [MHz] [mA] [mW]

27 5.00 13.30 39.32 196.6
27 3.00 9.42 15.60 46.80
27 1.60 3.13 2.60 4.16
27 1.12 234K 0.14 0.16

50 5.00 11.49 37.80 189.0
50 3.00 7.37 13.78 41.34
50 1.60 3.06 2.22 3.55
50 1.12 374K 0.39 0.44
50 1.06 207K 0.18µ 0.19µ

64

time. Second, the B operand cycles through all possible values causing average-case

switching in the multiplier rather than worst-case switching. Third, the SPICE

current is only measured while the multiplier is active. There is some dead time

between multiplies where the multiplier is idle. This dead time has very little

current draw. The measured current is an average over time, which includes the

dead time, and therefore the average is lower.

Power consumption for an idle multiplier is also measured. There are two ways

to make the multiplier idle. One is to cut off gclk completely. In this case, no

switching occurs in the multiplier, and power consumption is due solely to leakage

current. The second way is to allow gclk to pulse, but to hold reset low. While reset

is low, the ∼run signal remains high and the local clock never oscillates. The global

clock is routed to ≈ 60 latches through a small clock buffer tree. In the second

situation, the only switching in the circuit is the gclk buffer tree, and the clock

input to ≈ 60 latches. The power measured in the second situation is obviously

dependent on the frequency of gclk. For each voltage level, the gclk frequency is

set to the frequency of the multiplier at that voltage level. The idle circuit power

measurements are found in Table 4.10.

TABLE 4.10

Measured power numbers when idle

power power gclk
VDD no glck gclk & no lclk frequency
[V] [µW] [mW] [MHz]

5.0 29.0 10.10 14.0
4.5 27.5 7.83 13.5
4.0 26.8 5.68 12.4
3.5 3.5 3.92 11.2
3.0 0.0 2.49 9.8
2.5 0.0 1.33 7.8
2.0 0.0 0.48 4.0
1.5 0.0 0.18 3.3
1.0 0.0 0.008 0.31
0.5 0.0 0.0 0.11

65

The final node in the multiplier critical path is routed off chip for observation.

It is meant to measure the time from a local clock pulse to a change on the final

node of the critical path. Thus, the multiplier critical path delay is measured.

Unfortunately, this signal is only observable on the oscilloscope at very low power

supply voltages. At high voltages, the local clock frequency exceeds the oscilloscope

bandwidth. On chip 4 at room temperature and 1.5 V, the critical path takes

13.6 ns to fall, and 20 ns to rise. This implies that the multiplier can be run at

approximately 50 MHz at that voltage. At 1.2 V, the critical path takes 27 ns to

fall and 47 ns to rise. Thus, the multiplier can be run at approximately 21 MHz at

that voltage. Local clock 1 runs at 45 MHz on Tune 0 at 1.5 V. Thus, if the cutoff

path worked with Tune 0 at 1.5 V, the multiplier would generate correct results.

4.4 Stoppable Clock Electrical Issues

This section discusses some of the stoppable clock electrical issues in more detail.

For instance, a free-running local clock is tested to see if it ever stops oscillating.

The clock is left in free run mode for an hour and observed on an oscilloscope. A

plot of clock 1 after an hour of free-run mode at 5 V VDD is shown in Fig. 4.4.

It does not look like a digital signal because the clock frequency is well above

the oscilloscope bandwidth. After an hour the clock continues to oscillate without

stopping.

Another issue in the design of stoppable clocks is the sizing of gC transistors.

Sizing is found to be a critical aspect for performance of the clock control. The set

of feedback inverters on a gC is called a keeper. The keeper must be strong enough

to hold state when it is not being actively driven by an NMOS or PMOS stack.

Nevertheless, it must be weak enough that an NMOS or PMOS stack can overdrive

it. A stronger keeper is intolerant to noise and power bumps, but is harder to

overdrive. A weaker keeper is easier to overdrive, but is more susceptible to noise

and power bumps. Sizing of the keeper also affects how fast the gC output changes

and the lowest VDD at which the gC functions. The weak feedback inverter is

made by sizing the transistors longer than normal. Simulations are performed to

66

−20 −15 −10 −5 0 5 10 15 20 25

0.16

0.18

0.2

0.22

0.24

0.26

Time [nS]

V
ol

ts
 [V

]

Local Clock Output After One Hour

Fig. 4.4. Free running clock after one hour.

find how long to make the weak feedback inverter transistors. This length is found

to be six to eight times as long as a minimum length transistor. The simulated gC

is shown in Fig. 4.5. A plot showing gC keeper simulation with a VDD of 5 V is

shown in Fig. 4.6. When the NMOS input rises, the output of the gC rises, and

when the PMOS input falls, the output falls. With the keeper sizing used in the

local clock design and an average load comparable to a fanout of two, the gC gate

takes 0.31 ns to rise and 0.74 ns to fall at 5 V VDD. In the stoppable clock, when a

gC is on the critical path, it is always one input to that gC that changes while the

others are stable. Thus, simulations of gCs are simplified in that only one input is

required to change at a time.

It is mentioned in Section 4.3 that the gC gates quit functioning at 1.14 V VDD.

The reason for this is that there exists an error in the sizing of keepers on the gC

gates. The keeper transistors are sized too wide and are therefore too strong at

low voltages. Ideally, the NMOS and PMOS stacks have normal widths while the

67

n input

weak

p input

gC out

Fig. 4.5. A gC gate.

Fig. 4.6. Simulation of gC keeper at 5 V VDD.

68

keeper transistors are minimum size. When the keeper is designed this way, the gC

functions correctly down to extremely low voltages. A slightly different gC design

with correct transistor sizing is shown in Fig. 4.7. With the new keeper sizing and

an average load comparable to a fanout of two, the gC gate takes 0.38 ns to rise and

0.16 ns to fall at 5 V VDD. The original keeper design uses three inverters to isolate

the internal keeper node from the output load. This third inverter is a conservative

measure and is not necessary if sizing of the driving NMOS and PMOS transistors

is done correctly.

Simulations are performed on the circuit of Fig. 4.7 and the gC circuit that is

currently used on the IC. Latency numbers for extremely low voltages are shown in

Table 4.11. In these simulations, a single input is changed and the output latency

is measured. The gC gates have an average load comparable to a fanout of two. In

simulation, the original gC fails at 1.22 V VDD, and the new gC works below Vt

(0.7 V). Rise-times for the gC gates become extremely slow as they approach the

failure point. This is manifest in the control overhead of the multiplier at 1.12 V.

At that voltage, control overhead is 76% on Tune 2. The rise-times of the gC gates

can be shortened if the driving PMOS widths are increased while leaving the keeper

widths as is. Significant improvement exists for doubling or tripling the width of

the PMOS transistors. This becomes the classic tradeoff between area and latency.

Yet, care must be taken that noise on the gate of the PMOS does not turn it on

enough that the weak keeper is overdriven. The larger the PMOS, the more likely

it has strength to overdrive the keeper with very little noise.

Another failure point in the local clock design exists in the cutoff path timing

constraint. The timing constraint is again presented in Fig. 4.8 for reference.

Section 4.3 mentions that for certain voltage levels and tuning settings, the cutoff

path is too slow. When this occurs, the local clock generates too many pulses,

and the multiplier locks up. Table 4.6 shows which tuning settings work at what

voltages. It is interesting to note that the SPICE simulations in Section 4.2 claim

that Tune 0 works down to at least 1.7 V. And the other tuning settings only serve

to slow the clock down, making the cutoff timing constraint easier to meet. In the

69

p: 2.2

3.6

n: 1.1

3.6

n: 1.1

0.6

p: 2.2

0.6

10.2

0.6

7.8

0.6
n input

gC out

w
ea

k

p input

Fig. 4.7. A gC gate with better sizing.

TABLE 4.11

Improved sizing gC latency numbers from SPICE

Improved Improved Old Old
rise-time fall-time fall-time rise-time

VDD [nS] [nS] [nS] [nS]

1.25 7.95 0.81 106.90 5.20
1.22 9.78 0.88 579.10 5.85
1.20 11.22 0.94 NA NA
1.15 15.41 1.12 NA NA
1.10 23.13 1.34 NA NA
1.05 37.34 1.64 NA NA
1.00 66.21 2.08 NA NA
0.95 136.30 2.80 NA NA
0.90 316.80 3.99 NA NA
0.85 814.50 6.32 NA NA
0.80 2349.00 11.17 NA NA
0.75 7639.00 22.12 NA NA
0.70 27250.00 49.60 NA NA
0.65 104900.00 120.45 NA NA

70

Dt = Clock buffer tree latency
Ds = State-machine latency to raise stop
Dr = gC latency to raise run
Dc = Cutoff latch latency
De = Critical path delay latency
Assumption : Dt + Ds + Dr + Dc < De

(a)

DFF

One-

ShotLatch

Trans-
parentCritical Path Delay

1

4

3

2

5

Clock
Buffer
Tree

close latch

∼run

lc
lk

stop

cpd

∼ x is high

∼ x

(b)

Fig. 4.8. Local clock cutoff timing assumption. (a) Formal timing assumption.
(b) Events on the circuit.

71

SPICE simulations, the cutoff constraint is being met with a very narrow margin.

In addition, the SPICE simulations only have capacitive parasitics and not resistive

parasitics. Plus, the model files used for simulation are not the extracted model

files provided by MOSIS after fabrication. So some error in the simulation exists.

Thus, in the actual circuit, the margin is too narrow and the constraint is broken

sometimes. There are numerous ways to speed up the cutoff path so that it is

faster than the local clock delay element by a very large margin. For example, the

local clock signal that feeds the state-machine can be taken from further back in

the clock buffer tree. Bubble pushing can be implemented such that the gates with

the slowest rise times are required to fall in the cutoff path. The Nor gate can be

optimized to a faster Nand gate, or can be folded into the ∼run gC gate. And

finally, the ∼run gC keeper can be changed to the keeper as shown in Fig. 4.7 with

correct sizing. All in all, the cutoff path reduces to a smaller clock buffer tree, a

DFF, and a transistor (only one gC input on ∼run changes). These optimizations

give an extremely large margin between the local clock feedback and the cutoff path

signal.

The local clock is designed such that Tune 0 matches the critical path conserva-

tively in simulation. Section 4.3 shows that the local clock is faster than the critical

path at 5 V on Tune 1. The difference between Tune 0 and Tune 1 is very slight,

but Tune 1 is slower than Tune 0; therefore, the local clock is too fast at 5 V on

Tune 0 as well. This may be due to a number of effects. For example, there may

be a temperature gradient causing the local clock to run faster than the critical

path. Or a process gradient may cause part of the chip to run faster than another.

Also, process variation causes up to ±20% mismatch in gates depending on spacial

locality. In addition to these physical effects, some error in the simulation exists.

The model files used for simulation are not the extracted model files given after

fabrication. And the simulated extracted view does not have extracted resistance.

It has only extracted capacitance. Thus, the critical path is faster in simulation

than it is in implementation and/or the local clock is slower in simulation than it

is in implementation.

72

Although the local clock delay is meant to match the critical path delay, the

two are affected by voltage changes differently. The critical path is measured at two

low voltage points in Section 4.3. It is shown that at 1.5 V, Tune 0 is conservative

enough to synchronize the multiplier. Yet, at 5 V, Tune 0 and even Tune 1 are

too fast. This is due to the fact that matching the critical path exactly is difficult.

First, the gates used in the local clock for fanout load are large inverters rather than

the exact critical path gates. Second, the local clock gates are set up to act like

inverters, with one node tied to ground or VDD. The multiplier critical path is an

inverting path by definition; however, the gates do not have an input tied to VDD

or ground. Instead the other inputs can be changing simultaneously. Simultaneous

switching on a series stack exhibits worst-case behavior. In addition, glitchy lines

in the critical path may slow the gates down, whereas the local clock delay inputs

are held stable with VDD or ground.

In order to match the critical path exactly, many issues must be taken into

account. First, the same gates that exist on the critical path must be used.

Second, the exact load gates that exist on the critical path should be used to

match fanout load. At this point, matching becomes harder. The critical path has

coupling capacitance with the other bit-slices around it and the local clock may

have different coupling capacitance around it. The critical path may have long

wires which exhibit RC effects. The critical path nodes may be switching from

low-to-high while the local clock matching node is switching from high-to-low (or

vice-versa). The critical path may run at a different temperature than the local

clock due to high switching activity in the core. Critical path nodes may have

simultaneous switching or glitchy inputs that take time to stabilize. And process

variation causes up to ±20% mismatch in gates depending on spacial locality. All

of these effects add up to make delay matching difficult.

When these effects are not matched exactly, conservative tuning is necessary.

How much tuning is needed is determined by how well the critical path delay is

matched. The current delay has a four input one-hot tuner with four settings.

Rather, a 16-setting fine grained tuner can be made with some decode logic and

73

the same four inputs. The tuner should be made to add and remove delay from

the local clock delay. Simulations for desired voltage and temperature levels help

determine how much tuning is needed.

The measured frequencies of the three local clocks are plotted in Fig. 4.9. Clock

1 and clock 2 are identical clocks placed on opposite sides of the chip. Both clocks

feed an identical load and run at the same VDD. Thus, it is surprising that clock

2 is 16.9% slower than clock 1 on average. It is hypothesized that the difference

is due to a temperature gradient. When measuring clock frequency, all clocks are

placed in a free-run mode. Clock 1 is isolated in the top left corner of the chip,

while clock 2 is next to the high frequency clock 3 in the bottom right corner. It

is possible that clocks 2 and 3 run hotter than clock 1, and therefore clock 2 is

slower than clock 1. It is also possible that a process gradient exists across all five

chips. This process gradient may make the top portion of the chips faster than the

bottom portion.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

Voltage [V]

F
re

qu
en

cy
 [M

H
z]

Plot of Local Clock Frequencies

Clock 3
Clock 2
Clock 1

Fig. 4.9. Plot of frequencies for the three local clocks on Tune 0.

74

Clock 3 is a different design than the first two clocks because the delay in clock

3 is made of inverters. It is desired to know how clock 3 scales compared to the

critical path. Unfortunately, the critical path cannot be measured except at very

low voltages. Thus, clock 3 is compared to the first two clocks. Looking at Fig. 4.9,

clock 3 scales approximately the same as the first two clocks with voltage changes.

Nevertheless, as discussed above, the first two clocks do not scale the same as the

critical path. Thus, it is unknown how clock 3 scales compared to the critical path.

Perhaps if the first two clocks scaled the same as the critical path, they would scale

differently than clock 3. It is possible to use a clock such as clock 3 if accurate

simulation of the critical path is performed to find how much tuning clock 3 needs.

4.5 Discussion of Results

A thorough analysis of stoppable clocks and a locally-clocked module is per-

formed and presented in this chapter. Performance of the module in terms of

latency and power is presented. With correct tuning of the local clock, the multiplier

generates correct results. With this tuning, at 5 volts VDD, the multiplier runs

at 13.3 MHz and consumes 196.6 mW of power, while the stoppable clock runs

at 174 MHz. At 3.0 volts VDD, the multiplier runs at 9.42 MHz and consumes

46.8 mW of power, while the stoppable clock runs at 117 MHz. As a baseline

comparison, at 5 V VDD, the average latency of 6 Nand2 gates with a fanout of

4 is 1.6 ns. And 6 Xor2 gates have a latency of 2.6 ns. An alternate comparison

is done with SPIM. SPIM is a 64 × 64-bit multiplier in a 1.6µm process. It has a

multiplier throughput of 23.8 MHz, a local clock frequency of 85 MHz, and consumes

352.8mW of power at 5 V. Power consumption of SPIM is only 55% larger than our

multiplier power. This is due to our use of standard-cells and standard-cell DFFs.

It is well known that standard-cell designs consume more power than full-custom

designs. Datapath elements are usually designed as full-custom modules. The

multiplier should be re-implemented as a full-custom module to save power. If our

multiplier is scaled to a 64× 64-bit multiplier it has 22,534 transistors while SPIM

has 41,000. This is an area savings of 100% not counting routing or transistor

75

sizing.

The analysis brings up many issues in the design of stoppable clocks. For

example, the sizing of gC gates is important for speed of the cutoff path and for

how low the clock control functions. Another issue is in the matching of the critical

path. It is shown that matching the critical path exactly is difficult. Finally, the

cutoff path is too slow for much of the testing space. Greater care must be taken

to ensure that the cutoff path timing constraint is not broken.

On the other hand, the analysis showed some benefits to using a locally-clocked

module. It is extremely easy to keep the multiplier idle. This is done by either

cutting off all gclk edges, or by holding reset low. In either case, the local clock

remains idle, and therefore the module remains idle. The only power consumption

while the module is idle is from leakage current. The fact that this is such a small

module makes leakage current extremely small. The small area module also has

less capacitance than a large module; therefore, power consumption is smaller. And

finally, it is shown that tuning is a necessary part of a local clock. Without tuning,

the local clock design never meets the cutoff timing constraint. And without tuning,

the local clock design is always faster than the critical path delay. Thus, tuning

makes correct functionality of the multiplier possible.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter describes the major contributions of this work and related future

work. The analysis of local clocks in Chapter 4 brought up many issues which

are not addressed in this work. These issues are left as future work in the area of

stoppable clocks.

One contribution of this work is the evaluation of a particular locally clocked

example. In the stoppable clock design, the frequency of the clock is limited

by two factors — the cutoff path of the clock, and the ability to match the

critical path closely. There are many factors which make it difficult to match

the critical path. For example, simultaneous switching, fanout load, long wires,

and coupling capacitance are hard to match. The current clock design only makes

an attempt to match some of these. Because the critical path is not matched

perfectly, some conservative delay must be added to the clock delay. This ensures

correct functionality even though the critical path is not matched exactly; however,

if it is possible to match the critical path exactly, the conservative delay can be

removed. This speeds up the local clock and the module it synchronizes.

Rather than making the clock completely devoid of conservative delay, the

clock has tuning built in which is used to change the additional conservative delay.

Although the evaluated stoppable clock design is meant to track the datapath under

a wide range of voltages and temperatures, it is shown that the clock requires tuning

to match the critical path at some voltages and temperatures. This is because of

the difficulty in matching the critical path exactly. It is also shown that certain

voltage and temperature data points cause the cutoff path to be too slow. In these

situations, clock tuning is needed to slow down the clock such that the cutoff path

77

becomes fast enough relative to local clock feedback. It is shown in this design

that tuning is a necessary part of the local clock. Local clocks must be able to

tune faster or slower than the simulated critical path delay. Thus, errors in delay

matching are easily compensated for, and the design does not fail. Tuning can only

be removed if the delay matching is excellent under all desired running situations,

or if the clock is extremely conservative.

The work done in this thesis shows that local clocks can facilitate low-power

design for three reasons. First, it is easy to keep a locally-clocked module idle.

Either by cutting off the gclk signal, or by holding reset low. When the module is

idle, power consumption is at a minimum. Second, high frequency clocks (230 MHz)

can be generated locally through the use of stoppable clocks. In this situation, the

global clock can remain at a low frequency while local clocks perform high frequency

calculations. Third, small iterative modules which require a high frequency clock

can be synchronized with local clocks without the need to increase the global clock

frequency. Smaller modules are inherently lower power because they have less

capacitance, and power consumption on a digital IC is directly proportional to

capacitance.

The current local clock design has failure points for two reasons. First, gC sizing

is incorrect. This makes the clock fail at a lower VDD limit of 1.14 V. If gC sizing is

done correctly, the clock works below Vt (0.7 V). The second failure point is in the

cutoff path. For many voltage and temperature settings, the cutoff path is too slow

causing the clock to fail. Future designs can focus on speeding up the cutoff path;

thus, matching the critical path delay is the only limiting factor on clock frequency.

The analysis of local clocks in Chapter 4 brought forth many issues that are

not addressed in this work. For example, local clock frequency is limited by two

major factors — the cutoff path of the clock, and the ability to match the critical

path closely. In future designs the cutoff path can be optimized such that it is not

a limiting factor. That leaves the critical path matching issue. This work shows

that matching the critical path is difficult. Research can be done on how to match

the critical path better.

78

Rather than attempting to match the critical path, a clock such as clock 3 can

be used. This type of clock uses inverters for the local clock delay. They do not scale

the same as critical path gates; however, with the right amount of tuning, this is not

an issue. With the correct amount of tuning, the inverter clock is made to match

the critical path under all variations in voltage and temperature. The difference

is that it requires dynamic tuning if the voltage and temperature change during

operation. Clock 3 is desirable because it ignores all matching issues, and it has a

regular frequency, unlike clocks 1 and 2. Remember that clock 1 has two different

delays between the pulses. With accurate simulation and further research in tuning

methods, clock 3 is an acceptable alternative to critical path delay matching.

It is possible to make gC gates statically. Thus, the keeper is not necessary.

Without the keeper, gC gates are no longer dynamic and do not suffer from dynamic

gate problems; problems such as failure due to noise and power bumps. It is

necessary to quantify the performance, size, power consumption, and lower VDD

limit for static gC gates.

The multiplier design presented is a standard-cell design. This goes opposite to

the goal of being a low-power design. It is well known that standard-cell designs

consume more power than full-custom designs. Datapath elements are usually

designed as full-custom modules. The multiplier should be re-implemented as a

full-custom module to save power. Another power sink in the design is in the use

of DFFs. It may be possible to use latches which are smaller and use less power.

Some latch designs require a two-phase clock. A two-phase local clock is an area of

research currently untouched.

Some issues pertaining to local clocks remain untested due to the difficulty in

testing them. One such issue is the hypothesis that electromagnetic emission of

many locally-clocked modules has less noise impact compared to a design with an

off chip high frequency clock. Testing this hypothesis is a difficult matter because

EMI in a small design is fairly insignificant. It is also desirable to perform a

quantification of noise rejection for the local clock. Unfortunately it is difficult to

inject white-Gaussian noise into a system in a controlled manner. It is also desirable

79

to know how the local clock reacts to cross-talk effects. This helps determine how

shielded the local clock has to be.

Another issue is that the local clock design has a complete lack of jitter control.

Each clock cycle has a different length compared to the others. Also the local

clock has asymmetric pulse widths. Normally, jitter is controlled with phase-lock

loops. In addition, off chip crystal oscillator frequencies are inherently more regular

than local clock frequencies. With a lack of jitter control, the local clock requires

conservative tuning. If local clocks are made with jitter control, some of the

conservative delay can be removed.

Finally, local clocks will be built in future technologies. These technologies will

affect performance and will introduce new issues to local clocks. Solutions to these

new problems must be discovered as technology progresses.

REFERENCES

[1] C. J. Myers, Computer-Aided Synthesis and Verification of Gate-Level Timed
Circuits. PhD thesis, Dept. of Elec. Eng., Stanford University, Oct. 1995.

[2] A. J. Acosta, R. Jiménez, A. Barriga, M. J. Bellido, M. Valencia, and J. L.
Huertas, “Design and characterisation of a CMOS VLSI self-timed multiplier
architecture based on a bit-level pipelined-array structure,” IEE Proceedings,
Circuits, Devices and Systems, vol. 145, pp. 247–253, Aug. 1998.

[3] R. G. Burford, X. Fan, and N. W. Bergmann, “An 180 MHz 16 bit multiplier
using asynchronous logic design techniques,” in Proc. IEEE Custom Integrated
Circuits Conference, pp. 215–218, 1994.

[4] J.-S. Chiang and J.-Y. Liao, “A novel asynchronous control unit and the
application to a pipelined multiplier,” in Proc. International Symposium on
Circuits and Systems, vol. 2, pp. 169–172, June 1998.

[5] C. H. Lau, D. Renshaw, and J. Mavor, “A self-timed wavefront array multi-
plier,” in Proc. International Symposium on Circuits and Systems, pp. 138–141,
1989.

[6] J. B. Lipsher and K. Maheswaran, “A 4-bit asynchronous pipelined multiplier
in the Xilinx 4000 series FPGA,” tech. rep., University of California, Davis,
1994.

[7] O. Salomon and H. Klar, “Self-timed fully pipelined multipliers,” in Asyn-
chronous Design Methodologies (S. Furber and M. Edwards, eds.), vol. A-28 of
IFIP Transactions, pp. 45–55, Elsevier Science Publishers, 1993.

[8] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and J. Arceo, “The de-
sign and verification of a high-performance low-control-overhead asynchronous
differential equation solver,” in Proceedings of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp. 140–153, IEEE
Computer Society Press, Apr. 1997.

[9] A. D. Booth, “A signed binary multiplication technique,” Quarterly Journal
of Mechanical Applied Mathmatics, vol. 4, no. 2, 1951.

[10] V. Chandramouli, E. Brunvand, and K. F. Smith, “Self-timed design in
GaAs—case study of a high-speed, parallel multiplier,” IEEE Transactions
on VLSI Systems, vol. 4, pp. 146–149, Mar. 1996.

81

[11] J. Haans, K. van Berkel, A. Peeters, and F. Schalij, “Asynchronous multipliers
as combinational handshake circuits,” in Asynchronous Design Methodologies
(S. Furber and M. Edwards, eds.), vol. A-28 of IFIP Transactions, pp. 149–163,
Elsevier Science Publishers, 1993.

[12] C. D. Nielsen and A. J. Martin, “Design of a delay-insensitive multiply-
accumulate unit,” Integration, the VLSI journal, vol. 15, pp. 291–311, Oct.
1993.

[13] J. Sparsø, C. D. Nielsen, L. S. Nielsen, and J. Staunstrup, “Design of self-timed
multipliers: A comparison,” in Asynchronous Design Methodologies (S. Furber
and M. Edwards, eds.), vol. A-28 of IFIP Transactions, pp. 165–179, Elsevier
Science Publishers, 1993.

[14] D. Kearney and N. W. Bergmann, “Bundled data asynchronous multipliers
with data dependant computation times,” in Proceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 186–197, IEEE Computer Society Press, Apr. 1997.

[15] T. E. Williams and M. A. Horowitz, “A zero-overhead self-timed 160-ns 54-b
cmos divider,” IEEE Journal of Solid-State Circuits, vol. 26, pp. 1651–1661,
Nov. 1991.

[16] T. Williams, N. Patkar, and G. Shen, “Sparc64: A 64-b 64-active-instruction
out-of-order-execution mcm processor,” IEEE Journal of Solid-State Circuits,
vol. 30, pp. 1215–1226, Nov. 1995.

[17] M. Santoro and M. A. Horowitz, “SPIM: A pipelined 64x64-bit iterative
multiplier,” IEEE Journal of Solid-State Circuits, vol. 24, pp. 487–493, Apr.
1989.

[18] K. Killpack, E. Mercer, and C. Myers, “A standard-cell self-timed multiplier
for energy and area critical synchronous systems,” in Advanced Research in
VLSI, pp. 188–201, Mar. 2001.

[19] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequency, vol. 34,
pp. 349–356, Mar. 1965.

[20] K. Davis and G. Wilson, “Private Communications,” Summer 2000. Keith
Davis and Gerald Wilson are employees at SONIC Innovations.

[21] J. A. Tierno and A. J. Martin, “Low-energy asynchronous memory design,”
in Proceedings of International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 176–185, Nov. 1994.

[22] S. Brown and Z. Vranesic, “Testing of logic circuits,” in Fundamentals of
Digital Logic with VHDL Design (K. T. Kane, ed.), ch. 11, McGraw-Hill, 2000.

[23] P. Alfke, “Xapp 052,” July 1996. Xilinx Application Note.

82

[24] M. J. Smith, “Test,” in Application-Specific Integrated Circuits, ch. 14,
Addison-Wesley VLSI Design Series, 1997.

[25] R. Sproull and I. Sutherland, “Stoppable clock,” January 1985. Technical
Memo 3438, Sutherland, Sproull, and Associates.

[26] C. L. Seitz, “System timing,” in Introduction to VLSI Systems (C. A. Mead
and L. A. Conway, eds.), ch. 7, Addison-Wesley, 1980.

[27] M. Afghahi and C. Svensson, “Performance of synchronous and asynchronous
schemes for VLSI systems,” IEEE Trans. Computers, vol. 41, pp. 858–872,
July 1992.

[28] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems. PhD
thesis, Stanford University, Oct. 1984.

[29] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K. Jenkins,
“Asynchronous interlocked pipelined cmos circuits operating at 3.3-4.5ghz,” in
International Solid State Circuits Conference, Feb. 2000.

[30] K. Y. Yun and A. E. Dooply, “Pausible clocking-based heterogeneous systems,”
IEEE Transactions on VLSI Systems, vol. 7, pp. 482–488, Dec. 1999.

[31] W. Lim, “Design methodology for stoppable clock systems,” IEE Proceedings,
Computers and Digital Techniques, vol. 133, pp. 65–69, Jan. 1986.

[32] M. J. Stucki and J. J. R. Cox, “Synchronization strategies,” in Proceedings of
the First Caltech Conference on Very Large Scale Integration (C. L. Seitz, ed.),
pp. 375–393, 1979.

[33] M. Pechoucek, “Anomalous response times of input synchronizers,” IEEE
Trans. Computers, vol. 25, pp. 133–139, Feb. 1976.

[34] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang, “Q-modules:
Internally clocked delay-insensitive modules,” IEEE Trans. Computers, vol. C-
37, pp. 1005–1018, Sept. 1988.

[35] A. E. Sjogren and C. J. Myers, “Interfacing synchronous and asynchronous
modules within a high-speed pipeline,” in Advanced Research in VLSI, pp. 47–
61, Sept. 1997.

[36] G. Taylor, S. Moore, S. Wilcox, and P. Robinson, “An on-chip dynamically
recalibrated delay line for embedded self-timed systems,” in Proceedings of
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 45–51, Apr. 2000.

[37] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. A. Edwards, S. B. Furber,
J. Liu, D. W. Lloyd, S. Mohammadi, J. S. Pepper, O. Petlin, S. Temple, and
J. V. Woods, “AMULET3i — an asynchronous system-on-chip,” in Proceedings
of International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pp. 162–175, IEEE Computer Society Press, Apr. 2000.

83

[38] K. Y. Yun, P. A. Beerel, and J. Arceo, “High-performance two-phase mi-
cropipeline building blocks: double edge-triggered latches and burst-mode
select and toggle circuits,” IEE Proceedings, Circuits, Devices and Systems,
vol. 143, pp. 282–288, Oct. 1996.

View publication statsView publication stats

https://www.researchgate.net/publication/2858241

