
INVESTIGATING GENETIC CIRCUIT FAILURES

by

Pedro Fontanarrosa

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Biomedical Engineering

The University of Utah

December 2022

Copyright © Pedro Fontanarrosa 2022

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Pedro Fontanarrosa

has been approved by the following supervisory committee members:

Chris J. Myers , Chair(s) 9/9/2022
Date Approved

Tara Lynn Deans , Member 8/29/2022
Date Approved

Orly Alter , Member 8/29/2022
Date Approved

Tamara Carla Bidone , Member 8/31/2022
Date Approved

Yuval Dorfan , Member 9/17/2022
Date Approved

by David W. Grainger , Chair/Dean of

the Department/College/School of Biomedical Engineering

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Synthetic biology is an engineering discipline in which biological components are

assembled to form devices with user-defined functions. As a nascent discipline, genetic

circuit design is reserved only for experienced researchers with an in-depth knowledge of

biology. This work aims to alleviate some of these constraints by developing software to

facilitate genetic circuit design and analysis so that more researchers can participate in this

thriving discipline and help elucidate the causes of circuit failures.

Firstly, an automatic dynamic model generator can be implemented to predict a cir-

cuit’s behavior between steady states and determine the amount of time needed to reach

such steady states. Moreover, the analysis of the predicted dynamic behavior will help

the designers understand the risks of applying specific input changes and decide whether

the risk is critical for the designed systems’ intended purposes. Extrinsic and intrinsic

noise can contribute to the observed output variability of a clonal population. Therefore,

to account for a genetic circuits’ stochastic behavior, this work aims to develop stochastic

modeling using extrinsic and intrinsic noise contributions that can help infer glitch proba-

bilities and elucidate the causes of circuit failure.

All the methodologies developed in this work will serve the overacting aim of redesign-

ing genetic circuits to avoid circuit failures. Dynamic ODE modeling will predict glitching

behavior and the time to reach said states; stochastic modeling will be used to predict glitch

propensities; hazard-preserving transformations will be used to avoid solvable hazards.

Facilitated dynamic modeling of genetic circuits would be an instrumental technique

for synthetic biologists, especially if it can be accompanied by a circuit design automation

tool, such as those proposed in this work. This would help automation in synthetic biology

and provide a way to debug circuit designs before construction and compare predictions

with experimental data once the synthesized circuit is implemented, saving time, effort,

and money. This project aims to expand such capabilities to help researchers through

the design process with the development of automated modeling, logic synthesis, hazard

identification, and genetic circuit redesign.

iv

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ACRONYMS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Synthetic Biology’s Promise . 2
1.2 Real Life Applications and Circuit Failures . 3
1.3 Modeling . 4
1.4 Standards . 6
1.5 Contributions . 7
1.6 Dissertation Overview . 12

2. BACKGROUND . 15

2.1 Synthetic Biology . 15
2.1.1 Genetic Regulatory Networks . 16
2.1.2 Genetic Parts . 17

2.2 Genetic Circuit Failures . 18
2.2.1 Combinational Circuit Hazards . 19
2.2.2 Stochasticity and Noise . 20

2.3 Modeling Genetic Regulatory Networks . 21
2.3.1 Law of Mass Action . 22
2.3.2 Kinetic-Based Models . 22
2.3.3 Hill Equations . 23
2.3.4 Steady-State Modeling . 24
2.3.5 Dynamic Modeling . 24
2.3.6 Stochastic Models . 25
2.3.7 Modeling Intrinsic and Extrinsic Noise . 25

2.4 Standards . 26
2.4.1 Synthetic Biology Open Language (SBOL) . 27
2.4.2 Systems Biology Markup Language (SBML) . 28
2.4.3 Simulation Experiment Description Language (SED-ML) 29

2.5 Online Repositories . 29
2.5.1 SynBioHub . 30
2.5.2 BioModels . 30

2.6 Genetic Design Automation Tools . 31
2.6.1 Cello . 31

2.6.1.1 Cello Gates and Parameters . 32
2.6.1.2 SBOL Specification . 34
2.6.1.3 Cello’s Circuit Performance Prediction . 35

2.6.2 iBioSim . 36
2.6.2.1 Virtual Parts Repository (VPR) . 37
2.6.2.2 SBOL to SBML Converter . 38

3. EXPANDING AUTOMATED MODEL GENERATION AND SIMULATION
IN IBIOSIM . 43

3.1 Review of Previous Model Generation Automations . 43
3.2 Dynamic Modeling . 45
3.3 Roadblocking . 45
3.4 Automation of DBTS . 46

4. HAZARD ANALYSIS AND CIRCUIT FAILURES . 51

4.1 Hazards . 52
4.1.1 Function Hazards . 56
4.1.2 Logic Hazards . 59

4.2 Hold-State Failures and Set-Up Glitches . 61
4.3 Proposed Hazard Analysis . 61

5. SIMULATING NOISE FOR GENETIC REGULATORY NETWORKS IN
IBIOSIM . 74

5.1 Simulating Extrinsic Noise . 76
5.2 Model Selection and Parameter Values . 76
5.3 Considerations/Assumptions . 77
5.4 Results . 78
5.5 Discussion . 79

6. DESIGNING AND REDESIGNING GENETIC CIRCUITS TO AVOID
FAILURE . 87

6.1 DBTS Loop . 87
6.1.1 Design of a Test Case GRN: The Delay Circuit . 88
6.1.2 Parametrization of Gates . 90

6.1.2.1 Hill Function Parameters . 90
6.1.2.2 Tau (τ) Parameters . 91

6.1.3 DBTS Workflow . 93
6.2 DSGRN . 94

6.2.1 Noise Models for DSGRN . 95
6.2.2 Hazard Analysis for Circuit Failure Predictions . 97
6.2.3 Parameterization of DSGRN Gates . 99

6.3 Concluding Remarks . 100

7. CONCLUSIONS AND FUTURE WORK . 114

7.1 Future Work . 115
7.1.1 Test-Scale-Design Gap . 115

7.1.1.1 Experimental Data . 116

vi

7.1.1.2 Characterization Experiments . 117
7.1.1.3 Parametrization . 117
7.1.1.4 Gate Dynamics . 119

7.1.2 Noise Simulations . 119
7.1.2.1 Parametric Sensitivity Analysis . 119
7.1.2.2 Glitch Propensity . 120
7.1.2.3 Circuit Performance or Robustness . 120

REFERENCES . 122

vii

LIST OF FIGURES

1.1 DBTS workflows in synthetic biology . 14

2.1 Example diagram showing the different circuit failures 39

2.2 A Cello NOR gate . 39

2.3 Sensor gate parametrization in Cello . 40

2.4 Genetic gate parametrization in Cello . 41

2.5 SBOL Visual representation of a genetic gate . 42

2.6 Time-course data for circuit 0x8E . 42

3.1 Diagram of a genetic gate with repressible tandem promoters 49

3.2 Automated model generator workflow . 50

4.1 Time-course data of Cello Circuit . 64

4.2 Circuit 0x8E simulation . 65

4.3 Karnaugh map for circuit 0x8E . 66

4.4 Using a Karnaugh map for circuit 0x8E to analyze function hazards 66

4.5 Simulation of all two- and three-input changes that have function hazards . . . 67

4.6 Circuit diagram for circuit 0x8E with redundant logic . 68

4.7 Comparison of two- and three-input change function hazard simulation for
circuit 0x8E with and without redundant delay logic added 69

4.8 Single input change simulation for circuit 0x8E . 70

4.9 Simulation of all two-input changes that do not have function hazards for
circuit 0x8E . 70

4.10 A logic hazard free adaptation of 0x8E circuit . 71

4.11 Simulation all two-input changes that do not have function hazards for the
logic hazard free adaptation of circuit 0x8E . 71

4.12 Comparison of two- and three-input change function hazard simulation for
circuit 0x8E with and without solved logic hazards . 72

4.13 Workflow showing the automatic dynamic model generator instantiated in
iBioSim . 73

5.1 Three different logic layouts for the circuit 0x8E . 82

6.1 Naive and set-up failure-free delay circuit designs . 102

6.2 Design and simulation results of delay circuit designed 103

6.3 Simulation results for the different growth phases of the AraC gate, using
fitted parameters shown in Table 6.2, obtained using the lmfit Python package 104

6.4 Fitted parameter values trend and prediction of un-tested YFP output pro-
duction . 105

6.5 The designs for the built circuits, with one topology and two CDM designs
in each quadrant . 106

6.6 Predicted steady-state values of the geometric mean of the flow cytometry
distribution of GFP a.u. using estimated Hill function parameter values for:
(a) Simple OR/CDM high design, (b) Simple OR/CDM low design, (c)
DSGRN OR/CDM high design, and (d) DSGRN OR/CDM low design. 108

6.7 Predicted steady-state values of the geometric mean of the flow cytometry
distribution of GFP a.u. using estimated Hill function parameter values for:
(a) Simple NOR/CDM low design, (b) Simple NOR/CDM low design, (c)
DSGRN NOR/CDM high design, and (d) DSGRN NOR/CDM low design . . . 109

6.8 Example predicted steady state values of the geometric mean of the flow
cytometry distribution of GFP a.u. from Hill function models 110

ix

LIST OF TABLES

5.1 Percentage circuit failure results for the function hazard and hold-state failure
analysis of the original design of circuit 0x8E . 83

5.2 Percentage circuit failure results for the function hazard and hold-state failure
analysis of the two-inverter design of circuit 0x8E . 84

5.3 Percentage circuit failure results for the function hazard and hold-state failure
analysis of the logic-hazard free design version of circuit 0x8E 85

5.4 Comparison of all model predictions for of genetic circuit failures, and the
most “robust” circuit choice for each model simulation 86

6.1 Hill-function parameter value estimations for different gates, obtained by
fitting Equations 6.1 and 6.2 to part-characterization experiments at different
growth-phases . 110

6.2 Dynamic parameter value estimations for different gates, obtained by fitting
Equations 6.3 and 6.4 to ON-to-OFF and OFF-to-ON part-characterization
experiments for different growth-phases . 111

6.3 Intrinsic noise model predictions of circuit failure percentages. 112

6.4 Extrinsic noise model predictions of circuit failure percentages. 112

6.5 Intrinsic and extrinsic noise model predictions of circuit failure percentages. . . 113

LIST OF ACRONYMS

GRN Genetic Regulatory Network

ODE Ordinary Differential Equation

CCK Classical Chemical Kinetics

SSA Stochastic Simulation Algorithm

FBA Flux Balance Analysis

RPU Relative Promoter Units

a.u. arbitrary units

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

RNAP RNA Polymerase

mRNA messenger RNA

RBS Ribosome Binding Site

CDS Coding Sequence

TF Transcription Factor

YFP Yellow Fluorescent Protein

GFP Green Fluorescent Protein

Ara Arabinose

aTc anhydrotetracycline

IPTG Isopropylβ − D − 1 − thiogalactopyranoside

HSL oxohexanoyl-homoserine lactone

BE β-estradiol

Dox doxycycline hyclate

EL Early-Lag

LL Late-Lag

EE Early-Exponential

ME Mid-Exponential

LE Late-Exponential

S Stationary

DBT Design-Build-Test

DBTL Design-Build-Test-Learn

DBTS Design-Build-Test-Scale

OLC Optimal Laboratory Conditions

OTLC Outside-the-Laboratory Conditions

GDA Genetic Design Automation

CAD Computer-Aided Design

SBML Systems Biology Markup Language

SED-ML Simulation Experiment Description Markup Language

SBOL Synthetic Biology Open Language

OMEX Open Modeling EXchange format

VPR Virtual Parts Repository

SVP Standard Virtual Parts

SBO Systems Biology Ontology

SO Sequence Ontology

UCF User Constraint File

DSGRN Dynamic Signatures Generated by Regulatory Networks

PSA parametric sensitivity analysis

xii

CHAPTER 1

INTRODUCTION

Synthetic biology is a multi-disciplinary area of research that attracts a variety of

researchers [22]. The de novo approach to the construction and design of artificial biological

systems [143] is what separates synthetic biology from classical genetic engineering. To do

so, researchers strive to imprint engineering principles into classical genetic engineering.

Some of those principles, like standardization and part characterization, are well on their

way to development. Others, like decoupling, where a complicated problem is separated

into simpler independent problems, are harder to instill in this area of research. However,

given the complex and unpredictable nature of biological systems [22], synthetic biology

engineering conveys a whole new range of challenges that need to be overcome in order

to have reliable and reproducible systems.

As a nascent discipline, genetic circuit design is reserved only for experienced re-

searchers with a deep knowledge of biology. To a large degree, this is due to the in-

herent complexity of biological systems [97]. However, as the field advances, so does

the development of software that allows for more researchers to participate in synthetic

biology. A key aspect of any engineering discipline is the ability to model and simulate

designs. Modeling and simulation allows researchers to predict the intended behavior of

a designed system’s outcome, confirming correct behavior before building the circuit in

the laboratory, which takes time and money. Furthermore, comparing predicted outcomes

with empirical data can reveal unknown part interactions or other biological phenomena

not previously studied [95]. As synthetic biology advances and genetic circuits become

more complex, so does modeling. This complexity, in turn, makes the modeling process an

even more difficult challenge, and, therefore, incentivizes the development of tools for easy

and automated modeling of genetic circuits. However, a critical advantage of modeling is

the ability to predict problems, malfunctions or undesired transient behavior in biological

2

systems. Predicting a system’s potential for malfunctions can provide researchers an

opportunity to redesign a system to avoid such problems or implement it with knowledge

of the system’s flaws. Debugging is especially valuable in synthetic biology, since it can

take a long time and be expensive to genetically engineer an organism with a synthetic

genetic circuit; or if a genetic circuit’s output is a toxic pharmaceutical or produces an

irreversible effect in another system. As we move from proof-of-concept designs to more

real-life applications of designed biological systems [18], this process becomes ever more

critical for the safe operation of genetic circuits.

1.1 Synthetic Biology’s Promise

The goal to engineer DNA as others would engineer electric circuits is what has

attracted interest amongst a diverse group of researchers, from molecular biologists to

computer scientists, to develop engineering methods for biology. Though most of the de-

velopment is done by synthetic biologists with substantial expertise, there has been a gen-

eral effort to produce a more automated method to design genetic circuits for researchers

without extensive knowledge of genetic design. Scientists have tried to implement founda-

tional technologies that would make synthetic biology a genuine engineering discipline,

where three of the most relevant methods to implement are standardization, abstraction,

and decoupling [48]. Standardization is not only the use of data standard representations

of genetic circuits and models for reproducibility of results, but also standards for the

definition, description, and characterization of modular and reusable genetic parts [48, 82].

Abstraction is used for simplifying mathematical models, which reduces the effort of de-

scribing different genetic parts and reactions mathematically and, consequently, increases

the number of components that can be effectively modeled and simulated efficiently [143].

And finally, decoupling is the effort to separate a complicated problem, like engineering a

synthetic organism with a specific function, into different, modular problems that can be

worked independently. For synthetic biology, this would be decoupling designing and

modeling constraints from the building technicalities of a synthetic genetic circuit. In

other words, people not intimately familiar with the construction process can still design

systems that work. [120, 143]. Standardization, abstraction, and decoupling are essential

for model-based design of genetic circuits [120] and computer-aided design.

3

Applying engineering principles to biology is not something new, but many agree that

a distinct biological engineering discipline, synthetic biology, started with the modeling,

construction, and testing of two unique genetic circuits, a genetic toggle switch and a

synthetic oscillatory network [46, 60]. There was something very particular about these

two circuits: their function, rather than their output, was what interested the researchers.

These circuits stemmed from mathematical models and concluded in design, which es-

tablished a precedent where the design and construction of engineered Genetic Regulatory

Networks (GRNs) were facilitated by theory with predictive capacity. Nonetheless, there

were some discrepancies between the theoretical model and the experimental results, as

expected. Our understanding of how genetic circuits behave is reflected in the precision

of our models, and thus any differences between predicted and observed results can be

used as a tool to study further the dynamics of genetic networks [64, 76, 114]. This unique

way of designing circuits has led to increased developments in modeling for GRNs (see

Section 1.3) and of a library of orthogonal genetic parts with characterized behavior. This

library is a key component for an automated procedure for the design of genetic circuits for

synthetic biology, as well as its subsequent analysis, which would provide a more detailed

design/build/test/scale pipeline, as described in section 1.5. Such increased variety of

models and library of orthogonal genetic parts has pushed model-based design of genetic

circuits [31, 70], as well as tools for Computer-Aided Design (CAD) of genetic circuits, like

Cello [129]. As the need to design ever more complex genetic circuits increases, the

demand for CAD tools that can design, model, and simulate GRNs becomes more critical.

Therefore, model-driven design that clearly identifies design, build, and test phases are

becoming common in the life sciences as they have been in other engineering fields [134].

1.2 Real Life Applications and Circuit Failures

Synthetic biology’s potential for “out-of-the-lab” applications, such as bioproduction,

biosensing, therapeutic, and probiotic delivery, has not progressed as it was expected

despite the discipline’s development in research [18]. Furthermore, if genetic circuits

are going to be designed for industrial, health or environmental applications, these will

require special consideration, particularly if the outcome production of these circuits

would have irreversible effects. First, more detailed models that can simulate dynamic

4

behavior is needed, and, second, further analysis of how/why these circuits can fail are

critical for the safe operation of genetic circuits in real-life applications. There is little to no

work done on genetic circuit failures [16, 19], since most research publications are centered

on the correct and expected behavior of genetic circuits. However, as we intend to move

towards more real-life applications, there is a greater need to study and be able to predict

genetic circuit failures and deviation from expected behavior [18]. The purpose of this

work is to further these objectives in order to design more reliable genetic circuits, or at

least be aware to its shortcomings.

Designing genetic circuits with an expected behavior can be challenging, especially if

one considers all the potential sources of failure. A genetic circuit can fail to perform the

originally designed function for a number of reasons, but being able to predict, understand

and work with these shortcomings is a huge benefit. For combinational circuits, including

combinational GRNs, input changes can cause unwanted switching variations in the cir-

cuit’s output. Unwanted signal transitions occur when the system has not reached a steady

state, and the output signal varies from the expected behavior. In some cases, this variance

is harmless or well-tolerated. For example, these unwanted signal transitions should not

be a major concern if the output of the circuit is only sampled when the circuit has reached

a steady state. Nevertheless, this glitching behavior can have drastic consequences if it

causes an irreversible change. For example, causing a cascade of responses, inducing apop-

tosis, or inappropriately releasing a toxic pharmaceutical. Therefore, for the safe operation

of a genetic circuit, avoiding such unwanted variations in a circuit’s output can be crucial.

When moving from proof-of-concept genetic circuit designs to real-life applications intended

for industry or health, not only steady-state failures must be analyzed and accounted for,

but also transient circuit failures. For this purpose, modeling is critical.

1.3 Modeling

Genetic circuits have reached such a degree of complexity that even experienced re-

searchers have a difficult time considering all the interactions between parts of a system.

Therefore, mathematical descriptions of genetic networks become a necessity and that is

why genetic design is usually model-driven [134]. It is from these mathematical descrip-

tions that one can model the system as a whole and obtain predictions of its behavior.

5

The simulations and subsequent analyses can become instrumental not only to study the

nature of genetics, but also to expose errors in design, parametrization, or the model itself.

Modeling of GRNs with appropriate use of parameters is expected to yield indis-

pensable contributions and aid in complex genetic design, furthering the advancement

of synthetic biology. It is common to find abstract mathematical models describing GRNs

that use nonspecific (or generic) parameters obtained from the literature. The inaccuracy

of many models stem from the use of these nonspecific parameters because even if the pre-

dictive accuracy of a model fits observation for a specific organism, using these parameters

for other organisms/systems would produce inaccurate results [39], and thus it is essential

to have a model generator that is accompanied by the correct set of parameters. Therefore,

a model generator that works with a popular set of parameterized genetic gate repository

is needed to help facilitate design/build/test of genetic circuits and reproducibility in the

synthetic biology area of research. However, to model and analyze circuit failures like

function or logic hazards, set-up, and/or hold-state failures, one needs to use dynamic

modeling (see Section 3). There are many model generators, but very few that make

use of and predict genetic circuit temporal dynamics. Modeling and analysis of circuit

failures can provide the designer with different options to consider: either going back to

the drawing board if a design does not work as expected for critical computations; or use

the design as is but using it cautiously while knowing of the design’s shortcomings.

Biological systems are highly complex due to the uncountable number of interactions

and interconnectivity, which makes the prediction of behavior almost impossible with-

out the use of models and simulations. Even though mathematical models and correct

parametrization can help simplify the design process, experimentation and comparison of

the results are imperative to correct the models, fine-tune the parameters, and unearth un-

known interactions. Computer simulations using mathematical models can help scientists

understand the biological mechanisms and unknown phenomena [95], as well as help to

bridge the gap between predictions and experimental results, denoting previously missing

experimental data.

As the synthetic biology community deepens its knowledge of genetic interactions,

more sophisticated modeling tools can be created to predict their behavior with higher

accuracy and fidelity. However, there is a drawback in these types of models if the number

6

of equations and parameters used to describe the system becomes overwhelming. To

reduce complexity, there are different assumptions and simplifications that can be made to

abstract the model and simplify it without losing predictive capabilities or accuracy. Ab-

straction can help scientists produce more complex and novel genetic designs for various

applications in the industry [143]. Some studies have done this not only by simplifying

the equations, but also by combining and redesigning genetic components into bigger,

composite parts to reduce variability and increase accuracy [48, 129].

Many different approaches have been developed to model and simulate genetic regu-

latory systems [40, 77, 79, 97, 119, 148] with different focuses and aims in mind and each

having different advantages/disadvantages. It has been shown that kinetic modeling

is an appropriate way to model genetic regulatory networks [102, 119]. Starting with

a kinetic model, a common way to describe GRNs is by utilizing Ordinary Differential

Equations (ODEs), which represent the rate of change of species and concentrations of the

system. For a system of ODEs, a steady-state model assumes that all the rate equations are

in equilibrium, effectively removing time from the model and focusing on the stable states

of the system. Instead, when using quasi-steady-state assumptions, a model can produce

different time points, and, as such, effectively predict information on the concentration

of molecular species over time. Dynamic modeling, as it is called, has a significant

advantage for modeling the dynamics of the circuits and their transition states. Dynamic

modeling provides a more detailed description of GRN dynamics that can be used to

determine circuit failures, to optimize for speed of transitions or cell source-allocation,

and to better understand how the different genetic components interact. Since dynamic

modeling can predict transition states, it can also be used to determine unwanted transition

states between different stable-states (also called hazards) due to gate propagation delay in

that circuit. Therefore, an automatic model generator that produces dynamic models that

use standardized parameters from a well characterized genetic gate library is essential to

facilitate genetic circuit design and implementation and promote reproducibility.

1.4 Standards

A critical piece of the puzzle for model-based design is the use of globally accepted

standards. Standards not only allow for the sharing and contrasting of knowledge, but

7

also tackle one of the most significant obstacles facing any engineering discipline today:

the problem of reproducibility [81, 166]. For synthetic biology, reproducibility not only

requires the use of standards for modeling and simulation but also for experimental setups,

DNA design, and parametrization. Furthermore, the use of data standards is necessary to

allow for data exchange through different online data repositories and a higher sharing

of knowledge amongst different research groups. For these reasons, this work uses data

standards for the genetic designs, the mathematical models that describe their dynamics,

and their simulation environments so that anyone can reproduce the results obtained here.

Data standards used in this dissertation are the Synthetic Biology Open Language (SBOL) [56]

for the representation of genetic designs and their function; the Systems Biology Markup

Language (SBML) [26, 72] for the mathematical model representation of the different genetic

circuits and their interactions; and the Simulation Experiment Description Markup Language

(SED-ML) [165] for the simulation description of the mathematical models.

Standardization is important not only to represent data, but also for different methods

like gate parametrization, circuit failure analysis, noise modeling and many other facets

of the Design-Build-Test-Learn (DBTL) cycle in synthetic biology. Efforts placed upon this

goal would help reproducibility, re-usability of experimental results and help designers

design and debug their systems. This dissertation proposes a standard of representation

for genetic parts and their parametrization by following the architecture of the circuits

designed in Cello [129], to better model and predict genetic circuit failures.

1.5 Contributions

This work builds upon previous work, specifically [54], to further expand the model-

ing, simulation and prediction capacities, as well as analysis of circuit failures, for software

tools developed to help researchers design, build, and debug reliable genetic circuits. In

particular, this dissertation provides the following contributions:

• Implemented an automated dynamic modeler for genetic networks using a more

abstracted model that allows for more accessible characterization of genetic parts

and helps detect genetic circuit failures between steady-states.

• Developed a hazard analysis method for genetic circuits and redesigned a circuit

layout to avoid logic hazards.

8

• Analyzed the effect of noise as a source of a circuit’s output variability and its effect

on genetic circuit failures.

• Collaborated with the circuit failure analysis and redesigning genetic circuits for

bacteria and yeast.

An automatic dynamic modeler has been developed that allows a researcher to predict

a circuit’s outcome in between states, and also simulate production over time. This not

only helps with the detection of circuit failures in-between steady-states, but also predict

the time needed to reach a particular steady-state (which might be part of the design

as shown in Chapter 3). Furthermore, with the dynamic model generator of this work,

designers will also be able to model and predict unwanted switching transitions or failures

of a genetic circuit. The ability to simulate and predict potential circuit failures will

help designers debug genetic circuits for incorrect circuit outputs or unwanted switching

behavior and either go back to the drawing board or implement the circuit with knowledge

and understanding of its shortcomings.

Model-driven design is of paramount importance when designing highly complex

genetic circuits [25, 77, 134]. Modeling is instrumental in showing faults in the genetic

design, understanding of underlying biological processes, and the dynamical transition

stages of a genetic circuit and potential glitches in the system. However, devising a

model for genetic circuits can be a tedious and complicated endeavor. Additionally,

parametrization is usually lacking for different models, thus making a model inaccurate.

Limited availability of reaction rate constants and other parameters is a major hindrance

for the development of accurate models, and therefore, for model-driven design [77].

In this respect, lower model resolution or abstraction of different parameters into more

generalized parameters is an advantage as it requires less characterization in the lab-

oratory and less detailed understanding of the regulatory mechanisms that underlie a

GRN [48, 77, 129, 152]. The proposed model, parametrization, and gate composition used

in this work provide an abstracted design to reduce part characterization and facilitate

modeling. Dynamic modeling is not something new in synthetic biology; however, the

dynamical model used in this work is adapted to use parameters that reflect a popular

parametrization and gate composition repository, used by Cello [129], a popular CAD tool

in synthetic biology. If adopted by other research groups, this modular design would

9

help create a more prosperous and more diverse library of genetic parts to use with this

work’s automated model generator. This can help expand the variety of genetic circuits

designed and also open a new standard for other CAD tools to implement when designing

genetic circuits. The proposed gate composition also provides a more straightforward,

more abstract way to parameterize gates and simplify experiments to do so, as it requires

fewer parameters than other characterizations. Therefore, if it would be accepted as a

standard for genetic gates, part re-usability across different laboratories would grow, and

cooperation would then be facilitated.

Modeling and simulation give the capacity to predict a system’s outcome and de-

tect problems or malfunctions during the design process. This debugging capability is

especially valuable in synthetic biology since it can be time-consuming and expensive

to genetically engineer an organism with a synthetic genetic circuit. Empirical data

that differs from predictions can also shed light on part interactions or other biological

phenomena not previously studied [95]. The simulations and subsequent analyses can

become instrumental not only to study the nature of genetics, but also to expose errors in

design, parametrization, or the model itself. Therefore, this work also presents a method

for analyzing and predicting various circuit failures for combinational genetic circuits.

Though glitches have been observed for genetic circuits [112, 129], this phenomenon’s

causes are not so well understood as in the asynchronous electronic community [118]. This

work can help introduce awareness of the subject to the synthetic biology community and

automate much of the analysis needed to understand genetic circuits’ glitching behavior. It

is important to understand how and why genetic circuits fail, and more importantly, what

is the probability of that failure. This work also explores ways to circumvent or avoid

certain circuit failures. Even if a circuit failure is unavoidable, knowledge of the presence

of that probability is of critical importance for a genetic circuit designer, especially as more

circuits are designed for out-of-the-lab purposes [18]. The analysis and prediction of glitches

is of paramount importance for the safe operation of a genetic circuit for medical purposes.

If the output of a genetic circuit is a toxic pharmaceutical, or causes irreversible effects

on the cell, then understanding, predicting and avoiding circuit failures is critical for the

biomedical engineering community.

In addition, this work expands the accountability of variability in genetic circuits due

10

to different sources of noise. This is especially important for genetic circuits intended for

real-life applications [18], since outside of a controlled laboratory environment, sources

of variability (as noise) increase substantially. This noise could potentially increase the

probability of the genetic circuit failures analyzed in this work, and thus it is important

to account for the different sources of noise, their level of incidence in a circuit’s output.

Furthermore, analyzing a genetic circuit’s output with different levels of noise can help

designers determine the general “robustness” of a genetic circuit.

Facilitated dynamic modeling of genetic circuits would be an instrumental technique

for synthetic biologists, especially if it can be accompanied by a circuit design automation

tools, as the one proposed in this work. This would help automation in synthetic biology

and provide a way to debug circuit designs before construction and compare predictions

with experimental data once the synthesized circuit is implemented. This project aims to

expand such capabilities to help researchers through the design process with the devel-

opment of automated modeling, logic synthesis, hazard identification, and genetic circuit

redesign.

An implicit, iterative Design-Build-Test (DBT) process is often used to develop these

ingenious genetic circuits [1]. However, bias is introduced into the DBT process in almost

all of its steps and the variability of environmental factors that affect a circuits’ behavior

is often not taken into account. This might hinder a circuit’s expected performance when

applied in Outside-the-Laboratory Conditions (OTLC). Models used by Genetic Design Au-

tomation (GDA) tools are mostly based on experiments carried out under Optimal Laboratory

Conditions (OLC) [2, 75, 129]. Furthermore, most rely only on the expression of a fluorescent

protein as an output reporter under OLC. This setup leads to an inaccurate Scale step

with regard to the actual circuits’ performance when applied in OTLC that can produce

erroneous or faulty behavior with unpredictable outcomes. Furthermore, with a narrow

Test step, the learning usually is limited to a post-hoc description of circuit dynamics. This

would be especially perilous for engineered systems that are aimed to operate in dynamic

environments, such as living therapeutics and whole cell biosensors.

This work applies a broader Test step to a designed delay-signal circuit to include

more environmental dynamic factors and reporters (as shown in Figure 1.1). The circuit’s

output, as well as the time for output detection, were observed to be highly variable

11

for different temperatures, mediums, inducer concentration, bacterial growth-phases, and

output reporters. If the performance of the delay circuit is compromised by the tested

experimental factors presented here, it will inevitably alter its behavior in other contexts,

which would not have been predicted by GDA tools.

We propose to introduce a Scale step as part of a new and improved Design-Build-Test-

Scale (DBTS) process. Scaling refers to the process of considering the variability of factors

that can affect genetic circuit performance in real-life applications. Most studies either

have a non-existent Scale step, or it consists only of a post-hoc description of the designed

circuit’s performance at OLC. This work not only provides a re-parametrization effort

for different experimental conditions, but also produces a new model to determine the

necessary predictions for untested conditions. As a case study, we focused on the effect

of growth phase on the circuit’s output, in which we observed a trend in delay and total

output production. This, in turn, allowed for a deeper Scale step, which ultimately resulted

in a new model that estimates these trends, thus enabling the capacity to predict untested

delays and output production of the circuit, which can be further applied for scaling.

Thus, we propose that a greater emphasis in the Test and Scale steps of a DBTS cycle are

needed to build more predictive models and to reduce bias across the entire DBTS cycle.

This, in turn, will enable the possibility of finding design alternatives to any unexpected

behavior and performance when the circuits are used in applications, improving a genetic

circuit’s robustness [170]. As we move from proof-of-concept designs to more real-life

applications, a thorough Test step provides the necessary data that allows for a significant

Learn step and, therefore, an appropriate Scale step.

This work should not only greatly facilitate the design and construction of more com-

plex genetic circuits, but also serve as a tool to spot failures in design as well as unexpected

interactions with the host organism. Additionally, comparing the model results with

experimental data can help to understand the underlying biological phenomena, and can

the researcher’s intention. This bridges the gap between experimentalists and designers as

it helps both sides with the results obtained. Designers can use data to better fit the model

to produce more accurate predictions, and experimentalists can use these predictions to

debug genetic circuits and predict their behavior before constructing them, saving time,

12

effort, and money.

Ultimately, we hope that methods and standards developed in this work will propagate

through the synthetic biology community, standardizing hazard analysis, noise simula-

tion, characterization experiments, and parametrization methods to bridge the current gap

in the DBTS pipeline.

1.6 Dissertation Overview

Chapter 2 goes further describing the necessary background to set the context of this

work. The chapter will start by expanding upon the discipline of synthetic biology as an

interdisciplinary research area and focus mainly on the topics of which are more relevant

for this work. First, it introduces genetic combinational circuits (Section 2.1.1), their uses,

and some examples of their applications in synthetic biology. This chapter continues to

explain how these genetic circuits are constructed from well-defined and characterized

genetic parts, and how synthetic biologists are exploring new parts and creating a library

of orthogonal components so that others can use them in their designs (Section 2.5). These

parts repositories are built to be shared amongst researchers, and thus this chapter also

explains the importance of standards (Section 2.4), and why it is so imperative to develop

globally accepted synthetic biology standards, as this fosters not only reproducibility but

also sharing of knowledge between different labs for the greater advancement of science.

This chapter also introduces the reader to the mathematical modeling of genetic regulatory

networks (Section 2.3), specifically the Hill-equation based models that have been used

extensively for genetic circuit design (Section 2.6), and in particular for the Cello project

(Section 2.6.1); uses of data standards and online repositories in synthetic biology; and,

finally, an introduction to GDA tools.

Chapter 3 presents a new dynamic model for genetic circuits and an automated gener-

ation procedure to automatically generate dynamic models. This chapter goes into detail

of how our procedure handles the different parameters and gene dynamics to construct

a mathematical model and, ultimately, simulate it to get meaningful results. This work

expands on previous automatic model generation procedures [54] by adding the ability to

simulate between steady-states and roadblocking for tandem promoters, both explained in

detail in the chapter. This will allow to more accurately predict a genetic circuit’s outcome

13

through time (not only states), and, therefore, allow a designer to predict possible genetic

circuit failures (or unwanted outcome production) in between steady-states.

Chapter 4 describes glitches due to hazards and other circuit failures for genetic

regulatory networks, how these can be detected and simulated, and how some of these

failures can be avoided. This chapter also expands on other circuit failures like set-up and

hold-state failures (see Section 1.2). The chapter finishes with some circuit failure analysis

on genetic circuits with different layouts for the same function.

Chapter 5 adds a deeper layer to circuit failure analysis, by adding uncertainty and

stochasticity to the simulations as “noise”. It expands on the different sources of noise

that can have an effect on the expected outcome of a genetic circuit, and how these noise

sources could affect the probability of a genetic circuit failure occurring.

Chapter 6 uses the sources, software and analysis tools, and workflows developed

in Chapters 3, 4, and 5 to simulate, predict, and redesign genetic circuits with certain

applications in mind. This chapter not only will serve as a proof-of-concept for the utility

of the work developed in this dissertation, but also to show the sparked collaborations and

usages in real-life cases of genetic circuit design.

Finally, Chapter 7 presents a summary of our results, workflow and conclusions, for

the use and development of the work done in this dissertation. It also expands on the

future venues this research can develop and how these will contribute to the design of

genetic circuits and their safe (or at least informed) application for medical, industrial, or

environmental purposes.

14

(a)

(b)

Figure 1.1. DBTS workflows in synthetic biology. (a) Most common workflow, where
testing is done only in optimal lab conditions and there is no feedback to alter design. (b)
Proposed workflow in which the Test step includes different conditions that may affect the
outcome of a circuit. This can be utilized in the Scale step to obtain new model predictions,
which will allow one to make better design choices. Ultimately, this will produce robust
designs.

CHAPTER 2

BACKGROUND

This chapter outlines the background research for the work presented in this disser-

tation. This chapter introduces the field of synthetic biology, introducing what genetic

circuits are (Section 2.1.1), and how synthetic biologists set out to design them using

standardized genetic parts (Section 2.1.2). However, given that biological systems are

inherently complex and variable, many of these designs cannot perform as intended.

Section 2.2 introduces the reader to some of the potential failures or deviations from

expected behavior that Genetic Regulatory Networks (GRNs) can have. After describing

how circuits can fail, this chapter, this chapter continues to explain the different ways

to mathematically describe genetic circuit predicted behavior and how designers can use

models to understand genetic circuit failures (Section 2.3), and how these mathematical

models and circuit specifications are encoded in data standard files shared by the synthetic

biology community (Section 2.4). This chapter continues describing the online repositories

(Section 2.5) where parts, genetic circuits, and models are uploaded and shared between

different research laboratories, and how this can be used to spur reproducibility in the syn-

thetic biology community. Finally, this chapter describes different capabilities of software

tools used to design, model, and simulate GRNs (Section 2.6).

2.1 Synthetic Biology

Synthetic biology aims to design genetic circuits with different applications in mind,

some of them being safety-critical. In this area of research, some strive to do so by

imprinting engineering principles into classical genetic engineering as not to only tinker

with naturally occurring biological systems but to consciously design complex genetic

circuits with specific design aims and functionality in mind. One of the basics of any

engineering discipline is to have different characterized modular parts and synthetic

biology is not an exception. This work focuses on the design, modeling, and analysis of

16

genetic combinational logic circuits that are built using modular genetic parts, as described

in the next sections.

2.1.1 Genetic Regulatory Networks

Genetic circuits are designed GRNs, composed of synthetic genetic parts, which perform

a specific function specified by a researcher. In recent years, there has been a plethora of

new engineered genetic circuits with specific functions, an expansion of reusable mod-

ular genetic parts and sensors, and an exploration of synthesizing genetic circuits in

organisms other than bacteria [92, 94, 114, 123, 156]. Classically, genetic engineers would

modify/add/knockout one, two, or many more genes of a living organism in order to

study their role in the organism or to try to introduce a new feature or function to it. In

the area of synthetic biology, characterized modular genetic parts or gates are combined

to compose a genetic circuit with a user-defined function or implementation. It is this

bottom-up design approach of genetic manipulation that distinguishes synthetic biology

from classical genetic engineering.

Synthetic biologists draw inspiration from other engineering disciplines in order to

have a more modular, predictable methodology for the design of genetic circuits. The

first such genetic circuits, which were designed with a model-driven approach, are the

genetic toggle switch [60] and a synthetic oscillatory network [46]. These genetic circuits

were designed with a specific function in mind, and later built to test the design using

genetic parts available. Nowadays, the design of genetic circuits enables researchers to

engineer cells to process input signals, make logical decisions, implement memory, and

to communicate with each other [163]. These circuits can also be designed to produce an

output with a range of different purposes like inciting a biological response within or with

other cells, producing a chemical for the environment or for industrial purposes, and many

others.

Transcription and translation regulators that influence the flux of Ribonucleic Acid

(RNA) and protein production are commonly used to carry out Boolean logic and, there-

fore, are called logic gates. These logic gates can be built on the basis of different regulator

types using DNA-binding proteins, recombinases, CRISPRi regulation, RNA regulation,

or protein-protein interactions [19]. Each gate can be designed to perform a specific logic

17

function, like for example an AND, OR, NOT, NOR, NAND gates, and many others. With

this, a researcher can link these logic gates to various cellular or environmental sensors

and actuators, to generate circuits with precise desired behaviors in response to specific

inter and intracellular signaling inputs [167]. However, to design these genetic circuits,

there is a need for libraries of well-characterized, modular and standardized genetic parts

and computational tools for easier design and to tune them [19], which is the topic of the

next sections.

2.1.2 Genetic Parts

Genetic circuits represent how information is going to be processed and which deci-

sions are going to be made, and these are composed of genetic parts or gates such as sensors,

actuators, and logic gates [163]. These genetic parts are used to specify when, where,

and how the different parts interact and under what conditions are genes expressed [163].

However, a difficult challenge in the area of genetic engineering is the unpredictability of

the behavior of assembled genetic parts in different genetic contexts [19, 24]. There are

efforts to design genetic parts or gates with predictable and modular functions [10, 41, 44]

with predictable gene expression and extensive characterization like in [23, 28, 84, 115–

117], to cite a few. Endy [48] suggests that the biological engineering community would

benefit not only from building a library of characterized modular parts, like the “iGEM

Registry of Standard Biological Parts”1, but also with the promulgation of standards that

support the definition, description, and characterization of these biological parts.

Standardization of genetic parts is essential for reproducible experiments, reusability

of genetic gates, and for model-driven design of circuits. Standardization can range

from building techniques and gate conformation [82, 83, 115, 135, 151] to gate parametriza-

tion [28, 116]. A common method to characterize genetic gates in synthetic biology is using

a standard for promoter activity, the Relative Promoter Units (RPU) [80]. RPU are used in

many projects like iGEM and Cello (described in Section 2.6.1), and can be measured using

a standardized kit for experiments, which makes it easy to adopt by different laboratories.

This method is an effort to begin to address the challenge of characterizing promoters

(and other types of standard biological parts) across the interdisciplinary community of

1http://parts.igem.org/

18

synthetic biology [80].

The construction of genetic circuits requires a library of basic components with shared

inputs and outputs, which permits the composition into more complex devices and cir-

cuits [101]. As well, characterized genetic parts and modularity are an integral concept

in synthetic biology, and it is essential for model-driven design of genetic circuits [23, 25].

One such library of well characterized modular parts with shared inputs and outputs is

the Cello genetic gate library [129], and, therefore, it is a good choice to develop models

using them.

2.2 Genetic Circuit Failures

For electronic circuits, unwanted output variations (or circuit failures) are typically fil-

tered using a global clock signal to indicate when the circuit has stabilized to its final value.

These types of circuits are known as synchronous circuits. It is not easy, however, to add

such a clock signal to a genetic circuit, so they are typically asynchronous circuits [118, 127].

In electronic asynchronous circuits, a hazard is the possibility of an unwanted or unexpected

output variation of a circuit in response to an input change [118]. The actual occurrence

of a variation is called a glitch. Glitches are transient behavior that self-correct as the

system reaches a steady state. The two main kinds of hazards are function hazards, which

cannot be avoided since they are a property of the circuits’ function and are inherently

unavoidable, and logic hazards, which can be avoided by redesigning the logic of the

circuit using hazard-preserving optimizations [118]. Though these terms are mostly used

for electronic circuits, glitches have been observed in GRNs as well [112] (see Section 2.2.1

and Chapter 4).

Other circuit failures that are not usually modeled or analyzed are set-up and hold-state

failures (see Figure 2.1). Set-up failures are glitches produced when a circuit is initialized

and its components have not been stabilized yet, since they all initialize with no production

at all. This means that a genetic circuit may produce the incorrect output once it has been

initialized, before reaching the expected outcome at steady-state. Hold-state failures, on

the other hand, is the incapacity of a genetic circuit to hold the correct/expected state for

a constant input concentration due to random and sporadic changes in the inner circuit

components’ concentration. So, if the intended application of the circuit cannot fail at

19

set-up or needs to be particularly robust to hold-states failures, then the proper prediction

of these circuit failures and their analysis is of critical importance.

Most designed genetic systems are tested in optimal lab conditions, with no regards

to the variable and noisy environmental contexts in which they reside. However, as we

move from proof-of-concept designs to more real-life applications of genetic circuits, the

degree of environmental and noise effects on a circuit’s output (or the robustness of such

a circuit to these effects) is critical for a correct and safe behavior [146]. It is therefore,

necessary to study and predict the likelihood of faulty behavior (glitches), or erroneous

states, or other inherent frailties (contrasted with electronic circuits) that need to be studied

and predicted accurately to avoid irreversible harmful effects. However, there are no

tools or methods developed yet to systematically study circuit failures, and the amount

of effort, time, and money needed to characterize parts for different environments can be

prohibitive. Therefore, inspecting the extent one has to re-characterize parts and systems

to have reliable predictions of circuits’ robustness is paramount for saving time and money,

and making better design choices.

2.2.1 Combinational Circuit Hazards

Genetic Regulatory Networks (GRNs), particularly combinational genetic circuits, can

have unwanted switching variations (or glitches) in the circuit’s output due to changes

in the input concentrations. These unwanted signal transitions are only temporary and

correct themselves as the system reaches steady-state. This may not be of major concern

if the output of the circuit is only measured at steady-state or if it is a reporter protein.

However, if the intention of the designer is for the output to have an irreversible effect

on the cell or environment, like inducing cell apoptosis or causing a cascade of responses,

then these circuit glitches become critical.

Previous work done by Fontanarrosa et al. [55] and Buecherl et al. [20] investigate the

glitching behavior of a combinational genetic circuit first published by Nielsen et al. [129].

Fontanarrosa et al. [55] identified the glitching behaviors for the input transitions that

contain function hazards and designed different circuit layouts to analyze the impact on

glitch probabilities. Buecherl et al. [20] built on those results using stochastic simulation

and stochastic model checking to determine the probability of the glitches discovered by

20

Fontanarrosa et al.

Multiple input changes can cause unwanted switching variations, or glitches, in the

output of genetic combinational circuits. These glitches can have drastic effects if the

output of the circuit causes irreversible changes within or with other cells such as a cascade

of responses, apoptosis, or the release of a pharmaceutical in an off-target tissue. Therefore,

avoiding unwanted variation of a circuit’s output can be crucial for the safe operation of

a genetic circuit. This work investigates what causes unwanted switching variations in

combinational genetic circuits using hazard analysis and a new dynamic model generator

(Chapter 4). The analysis is done in previously built and modeled genetic circuits with

known glitching behavior. The dynamic models generated not only predict the same

steady states as previous models but can also predict the unwanted switching variations

that have been observed experimentally. Multiple input changes may cause glitches due to

propagation delays within the circuit. Modifying the circuit’s layout to alter these delays

may change the likelihood of certain glitches, but it cannot eliminate the possibility that

the glitch may occur. In other words, function hazards cannot be eliminated. Instead, they

must be avoided by restricting the allowed input changes to the system. Logic hazards, on

the other hand, can be avoided using hazard-free logic synthesis. This work demonstrates

this by showing how a circuit designed using a popular genetic design automation tool

can be redesigned to eliminate logic hazards.

2.2.2 Stochasticity and Noise

The deterministic framework of Ordinary Differential Equation (ODE) analysis is ap-

propriate to describe the average (population) response simulation of a system to input

changes. However, even single-strain cell populations can exhibit a high degree of gene

expression variation for the same environment [6]. In other words, with ODEs modeling,

there is no randomness or stochasticity associated with the model, and the same results

are obtained given the same initial conditions [3]. However, the stochastic nature of

biochemical reactions, even at the single-gene level [47], generates significant variability

or noise to a system [137], which is why clonal populations of cells can exhibit substantial

phenotypic variation [47]. So even if ODEs simulation predicts that there is little or

no glitching behavior for certain input changes, it might be the case that a significant

21

percentage of a homogeneous population does manifest the unwanted switching behavior.

All interesting genetic circuits with more than a single input have function hazards, and

many of these hazards can turn into glitches. Therefore, stochastic analysis is required to

fully understand glitches and their probabilities, especially for circuits where the output is

deemed critical.

There are different sources of noise that would generate variability in a circuit’s output.

The inherent stochasticity of biochemical processes, such as transcription and translation,

generates intrinsic noise [158]. This is especially significant in systems with low copy

numbers of messenger RNAs (mRNAs) or proteins in living systems [158, 160]. Therefore,

stochastic effects are thought to be particularly important for gene expression and have

been invoked to explain cell–cell variations of output production in clonal populations [47,

158]. The “stochastic chemical kinetics” that arise due to random births and deaths of

individual molecules give rise to jump Markov processes, which can be analyzed by means

of master equations and simulated with stochastic simulation algorithms [63, 89].

Further research is needed to determine if these sources of noise have any effect on

circuit failure probabilities, and which (intrinsic or extrinsic) has a higher incidence in a

circuit’s output variance, and, therefore, in aforementioned circuit failure probabilities.

These results are also critical when moving from proof-of-concept circuit designs to real

life applications into health, industry, or environment [18].

2.3 Modeling Genetic Regulatory Networks

A mathematical model can provide mechanistic understanding of a GRN. Models that

accurately predict behavior of a system allow engineers to design genetic circuits in silico

before going to the laboratory, avoiding large numbers of trial-and-error experiments [25].

There are many advantages in modeling: predicting, even in a limited manner, how a

system will behave under novel conditions, understanding how highly nonlinear systems

work, revealing deeply hidden properties of a system, understanding where the design

fails when predicted behavior is not what it is intended, and many other reasons [11].

However, models only have a limited capacity of prediction and newer models usually

replace older approaches when their predictive capabilities increase.

Dynamical modeling can be described as the “classical” way to mathematically model

22

GRNs [148]. The objective of these models is to describe the dynamic behavior of a set

of genes with interconnected expression levels, and predicting the behavioral response to

various environmental changes and stimuli.

Quantitative PCR, microarrays, Northern blotting, and other techniques are getting

cheaper and can typically measure average concentration of mRNA in a population of

cells [9]. Western blotting can do the same for proteins [62]. Therefore, a mathematical

model that deals with concentration averages over time, and the proportional amount of

time in which a promoter is being occupied is needed. A very common method to do so

is to describe a GRN using the law of mass action, classical chemical kinetics, and Hill

functions; all of which are explained in the next three sections.

2.3.1 Law of Mass Action

There is an associated rate constant for each chemical interaction (i.e., a parameter that is

proportional to the frequency a reaction occurs). The law of mass action states that the rate of

a chemical reaction is directly proportional to the product of the reactant concentrations,

to the power of their stoichiometry. This means that the change in concentration of the

reactants per unit of time (velocity of a reaction), or in other words, time derivative to re-

actant concentrations, is proportional to the product of these reactant concentrations. This

quantity accounts for the probability of collisions amongst reactants under the assumption

of a well-stirred system [102]. This can be used to convert a chemical reaction network into

a set of ODEs that can be analyzed using Classical Chemical Kinetics (CCK) model, which is

the subject of the next section.

2.3.2 Kinetic-Based Models

Once all the reaction and species that comprise a GRN are identified, a mathematical

model can be constructed by determining how they interact [25, 102]. Using the law of

mass action, a set of ODEs can be derived that describe the change of species over time.

This set of ODEs that tracks the concentrations of each chemical species is known as a

kinetic based model, and the differential equations that compose it are known as reaction

rate equations. This model assumes that reactions occur continuously and deterministi-

cally [119]. This deterministic framework is appropriate to describe the mean behavior of

biochemical systems [97]. While mass-action kinetics are strictly only valid for elemen-

23

tary reactions, they are widely and successfully applied in many fields of mathematical

modeling in biology [147].

Reactions in biological systems are not only regulated by reactants and products, but

also of other compounds that regulate the activity of these reactions like enzymes, often

without being consumed during the reaction. In the next section, a description of a method

that has proven to be appropriate to model enzymatic reactions [102] is explained.

2.3.3 Hill Equations

The Hill equation is a standard for characterization of regulated promoters because

it demands only two parameters: the Hill coefficient (n) and the Hill constant (KH or κ).

These two parameters can be faithfully determined with experiments and represent an

appropriate characterization of promoter/transcription-factor dynamics.

The Hill equation stems from the kinetic based model and assumes that the promoter

of a transcription factor is momentarily occupied by transcription factors in a reversible

reaction. Under the assumption that the concentration of the transcription factors and

promoters is constant and under a steady-state condition, we can obtain two different

forms of the Hill equation, depending on whether the the transcription factor activates

(2.1) or represses (2.2) the promoter:

P∗ =
(A

κ)
n

1 + (A
κ)

n
· PT , (2.1)

P∗ =
1

1 + (R
κ)

n
· PT . (2.2)

in which P∗ is the concentration of promoter bound with a transcription factor, A and R are

the concentration of transcription factors that activate or repress transcription, respectively,

PT is the total amount of promoters in the system, κ is the Hill constant, and n the Hill

coefficient. In this model, κ gives the necessary concentration to activate or repress half

of the promoters of the system, and n quantifies the cooperativity amongst activators (or

repressors) when binding to a promoter [102, 119].

Kinetic-based models can take additional assumptions to further simplify the model

without significantly affecting the ability to reproduce expected behavior [25]. One such

common assumption is the steady-state assumption, which is described in the next section.

24

2.3.4 Steady-State Modeling

When the production and degradation rate of a chemical species are equal, its con-

centration will not change and is at equilibrium. The steady-state assumption assumes

that all the chemical reactions of a system are at equilibrium or steady-state, meaning that

the concentration of the chemical species do not change over time. For a system to be at

steady-state, each variable in that system must be at steady-state. Such steady-states are

found by setting all the first derivatives in a kinetic-based model equal to zero and solving

the resulting set of algebraic equations [11]. Steady-state modeling has been shown to be

appropriate for genetic regulatory network modeling [102].

When steady-state models fail to reproduce observed behaviors or predict dynamical

behavior before reaching steady-state, some assumptions must be revisited [25] and allow

for more relaxed assumptions to take place. The following section describes a different set

of assumptions that allow for dynamic modeling.

2.3.5 Dynamic Modeling

As the complexity of a GRN increases, so does the behavior it presents, and, therefore,

there is a need for a more accurate modeling technique [7, 161]. Instead of assuming that

all species reach equilibrium as in steady-state modeling, some models only assume that

some species (those that are involved in the fastest reactions) reach equilibrium before

others. This would remove equations from the ODEs system, which describe the evolu-

tion of the variables at steady-state [15]. This assumption is usually applied to enzyme

interactions [11, 136], since in many GRNs, the protein-protein dynamics are much faster

than the transcription or translation process, meaning that the protein interactions reach

equilibrium much faster than other interactions. However, depending on the system,

this quasi-steady-state assumption can be made for any species in the system in which the

modeler thinks there is a faster dynamic. This allows one to study the dynamics of

species that are not at steady state with more precision. However, the quasi-steady-state

assumption can only be safely made when the difference in timescales for the dynamics of

species that reach equilibrium fast and those that do not are considerable [136].

25

2.3.6 Stochastic Models

The deterministic framework of ODE analysis is appropriate to describe the mean

behavior of a system, with underlying assumptions such that the variables vary in a deter-

ministic and continuous fashion. In other words, there is no randomness or stochasticity

associated with the model, and the same results are obtained given the same initial condi-

tions [3]. However, the stochastic nature of biochemical reactions, even at the single-gene

level [47], generates significant intrinsic genetic noise to a system [137]. Furthermore, the

underlying assumption of continuous-deterministic models that the number of molecules

is high (or that the volume of the system is infinite) can be invalid for biochemical systems

where there are very few transcription factors or only one copy of a Deoxyribonucleic

Acid (DNA) segment [79]. Since transcription factors, enzymes, and DNA copies can exist

in systems at a low concentration such as a single molecule per cell, any realistic analysis

of these systems must include stochastic effects, and, therefore, stochastic modeling and

analysis [31].

In order to capture the stochastic behavior, a stochastic chemical kinetics approach must

be taken. With this approach, reactions are assigned propensities of occurring, rather

than a rate of reaction, and molecule numbers can be estimated [119, 120]. Simulation

requires a Monte Carlo approach, such as Gillespie’s Stochastic Simulation Algorithm (SSA),

which is already implemented in iBioSim [169]. In a SSA simulation, each simulation step

selects a random time for the next reaction and a reaction to perform, and it repeats this

process until a preselected time limit is reached [120], and, therefore, each simulation is

unique. This generates different simulations for the same initial conditions every time the

simulation is performed, and propensities and probabilities of certain states or dynamic

behaviors occurring can be calculated.

2.3.7 Modeling Intrinsic and Extrinsic Noise

There are different sources of noise that would generate variability in a circuit’s output.

The inherent stochasticity of biochemical processes, such as transcription and translation,

generates intrinsic noise [158]. This is especially significant in systems with low copy

numbers of mRNAs or proteins in living systems [158, 160]. Therefore, stochastic effects

are thought to be particularly important for gene expression and have been invoked

26

to explain cell–cell variations of output production in clonal populations [47, 158]. The

“stochastic chemical kinetics” that arise due to random births and deaths of individual

molecules give rise to jump Markov processes, which can be analyzed by means of master

equations and simulated with stochastic simulation algorithms [63, 89]. However, Beal [6]

argues that stochastic chemical kinetics cannot explain the observed variation, and thus

the explanation of such variation falls back to extrinsic noise. Extrinsic noise is generally

defined as fluctuations and variability in a system’s reaction rates due to disturbances

originated from its environment [132, 149]. This can be modeled as fluctuations in model

parameters (such as transcription and degradation rates) [153].

2.4 Standards

Reproducibility is a critical issue for synthetic biology [81, 122, 166]. This rapidly

advancing field has allowed for novel genetic circuit designs, modeling software, and

assembly techniques. However, all of these developments are very labor-intensive with

inputs from researchers with a multitude of different backgrounds, making the reusability

of this information complicated. More mature engineering disciplines have tackled this

issue with standardization, abstraction, and decoupling [41, 48, 120]. Some of these strategies,

like abstraction and decoupling, are well under way of development. However, there is a

growing awareness that the need for standardization is essential for the field to grow into

a more predictable engineering discipline [41].

Standardization in synthetic biology ranges from standardized genetic parts and char-

acterization [80], to standards for designing and visualizing genetic circuits, assembly

methods, screening methods, reporting (modeling and simulation), and sharing (data

repositories). Institutes like the National Institute of Standards and Technology (NIST)

have convened meetings to discuss standardization efforts in synthetic biology, from DNA

building blocks to documentation of experiments [69].

A key element for model-based design in synthetic biology is to develop data represen-

tation formats to allow for sharing of designs, models, and simulations in order to foster the

interdisciplinary approach that is characteristic of this discipline [120]. A major initiative

to encode biological information and to coordinate the development of data standards

27

happens under the “COmputational Modeling in BIology NEtwork” (COMBINE 2) initia-

tive [86, 120, 122].

In this section, a description of the three data standards curated under COMBINE and

used by the model generator of this work are described. First, the data standard for speci-

fication of genetic circuits and their function (Section 2.4.1), followed by the standard used

to describe mathematically the biological behavior of these genetic circuits (Section 2.4.2),

and finally the data standard to report simulation results of the mathematical models

developed (Section 2.4.3).

2.4.1 Synthetic Biology Open Language (SBOL)

The Synthetic Biology Open Language (SBOL) is an open standard for the representation

of in silico biological designs3 [56]. SBOL is a free and community-driven data standard

used to encode structure and function of a genetic circuit or parts, with a focus on

abstraction and composition [122]. SBOL is used to represent not only the sequences

of genetic designs, but also functional interactions, proteins, metabolites, and biological

chassis. This is a big advantage over other standards that encode DNA sequences like

the FASTA format [133], GenBank’s flat file format4, and the Generic Feature Format5,

since researchers can describe a biological design or circuit without knowing necessarily

the DNA sequences that will compose it. In this way, synthetic biologists can share

designs of genetic circuits, their expected function, and interactions without even having

to go to the laboratory and sequence DNA. Furthermore, SBOL allows for hierarchical

designs that organize genetic parts into a more complex structure to describe a desired

function, annotate environmental or experimental context information, computational

models of behavior, and measurements of performance characteristics [56]. To guarantee

interoperability and sharing between tools, SBOL permits assignments of roles and types

to the functional components that compose the genetic design from ontologies, such as the

2http://co.mbine.org/

3http://sbolstandard.org/

4http://www.insdc.org/documents/feature-table

5https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

28

Sequence Ontology (SO)6 and the Systems Biology Ontology (SBO)7 [140].

SBOL also allows one to create a Model class to document and link to external models

written in standards other than SBOL, like for example the Systems Biology Markup Lan-

guage (SBML) [26], which is discussed in the next subsection.

Most importantly, SBOL allows for the storage of any information not supported by the

format in the form of custom and complex user annotations, so that no information is lost

when encoding a design in the SBOL format.

2.4.2 Systems Biology Markup Language (SBML)

SBML is another standard under the COMBINE initiative [72], which is a free and

open format for computer models of biological processes. SBML is useful for models of

metabolism, cell signaling, genetic devices, and more. It is supported by an international

community with many packages being developed from the users that expand its capabili-

ties. It is supported and used by more than two hundred software tools,8 which makes it

an excellent format for the exchange and reuse of mathematical models between different

areas of synthetic biology. This enables researchers to create, simulate, and annotate

biological models that can be shared through different databases, like the BioModels

database [27]. Furthermore, some parser libraries offer model checking, validation, and

verification, as well as support for the SBO [14].

SBOL can be used to describe structural and qualitative behavior, whereas SBML is

used to specify a mathematical model that describes the quantitative behavior of the

system. Both are amply used standards, so naturally there exists converters from SBML

to SBOL and vice-versa [128, 142]. Part of this work is essentially a new type of SBOL

to SBML converter that creates dynamic models from genetic designs encoded in SBOL

using the parametrization from the Cello project. While SBML is a widely accepted and

used format for describing model structure, it does not cover the description of analysis or

simulation performed to obtain predictions from the mathematical model. Therefore, this

6http://www.sequenceontology.org/

7http://www.ebi.ac.uk/sbo/main/

8http://sbml.org/SBML Software Guide

29

work uses another standard format to do so, which is described in the next subsection.

2.4.3 Simulation Experiment Description Language (SED-ML)

The Simulation Experiment Description Markup Language (SED-ML) is an XML-based

format developed for the encoding of simulation and analysis experiments performed on

a mathematical model [165]. It is a core standard of COMBINE, and it is used primarily to

specify which models to use in an experiment, modifications to apply on the models before

using them, which simulation procedures to run on each model, what analysis results to

output, and how the results should be presented [165].

To enable shareable and reproducible analysis, authors should provide SED-ML files

along with the SBML files with their publications, so other researchers can reproduce the

presented simulation results obtained. This would allow other users to analyze and study

under which conditions the simulation was carried out and test the results themselves.

2.5 Online Repositories

Data standards allow for standardization of ideas and information from a diversity of

sources in synthetic biology. However, designs, models, and simulation results specified in

these standards need to be stored somewhere in order to enable this data to be exchanged

between different laboratories or researchers. Online repositories have been created for this

purpose of storing and sharing data and are used by many researchers and tools. Some

of them, like the iGEM Registry of Standard Parts9 or JBEI-ICE [67], have been developed

specifically for the storing and sharing of engineered biological deigns. However, many

of these online repositories can only store sequences but not other information such as

proteins, interactions, metabolites, biological chassis, or models that describe the function

of a circuit, which is very important for genetic design. With this in mind, two online

repositories have been developed to fulfill this gap which are discussed in the following

sections.

9http://parts.igem.org/Main Page

30

2.5.1 SynBioHub

SynBioHub [107] is a repository for genetic designs encoded in SBOL. SynBioHub

is designed to store parts and designs in a linked format so that data can be findable,

accessible, interoperable, and reusable (FAIR) [107]. This linked data and the use of

sequence ontologies permits for a powerful querying capacity that facilitates searchability

from tools and users alike. Designs can be shared with users or other applications, like, for

example, Benchling.10 Sequences can be shared with other applications that specialize in

sequence editing and/or copying, and then transferred back into SynBioHub. Moreover,

any custom annotations made by a researcher in the SBOL file are queryable, which makes

the retrieval of information more straightforward. The Synthetic Biology Knowledge

System (SBKS) [99] is one such instance of the SynBioHub repository that included text

and data information that has been mined from papers published in different academic

journal articles.

These functionalities make SynBioHub an excellent choice to upload genetic designs,

models, and simulations, to search for existing designs, and to share or export for publica-

tion or collaboration.

2.5.2 BioModels

The BioModels Database is a public online resource that allows storing and sharing

of published, peer-reviewed quantitative, dynamic models of biological processes [27].

Models uploaded to the BioModels Database are manually curated to ensure reliability

and correspondence with the original publication’s results. All models are annotated with

controlled vocabulary terms and linked to external data, which facilitates model reuse and

interoperability. Models are stored in the SBML format and are available to download in

several other formats.

The submission of models to the BioModels repository has increased rapidly [27]. This

allows modelers not only to share their models, but also to reuse models uploaded by other

researchers to modify them and implement their own analysis and publish articles. This is

a great resource to address the reproducibility crisis in synthetic biology [81, 166].

10https://www.benchling.com/

31

2.6 Genetic Design Automation Tools

Despite all this potential, genetic circuit design remains one of the most challenging as-

pects of genetic engineering [19, 137]. Due to the inherent complexity of biological systems,

engineering complex genetic circuits is a bigger challenge than was anticipated [85, 96].

As the requirements of developing novel synthetic biological systems have become more

complex, the need for models and software design tools has become more acute [97].

Several approaches have been implemented for the development of computational tools

for synthetic biology [29, 96, 97, 101, 103]. However, there has been an increased focus on

tackling this complexity of genetic circuit design and frame these recent computational

tools by developing Genetic Design Automation (GDA) tools [29].

GDA tools rely on well characterized, modular genetic parts, in particular the de-

velopment of orthogonal transcription factors [29]. This presents a challenge for the

synthetic biology community since many genetic parts or gates have unbalanced regulator

expressions, they behave differently when combined in a genetic system, and they have

complicated states depending on the inputs [129]. However, one such project that has

overcome some of these difficulties and developed a library of characterized modular parts

to use to automatically design genetic circuits is described in the following subsection.

2.6.1 Cello

The design environment, referred to as Cello [129], is a GDA tool created to automat-

ically design genetic circuits with user-defined behavioral response over a set of inputs

changes. It was developed to accelerate circuit design, to enable non-experts to incorporate

synthetic genetic circuits into their genetic engineering projects, and to enable one to

specify a user-defined computational operation behavior of such a circuit. This design

environment implements algorithms that derive a physical design (sequence of parts) from

a textual specification, written in Verilog, in which the user specifies inputs, outputs, and

an expected computational Boolean logic in the form of a truth table that the user wants

the circuit to perform.

Cello needs three inputs in order to work. First, there is the DNA sequences of

the sensor gates for the circuit, and their ON/OFF RPU output. The second is a User

Constraint File (UCF) that contains information such as the functional information (transfer

32

functions in RPU) of the library of gates, the layout of the genetic system, organism, strain,

operating conditions, toxicities, promoter road-blocking, and other constraints to be taken

into account by the algorithm. And lastly, there is a Verilog code that captures the desired

behavior (as a Boolean computational operation) of the genetic circuit to be designed [129].

Cello utilizes this information to automatically design a genetic circuit that connects

to cell-based sensors and cellular actuators. It does so in three steps — first, the textual

command is converted to a circuit diagram; second, Cello assigns specific regulators to

each gate or node in the circuit diagram; the third and final step creates a linear DNA

sequence based on the circuit diagram and gate assignment [129]. The output circuit is

described using SBOL, and it contains the DNA sequences of all the parts of the circuit.

The actuator of such circuit can then be connected to any cellular process by directing

the output of the circuit as a stimulator or repressor of a metabolic pathway or other

genes. Similarly, the sensor gates can be engineered to sense different cellular inputs or

experimentally controlled variables such as temperature, pH, etc. The circuit performs

Boolean logic computation based on the presence/absence of the sensors and produces

the corresponding output from the implemented behavior.

The work that Nielsen et al. did in 2016 [129] used a library of gates based on prokary-

otic repressors. Nonetheless, the Cello design environment can work with any gate that

is repressible in different levels other than RNA Polymerase (RNAP) flux regulation, such

as RNA-based regulation, protein-protein interactions, CRISPR/Cas-based regulations, or

recombinases, as well as in different organisms other than bacteria.

This GDA tool requires genetic logic gates that are sufficiently modular and reliable,

such that their interconnected behavior can be predicted, in order to work. For this, the

Cello project has developed a set of insulated NOT and NOR gates based on prokary-

otic repressors [129, 157]. The following subsection describes the gates used and their

parametrization.

2.6.1.1 Cello Gates and Parameters

As mentioned before, each gate in Cello behaves as a NOR or NOT gate, which is com-

posed of an engineered region or expression cassette preceded by two (NOR gate) repressible

promoters or one (NOT gate) repressible promoter, as shown in Figure 2.2. When the sim-

33

ulation environment selects different gates for each node in the circuit, it chooses from a li-

brary of these engineered regions or expression cassettes, instead of choosing the Ribosome

Binding Site (RBS), Coding Sequence (CDS), and terminators individually. Composing RBS

+ CDS + terminator into a functional component this way reduces variability, but at the

same time, it is simpler to model and to combine during the simulated annealing process

of Cello. Additionally, composed engineered regions or expression cassettes are easier to

characterize experimentally, requiring far less experiments. It is a form of abstraction that

reduces complexity and saves time [48]. Characterization of this library of composed parts

was obtained experimentally [129] as depicted in Figure 2.3 and Figure 2.4. Figure 2.3

shows how the sensor promoters are parameterized. First, a constitutive promoter is

added before a sensor gate, which produces a sensor protein continuously. This sensor

protein can repress the sensor promoter that is being characterized, unless an experimenter

adds an input molecule that represses this repressor. In the same plasmid, the sensor

promoter is placed before a “Yellow Fluorescent Protein (YFP) RPU cassette”, which is a

functional component that produces YFP. YFP production is measured, using RPU, under

two different conditions: adding an excessive amount of input molecule, in which case

the sensor promoter is not repressed and the YFP production is maximum; and without

any input molecule, in which the sensor promoter is maximally repressed and only basal

production of YFP occurs. With these experiments, two parameters are obtained for sensor

promoters: ymax and ymin. The parameter ymax depicts the maximum promoter activity for

the sensor promoter, and ymin the minimum, or basal promoter activity in RPU. Likewise,

Figure 2.4 depicts the parametrization for all other gates that are not sensor gates or

promoters. It is similar in fashion to the sensor promoter parametrization, but there is

an extra step. In this case, the “YFP RPU cassette” is preceded by the gate promoter. On

the same plasmid, the gate that produces the Transcription Factor (TF) that represses this

gate promoter is preceded by a sensor promoter. Finally, on a second plasmid, a sensor

gate constitutively produces a sensor protein. In this way, without an input molecule that

represses the sensor protein, the gate production is minimum, and the gate promoter is not

being repressed (producing YFP). Conversely, when the input molecule is present in large

amounts, the sensor protein is repressed, the gate being characterized produces maximum

amounts of TF and the YFP production is reduced to a minimum. To characterize these

34

gates, an experimenter introduces different concentrations of input molecule, and the YFP

production is measured in RPU. A response function for each gate is formulated, and

after fitting it to a Hill equation, the parameters ymax, ymin, n, and κ are obtained. As with

the sensor promoter characterization, ymax and ymin depict the maximum and minimum

promoter activity in RPU, respectively. For the other two parameters, n is equivalent to

the Hill coefficient, and κ is equivalent to the dissociation constant [129].

The parameters ymax, ymin, n, and κ were measured for each gate in isolation of other

gates, as shown in Figure 2.4, and are stored in a UCF, which is then fed to Cello when

designing a circuit. Once Cello designs the circuit and assigns gates to each individual

node of the circuit, it stores all that information in a SBOL file. The next section describes

this output.

2.6.1.2 SBOL Specification

Cello was used to design a large set of circuits (52) based on the insulated gates

described earlier [129]. The output of Cello can be encoded in an SBOL file, as well as a

netlist (JSON file), cytometry plot (PNG file), transcription values in RPU (CSV file), truth

table (CSN file), or others. Each circuit is composed of multiple NOR and NOT gates,

sensor gates, and the output gate. A NOR gate is composed of two repressible promoters

and an expression cassette; an example is shown in Figure 2.5.

A collection of the Cello insulated gates (expression cassettes and promoters) encoded

in SBOL used for this work is uploaded in a SynBioHub repository.11 With this, one can

design a circuit using other design environments other than Cello and use these parts.

These parts not only contain parts and sequence information, but they also store the

parameters ymax, ymin, n, and κ. These parameters are stored as SBOL annotations in

each expression cassette for the case of Cello gates, and in the repression interaction of

sensor proteins to sensor promoters for the case of sensor promoters. The automated

model generator of this work searches for these parameters to generate the model that

describes the dynamic behavior of a circuit.

11https://synbiohub.programmingbiology.org/public/Eco1C1G1T1/Eco1C1G1T1 collection/1

35

2.6.1.3 Cello’s Circuit Performance Prediction

Qualitative predictions of circuit performance (output distributions) are obtained com-

puting the combination for each individual gate’s output distribution [129]. This is the last

step performed by Cello after gate assignment and produces a prediction of the circuit’s

output as a distribution. To perform this prediction, there has to be experimental data to

fit a response function for each gate. Thus, each gate in the circuit must have experimen-

tal cytometry distributions added to the UCF, with the fluorescence values reported in

RPU [129].

Once all the gate distribution response functions are calculated, the qualitative pre-

dictions for the output product can be computed. For a particular input combination,

the sensor values (concentrations) are fed to the first layer of the circuit (sensor gates).

Each sensor gate has a distribution response function, so with the concentration of input

molecule a vertical “slice” is obtained from the distribution response function to create

an output histogram for the gate. Next, these gate output histograms become the input

histograms for the second layer of gates. This is done for all the different layers, composing

output histograms for each layer and feeding it as an input for the next layer, until the final

circuit’s output histogram is calculated. Then, finally, for each input signal combination,

a histogram of output for each individual gate is estimated, and the signal is propagated

throughout the entire circuit until the last one (circuit’s output) is calculated to produce

the truth table predictions of the work [129].

The composition of response functions to obtain a predicted output histogram is based

on steady-state experimental results and is a steady-state outcome prediction. This means

that any dynamic behavior the circuit undergoes before reaching steady-state is missed by

this analysis. However, in the original science paper [129], researchers did a time-course

experiment to obtain output production in RPU every hour for a particular circuit, until

the circuit reached steady-state, shown in Figure 2.6. In this experiment they observed that

the circuit, for some of the input combinations, behaved in an unpredicted manner: the

output would vary in unexpected ways before reaching the correct predicted steady-state

output of the circuit. This type of behavior cannot be predicted with steady-state modeling

and simulation, and it is why it is so important to have a dynamic model that can do so.

The ability to dynamically model genetic circuits using Cello gates and parametrization

36

to be able to predict this dynamic behavior before and after reaching steady-states is what

inspired the work of this dissertation. Dynamic modeling would not only predict this kind

of behavior, but also allow for a finer analysis of circuit dynamics to detect failures.

The Cello simulation environment is used mainly for the design and implementation of

genetic circuits. However, there are other GDA tools that not only allow for the design, but

also the modeling and simulation of genetic circuits. One such tool, iBioSim, is discussed

in the next section.

2.6.2 iBioSim

iBioSim is a GDA tool for the design, modeling, and analysis of genetic circuits that

is being actively developed at the University of Utah and the University of Colorado

Boulde [98, 121, 169]. This tool has been developed to promote model-based design of

genetic circuits using community-developed data standards such as SBOL, SBML, and

SED-ML. While Cello is a GDA tool to automatically design genetic circuits, iBioSim is not

restricted to genetic logic circuits. iBioSim allows for a wider range of genetic parts and

metabolic species, modeling, and simulation using data standards, automatic uploading

to online repositories among other things. The following is a high-level description of the

key features of iBioSim:

• Genetic Circuit Design

1. Incorporated sequence editor tool SBOLDesigner [174]. Genetic designs can be

viewed, edited, and create hierarchical levels of design.

2. Front-end connection to SynBioHub for the uploading, downloading, and shar-

ing of genetic circuits.

• Model Generation

1. The Virtual Parts Repository (VPR) model generator is used to obtain and en-

rich SBOL files with interaction data, small molecules, and more for designed

circuits.

2. Integrated SBOL to SBML converter [142] that can be used to translate structural

and functional information to create a quantitative model expressed in SBML

using generic or user-defined parameters.

3. User interface to edit and refine the model using the model editor GUI.

37

• Analysis

1. Variety of simulation methods to analyze SBML models such as ODEs and

stochastic simulation, and many others using SED-ML.

2. Perform Flux Balance Analysis (FBA) on SBML models.

3. Perform stochastic model checking, and simulation of grid-based, hierarchical

models of dynamic cellular populations.

4. View simulation results plotted in a graph.

• Synthesis

1. Automated methods for part selection using a process known as technology

mapping [141].

2. Technology mapping for asynchronous sequential genetic circuits [127].

iBioSim provides automatic SBOL to SBML converter, though not one that can use

Cello’s parts and parametrization to generate a dynamic model. This dissertation

implements an automatic dynamic model generator for genetic parts that uses Cello

parametrization in iBioSim. In the next subsections, a more detailed description of the

VPR, the SBOL to SBML converter, and dynamic modeler of iBioSim is provided.

2.6.2.1 Virtual Parts Repository (VPR)

Modular genetic parts for synthetic biology not only can be reused for different projects,

but also provides modular and reusable models and information to be shared. Modular

models facilitate the process of model-centered design and the availability of databases of

modular models is essential to support automated model generation tools like iBioSim.

The VPR has been developed with this emphasis on mind. VPR is a repository of Standard

Virtual Parts (SVP), which are reusable, modular, composable, and shareable models of

physical biological parts for synthetic biology [109]. The computational models and

interactions are available as SBML documents and in SBOL format for standardization

purposes. The repository was populated with data mined from an ontology representation

of the BacillOndex dataset [108, 111], which includes around 3000 virtual parts and 700

models of interactions between them.

An application programming interface (API) is also available to enable programs to access

38

VPR via a Web service. This can be used to retrieve SVPs, a list of interactions for a part or

SBML models of parts and interactions to construct models of biological systems [109].

These features are used by iBioSim to obtain interaction data and add functional

information to the SBOL description of a genetic design. It can add proteins as well as

coding sequences in the same SBOL document in which the design is specified [169]. The

use of VPR for automated processes like the automated generation of models for GRNs is

particularly suitable for these reasons [110].

2.6.2.2 SBOL to SBML Converter

iBioSim also comes with an integrated SBOL to SBML converter [142]. This utility is

used to convert qualitative models and structure encoded in SBOL to quantitative models

expressed in SBML [110, 169]. During the construction, the species and reactions generated

for the mathematical model encoded in SBML are also annotated with elements from the

SBOL document in order to preserve provenance of the model and the molecular identities

of the species [142]. This converter adds default parameter values to the interactions [110],

but these parameter values can be later modified within the iBioSim model editor. The

derivation of these rate laws is based on the law of mass action and some model abstraction

techniques like the operator site reduction or quasi-steady-state approximation [142]. For

a more detailed review of these abstractions can be found in the literature [119]. SBML

models constructed this way can then be simulated in a variety of methods.

Part of the work presented in this dissertation is a new SBOL to SBML converter that

uses functional and structural information of a genetic circuit encoded in SBOL to produce

a mathematical model described in SBML, using parameters and characterization as in the

Cello project to create a dynamic model of GRNs.

39

Figure 2.1. Example diagram showing the different circuit failures. Set-up glitches can be
produced when the circuit has not been initialized properly. This means, the initial internal
states of the circuit (until they reach steady-state) produce an unwanted or unexpected
circuit output. Hazard glitches can be produced when multiple input changes occur and
are a transient behavior that self-corrects as the system reaches a steady state. Hold-state
glitches occur when the circuit’s output is altered due to noise in the system, which can
randomly switch or alter the circuit’s steady-state output.

Figure 2.2. A Cello NOR gate [129]. Each gate in Cello consists of a genetic “expression
cassette” (in this case the gate is “S4 SrpR”) or engineered region that interacts with a
downstream promoter. In this example, it is preceded by two repressible promoters,
(“pAmtR” and “pPhlF”), which cause the gate to behave as a NOR gate. In this figure:
pAmtR (promoter repressed by AmtR), pPhlF (promoter repressed by PhlF), RiboJ (insu-
lator), RBS (Ribosome Binding Site), SrpR (SrpR coding sequence), and Ter. (terminator).

40

Figure 2.3. Sensor gate parametrization in Cello [129]. Each gate in Cello consists of
a genetic “expression cassette” (in this case, a sensor gate) or engineered region that
interacts with a promoter (in this case “pTac”). To characterize the RPU activity of a sensor
promoter, the sensor promoter (“pTac”, green) is positioned in front of an YFP “expression
cassette” (or the “YFP RPU cassette”) on a plasmid. On the same plasmid, a constitutive
promoter (“pCONST”) is placed in front of a sensor gate producing the TF, which represses
the sensor promoter. In the case of sensor gate characterization, the YFP production is mea-
sured in RPU units at different concentrations of inducer (in this case “IPTG”). These data
are then fit to obtain the values of ymax and ymin for the promoter pTac. In this figure: pTac
(promoter repressed by LacI), RiboJ (insulator), RBS (Ribosome Binding Site), YFP (Yellow
Fluorescent Protein coding sequence), Ter. (terminator), pConst (Constitutive promoter),
LacI (LacI coding sequence), and IPTG (Isopropylβ − D − 1 − thiogalactopyranoside).

41

Figure 2.4. Genetic gate parametrization in Cello [129]. Each gate consists of a genetic
“expression cassette” (in this case “Gate P3 PhlF”) or engineered region that interacts
with a promoter (in this case “pPhlF”, red). An inducer (in this case IPTG) is added
at different concentrations, and the YFP production is measured in RPU units to create
a response function (not shown). A Hill equation is fit to the response curve to obtain
the values of ymax, ymin, n, and κ. In this figure: pTac (promoter repressed by LacI),
RiboJ (insulator), RBS (Ribosome Binding Site), YFP (Yellow Fluorescent Protein coding
sequence), Ter. (terminator), pConst (Constitutive promoter), LacI (LacI coding sequence),
and IPTG (Isopropylβ − D − 1 − thiogalactopyranoside).

42

Figure 2.5. SBOL Visual [30] representation of a genetic gate. This gate corresponds to
circuit 0x1C in [129]. This gate consists of two repressible promoters (pAmtR and pSrpR)
followed by an engineered region or expression cassette (P3 PhlF). This expression cassette
is composed of a ribozyme-based insulator (RiboJ), a ribosome binding site (P3), a coding
sequence (PhlF), and a terminator (ECK120033737).

Figure 2.6. Time-course data for circuit 0x8E (courtesy of [129]). Each line represents
the output YFP production (in RPU) over time (in hours) for the circuit 0x8E for each
combination of input molecules. This circuit senses three input molecules: Arabinose (Ara),
anhydrotetracycline (aTc), and Isopropylβ − D − 1 − thiogalactopyranoside (IPTG). In the
image, +/+/+ (Ara/aTc/IPTG) represents all input molecules are present and -/-/- rep-
resents no input molecules present. Also, the ON and OFF states represent the predicted
outcome at steady-state. All outputs behave as expected, except for the +/-/+ state, which
experiences an undesirable decay before rising to the ON state (red line).

CHAPTER 3

EXPANDING AUTOMATED MODEL

GENERATION AND SIMULATION

 IN IBIOSIM

As described in prior sections, modeling is an essential piece of the Design-Build-Test-

Scale (DBTS) cycle in synthetic biology, as it not only allows for verification of proper

genetic circuit behavior, but also for the detection of possible genetic circuit failures and

hazards. Consequently, the more accurate a model is, the more predictive and/or analytic

power it can provide for synthetic biologists. This chapter starts by briefly explaining the

model generator developed in Fontanarrosa [54] (Section 3.1), followed by the expansions

contributed by this dissertation. Explicitly, Section 3.2 will explain how dynamic (tempo-

ral) modeling and simulation was added, Section 3.3 adds the effect of roadblocking to

tandem promoter genetic circuit designs, and Section 3.4 explains how all this fits in the

automation scheme of synthetic biology.

The model used by the automatic model generator of this work is composed of a

steady-state model and a dynamic model that describe the circuits behavior. The steady-

state model was proposed by Shin et al. [152] and the dynamic model by Moser et al. [113].

The procedure used here is not only suitable to model genetic circuits generated using the

Cello tool, but also any circuit as long as the appropriate parameters are available.

3.1 Review of Previous Model
Generation Automations

The automatic model generator of iBioSim [169] produces steady-state modeling of

Genetic Regulatory Networks (GRNs) by simulating all the interactions known to occur for

transcription and translation processes. However, many of these interactions are hard

to evaluate experimentally and obtain meaningful parameter values to produce accurate

models. Therefore, in Fontanarrosa [54], an automated model generator using bundled pa-

44

rameters following the model proposed in Cello [129] was implemented. The steady-state

model stems from the Michaelis-Menten scheme and basic equilibrium kinetics that are

rearranged to create a response function [23] for each genetic gate with variables that can

accommodate specific parameters [152]. This response function describes the steady-state

RNA Polymerase (RNAP) flux [51] output in Relative Promoter Units (RPU) [80] of a gate over

the output promoter (promoter that the gate has an effect on), as a function of the RNAP

fluxes of the input promoters. The input promoters can be a single or tandem promoters

(upstream and downstream promoter) which can have roadblocking interactions (see

Section 3.3). Equations 3.1 and 3.2 describe the steady-state output and input RNAP fluxes

as:

yiSS = yimin + (yimax − yimin)
κni

i
κni

i + f (u, d)ni
, (3.1)

where yiSS is the steady-state output RNAP flux of gate i; yimin and yimax are the minimal

and maximal output RNAP fluxes, respectively, for gate i; κ and n are obtained from the

affinity and cooperativity of transcription factor binding; and, finally, f (u, d) is the non-

additive input RNAP fluxes from the input promoters of each gate. However, if there

are no roadblocking parameter values, we can assume this input RNAP flux is an additive

function of both input promoters. The steady-state calculation of input (sensor) promoter

activities of input gates has the following form:

xiSS = δ(1 − q) (ximax − ximin) + ximin , (3.2)

where xiSS is the steady-state output RNAP flux of sensor gate i; ximin and ximax are the

minimal and maximal output RNAP fluxes, respectively, for sensor gate i; q is the presence

(q = 1) or absence (q = 0) of inducer molecules; and δ(1 − q) is 1 when there are inducer

molecules present and 0 when there are not.

Steady-state modeling is appropriate if the designer is only concerned about the correct

behavior of the circuit at certain time-points, or if the intended purpose of the circuit

is just to report the current state of input concentrations. However, for genetic circuits

intended to compute specific logic that produces an irreversible effect on a cell (or other

cells), or in situations where the output of a circuit needs to be determined at all times,

then dynamic (temporal) genetic circuit modeling and simulation is needed. Furthermore,

most combinational genetic circuits designs use Boolean functions to compute desired

45

functions. Given that NOR and AND gates are functionally complete (meaning that any

computational operation can be implemented using layers of either of these gates alone),

they are often used in genetic circuit designs [58, 159]. However, it is a well-known phe-

nomenon that tandem promoters (used in NOR gates), produce a road-blocking effect [12,

21, 49, 106, 131, 150, 155, 173], due to RNAP transcription initiation blocking (transcriptional

interference). Therefore, in this work we set up to expand the automatic model generator

of Fontanarrosa [54] to include these features to provide it with more accurate, dynamic

models of GRNs as explained in the coming sections.

3.2 Dynamic Modeling

The dynamic model is composed of a set of Ordinary Differential Equations (ODEs) for

each genetic gate that describes the timescale by which a gate turns ON or OFF, using a

simplified model that uses only two parameters (τON
y and τOFF

y) as shown in the following

equation:

dy
dt

=

{
τON

y (yiSS − yi) if yi < yiSS

τOFF
y (yiSS − yi) otherwise

, (3.3)

where yiSS is the RNAP flux of gate i at steady state (Equation 3.1), yi is the current RNAP

flux of gate i, and τON
y and τOFF

y which are the bundled kinetic parameters that capture

the response time to go to a steady state that is higher than the current output (τON
y) or

lower (τOFF
y) [113, 152]. Finally, to calculate the RPU output of the promoter controlling

the output fluorescence protein expression, like Yellow Fluorescent Protein (YFP), we use

Equation 3.4:
dYFP

dt
= τON

YFP · f (u, d)− τOFF
YFP · YFP , (3.4)

where τON
YFP and τOFF

YFP which are bundled kinetic parameters that capture the response time

to go to a steady state that is higher than the current output (τON
YFP) or lower (τOFF

YFP) [113,

152], f (u, d) is the non-additive input RNAP fluxes from the input promoters of the

reporter gate, and YFP is the output RPU of the promoter controlling YFP expression.

3.3 Roadblocking

Interference between two tandem promoters with the same orientation in gene expres-

sion is a known phenomenon [159]. Mathematical modeling methods have been described

to represent this roadblocking effect of tandem promoters [155] and could be accounted

46

for in the automatic model generator in iBioSim. Using the model described in Shin et

al. [152], a roadblocking effect can be included into the dynamic model generator using

the following non-additive model:

f (u, d) = yuα

(
yd − ydmin + β (ydmax − yd)

ydmax − ydmin

)
+ yd , (3.5)

where yu and yd are the RNAP fluxes of the upstream and downstream input promoters

respectively, ydmin and ydmax are the minimal and maximal RNAP flux from the downstream

promoter, α represents the non-specific suppression of the upstream promoter, and β

which captures competing effects between the kinetics of the repressor off rate and RNAP

dissociation rate. These last two parameters, α and β, are dimensionless and represent the

degree of the roadblocking effect on the input RNAP flux of the upstream promoter from

the downstream promoter.

However, if we want to make the input RNAP flux an additive model (meaning there

is no roadblocking effect), we can simply set the values of α and β equal to 1 (meaning the

interference effects go to zero). It would prove to be very interesting for future work to

learn how these values will change the model predictions.

3.4 Automation of DBTS

The automatic dynamic model generator described in [110] has been modified in this

work to use the model described in this section and to be able to predict the dynamical be-

havior of circuits within and in between steady states, which resulted in a publication [55].

This model generator is implemented in the iBioSim [169] software tool that is available

in: https://github.com/MyersResearchGroup/iBioSim. As a demonstration, this section

shows the output of the model generator for a simple genetic gate (shown in Figure 3.1) in

iBioSim.

The automated model generator of this work will produce the dynamic model for the

gate shown in Figure 3.1 using, in particular, the following steps:

• Use the Virtual Parts API [110] to enrich the Synthetic Biology Open Language (SBOL)

representation with interactions and their participants from the chosen repository

and create a top module that encompasses all the different sub-modules.

• Extract the parameter information from parts stored in SynBioHub.

47

• Create a Systems Biology Markup Language (SBML) [26] document and an empty

model.

• Create all the species, reactions, and mathematical assignment rules in the model.

• Generate the mathematical equations that compose the dynamic model for the cho-

sen parts using equations (3.1), (3.5), (3.2), and (3.3).

Once this process is done, the user can look for the mathematical formulas of each reaction

and assignment rule. The equations generated for this example (Figure 3.1) are:

PhlFSS = yPhlFmin +
(
yPhlFmax − yPhlFmin

) κnPhlF
PhlF

κnPhlF
PhlF + f (yBetI , ySrpR)nPhlF

− yPhlF ,

which is the assignment rule that calculates PhlFSS as the difference between the steady-

state output of the gate (Equation 3.1) and the current RNAP flux output of the gate (yPhlF),

and

f (yBetI , ySrpR) = yBetI · αSrpR

(
ySrpR − ySrpRmin + βSrpR

(
ySrpRmax − ySrpR

)
ySrpRmax − ySrpRmin

)
+ ySrpR ,

which is the input RNAP flux of the tandem input promoters (Equation 3.5). This is then

used to calculate the dynamic output of the gate using Equation 3.3 as:

dyPhlF

dt
=

{
τON

PhlF (PhlFSS) if PhlFSS > 0
τOFF

PhlF (PhlFSS) otherwise
,

which is the reaction that describes the dynamic behavior of the output RNAP flux for the

gate.

The resulting mathematical model describes how the RNAP fluxes for each promoter

change over time depending on other RNAP fluxes and inputs, but it does not describe

in which context this circuit is implemented. To specify the environment and sequence

of inputs this circuit is subjected to, a simulation environment is created where the user

can designate input value changes over time. Simulation of the dynamic mathematical

model of a genetic circuit in an environment yields the expected dynamic behavior of the

genetic gate or circuit for the specific changes described in the environment. The result-

ing complete model is then analyzed using the Runge-Kutta-Fehlberg (4,5) method [53]

implemented in iBioSim [169].

A high-level depiction of a workflow using the automatic model generator imple-

mented in this work is shown in Figure 3.2. The process starts with the stored infor-

mation on the genetic parts to be used in a genetic design in an online repository, like

48

SynBioHub [107], and finishes with the complete circuit design, genetic parts, model, and

simulations being stored, again in SynBioHub, for sharing or publication purposes. A

genetic design tool, like Cello [129], extracts part sequences and other information, en-

coded in SBOL [56], from SynBioHub and produces a genetic circuit design, also encoded

in SBOL. This design can be further enriched using the Virtual Parts Repository (VPR) [108,

111], which obtains interaction data from SynBioHub to add functional information to

the SBOL description of the design [110]. This enriched design can then be imported

into iBioSim [169], which converts the design (specified in SBOL) into a mathematical

model (specified in SBML [26]) using the automatic model generator described in this

work. To proceed with the simulation, iBioSim uses the mathematical model encoded

in SBML to produce a Simulation Experiment Description Markup Language (SED-ML) [165]

document that stores all the simulation conditions and results. All of these documents can

then be uploaded to SynBioHub as an Open Modeling EXchange format (OMEX) [8] file, a

single file that supports the exchange of all the information necessary for reproducing the

model and simulation results for sharing or publication purposes. It should be noted that

iBioSim is capable of retrieving information from SynBioHub, design genetic circuits using

SBOLDesigner [174], and enriching the design using VPR, all from within the iBioSim

environment since it integrates all of these tools [169].

49

Figure 3.1. Diagram of a genetic gate with repressible tandem promoters. This diagram
depicts the output RNAP flux of the gate (yPhlF) to the output promoter (pPhlF) and
the input RNAP fluxes of the gate (yBetI for the upstream promoter and ySrpR for the
downstream promoter) that affect the input tandem promoters (pBetI and pSrpR).

50

Figure 3.2. Automated model generator workflow. This figure represents the back-end of
the automatic model generator implemented in this work, in which boxes represent tools
and arrows represent data being shared between these tools. Genetic parts sequences
and parametrization are stored in an online repository like SynBioHub () where a
genetic design tool, like Cello (), can extract information from. The design tool gener-
ates a SBOL-encoded design which can be further enriched using the Virtual Parts API
(), which looks for interactions and molecules/proteins that the designed circuit
would interact with. This enriched design, encoded in SBOL, can then be imported
into iBioSim (). Then, the automatic model generator produces the dynamical model
as described in this work and creates an SBML document with the mathematical model
that describes the behavior of the circuit. This method then analyzes the model using
ODEs simulation methods implemented in iBioSim and generates a SED-ML record of
the analysis performed along with corresponding time course data. The user can then
upload the project (with the design encoded in SBOL, the model encoded in SBML and
the simulation in SED-ML) to an online repository, such as SynBioHub, for sharing or
publication purposes.

CHAPTER 4

HAZARD ANALYSIS AND CIRCUIT FAILURES

The automatic model generator of this work would not only help with model predic-

tions of genetic circuits before the building stage, but also in recognizing circuit failures of

a circuit to either go back to the drawing board or building the circuit with known restric-

tions on the circuit implementation. Some of these circuit failures can be glitches (unwanted

switching variation in the circuits’ output) produced by hazards like function hazards (non-

solvable hazards that may produce glitches when more than one input variable changes

at the same time). Though glitches have been observed for genetic circuits [112, 129],

this phenomenon’s causes are not so well understood as in the asynchronous electronic

community. This work can help introduce awareness of the subject to the synthetic biology

community and automate much of the analysis needed to understand genetic circuits’

glitching behavior.

This chapter analyzes a genetic circuit with known glitching behavior that has been

previously designed, built, and modeled using steady-state modeling with Cello [129].

Cello is a Genetic Design Automation (GDA) tool developed to automatically design genetic

combinational circuits that respond to a set of sensor inputs with a user-defined behavioral

output response. This GDA tool implements algorithms that derive a physical design

(sequence of genetic parts) from a textual specification using the Verilog design language

in which the user designates inputs, outputs, and an expected combinational Boolean logic

behavior.

To better understand what is causing the unwanted behavior, this chapter utilizes

hazard analysis and a new version of our dynamic model generator [110] (described in

Section 3.2) that automatically generates a dynamic mathematical model composed of a

set of Ordinary Differential Equations (ODEs). This model then uses parametrization data

52

found in a Cello genetic gate library [129] 1 to simulate and predict glitches that cannot be

observed with steady-state analysis.

The analysis and prediction of glitches is of paramount importance for the safe oper-

ation of a genetic circuit for medical purposes. If the output of a genetic circuit is a toxic

pharmaceutical, or causes irreversible effects on the cell, then understanding, predicting

and avoiding circuit failures is critical for the biomedical engineering community. This

work will help elucidate the problem of circuit failures and provide insight as to how to

avoid them.

4.1 Hazards

For combinational circuits, including combinational Genetic Regulatory Networks

(GRNs), input changes can cause unwanted switching variations in the circuit’s output.

Unwanted signal transitions occur when the system has not reached a steady state, and the

output signal varies from the expected behavior. In some cases, this variance is harmless

or well-tolerated. For example, these unwanted signal transitions should not be a major

concern if the output of the circuit is only sampled when the circuit has reached a steady

state. Nevertheless, this glitching behavior can have drastic consequences if it causes an

irreversible change. For example, causing a cascade of responses, inducing apoptosis, or

inappropriately releasing a toxic pharmaceutical. Therefore, for the safe operation of a

genetic circuit avoiding such unwanted variations in a circuit’s output can be crucial.

For electronic circuits, these unwanted output variations are typically filtered using a

global clock signal to indicate when the circuit has stabilized to its final value. These types

of circuits are known as synchronous circuits. It is not easy, however, to add such a clock

signal to a genetic circuit, so they are typically asynchronous circuits [118, 127].

In electronic asynchronous circuits, a hazard is the possibility of an unwanted or un-

expected output variation of a circuit in response to an input change [118]. The actual

occurrence of a variation is called a glitch. Glitches are transient behavior that self-correct

as the system reaches a steady state. The two main kinds of hazards are function hazards,

which cannot be avoided since they are a property of the circuits’ function and are inher-

1https://synbiohub.programmingbiology.org/public/Eco1C1G1T1/Eco1C1G1T1 collection/1

53

ently unavoidable, and logic hazards, which can be avoided by redesigning the logic of the

circuit using hazard-preserving optimizations [118]. Whereas a hazard is the possibility of

an unwanted behavior, a glitch is an actual occurrence of it. Though these terms are mostly

used for electronic circuits, glitches have been observed in GRNs as well [112].

The Cello project [129] designed and built 52 different circuits that were initially ana-

lyzed using steady-state modeling. A high-level logic specification, written in Verilog, is

used to specify the desired behavior for each genetic circuit to be designed, which is then

parsed to generate a truth table. Cello then utilizes a technique known as logic synthesis

to produce a circuit diagram, and a Monte Carlo simulated annealing search to assign

genetic parts to each gate of the circuit. With this process, Cello automatically designs

genetic circuits that perform Boolean logic computations based on the presence/absence

of inducer molecules being detected by genetic sensors and produces the specified output

response via a reporter, such as Yellow Fluorescent Protein (YFP). For circuit 0x8E, for exam-

ple, the expected behavior can be described using the truth table shown in Figure 4.1(a).

This is then used by Cello to yield a genetic circuit with the logical structure shown in

Figure 4.1(b). In the original Cello project [129], experiments were done to measure output

using Relative Promoter Units (RPU) for different inducer concentrations for each circuit

designed. They discovered that some of these circuits presented a glitching behavior [129].

For example, experiments done with circuit 0x8E showed that the output starts high,

goes low, then goes high again for a particular change in inducer concentrations (see

Figure 4.1(c), red line). In the original publication, the cause of this behavior was not

investigated or discussed. Furthermore, since only steady-state modeling was available

for these circuits, the unwanted fluctuations in the circuits’ outputs were not predicted

before the design was constructed.

This work generates dynamic models for the genetic circuits designed with Cello [129].

A full workflow, from importing the genetic circuits encoded in Synthetic Biology Open

Language (SBOL) [140] to uploading the finished models and their simulation to an online

repository is performed during the process. This workflow is used to analyze circuit

0x8E [129], predict the circuit’s glitching behavior, and understand the phenomena un-

derlying these undesired or unexpected behaviors. Even though the notion of steady

state in bacteria is an approximation, since the inducer concentration changes with the

54

growth cycle in vivo, glitching behavior has been observed in experiments as shown in

Figure 4.1(c). ODE models represent the average behavior of the group of cells, so even if

each cell individually may not appear to be in steady state, the population as a whole

would appear to be. If there is a hazard that produces a glitch, we observe this as a

population average in our model predictions.

The simulation results for circuit 0x8E are shown in Figure 4.2(c). This figure shows

the RNA Polymerase (RNAP) flux from the final output promoter controlling the YFP

expression (dark-blue line) in RPU [80] over time for different inducer values of Arabinose

(Ara), anhydrotetracycline (aTc), and Isopropylβ − D − 1 − thiogalactopyranoside (IPTG).

The inducer molecules Ara, aTc and IPTG increase, respectively, the activity of the circuit’s

input promoters pBAD, pTet and pTac. The presence/absence of these inducer molecules is

represented with the bar graph at the bottom of Figure 4.2(c). After each different combi-

nation of inducers is simulated, the system is restored to the default inducer values, which

is the absence of inducer molecules. This sequence is selected to better compare with the

original experimental results [129]. The simulations show step functions for the inducer

molecules Ara, aTc, and IPTG, as is common practice. We recognize that adding/removing

inducer molecules does not necessarily behave in this manner; these computational inputs

are meant to resemble instantaneous addition of a chemical inducer and sudden dilution

into inducer-absent media. The steady-state values reached in our dynamic simulation

after each combination of inducer values as shown in Figure 4.2(c) match the steady state

predictions made by Cello paper [129]. This means that the output of the circuit (activity

of the output promoter) is considered to be ON and OFF for the same states as in the

Cello paper [129]. The same has been observed for the other circuits simulated, showing

that the model generator implemented in this work successfully predicts the same steady

states as the steady-state modeling in the Cello project. The model generator of this work

also predicts the dynamic behavior between these steady states, which is not available

in the Cello paper [129]. Our dynamic simulation results are also consistent with the

time-course experimental results for the 0x8E circuit, reported previously [129] (redrawn

here in Figure 4.1(c)).

In the dynamic prediction shown in Figure 4.2(c), unwanted switching variations

(glitches) of the activity of the output promoter can be observed before the system reaches

55

steady state (highlighted with the violet and red-shaded areas). For example, when

transitioning from a state with no inducers present 0/0/0 (Ara = 0 / IPTG = 0 / aTc =

0), to the state with Ara and IPTG present (1/1/0), there is an unexpected decrease in

the activity of the output promoter before reaching the ON steady state (Figure 4.2(c),

violet-shaded area). This was observed experimentally [129] as shown in Figure 4.1((c),

red line). This simulation shows that the dynamic model generator is able to predict the

experimentally verified decay of YFP production, when moving through the two states.

Let’s consider why this happens in more detail in Figure 4.2(b). This graph shows the

RNAP flux output RPU prediction for each gate in the circuit throughout this transition.

There are three distinct regions (marked 1, 2, and 3), which correspond to the initial state

when Ara and IPTG are present, the intermediate state when Ara and IPTG are removed

but the system hasn’t reached steady state, and the end state when the system has reached

a steady state. State 2 is where the glitching behavior occurs: there is a decrease in the

activity of the output promoter from state 1 to 2, as shown by the shallow dip in the yellow

curve (Figure 4.2(b), dotted line). Figure 4.2(a) describes, using the circuit’s schematic,

why this glitch is happening. The inner workings of the system are simplified to show

activated paths as bold lines, deactivated paths as gray lines, and dotted lines for paths

that are fluctuating activation states. Since the circuit is composed mostly of NOR gates

(except for the YFP producing gate, which is an OR gate), when any path connected to

the gate is activated (bold line), the gate turns OFF. When adding IPTG and Ara to the

system, the circuit’s output should remain high during this transition. However, the circuit

experiences a decrease in the activity of the output promoter. The glitch occurs because

when moving from state 1 to state 2 (see Figure 4.2(a)), the PhlF gate (orange gate) turns

OFF, deactivating the path connected to the OR gate (yellow, YFP producing gate), before

the BetI gate (violet gate) turns ON, activating the path. This delay between one gate

turning OFF and the other turning ON causes a temporary decrease in the circuit output,

which causes the glitch.

The automatic model generator of this work also predicts other decreases in circuit

output (Figure 4.2(c), red-shaded areas). For example, when transitioning from a state with

Ara and IPTG present (1/1/0) to a state with no inducer molecules present (0/0/0). This

was neither predicted nor experimentally observed previously [129]. Another decrease in

56

the output promoter flux can be observed when moving from a state with Ara and aTc

present (1/0/1) to a state with no inducer molecules (0/0/0).

4.1.1 Function Hazards

The simulation results and the logic of the circuit can be analyzed to better understand

the cause of these glitches. The logic of this circuit is described using a truth table, shown

in Figure 4.1(a). This truth table summarizes the steady-state behavior of the circuit for

different combinations of input promoter activities. The values in the truth table indicate

the activity of the output promoter (1: High, 0: Low) for different combinations of input

promoter activities (1: High, 0: Low). The table also associates the input promoters pBAD,

pTac and pTet with their relevant inducer molecules Ara, IPTG, and aTc. Figure 4.1(a) can be

represented in a more compact form, known as a Karnaugh map [78] as shown in Figure 4.3.

The first column and row of this map show all the possible combinations of input promoter

activities (1: High, 0: Low), and the values indicate the steady-state RNAP flux of the output

promoter (1: High, 0: Low) for the different combinations of input promoter activations. For

example, when (pBAD/pTac/pTet) = (0/0/0), then the activity of the output promoter =

1; and when (pBAD/pTac/pTet) = (1/1/1), the activity of the output promoter = 0.

The Karnaugh map (Figure 4.3) and the dynamic simulation (Figure 4.2(c)) can be

analyzed to determine the cause of these glitches. Let us first consider when the envi-

ronment changes from a state with no inducer molecules present to a state with IPTG and

aTc present, hence the activity of input promoters pTac and pTet are high. In the Karnaugh

map, this moves the circuit from the states where (pBAD/pTac/pTet) = (0/0/0) to (0/1/1).

Though the circuit is experiencing two changes in inducer concentration simultaneously,

it may “sense” one concentration change before the other. When there are two changes

in inducer molecule concentration to a system that occurs simultaneously, there are two

different paths from the initial state to the end state (Figure 4.4(a)), depending on which

inducer change the circuit senses first. If the circuit senses the aTc change first, then the

activity of input promoter pTet increases and the circuit momentarily passes through state

(0/0/1) (Figure 4.4(a), green line), where it momentarily evaluates to a low output, before

reaching the final state (0/1/1), where it also evaluates to low. Likewise, if the circuit senses

the IPTG change first, then the activity of input promoter pTac increases and the circuit

57

momentarily passes through state (0/1/0) (Figure 4.4(a), blue line), which evaluates to a

low output as does the end state. In both of these transient states and the final state, the

circuit evaluates to low, so the circuit makes a monotonic change from high to low, no matter

which inducer change the circuit senses first. There is no possibility of a glitch, and as the

simulation shows (Figure 4.2(c)), there is no predicted glitch behavior.

Now, let us consider a transition from a state with no inducer molecules

(pBAD/pTac/pTet = 0/0/0) to a state with Ara and IPTG present (pBAD/pTac/pTet =

1/1/0). If the circuit first senses the Ara inducer molecule, then the activity of the promoter

pBAD increaes and the system passes through state (1/0/0) before reaching state (1/1/0),

and evaluates to high in all these states (Figure 4.4(b), green line). However, if the circuit

senses IPTG before it senses Ara, then the activity of pTet increases before that of pBAD

and the system momentarily passes through state (0/1/0), which evaluates to a low output,

before reaching the end state where the output is high (Figure 4.4(b), blue line). This would

produce the glitch that is observed both in the simulation (Figure 4.2(c)) and experimental

results (Figure 4.1(c)). Since the order in which the inducer molecule changes are sensed

affects the output behavior, this circuit has what is known in the asynchronous logic

community as a function hazard [45, 118]. The existence of a function hazard means that

regardless of how the circuit is implemented, the possibility of a glitch remains, because a

function hazard is a property of the function and not of the circuit implementation.

However, the existence of a function hazard does not necessarily mean a glitch occurs.

The transition from no inducer molecules present (pBAD/pTac/pTet = 0/0/0) to a state

with Ara and aTc present (pBAD/pTac/pTet = 1/0/1) also requires two changes in inducer

concentration, so there are two different paths from the initial state to the end state

(Figure 4.4(c)). These paths lead to two different transient outputs; therefore, a function

hazard exists. Yet, the glitching behavior is not observed in the simulation shown in

Figure 4.2(c). Thus, glitching does not necessarily occur even if there is a function hazard.

Once the role of function hazards and glitches was recognized, we proceeded to

identify all two- and three-input change function hazards for circuit 0x8E. Figure 4.5

shows the dynamic simulation for all the two and three input changes that have function

hazards. The figure shows many occurrences of glitching behavior (highlighted within

the red-shaded areas), especially for the two-input change hazard simulation. This glitch-

58

ing behavior could not be predicted with the steady-state modeling and was not tested

experimentally in the Cello project [129].

Glitches manifest due to variations in the propagation delay that each separate input

experiences along different paths through the logic. The circuit diagram for circuit 0x8E,

shown in Figure 4.1(b), illustrates the difference in the path lengths from sensing an in-

ducer molecule, to the production of YFP. A glitch is observed, since there are two inducers

that are changed with one going through a shorter logic path and the other going through

a longer logic path. This delay can cause slower response to some inducer changes, which

produces unwanted switching variations in the output. Therefore, a possible solution

to remove the glitch is adding more delay to the shorter path via redundant logic to

the circuit (like two successive NOT gates) as shown Figure 4.6. However, since these

function hazards are a property of the function and not of the circuit implementation, the

possibility of a glitch remains. Figure 4.7 shows a comparison of the simulation results for

the modified circuit (red-dashed line) with the original circuit (solid dark-blue line). The

results indicate that adding the redundant logic avoids or diminishes some, but not all,

glitches (blue-shaded areas), while it exacerbates others (orange-shaded areas) and, the

response is generally slower (Figure 4.7(a) and (b), red-dashed line). This result occurs

because glitches are a product of delays in the propagation of signal through the circuit,

and adding more delay like in this example can cause some glitches to happen with a

higher probability. Other delay mechanisms would have similar effects (i.e., it changes

some glitch behavior probabilities but does not eliminate or avoid function hazards com-

pletely). Furthermore, a larger genetic circuit means an increased metabolic burden on the

host, as it diverts away resources from vital processes of the cell [13, 24, 130]. However, in

the future with the aid of stochastic modeling, we could quantify the effects of these delays

on the probabilities of glitches, and thus use it to make design choices.

The only way to avoid function hazards is to restrict the allowed input changes to the

system. Restricting input changes may be necessary if glitches lead to irreversible effects

that should be avoided. As an example of this, limiting the input changes to only single

input changes produces a very smooth and glitch-free function for circuit 0x8E, as shown

by the simulation in Figure 4.8. In the simulation, the inducer concentrations are modified

following the gray code [42], which successive values differ in only a single bit (simulating

59

only 8 of the 24 possible single-bit transitions). This does not necessarily mean that only

single-input changes are needed to avoid function hazards. As shown previously, there

are multiple input changes that do not contain function hazards. Therefore, understanding

which combination of input changes do not have function hazards is extremely valuable.

4.1.2 Logic Hazards

Care should be taken though in interpreting these results. While restricting to single-

input change does by definition eliminate the possibility of function hazards, a circuit

implementation may still have logic hazards. These hazards are a property of the logic

implementation rather than the function being implemented. Given that the Karnaugh

map for circuit 0x8E, shown in Figure 4.3, shows that all the cubes (the ovals in the

Karnaugh map) are connected, then there are no single-input change logic hazards for

this circuit when it is implemented as a 2-level sum-of-products cover (one AND gate per

cube combined with an OR gate). Unfortunately, when the logic was transformed from

the user behavior specification to use only two-input NOR gates to produce the circuit

shown in Figure 4.1(b), logic hazards were introduced. Fortunately, these logic hazards

did not manifest as glitches in the simulation shown in Figure 4.8.

Unfortunately, a glitch does show up when simulating function hazard-free multiple-

input changes. Figure 4.9 shows the expected activity of the output promoter con-

trolling YFP expression for all two-input changes for circuit 0x8E that do not contain

function hazards. However, the simulation shows that the circuit still has glitching

behavior (Figure 4.9, red-shaded area) when moving from a state with IPTG and aTc

(pBAD/pTac/pTet = 0/1/1) to a state with no inducers present (pBAD/pTac/pTet =

0/0/0). This simulation demonstrates that the 0x8E circuit designed in [129] does contain

logic hazards.

Logic hazards can cause undesired switching variations when there are certain input

changes due to delay caused by the logic elements of the circuit (AND, OR, NOT gates,

etc.), which causes the logic not to perform correctly. Fortunately, logic hazards, unlike

function hazards, can be avoided using a logic hazard-free design procedure. As described

earlier, the original 2-level sum-of-products cover is logic hazard free. In order to avoid

logic hazards when transforming the circuit to use only NOT and NOR gates, one must

60

only apply hazard-preserving logic transformations. In particular, the logic should be

manipulated using the associative law (i.e., A + (B + C) ⇔ A + B + C or A(BC) ⇔ ABC),

DeMorgan’s Theorem (i.e., (A + B) ⇔ A B or AB ⇔ A + B), the distributive law (i.e.,

AB + AC ⇒ A(B + C)), or the absorptive law (i.e., A + AB ⇒ A or A + AB ⇒ A + B).

Applying other Boolean logic transformations or simplifications can lead to the introduc-

tion of logic hazards, which is what happened in the original design of the 0x8E circuit.

Redesigning the 0x8E circuit using only hazard-preserving logic transformations would

proceed as follows:

YFP = pTac pTet + pTac pBad + pTet pBad

YFP = pTac(pTet + pBad) + pTac pBad (Distributive Law)

YFP = pTac + (pTet + pBad) + pTac pBad (DeMorgan’s Theorem)

YFP = pTac + (pTet + pBad) + (pTet + pBad) (DeMorgan’s Theorem) (4.1)

The result is the logic hazard-free circuit implementation shown in Figure 4.10. Using the

same input changes shown in Figure 4.9, we can now predict the activity of the output

promoter for the new circuit. Figure 4.11 shows the activity of the output promoter of

the new circuit (red-dashed line) compared with that of circuit 0x8E (solid-blue line). This

figure shows that the glitching behavior has been removed (Figure 4.11, blue-shaded area).

Therefore, GDA tools should consider the use of hazard-free logic synthesis to avoid logic

hazards.

Changing a circuits’ implementation to avoid logic hazards does not change the func-

tion. Therefore, removing the logic hazards does not remove the function hazards, since

these are a property of the circuits’ function and are inherently unavoidable. Solving for

logic hazards does not change the funciton of the circuit, thus it contains the same function

hazards as the original circuit, since function hazards are a property of the circuits’ function

and are inherently unavoidable. This means that the redesigned circuit (Figure 4.10) has

the same function hazards as the original circuit (Figure 4.1). It can, however, change

the probability of the glitching behavior. Figure 4.12 shows the simulation for all the

two- and three-input changes that contain function hazards for the logic-hazard free

circuit (Figure 4.12, red-dashed line) in comparison with the original circuit (Figure 4.12,

solid-blue line). The simulation shows how changing the circuit’s implementation to avoid

61

logic hazards solves or diminishes some of the glitches due to function hazards (blue-

shaded areas) but exacerbates others (orange-shaded areas), as was the case when adding

redundant logic to the circuit. This simulation shows that changing the implementation of

a circuit to avoid logic hazards does not eliminate the function hazards of the circuit [118].

One caveat though is that removing logic hazards can result in a larger genetic circuit

with increased metabolic burden on the host, as it diverts away resources from vital

processes of the cell [13, 24, 130]. Since some glitches can be tolerated, it could prove useful

to add gate toxicity as a measure of the burden on cell economics for each gate, and thus

be able to calculate the total burden on a cell for each circuit to help designers decide on

the best possible circuit layout for their intended purposes.

4.2 Hold-State Failures and Set-Up Glitches

The expanded circuit failures analyzed in this work (Chapter 6) are set-up and hold-

states failures. Set-up failures are glitches produced when a circuit is initialized and its

components have not been stabilized yet, since they all initialize with no production at

all. This means that a genetic circuit may produce the incorrect output once it has been

initialized, before reaching the expected outcome at steady-state. Hold-state failures, on

the other hand, is the incapacity of a genetic circuit to hold the correct/expected state for

a constant input concentration due to random and sporadic changes in the inner circuit

components’ concentration.

4.3 Proposed Hazard Analysis

This work utilizes a model generator that automatically creates a dynamic model that

produces predictions that can be used to analyze the behavior of a circuit over time. The

dynamic behavior of a circuit can be used to identify input transition sequences that result

in glitching behavior. Additionally, comparing the model results with experimental data

can help to understand the underlying biological phenomena. This work also shows how

dynamic modeling can expose unwanted transition states or the time it takes to reach said

stable state, which is not provided by steady-state analysis.

A system with a function hazard always has the potential to glitch for the specified

input change. Modifying the logic implementation can only change the likelihood of

62

glitching, but not eliminate the possibility of it occurring [17, 66, 118]. For example, this

work demonstrates how adding redundant logic to increase the delay of the circuit’s

shorter path may reduce the likelihood of some glitches while increasing it for others.

Function hazards are inherently unavoidable [118] unless one restricts the allowed input

changes to the system to include only single-input changes and a restricted set of multiple

input changes. Therefore, when designing genetic circuits, it would be useful to specify

the desired sequences of input and output changes rather than just the state for each input

combination. In other words, designs where glitching behavior must be avoided would

follow an asynchronous state machine design style, which would avoid the possibility of

function hazards. Furthermore, states that are found to either not be reachable or are not

final states of transitions may introduce don’t cares (i.e. states in which the design is allowed

to take either output value) into the design process that can be specified to avoid the

introduction of function hazards. The analysis of function and logic hazards can help both

the design process of a genetic circuit, as well as the tools used to automatically generate

these circuits. In particular, the analysis can help understand which input transitions

with function hazards are likely to produce glitches so designers can decide which input

transitions must be avoided.

Logic hazards, on the other hand, can be avoided using logic synthesis with hazard-

preserving optimizations [118]. This work shows how a circuit designed using a GDA tool

like Cello [129] can have logic hazards and in future work, we plan to develop a genetic

circuit logic synthesis method that avoids these hazards. In particular, tools can use design

restrictions and use hazard-preserving transformations in order to prevent certain hazards

that are deemed critical for the user.

The dynamic model generator presented in this work produces ODEs-based models,

which is well suited for average (population) response simulation to input changes. How-

ever, even single-strain cell populations can exhibit a high degree of variation of gene

expression for the same environment [6]. So even if ODEs simulation predicts that there

is little or no glitching behavior for certain input changes, it might be the case that a sig-

nificant percentage of a homogeneous population does manifest the unwanted switching

behavior. All Cello circuits with more than a single input have function hazards, and many

of these hazards can turn into glitches. However, to fully understand glitches and their

63

probabilities, a stochastic analysis is required. Beal [6] showed that this cell-cell variation

may be accounted for by the emergent properties of complex reaction networks, which

drive a log-normal distribution of genetic expression levels across a population. Drawing

from the measured parameter distributions of the Cello part library, we can implement the

log-normal model proposed by Beal [6] to calculate the incidence of glitching behavior in a

population. This in turn can help designers understand what the risks of applying certain

input changes are and decide whether the risk is critical or not for the intended purposes

of the designed systems. Furthermore, the percentage population that express glitching

behavior could potentially serve as a standard metric for genetic circuit design purposes.

This new model generation method bridges the gap between experimentalists and

designers as it helps both sides with the results obtained. Designers can use data to better

fit the model to produce more accurate predictions, and experimentalists can use these

predictions to debug genetic circuits and predict their behavior before constructing them,

saving time, effort, and money using an automated workflow as shown in Figure 4.13.

64

Inputs Output

Ara IPTG aTc YFP

pBAD pTac pTet yYFP

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

(a)

(b)

(c)

Figure 4.1. Time-course data of Cello Circuit. (a) Truth table for circuit 0x8E. The steady-s-
tate RNAP flux output from the final output promoter controlling YFP expression (yYFP,
4th column), is matched to each combination of input promoters (pBAD, pTac, pTet) or
inducer concentrations (Ara, IPTG, aTc). A low input/output is represented with a 0 and
high input/output is represented with a 1. (b) Circuit diagram for circuit 0x8E adapted
from Nielsen et al. [129]. In this image represents a NOR gate and represents
an OR gate. pBAD, pTac, and pTet are the input promoters for this circuit, and YFP is
the output reporter. (c) Time-course data for circuit 0x8E that was originally reported
in the Cello paper [129]. Each line represents the output YFP production (in RPU) over
time (in hours) for the circuit 0x8E for each combination of input promoters. This circuit
senses three inducer molecules: Ara, aTc, and IPTG. In the image, 1/1/1 (Ara/IPTG/aTc)
represents all inducer molecules are present and 0/0/0 represents no inducer molecules
are present. The ON and OFF states represent the predicted outcome at steady state, in
where ON means an expected HIGH output (green lines), and OFF means an expected
LOW output (purple lines). All outputs behave as expected, except for the 1/1/0 state,
which experiences an undesirable decay before rising to the ON state (red line).

65

Figure 4.2. Circuit 0x8E [129] simulation. (a) Schematic of the circuit for each state (1, 2,
and 3) of the middle graph. Bold lines represent that the path is activated, gray lines show
that the path is deactivated, and dotted lines mean there is a fluctuation in the activation
state (change in the RNAP flux). Given that the orange gate (PhlF) deactivates before the
purple gate (BetI) activates, a small decay in the production of YFP is produced before it
reaches steady state. (b) A detailed overview of an unwanted transient behavior (glitch) is
shown with the RNAP flux output (yi) in RPU at log scale over time (in hours) of each gate
of the circuit. The color of each curve matches the gate color in (a), that is: YFP (yellow
line), yAmtR (light-blue line), yBetI (violet line), yPhlF (orange line), and yHlyI IR (green line).
A small depression can be observed for the YFP output (state 2) before reaching steady
state (state 3). (c) Simulation of circuit 0x8E for each combination of inducer molecule
values (IPTG, aTc, Ara). RNAP flux from the final output promoter controlling the YFP
expression (in RPU using a logarithmic scale, dark-blue line) over time (in hours). Red-
and violet-shaded areas show predicted glitching behavior.

66

pBAD

pTac pTet
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1

Figure 4.3. Karnaugh map for circuit 0x8E [129]. A low input/output is represented with
a 0 and high input/output is represented with a 1. The header row and first column
represent the different combinations of input promoter activations, and the values of the
table represent the steady-state activity of the output promoter of the circuit. The ovals
represent the minimal Sum-of-Products (SOP) cover of this function.

pBAD

pTac pTet
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
(a)

pBAD

pTac pTet
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
(b)

pBAD

pTac pTet
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
(c)

Figure 4.4. Using a Karnaugh map for circuit 0x8E to analyze function hazards. Green
and blue arrows represent the different paths a system can transition to when moving
from the initial state to the end state. (a) Moving from state (0/0/0) to state (0/1/1), no
function hazard and no glitch observed. (b) Moving from state (0/0/0) to state (1/1/0),
function hazard present and glitch observed. (c) Moving from state (0/0/0) to state
(1/0/1), function hazard present but no glitch observed.

67

(a)

(b)

Figure 4.5. Simulation of all two- and three-input changes that have function hazards.
Simulations show the activity of the output promoter controlling YFP production (in
RPU at log scale) over time (in hours) for circuit 0x8E. Red-shaded areas show predicted
glitch behaviors. (a) Two-input change function hazard simulation for circuit 0x8E. (b)
Three-input change function hazard simulation for circuit 0x8E.

68

Figure 4.6. Circuit diagram for circuit 0x8E with redundant logic. In this image
represents a NOR gate, represents a NOT gate, and represents an OR gate. pBAD,
pTac, and pTet are the input promoters for this circuit, and YFP is the output reporter.

69

(a)

(b)

Figure 4.7. Comparison of two- and three-input change function hazard simulation for
circuit 0x8E with and without redundant delay logic added. Simulation comparison of
the activities of the output promoter controlling YFP production (in RPU at log scale)
over time (in hours) between circuit 0x8E (dark-blue line) and circuit 0x8E with redun-
dant logic (red-dashed line). Blue-shaded areas show “solved” or diminished glitches,
orange-shaded areas show new or more profound glitching behavior. (a) Simulation for
all two-input change function hazards of the circuits. (b) Simulation for all three-input
change function hazards of the circuits.

70

Figure 4.8. Single input change simulation for circuit 0x8E. Activity of the output promoter
controlling YFP production (in RPU at log scale) over time (in hours) for circuit 0x8E
during a gray code sequence of single-input changes. For this simulation, the circuit is
subjected to different states while only changing the concentration of one inducer at a
time.

Figure 4.9. Simulation of all two-input changes that do not have function hazards for
circuit 0x8E. Simulations show the activity of the output promoter controlling YFP pro-
duction (in RPU at log scale) over time (in hours) for circuit 0x8E. Red-shaded area shows
a predicted glitch behavior.

71

Figure 4.10. A logic hazard free adaptation of 0x8E circuit. In this image represents a
NOR gate, represents a NOT gate, and represents an OR gate. pBAD, pTac, and
pTet are the input promoters for this circuit, and YFP is the output reporter.

Figure 4.11. Simulation all two-input changes that do not have function hazards for the
logic hazard free adaptation of circuit 0x8E. Simulations show the activity of the output
promoter controlling YFP production (in RPU at log scale) over time (in hours) for the
circuit. The blue line indicates the results for the original 0x8E circuit, while the red line
shows the results for the logic hazard-free circuit. The blue shaded area shows that the
glitch has been removed using logic hazard-free design.

72

(a)

(b)

Figure 4.12. Comparison of two- and three-input change function hazard simulation
for circuit 0x8E with and without solved logic hazards. Simulation comparison of the
activities of the output promoter controlling YFP production (in RPU at log scale) over
time (in hours) between circuit 0x8E (dark-blue line) and circuit 0x8E redesigned without
logic hazards (red-dashed line). Blue-shaded areas show “solved” or diminished glitches,
orange-shaded areas show new or more profound glitching behavior. (a) Simulation for
all two-input change function hazards of the circuits. (b) Simulation for all three-input
change function hazards of the circuits.

73

Figure 4.13. Workflow showing the automatic dynamic model generator instantiated in
iBioSim.

CHAPTER 5

SIMULATING NOISE FOR GENETIC

REGULATORY NETWORKS IN IBIOSIM

As we move from proof-of-concept circuit designs to more real-life applications, a cir-

cuits’ robustness to a changing environment and other noise factors that may induce circuit

errors is of critical importance for the safe and controlled application of designed systems.

Both stochasticity inherent in the biochemical process of gene expression (intrinsic noise)

and fluctuations in other cellular components (extrinsic noise) can contribute substantially

to overall observed phenotypic variation [47], and depending on which is predominant,

different stochastic analysis may ensue. The fundamentally stochastic nature of the in-

teractions of these molecular participants requires stochastic modeling and analysis [31].

Furthermore, for systems where transcription factors, enzymes, and DNA copies can exist

at a low concentration, such as a single molecule per cell, any realistic analysis of these

systems must include the cell-to-cell variability in transcriptional outputs captured by the

chemical master equation [63]. However, for systems with strong genetic expression, the

stochastic variation in gene expression, like transcription factor producing genes, may

come from fluctuations in the quantity or states of other cellular components [6, 158],

which is best modeled as probability density functions for different reaction rates [132].

The current state of modeling gene network dynamics is characterized by a trade-off

between the model’s ability to quantitatively match the experimental data, and the need

for a large number of kinetic parameters to parameterize the model (Karlebach and Shamir,

2008; Heatha and Kavria, 2009; Machado et al., 2011; Goncalves et al., 2013). Properly

parameterized ordinary differential equation models can provide a good quantitative

match and are easily generalized (Chen et al., 2004; Tyson and Novak, 2013). However,

numerical simulation of these models require knowledge of kinetic parameters that are

usually not known. The indirect estimate of these parameters by comparing the output of

75

the model to the experimental data suffers from at least three fundamental problems: (i)

the correspondence between dynamics and the structure of the network is not one-to-one;

(ii) the need to match data corrupted by significant intrinsic and experimental noise to an

individual solution of the Ordinary Differential Equation (ODE) model; and (iii) the lack of

methods to search high dimensional parameter spaces for dynamic signatures observed in

the data.

Using accurate modeling to predict a Genetic Regulatory Network’s (GRN) robust-

ness is of great advantage for designed circuits that operate with sensitive outputs or

safety-critical products. However, how much more information do different models and

parametrization efforts provide to design choices based on robustness? Developing com-

plex models to produce more accurate predictions, and characterization experiments to

obtain meaningful parameter values is time-consuming and costly. Moreover, determining

the correct model to represent a specific biological system and developing fitting algo-

rithms to re-parameterize each component requires expertise in the subject, baring many

designers in pursuing this endeavor. Furthermore, there is a simulation-time cost associ-

ated with these models: the more complex a model is, the longer it takes for simulations

to run or the harder it is to model-checking on them [20, 125, 139]. Do different models,

and/or parameter values obtained from characterization experiments lead to different

design choices with regard to robustness? Are the costs related to having more predictive

power overcome by more informed design choices?

This chapter investigates robustness and predictability for genetic circuits in silico,

using different models and levels of characterization for three different circuit layouts with

identical expected functions (Figure 5.1), to observe if there are differences in predicted

robustness. This work predicts robustness by evaluating the likelihood of unwanted

switching variations in a genetic circuit’s output both when changing states, its ability

to hold a steady-state, the probability of an incorrect steady-state, and its likelihood of

failure. The circuit’s predictability is analyzed by simulating its response to extrinsic

noise for different models, and using parameter values obtained from literature or from

characterization experiments.

Designers can use the method in this work to determine circuit failure probabilities,

and, ultimately, go back to the drawing board if the failure propensities calculated are

76

deemed critical for the expected safe application of the designed circuits. Designers can

also redesign circuits (without changing function) and compare results to observe which

one fairs better for the states and input changes the researcher is interested in. This, in turn,

will help designers save time and effort exploring different design choices before building

them in the lab for testing.

5.1 Simulating Extrinsic Noise

Extrinsic sources of transcriptional variability refer to cell-to-cell differences in the

transcriptional inputs as well as the transcriptional machinery itself [144]. Beal [6] showed

that this cell-cell variation might be accounted for by the emergent properties of complex

reaction networks, which drive a probability distribution of genetic expression levels

across a population. For this work, we can draw from the Cello part library’s measured

parameter distributions, and implement a normal-distributed parameter value model to

calculate the incidence of glitching behavior in a population.

The extrinsic noise model used in this work applies a simple case of static external

perturbations, modeled as a random draw from a folded normal distribution for each

parameter value used in the model at the beginning of each simulation run. The mean of

each distribution is the default parameter value in iBioSim (obtained from literature), with

a standard deviation equal to forty percent of the mean’s absolute value (which emulates

the ”extrinsic noise”). This value of noise was obtained when calibrating different noise

values, but is an arbitrary value that should be replaced with a better estimate obtained

from experimentation (see Section 5.5). Beal [6] argues that these parameters follow a

geometric distribution instead of a normal one, which is also part of our planned future

work.

5.2 Model Selection and Parameter Values

The two models used for the extrinsic noise model comparisons are the model devel-

oped in [129, 152], explained in detail in Chapter 4, and the default model generated in

iBioSim [169]. This default model generates reactions for the transcription, translation,

protein-biding, protein degradation, transcriptor-function protein interactions and bind-

ing, repression, and activation reactions. It is a much more detailed model than that

77

used in [129, 152]. However, a more detailed model is generally harder to characterize

(to obtain empirical parameters values), as many of these reaction constants are hard

to measure experimentally. In addition, a comparison between default (obtained from

literature) model parameter values and characterized gate parameter values were used

to determine the effect on predicted circuit failure percentages. The default parameter

values were used for both the default model in iBioSim [169], and the Cello model published

in [129, 152]; and part-characterized model parameter values for each component obtained

from experimentation [129] 1. These comparisons are going to be used for the three

different circuit layouts shown in Figure 5.1.

5.3 Considerations/Assumptions

This work compares which circuit layout does each noise model, given different mod-

eling alternatives and characterizations, predict to be the most robust for certain input

transitions or state-holding capacities. However, it is out of this works’ scope to determine

what noise-source is a more accurate representation of the true GRN behavior, or what is

the magnitude of each noise source’s influence on the predicted output. The main objective

is to determine if there are any differences in robustness predictions if we use abstracted

models or not, and/or if we use characterized parameter values or literature-obtained

values. Therefore, certain assumptions were made which are listed as follows:

1. The magnitude of noise level for the normal distribution was chosen to be = 0.4,

which came from initial testing. However, the absolute value (magnitude) of intrinsic

or extrinsic noise could be different for GRNs, and if results show that there are

differences in robustness predictions, should be measured for more accurate results.

2. We assume the probability distribution for extrinsic noise follows a normal distribu-

tion. However, Beal [6] argues that this noise is better described using a log-normal

distribution. For the purpose of this work, we chose the truncated-normal distri-

bution for parameter values to simulate extrinsic noise for simplicity and celerity of

simulations, though further work could include log-normal distributions for these.

3. The level of extrinsic noise could be different for each reaction (therefore have

different effect on a parameter’s value distribution). However, for this work, we

1https://synbiohub.programmingbiology.org/public/Eco1C1G1T1/Eco1C1G1T1 collection/1

78

are assuming that the magnitude of noise is the same for each reaction parameter.

4. For all simulations runs, we assume that the change in input molecule concentrations

is instantaneous, instead of being a gradual process.

5. The Cello model described in Nielsen et al, and Shin et al. [129, 152] can use τON and

τOFF parameters to describe how quickly a gate turns ON or OFF. However, for this

work we are assuming all the different parts have the same values of τON and τOFF

given that there are no experimental parameter values for them.

However, if these results do determine that there are differences in robustness’ predic-

tions, then it calls for further investigation to determine the validity of these assumptions,

given that it might affect a designer’s choices.

5.4 Results

Following are the simulation results of each model, with or without experimental

parameter values, for the original design circuit layout (Table 5.1), the two-inverted circuit

design (Table 5.2), and the logic-hazard free circuit layout (Table 5.3). The results show

that for each different layout, there is a significant difference in circuit failure percentage

predictions for the different models used, whether it is parameterized or not. This could

largely be due to the ON or OFF constraint values or simulation times chosen to deter-

mine if a circuit failed for each model, since the output fluorescence arbitrary units (a.u.)

predicted and simulation time points changes for the different models. This means that if

noise has a meaningful effect on a GRN’s output, then characterization of the magnitude,

source of noise (whether intrinsic or extrinsic), and the probability of distribution of

parameter values due to noise is critical for the accurate prediction of circuit failures.

Furthermore, the different models (default vs. Cello) also have significant predicted circuit

failure differences, meaning that the model a designer chooses to encode behavior does

change the predicted outcomes of a GRN. However, to further understand if the choice

of model, or the use of characterized parameter values or not, changes the choice of the

most “robust” circuit layout, a comparison of each models’ circuit failure predictions for

the different circuit layouts should be studied.

Table 5.4 summarizes, using a color scheme, which circuit layout is predicted to be

more robust for each model variation and input transition or steady-state. In this table, a

79

cell is colored ‘red‘ if it performed worse than the median for that transition (meaning if

the predicted percentage failure is > 1.1 median value for that transition), and is colored

‘green‘ if it performed better (predicted percentage failures is < 0.9 median value for that

transition). So, for example, if we consider the default model (with default parameters)

to be the “correct” model for our GRNs, then the logic-hazard free circuit layout has a

lower predicted probability of failing for the studied input transitions or hold-states, and

the two-inverter circuit layout has the highest predicted failure percentages. Therefore,

if we would choose this model to guide our design choices, we would go for the logic-

hazard free circuit layout. However, if the Cello model (with characterized parameters) is

assumed to be the most “accurate” or “correct” model for our circuits, then our choice of

most robust circuit layout changes. In this case, the original design circuit layout would be

chosen to be the more robust one.

5.5 Discussion

The Design-Build-Test-Scale (DBTS) workflow is critical in synthetic biology, with recent

efforts to automate most of these steps to open the field to a broader, diversely skilled com-

munity. Efforts to develop better models and parameter values can produce more accurate

circuit output predictions. However, the learn step (re-parameterizing characterized gates

and model exploration) is still a very manual process that requires much expertise and

skill. Therefore, attempts to obtain more detailed model predictions is usually dampened

by this challenge.

This work focuses on determining if there are differences in predicted circuit failure

percentages for three different circuit layouts with identical expected functions, using

different model choices and parameter values. The results show that each circuit layouts’

predicted percentage failures changes for each model, using characterized parameters or

default values. This means that the choice of model, or the use of characterized gates

parameters or not, determines whether a circuit is predicted to fail, for example, 84% or

36% of the times for a given input transition. However, since the exact values of these

percentages has to be determined by further experimentation (to determine the magnitude

and source of noise, or the model appropriate for the system), this is a more qualitative

than quantitative result. Nonetheless, Table 5.4 demonstrates that the choice of model, or

80

the use of characterized parameters or not, has an effect on possible design choices. In this

work, for example, a designer using a default model with default parameters may decide

that the logic-hazard-free circuit behaves more robustly for the input transitions studied,

and a designer using Cello modeling with characterized gate parameters, may decide that

the original design layout would be the most robust one.

The results shown in this work emphasize that correct modeling and choice of parame-

ters can influence our design choices; therefore, it follows that further studies to determine

the most accurate models and parameter values should be used to guide design choices.

However, this endeavor is time-consuming and costly. The more complex a model is, the

harder it will be to characterize experimentally and the longer it would take to simulate,

especially if the designer is considering different experimental conditions for a broader

Test phase. Hence, finding the proper balance between effort and predictability varies

greatly with the intended use of the GRN being designed, funding and time availability,

or even resources available for the experimentalists. If the intended purpose of the

designed GRN is just to monitor some other process, without producing an irreversible

effect on other systems, then maybe a simpler model with literature-obtained parameters

would suffice. However, for safety-critical GRNs’ outputs, then determining these val-

ues would be essential. This is why, for this dissertation’s work, we decided to model

most of the circuits analyzed using the Cello modeling [129, 152]: it is a simpler model

that bundles many reactions into one, simplifying the reaction-rate parameters needed

to measure, as well as providing easier characterization experiments to determine their

values. Furthermore, as there are fewer reactions, it is quicker to simulate (in this work,

the default model simulations took around three hours to simulate, whereas Cello models

take minutes). Moreover, since Cello models are used as a benchmark for many other

experimental published works [4, 41, 61, 71, 113, 146, 152, 170], there is a ready availability

of gate parametrization values for different laboratory conditions.

In this work, an extrinsic noise model was used to simulate variability across different

populations. However, the different assumptions used for this experiment are multiple,

and a further evaluation of their validity must ensue in order to provide accurate pre-

dictions of variability, and hence, circuit failure probabilities. First, further studies to

determine the source and magnitude of noise for specific GRNs [6, 89, 132, 138, 149, 153, 158,

81

160], since the magnitude of each noise source depends on the biological network being

studied; second, how to correctly model each source of noise has to be ascertained. For

example, Beal [6] argues that extrinsic noise should be modeled as a log-normal probability

distribution on parameter values, instead of a normal distribution as used in this work.

Noise models can also serve as a design tool, in where a designer could increase the

magnitude of simulated noise to evaluate which circuit topologies is best suited for the

intended purposes of a design, and which ones are more “robust” to external sources of

noise and variation.

82

(a)

(b)

(c)

Figure 5.1. Three different logic layouts for the circuit 0x8E [129]. The three inducer
molecules are IPTG, aTc and Ara and the output is YFP. The OR gate is represented by

and the NOR gate by . (a) Original circuit layout as published in [129]. (b) Circuit
implementation with added redundant logic as two NOT gates, which add an extra delay
to the IPTG pathway. The NOT gate is represented by . (c) Circuit implementation
with logic-hazard-free optimizations. More details on the implementations (b) and (c) can
be found in [55].

83

Table 5.1. Percentage circuit failure results for the function hazard and hold-state failure
analysis of the original design of circuit 0x8E. D/D: default model with default parameters;
C/D: Cello model with default parameters; C/C: Cello model with characterized parame-
ters.

Original Design

Circuit Failure Input D/D C/D C/C

(0, 1, 0) → (1, 1, 1) 0.09 0.21 0.23

(0, 1, 0) → (1, 0, 0) 0.36 0.49 0.84

(1, 1, 1) → (1, 0, 0) 0.48 0.59 0.76

(1, 1, 1) → (0, 1, 0) 0.36 0.43 0.41

(1, 0, 0) → (0, 1, 0) 0.33 0.45 0.53

0-Function Hazards

(1, 0, 0) → (1, 1, 1) 0.13 0.16 0.30

(0, 1, 1) → (1, 0, 1) 0.85 0.57 0.12

(0, 0, 0) → (0, 1, 1) 0.37 0.15 0.12

(0, 0, 0) → (1, 0, 1) 0.82 0.43 0.11

(1, 0, 1) → (0, 1, 1) 0.83 0.54 0.25

(0, 1, 1) → (0, 0, 0) 0.52 0.24 0.13

1-Function Hazards

(1, 0, 1) → (0, 0, 0) 0.59 0.32 0.15

(0, 0, 0) 0.31 0.13 0.09

(0, 0, 1) 0.15 0.00 0.01

(0, 1, 0) 0.09 0.27 0.27

(0, 1, 1) 0.30 0.10 0.11

(1, 0, 0) 0.13 0.23 0.35

(1, 0, 1) 0.37 0.14 0.05

(1, 1, 0) 0.05 0.13 0.16

Wrong Steady State

(1, 1, 1) 0.05 0.15 0.18

84

Table 5.2. Percentage circuit failure results for the function hazard and hold-state failure
analysis of the two-inverter design of circuit 0x8E. D/D: default model with default pa-
rameters; C/D: Cello model with default parameters; C/C: Cello model with characterized
parameters.

Two-Inverter
Design

Circuit Failure Input D/D C/D C/C

(0, 1, 0) → (1, 1, 1) 0.27 0.50 0.47

(0, 1, 0) → (1, 0, 0) 0.34 0.58 0.89

(1, 1, 1) → (1, 0, 0) 0.38 0.58 0.89

(1, 1, 1) → (0, 1, 0) 0.19 0.34 0.40

(1, 0, 0) → (0, 1, 0) 0.20 0.37 0.45

0-Function Hazards

(1, 0, 0) → (1, 1, 1) 0.15 0.20 0.38

(0, 1, 1) → (1, 0, 1) 0.64 0.32 0.09

(0, 0, 0) → (0, 1, 1) 0.55 0.24 0.24

(0, 0, 0) → (1, 0, 1) 0.65 0.31 0.07

(1, 0, 1) → (0, 1, 1) 0.88 0.83 0.69

(0, 1, 1) → (0, 0, 0) 0.64 0.38 0.28

1-Function Hazards

(1, 0, 1) → (0, 0, 0) 0.73 0.59 0.43

(0, 0, 0) 0.41 0.24 0.23

(0, 0, 1) 0.24 0.02 0.03

(0, 1, 0) 0.10 0.25 0.34

(0, 1, 1) 0.47 0.18 0.24

(1, 0, 0) 0.14 0.21 0.42

(1, 0, 1) 0.44 0.16 0.04

(1, 1, 0) 0.06 0.11 0.26

Wrong Steady State

(1, 1, 1) 0.10 0.19 0.33

85

Table 5.3. Percentage circuit failure results for the function hazard and hold-state failure
analysis of the logic-hazard free design version of circuit 0x8E. D/D: default model with
default parameters; C/D: Cello model with default parameters; C/C: Cello model with
characterized parameters.

Logic-Hazard Free
Design

Circuit Failure Input D/D C/D C/C

(0, 1, 0) → (1, 1, 1) 0.09 0.14 0.21

(0, 1, 0) → (1, 0, 0) 0.08 0.18 0.40

(1, 1, 1) → (1, 0, 0) 0.31 0.35 0.78

(1, 1, 1) → (0, 1, 0) 0.37 0.53 0.41

(1, 0, 0) → (0, 1, 0) 0.29 0.53 0.28

0-Function Hazards

(1, 0, 0) → (1, 1, 1) 0.05 0.15 0.30

(0, 1, 1) → (1, 0, 1) 0.88 0.46 0.08

(0, 0, 0) → (0, 1, 1) 0.43 0.17 0.24

(0, 0, 0) → (1, 0, 1) 0.90 0.43 0.14

(1, 0, 1) → (0, 1, 1) 0.86 0.44 0.29

(0, 1, 1) → (0, 0, 0) 0.54 0.27 0.37

1-Function Hazards

(1, 0, 1) → (0, 0, 0) 0.60 0.26 0.34

(0, 0, 0) 0.36 0.17 0.29

(0, 0, 1) 0.13 0.03 0.00

(0, 1, 0) 0.07 0.21 0.17

(0, 1, 1) 0.34 0.15 0.14

(1, 0, 0) 0.04 0.16 0.40

(1, 0, 1) 0.36 0.13 0.02

(1, 1, 0) 0.01 0.10 0.15

Wrong Steady State

(1, 1, 1) 0.04 0.13 0.21

86

Table 5.4. Comparison of all model predictions for of genetic circuit failures, and the most
“robust” circuit choice for each model simulation. D: default parameter values; C: char-
acterized parameter values; O: original design; T: two-inverter design; N: no-logic-hazard
design (or logic-hazard free design).

Default
Model

Cello Model

D D C

Circuit Failures O T N O T N O T N

(0, 1, 0) → (1, 1, 1)

(0, 1, 0) → (1, 0, 0)

(1, 1, 1) → (1, 0, 0)

(1, 1, 1) → (0, 1, 0)

(1, 0, 0) → (0, 1, 0)

0-Function Hazards

(1, 0, 0) → (1, 1, 1)

(0, 1, 1) → (1, 0, 1)

(0, 0, 0) → (0, 1, 1)

(0, 0, 0) → (1, 0, 1)

(1, 0, 1) → (0, 1, 1)

(0, 1, 1) → (0, 0, 0)

1-Function Hazards

(1, 0, 1) → (0, 0, 0)

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

Wrong Steady-State

(1, 1, 1)

This table compares each models’ predictions for best and worst performance for each transition.
A red color means that the circuit performed worse than the median, and green color means that
the circuit performed better than the median, for that input molecule concentration or transition.

CHAPTER 6

DESIGNING AND REDESIGNING GENETIC

CIRCUITS TO AVOID FAILURE

This chapter uses all the tools and methods developed in this thesis work and described

in previous chapters to help in the design process of different Genetic Regulatory Networks

(GRNs), in collaboration with other laboratories dedicated to synthetic biology research.

The methods developed in this dissertation can help both in the design, as well as in

the redesign processes of GRNs to produce dynamical model predictions, genetic circuit

failure analyses, and gate characterizations for more accurate robustnesses predictions.

These collaborations entailed laboratory experiments coupled with our modeling, noise

analysis, and failure predictions to produce information that can be used to create more

robust designs [36, 175].

6.1 DBTS Loop

An implicit, iterative Design-Build-Test (DBT) process is often used to develop genetic

circuits [18, 68, 154]. However, bias is introduced into the DBT process in almost all of

its steps and the variability of environmental factors that affect a circuits’ behavior is

often not taken into account. This might hinder a circuit’s expected performance when

applied to Outside-the-Laboratory Conditions (OTLC). Models used by Genetic Design Au-

tomation (GDA) tools are mostly based on experiments carried out under Optimal Laboratory

Conditions (OLC) [2, 75, 129]. Furthermore, most rely only on the expression of a fluorescent

protein as an output reporter under OLC. This setup leads to an inaccurate Scale step

with regard to the actual circuits’ performance when applied in non-OLC that can produce

erroneous or faulty behavior with unpredictable outcomes. Furthermore, with a narrow

Test step, the learning usually is limited to a post-hoc description of circuit dynamics. This

would be especially perilous for engineered systems that are aimed to operate in dynamic

environments, such as living therapeutics and whole cell biosensors.

88

This study applies a broader Test step to a designed delay-signal circuit to include

more environmental dynamic factors and reporters (as shown in Figure 1.1). The circuit’s

output, as well as the time for output detection, were observed to be highly variable

for different temperatures, mediums, inducer concentration, bacterial growth-phases, and

output reporters. If the performance of the delay circuit is compromised by the tested

experimental factors presented here, it will inevitably alter its behavior in other contexts,

which would not have been predicted by GDA tools.

We propose to introduce a Scale step as part of a new and improved Design-Build-Test-

Scale (DBTS) process. Scaling refers to the process of considering the variability of factors

that can affect genetic circuit performance in real-life applications. Most studies either

have a non-existent Scale step, or it consists only of a post-hoc description of the designed

circuit’s performance at OLC. This work not only provides a re-parametrization effort

for different experimental conditions, but also produces a new model to determine the

necessary predictions for untested conditions. As a case study, we focused on the effect

of growth phase on the circuit’s output, in which we observed a trend in delay and total

output production. This, in turn, allowed for a deeper Scale step which ultimately resulted

in a new model that estimates these trends, thus enabling the capacity to predict untested

delays and output production of the circuit which can be further applied for scaling.

Thus, we propose that a greater emphasis in the Test and Scale steps of a DBTS cycle are

needed to build more predictive models and to reduce bias across the entire DBTS cycle.

This, in turn, will enable the possibility of finding design alternatives to any unexpected

behavior and performance when the circuits are used in applications, improving a genetic

circuit’s robustness [170]. As we move from proof-of-concept designs to more real-life

applications, a thorough Test step provides the necessary data that allows for a significant

Learn step and, therefore, an appropriate Scale step.

6.1.1 Design of a Test Case GRN: The Delay Circuit

A naive implementation of delay in a genetic circuit is shown in Figure 6.1 (a), where

successive pairs of NOT gates can be used to add delay to a circuit (from a change of inputs

to a change in outputs) without changing the circuits’ function or behavior. However, this

circuit can produce unwanted output production (set-up glitches) when it is initialized,

89

even in the absence of input molecules, since its components have not been stabilized

yet [55]. This means that when the circuit is initialized, since the circuit is not stabilized,

some internal gates will start randomly producing output before others. This can cause an

erroneous or faulty initial state for the circuit, and therefore an unexpected or unwanted

output protein production. So, for example, the gate that produces the output protein of

a circuit (blue gate, Figure 6.1 (a)) could start producing output before the circuit reaches

steady-state without any inducer (input) present, at which point it will be repressed by the

green gate.

However, it is possible to redesign the circuit in a way to avoid these initialization prob-

lems and properly locking the initial-state down, so that there is no unwanted switching

behavior, or set-up glitches, when this circuit is initialized. Figure 6.1 (b) shows such a

design that would avoid set-up failures due to the initialization problem. When such a

circuit is transformed into a bacteria, and there is random production from internal gates,

since the circuit is not in steady-state, there will be no unwanted output production. This

is because the output-producing gate is an AND gate, which needs the presence of two

signals before it can produce the output signal. The second inducer is necessary so that

even if there is some initial leakage production of the green gate, the output is not going

to be produced.

A schematic of the actual circuit designed, built, and tested in this work is shown in

Figure 6.2 (a). This implementation uses Cello parts [129], and the specific transcriptional

units were chosen to have good input/output correlated value matches. The intended

purpose of this design is to provide some delay between an input concentration change

and output production, whilst avoiding unwanted switching behavior due to initial prop-

agation of an erroneous state. The circuit will not produce Yellow Fluorescent Protein (YFP),

unless both Arabinose (Ara) and oxohexanoyl-homoserine lactone (HSL) are present. This

design avoids unwanted production of an output YFP when the circuit is initialized in

a cell without Ara: even if there is initial production of LuxR protein. Meaning, if there is

no HSL, the circuit will not produce YFP and both Ara and HSL are needed to produce the

circuit’s output.

The initial model predictions of the circuit, shown in Figure 6.2 (b), were done in

iBioSim [169] using an automatic model generator to produce an Ordinary Differential

90

Equation (ODE) model of the circuit. The resulting complete model was then analyzed

using the Runge-Kutta-Fehlberg method [53], also implemented in iBioSim [169].

The simulation results show that there is no YFP production when only HSL is present

and, furthermore, there is a delay in the YFP production when Ara is added as expected.

However, given that these simulations are using default parameters that were character-

ized under OLC (obtained from [129]), these only provide qualitative information on how

the actual circuit is going to behave only when tested in OTLC.

6.1.2 Parametrization of Gates

After the initial design, model, and simulation of the circuit, we proceeded to build the

circuit as described in [175]. The circuit was tested under different laboratory conditions,

which produced different delays for the same circuit layout. However, from these results,

introducing the input molecules at different times (meaning for different growth phases

of the mono-cultures), produced the most substantial changes. Therefore, we proceeded

to repeat those experiments for each individual gate of the circuit, in the hopes that the

subsequent characterization and remodeling of the whole circuit with the new parameter

values can replicate what we observed experimentally. The following subsection provides

such enterprise to determine the steady-state parameters (Subsection 6.1.2.1), and the

dynamic parameters (Subsection 6.1.2.2) of the genetic parts.

6.1.2.1 Hill Function Parameters

Equation 3.1 is derived from the Hill function, which is used to calculate the steady-

state output of a gate [129, 152]. To acquire the Hill function parameter values used in this

equation, gate induction experiments were performed (as described in [175]), and then fit-

ting the fluorescence results to our model. This fitting can be done by minimizing the error

of Equation 6.1 (for activation) and 6.2 (for repression) predictions by using parameter fit

values and the experimental fluorescence measurements for the different growth phases.

y = ymin +

(
ymax − ymin) · (Kn)

(xn) + (Kn)

)
, (6.1)

y = ymin +

(
ymax − ymin) · (xn)

(xn) + (Kn)

)
. (6.2)

For the Hill-function parametrization, a normalized least-squares method using the non-

linear Least-Squares Minimization and Curve-Fitting (lmfit) Python package [126] was used,

91

and random initial parameter estimations following the GAMES workflow [43].

The Hill-function fitted parameter values obtained are shown in Table 6.1. These

parameters can be used to calculate the steady-state output of the circuit using Equations 6.3

and 6.4. However, to be able to predict the dynamical behavior of these circuits, the τON and

τOFF parameters also need to be calculated.

6.1.2.2 Tau (τ) Parameters

Equation 3.3 describes the dynamical response of each gate, using the τON and τOFF

parameters. To obtain these dynamical parameter values, different ON-to-OFF and OFF-

to-ON characterization experiments were performed using the same gate plasmids and

methods as shown in Shin et al. [152] and in [175]. These experiments can be used to fit

the data using Equations 6.3 and 6.4, obtained from the supplementary material in Shin et

al. [152], to achieve parameter values for these conditions.

dx
dt

= τON
x · (xss − x) , (6.3)

d[YFP]
dt

= τON
YFP · x − τOFF

YFP · [YFP] . (6.4)

The lmfit Python package [126], which is based on the Levenberg-Marquardt minimization

algorithm, was used to perform the fits and analyze the resulting parameter sets [126]. The

fits were performed by minimizing the sum of the square of the relative error between each

measured data point and the same point in a corresponding model simulation. As with

the Hill-function characterization algorithm, a random initial parameter value search was

implemented following the GAMES workflow [43], while simultaneously looking for the

smallest chi-squared values for each fitting iteration.

Using the estimated values of τOFF
YFP , shown in Table 6.2, and using both Equations 6.3

and 6.4, the first fitting iteration was used to obtain τON
YFP, τON

x , and xss parameter estimate

values using the ON-to-OFF characterization experiment results. Using the parameter

estimation method proposed in [43], and the fixed values of τOFF
YFP obtained previously, the

model was fitted to the experimental results using a minimizing function. The parameter

values estimated with this method are shown in Table 6.2.

Using the ON-to-OFF characterization experiments, and assuming that the influence

of input sensor promoter flux is zero, then fitting Equation 6.4 to the gradient of the

92

fluorescence loss over time produces estimates of τOFF
YFP parameter values.

To capture the effect of different growth phases on the production delays, as well

as signal intensities of the designed circuit in this work, characterization experiments

were done for the different growth phases. These experiments were performed following

the methods described in Shin et al. [152] (see Methods). From these experiments, new

parameter values for each growth phase were achieved as described below.

Using the parameters shown in Table 6.2, derived from the fitting algorithm, new

simulations were produced for each growth phase (Figure 6.3). The new model sim-

ulations predict both lower production of YFP protein (signal intensity), as well as the

decrease in time for reaching steady-state, for each successive growth phase, as observed

experimentally.

However, the parametrization results (shown in Table 6.2) were produced without

fixing any of the parameter values when using the fitting algorithm, meaning they were

all treated as free variables. When there are no fixed parameters, then the fitting algorithm

will find the best fit by manipulating the parameter values until the expected outcome best

matches the experimental results. This will result in widely different parameter values to

compensate for other parameters’ minimization of error while fitting (see for example, xSS

values for different growth phases in Table 6.2). This means it will be hard to derive any

parameter value trends indicative of what might be happening to their magnitude as the

circuit is induced at different growth phases.

To discern if there are any parameter value trends that can be attained from fitting the

experimental results, we proceeded to fix parameter values to reduce the number of free

variables in the fitting algorithm. The first parameter value fixed was τOFF
y . This was

done using the fitting algorithm with the ON-to-OFF gate characterization experiments

(see methods section). Re-fitting the model to the experimental results, with τOFF
y as a fixed

parameter value and the rest as free-variables, new parameter values were acquired. These

re-fitting iterations were done then by fixing subsequent parameters values by calculating

averages from previous iterations. First, xSS average values were calculated, then fixed for

the next iteration, then followed by τON
x . With the last iteration of this re-fitting process,

τON
y was left as a free-variable, while the rest of the parameters were fixed. This process

was carried out to understand the effect of the different experimental conditions on the

93

value of τON
y . First, since τON

y is the parameter closest to the measured parameters in the

experiments (YFP fluorescence); and secondly, because if the other parameter values are

not fixed, then if there is any parameter value trends, it is lost in the minimization process,

when the fitting algorithm tries to find the solutions by increasing a parameter value and

decreasing another one. Figure 6.4 (a) shows τON
y parameter values obtained following

this procedure.

As hypothesized, the values of τON
y shown in Figure 6.4 (a) vary for the different

growth phases of the clonal bacteria. When bacteria are induced at a later growth-phase,

the values of τON
y decrease. This coincides with previously observed experimental results

where induction at later growth phases decreases the time it took to reach steady-state,

as well as the maximum signal intensity at the steady-state. A predictive linear model of

signal intensity over time can be created as shown in Equation 6.5:

τON
y = m ∗ (induction time) + b , (6.5)

where τON
y is the predicted value of gate dynamics when the circuit evolves to an ON

state [152]. Using linear regression, m was estimated to be −1.869e−04 and b to be

0.13527606. With this equation, a researcher could estimate the value of τON
y for different

times of induction and, therefore, estimate the decrease in output production and delay of

a delay circuit for untested conditions as shown in Figure 6.4 (b).

6.1.3 DBTS Workflow

The DBTS cycle can be a powerful methodology to successfully implement GRN appli-

cations in the synthetic biology field. Yet, it is not flawless and is constantly needing to be

re-examined to reduce the turn-around for synthetic biology applications. As an example,

when engineering bacteria to act as a sensor for a specific molecule, the two features of time

for fluorescence detection and signal intensity are very important. This work shows that if

bacteria was sensing a molecule at the Early-Exponential (EE) stage, and was observed prior

to its ability to produce a fluorescence signal, then it can lead to a false negative result.

In addition, bacteria that sensed the molecule at the Stationary (S) phase, and therefore

produced a significantly low fluorescence signal, can also lead to a false negative result.

Furthermore, our results support the notion that when designing a genetic circuit, the

range of inducer concentrations that can lead to a satisfying performance can vary across

94

different cultivation temperatures which is a major factor when transitioning outside the

lab. Additionally, in this work we hypothesized the values of τON
y shown in Figure 6.4

(a) vary for the different growth phases of the clonal bacteria. After learning from the

appropriate test results, we could acquire new models in the Scale step that could predict

the behavior of these circuits on untested experimental conditions. Thus, by introducing

the Scale step and broadening the Test step to include more environmental factors will

subsequently advance the overall learning and will provide deeper understanding of the

obstacles that genetic circuit’s performance face when taken outside of the lab.

Expansion of the Test step will inevitably promote new prediction models and tools

developed in the Scale step, able to predict the behavior of genetic circuits under different

conditions (even untested ones), and therefore will enable better design choices than those

provided by GDA tools. Furthermore, these studies can identify, which experimental

conditions have a greater effect on a genetic circuit’s performance. Currently, there is a

lack of standardized methodologies and/or software tools to help researchers perform

a meaningful Scale step and benefit from its results. Even popular GDA tools (like

Cello [129]), which provide extensive and automated Design, Build, and even Test steps,

lack of a proper Scale step, which will be beneficial to help researchers with better design

choices for OTLC genetic circuit applications. However, as of now, there is no consensus

on what these methodologies should look like, nor tools to help with this process.

6.2 DSGRN

The Dynamic Signatures Generated by Regulatory Networks (DSGRN) [33] is a computa-

tional tool that explores network dynamics using a parameter graph space for a given GRN

and input interactions. This tool computes the range of dynamic behaviors supported by

a given network [32]. In collaboration with Rutgers and Montana State University, we

were tasked on determining the noise model GRN failure predictions, re-characterization

of genetic gates, and modeling simulations of the different circuit layouts calculated using

DSGRN-design GRNs.

In Bree et al. [36], a design-build-test-learn loop called Design Assemble Round Trip

(DART) is presented for the rational design of synthetic biology genetic logic circuits.

In principle, the technology is generalizable to dynamically-complex circuit functions

95

beyond logic [34] that are of interest to the synthetic biology community [91, 171, 172]. The

design/prediction tools are DSGRN [34, 57]1 and Combinatorial Design Model (CDM) [50]2.

CDM is a neural-network based model that makes in-silico predictions of experiments

by using context and data from a subset of conditions and predicts the outcome in all

combinations of conditions. The application of CDM in this work optimized a combination

of genetic parts for a given circuit using training data from single parts.

Circuit robustness was examined by comparing the performance of simple and com-

plex network topologies of OR and NOR synthetic circuits in the yeast Saccharomyces

cerevisiae, while also testing the predictions for two different sets of parts for each topology

using CDM. The performance of a circuit is evaluated as a circuit’s ability to express

fluorescence (ON) or not (OFF) as intended by the circuit’s logic given the presence or

absence of chemical inputs. Logic circuits designed to exhibit OR and NOR logic were

chosen based on preliminary data analysis in which previously built OR and NOR circuits

performed poorly [35, 52]. Figure 6.5 shows the schematics of the designs discussed

in this work, where each quadrant shows one topology with two CDM designs. The

top row shows the simplest topologies that are capable of producing the desired circuit

behavior. The alternative topologies discovered using the DSGRN Design Interface are

called DSGRN topologies and shown in the second row.

The parts labeled with r# are associated to constitutively expressed CRISPR guide RNA

(gRNA) gene products introduced in [59] that repress transcription when bound. Inducible

versions of these parts were built in this study to use in tandem with the previously built

constitutively expressed parts. Specifically, binding sites for β-estradiol (BE) and doxycycline

hyclate (Dox) were added to the gRNA promoters. In the presence of an inducer, the

associated gRNA is expressed and represses the production of its downstream target,

either another gRNA or Green Fluorescent Protein (GFP) [36].

6.2.1 Noise Models for DSGRN

For analysis of the circuits, models for each circuit design were generated using iBio-

Sim’s [169] graphical editor, which uses the Systems Biology Markup Language (SBML) [26]

1https://github.com/marciogameiro/DSGRN

2https://github.com/SD2E/CDM

96

to encode the different species and reactions. The parameters used by the models were ob-

tained from literature, and all reactions are automatically populated with them. All input

transitions, for each circuit, were also modeled using Petri-nets (a collection of directed arcs

connecting places and transitions) encoded in SBML models to simulate changes in input

concentration changes. These models were then simulated using Runge–Kutta–Fehlberg

(4, 5) method (rkf45) for the ODE models, and Gillespie’s Stochastic Simulation Algorithm

(SSA) method for the stochastic (Monte Carlo) models. All simulations were run for

3000 time points, with input changes occurring at time point 1500 (for transitions that

contain function hazards). Then, the circuit’s predicted output was measured at different

time points for different circuit failures analyzed: at 1600 time points for transitions that

contain function hazards, at 250 time points for set-up glitches, and at 2000 time points

for hold-state failures. Simulations were terminated if a glitch was observed (only static

glitches were analyzed). A constraint value of eleven (11) was considered for all circuit

failures. This means, if the output of a circuit is expected to be low (or 0) throughout

the simulation, it is considered a glitch if the output protein production of the circuit

surpassed the constraint value. On the other hand, if the expected output production of

the circuit is high (or around 60 molecules) throughout the simulation, then it is considered

a glitch if the output production is less than the constraint value. Set-up glitches were

analyzed only if the output of the system is expected to remain low, thus it is considered

a glitch if production increases above the constraint value, as for static-0 hazards. For

hold-state failures if the output was higher than the constraint value for expected low

output states, or lower than the constraint value for expected high output states, then the

circuit was considered to have failed the hold-state simulation and the simulation would

be terminated. The simulation terminations are counted for the percent failures shown in

Tables 6.3, 6.4, and 6.5.

The extrinsic noise model used in this work applies a simple case of static external

perturbations, modeled as a random draw from a folded normal distribution for each

parameter value used in the model at the beginning of each simulation run (as shown

in Chapter 5). The mean of each distribution is the default parameter value in iBioSim

(obtained from literature), with a standard deviation equal to forty percent of the mean’s

absolute value (which emulates the “extrinsic noise”). This value of noise was obtained

97

when calibrating different noise values but is an arbitrary value that should be replaced

with a better estimate obtained from experimentation. For example, Beal [6] argues that

these parameters follow a geometric distribution instead of a normal one, which is also

part of our planned future work. To simulate the extrinsic noise models, eight hundred

(800) ODE simulation runs were simulated for each transition, for each circuit using the

Runge–Kutta–Fehlberg (4, 5) method (rkf45). Extrinsic noise model ODE simulation runs

take a long time to simulate, thus 800 simulation runs took around 4.5 hours to finish.

More simulation runs had minor, and non-significant, changes on the simulation results,

however adding hours to the total simulation time. Therefore, 800 simulation runs are

generated for each input transition of all the circuits analyzed using the extrinsic noise

model.

For each input transition of all the circuits analyzed using the intrinsic noise model, a

thousand (1000) stochastic simulation runs were simulated using a Monte Carlo approach,

such as Gillespie’s SSA. More simulation runs for the intrinsic noise models didn’t change

the results obtained, thus this number of simulation runs per transition was chosen.

6.2.2 Hazard Analysis for Circuit Failure Predictions

Table 6.3 shows the intrinsic noise model circuit failure predictions for the different

circuit implementations. The table shows that:

1. The redesigned OR circuit fairs worse (has higher predicted circuit failure percent-

ages) than the original design for all circuit failures analyzed except for the set-up

glitches and hold-state failures at state (0,0).

2. A comparison of the NOR circuit original design and redesign shows that the re-

design has less circuit failure percentages than the original design, except for set-up

glitches at state (1,1) and hold-state failures at state (0,0).

These results show that the intrinsic noise model predicts that for the OR circuit layout,

the original design is less prone to glitches than the redesign, for the transitions and states

analyzed in this work. Conversely, for the NOR circuit layouts, the intrinsic noise model

predicts that the redesign is less prone to show circuit failures for the transitions and states

analyzed. Therefore, if the main source of noise for these circuits is intrinsic noise, then

these models predict that the original OR design and the NOR redesign are the better

98

design choices.

Table 6.4 shows the extrinsic noise model circuit failure predictions for the different

circuit implementations. The table shows that:

1. For the OR circuit layouts, the redesigned circuit has equal or higher predicted circuit

failure percentages than the original design for all transitions and states analyzed,

except for set-up glitches and hold-state failures at state (0,0).

2. For the NOR circuit layouts, the redesign also has equal or higher circuit failure

percentages than the original design for all transitions and states analyzed.

Therefore, if the noise source with the highest incidence on the circuits’ output is extrinsic

noise sources, these models predict that the redesigned circuits for both the OR and NOR

circuit layouts are more prone to express circuit failures than the original designs.

Table 6.5 shows both the combined intrinsic and extrinsic noise model circuit failure

predictions for the different circuit implementations. The table shows that:

1. For the OR circuit layouts, the redesigned circuit has equal or higher circuit failure

percentages than the original design for all transitions and states analyzed, except

for set-up glitches and hold-state failures at state (0,0).

2. When looking at both model predictions for the NOR circuits, the redesigned circuit

fairs better than the original design only for set-up glitches (0,1) and (1,0).

The combined intrinsic and extrinsic noise model results indicate that the original design

is a better design choice for both the OR and NOR circuit layouts. However, these

results reflect mostly what the extrinsic noise model predictions suggested (see Table 6.4),

indicating that the combined noise model has a higher influence from the extrinsic noise

model than the intrinsic noise model. A possible explanation to these results can be that

the simpler the circuits’ layout, the less noise propagation between the different layers,

which would lead to a smaller variation in a circuits’ output. However, depending on

the intended use purposes of the designs, the DSGRN-designed circuit may be more

suitable for detecting signals and producing substantially different ON and OFF output

distributions.

These results emphasize the necessity to study the relative influence of either noise

source on these kinds of genetic circuits, to accurately determine which circuit layout is

less prone to glitch. Since intrinsic and extrinsic noise model predictions differ when de-

99

termining which circuit has lower circuit failure percentages, then studying which one has

a higher influence on a circuit’s output (if not both) would be critical for a researcher that

is interested in determining which circuit layout is a better design choice for the intended

application of the circuit. This, ultimately, is dependent on the circuits components’ output

production rate. At higher rates of output production for each component, the stochastic

intrinsic noise model predicts less variation, thus approximating ODE simulation results

(and decreasing intrinsic noise as a source of variation). Therefore, an investigation of the

different genetic parts’ output production numbers, and relative influence of intrinsic and

extrinsic noise sources of variation on the circuit’s output is extremely relevant to obtain

more accurate circuit failure predictions, and ultimately have designers make choices with

more information.

6.2.3 Parameterization of DSGRN Gates

Experimental results have shown that the simple NOR design is an anomalously poor

performer compared to all other designs [35, 52]. This is interesting because all the other

builds contain similar NOR gates, although they use different gRNA parts (see Figure 6.5).

Either the simple NOR builds are unexpectedly fragile, or there is perhaps synergistic

activity when multiple NOR gates act in concert.

To further explore this performance failure, a Hill function ordinary differential equa-

tion model of the designs was created using parameter fits from the same dosage response

experiments used to train CDM. A data-fitting algorithm using a Nelder–Mead mini-

mization method [124] was implemented to determine the Hill function [145] parameter

values for the induction and repression dynamics of the different genetic parts used in

the OR/NOR circuit designs. The experimental data used for the fitting algorithm was

obtained from the geometric mean of flow cytometry data distributions from the dosage

response experiments as described in [36]. The experimental data were fitted to Equation

6.6 (for activations), and Equation 6.7 (for repressions) derived from Cello [129]:

yi+1SS = yimin + (yimax − yimin)
1(

κ
ni
i

yi−1SS

)ni

+ 1
(6.6)

yiSS = yimin + (yimax − yimin)
1(

yi−1SS

κ
ni
i

)ni

+ 1
, (6.7)

100

where yiSS is the steady-state output promoter activity of part i; yimin and yimax are the

minimal and maximal output promoter activities (obtained from experimental results),

respectively, for part i; κi and ni are the affinity and cooperativity of transcription factor

binding (obtained with the fitting algorithm); and, finally, yi−1SS is the steady-state input

promoter activity from the previous part’s output (calculated also using Equations 6.6 or

6.7). Using the Hill function parameter value estimations, a resulting ODE model is then

analyzed using the Runge-Kutta-Fehlberg (4,5) method [53] implemented in iBioSim [169]

to obtain steady-state output predictions for each design under different input concentra-

tions (shown in Figure 6.6 and Figure 6.7).

In general, the Hill model predicted that circuits should respond more strongly to Dox

(Figure 6.8 (a)), but that the dosage response to BE was acceptable (Figure 6.8 (b)) except

for the two simple NOR designs, in which the presence of BE alone is predicted to fail

to turn the circuit OFF (Figure 6.8 (c)). Figure 6.8 (a) shows the DSGRN OR/CDM high

design and illustrates the difference in BE and Dox performance. A success is a high GFP

signal in all five bars, where the left-most bar is BE alone at its highest titration concen-

tration and the remaining four bars are combinations of BE and Dox, with Dox at various

titration levels. High GFP signal is achieved even for the BE-alone condition, since the

low GFP steady state corresponded to about 1500-2000 arbitrary units (a.u.), substantially

lower than the left-most bar. However, the BE-induced GFP signal is markedly lower than

that for the BE+Dox combinations. Dox in isolation produced GFP signal in comparable

amounts to BE+Dox (Figure 6.6, Figure 6.7).

6.3 Concluding Remarks

This chapter shows how the models and methods developed in this dissertation can be

used to aid in the design processes of GRNs, without omitting the limitations and future

work needed to improve future contributions. Even though most of the results have a

more qualitative than quantitative nature, they do highlight the need to improve the char-

acterization methods to provide more accurate prediction results. The characterizations

needed are not only for genetic parts’ dynamics, but also relative influence of external and

internal noise sources of variability. Furthermore, the tremendous manual work that is

required to obtain meaningful parameter values for most of the models used in synthetic

101

biology requires sufficient expertise in the subject, barring many synthetic biologists from

providing reliable genetic circuit failure predictions to their designs. As we move from

proof-of-concept to application-oriented genetic circuit designs using a more streamlined

DBTS process, the avoidance of genetic circuit failures to produce more robust and reliable

genetic circuit behavior is of crucial importance. The work done in this dissertation is one

of the first steps in that direction.

102

(a)

(b)

Figure 6.1. Naive and set-up failure-free delay circuit designs. (a) Simple delay circuit.
Two successive NOT gates (represented as) add delay to a circuit without changing
the circuit’s behavior. In this image, each logic gate is represented with a different color to
represent different gate assignments. (b) Set-up failure-free delay circuit. In this figure
represents a NOT gate, an NIMPLY gate, and AND gate, and a buffer gate.
Each logic gate is represented with a different color to represent different gate assignments.

103

(a)

(b)

Figure 6.2. Design and simulation results of delay circuit designed. (a) Designed delay
circuit using Cello gates [129]. Sequences obtained from SynBioHub [107]. This circuit
produces YFP after a delay when both Ara and HSL are present. (b) Delay circuit simula-
tion results using default parameters. YFP production (in a.u.) over increasing simulated
time-points.

104

Figure 6.3. Simulation results for the different growth phases of the AraC gate, using fitted
parameters shown in Table 6.2, obtained using the lmfit Python package [126]. The growth
phases are Early-Lag (EL), Late-Lag (LL), EE, Mid-Exponential (ME), Late-Exponential (LE),
and S.

105

(a)

(b)

Figure 6.4. Fitted parameter values trend and prediction of un-tested YFP output produc-
tion. (a) Fitted τON

y values obtained when fitting fluorescence values for different induction
times (t=0, t=180, t=210, etc.) using fitted parameters obtained using the lmfit Python pack-
age [126]. (b) Un-tested YFP output prediction for induction time of 270 minutes obtained
using the linear regression model to estimate τON

y ’s value for the untested condition.

106

Figure 6.5. The designs for the built circuits, with one topology and two CDM designs
in each quadrant. Upper left: The simple NOR topology published in [58], re-engineered
with two different collections of gRNA inducible parts. The one on the left is predicted
by CDM to perform worse than the one on the right. Lower left: The DSGRN NOR
circuit predicted by DSGRN to perform more robustly than the simple NOR circuit, with
the two CDM predicted gRNA arrangements. Upper right: The simple OR topology
published in [58], with CDM-selected parts assignments. Lower right: The DSGRN OR
designs predicted to perform more robustly than the simple OR designs. Scoring: The
difference in CDM scores between the low and high designs is shown in each row above
the corresponding topology. Topology robustness scores predicted by DSGRN for the
NOR and OR circuit topologies are shown in each row below the corresponding topology.
These numerical scores should be interpreted ordinally rather than as absolute values with
specific interpretation.

107

NOR circuit OR circuit

CDM low
design

CDM high
design

CDM low
design

CDM high
design

CDM
score

difference
1.49 2.54

Simple
topologies

Topology
Robustness

Score
0.08 0.07

CDM
score

difference
2.66 2.65

DSGRN
topologies

Topology
Robustness

Score
0.22 0.28

108

(a)

(b)

(c)

(d)

Figure 6.6. Predicted steady-state values of the geometric mean of the flow cytometry
distribution of GFP a.u. using estimated Hill function parameter values for: (a) Simple
OR/CDM high design, (b) Simple OR/CDM low design, (c) DSGRN OR/CDM high
design, and (d) DSGRN OR/CDM low design. An OFF circuit state corresponds to
approximately 1500-2000 a.u.; robust ON circuit states occur at about 8000 a.u. and up,
and weak ON states occur at about 4000 a.u. Columns 1-3 (transitions 00 → 10, 00 → 01,
00 → 11): The left-most bar in each bar graph should be OFF. All other bars should be ON.
Columns 4-5 (transitions 01 → 11, 10 → 11): All bars should be ON.

109

(a)

(b)

(c)

(d)

Figure 6.7. Predicted steady-state values of the geometric mean of the flow cytometry
distribution of GFP a.u. using estimated Hill function parameter values for: (a) Simple
NOR/CDM low design, (b) Simple NOR/CDM low design, (c) DSGRN NOR/CDM high
design, and (d) DSGRN NOR/CDM low design. An OFF circuit state corresponds to
approximately 1500-2000 a.u.; robust ON circuit states occur at about 8000 a.u. and up,
and weak ON states occur at about 4000 a.u. Columns 1-3 (transitions 00 → 10, 00 → 01,
00 → 11): The left-most bar in each bar graph should be ON. All other bars should be OFF.
Columns 4-5 (transitions 01 → 11, 10 → 11): All bars should be OFF.

110

(a) (b) (c)

Figure 6.8. Example predicted steady state values of the geometric mean of the flow
cytometry distribution of GFP a.u. from Hill function models. (a) The DSGRN OR/CDM
high design as it transitions from an initial state of BE only to BE+Dox for various titration
levels of Dox. The logical circuit should show a high fluorescence signal at all conditions.
The BE-only steady state has a strong GFP signal in comparison to the low GFP steady state
(1500-2000 a.u.), but is significantly lower than inducer conditions where Dox is present.
(b) The DSGRN NOR/CDM low design as it transitions from an initial state of no inducers
to BE at various titration levels. The condition (0,0) should show high fluorescence and
all subsequent bars should show low fluorescence. (c) The same as (b) for the simple
NOR/CDM low design. It is seen that BE does not effectively repress GFP signal in panel
(c).

Table 6.1. Hill-function parameter value estimations for different gates, obtained by fitting
Equations 6.1 and 6.2 to part-characterization experiments at different growth-phases (EL:
early-lag, LE: late-exponential). Values rounded to three significant digits.

AraC

Growth-phase ymax ymin κ n

EL 1730 342 4.16 × 10−2 2.60

LE 1150 366 6.68 × 10−2 2.89

LuxR

EL 4310 223 2.33 8.40 × 10−1

LE 3230 308 5.52 × 10−1 8.08 × 10−1

111

Table 6.2. Dynamic parameter value estimations for different gates, obtained by fitting
Equations 6.3 and 6.4 to ON-to-OFF and OFF-to-ON part-characterization experiments for
different growth-phases (EL: early-lag, LL: late-lag, EE: early-exponential, ME: middle-ex-
ponential, LE: late-exponential, S: stationary). Values rounded to three significant digits.

AraC

Growth-phase τON
x τON

YFP τOFF
YFP xss

EL 0.0822 0.126 0.0893 976

LL 0.169 0.109 0.0933 1000

EE 0.117 0.13 0.114 1000

ME 0.111 0.112 0.111 999

LE 0.275 0.0749 0.096 998

S 0.208 0.0538 0.105 1000

LuxR

EL 0.143 0.335 0.166 995

LL 0.195 1.3 0.221 211

EE 0.11 0.274 0.11 938

ME 0.173 0.234 0.173 977

LE 0.0729 0.173 0.0726 1000

112

Table 6.3. Intrinsic noise model predictions of circuit failure percentages.

OR circuit NOR circuit

Circuit Failures Original Design Redesign Original Design Redesign

Function
Hazard

(1, 0) → (0, 1) 12.1 23.1 7.4 2.8

(0, 1) → (1, 0) 10.4 24.9 4.1 2.4

Set-Up
Glitches

(0, 0) 34.8 11.1 - -

(0, 1) - - 60.7 51.1

(1, 0) - - 60.7 51.0

(1, 1) - - 38.9 42.6

Hold-
States

(0, 0) 1.4 0.0 5.0 5.9

(0, 1) 44.3 51.9 52.4 7.4

(1, 0) 44.5 63.4 52.8 8.1

(1, 1) 10.9 18.5 8.0 0.2

Percent failure predictions for input transitions that contain a function hazard, set-up glitches, and
hold-state failures for different circuit layouts, using the intrinsic noise model. In this table, input

transitions and states are described as a tuple (x,x), where the first value is the concentration of the
first inducer (1: high and 0: low), and the second value is the concentration of the second inducer (1:

high and 0: low).

Table 6.4. Extrinsic noise model predictions of circuit failure percentages.

OR circuit NOR circuit

Circuit Failures Original Design Redesign Original Design Redesign

Function
Hazard

(1, 0) → (0, 1) 38.8 41.2 23.6 36.0

(0, 1) → (1, 0) 38.0 58.4 22.6 36.0

Set-Up
Glitches

(0, 0) 8.4 4.6 - -

(0, 1) - - 42.8 49.0

(1, 0) - - 42.8 49.0

(1, 1) - - 36.8 45.2

Hold-
States

(0, 0) 4.6 2.8 3.4 8.8

(0, 1) 39.8 44.2 20.2 38.0

(1, 0) 39.8 44.2 19.8 38.0

(1, 1) 35.2 37.2 15.2 32.4

Percent failure predictions for input transitions that contain a function hazard, set-up glitches, and
hold-state failures for different circuit layouts, using the extrinsic noise model. In this table, input
transitions and states are described as a tuple (x,x), where the first value is the concentration of the

first inducer (1: high and 0: low), and the second value is the concentration of the second inducer
(1: high and 0: low).

113

Table 6.5. Intrinsic and extrinsic noise model predictions of circuit failure percentages.

OR circuit NOR circuit

Circuit Failures Original Design Redesign Original Design Redesign

Function
Hazard

(1, 0) → (0, 1) 51.4 53.6 35.6 43.6

(0, 1) → (1, 0) 50.8 52.6 35.0 41.6

Set-Up
Glitches

(0, 0) 38.6 22.4 - -

(0, 1) - - 67.4 48.2

(1, 0) - - 67.4 48.2

(1, 1) - - 45.0 70.6

Hold-
States

(0, 0) 22.8 12.4 25.0 37.2

(0, 1) 66.0 69.8 51.6 59.8

(1, 0) 66.0 70.0 51.4 60.6

(1, 1) 58.6 62.2 38.2 49.6

Percent failure predictions for input transitions that contain a function hazard, set-up glitches, and
hold-state failures for different circuit layouts, using the combined intrinsic and extrinsic noise
models. In this table, input transitions and states are described as a tuple (x,x), where the first
value is the concentration of the first inducer (1: high and 0: low), and the second value is the

concentration of the second inducer (1: high and 0: low).

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Synthetic biology witnessed a surge of development over the past two decades [1, 95].

Nonetheless, genetic circuit complexity has not developed on par with genetic engineering

technologies [79, 154]. This is not only due to the inherent complexity of biological systems

and highly interconnected genetic parts, but also due to a lack of software that helps to

cope with this intricacy. Model-driven design is of paramount importance when designing

ever more complex genetic circuits. Modeling is instrumental to show faults in the genetic

design, improve our understanding of underlying biological processes, and predict the dy-

namical transition stages of a genetic circuit and potential glitches in the system. However,

devising a model for genetic circuits can be a tedious and complex endeavor. Additionally,

parameterization is usually lacking for different models, thus making a model inaccurate.

We expect that all the methodologies developed in this work will serve the overarching

aim of redesigning genetic circuits to avoid circuit failures. Facilitated dynamic modeling

of genetic circuits would be an instrumental technique for synthetic biologists, especially

if it can be accompanied by a circuit design automation tool, such as those proposed in this

work, and a standardized method to detect and predict circuit failures. Furthermore, mod-

eling noise to determine a genetic circuits’ robustness to variability could provide further

testing of Genetic Regulatory Networks (GRNs) designed to operate in Outside-the-Laboratory

Conditions (OTLC). This would help automation in synthetic biology and provide a way

to debug circuit designs before construction and compare predictions with experimental

data once the synthesized circuit is implemented, saving time, effort, and money. This

project aims to expand such capabilities to help researchers through the design process

with the development of automated modeling, hazard identification, and genetic circuit

redesign. A new model generation method and circuit failure analyses bridge the gap

between experimentalists and designers as it helps both sides with the results obtained.

115

Designers can use data to better fit the model to produce more accurate predictions,

and experimentalists can use these predictions to debug genetic circuits and predict their

behavior before constructing them, saving time, effort, and money. However, most of

this work is still a very manual process and requires specific expertise in certain topics

that could prevent synthetic biologists on fully exploiting its benefits. Therefore, new

ways of automating these methodologies are a priority to extend these benefits for all

synthetic biologists, regardless of whether they have expertise in the topics developed in

this dissertation or not, which is the topic of the next section.

7.1 Future Work

This thesis work shows that we can predict average expected behavior, and even

do genetic circuit failure analysis, using generic or literature-obtained parameter values.

However, the true potential benefits of modeling comes when characterized parameters for

the specific GRN is used. Usually, experimentally-obtained parameter values are difficult

to come by, especially for novel genetic parts that haven’t been used in many designs yet.

Even more difficult is to know how to characterize the experimental results using fitting

algorithms or packages, since the correct method to do so varies depending on the type of

gene-expression regulation that is being used in the design. Furthermore, characterization

experiments are certainly not standardized, and even worse, characterization fitting algo-

rithms/workflows/software tools are greatly missing, making it more of a blind-guessing

game than anything else.

Hence, a future direction for design automation would be to standardize gate charac-

terization experiments and automate fitting algorithms/software tools to ease the Design-

Build-Test-Scale (DBTS) pipeline, which is the subject of the following subsections.

7.1.1 Test-Scale-Design Gap

Synthetic biology projects typically rely on iterative workflows composed of differ-

ent tasks [96]. As mentioned in Section 1.5, this work is anticipated to be part of a

larger workflow in the DBTS pipeline, shown in greater detail in Figure 1.1 (b). There

have already been contributions with different software developers that would fit in this

workflow, such as Puppeteer [164] and, of course, Cello [129, 152]. Other projects are

116

aiming at parameterizing more genetic gates using Cello parametrization, and debugging

a genetic circuit using RNA-seq [64]. The automatic model generator of this work would

not only help with model predictions of genetic circuits before the building stage, but

also in recognizing circuit failures, function hazards, and glitches of a circuit to either go

back to the drawing board, or building the circuit with known restrictions on the circuit

implementation. In all, the automated model generation of this work would help filter

Cello’s copious output designs for function and circuit anomalies using data standards

such as SBOL, SBML, and SED-ML for reproducibility and reuse in the community.

However, most published research regarding genetic circuit design looks more like

Figure 1.1 (a), in which a genetic circuit is designed, and then tested to prove that it behaves

according to what it is expected or not. As we move from proof-of-concept designs to

real-life, reliable, and industrial applications of genetic circuit designs, a more thorough

testing phase, followed by characterization efforts and redesigns, is needed to provide

more robust genetic circuits. Therefore, to close the gap between the testing phase and the

design (or redesign) phase of the DBTS workflow, efforts in automating characterization

experiments to produce more streamlined analyses of GRN’s performances under a wide

range of experimental conditions is needed, which is the topic of the next subsections.

7.1.1.1 Experimental Data

Hypothesis or model driven genetic design is dependent upon experimental data [25,

90, 101]. Experimental data provides parameter values and validation data, and both

modeling and experiments can profit from each other in an iterative learning process.

With rapid characterization methods and ever-increasing options for using different DNA

parts in constructs, the final challenge for synthetic biology is to develop new compu-

tational tools that capture the essential dynamics necessary to predict robustness and

host-construct interactions to enable them to be considered in designs [13]. Therefore,

automation of experiments and data acquisition can be achieved with the development of

standard experimental protocols for synthetic biology. There are already efforts underway

to initiate this endeavor, for example, to develop software to automatically generate and

share experimental protocols using standardized specification languages and cloud-based

tools [5, 74, 87, 93], or hardware to automate the experiments themselves, minimizing

117

human error. The advent of affordable and open-source automated robots, like those

developed by Opetrons,1 is paving the way for low-cost, reproducible and automated

experimental workflows [162].

7.1.1.2 Characterization Experiments

Systems biology has developed new -omics tools that offer the potential to take a

“snapshot” of the inner workings of a circuit in a single experiment [64]. One very popular

transcriptomic method, RNA sequencing (RNA-seq), enables one to quantify the mRNA

levels of each gate of a circuit with nucleotide resolution [168]. This high-throughput

experiment allows for a complete analysis of a genetic circuit and its impact on the

organism, the transfer functions of each genetic gate or part when not in isolation, maxi-

mum and minimum levels of transcription, and many other transcriptome analyses [170].

High-throughput characterization using RNAseq data and the model predictions of the

mathematical model can help with the debugging and comparison of genetic circuits

performance and underlying biological phenomena (like gate-toxicity) [64]. Additionally,

characterization of new genetic parts not only allows for modeling of genetic circuits in

other organisms besides Escherichia coli (E. coli), but also for different genetic contexts

(like genomic vs. plasmid genetic circuits, or other host interactions), and experimental

contexts. However, there is no consensus on how the characterization experiments for

GRNs should be approached for each different regulatory system, or how to report these

findings in a standardized way to enhance reproducibility [80].

7.1.1.3 Parametrization

Finding the best way to obtain parameter values from the characterization experiments

can prove to be a significant effort, especially for those not proficient in this subject.

The choice of a correct model, minimization algorithm, data-cleaning and normalization

methods, and parameter-space exploration can be daunting for novice researchers or

engineers who wish to use context-dependent parameter values for their DBTS pipeline.

Furthermore, the lack of any widely-used software tools or automation processes to do so

can expand the gap in the test-scale-design loop as it can prove a laborious undertaking

1https://opentrons.com/

118

for most synthetic biologists. Therefore, automation efforts should also be directed to the

development of methods and software to automatically determine parameter values for

common characterization experiments within the synthetic biology community.

This dissertation performs the parameterization using the Cello model [129, 152] using

the lmfit Python package [126], and the workflow recommended in Dray et al. [43].

We are not necessarily advocating that this method is the best for the parametrization

of repressible Transcription Factor (TF) genetic gates, but since most of the models and

characterization experiment protocols are readily available, it is the most straightforward.

The development of a parametrization software/package that allows for the estimation

of biochemical parameters from RNA-seq, Ribo-seq and proteomics profiling data could be

implemented that would allow synthetic biologists to use the automated model generator

of this work with genetic gates characterized in different environments or hosts. This

means that the user could feed the automated model generator RNA-seq and Ribo-seq

data, and the model generator could estimate the Cello (or model of choice) parametriza-

tion of each gate, and therefore automatically generate a dynamic model for the circuit

with the correct parameter values.

The ideal modular, orthogonal genetic part, or gate would have the same response

function in different genetic and biochemical contexts. However, this is rarely true for most

genetic parts. Most genetic gates, when composed into a genetic circuit, have divergent

behavior from when they are characterized in isolation. Furthermore, each organism has a

unique biochemical and genetic environment that greatly influences the dynamic behavior

of genetic gates. The automated estimation of parameters using RNA-seq and Ribo-seq

could be used to estimate the Cello parameters of each gate when combined as a genetic

circuit for a particular environment. This can help to calibrate already-known parameters

of genetic gates when in different genetic or biochemical environments and account for the

context-dependent variability of them. Moreover, if we want to have a predicted behavior

of a circuit for an organism we do not have characterization for, we can adjust the model

using Ribo and RNA-seq data of the most similar organism available, and have a better

estimate of how a circuit would work on the novel chassis.

119

7.1.1.4 Gate Dynamics

Individual gate dynamics can have a critical influence in genetic circuit failures, as

shown in Chapters 4 and 6. Delays in output production can induce incorrect temporary

unwanted steady-states in GRNs, and therefore it is important to characterize. However,

there has been little effort to standardize characterization experiments and parametrization

for delays in genetic parts [152]. However, to accurately predict genetic circuit failures

using dynamic modeling, these parameter values must be obtained, using characterization

and parametrization workflows as proposed in earlier sections.

7.1.2 Noise Simulations

Sources of variability that have an effect on a GRN’s output can also have an effect

on genetic circuit failures. Chapter 5 explores some of these interactions. However,

a more in-depth analysis of the relative effect and magnitude of extrinsic and intrinsic

sources of noise for GRNs is appropriate for when the robustness of a genetic circuit is

being considered for OTLC applications. The following subsections will describe some

advantages of noise modeling.

7.1.2.1 Parametric Sensitivity Analysis

A parametric sensitivity analysis (PSA) analyses how changes in the output of a model

can be appropriated to different parameter values with a wide range of applications for

systems biology. The reasons for performing a PSA may vary from the determination

of which parameters require additional research at the stage of model calibration and

identification, to analysis of the robustness of a circuit and the model results, to a reduction

or abstraction of the model via the identification of the parameters that are not relevant for

its dynamics [38]. This is useful not only during the design process of a circuit, but also

on the iterative build/test/scale process workflow once a genetic circuit is designed. It

can help researchers learn which genetic gates need a bigger difference in the ON/OFF

promoter activity, or which gates need more isolation/stability from the environment, to

identify model predictions that are inconsistent with experimental data, suggesting novel

experimentation to either validate or falsify a model and many other uses [88].

Adding noise models to dynamic GRN models can increase the number of parameter

values on which one can perform a PSA. For example, a stochastic model would also

120

allow one to implement a sensitivity analysis of the kinetic model [37, 38, 65, 73, 105], which

would allow one to systematically study the dependence of the quantities of interest on the

parameters that define the model and the initial conditions in which it is simulated. The

automated model generator of this work could be adapted to have the option to perform

a PSA on the automatically generated stochastic model.

7.1.2.2 Glitch Propensity

An automatically generated stochastic model can also allow one to calculate the prob-

ability of certain states or dynamic behavior, running the analysis multiple times and

computing the probability from the results. In this dissertation, we analyzed genetic

circuit failures using the deterministic-continuous approach of an Ordinary Differential

Equation (ODE) model analysis, adding variability as extrinsic noise for each simulation

run. However, since the parameter values of the noise models used are unknown, the

glitch propensities obtained are relative, and do not necessarily provide an actual failure

percentage. However, with analysis of a stochastic model of the same circuits, using

both extrinsic and intrinsic noise modeling and characterized parameter values, we could

compute the probabilities of each possible glitch behavior and have the automated model

generator report these probabilities. In this way, anyone using this model generator can

have an idea of the risks of this unwanted switching behavior happening and determine

if they need to restrict the allowed input changes to the circuit to make certain that the

glitching behavior does not occur.

7.1.2.3 Circuit Performance or Robustness

Circuit performance can be thought of as the capacity of a circuit to reproduce faith-

fully or successfully the truth table. There are three essential factors that determine the

performance of a circuit, which are the extent that the high and low output signal of each

genetic gate can be practically distinguished, and the transient dynamics after changes in

the inputs that may produce incorrect results [100, 104], and the effect of noise on a GRN’s

output.

This dissertation simulates an extrinsic noise model by generating normal-distributed

parameter values on which the model parameters were drawn from on each run. However,

the magnitude of the extrinsic noise model was fixed for all simulations (see Chapter 5).

121

Without needing the verified noise sources and magnitudes for each gate, a researcher

could vary, for each simulation, the simulated intrinsic and/or extrinsic noise for each

reaction, in an effort to determine the sensitivity of a GRN’s output to noise. This could

serve as a measurement of a circuit’s robustness or performance.

The automated model generator of this work could be expanded to calculate a pre-

dicted circuit performance. This metric could be based solely on a statistical analysis of the

difference between the predicted steady-state output and experimental results. Marchisio

et al. [100, 104] propose the difference of the minimal and maximal output at steady-state

for each gate as a main parameter to quantify gate and circuit performance. Whichever

method is preferred, a report could be provided as soon as the automated model generator

produces the dynamic model, so as to help the user in the design process of a genetic

circuit.

REFERENCES

[1] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss. Synthetic biology: New
engineering rules for an emerging discipline. Mol. Syst. Biol., 2(1):205–211, 2006.

[2] E. Appleton, C. Madsen, N. Roehner, and D. Densmore. Design automation in
synthetic biology. Cold Spring Harbor Perspect. Biol., 9(4):A023978, 2017.

[3] G. Baldwin, T. Bayer, R. Dickinson, T. Ellis, P. S. Freemont, R. I. Kitney, K. M. Polizzi,
and G.-B. Stan, editors. Synthetic biology: A primer. Imperial College Press; World
Scientific Publishing Co. Pte. Ltd, Hackensack, NJ, 2016.

[4] V. Bartoli, G. A. Meaker, M. di Bernardo, and T. E. Gorochowski. Tunable genetic de-
vices through simultaneous control of transcription and translation. Nat. Commun.,
11(1):2095, 2020.

[5] M. Bates, A. J. Berliner, J. Lachoff, P. R. Jaschke, and E. S. Groban. Wet Lab Accelerator:
A web-based application democratizing laboratory automation for synthetic biology.
ACS Synth. Biol., 6(1):167–171, 2017.

[6] J. Beal. Biochemical complexity drives log-normal variation in genetic expression.
Eng. Biol., 1(1):55–60, 2017.

[7] M. R. Bennett, D. Volfson, L. Tsimring, and J. Hasty. Transient dynamics of genetic
regulatory networks. Biophys. J., 92(10):3501–3512, 2007.

[8] F. T. Bergmann, R. Adams, S. Moodie, J. Cooper, M. Glont, M. Golebiewski,
M. Hucka, C. Laibe, A. K. Miller, D. P. Nickerson, B. G. Olivier, N. Rodriguez,
H. M. Sauro, M. Scharm, S. Soiland-Reyes, D. Waltemath, F. Yvon, and N. Le Novère.
COMBINE archive and OMEX format: One file to share all information to reproduce
a modeling project. BMC Bioinform., 15(1):369, 2014.

[9] J. A. Bernstein, A. B. Khodursky, P.-H. Lin, S. Lin-Chao, and S. N. Cohen. Global
analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution
using two-color fluorescent DNA microarrays. PNAS, 99(15):9697–9702, 2002.

[10] C. R. Boehm and R. Bock. Recent advances and current challenges in synthetic
biology of the plastid genetic system and metabolism. Plant Physiol., 179(3):794–802,
2019.

[11] H. Bolouri. Computational modelling of gene regulatory networks – A primer. Imperial
College Press, London, 2008.

[12] A. E. Bordoy, N. J. O’Connor, and A. Chatterjee. Construction of two-input logic
gates using transcriptional interference. ACS Synth. Biol., 8(10):2428–2441, 2019.

123

[13] O. Borkowski, F. Ceroni, G.-B. Stan, and T. Ellis. Overloaded and stressed: Whole-
cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol., 33:123–130,
2016.

[14] B. J. Bornstein, S. M. Keating, A. Jouraku, and M. Hucka. LibSBML: An API library
for SBML. Bioinformatics, 24(6):880–881, 2008.

[15] F. Boulier, M. Lefranc, F. Lemaire, and P.-E. Morant. Applying a rigorous quasi-
steady state approximation method for proving the absence of oscillations in mod-
els of genetic circuits. In K. Horimoto, G. Regensburger, M. Rosenkranz, and
H. Yoshida, editors, Algebraic biology, pages 56–64. Springer Berlin Heidelberg,
Berlin, 2008.

[16] R. W. Bradley, M. Buck, and B. Wang. Tools and principles for microbial gene circuit
engineering. J. Mol. Biol., 428(5, Part B):862–888, 2016.

[17] J. G. Bredeson and P. T. Hulina. Elimination of static and dynamic hazards for multi-
ple input changes in combinational switching circuits. Inform. Contr., 20(2):114–124,
1972.

[18] S. M. Brooks and H. S. Alper. Applications, challenges, and needs for employing
synthetic biology beyond the lab. Nat. Commun., 12(1):1390, 2021.

[19] J. A. N. Brophy and C. A. Voigt. Principles of genetic circuit design. Nat. Methods,
11(5):508–520, 2014.

[20] L. Buecherl, R. Roberts, P. Fontanarrosa, P. J. Thomas, J. Mante, Z. Zhang, and C. J.
Myers. Stochastic hazard analysis of genetic circuits in iBioSim and STAMINA. ACS
Synth. Biol., 10(100:2532–2540, 2021.

[21] B. P. Callen, K. E. Shearwin, and J. B. Egan. Transcriptional interference between
convergent promoters caused by elongation over the promoter. Mol. Cell, 14(5):647–
656, 2004.

[22] D. E. Cameron, C. J. Bashor, and J. J. Collins. A brief history of synthetic biology.
Nat. Rev. Microbiol., 12(5):381–390, 2014.

[23] B. Canton, A. Labno, and D. Endy. Refinement and standardization of synthetic
biological parts and devices. Nat. Biotechnol., 26(7):787–793, 2008.

[24] S. Cardinale and A. P. Arkin. Contextualizing context for synthetic biology – Iden-
tifying causes of failure of synthetic biological systems. Biotechnol. J., 7(7):856–866,
2012.

[25] D. Chandran, W. Copeland, S. Sleight, and H. Sauro. Mathematical modeling and
synthetic biology. Drug Dis. Today Dis. Models, 5(4):299–309, 2008.

[26] C. Chaouiya, D. Bérenguier, S. M. Keating, A. Naldi, M. P. van Iersel, N. Rodriguez,
A. Dräger, F. B ̈uchel, T. Cokelaer, B. Kowal, B. Wicks, E. Gonçalves, J. Dorier, M. Page,
P. T. Monteiro, A. von Kamp, I. Xenarios, H. de Jong, M. Hucka, S. Klamt, D. Thieffry,
N. Le Novère, J. Saez-Rodriguez, and T. Helikar. SBML qualitative models: A model
representation format and infrastructure to foster interactions between qualitative
modelling formalisms and tools. BMC Syst. Biol., 7(1):135, 2013.

124

[27] V. Chelliah, C. Laibe, and N. L. Novère. BioModels database: A repository of
mathematical models of biological processes. In W. Dubitzky, O. Wolkenhauer, K.-H.
Cho, and H. Yokota, editors, Encyclopedia of systems biology, pages 134–138. Springer
New York, New York, NY, 2013.

[28] Y.-J. Chen, P. Liu, A. A. K. Nielsen, J. A. N. Brophy, K. Clancy, T. Peterson, and C. A.
Voigt. Characterization of 582 natural and synthetic terminators and quantification
of their design constraints. Nat. Methods, 10(7):659–664, 2013.

[29] K. Clancy and C. A. Voigt. Programming cells: Towards an automated ‘genetic
compiler’. Curr. Opin. Biotech., 21(4):572–581, 2010.

[30] R. S. Cox, C. Madsen, J. McLaughlin, T. Nguyen, N. Roehner, B. Bartley, S. Bhatia,
M. Bissell, K. Clancy, T. Gorochowski, R. Gr ̈unberg, A. Luna, N. N. Le, M. Pocock,
H. Sauro, J. T. Sexton, G.-B. Stan, J. J. Tabor, C. A. Voigt, Z. Zundel, C. Myers, J. Beal,
and A. Wipat. Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0.
J. Integr. Bioinform., 15(1):20170074, 2018.

[31] N. Crook and H. S. Alper. Model-based design of synthetic, biological systems.
Chem. Eng. Sci., 103:2–11, 2013.

[32] B. Cummins, T. Gedeon, S. Harker, and K. Mischaikow. Database of Dynamic
Signatures Generated by Regulatory Networks (DSGRN). In J. Feret and H. Koeppl,
editors, Computational methods in systems biology, pages 300–308, Springer
International Publishing, Cham, Switzerland, 2017.

[33] B. Cummins, T. Gedeon, S. Harker, and K. Mischaikow. DSGRN: Examining the
Dynamics of families of logical models. Front. Physiol., 9:549, 2018.

[34] B. Cummins, T. Gedeon, S. Harker, K. Mischaikow, and K. Mok. Combinatorial
representation of parameter space for switching networks. SIAM J. Appl. Dyn. Syst.,
15(4):2176–2212, 2016.

[35] B. Cummins, R. C. Moseley, A. Deckard, M. Weston, G. Zheng, D. Bryce, S.
Gopaulakrishnan, T. Johnson, J. Nowak, M. Gameiro, T. Gedeon, K. Mischaikow, M.
Vaughn, N. I. Gaffney, J. Urrutia, R. P. Goldman, J. Beal, B. Bartley, T. T. Nguyen,
N. Roehner, T. Mitchell, J. D. Vrana, K. J. Clowers, N. Maheshri, D. Becker, E. Mikhalev, V.
Biggers, T. R. Higa, L. A. Mosqueda, and S. B. Haase. Computational prediction of
synthetic circuit function across growth conditions, June 2022. bioRxiv: 2022.06.13.495701.

[36] B. Cummins, J. Vrana, R. C. Moseley, H. Eramian, A. Deckard, P. Fontanarrosa,
D. Bryce, M. Weston, G. Zheng, J. Nowak, F. C. Motta, M. Eslami, K. L. Johnson,
R. P. Goldman, C. J. Myers, T. Johnson, M. W. Vaughn, N. Gaffney, J. Urrutia,
S. Gopaulakrishnan, V. Biggers, T. R. Higa, L. A. Mosqueda, M. Gameiro, T. Gedeon,
K. Mischaikow, J. Beal, B. Bartley, T. Mitchell, T. T. Nguyen, N. Roehner, and S. B.
Haase. Robustness and reproducibility of simple and complex synthetic logic circuit
designs using a DBTL loop, June 2022. bioRxiv: 2022.06.10.495560.

[37] D. K. Dacol and H. Rabitz. Sensitivity analysis of stochastic kinetic models. J. Math.
Phys., 25(9):2716–2727, 1984.

125

[38] C. Damiani, A. Filisetti, A. Graudenzi, and P. Lecca. Parameter sensitivity analysis
of stochastic models: Application to catalytic reaction networks. Comput. Biol. Chem.,
42:5–17, 2013.

[39] N. Davidsohn, J. Beal, S. Kiani, A. Adler, F. Yaman, Y. Li, Z. Xie, and R. Weiss. Accu-
rate predictions of genetic circuit behavior from part characterization and modular
composition. ACS Synth. Biol., 4(6):673–681, 2015.

[40] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature
review. J. Comp. Biol., 9(1):67–103, 2002.

[41] T. Decoene, B. D. Paepe, J. Maertens, P. Coussement, G. Peters, S. L. D. Maeseneire,
and M. D. Mey. Standardization in synthetic biology: An engineering discipline
coming of age. Crit. Rev. Biotechnol., 38(5):647–656, 2018.

[42] R. W. Doran. The gray code. J. UCS, 13(11):1573–1597, 2007.

[43] K. E. Dray, J. J. Muldoon, N. M. Mangan, N. Bagheri, and J. N. Leonard. GAMES: A
dynamic model development workflow for rigorous characterization of synthetic
genetic systems. ACS Synth. Biol., 11(2):1009–1029, 2022.

[44] D. A. Drubin, J. C. Way, and P. A. Silver. Designing biological systems. Genes Dev.,
21(3):242–254, 2007.

[45] E. B. Eichelberger. Hazard detection in combinational and sequential switching
circuits. IBM J. Res. Dev., 9(2):90–99, 1965.

[46] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403(6767):335–338, 2000.

[47] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene expression
in a single cell. Science, 297(5584):1183–1186, 2002.

[48] D. Endy. Foundations for engineering biology. Nature, 438(7067):449–453, 2005.

[49] V. Epshtein, F. Toulmé, A. R. Rahmouni, S. Borukhov, and E. Nudler. Transcrip-
tion through the roadblocks: The role of RNA polymerase cooperation. EMBO J.,
22(18):4719–4727, 2003.

[50] M. Eslami, A. E. Borujeni, H. Doosthosseini, M. Vaughn, H. Eramian, K. Clowers,
D. B. Gordon, N. Gaffney, M. Weston, D. Becker, Y. Dorfan, J. Fonner, J. Urrutia,
C. Corbet, G. Zheng, J. Stubbs, A. Cristofaro, P. Maschhoff, J. Singer, C. A. Voigt, and
E. Yeung. Prediction of whole-cell transcriptional response with machine learning,
May 2021, bioRxiv: 2021.04.30.442142.

[51] A. Espah Borujeni, J. Zhang, H. Doosthosseini, A. A. K. Nielsen, and C. A. Voigt. Ge-
netic circuit characterization by inferring RNA polymerase movement and ribosome
usage. Nat. Commun., 11(1):5001, 2020.

[52] R. P. Goldman et al. Highly-automated, high-throughput replication of yeast-based
logic circuit design assessments, June 2022, bioRxiv: 2022.05.31.493627.

126

[53] E. Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and
their application to some heat transfer problems. Technical Report NASA TR R-315,
National Aeronautics and Space Administration, Washington, DC, July 1969.

[54] P. Fontanarrosa. Automated generation of dynamic models for genetic regulatory
networks. Master’s Thesis, University of Utah, Salt Lake City, Utah, Dec. 2019.

[55] P. Fontanarrosa, H. Doosthosseini, A. Espah Borujeni, Y. Dorfan, C. A. Voigt, and
C. J. Myers. Genetic circuit dynamics: Hazard and glitch analysis. ACS Synth.
Biol., 9(9):2324–2338, 2020.

[56] M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn, C. A. Rodriguez,
N. Roehner, M. L. Wilson, L. Adam, J. C. Anderson, B. A. Bartley, J. Beal, D. Chan-
dran, J. Chen, D. Densmore, D. Endy, R. Gr ̈unberg, J. Hallinan, N. J. Hillson, J. D.
Johnson, A. Kuchinsky, M. Lux, G. Misirli, J. Peccoud, H. A. Plahar, E. Sirin, G.-B.
Stan, A. Villalobos, A. Wipat, J. H. Gennari, C. J. Myers, and H. M. Sauro. The
Synthetic Biology Open Language (SBOL) provides a community standard for com-
municating designs in synthetic biology. Nat. Biotechnol., 32(6):545–550, 2014.

[57] M. Gameiro, T. Gedeon, S. Kepley, and K. Mischaikow. Rational design of complex
phenotype via network models. PLoS Comput. Biol., 17(7):e1009189, 2021.

[58] M. W. Gander, J. D. Vrana, W. E. Voje, J. M. Carothers, and E. Klavins. Digital logic
circuits in yeast with CRISPR-dCas9 NOR gates. Nat. Commun., 8:15459, 2017.

[59] M. W. Gander, J. D. Vrana, W. E. Voje, J. M. Carothers, and E. Klavins. Digital logic
circuits in yeast with CRISPR-dCas9 NOR gates. Nat. Commun., 8:15459, 2017.

[60] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle switch
in Escherichia coli. Nature, 403(6767):339–342, 2000.

[61] K. L. Garner. Principles of synthetic biology. Essays Biochem., 65(5):791–811, 2021.

[62] S. Ghaemmaghami, W.-K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure,
E. K. O’Shea, and J. S. Weissman. Global analysis of protein expression in yeast.
Nature, 425(6959):737, Oct. 2003.

[63] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81(25):2340–2361, Dec. 1977.

[64] T. E. Gorochowski, A. E. Borujeni, Y. Park, A. A. Nielsen, J. Zhang, B. S. Der, D. B.
Gordon, and C. A. Voigt. Genetic circuit characterization and debugging using
RNA-seq. Mol. Syst. Biol., 13(11):952, Nov. 2017.

[65] A. Gupta and M. Khammash. An efficient and unbiased method for sensitivity
analysis of stochastic reaction networks. J. R. Soc. Interface, 11(101):20140979, 2014.

[66] R. Hackbart and D. Dietmeyer. The avoidance and elimination of function hazards
in asynchronous sequential circuits. IEEE Trans. Comput., C-20(2):184–189, 1971.

127

[67] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D. Keasling. Design,
implementation and practice of JBEI-ICE: An open source biological part registry
platform and tools. Nucleic Acids Res., 40(18):e141–e141, Oct. 2012.

[68] A. Hasnain, S. Sinha, Y. Dorfan, A. E. Borujeni, Y. Park, P. Maschhoff, U. Saxena,
J. Urrutia, N. Gaffney, D. Becker, A. Siba, N. Maheshri, B. Gordon, C. Voigt, and
E. Yeung. A data-driven method for quantifying the impact of a genetic circuit on
its host. In 2019 IEEE Biomed. Circ. Syst. Conf., BioCAS ‘19, pages 1–4, Nara, Japan,
2019. IEEE.

[69] E. C. Hayden. Synthetic biology called to order: Meeting launches effort to develop
standards for fast-moving field. Nature, 520(7546):141–143, 2015.

[70] M. Heinemann and S. Panke. Synthetic biology—Putting engineering into biology.
Bioinformatics, 22(22):2790–2799, 2006.

[71] V. Hsiao, A. Swaminathan, and R. M. Murray. Control theory for synthetic biology:
Recent advances in system characterization, control design, and controller imple-
mentation for synthetic biology. IEEE Control Syst. Mag., 38(3):32–62, 2018.

[72] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr,
P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novère,
L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R.
Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D.
Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems
biology markup language (SBML): A medium for representation and exchange of
biochemical network models. Bioinformatics, 19(4):524–531, 2003.

[73] A. D. Irving. Stochastic sensitivity analysis. Appl. Math. Model., 16(1):3–15, 1992.

[74] M. M. Jessop-Fabre and N. Sonnenschein. Improving reproducibility in synthetic
biology. Front. Bioeng. Biotechnol., 7:18, 2019.

[75] T. S. Jones, S. M. D. Oliveira, C. J. Myers, C. A. Voigt, and D. Densmore. Genetic
circuit design automation with Cello 2.0. Nat. Protoc, 17:1097–1113, 2022.

[76] E. M. Judd, M. T. Laub, and H. H. McAdams. Toggles and oscillators: New genetic
circuit designs. BioEssays, 22(6):507–509, 2000.

[77] G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks.
Nat. Rev. Mol. Cell Biol., 9(10):770–780, 2008.

[78] M. Karnaugh. The map method for synthesis of combinational logic circuits. Trans.
Am. Inst. Electr. Eng. Part 1, 72(5):593–599, 1953.

[79] Y. N. Kaznessis. Models for synthetic biology. BMC Syst. Biol., 1(1):47, 2007.

[80] J. R. Kelly, A. J. Rubin, J. H. Davis, C. M. Ajo-Franklin, J. Cumbers, M. J. Czar,
K. de Mora, A. L. Glieberman, D. D. Monie, and D. Endy. Measuring the activity
of BioBrick promoters using an in vivo reference standard. J. Biol. Eng., 3(1):4, 2009.

128

[81] E. Klipp, W. Liebermeister, A. Helbig, A. Kowald, and J. Schaber. Systems biology
standards—The community speaks. Nat. Biotechnol., 25:390–391, 2007.

[82] T. Knight. DARPA BioComp plasmid distribution 1.00 of standard Biobrick com-
ponents. Technical Report, Massachusetts Institute of Technology Artificial
Intelligence Lab, Cambridge, MA, May 2002.

[83] T. Knight. Idempotent vector design for standard assembly of biobricks. Techincal
Report, Massachusetts Institute of Technology Artificial Intelligence Lab,
Cambridge, MA, Jan. 2003.

[84] S. Kosuri, D. B. Goodman, G. Cambray, V. K. Mutalik, Y. Gao, A. P. Arkin, D. Endy,
and G. M. Church. Composability of regulatory sequences controlling transcription
and translation in Escherichia coli. PNAS, 110(34):14024–14029, 2013.

[85] R. Kwok. Five hard truths for synthetic biology. Nature, 463(7279):288–290, 2010.

[86] N. Le Novère, M. Hucka, N. Anwar, G. D. Bader, E. Demir, S. Moodie, and
A. Sorokin. Meeting report from the first meetings of the Computational Modeling
in Biology Network (COMBINE). Stand. Genomic. Sci., 5(2):230–242, 2011.

[87] P. L. Lee and B. N. Miles. Autoprotocol driven robotic cloud lab enables system-
atic machine learning approaches to designing, optimizing, and discovering novel
biological synthesis pathways. In SIMB Annu. Meeting, SIMB 2018, Chicago, IL, 2018.

[88] Y.-S. Lee, O. Z. Liu, H. S. Hwang, B. C. Knollmann, and E. A. Sobie. Parameter sen-
sitivity analysis of stochastic models provides insights into cardiac calcium sparks.
Biophys. J., 104(5):1142–1150, 2013.

[89] I. Lestas, J. Paulsson, N. E. Ross, and G. Vinnicombe. Noise in gene regulatory
networks. IEEE Trans. Autom. Control, 53:189–200, 2008.

[90] P. Li, J. O. Dada, D. Jameson, I. Spasic, N. Swainston, K. Carroll, W. Dunn, F. Khan,
N. Malys, H. L. Messiha, E. Simeonidis, D. Weichart, C. Winder, J. Wishart, D. S.
Broomhead, C. A. Goble, S. J. Gaskell, D. B. Kell, H. V. Westerhoff, P. Mendes, and
N. W. Paton. Systematic integration of experimental data and models in systems
biology. BMC Bioinf., 11:582, 2010.

[91] Z. Li and Q. Yang. Systems and synthetic biology approaches in understanding
biological oscillators. Quantit. Biol., 6(1):1–14, 2018.

[92] W. A. Lim. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol.,
11(6):393–403, 2010.

[93] G. Linshiz, N. Stawski, S. Poust, C. Bi, J. D. Keasling, and N. J. Hillson. PaR-PaR
laboratory automation platform. ACS Synth. Biol., 2(5):216–222, 2013.

[94] T. K. Lu, A. S. Khalil, and J. J. Collins. Next-generation synthetic gene networks.
Nat. Biotechnol., 27(12):1139–1150, 2009.

[95] E. Lukas, R. Nicolas, J. Nick, C. Vijayalakshmi, L. Camille, L. Chen, and L. N.
Nicolas. Designing and encoding models for synthetic biology. J. R. Soc. Interface,
6:S405–S417, 2009.

129

[96] M. W. Lux, B. W. Bramlett, D. A. Ball, and J. Peccoud. Genetic design automation:
Engineering fantasy or scientific renewal? Trends Biotechnol., 30(2):120–126, 2012.

[97] J. T. MacDonald, C. Barnes, R. I. Kitney, P. S. Freemont, and G.-B. V. Stan. Compu-
tational design approaches and tools for synthetic biology. Integr. Biol., 3(2):97–108,
2011.

[98] C. Madsen, C. J. Myers, T. Patterson, N. Roehner, J. T. Stevens, and C. Winstead.
Design and test of genetic circuits using iBioSim. IEEE Des. Test Comput., 29(3):32–39,
2012.

[99] J. Mante, Y. Hao, J. Jett, U. Joshi, K. Keating, X. Lu, G. Nakum, N. E. Rodriguez,
J. Tang, L. Terry, X. Wu, E. Yu, J. S. Downie, B. T. McInnes, M. H. Nguyen, B. Sepul-
vado, E. M. Young, and C. J. Myers. Synthetic biology knowledge system. ACS
Synth. Biol., 10(9):2276–2285, 2021.

[100] M. A. Marchisio. Parts & Pools: A framework for modular design of synthetic gene
circuits. Front. Bioeng. Biotechnol., 2:42, 2014.

[101] M. A. Marchisio, editor. Computational methods in synthetic biology. Humana Press,
New York, NY, 2015.

[102] M. A. Marchisio. Introduction in synthetic biology: About modeling, computation, and
circuit design. Springer Berlin Heidelberg, New York, NY, 2018.

[103] M. A. Marchisio and J. Stelling. Computational design of synthetic gene circuits with
composable parts. Bioinformatics, 24(17):1903–1910, 2008.

[104] M. A. Marchisio and J. Stelling. Automatic design of digital synthetic gene circuits.
PLoS Comput. Biol., 7(2):e1001083, 2011.

[105] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner. A methodology for perform-
ing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol.,
254(1):178–196, 2008.

[106] A. Mazo, J. W. Hodgson, S. Petruk, Y. Sedkov, and H. W. Brock. Transcriptional
interference: An unexpected layer of complexity in gene regulation. J. Cell Sci.,
120(16):2755–2761, 2007.

[107] J. A. McLaughlin, C. J. Myers, Z. Zundel, G. Mısırlı, M. Zhang, I. D. Ofiteru, A. Go ñi-
Moreno, and A. Wipat. SynBioHub: A standards-enabled design repository for
synthetic biology. ACS Synth. Biol., 7(2):682–688, 2018.

[108] G. Mısırlı, J. Hallinan, M. Pocock, P. Lord, J. A. McLaughlin, H. Sauro, and A. Wipat.
Data integration and mining for synthetic biology design. ACS Synth. Biol., 5(10):1086–
1097, 2016.

[109] G. Misirli, J. Hallinan, and A. Wipat. Composable modular models for synthetic
biology. ACM J. Emerg. Technol. Comput. Syst., 11(3):22:1–22:19, 2014.

[110] G. Misirli, T. Nguyen, J. A. McLaughlin, P. Vaidyanathan, T. S. Jones, D. Densmore,
C. Myers, and A. Wipat. A computational workflow for the automated generation of
models of genetic designs. ACS Synth. Biol., 11(2):1548–1559, 2018.

130

[111] G. Misirli, A. Wipat, J. Mullen, K. James, M. Pocock, W. Smith, N. Allenby, and
J. S. Hallinan. BacillOndex: An integrated data resource for systems and synthetic
biology. J. Integr. Bioinform., 10(2):224, 2013.

[112] T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton, and C. A. Voigt. Genetic programs
constructed from layered logic gates in single cells. Nature, 491(7423):249–253, 2012.

[113] F. Moser, A. E. Borujeni, A. N. Ghodasara, E. Cameron, Y. Park, and C. A. Voigt.
Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol.
Syst. Biol., 14(11):e8605, 2018.

[114] S. Mukherji and A. van Oudenaarden. Synthetic biology: Understanding biological
design from synthetic circuits. Nat. Rev. Genet., 10(12):859–871, 2009.

[115] V. K. Mutalik, J. C. Guimaraes, G. Cambray, C. Lam, M. J. Christoffersen, Q.-A. Mai,
A. B. Tran, M. Paull, J. D. Keasling, A. P. Arkin, and D. Endy. Precise and reliable
gene expression via standard transcription and translation initiation elements. Nat.
Methods, 10(4):354–360, 2013.

[116] V. K. Mutalik, J. C. Guimaraes, G. Cambray, Q.-A. Mai, M. J. Christoffersen, L. Mar-
tin, A. Yu, C. Lam, C. Rodriguez, G. Bennett, J. D. Keasling, D. Endy, and A. P. Arkin.
Quantitative estimation of activity and quality for collections of functional genetic
elements. Nat. Methods, 10(4):347–353, 2013.

[117] V. K. Mutalik, L. Qi, J. C. Guimaraes, J. B. Lucks, and A. P. Arkin. Rationally designed
families of orthogonal RNA regulators of translation. Nat. Chem. Biol., 8(5):447–454,
2012.

[118] C. J. Myers. Asynchronous circuit design. John Wiley & Sons, New York, NY, 2001.

[119] C. J. Myers. Engineering genetic circuits. Chapman and Hall/CRC, Boca Raton, FL,
2016.

[120] C. J. Myers. Computational synthetic biology: Progress and the road ahead. IEEE
Trans. Multi-Scale Comput. Syst., 1(1):19–32, 2015.

[121] C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N.-P. D. Nguyen.
iBioSim: A tool for the analysis and design of genetic circuits. Bioinformatics,
25(21):2848–2849, 2009.

[122] C. J. Myers, J. Beal, T. E. Gorochowski, H. Kuwahara, C. Madsen, J. A. McLaughlin,
G. Mısırlı, T. Nguyen, E. Oberortner, M. Samineni, A. Wipat, M. Zhang, and Z.
Zundel. A standard-enabled workflow for synthetic biology. Biochem. Soc. Trans.,
45(3):793–803, 2017.

[123] N. Nandagopal and M. B. Elowitz. Synthetic biology: Integrated gene circuits.
Science, 333(6047):1244–1248, 2011.

[124] J. A. Nelder and R. Mead. A simplex method for function minimization. Comput.
J., 7(4):308–313, 1965.

131

[125] T. Neupane, C. J. Myers, C. Madsen, H. Zheng, and Z. Zhang. STAMINA: STochastic
Approximate Model-Checker for INfinite-State Analysis. In I. Dillig and S. Tasiran,
editors, Computer aided verification, pages 540–549, Springer International Publishing,
Cham, Switzerland, 2019.

[126] M. Newville, R. Otten, A. Nelson, A. Ingargiola, T. Stensitzki, D. Allan, A. Fox,
F. Carter, Michał, R. Osborn, D. Pustakhod, lneuhaus, S. Weigand, Glenn, C. Deil,
Mark, A. L. R. Hansen, G. Pasquevich, L. Foks, N. Zobrist, O. Frost, A. Beelen,
Stuermer, azelcer, A. Hannum, A. Polloreno, J. H. Nielsen, S. Caldwell, A. Almarza,
and A. Persaud. Lmfit/lmfit-py: 1.0.3. Zenodo, Oct. 2021.

[127] T. Nguyen, T. S. Jones, P. Fontanarrosa, J. V. Mante, Z. Zundel, D. Densmore, and C.
J. Myers. Design of asynchronous genetic circuits. Proc. IEEE, 107(7):1356–1368, 2019.

[128] T. Nguyen, N. Roehner, Z. Zundel, and C. J. Myers. A converter from the systems
biology markup language to the synthetic biology open language. ACS Synth. Biol.,
5(6):479–486, 2016.

[129] A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski,
D. Ross, D. Densmore, and C. A. Voigt. Genetic circuit design automation. Science,
352(6281):aac7341, 2016.

[130] E.-M. Nikolados, A. Y. Weiße, F. Ceroni, and D. A. Oyarz ́un. Growth defects and
loss-of-function in synthetic gene circuits. ACS Synth. Biol., 8(6):1231–1240, 2019.

[131] M. Padidam and Y. Cao. Elimination of transcriptional interference between tan-
dem genes in plant cells. BioTechniques, 31(2):328–334, 2001.

[132] J. Paulsson. Summing up the noise in gene networks. Nature, 427(6973):415–418,
2004.

[133] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.
PNAS, 85(8):2444–2448, 1988.

[134] J. Peccoud. Synthetic biology: Fostering the cyber-biological revolution. Synth. Biol.,
1(1):ysw001, 2016.

[135] I. Phillips and P. Silver. A new biobrick assembly strategy designed for facile protein
engineering. Technical Report, Massachusetts Institute of Technology, Cambridge,
MA, Apr. 2006.

[136] A. Polynikis, S. J. Hogan, and M. di Bernardo. Comparing different ODE modelling
approaches for gene regulatory networks. J. Theor. Biol., 261(4):511–530, 2009.

[137] P. E. M. Purnick and R. Weiss. The second wave of synthetic biology: From modules
to systems. Nat. Rev. Mol. Cell Biol., 10(6):410–422, 2009.

[138] J. M. Raser and E. K. O’Shea. Noise in gene expression: Origins, consequences, and
control. Science, 309(5743):2010–2013, 2005.

[139] R. Roberts, T. Neupane, L. Buecherl, C. J. Myers, and Z. Zhang. STAMINA 2.0:
Improving Scalability of Infinite-State Stochastic Model Checking. In B. Finkbeiner
and T. Wies, editors, Verification, model checking, and abstract interpretation, pages 319–

132

331, Springer International Publishing, Cham, Switerzland, 2022.

[140] N. Roehner, J. Beal, K. Clancy, B. Bartley, G. Misirli, R. Grünberg, E. Oberortner,
M. Pocock, M. Bissell, C. Madsen, T. Nguyen, M. Zhang, Z. Zhang, Z. Zundel,
D. Densmore, J. H. Gennari, A. Wipat, H. M. Sauro, and C. J. Myers. Sharing struc-
ture and function in biological design with SBOL 2.0. ACS Synth. Biol., 5(6):498–506,
2016.

[141] N. Roehner and C. J. Myers. Directed acyclic graph-based technology mapping of
genetic circuit models. ACS Synth. Biol., 3(8):543–555, 2014.

[142] N. Roehner, Z. Zhang, T. Nguyen, and C. J. Myers. Generating systems biology
markup language models from the synthetic biology open language. ACS Synth.
Biol., 4(8):873–879, 2015.

[143] S. Rollié, M. Mangold, and K. Sundmacher. Designing biological systems: Systems
engineering meets synthetic biology. Chem. Eng. Sci., 69(1):1–29, 2012.

[144] A. Sanchez, S. Choubey, and J. Kondev. Stochastic models of transcription: From
single molecules to single cells. Methods, 62(1):13–25, 2013.

[145] M. Santillán. On the use of the Hill functions in mathematical models of gene
regulatory networks. Math. Model. Nat. Phenom., 3(2):85–97, 2008.

[146] T. Schladt, N. Engelmann, E. Kubaczka, C. Hochberger, and H. Koeppl. Automated
design of robust genetic circuits: Structural variants and parameter uncertainty.
ACS Synth. Biol., 10(12):3316–3329, 2021.

[147] T. Schlitt. Approaches to modeling gene regulatory networks: A gentle introduction.
Methods Mol. Biol., 1021:13–35, 2013.

[148] T. Schlitt and A. Brazma. Current approaches to gene regulatory network modelling.
BMC Bioinf., 8(6):S9, 2007.

[149] M. Scott, B. Ingalls, and M. Kærn. Estimations of intrinsic and extrinsic noise in
models of nonlinear genetic networks. Chaos, 16(2):026107, 2006.

[150] K. E. Shearwin, B. P. Callen, and J. B. Egan. Transcriptional interference – A crash
course. Trends Genet., 21(6):339–345, 2005.

[151] R. P. Shetty, D. Endy, and T. F. Knight. Engineering BioBrick vectors from BioBrick
parts. J. Biol. Eng., 2(1):5, 2008.

[152] J. Shin, S. Zhang, B. S. Der, A. A. Nielsen, and C. A. Voigt. Programming Escherichia
coli to function as a digital display. Mol. Syst. Biol., 16(3):e9401, 2020.

[153] A. Singh and M. Soltani. Quantifying intrinsic and extrinsic variability in stochastic
gene expression models. PLoS One, 8(12):e84301, 2013.

[154] A. L. Slusarczyk, A. Lin, and R. Weiss. Foundations for the design and implementa-
tion of synthetic genetic circuits. Nat. Rev. Genet., 13(6):406–420, 2012.

133

[155] K. Sneppen, I. B. Dodd, K. E. Shearwin, A. C. Palmer, R. A. Schubert, B. P. Callen,
and J. B. Egan. A mathematical model for transcriptional interference by RNA
polymerase traffic in Escherichia coli. J. Mol. Biol., 346(2):399–409, 2005.

[156] D. Sprinzak and M. B. Elowitz. Reconstruction of genetic circuits. Nature,
438(7067):443, 2005.

[157] B. C. Stanton, A. A. K. Nielsen, A. Tamsir, K. Clancy, T. Peterson, and C. A. Voigt.
Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem.
Biol., 10(2):99–105, 2014.

[158] P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions to
stochasticity in gene expression. PNAS, 99(20):12795–12800, 2002.

[159] A. Tamsir, J. J. Tabor, and C. A. Voigt. Robust multicellular computing using
genetically encoded NOR gates and chemical ‘wires’. Nature, 469(7329):212–215,
2011.

[160] M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory networks.
PNAS, 98(15):8614–8619, 2001.

[161] J. J. Tyson, K. C. Chen, and B. Novak. Sniffers, buzzers, toggles and blinkers:
Dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.,
15(2):221–231, 2003.

[162] J. L. Villanueva-Ca ñas, E. Gonzalez-Roca, A. G. Unanue, E. Titos, M. J. M. Yoldi, A.
V. Gómez, and J. A. P. Butillé. ROBOCOV: An affordable open-source robotic
platform for SARS-CoV-2 testing by RT-qPCR, bioRxiv: 2020.06.11.140285, June 2020.

[163] C. A. Voigt. Genetic parts to program bacteria. Curr. Opin. Biotech., 17(5):548–557,
2006.

[164] D. I. Walsh III, M. Pavan, L. Ortiz, S. Wick, J. Bobrow, N. J. Guido, S. Leinicke, D. Fu,
S. Pandit, L. Qin, et al. Standardizing automated DNA assembly: Best practices,
metrics, and protocols using robots. SLAS Tecnol., 24(3):282–290, 2019.

[165] D. Waltemath, R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K. Miller, I. I.
Moraru, D. Nickerson, S. Sahle, J. L. Snoep, and N. Le Novère. Reproducible compu-
tational biology experiments with SED-ML - The simulation experiment description
markup language. BMC Syst. Biol., 5(1):198, 2011.

[166] D. Waltemath, R. Henkel, F. Winter, and O. Wolkenhauer. Reproducibility of model-
based results in systems biology. In A. Prokop and B. Csukás, editors, Systems
biology: Integrative biology and simulation tools, pages 301–320. Springer Netherlands,
Dordrecht, 2013.

[167] B. Wang, R. I. Kitney, N. Joly, and M. Buck. Engineering modular and orthogonal
genetic logic gates for robust digital-like synthetic biology. Nat. Commun., 2:508,
2011.

[168] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: A revolutionary tool for transcrip-
tomics. Nat. Rev. Genet., 10(1):57–63, 2009.

134

[169] L. Watanabe, T. Nguyen, M. Zhang, Z. Zundel, Z. Zhang, C. Madsen, N. Roehner,
and C. Myers. iBioSim 3: A tool for model-based genetic circuit design. ACS Synth.
Biol., 8(7):1560–1563, 2018.

[170] Y. Xiang, N. Dalchau, and B. Wang. Scaling up genetic circuit design for cellular
computing: Advances and prospects. Nat. Comput., 17(4):833–853, 2018.

[171] E. Yeung, J. Kim, Y. Yuan, J. Gonçalves, and R. M. Murray. Data-driven network
models for genetic circuits from time-series data with incomplete measurements. J.
R. Soc. Interface, 18(182):20210413, 2021.

[172] E. Yeung, S. Kundu, and N. Hodas. Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems. In 2019 Am. Cont. Conf.,
ACC ‘19, pages 4832–4839, Philadelphia, PA, 2019. IEEE.

[173] R. A. Young and J. A. Steitz. Tandem promoters direct E. coli ribosomal RNA
synthesis. Cell, 17(1):225–234, 1979.

[174] M. Zhang, J. A. McLaughlin, A. Wipat, and C. J. Myers. SBOLDesigner 2: An
intuitive tool for structural genetic design. ACS Synth. Biol., 6(7):1150–1160,
2017.

[175] S. Zilberzwige-Tal, P. Fontanarrosa, D. Bychenko, Y. Dorfan, E. Gazit, and C. J. My-
ers. Investigating and modeling the factors that affect genetic circuit performance,
bioRxiv: 2022.05.16.492150, May 2022.

	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	1. INTRODUCTION
	1.1 Synthetic Biology’s Promise
	1.2 Real Life Applications and Circuit Failures
	1.3 Modeling
	1.4 Standards
	1.5 Contributions
	1.6 Dissertation Overview

	2. BACKGROUND
	2.1 Synthetic Biology
	2.1.1 Genetic Regulatory Networks
	2.1.2 Genetic Parts

	2.2 Genetic Circuit Failures
	2.2.1 Combinational Circuit Hazards
	2.2.2 Stochasticity and Noise

	2.3 Modeling Genetic Regulatory Networks
	2.3.1 Law of Mass Action
	2.3.2 Kinetic-Based Models
	2.3.3 Hill Equations
	2.3.4 Steady-State Modeling
	2.3.5 Dynamic Modeling
	2.3.6 Stochastic Models
	2.3.7 Modeling Intrinsic and Extrinsic Noise

	2.4 Standards
	2.4.1 Synthetic Biology Open Language (SBOL)
	2.4.2 Systems Biology Markup Language (SBML)
	2.4.3 Simulation Experiment Description Language (SED-ML)

	2.5 Online Repositories
	2.5.1 SynBioHub
	2.5.2 BioModels

	2.6 Genetic Design Automation Tools
	2.6.1 Cello
	2.6.1.1 Cello Gates and Parameters
	2.6.1.2 SBOL Specification
	2.6.1.3 Cello’s Circuit Performance Prediction

	2.6.2 iBioSim
	2.6.2.1 Virtual Parts Repository (VPR)
	2.6.2.2 SBOL to SBML Converter

	3. EXPANDING AUTOMATED MODEL GENERATION AND SIMULATION INIBIOSIM
	3.1 Review of Previous Model Generation Automations
	3.2 Dynamic Modeling
	3.3 Roadblocking
	3.4 Automation of DBTS

	4. HAZARD ANALYSIS AND CIRCUIT FAILURES
	4.1 Hazards
	4.1.1 Function Hazards
	4.1.2 Logic Hazards

	4.2 Hold-State Failures and Set-Up Glitches
	4.3 Proposed Hazard Analysis

	5. SIMULATING NOISE FOR GENETIC REGULATORY NETWORKS IN IBIOSIM
	5.1 Simulating Extrinsic Noise
	5.2 Model Selection and Parameter Values
	5.3 Considerations/Assumptions
	5.4 Results
	5.5 Discussion

	6. DESIGNING AND REDESIGNING GENETIC CIRCUITS TO AVOID FAILURE
	6.1 DBTS Loop
	6.1.1 Design of a Test Case GRN: The Delay Circuit
	6.1.2 Parametrization of Gates
	6.1.2.1 Hill Function Parameters
	6.1.2.2 Tau (τ) Parameters

	6.1.3 DBTS Workflow

	6.2 DSGRN
	6.2.1 Noise Models for DSGRN
	6.2.2 Hazard Analysis for Circuit Failure Predictions
	6.2.3 Parameterization of DSGRN Gates

	6.3 Concluding Remarks

	7. CONCLUSIONS AND FUTURE WORK
	7.1 Future Work
	7.1.1 Test-Scale-Design Gap
	7.1.1.1 Experimental Data
	7.1.1.2 Characterization Experiments
	7.1.1.3 Parametrization
	7.1.1.4 Gate Dynamics

	7.1.2 Noise Simulations
	7.1.2.1 Parametric Sensitivity Analysis
	7.1.2.2 Glitch Propensity
	7.1.2.3 Circuit Performance or Robustness

	REFERENCES

