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ABSTRACT

Synthetic biology is an engineering discipline in which biological components are as-

sembled to form devices with user-defined functions. As in any engineering discipline,

modeling is a big part of the design process, since it helps to predict, control, and debug

systems in an efficient manner. Systems biology has always been concerned with dynamic

models, and a recent increase in high-throughput of experimental data has made it es-

sential to develop dynamic models that can be used for an iterative learning process in a

design/build/test workflow.

In this thesis work, an automated model generator is created to automatically gener-

ate dynamic models for genetic regulatory networks, implemented in the genetic design

automation tool, iBioSim. This automated model generator uses parameters stored at an

online parts repository and encodes the mathematical models it generates using Systems

Biology Markup Language. The automated model generator is then used to model and

simulate genetic circuits created with the design environment referred to as Cello. The

simulation of the mathematical models produces a dynamical response prediction of each

of the circuits, which is unavailable with steady-state modeling. Some of these dynamical

responses present unexpected behavior. Using the dynamic models generated with the

automatic model generator of this work, an analysis of the predicted behaviors yielded

insight into the underlying biology phenomena that cause the observed glitching behavior

of these circuits.

The last chapter of this thesis is focused mainly on future enhancements to the auto-

mated model generator of this work to produce more accurate and precise models not only

for genetic regulatory networks in Escherichia coli, but any organism where parametrization

exists as proposed in this thesis work. It also explores different analysis that could be

implemented into the automated model generator of this work, in order to expand the

assessment done on genetic circuits.
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CHAPTER 1

INTRODUCTION

Synthetic biology has strived to imprint engineering principles into classical genetic

engineering. Some of those principles, like standardization and part characterization,

are well on their way of development. Others, like decoupling, in where a complicated

problem is separated into simpler independent problems, are harder to instill in this area

of research. As a nascent discipline, genetic circuit design is reserved only for experienced

researchers with a deep knowledge of biology. To a large degree, this is due to the inherent

complexity of biological systems. However, as the field advances, so does the development

of software that allows for more researchers to participate in synthetic biology. A key

aspect of any engineering discipline is the ability to model and simulate designs. Modeling

and simulation give the capacity to predict the outcome of a system and detect problems or

malfunctions during the design process. This debugging capability is especially valuable

in synthetic biology since it can take a long time and be expensive to genetically engineer

an organism with a synthetic genetic circuit. Empirical data that differs from predictions

can also shed light on part interactions or other biological phenomena not previously

studied [2]. As synthetic biology advances and genetic circuits become more complex,

so does modeling. This complexity, in turn, makes the modeling process an even more

difficult challenge, and it is imperative to develop tools for easy and automated modeling

of genetic circuits. The goal to engineer DNA as others would engineer electric circuits is

what pushes some synthetic biologists to develop tools to design, model, build, and test

genetic circuits in a more automated and seamless manner. This work aims to contribute

to this research agenda.

1.1 Synthetic Biology

Synthetic biology has attracted interest amongst a diverse group of researchers, from

molecular biologists to computer scientists, to develop engineering methods for biology.
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Though most of the development is done by synthetic biologists with substantial exper-

tise, there has been a general effort to produce a more automated method to design ge-

netic circuits for researchers without extensive knowledge on genetic design. Scientists

have tried to implement foundational technologies that would make synthetic biology a

genuine engineering discipline, where three of the most relevant methods to implement

are standardization, abstraction, and decoupling [3]. Standardization is not only the use of

data standard representations of genetic circuits and models for reproducibility of results,

but also standards for the definition, description, and characterization of modular and

reusable genetic parts [3, 4]. Abstraction is used for simplifying mathematical models,

which reduces the effort of describing different genetic parts and reactions mathematically

and, consequently, increases the number of components that can be used when modeling

and increases simulation speed [5]. And finally, decoupling is the effort to separate a

complicated problem, like engineering a synthetic organism with a specific function, into

smaller, modular problems that can be worked independently. For synthetic biology,

this would be decoupling designing and modeling constraints from the building techni-

calities of a synthetic genetic circuit [5, 6]. Standardization, abstraction, and decoupling

are essential for model-based design of genetic circuits [6] and computer-aided design.

Progress has been made with standardization, abstraction and decoupling [7, 8] in an effort

to streamline the design/build/test pipeline (see Figure 1.1).

Applying engineering principles to biology is not something new, but many agree that

a distinct biological engineering discipline, synthetic biology, started with the modeling,

construction, and testing of two unique genetic circuits, a genetic toggle switch and a

synthetic oscillatory network [9, 10]. There was something very particular about these two

circuits: their function, rather than their output, was what interested the researchers. These

circuits stemmed from mathematical models and concluded in design, which established

a precedent where the design and construction of engineered genetic regulatory networks

(GRNs) were facilitated by theory with predictive capacity. Nonetheless, there were some

discrepancies between the theoretical model and the experimental results, as expected.

Our understanding of how genetic circuits behave is reflected in the precision of our

models, and thus any differences between predicted and observed results can be used

as a tool to study further the dynamics of genetic networks [11–13].



3

This unique way of designing circuits has led to increased developments in modeling

for GRNs (see Section 1.2) and of a library of orthogonal genetic parts with characterized

behavior. This library is a key component for an automated procedure for the design of

genetic circuits for synthetic biology, as well as its subsequent analysis, which would pro-

vide a more detailed build/test/design pipeline, as shown in Section 1.5. Such increased

variety of models and library of orthogonal genetic parts has pushed model-based design

of genetic circuits [14, 15], as well as tools for computer aided design (CAD) of genetic circuits,

like Cello [16].

1.2 Modeling

Genetic circuits have reached such a degree of complexity that even experienced re-

searchers have a difficult time considering all the interactions between parts of a system.

Therefore, mathematical descriptions of genetic networks become a necessity and that is

why genetic design is usually model-driven [17]. It is from these mathematical descrip-

tions that one can model the system as a whole and obtain predictions of its behavior.

The simulations and subsequent analyses can become instrumental not only to study the

nature of genetics, but also to expose errors in design, parametrization, or the model itself.

Modeling of GRNs with appropriate use of parameters is expected to yield indispens-

able contributions and aid in complex genetic design, furthering the advancement of syn-

thetic biology. It is common to find abstract mathematical models describing GRNs that

use nonspecific (or generic) parameters obtained from the literature. The inaccuracy of

many models stems from the use of these nonspecific parameters because even if the

predictive accuracy of a model fits observation for a specific organism, using these pa-

rameters for other organisms/systems would produce inaccurate results [18], and thus it

is essential to have a model generator that is accompanied by the correct set of parameters.

Therefore, the model generator in the present research works with a specific set of gates

and parameters from a repository used by Cello [16], a popular CAD tool in synthetic

biology.

Biological systems are highly complex due to the uncountable number of interactions

and interconnectivity, which makes the prediction of behavior almost impossible with-

out the use of models and simulations. Even though mathematical models and correct
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parametrization can help simplify the design process, experimentation and comparison

of the results are imperative to correct the models, fine-tune the parameters, and unearth

unknown interactions. Computer simulations using mathematical models can help sci-

entists understand the biological mechanisms and unknown phenomena [2], as well as

help to bridge the gap between predictions and experimental results, denoting previously

missing experimental data.

As the synthetic biology community deepens its knowledge of genetic interactions,

more sophisticated modeling tools can be created to predict their behavior with higher

accuracy and fidelity. However, there is a drawback in these types of models if the number

of equations and parameters used to describe the system becomes overwhelming. To

reduce complexity, there are different assumptions and simplifications that can be made to

abstract the model and simplify it without losing predictive capabilities or accuracy. Ab-

straction can help scientists produce more complex and novel genetic designs for various

applications in the industry [5]. Some studies have done this not only by simplifying

the equations but also by combining and redesigning genetic components into bigger,

composite parts to reduce variability and increase accuracy [3, 16].

Many different approaches have been developed to model and simulate genetic regu-

latory systems [19–24] with different focuses and aims in mind and each having different

advantages/disadvantages. It has been shown that kinetic modeling is an appropriate way

to model genetic regulatory networks [19, 25]. Starting with a kinetic model, a common

way to describe GRNs is by utilizing ordinary differential equations (ODEs), which represent

the rate of change of species and concentrations of the system. For a system of ODEs,

a steady-state model assumes that all the rate equations are in equilibrium, effectively re-

moving time from the model and focusing on the stable states of the system. Instead, when

using quasi-steady-state assumptions, a model can produce different time points, and, as

such, effectively predict information on the concentration of molecular species over time.

Dynamic modeling, as it is called, has a significant advantage for modeling the dynamics

of the circuits and their transition states. Dynamic modeling provides a more detailed

description of GRN dynamics that can be used to determine circuit failures, to optimize for

speed of transitions or cell source-allocation, and to better understand how the different

genetic components interact. Since dynamic modeling can predict transition states, it can
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also be used to determine unwanted transition states between different stable-states (also

called hazards) due to gate propagation delay in that circuit.

With this in mind, the primary objective of this work is create an automatic generator

of a two-step kinetic model using equations similar to the Hill-equations [26, 27] following

the parametrization used in the original Cello paper [16] to predict mRNA and protein

production over time. This thesis offers a new standard of constructing genetic compo-

nents, and parameterizing them, as well as providing a simple way for nonengineers to

automatically generate mathematical models with predictive capabilities for both mRNA

species concentrations as well as protein outputs.

1.3 Standards

A critical piece of the puzzle for model-based design is the use of globally accepted

standards. Standards would not only allow for the sharing and contrasting of knowledge

but also tackle one of the most significant obstacles facing any engineering discipline to-

day: the problem of reproducibility [28, 29]. For synthetic biology, reproducibility not only

requires the use of standards for modeling and simulation but also for experimental setups,

DNA design, and parametrization. Furthermore, the use of data standards are necessary

to allow for data exchange through different online data repositories and a higher sharing

of knowledge amongst different research groups. For these reasons, this work uses data

standards for the genetic designs, the mathematical models that describe their dynamics,

and their simulation environments so that anyone can reproduce the results obtained here.

Data standards used in this thesis work are the Synthetic Biology Open Language (SBOL) [30]

for the representation of genetic designs and their function; the Systems Biology Markup

Language (SBML) [31, 32] for the mathematical model representation of the different genetic

circuits and their interactions; and the Simulation Experiment Description Markup Language

(SED-ML) [28] for the simulation description of the mathematical models. Additionally,

this thesis proposes a standard of representation for genetic parts and their parametriza-

tion by following the architecture of the circuits designed in Cello [16].
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1.4 Contribution

Facilitated dynamic modeling of genetic circuits would be an instrumental technique

for synthetic biologists, especially if it can be accompanied by a circuit design automation

tool, such as Cello. This would not only help automation in synthetic biology but also

provide a way to debug circuit designs before construction and compare predictions with

experimental data once the synthesized circuit is implemented. Since sequencing tech-

nologies are becoming cheaper and faster, there is an increased availability of large-scale

data sets such as RNA-Seq (sequencing that reveals the presence and quantity of RNA in

a biological sample) and Ribo-seq (sequencing technology that uses mRNA sequencing to

determine which mRNAs are being actively being translated) data. RNA-seq can help

elucidate part interactions, resource allocation and interference of the circuit with the host

organism. These can be used to debug malfunctioning circuits [13]. There are many

model generators for genetic circuits [33–38], but none of them are suited to utilize Cello

parametrization of genetic parts, and thus they would be unsuccessful in modeling the

dynamics of their output designs. For this, our method implements an automatic dynamic

model generator that uses Cello’s parametrization to generate a two-step model for the

transcription and translation processes of genetic circuits.

This automatic model generator will help researchers in their design, construction, and

testing of genetic circuits and expand the design/build/test pipeline (see Figure 1.1) into

a more enriched, automated workflow, as shown in Figure 1.2. This workflow begins

with the parametrization of parts and circuits to form a repository of genetic parts. This

repository can be encoded on a data standard (like SBOL), which can then be used as a

library of components for a genetic design tool (such as Cello). These design tools would

produce a genetic circuit to be modeled and simulated to predict functions, outcomes, or

problems in the design. The modeling and simulation can be used as a screening step to

determine whether the circuits behaves in a manner that meets the researcher’s intention.

After the selection of genetic designs, one could proceed to construct these gene circuits

and transform a host with them. After successfully engineering a host organism with the

synthesized genetic circuit, it is necessary to perform experimental studies (like RNA-Seq

or Ribo-Seq) to confirm the correct functionality and expected behavior of the process and,

in turn, work as a debugging step for the designed circuits.
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All of this while utilizing standards for the representation of genetic circuits (i.e., SBOL),

as well as modeling and simulation (i.e., SBML and SED-ML). With this proposed work-

flow, we expect to create a new kind of standardization in which the researcher uses and

expands on a library of parts using a Cello-gate approach to construct and parameterize

genetic elements. This work should not only greatly facilitate the design and construction

of genetic circuits but also serve as a tool to spot failures in design as well as unexpected

interactions with the host organism.

1.5 Thesis Overview

Chapter 2 goes further describing the necessary background to set the context of this

work. Firstly, it introduces genetic circuits (Section 2.1), their uses, and some examples of

their applications in synthetic biology. This chapter continues to explain how these genetic

circuits are constructed from well defined and characterized genetic parts, and how syn-

thetic biologists are exploring new parts and creating a library of orthogonal components

so that others can use them in their designs (Section 2.5). These parts repositories are built

to be shared amongst researchers, and thus this chapter also explains the importance of

standards (Section 2.4), and why it is so imperative to develop globally accepted synthetic

biology standards, as this fosters not only reproducibility but also sharing of knowledge

between different labs for the greater advancement of science. This chapter also introduces

the reader to the mathematical modeling of genetic circuits (Section 2.3), specifically the

Hill-equation based models that have been used extensively for genetic circuit design

(Section 2.6), and in particular for the Cello project (Section 2.6.1).

Chapter 3 presents our dynamic model generation procedure. This chapter goes into

detail of how our procedure handles the different parameters and gene dynamics to con-

struct a mathematical model and, ultimately, simulate it to get meaningful results.

Chapter 4 uses the model generator to remodel all of the circuits from the original Cello

paper [16], and analyzes them in new light. Furthermore, an analysis of how to use the

dynamic model generated to understand biological phenomena is described.

Finally, Chapter 5 presents a summary of our results, workflow, and our conclusions,

and explains future proposed standards for dynamic modeling using our model generator.

Lastly, this chapter presents future venues that this work opens up, and ways that our
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model generator could be expanded to include more types of analysis.
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Figure 1.1. Design/Build/Test pipeline for synthetic biology. This depicts what is de-
scribed in [39].

Figure 1.2. Design/Model/Build/Test/Learn workflow. An expanded version of the
Design Build Test pipeline [39] and a proposed workflow for model-based design of
genetic circuits.



CHAPTER 2

BACKGROUND

This chapter outlines the background research for the work presented in this thesis.

The chapter describes what genetic circuits are (Section 2.1), and how synthetic biologists

set out to design them using standardized genetic parts (Section 2.2). Once we know

the object of study of Synthetic Biology, the chapter continues explaining the different

ways to mathematically describe the relationships and interactions these genetic circuits

undergo (Sections 2.3), and how these mathematical models and circuit specifications are

encoded in data standard files shared by the Synthetic Biology community (Section 2.4).

The chapter continues describing the online repositories (Section 2.5) where parts/genetic

circuits/models are uploaded and shared across different research laboratories, and how

this can be used to spur reproducibility in the synthetic biology community. Finally, this

chapter describes different capabilities of software tools used to design/model/simulate

GRNs (Section 2.6).

2.1 Genetic Circuits

Genetic circuits are designed GRNs, composed of synthetic genetic parts, that perform

a specific function specified by a researcher. In recent years, there has been a plethora of

new engineered genetic circuits with specific functions, an expansion of reusable modular

genetic parts and sensors, and an exploration of synthesizing genetic circuits in organisms

other than bacteria [12, 40–43]. Classically, genetic engineers would modify/add/knockout

one, two, or a thousand genes of a living organism in order to study their role in the

organism or to try to introduce a new feature or function to it. In the area of synthetic

biology, characterized modular genetic parts or gates are combined to compose a genetic

circuit with a user-defined function or implementation. It is this bottom-up design ap-

proach of genetic manipulation that distinguishes synthetic biology from classical genetic

engineering.
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Synthetic biologists draw inspiration from other engineering disciplines in order to

have a more modular, predictable methodology for the design of genetic circuits. The first

such genetic circuits, which were model-driven designed, are the genetic toggle switch [9]

and a synthetic oscillatory network [10]. These genetic circuits were designed with a

specific function in mind, and later built to test the design using genetic parts available.

Nowadays, the design of genetic circuits enables researchers to engineer cells to process

input signals, make logical decisions, implement memory, and to communicate with each

other [44]. These circuits can also be designed to produce an output with a range of

different purposes like inciting a biological response within or with other cells, producing

a chemical for the environment or for industrial purposes, and many others.

Transcription and translation regulators that influence the flux of RNA and protein

production are commonly used to carry out Boolean logic and therefore are called logic

gates. These logic gates can be built on the basis of different regulator types using DNA-

binding proteins, recombinases, CRISPRi regulation, RNA regulation, or protein-protein

interactions [45]. Each gate can be designed to perform a specific logic function, like for

example an AND, OR, NOT, NOR, NAND gates, and many others. With this, a researcher

can link these logic gates to various cellular or environmental sensors and actuators, to

generate circuits with precise desired behaviors in response to specific inter and intra-

cellular signaling inputs [46]. However, to design these genetic circuits, there is a need for

libraries of well-characterized, modular and standardized genetic parts and computational

tools for easier design and to tune them [45], which is the topic of the next sections.

2.2 Genetic Parts or Gates

Genetic circuits represent how information is going to be processed and which deci-

sions are going to be made, and these are composed of genetic parts or gates such as sensors,

actuators, and logic gates [44]. These genetic parts are used to specify when, where,

and how the different parts interact and under what conditions are genes expressed [44].

However, a difficult challenge in the area of genetic engineering is the unpredictability

of the behavior of assembled genetic parts in different genetic contexts [45, 47]. There are

efforts to design genetic parts or gates with predictable and modular functions [48–50] with

predictable gene expression and extensive characterization like in [51–56], to cite a few.



12

Endy [3] suggests that the biological engineering community would benefit not only from

building a library of characterized modular parts, like the ”iGEM Registry of Standard

Biological Parts,”1 but also with the promulgation of standards that support the definition,

description, and characterization of these biological parts.

Standardization of genetic parts is essential for reproducible experiments, reusability

of genetic gates, and for model-driven design of circuits. Standardization can range from

building techniques and gate conformation [4, 54, 57–59] to gate parametrization [52, 55].

A common method to characterize genetic gates in synthetic biology is using a standard

for promoter activity, the Relative Promoter Unit (RPU) [60]. RPUs are used in many projects

like iGEM and Cello (described in Section 2.6.1), and can be measured using a standardized

kit for experiments, which makes it easy to adopt by different laboratories. This method is

an effort to begin to address the challenge of characterizing promoters (and other types of

standard biological parts) across the interdisciplinary community of synthetic biology [60].

The construction of genetic circuits requires a library of basic components with shared

inputs/outputs, which permits the composition into more complex devices and circuits

[61]. As well, characterized genetic parts and modularity are an integral concept in syn-

thetic biology, and it is essential for model-driven design of genetic circuits [51, 62]. One

such library of well characterized modular parts with shared inputs and outputs is the

Cello genetic gate library [16], and therefore it is a good choice to develop models using

them.

2.3 Mathematical Models of Genetic Regulatory
Networks

A mathematical model can provide mechanistic understanding of a GRN. Models that

accurately predict behavior of a system allow engineers to design genetic circuits in silico

before going to the laboratory, avoiding large numbers of trial-and-error experiments [62].

There are many advantages in modeling: predicting, even in a limited manner, how a

system will behave under novel conditions, understanding how highly nonlinear systems

work, revealing deeply hidden properties of a system, understanding where does the

design fail when predicted behavior is not what it is intended, and many other reasons [63].

1http://parts.igem.org/
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However, models only have a limited capacity of prediction and newer models usually

replace older approaches when their predictive capabilities increase.

Dynamical modeling can be described as the ”classical” way to mathematically model

GRNs [23]. The objective of these models is to describe the dynamic behavior of a set

of genes with interconnected expression levels, and predicting the behavioral response to

various environmental changes and stimuli.

Quantitative PCR, microarrays, Northern blotting, and other techniques are getting

cheaper and can typically measure average concentration of mRNA in a population of

cells [64]. Western blotting can do the same for proteins [65]. Therefore, a mathematical

model that deals with concentration averages over time, and the proportional amount of

time in which a promoter is being occupied is needed. A very common method to do so

is to describe a GRN using the law of mass action, classical chemical kinetics, and Hill

functions; all of which are explained in the next three sections.

2.3.1 Law of Mass Action

There is an associated rate constant for each chemical interaction (i.e., a parameter that is

proportional to the frequency a reaction occurs). The law of mass action states that the rate of

a chemical reaction is directly proportional to the product of the reactant concentrations,

to the power of their stoichiometry. This means that the change in concentration of the

reactants per unit of time (velocity of a reaction), or in other words, time derivative to re-

actant concentrations, is proportional to the product of these reactant concentrations. This

quantity accounts for the probability of collisions amongst reactants under the assumption

of a well-stirred system [25]. This can be used to convert a chemical reaction network into

a set of ordinary differential equations (ODEs) that can be analyzed using classical chemical

kinetics (CCK) model, which is the subject of the next section.

2.3.2 Kinetic-Based Models

Once all the reaction and species that comprise a GRN are identified, a mathematical

model can be constructed by determining how they interact [25, 62]. Using the law of

mass action, a set of ODEs can be derived that describe the change of species over time.

This set of ODEs that track the concentrations of each chemical species is known as a

kinetic based model, and the differential equations that compose it are known as reaction rate
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equations. The model assumes that reactions occur continuously and deterministically [19].

This deterministic framework is appropriate to describe the mean behavior of biochemical

systems [24]. While mass-action kinetics are strictly only valid for elementary reactions,

they are widely and successfully applied in many fields of mathematical modeling in

biology [66].

Reactions in biological systems are not only regulated by reactants and products, but

also of other compounds that regulate the activity of these reactions like enzymes, often

without being consumed during the reaction. In the next section, a description of a method

that has proven to be appropriate to model enzymatic reactions [25] is explained.

2.3.3 Hill Equations

The Hill equation is a standard for characterization of regulated promoters because

it demands only two parameters: the Hill coefficient (n) and the Hill constant (KH or κ).

These two parameters can be faithfully determined with experiments and represent an

appropriate characterization of promoter/transcription-factor dynamics.

The Hill equation stems from the kinetic based model and assumes that the promoter

of a transcription factor is momentarily occupied by transcription factors in a reversible

reaction. Under the assumption that the concentration of the transcription factors and

promoters is constant and under a steady-state condition, we can obtain two different

forms of the Hill equation, depending if the transcription factor activates (2.1) or represses

(2.2) the promoter:

P∗ =
( A

κ )
n

1 + ( A
κ )

n
· PT , (2.1)

P∗ =
1

1 + (R
κ )

n
· PT . (2.2)

In which P∗ is the concentration of promoter bound with a transcription factor, A and R are

the concentration of transcription factors that activate or repress transcription respectively,

PT is the total amount of promoters in the system, κ is the Hill constant, and n the Hill

coefficient. In this model, κ gives the necessary concentration to activate or repress half

of the promoters of the system, and n quantifies the cooperativity amongst activators (or

repressors) when binding to a promoter [19, 25].
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Kinetic-based models can take additional assumptions to further simplify the model

without significantly affecting the ability to reproduce expected behavior [62]. One such

common assumption is the steady-state assumption, which is described in the next section.

2.3.4 Steady-State Modeling of Genetic Regulatory Networks

When the production and degradation rate of a chemical species are equal, its con-

centration will not change and is at equilibrium. The steady-state assumption assumes

that all the chemical reactions of a system are at equilibrium or steady-state, meaning that

the concentration of the chemical species do not change over time. For a system to be

at steady-state, each variable in that system must be at steady-state. Such steady-states

are found by setting all the first derivatives in a the kinetic-based model equal to zero

and solving the resulting set of algebraic equations [63]. Steady-State modeling has been

shown to be appropriate for genetic regulatory network modeling [25].

When steady-state models fail to reproduce observed behaviors or predict dynamical

behavior before reaching steady-state, some of the assumptions must be revisited [62]

and allow for more relaxed assumptions to take place. The following section describes

a different set of assumptions that allow for dynamical modeling.

2.3.5 Dynamic Modeling of Genetic Regulatory Networks

As the complexity of a GRN increases, so does the behavior it presents, and therefore

there is a need for a more accurate modeling technique [67, 68]. Instead of assuming that

all species reach equilibrium as in steady-state modeling, some models only assume that

some species (those that are involved in the fastest reactions) reach equilibrium before

others. This would remove equations from the ODE system, which describe the evolu-

tion of the variables at steady-state [69]. This assumption is usually applied to enzyme

interactions [63, 70], since in many GRNs, the protein-protein dynamics are much faster

than the transcription or translation process, meaning that the protein interactions reach

equilibrium much faster than other interactions. However, depending on the system,

this quasi-steady-state assumption can be made for any species in the system in which the

modeler thinks there is a faster dynamics. This allows one to study the dynamics of

species that are not at steady state with more precision. However, the quasi-steady-state

assumption can only be safely made when the difference in time-scales for the dynamics
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of species that reach equilibrium fast and those that do not are considerable [70].

2.4 Data Standards

Reproducibility is a critical issue for synthetic biology [28, 29, 71]. This rapidly ad-

vancing field has allowed for novel genetic circuit designs, modeling software, and as-

sembly techniques. However, all of these developments are very labor-intensive with

inputs from researchers with a multitude of different backgrounds, making the reusability

of this information complicated. More mature engineering disciplines have tackled this

issue with standardization, abstraction, and decoupling [3, 6, 50]. Some of these strategies,

like abstraction and decoupling, are well under way of development. However, there is a

growing awareness that the need for standardization is essential for the field to grow into

a more predictable engineering discipline [50].

Standardization in synthetic biology ranges from standardized genetic parts and char-

acterization [60], to standards for designing and visualizing genetic circuits, assembly

methods, screening methods, reporting (modeling and simulation), and sharing (data repos-

itories). Institutes like the National Institute of Standards and Technology (NIST) have

dedicated efforts to define and develop standardization in synthetic biology, from DNA

building blocks to documentation of experiments [72].

A key element for model-based design in synthetic biology is to develop data represen-

tation formats to allow for sharing of designs, models, and simulations in order to foster

the interdisciplinary approach that is characteristic of this discipline [6]. A major initiative

to encode biological information and to coordinate the development of data standards

happens under the ”COmputational Modeling in BIology NEtwork” (COMBINE 2) initia-

tive [6, 7, 71].

In this section, a description of the three data standards curated under COMBINE

and used by the model generator of this work is described. First, the data standard for

specification of genetic circuits and their function (Section 2.4.1), followed by the standard

used to describe mathematically the biological behavior of these genetic circuits (Section

2.4.2), and finally the data standard to report simulation results of the mathematical models

developed (Section 2.4.3).

2http://co.mbine.org/
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2.4.1 Synthetic Biology Open Language (SBOL)

The Synthetic Biology Open Language (SBOL) is an open standard for the representation

of in silico biological designs3 [30]. SBOL is a free and community-driven data standard

used to encode structure and function of a genetic circuit or parts, with a focus on abstrac-

tion and composition [71]. SBOL is used to represent not only the sequences of genetic

designs, but also functional interactions, proteins, metabolites, and biological chassis. This

is a big advantage over other standards that encode DNA sequences like the FASTA format

[73], GenBank’s flat file format4, and the Generic Feature Format5, since researchers can

describe a biological design or circuit without knowing necessarily the DNA sequences

that will compose it. In this way, synthetic biologists can share designs of genetic circuits,

their expected function, and interactions without even having to go to the laboratory and

sequence DNA. Furthermore, SBOL allows for hierarchical designs that organize genetic

parts into a more complex structure to describe a desired function, annotate environmental

or experimental context information, computational models of behavior, and measure-

ments of performance characteristics [30]. To guarantee interoperability and sharing be-

tween tools, SBOL permits to assign one role and type to the functional components that

compose the genetic design from ontologies, such as the Sequence Ontology6 (SO) and the

Systems Biology Ontology7 (SBO) [74].

SBOL also allows one to create a Model class to document and link to external models

written in standards other than SBOL, like for example the Systems Biology Markup Lan-

guage (SBML) [31], which is discussed in the next subsection.

Most importantly, SBOL allows for the storage of any information not supported by the

format in the form of custom and complex user annotations, so that no information is lost

when encoding a design in the SBOL format.

3http://sbolstandard.org/

4http://www.insdc.org/documents/feature-table

5https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

6http://www.sequenceontology.org/

7http://www.ebi.ac.uk/sbo/main/
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2.4.2 Systems Biology Markup Language (SBML)

The Systems Biology Markup Language (SBML) is another standard under the COMBINE

initiative [32]. It is a free and open format for computer models of biological processes.

SBML is useful for models of metabolism, cell signaling, genetic devices, and more. It is

supported by an international community with many packages being developed from the

users that expand its capabilities. It is supported and used by more than two hundred soft-

ware tools,8 which makes it an excellent format for the exchange and reuse of mathematical

models between different areas of synthetic biology. This enables researchers to create,

simulate, and annotate biological models that can be shared through different databases,

like the BioModels database [75]. Furthermore, some parser libraries offer model checking,

validation, and verification, as well as support for SBO [76].

SBOL can be used to describe structural and qualitative behavior, whereas SBML is

used to specify a mathematical model that describes the quantitative behavior of the sys-

tem. Both are amply used standards, so naturally there exists converters from SBML

to SBOL and vice-versa [77, 78]. This work is essentially a new type of SBOL to SBML

converter that creates dynamic models from genetic designs encoded in SBOL using the

parametrization from the Cello project. While SBML is a widely accepted and used format

for describing model structure, it does not cover the description of analysis or simulation

performed to obtain predictions from the mathematical model. Therefore, this work uses

another standard format to do so, which is described in the next subsection.

2.4.3 Simulation Experiment Description Markup Language
(SED-ML)

The Simulation Experiment Description Markup Language (SED-ML) is an XML-based

format developed for the encoding of simulation and analysis experiments performed on

a mathematical model [79]. It is a core standard of COMBINE, and it is used primarily to

specify which models to use in an experiment, modifications to apply on the models before

using them, which simulation procedures to run on each model, what analysis results to

output, and how the results should be presented [79].

To enable shareable and reproducible analysis, authors should provide SED-ML files

8http://sbml.org/SBML_Software_Guide
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along with the SBML files with their publications, so other researches can reproduce the

presented simulation results obtained. This would allow other users to analyze and study

under which conditions the simulation was carried out and test the results themselves.

2.5 Online Repositories

Data standards allow for standardization of ideas and information from a diversity of

sources in synthetic biology. However, designs, models, and simulation results specified in

these standards need to be stored somewhere in order to enable this data to be exchanged

between different laboratories or researchers. Online repositories have been created for this

purpose of storing and sharing data and are used by many researchers and tools. Some

of them, like the iGEM Registry of Standard Parts9 or JBEI-ICE [80], have been developed

specifically for the storing and sharing of engineered biological deigns. However, many

of these online repositories can only store sequences but not other information such as

proteins, interactions, metabolites, biological chassis, or models that describe the function

of a circuit, which is very important for genetic design. With this in mind, two online

repositories have been developed to fulfill this gap which are discussed in the following

sections.

2.5.1 SynBioHub

SynBioHub [81] is a repository for genetic designs encoded in SBOL. SynBioHub is

designed to store parts and designs in a linked format so that data can be findable, ac-

cessible, interoperable, and reusable (FAIR) [81]. This linked data and the use of sequence

ontologies permits for a powerful querying capacities that facilitates searchability from

tools and users alike. Designs can be shared with users or other applications, like, for

example, Benchling.10 Sequences can be shared with other applications that specialize in

sequence editing and/or copying, and then transferred back into SynBioHub. Moreover,

any custom annotations made by a researcher in the SBOL file are queryable, which makes

the retrieval of information more straightforward.

These functionalities make SynBioHub an excellent choice to upload genetic designs,

9http://parts.igem.org/Main_Page

10https://www.benchling.com/
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models, and simulations, to search for existing designs, and to share or export for publica-

tion or collaboration.

2.5.2 BioModels

The BioModels Database is a public online resource that allows storing and sharing

of published, peer-reviewed quantitative, dynamic models of biological processes [75].

Models uploaded to the BioModels Database are manually curated to ensure reliability

and correspondence with the original publication’s results. All models are annotated with

controlled vocabulary terms and linked to external data, which facilitates model reuse and

interoperability. Models are stored in the SBML format and are available to download in

several other formats.

The submission of models to the BioModels repository has increased rapidly [75]. This

allows modelers not only to share their models, but also to reuse models uploaded by other

researchers to modify them and implement their own analysis and publish articles. This is

a great resource to address the reproducibility crisis in synthetic biology [28, 29].

2.6 Genetic Circuit Design and Modeling

Despite all this potential, genetic circuit design remains one of the most challenging as-

pects of genetic engineering [45, 82]. Due to the inherent complexity of biological systems,

engineering complex genetic circuits is a bigger challenge than was anticipated [83, 84].

As the requirements of developing novel synthetic biological systems have become more

complex, the need for models and software design tools has become more acute [24].

Several approaches have been implemented for the development of computational tools

for synthetic biology [24, 61, 83, 85, 86]. However, there has been an increased focus on

tackling this complexity of genetic circuit design and frame these recent computational

tools by developing genetic design automation (GDA) tools [86].

GDA tools rely on well characterized, modular genetic parts, in particular the devel-

opment of orthogonal transcription factors [86]. This presents a challenge for the syn-

thetic biology community since many genetic parts or gates have unbalanced regulator

expressions, they behave differently when combined in a genetic system, and they have

complicated states depending on the inputs [16]. However, one such project that has
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overcome some of these difficulties and developed a library of characterized modular parts

to use to automatically design genetic circuits is described in the following subsection.

2.6.1 Cello

The design environment, referred to as Cello [16], is a GDA tool created to automatically

design genetic circuits with user-defined behavioral response over a set of inputs changes.

It was developed to accelerate circuit design, to enable nonexperts to incorporate syn-

thetic genetic circuits into their genetic engineering projects, and to enable one to specify a

user-defined computational operation behavior of such a circuit. This design environment

implements algorithms that derive a physical design (sequence of parts) from a textual

specification in which the user specifies inputs, outputs, and an expected computational

Boolean logic in the form of a truth table that the user wants the circuit to perform.

Cello needs three inputs in order to work. First, there is the DNA sequences of the

sensor gates for the circuit, and their ON/OFF RPU output. The second is a user constraint

file (UCF) that contains information such as the functional information (transfer functions

in RPU) of the library of gates, the layout of the genetic system, organism, strain, operat-

ing conditions, toxicities, promoter road-blocking, and other constraints to be taken into

account by the algorithm. And lastly, there is a Verilog code that captures the desired

behavior (as a Boolean computational operation) of the genetic circuit to be designed [16].

Cello utilizes this information to automatically design a genetic circuit that connects

to cell-based sensors and cellular actuators. It does so in three steps - first, the textual

command is converted to a circuit diagram; second, Cello assigns specific regulators to

each gate or node in the circuit diagram; the third and final step creates a linear DNA

sequence based on the circuit diagram and gate assignment [16]. The output circuit is

described using SBOL and it contains the DNA sequences of all the parts of the circuit.

The actuator of such circuit can then be connected to any cellular process by directing

the output of the circuit as a stimulator or repressor of a metabolic pathway or other

genes. Similarly, the sensor gates can be engineered to sense different cellular inputs or

experimentally controlled variables such as temperature, pH, etc. The circuit performs

Boolean logic computation based on the presence/absence of the sensors and produces

the corresponding output from the implemented behavior.
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The work that Nielsen et al. did in 2016 [16] used a library of gates based on prokaryotic

repressors. Nonetheless, the Cello design environment can work with any gate that is

repressible in different levels other than RNAP flux regulation, such as RNA-based reg-

ulation, protein-protein interactions, CRISPR/Cas-based regulations, or recombinases, as

well as in different organisms other than bacteria.

This GDA tool requires genetic logic gates that are sufficiently modular and reliable,

such that their interconnected behavior can be predicted, in order to work. For this, the

Cello project has developed a set of insulated NOT and NOR gates based on prokaryotic re-

pressors [16, 87]. The following subsection describes the gates used and their parametriza-

tion.

2.6.1.1 Cello Gates and Parameters

As mentioned before, each gate in Cello behaves as a NOR or NOT gate, which is com-

posed of an engineered region or expression cassette preceded by two (NOR gate) repressible

promoters or one (NOT gate) repressible promoter, as shown in Figure 2.1. When the

simulation environment selects different gates for each node in the circuit, it chooses from

a library of these engineered regions or expression cassettes, instead of choosing the Ribo-

some Binding site (RBS), Coding Sequence (CDS), and terminators individually. Composing

RBS + CDS + terminator into a functional component this way reduces variability, but at

the same time, it is simpler to model and to combine during the simulated annealing pro-

cess of Cello. Additionally, composed engineered regions or expression cassettes are easier

to characterize experimentally, requiring far less experiments. It is a form of abstraction

that reduces complexity and saves time [3].

Characterization of this library of composed parts was obtained experimentally [16, 88]

as depicted in Figure 2.2 and Figure 2.3.

Figure 2.2 shows how the sensor promoters are parameterized. First, a constitutive

promoter is added before a sensor gate, which produces a sensor protein continuously.

This sensor protein can repress the sensor promoter that is being characterized, unless an

experimenter adds an input molecule that represses this repressor. In the same plasmid,

the sensor promoter is placed before a ”YFP RPU cassette,” which is a functional compo-

nent that produces YFP (Yellow Fluorescent Protein). YFP production is measured, using
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RPUs, under two different conditions: adding an excessive amount of input molecule, in

which case the sensor promoter is not be repressed and the YFP production is maximum;

and without any input molecule, in which the sensor promoter is maximally repressed and

only basal production of YFP occurs. With these experiments two parameters are obtained

for sensor promoters: ymax and ymin. The parameter ymax depicts the maximum promoter

activity for the sensor promoter, and ymin the minimum, or basal promoter activity in RPU.

Likewise, Figure 2.3 depicts the parametrization for all other gates that are not sensor gates

or promoters. It is similar in fashion to the sensor promoter parametrization, but there is

an extra step. In this case, the ”YFP RPU cassette” is preceded by the gate promoter. On the

same plasmid, the gate that produces the TF that represses this gate promoter is preceded

by a sensor promoter. Finally, on a second plasmid, a sensor gate constitutively produces

a sensor protein. In this way, without a input molecule that represses the sensor protein,

the gate production is minimum, and the gate promoter is not being repressed (producing

YFP). Conversely, when the input molecule is present in large amounts, the sensor protein

is repressed, the gate being characterized produces maximum amounts of TF and the

YFP production is reduced to a minimum. To characterize these gates, an experimenter

introduces different concentrations of input molecule, and the YFP production is measured

in RPU. A response function for each gate is formulated, and after fitting it to a Hill

equation, the parameters ymax, ymin, n, and κ are obtained. As with the sensor promoter

characterization, ymax and ymin depict the maximum and minimum promoter activity in

RPU, respectively. For the other two parameters, n is equivalent to the Hill coefficient, and

κ is equivalent to the dissociation constant [88].

The parameters ymax, ymin, n, and κ were measured for each gate in isolation of other

gates, as shown in Figure 2.3, and are stored in a UCF, which is then fed to Cello when

designing a circuit. Once Cello designs the circuit and assigns gates to each individual

node of the circuit, it stores all that information in a SBOL file. The next section describes

this output.

2.6.1.2 SBOL Specification

Cello was used to design a large set of circuits (52) based on the insulated gates de-

scribed earlier [16, 88]. The output of Cello can be encoded in an SBOL file, as well as a
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netlist (JSON file), cytometry plot (PNG file), transcription values in RPU (CSV file), truth

table (CSN file), or others. Each circuit is composed of multiple NOR and NOT gates,

sensor gates, and the output gate. A NOR gate is composed of two repressible promoters

and an expression cassette; an example is shown in Figure 2.4.

A collection of the Cello insulated gates (expression cassettes and promoters) encoded

in SBOL used for this work is uploaded in a SynBioHub repository.11 With this, one can de-

sign a circuit using other design environments other than Cello and use these parts. These

parts not only contain parts and sequence information, but they also store the parameters

ymax, ymin, n, and κ. These parameters are stored as SBOL annotations in each expression

cassette for the case of Cello gates, and in the repression interaction of sensor proteins to

sensor promoters for the case of sensor promoters. The automated model generator of

this work searches for these parameters to generate the model that describes the dynamic

behavior of a circuit.

2.6.1.3 Cello’s Circuit Performance Prediction

Qualitative predictions of circuit performance (output distributions) are obtained com-

puting the combination for each individual gate’s output distribution [88]. This is the last

step performed by Cello after gate assignment and produces a prediction of the circuit’s

output as a distribution. To perform this prediction, there has to be experimental data to

fit a response function for each gate. Thus, each gate in the circuit must have experimental

cytometry distributions added to the UCF, with the fluorescence values reported in RPU

[88].

Once all the gate distribution response functions are calculated, the qualitative pre-

dictions for the outcome product can be computed. For a particular input combination,

the sensor values (concentrations) are fed to the first layer of the circuit (sensor gates).

Each sensor gate has a distribution response function, so with the concentration of input

molecule a vertical ”slice” is obtained from the distribution response function to create

an output histogram for the gate. Next, these gate output histograms become the input

histograms for the second layer of gates. This is done for all the different layers, composing

output histograms for each layer and feeding it as an input for the next layer, until the final

11https://synbiohub.programmingbiology.org/public/Eco1C1G1T1/Eco1C1G1T1_collection/1
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circuit’s output histogram is calculated. Then, finally, for each input signal combination,

a histogram of output for each individual gate is estimated, and the signal is propagated

throughout the entire circuit until the last one (circuit’s output) is calculated to produce

the truth table predictions of the work [16, 88].

The composition of response functions to obtain a predicted output histogram is based

on steady-state experimental results and is a steady-state outcome prediction. This means

that any dynamic behavior the circuit undergoes before reaching steady-state is missed

by this analysis. However, in the original science paper work [16], researchers did a

time-course experiment to obtain output production in RPU every hour for a particular

circuit, until the circuit reached steady-state, shown in Figure 2.5. In this experiment they

observed that the circuit, for some of the input combinations, behaved in an unpredicted

manner: the output would vary in unexpected ways before reaching the correct predicted

steady-state output of the circuit. This type of behavior cannot be predicted with steady-

state modeling and simulation, and it is why it is so important to have a dynamic model

that can do so. The ability to dynamically model genetic circuits using Cello gates and

parametrization to be able to predict this dynamic behavior before and after reaching

steady-states is what inspired the work of this thesis. Dynamic modeling would not only

predict this kind of behavior, but also allow for a finer analysis of circuit dynamics to detect

failures.

The Cello simulation environment is used mainly for the design and implementation of

genetic circuits. However, there are other GDA tools that not only allow for the design, but

also the modeling and simulation of genetic circuits. One such tool, iBioSim, is discussed

in the next section.

2.6.2 iBioSim

iBioSim is a genetic design automation (GDA) tool for the design, modeling, and anal-

ysis of genetic circuits that is being actively developed at the University of Utah [89–91].

This tool has been developed to promote model-based design of genetic circuits using

community-developed data standards such as SBOL, SBML, and SED-ML. While Cello is a

GDA tool to automatically design genetic circuits, iBioSim is not restricted to genetic logic

circuits. iBioSim allows for a wider range of genetic parts and metabolic species, modeling,
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and simulation using data standards, automatic uploading to online repositories among

other things. The following is a high-level description of the key features of iBioSim:

• Genetic Circuit Design

1. Incorporated sequence editor tool SBOLDesigner [92]. Genetic designs can be

viewed, edited, and create hierarchical levels of design.

2. Front-end connection to SynBioHub for the uploading, downloading, and shar-

ing of genetic circuits.

• Model Generation

1. The Virtual Parts Repository (VPR) model generator is used to obtain and en-

rich SBOL files with interaction data, small molecules, and more for designed

circuits.

2. Integrated SBOL to SBML converter [78] that can be used to translate structural

and functional information to create a quantitative model expressed in SBML

using generic or user-defined parameters.

3. User interface to edit and refine the model using the model editor GUI.

• Analysis

1. Variety of simulation methods to analyze SBML models such as ordinary differen-

tial equations (ODEs) and stochastic simulation, and many others using SED-ML.

2. Perform flux balance analysis (FBA) on SBML models.

3. Perform stochastic model checking, and simulation of grid-based, hierarchical

models of dynamic cellular populations.

4. View simulation results plotted in a graph.

• Synthesis

1. Automated methods for part selection using a process known as technology

mapping [93].



27

2. Technology mapping for asynchronous sequential genetic circuits [94].

iBioSim provides automatic SBOL to SBML converter, though not one that can use

Cello’s parts and parametrization to generate a dynamic model. This thesis work imple-

ments an automatic dynamic model generator for genetic parts that uses Cello parametriza-

tion in iBioSim. In the next subsections, a more detailed description of the VPR, the SBOL

to SBML converter, and dynamic modeler of iBioSim is provided.

2.6.2.1 VPR

Modular genetic parts for synthetic biology not only can be reused for different projects,

but also provides modular and reusable models and information to be shared. Modular

models facilitates the process of model-centered design and the availability of databases

of modular models is essential to support automated model generation tools like iBioSim.

The Virtual Parts Repository (VPR) has been developed with this emphasis on mind. VPR

is a repository of standard virtual parts (SVPs), which are reusable, modular, composable,

and shareable models of physical biological parts for synthetic biology [95]. The compu-

tational models and interactions are available as SBML documents and in SBOL format

for standardization purposes. The repository was populated with data mined from an

ontology representation of the BacillOndex dataset [96, 97], which includes around 3000

virtual parts and 700 models of interactions between them.

An application programming interface (API) is also available to enable programs to access

VPR via a Web service. This can be used to retrieve SVPs, a list of interactions for a part or

SBML models of parts and interactions to construct models of biological systems [95].

These features are used by iBioSim to obtain interaction data, and add functional infor-

mation to the SBOL description of a genetic design. It can add proteins as well as coding

sequences in the same SBOL document in which the design is specified [89]. The use

of VPR for automated processes like the automated generation of models for GRNs is

particularly suitable for these reasons [98].

2.6.2.2 SBOL/SBML Converter

iBioSim also comes with an integrated SBOL to SBML converter [78]. This utility is

used to convert qualitative models and structure encoded in SBOL to quantitative models
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expressed in SBML [89, 98]. During the construction, the species and reactions generated

for the mathematical model encoded in SBML are also annotated with elements from the

SBOL document in order to preserve provenance of the model and the molecular identities

of the species [78]. This converter adds default parameter values to the interactions [98],

but these parameter values can be later modified within the iBioSim model editor. The

derivation of these rate laws is based on the law of mass action and some model abstraction

techniques like the operator site reduction or quasi-steady-state approximation [78]. For

a more detailed review of these abstractions can be found in the literature [19]. SBML

models constructed this way can then be simulated in a variety of methods.

The work presented in this thesis is a new SBOL to SBML converter that uses functional

and structural information of a genetic circuit encoded in SBOL to produce a mathematical

model described in SBML, using parameters and characterization as in the Cello project to

create a dynamic model of GRNs.
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Figure 2.1. A Cello NOR gate [16]. Each gate in Cello consists of a genetic ”expression
cassette” (in this case the gate is ”S4 SrpR”) or engineered region that interacts with a
downstream promoter. In this example, it is preceded by two repressible promoters,
(”pAmtR” and ”pPhlF”), which cause the gate to behave as a NOR gate. In this figure:
pAmtR (promoter repressed by AmtR), pPhlF (promoter repressed by PhlF), RiboJ (insu-
lator), RBS (Ribosome Binding Site), SrpR (SrpR coding sequence), and Ter. (terminator).

Figure 2.2. Sensor gate parametrization in Cello [16]. Each gate in Cello consists of
a genetic ”expression cassette” (in this case, a sensor gate) or engineered region that
interacts with a promoter (in this case ”pTac”). To characterize the RPU activity of a sensor
promoter, the sensor promoter (”pTac”, green) is positioned in front of an YFP ”expression
cassette” (or the ”YFP RPU cassette”) on a plasmid. On the same plasmid, a constitutive
promoter (”pCONST”) is placed in front of a sensor gate producing the TF, which represses
the sensor promoter. In the case of sensor gate characterization, the YFP production is mea-
sured in RPU units at different concentrations of inducer (in this case ”IPTG”). These data
are then fit to obtain the values of ymax and ymin for the promoter pTac. In this figure: pTac
(promoter repressed by LacI), RiboJ (insulator), RBS (Ribosome Binding Site), YFP (Yellow
Fluorescent Protein coding sequence), Ter. (terminator), pConst (Constitutive promoter),
LacI (LacI coding sequence), and IPTG (Isopropylβ − D − 1 − thiogalactopyranoside).
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Figure 2.3. Genetic gate parametrization in Cello [16]. Each gate consists of a genetic
”expression cassette” (in this case ”Gate P3 PhlF”) or engineered region that interacts
with a promoter (in this case ”pPhlF”, red). An inducer (in this case IPTG) is added
at different concentrations, and the YFP production is measured in RPU units to create
a response function (not shown). A Hill equation is fit to the response curve to obtain
the values of ymax, ymin, n, and κ. In this figure: pTac (promoter repressed by LacI),
RiboJ (insulator), RBS (Ribosome Binding Site), YFP (Yellow Fluorescent Protein coding
sequence), Ter. (terminator), pConst (Constitutive promoter), LacI (LacI coding sequence),
and IPTG (Isopropylβ − D − 1 − thiogalactopyranoside).
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Figure 2.4. SBOL Visual [1] representation of a genetic gate. This gates corresponds to
circuit 0x1C in [16]. This gate consists of two repressible promoters (pAmtR and pSrpR)
followed by an engineered region or expression cassette (P3 PhlF). This expression cassette
is composed of a ribozyme-based insulator (RiboJ), a ribosome binding site (P3), a coding
sequence (PhlF), and a terminator (ECK120033737).

Figure 2.5. Time-course data for circuit 0x8E (courtesy of [16]). Each line represents
the output YFP production (in RPUs) over time (in hours) for the circuit 0x8E for each
combination of input molecules. This circuit senses three input molecules: Arabinose
(Ara), anhydrotetracycline (aTc), and Isopropylβ − D − 1 − thiogalactopyranoside (IPTG).
In the image, +/+/+ (Ara/aTc/IPTG) represents all input molecules are present and -/-/-
represents no input molecules present. Also the ON and OFF states represent the predicted
outcome at steady-state. All outputs behave as expected, except for the +/-/+ state, which
experiences an undesirable decay before rising to the ON state (red line).



CHAPTER 3

PARAMETERIZED MODEL GENERATOR

This chapter describes the automatic model generator implemented in this work. Sec-

tion 3.1 starts with the mathematical model used to describe a GRN, which parameters

it uses, and where to obtain them. Section 3.2 are the model abstractions used by this

model generator to create the production and degradation reaction for each species in a

GRN. Section 3.5 continues detailing the different parameters and their units used by the

model generator. Finally, the chapter ends in Section 3.6 with a general overview of the

algorithm used to generate a mathematical model from an SBOL document automatically,

and a simple genetic gate is analyzed and modeled to exemplify the model generator and

its outputs.

3.1 Kinetic-Based Mathematical Model

This section describes the mathematical model proposed by Hamid Doosthosseini [27],

which is used by the automatic model generator reported in this work to produce the

degradation and production reactions described in Sections 3.3 and 3.4. This mathematical

model is suitable to model not only genetic circuits generated using the Cello tool but any

circuit as long as the appropriate parameters are available. The model stems from the

Michaelis-Menten scheme and basic equilibrium kinetics to develop an empirical model

that describes the dynamical function of a synthetic genetic circuit, which produces mRNA

as well as protein predictions. The model is composed of a set of Ordinary Differential Equa-

tions (ODEs) that describe the rate of production of mRNA and protein and are rearranged

to create variables that can accommodate specific parameters; these equations are solved

using an ODE solver using quasi-steady-state assumptions as explained in Section 2.3.5.

A kinetic mass-action model can be used to derive the necessary ODEs that describe the

dynamics of a GRN [19, 23, 25, 63]. A simple mass-action kinetic model for the reactions

of the transcription and translation processes of a gene can be summarized in a simple
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scheme, as shown in Figure 3.1. This figure shows a simple diagram of a transcriptional

unit (TU) as a section of a DNA strand where there is a promoter (green), followed by an

operator (red), and ending with a coding region (purple) of a transcription factor (TFi).

The two most significant steps in the production of a protein (or transcription factor) in a

cell are the transcription (Figure 3.1 b) and translation (Figure 3.1 c) processes, which are the

production of mRNA and a protein respectively out of a DNA template. We can see that

this gene can be repressed by a transcription factor (TFj) with a binding rate of reaction

k1repression and, conversely, it can be unrepressed with a rate of reaction k−1repression , as shown

in Figure 3.1 (a). Similarly, Figure 3.1 (b) shows that there is a rate of binding k1transcription and

un-binding k−1transcription for the RNA polymerase (RNAP) onto the promoter segment and

a rate of transcription k2transcription by the RNAP, which produces mRNA molecules. For the

translation process (Figure 3.1 c), a ribosome links and unlinks from a strand of mRNA

with different rates (k1translation and k−1translation , respectively), and eventually, the ribosome

starts the translation process with a rate k2translation and produces a protein, or in this model

a TF (TFi), from the mRNA.

If we consider Figure 3.1 (a) where a transcription-repressor factor binds to the regula-

tory domain (operator) of a gene, we obtain a mass-action kinetic model for this repression:

Pf ree + nTFj

k1repression−−−−−⇀↽−−−−−
k−1repression

P · nTFj , (3.1)

in which Pf ree is a promoter that does not have a TF or RNAP bound to it, TFj is the jth

transcription factor of the system that binds to the operator site of this gene and inhibits

transcription, and n is the number of TF molecules that bind to an operator site in order

to inhibit the transcription, also called binding cooperativity. Similarly, we can produce

similar equations for Figure 3.1 b (3.2) and Figure 3.1 c (3.3), as shown in the following

equations:

RNAPf ree + Pf ree

k1transcription−−−−−−−⇀↽−−−−−−−
k−1transcription

RNAP · P
k2transcription−−−−−−→ RNAPf ree + Pf ree + mRNAi , (3.2)

Rib f ree + mRNAi
k1translation−−−−−−⇀↽−−−−−−
k−1translation

Rib · mRNAi
k2translation−−−−−→ Rib f ree + mRNAi + TFi , (3.3)

where RNAPf ree is unbound RNAP molecules, mRNAi is the mRNA produced by this

gene, Rib f ree is a ribosome without a linked mRNA, and TFi is the transcription factor
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(protein) produced by this gene, which will, in turn, be a transcription factor for another

gene of the circuit. Background production of mRNA, otherwise termed promoter leakage,

is an important factor to take into account in our model [99]. This would be the production

of mRNAs when the promoter is inhibited (for a repressible promoter) or when it is not

activated (for a inducible promoter), which will contribute to the ymin parameter described

later in this chapter. Promoter leakage is described in the following equation as:

∅
kibackground−−−−−→ mRNAi . (3.4)

There are also multiple and different factors by which mRNAi and TFi diminish in con-

centration. The parameters kmRNAidim
and kTFidim

are a combination of different effects, such

as degradation or dilution, that lower the number of mRNA and TF molecules in the cell.

They can be modeled as a single rate, as shown in (3.5) and (3.6) that follow:

mRNAi

kmRNAidim−−−−−→ ∅ , (3.5)

TFi

kTFidim−−−→ ∅ . (3.6)

This set of equations, (3.1) to (3.6), compose the simplified mass-action kinetic model

for the production and degradation of mRNA and TF (protein) for a gene with repress-

ible promoters. A pseudo-steady-state approximation (PSSA) can be used to simplify the

complex enzymatic reaction descriptions from (3.1), (3.2), and (3.3), which are appropriate

for general enzyme systems [23, 100]. This assumption considers that some, or all, of

the intermediate enzyme-substrate complexes (
[
P · nTFj

]
, [RNAP · P], and [Rib · mRNAi]),

tend to reach a stable-state quickly, meaning that their concentration is constant and their

rate of change over time equals 0. Using the PSSA for this system and rearranging (3.1),

(3.2), and (3.3) we obtain the following equations:

[
P · nTFj

]
=

k1repression

k−1repression

[
Pf ree

] [
TFj

]n , (3.7)

[RNAP · P] =
k1transcription

k−1transcription + k2transcription

[
Pf ree

] [
RNAPf ree

]
, (3.8)

[Rib · mRNAi] =
k1translation

k−1translation + k2translation

[
Rib f ree

]
[mRNAi] . (3.9)
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We consider that the amount or concentration of total promoters, Ptot, is conserved

during an experiment (or simulation). The total amount of a promoter in a system would

be equal to the amount of unbound promoter (Pf ree), and bound promoter to a transcription

factor (P · nTFj) or RNAP (RNAP · P) as the next equation describes:

[Ptot] =
[
Pf ree

]
+

[
P · nTFj

]
+ [RNAP · P]

=
[
Pf ree

] (
1 +

k1repression

k−1repression

[
TFj

]n
+

k1transcription

k−1transcription + k2transcription

[
RNAPf ree

])
. (3.10)

Now we can define the rate of change in concentration for both mRNAs and TFs using

the law of mass action, which states that the rate (or velocity) of a reaction is given by

the product of the reactant concentrations to the power of their stoichiometry times the

reaction rate constant. Thus, the rate change of mRNA and TF over time, using (3.7), (3.8),

(3.9), and (3.10) to replace where appropriate, we obtain:

d [mRNAi]

dt
= k2transcription [RNAP · P] + kibackground − kmRNAidim

[mRNAi]

= k2transcription ·
k1transcription

k−1transcription + k2transcription

[
Pf ree

] [
RNAPf ree

]
+ kibackground − kmRNAidim

[mRNAi]

=
k2transcription ·

k1transcription
k−1transcription+k2transcription

[Ptot]
[
RNAPf ree

]
1 +

k1repression
k−1repression

[
TFj

]n
+

k1transcription
k−1transcription+k2transcription

[
RNAPf ree

] + kibackground − kmRNAidim
[mRNAi]

(3.11)
d [TFi]

dt
= k2translation [Rib · mRNAi]− kTFidim

[TFi]

= k2translation

k1transcription

k−1transcription + k2transcription

[
Rib f ree

]
[mRNAi]− kTFidim

[TFi] . (3.12)

Equations 3.11 and 3.12 are ODEs that describe the rate of change for mRNA and TF

species in the system. Solving these ODEs using an ODE solver method would describe the

dynamics of mRNA and TF change in concentration for this system. Note the difference

between TFj and TFi in this model: the former is the TF that represses this system, the

latter is the product of the translation process of this gene.

To be able to accommodate Cello parameters and simplify the equations, we define a

new set of parameters as follows:

kmRNAimax
=

k2transc · k1transc
k−1transc+k2transc

[Ptot][RNAPf ree]

1 + k1transc
k−1transc+k2transc

[RNAPf ree]
, (3.13)
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κn =
1 + k1transc

k−1transc+k2transc
[RNAPf ree]

k1rep
k−1rep

, (3.14)

αi =
kmRNAimax

kmRNAidim

, (3.15)

βi =
kibackground

kmRNAidim

, (3.16)

γi =
k2transl k1transl

k−1transl + k2transl

[Rib f ree]

kTFidim

. (3.17)

Thus, (3.11) and (3.12) become

d [mRNAi]

dt
= kmRNAimax

· 1

1 +
(
[TFj]

κ

)n + kibackground − kmRNAidim
[mRNAi]

= kmRNAidim

⎛
⎜⎜⎝ αi

1 +
(
[TFj]

κ

)n + βi − [mRNAi]

⎞
⎟⎟⎠ , (3.18)

d [TFi]

dt
= kTFidim

(γi [mRNAi]− [TFi]) . (3.19)

Therefore, at steady-state

[mRNAi] =
αi

1 +
(
[TFj]

κ

)n + βi , (3.20)

[TFi] = γi [mRNAi]

=
αiγi

1 +
(
[TFj]

κ

)n + βiγi . (3.21)

This form is similar to that of the Hill equation and the model presented in the original

Cello paper [16], in where ymax and ymin are

αiγi = ymax − ymin , (3.22)

βiγi = ymin . (3.23)

To replace the values of κ, n, ymax, and ymin and to obtain a set of first-order ODEs

shown below (3.24) and (3.25), [TFi] must be expressed in units of Relative Promoter Units
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(RPU) [60]. However, the units of [mRNAi] are arbitrary and can be adjusted to simplify

notation and simplify the model. We can modify the value of γi so that γi [mRNAi] =[
̂mRNAi

]
, and this can be accomplished by setting γi = 1 and therefore the final form for

the set of ODEs for this model would be:

d
[
̂mRNAi

]
dt

= kmRNAidim

⎛
⎜⎜⎝ ymax − ymin

1 +
(
[TFj]

κ

)n + ymin −
[
̂mRNAi

]⎞⎟⎟⎠ , (3.24)

d [TFi]

dt
= kTFidim

([
̂mRNAi

]
− [TFi]

)
. (3.25)

We can apply the same procedure for a system in which a TF activates, instead of represses,

the expression of a gene that would lead to an equation (3.26) of the following form:

d
[
̂mRNAi

]
dt

= kmRNAidim

⎛
⎜⎜⎝ ymax − ymin

1 +
(

κ

[TFj]

)n + ymin −
[
̂mRNAi

]⎞⎟⎟⎠ . (3.26)

Thus, (3.24), (3.25), and (3.26) are the production rates of mRNA and TF of a system, where

ymax and ymin are the production rates of a promoter when it is on or off, respectively (in

relative promoter units [60]), κ and n are obtained from the affinity and cooperativity of

binding, and finally, kmRNAidim
and kTFidim

are the composed rates of degradation, diffusion,

or any other diminishing phenomenon that decreases the concentration of the mRNA and

protein, respectively. These last parameters can be obtained from literature or fitted to

experimental data. This is a mathematical model for repressions, activations, transcription,

and translation, which is used in the automatic model generator implemented in this work,

as shown below.

3.2 Model Abstractions

Applying model abstractions simplifies the original mathematical model and, there-

fore, speeds up simulation time [19]. Nonetheless, this reduction of complexity requires

parametrization of these simplified reactions [101]. The following two subsections explain

the abstractions that are considered in this work and how the accompanying parts charac-

terizations can be used to parameterize these abstracted reactions.
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3.2.1 Sensor Gates

A sensor gate is a TU that produces a sensor protein. Such a protein is called a sensor

protein because it can bind to small inducer molecules, called inputs, ”sensing” their pres-

ence/absence. These small inducer molecules are called inputs since they are externally

controlled by the experimenter and can transfer into the cytoplasm of a cell. These inputs

can bind to sensor proteins to form complexes that have no function and are later degraded

by the cell (see Figure 3.2 (a)), thus inhibiting (or repressing) these sensor proteins. Alter-

natively, some sensor proteins are inactivated unless they bind to an input molecule (see

Figure 3.2 (b)), in which case they undergo a conformational change and can then induce

positively or negatively a promoter.

Inducible promoters that are repressed/activated by these sensor proteins are thus

called sensor promoters because their activation/repression (on and off states) can be con-

trolled by the inputs that the experimenter can control.

Cello uses sensor gates with constitutive promoters [16], as shown in Figure 3.3. A

constitutive promoter is not inducible and is always on, meaning there is always going to

be production of sensor molecules when it is included on a designed system. It is therefore

safe to assume there is always presence of sensor molecules on the system if a sensor gate

is included, and thus the modeling for the sensor molecule production can be avoided

to speed up model generation and simulation time. This is why the model generator

implemented in this work does not produce a mathematical model for the production of

sensor mRNAs or proteins, and no species are created for the sensor gate. We can further

abstract this model by avoiding simulating the complex formation between sensor proteins

and inputs, as explained in the following section.

3.2.2 Circuit Inputs and Sensor Promoters

As explained previously, sensor proteins can activate/repress sensor promoters, and

small inducer molecules (inputs) can activate/repress these sensor proteins. Assuming

there is always a presence of a sensor molecule, as explained in the previous section, the

model can be further abstracted avoiding the modeling of complex formation between

sensor and small molecules to directly representing the small molecules as activating or

repressing the sensor promoters, as shown in Figure 3.4.
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We can simplify the circuit because the repression of a repression has analogous func-

tionality as an activation. The designed circuit could have, for example, a sensor protein

that represses a sensor promoter like in Figure 3.4 (a). If this sensor protein can bind to an

input molecule that renders it inactive and tags it for degradation (like in Figure 3.2 (a)),

then it could be modeled as if the input molecule represses the sensor protein (see Figure 3.4

(b)), thus circumventing the need to model the complex formation between the sensor

protein and input molecule. It can be noted that a repression of a repression is equivalent to

an activation further simplifying the model (Figure 3.4 (c)). This reduction works similarly

if the input binds to a sensor protein to activate it, as shown in Figure 3.2 (b); therefore it

can be simplified as the input molecule directly activating the sensor promoter. Hence the

model generator implemented in this work simplifies inducibility of a sensor promoter and

complex formation by a sensor protein directly as an input molecule inducing a sensor

promoter. It is possible to make this abstraction since sensor proteins are continually

produced, so they are always present in the system, and we consider that the external

input molecules, when present, will significantly surpass in quantity the number of sensor

proteins, thus binding and activating/inhibiting all of the sensor proteins present. For this

model generator, the concentration of input molecules is not essential since we consider

that a sufficient amount is introduced into the system by the experimenter, and, as a

consequence, we are only going to model presence/absence of input molecules that will

activate the sensor promoters when present (see Section 3.4 for more information).

There are four types of sensor proteins in the original Cello paper [16]: LacI, TetR,

AraC, and LuxR. LacI and TetR repress their respective sensor promoters unless they bind

to an input molecule (IPTG and aTc, respectively), which renders them inactive. On the

other hand, LuxR and AraC can only positively induce their respective sensor promoters

if they bind to an input molecule (HSL and Ara, respectively). In all of the cases stated,

we can reduce and simplify the model as if the input molecules directly activate the sensor

promoters. Thus, the presence of any of the input molecules (IPTG, aTC, HSL, and Ara)

will promote transcription of TU with sensor promoters (pTac, pTet, pLuxStar and pBAD

respectively), as shown in Table 3.1.

Consequently, the model generator implemented in this work does:

• Not produce a SBML species for any sensor TU or sensor protein,
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• Not generate a sensor mRNA and protein production and degradation reaction,

• Avoid generating complex formation reactions between sensor proteins and input

molecules, and

• Summarize or abstract all interactions with sensor promoters as activations from

input molecules.

These abstractions help speed up the model generating process, as well as the simula-

tion time in an effort to abstract the model without losing predictability.

3.3 New Degradation Reaction

The reactions generated by the automatic model generator of this work are presented in

this section and the following one. This reactions stem from the dynamic model presented

earlier in Section 3.1 and are automatically generated without the intervention of the user.

The model generator implemented in this work generates a production and degradation

reaction for each SBML species in the model, except for the TUs and input molecules,

since neither of those is going to be produced or degraded during simulation. That means

that only TFs and mRNAs will have a production and degradation reaction associated

with them. The Equations 3.24 and 3.25, which represent the change in concentration

for both these species, have factors that diminish and increment species concentrations.

Discriminating between these factors will create a production and degradation reaction

for both TFs and mRNA. Unfactorizing both equations we obtain

d
[
̂mRNAi

]
dt

= kmRNAidim

⎛
⎜⎜⎝ ymax − ymin

1 +
(
[TFj]

κ

)n + ymin

⎞
⎟⎟⎠− kmRNAidim

·
[
̂mRNAi

]
, (3.27)

d [TFi]

dt
= kTFidim

·
[
̂mRNAi

]
− kTFidim

· [TFi] . (3.28)

Since ymax and ymin are always positive numbers, and ymax > ymin, it can be deduced

that the only terms that diminish concentration are the negative terms. Therefore, the

degradation reaction produced for each mRNA and TF in this model generator will be



41

- mRNA degradation reaction:

mRNA Degradation Reaction = −kmRNAidim
·
[
̂mRNAi

]
, (3.29)

and

- TF degradation reaction:

TF Degradation Reaction = −kTFidim
· [TFi] . (3.30)

The model generator creates only one degradation reaction for each SBML species that

degrades (TFs, mRNAs), and it will depend only on the diminishing constants kmRNAidim

and kTFidim
and the concentration of the species itself.

3.4 New Production Reaction

Grouping the positive terms will produce the production reactions for the different

SBML species that are produced in this model (TFs and mRNAs) as follows:

- mRNA production reaction:

mRNA Production Reaction = kmRNAidim

⎛
⎜⎜⎝ ymax − ymin

1 +
(
[TFj]

κ

)n + ymin

⎞
⎟⎟⎠ , (3.31)

and

- TF production reaction:

TF Production Reaction = kTFidim
·
[
̂mRNAi

]
. (3.32)

Cello’s algorithms produce gates with tandem promoters (see Figure 2.4), choosing

from a library of parts and avoiding those with known roadblocking issues. The model

carried out in this work assumes the promoters are completely orthogonal. This means

that each promoter will be independent of which other promoter is in tandem with and

that the effect over the rate of production of mRNA for this gate is additive. This is a safe

assumption since Cello only chooses tandem promoters that do not display roadblocking

behavior.



42

Figure 2.4 shows an example of a gate produced for the circuit 0xC1 in the original

Cello paper [16]. In this case, the production reaction for mRNAPhlF would be

d
[

̂mRNAPhlF

]
dt

= kmRNAidim

⎛
⎜⎝ymaxpAmtR − yminpAmtR

1 +
(
[AmtR]
κAmtR

)nAmtR
+ yminpAmtR

⎞
⎟⎠+

kmRNAidim

⎛
⎜⎝ymaxpSrpR − yminpSrpR

1 +
(
[SrpR]
κSrpR

)nSrpR
+ yminSrpR

⎞
⎟⎠ .

It should be noted that all gates with sensor promoters will have a similar form, but since

sensor promoters are considered only to be on or off if there is a presence/absence of input

molecules, the production reaction for them is a piece-wise function like the following:

d
[

̂mRNAPhlF

]
dt

= kmRNAidim
·
(

piecewise(yminpTet , TetR == 0, ymaxpTet)
)

.

This means that the promoter is at minimum production rate (ymin) when there is no input

molecule ([TetR] == 0), and at maximum production rate (ymax) when there is presence

of input molecule ([TetR] �= 0). As explained in Section 3.2.1, the model does not take

into account input molecule concentration. It should be noted that for this work all the

values of kmRNAidim
and kTFidim

are the same for all the different genetic parts since there

is no information available of their real magnitudes, but future work using RNAseq and

Riboseq data can provide information on these constants for each gate as explained in

Section 3.5.2.

3.5 Parameters and Units

The mathematical model described requires six different parameters: ymax, ymin, n, κ,

kmRNAidim
, and kTFidim

. Since the units for ymax and ymin are in Relative Promoter Units (RPU)

[60], and the units for kmRNAidim
and kTFidim

are per seconds (s−1), the output rate of the

production and degradation reactions are in RPU per second. It is useful to report rate

of changes in RPUs since it is a standardized unit for measuring promoter activity and

has an associated standardized protocol for measurement that is compatible with different

laboratories with different equipment.

Described in the following subsection is how the model generator obtains the first four

parameters (ymax, ymin, κ, and n) from any online repository that uses the same parametriza-

tion as the Cello tool does. The next subsection explains what the values are for kmRNAidim
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and kTFidim
chosen for this work, and how to improve these in the future to better fit the

model predictions to experimental data.

3.5.1 ymax, ymin, κ, and n

The values for ymax, ymin, n, and κ were obtained experimentally in the Cello project [16]

and can be retrieved from the appropriate repository where they are stored. The model

generator of this work does so by opening a front-end in SynBioHub and retrieving this

information from the appropriate repository.

In this model, ymax is the maximum RPU produced for a gene, when the promoter is

active or on; ymin would be the basal or background transcription in RPU of a gene or gate

with an inhibited or off promoter; n is equivalent to the Hill coefficient, and κ is equivalent

to the dissociation constant.

Genes and proteins behave differently depending on the genetic and cellular context

[102]; thus, there is an assumption that they will behave similarly once the genetic circuit is

assembled, and hence, it is an assumption of the model developed in this work. Nonethe-

less, these parameters can be fitted to experimental data (RNA-seq and Ribo-seq data) to

estimate more accurately what is the value when implemented on a specific circuit and

strain. There is an inherent risk when fitting parameters to experimental data, and that is

over-fitting, which can result in significant errors if the model is applied to other circuits.

However, if the interest is on a specific genetic circuit implementation, then it would be

favorable to fit the parameters to experimental data to have a better model prediction and

finer debugging capabilities when analyzing the results.

3.5.2 kmRNAidim
and kTFidim

The parameters kmRNAidim
and kTFidim

represent the decay or degradation of mRNA and

protein, respectively, and their experimentally acquired values pool a variety of differ-

ent phenomenon such as degradation from cell processes to dilution due to cell growth.

Nonetheless, since there is no time-series data available for the expression profiles of

the different genes, the values for kmRNAidim
and kTFidim

were chosen from literature [64,

103–105] as 1
300s−1 and 1

3600s−1 , respectively. These values were chosen from studies of

mRNA and protein decay rates for Escherichia coli and represent an average across multiple

experimental conditions as well as types of mRNA and proteins. However, each mRNA
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and protein have different values for kmRNAidim
and kTFidim

, and it would be interesting to

obtain them experimentally for each genetic gate, in order to enrich the library of genetic

parts and their parametrization. RNAseq and Ribo-seq time-series data can also be used

to fit these values to the observed data and obtain more precise values for kmRNAidim
and

kTFidim
, as well as for ymax, ymin, n, and κ.

Even though it is valuable to derive parametrization of kmRNAidim
and kTFidim

for each

mRNA and protein in the system to attain more precise models, it is important to note that

the values of these two parameters do not affect the steady-state outcome of each species.

If we group the production and degradation reaction ((3.29) and (3.31) for mRNAs and

(3.30) and (3.32) for proteins) into the same equation, we obtain the total rate of change for

mRNA or protein as follows:

d
[
̂mRNAi

]
dt

= kmRNAidim

⎛
⎜⎜⎝ ymax − ymin

1 +
(
[TFj]

κ

)n + ymin

⎞
⎟⎟⎠− kmRNAidim

·
[
̂mRNAi

]
,

d [TFi]

dt
= kTFidim

·
[
̂mRNAi

]
− kTFidim

· [TFi] .

These equations describe the rate of change for any mRNA and protein for the system. At

steady-state
d
[
̂mRNAi

]
dt = 0 and d[TFi ]

dt = 0. Therefore,

0 =
ymax − ymin

1 +
(
[TFj]

κ

)n + ymin −
[
̂mRNAi

]
, (3.33)

0 =
[
̂mRNAi

]
− [TFi] (3.34)

means that the steady-state of these species does not depend on the values of kmRNAidim
and

kTFidim
. Nonetheless, these two parameters can affect the response function of the genetic

gates. Modifying these rates can account for slower or delayed response, as shown in

Figure 3.5.

It would prove valuable to obtain time-series data for the response functions of the

different gates used in this work, in order to fit the values of kmRNAidim
and kTFidim

and

have more accurate dynamic response predictions. However, for the purpose of this thesis

work, the generic values of kmRNAidim
and kTFidim

are adequate to provide a general dynamic

model prediction and analysis of behavior.
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3.6 Automated Model Generator

Taking into consideration all previous sections, we can now illustrate the high-level de-

scription of the dynamic model generator implemented in this work and a mock example

of its output. In it, a general description of how the algorithm creates a model, species,

and reactions from an enriched SBOL document that describes the GRN to be modeled

is detailed. The complete algorithm of the dynamic model generator can be accessed at

https://github.com/MyersResearchGroup/iBioSim/tree/ModelingGenerator.

As a demonstration, this section shows the output of the model generator for a simple

genetic gate (see Figure 2.4) in iBioSim. This demonstration is meant to show what the user

would see when generating a model for a genetic circuit using the model generator derived

in this work. One would start with a design of the circuit, either by creating it within

iBioSim with SBOLDesigner, or importing the SBOL file with the design specification,

as shown in Figure 3.6. Once the design is created/uploaded, the user would have to

double-click on the panel on the left and then click on the ”Generate Model” button, as

shown in Figure 3.7. A pop-up window appears so that the user can select the appropriate

online repository, as shown in Figure 3.8, and the automated model generator produces

the dynamic model, as shown in Figure 3.9. In the process of generating the model, the

algorithm will:

• Use VPR to enrich the SBOLDocument with interactions and their participants from

the chosen repository and create a Top Module that encompasses all the different

sub-modules.

• Extract the parameter information from the parts.

• Create an SBML document and an empty model.

• Create all the species and reactions in the model.

• Generate the mathematical equations that compose the dynamic model for the cho-

sen parts.

Once it is done, the user can look for the mathematical formulas of each reaction under

the ”tabular” tab. The equations generated for this example are shown in (3.35).



46

mRNAPhlF production reaction = kmRNAidim

⎛
⎜⎝ymaxpAmtR − yminpAmtR

1 +
(
[AmtR]
κAmtR

)nAmtR
+ yminpAmtR

⎞
⎟⎠+

kmRNAidim

⎛
⎜⎝ymaxpSrpR − yminpSrpR

1 +
(
[SrpR]
κSrpR

)nSrpR
+ yminSrpR

⎞
⎟⎠ ,

PhlF production reaction = kTFidim
· [mRNAPhlF] ,

mRNAPhlF degradation reaction = kmRNAidim
· [mRNAPhlF] ,

PhlF production reaction = kTFidim
· [PhlF] . (3.35)

The mathematical model describes how the different species change depending on

other chemical species and inputs, but it does not describe in which context will this circuit

be implemented. To specify the environment and sequence of inputs this circuit will be

subjected to, a simulation environment has to be created where the user can designate

input value changes over time. One such simulation environment could be subjecting the

circuit to all the different combinations of input molecules, as shown in Figure 3.10. In the

simulation environment shown in this example, the input values alternate to all possible

combinations of presence/absence of input molecules, in the order shown in [16]. Simu-

lation of this environment would produce the expected dynamic behavior of the genetic

gate or circuit. For this example, simulation would be uninformative since it is only one

gate of a genetic circuit which does not respond to changes in input molecules. However,

Chapter 4 demonstrates the dynamic simulation produced by the model generator and

this environment, for all the circuits depicted in the original Cello paper, and the analysis

we can do on such simulations.
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Table 3.1. Model abstractions for input molecules and sensor promoters

Sensor Promoter Sensor Protein Input Molecule Abstracted Interaction

pTac LacI IPTG activates

pTet TetR aTc activates

pLuxStar LuxR HSL activates

pBAD AraC Ara activates

(a)

(b)

(c)

Figure 3.1. Schematic of kinetic model for repression, transcription, and translation. (a) A
simple kinetic model of a repression interaction of when a transcription factor (TF) attaches
to a operator site, blocking transcription. (b) A simple kinetic model of transcription,
where a RNAP binds to a promoter site and starts transcribing a mRNA molecule from
the DNA template. (c) A simple kinetic model of a translation process, where a ribosome
links to a mRNA and produces a protein (or TF) specified in the codon sequence of the
mRNA.
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(a)

(b)

Figure 3.2. Complex formation between an input molecule and a sensor protein. (a) A
sensor protein (LacI) can bind with an input molecule (IPTG) to form a complex that does
not induce any promoter and is tagged for degradation. (b) The sensor protein (AraC) is
inactive unless it binds to an input molecule (Ara) to form a complex that can positively
induce a promoter (pBAD).

Figure 3.3. Representation of a sensor gate used by Cello. Sensor molecule TetR is being
constantly produced since this TU has a constitutive promoter (pCONST).
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(a) (b) (c)

Figure 3.4. Model abstractions permitted when sensor proteins are available in abundance.
(a) Schematic showing a sensor protein that represses a sensor promoter. (b) A small
molecule (input) that represses the sensor protein. (c) Model abstraction where the small
molecule can be considered to activate the sensor promoter.

s

RPU

(a)

s

RPU

(b)

Figure 3.5. Changing dynamic response with kmRNAidim
and kTFidim

. Changing the values of
kmRNAidim

or kTFidim
can cause a delayed response (a), a faster response (b), or a combination

of both.
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Figure 3.6. Designing a genetic NOR gate in iBioSim using SBOLDesigner.

Figure 3.7. Automatically generating a model for a circuit design. Once the user clicks the
circled button in iBioSim, the algorithm implemented in this work starts to automatically
generate the model for the selected gates/circuits.
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Figure 3.8. Selecting online repository in iBioSim. A pop-up window appears in iBioSim
after selecting ”Generate Model” in which it asks for the user to select an online repository
to fetch information about the parts used in the genetic design.

Figure 3.9. Mathematical model output in iBioSim. Graphical exposition of the mathemat-
ical model generated for the selected genetic gate/circuit in iBioSim.
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Figure 3.10. Simulation environment in iBioSim. Simulation Environment created in
iBioSim to simulate the different input combinations the circuit can be subjected to. The
order of these input combinations follows the one shown in the Cello paper [16].



CHAPTER 4

CASE STUDIES

This chapter provides the results obtained from using the automated model generator

on preexisting genetic circuits designed with Cello [16]. A full workflow, from importing

the genetic circuits encoded in SBOL files, to uploading the finished models and their

simulation to an online repository is performed during the process. However, this chapter

is not limited to only showcasing these results. In further sections, we use the simulation

results to analyze these genetic circuits and show how the dynamic behavior of a circuit

can help understand the underlying phenomenon to some of the undesired or unexpected

behavior predicted.

4.1 Cello Circuits

The Cello project [16] designed 52 different circuits and simulated them using steady-

state modeling. Using the dynamic model generator of this work, we set out to generate

dynamic models and simulate these same circuits. However, none of the models would be

interesting by themselves if not instantiated in a simulation environment. This simulation

environment should describe the input changes the circuit is subjected to, and therefore

would provide information on how these circuits respond to them. In the next section, a

description of the simulation environment used in this project ensues.

4.1.1 Simulation Environment

Figure 4.1 shows a schematic of the simulation environment, which was created using

SBML editor in iBioSim. For each genetic circuit, an iBioSim project was created, and the

automatic model generator implemented in this work was used to create a dynamic model

for each. Then, the simulation environment model shown in Figure 4.1 was imported for

each project, and the corresponding replacements were done. This simulation environ-

ment goes through all the different states the circuits in the Cello paper were subjected to,
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both in experimentation and simulation environments.

Once the simulation environment was imported, the dynamic model of the circuit was

instantiated, and the input molecules and YFP replacements from these two hierarchical

models were done, the simulation proceeded. All cases were simulated for 750000 seconds

(208.3 hours) to allow the circuit to reach steady-state for each input combination, before

changing to the next. To solve the ODEs that were created by the automatic model genera-

tor of this work, the Runge–Kutta–Fehlberg (4, 5) method, offered by the iBioSim tool, was

chosen. The simulation results are shown in the next section.

4.1.2 Results

Using the SBOL files that describe each of these circuits generated by Cello, and the pa-

rameters stored at https://synbiohub.programmingbiology.org/public/Eco1C1G1T1/

Eco1C1G1T1_collection/1, we generated models for each of the circuits of the Cello work.

For each of these models, the simulation environment described earlier was used to simu-

late the same input changes as in the Cello project [16]. After simulation, we uploaded all

of these SBOL files, models, and simulations as collections in a SynBioHub repository. 1

An example of one such simulation result is shown in Figure 4.2. This figure shows

the YFP production (in RPU) over time (seconds) predicted for circuit 0x4D [16] using the

automatic model generator of this work.

The simulation alternates through all the states the circuit was subjected to in the Cello

project. The output of the circuit (YFP production, yellow line) is considered to be ON for

the same states as in the Cello paper [16] shown in Figure 4.3.

The same has been observed for the other circuits simulated, showing that the model

generator implemented in this work successfully predicts the same steady-states as the

steady-state modeling in the Cello project. However, the model generator of this work

also predicts the dynamic behavior between these steady-states, not available in the Cello

paper [16].

In the dynamic prediction shown in Figure 4.2, some spikes in YFP production can

be observed before the system reaches steady-state. This behavior would not have been

1https://synbiohub.utah.edu/public/DynamicModelGenerator/DynamicModelGenerator_

collection/1
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possible to predict using a steady-state modeling, as in the Cello project, and it is the reason

why implementing a dynamic modeler, like the one on this work, is so important. Other

circuits simulated presented other unexpected behavior, and is discussed further in the

next section.

4.2 Unexpected Behavior

The YFP production spikes of Circuit 0x4D is just one example of unexpected dynam-

ical behavior when designing these genetic circuits [16]. Many other circuits simulated

present some spikes like the one shown in Figure 4.2, but also other unexpected behaviors

like an undesirable decay on YFP production before rising to the ON state.

One such circuit is 0x8E [16], which its dynamic simulation produced using the dy-

namic modeler of this work is shown in Figure 4.4. When transitioning from the no

inputs state 0/0/0 (Ara = 0 / IPTG = 0 / aTc = 0), to the state where IPTG and Ara are

present (1/1/0), there is an unexpected decay in YFP production before reaching the ON

steady-state. This was observed experimentally in the original Cello project [16], as shown

in Figure 4.5 and explained in Section 2.6.1.3. This simulation shows that the dynamic

model generator of this work was able to predict this decay of YFP production when

moving through the two states, observed by experimental results and which was not

predicted by the steady-state modeling of Cello. It also predicts another YFP decay not

predicted or observed experimentally in the Cello project, because the YFP production

of the circuit was never measured when removing input molecules from the system. The

other YFP decay can be observed when moving from a state where Ara and aTc are present

(1/0/1) to a state where there is no inputs (0/0/0), which produces the other decay in YFP

production (Figure 4.4).

However, Nielsen et al. [16] did not offer any explanation as to why this switching

dynamics was happening. In the following sections, we use the dynamic model generator

of this work to better understand the switching behavior of these genetic circuits.

4.2.1 Circuit Analysis

To demonstrate our analysis procedure, this work analyzes circuit 0x8E (see Figure 4.6)

from the Cello paper [16], since this paper offers experimental time course data that in-
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cluded glitching behavior (Figure 4.5). The behavior of this circuit, which is predicted

using our automatically generated model, is shown on Figure 4.4, in which Yellow Fluo-

rescent Protein (YFP) production in Relative Promoter Units (RPU) [60] is shown over time

for each possible input value. The simulation shows glitches on YFP production in several

places including the condition observed experimentally (namely when Ara and IPTG are

provided simultaneously).

To better understand the cause of this glitch, let us consider the truth table for this

circuit shown in Table 4.1. The values in the truth table indicate the steady-state YFP

production (1: High, 0: Low) for different combinations of input molecules Ara, IPTG, and

aTc (1: Present, 0: Not Present). This truth table summarizes the steady-state behavior of

the circuit for different input combinations. This truth table can be represented in a more

compact form, known as a Karnaugh map.

The Karnaugh map for this circuit, shown in Table 4.2, also shows the same steady-

states from the truth table for each input combination. The first column and row of this

map show all the possible input combinations, and the values indicate the steady-state YFP

production (1: High, 0: Low) for different combinations of input molecules. For example,

when (Ara, IPTG, aTc) = (0, 0, 0), then YFP production = 1; and when (Ara, IPTG, aTc)

= (1, 1, 1), YFP production = 0. Using the Karnaugh map (Table 4.2) and the dynamic

simulation (Figure 4.4), we can analyze what is producing these glitches.

Let us first consider when the environment changes from no input molecules to where

IPTG and aTc are high. In the Karnaugh map, this moves the circuit from the states where

(Ara, IPTG, aTc) = (0, 0, 0) to (0, 1, 1). Even though circuit 0x8E is experiencing two input

changes simultaneously, it may ”sense” one input change before the other, depending on the

speed that the effect of this input change propagates through the circuit. Therefore, when

there are two input changes to a system occurring simultaneously, there are two different

paths from the initial-state to the end-state (Table 4.3 a), depending on which input change

the circuit senses first. If the circuit senses the aTc change first, the circuit will momentarily

pass through state (0, 0, 1) (Table 4.3 a, green line), where it momentarily evaluates to a

low output, before reaching the final state (0,1,1), where it also evaluates to low. Likewise,

if the circuit senses IPTG change first, the circuit momentarily passes through state (0, 1,

0) (Table 4.3 a, blue line), which evaluates to a low output as does the end-state. In both of
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these transient states and the final state, the circuit evaluates to low, so the circuit makes a

monotonic change from high to low, no matter which input change the circuit senses first.

There is no possibility of a glitch, and as the simulation shows (Figure 4.4), there is no

predicted glitch behavior.

Now, let us consider a transition from no input molecules (0, 0, 0) to where Ara and

IPTG are high (1, 1, 0). If the circuit senses first the Ara input molecule, it passes through

state (1, 0, 0) before reaching state (1, 1, 0), and it evaluates to high in all these states

(Table 4.3 b, green line). However, if the circuit senses IPTG before it senses Ara, it will

momentarily pass through state (0, 1, 0), which evaluates to a low output, before reaching

the end-state where the output is high (Table 4.3 b, blue line). This would produce the

glitch that is observed both in the simulation (Figure 4.4) and the experimental results

(Figure 4.5) from [16]. This potential for a glitch is known in the asynchronous logic

community as a function hazard [106]. The existence of a function hazard means that

regardless of how the circuit is designed, the possibility of a glitch remains. In other words,

a function hazard is a property of the function and not of the circuit implementation.

However, it is not always the case that the existence of a function hazard means that

a glitch occurs. The transition from no inputs (0, 0, 0) to Ara and aTc high (1, 0, 1) also

implies two input changes, thus two different paths from the initial-state to the end-state

(Table 4.3 c). In this case, the order that these input changes are sensed also affects the

output of the circuit; therefore a function hazard exists. Yet, the glitching behavior is not

observed in the simulation shown in Figure 4.4. So even if there is a function hazard and

a possibility of a glitch behavior, it does not necessarily mean that the glitch will occur.

Once the issue of function hazards and glitches was recognized, we proceeded to iden-

tify all the two and three input change function hazards of circuit 0x8E. Figure 4.7 shows

the dynamic simulation of these function hazards using the dynamic model generator

of this work. The figure shows many occurrences of glitching behavior, especially for

the two-input change hazard simulation. This glitching behavior could not be predicted

with the steady-state modeling and was not measured experimentally in the Cello project

[16]. In the following section, a more detailed explanation on these function hazards and

glitches is provided.
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4.2.2 Hazards and Glitches

A hazard is the possibility of an unwanted or unexpected variation of the output of a

combinational logic network before it reaches steady-state. A glitch is the actual observance

of such a problem. These terms are used mostly for electronic circuits, though glitches have

been observed for genetic regulatory networks (GRNs) as well [107].

A glitch is a transient behavior that corrects itself as the system reaches a steady-state.

If the output of the circuit is only sampled when the circuit is allowed to reach steady-state,

or if only the average output behavior is of importance, then hazards and glitches should

not be a major problem. Nonetheless, this glitching behavior can have drastic conse-

quences if this transient output of the GRN causes an irreversible change such as a cascade

of responses within or with other cells, if it induces apoptosis, or if it releases a toxic

pharmaceutical where/when it should not, etc. Therefore, avoiding glitching behavior

can be crucial for safe operation of a genetic circuit.

Glitches manifest when multiple inputs pass through multiple paths with different

delays, due to the propagational delays of each path. The circuit diagram for circuit 0x8E,

shown in Figure 4.6, illustrates the difference in these path ”lengths” from sensing an

input molecule, to the production of YFP. The reason we are seeing the glitch is because

there are two inputs that are changing: one is going through the ”shorter” path and one is

going through the ”longer” path. This delay can cause a faster response for some input

changes and longer for others, which produces unwanted switching variations in the

output. Therefore, a possible solution to remove the glitch could be to add more delay

to the shorter path. This could be done by adding some redundant logic to the circuit (like

two successive NOT gates), as shown Figure 4.8 (a). Using iBioSim and the dynamic model

generator, we created the specification and dynamic model for this modified circuit for

simulation. Figure 4.8 (b) and (c) show the simulation results for both two and three input

changes for the original and modified circuits. This indicates how adding the redundant

logic avoids some glitches but not all of them, and, moreover, the response is generally

slower (Figure 4.8 (b) and (c), red line).

The only way to avoid function hazards is to restrict the allowed input changes to the

system. As an example of this, limiting the input changes to only single input changes

produces a very smooth and glitch-free function, as shown by the simulation in Figure 4.9.
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Since function hazards occur when there are multiple input changes to a system, restricting

the input changes to single-input changes avoids these hazards. Therefore, if the output

of a circuit has some intra or intercellular irreversible effects that should be avoided, one

might need to restrict the input changes to a system. This does not necessarily mean that

only single-input changes are needed to avoid hazards. As shown previously, there are

multiple input changes that do not contain function hazards. Therefore, understanding

which combination of input changes do not have function hazards would be valuable

information for a synthetic biologist.

4.2.3 Important Considerations

A system with a function hazard always has the potential to glitch for the specified

input change, and modifying the implementation can only change its likelihood of oc-

curring, but not eliminate the possibility of it occurring. For example, we demonstrated

how adding some extra redundant logic to add delay to the short path of the circuit may

reduce the likelihood of some glitches while increasing it for others. Function hazards are

inherently unavoidable [106] unless one restricts the allowed input changes to the system

to include only single-input changes and a restricted set of multiple input changes.

Simulation of a dynamic model allows for the prediction of glitches that cannot be

observed with steady-state analysis. The analysis done here was using a ODE numerical

solver, which predicts the average expected behavior. However, biology is stochastic in

nature [19, 22, 25, 62, 63, 66], and it would be necessary to perform stochastic analysis of

the system to reach more meaningful results. Additionally, stochastic simulation allows

one to calculate the probability that a glitch might occur. In the future, we plan to map

the RPU units to actual molecule count to enable stochastic analysis for prediction of the

probability of glitches.



60

Table 4.1. Truth table for circuit 0x8E. Low input/output is represented with a 0, and
high input/output is represented with a 1. The steady-state YFP production outcome (4th
column) is matched to each input combination (columns 1-3).

Ara IPTG aTc YFP

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 4.2. Karnaugh map for circuit 0x8E. Low input/output is represented with a 0, and
high input/output is represented with a 1. The header row and first column represent
the different combination of input molecules, and the values of the table represent the
steady-state YFP production outcome of the circuit.

Ara

IPTG aTc
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
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Table 4.3. Function hazard analysis using Karnaugh map for circuit 0x8E. Green and
blue arrows represent the different paths a system can transition when moving from the
initial-state to the end-state.

Ara

IPTG aTc
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
(a)

Ara

IPTG aTc
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
(b)

Ara

IPTG aTc
0 0 0 1 1 1 1 0

0 1 0 0 0

1 1 1 0 1
(c)
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Figure 4.1. Graphical schematic of a simulation environment. This model was created
using SBML graphical editor in iBioSim and imported to each project for each genetic
circuit simulated. In this model a series of Petri net places (p0, p1, etc.) and transitions
(EVENT 000, EVENT 001, etc.) are instantiated to simulate all the input changes as in
the Cello project [16]. Global variables HIGH and duration are also created to control the
concentrations of input molecules and duration of the events, respectively. Finally, the
top-level module definition (model) of the circuit being simulated is instantiated and all
the replacements (arrows) for the top-level input molecules are created.

Figure 4.2. Simulation results for circuit 0x4D. This simulation shows the YFP production
(in RPU) per unit of time (in seconds) predicted for the circuit using the model generator of
this work and the simulation suite of iBioSim [89]. The mathematical model was analyzed
using the Runge–Kutta–Fehlberg (4, 5) method and simulated over 750000 seconds. Ara,
aTc, and IPTG are the input molecules that the circuit is subjected to.
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Figure 4.3. Circuit 0x4D from the Cello paper (courtesy of [16]). This image was obtained
from [16], and it shows the circuit diagram of Circuit 0x4D, a representation of its genetic
parts and interactions, as well as the output predictions (blue and red line distributions)
and experimental output measurements (solid black distributions). The inputs A, B, and
C correspond to LacI, TetR, and AraC.

Figure 4.4. YFP production (in Relative Promoter Units) over time (in seconds) for circuit
0x8E for each combination of input molecules (IPTG, aTc, Ara). Simulation obtained using
the automatic model generator of this work, in iBioSim [98].
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Figure 4.5. Time-course data for circuit 0x8E (courtesy of [16]). Each line represents
the output YFP production (in RPUs) over time (in hours) for the circuit 0x8E for each
combination of input molecules. This circuit senses three input molecules: Arabinose
(Ara), anhydrotetracycline (aTc), and Isopropylβ − D − 1 − thiogalactopyranoside (IPTG).
In the image, +/+/+ (Ara/aTc/IPTG) represents all input molecules that are present and
-/-/- represents no input molecule present. Also the ON and OFF states represent the
predicted outcome at steady state. All outputs behave as expected, except for the +/-/+
state, which experiences an undesirable decay before rising to the ON state (red line).

Figure 4.6. Circuit diagram for circuit 0x8E from the Cello paper [16]. In this image,
represents a NOR gate and represents a OR gate. IPTG, aTc, and Ara are the three
input molecules for this circuit.
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(a)

(b)

Figure 4.7. Two and three input change hazard simulation. (a) 2-input change hazard
simulation for circuit 0x8E. (b) 3-input change hazard simulation for circuit 0x8E.
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(a)

(b)

(c)

Figure 4.8. Two and three input-changes hazard simulation for circuit 0x8E with redun-
dant logic. (a) Circuit diagram for circuit 0x8E with redundant logic. (b) Simulation for
all 2-input change function hazards of the circuit. (c) Simulation for all 3-input change
function hazards of the circuit.
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Figure 4.9. Single-input change simulation for circuit 0x8E. For this simulation, the circuit
is subjected to different states while only changing one input molecule at a time.



CHAPTER 5

CONCLUSIONS

Synthetic biology witnessed a surge of development over the past two decades [2, 101].

Nonetheless, genetic circuit complexity has not developed on par with genetic engineering

technologies [21, 108]. This is not only due to the inherent complexity of biological systems

and highly interconnected genetic parts, but also due to a lack of software that helps to

cope with this intricacy.

Model-driven design is of paramount importance when designing ever more complex

genetic circuits. Modeling is instrumental to show faults in the genetic design, our un-

derstanding of underlying biological processes, and the dynamical transition stages of a

genetic circuit and potential glitches in the system. However, devising a model for genetic

circuits can be a tedious and complex endeavor. Additionally, parametrization is usually

lacking for different models, thus making a model inaccurate.

In this work, we have successfully implemented a model generator that automati-

cally creates a dynamic model that can obtain parameters from a repository to produce

a two-step model of the transcription and translation processes. This produces mRNA

and protein predictions that can be used to analyze the dynamic behavior of a circuit. The

dynamic behavior of a circuit can be used to filter faulty circuits, as well as compare with

experimental data to further debug the design or understand underlying biological phe-

nomena. This model generator has shown how dynamic modeling can expose unwanted

transition states before the circuit reaches stable-states or unexpected time to reach said

stable-state, which is not available for steady-state models.

We expect that this new model generation method will bridge the gap between experi-

mentalists and designers as it will help both sides with the results obtained. Designers can

use data to better fit the model to produce more accurate predictions, and experimentalists

can use these predictions to debug their genetic circuits and predict the behavior of circuits
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before constructing them, saving much time and effort. Moreover, the automated model

generator has great potential to be further developed to dynamically produce genetic

circuits in a wide range of environments, and with more automated processes that are

described in detail in the next sections. However, to exploit the potential of this model

generator and expand its usability, we propose a workflow and standards to be adopted

by the synthetic biology community, which will not only aid model-driven design but also

experimentalists when constructing large and complex genetic systems.

5.1 Proposed Workflow

Synthetic biology projects typically rely on iterative workflows composed of different

tasks [83]. As mentioned in Section 1.4, this work is anticipated to be part of a larger

workflow in the design/build/test pipeline, shown in greater detail in Figure 5.1. This

expanded Design/Build/Test workflow into a Design/Model/Build/Test/Learn pipeline

provides an increased automation and modularization process for designing genetic cir-

cuits. There have already been contributions with different software developers that would

fit in this workflow, such as Puppeteer 1 and, of course, Cello.2 Other projects are aim-

ing at parameterizing more genetic gates using Cello parametrization, and debugging a

genetic circuit using RNA-seq [13]. The automatic model generator of this work would

not only help with model predictions of genetic circuits before the building stage, but

also in recognizing circuit failures, function hazards, and glitches of a circuit to either go

back to the drawing board, or building the circuit with known restrictions on the circuit

implementation. In all, the automated model generation of this work would help filter

Cello’s copious output designs for function and circuit anomalies using data standards

such as SBOL, SBML, and SED-ML for reproducibility and reuse in the community.

5.2 Proposed Standards

Standardization is essential to enable a predictable, top-down engineering discipline

[50]. Efforts to promote data standardization have produced widely-used community

standards (for a more detailed explanation, refer to Section 2.4). However, the community

1http://cidarlab.org/puppeteer/

2https://github.com/CIDARLAB/cello
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has yet to develop standards for most classes of biological parts such as gate composition,

gate functions, experimental measurements, and system operation [3]. Therefore, this

work uses, and promotes, the use of gate composition and characterization used by the

Cello project [16].

5.2.1 Cello Gates

The modular design used in the Cello project [16] (Section 2.6.1.1), if adopted by other

research groups, would help in creating a richer and more diverse library of genetic parts to

use with the automated model generator of this work. This can help expand the variety of

genetic circuits designed, but also open a new standard for other CAD tools to implement

when designing genetic circuits. The gate composition used in the Cello project also

provides a simpler, more abstract way to parameterize gates and simplify experiments

to do so, as it requires less parameters than other characterizations.

5.2.2 Cello Parametrization

Limited availability of reaction rate constants and other parameters are a major hin-

drance for the development of accurate models, and therefore, for model-driven design

[22]. In this respect, lower model resolution or abstraction of different parameters into

more generalized parameters is an advantage as it requires less characterization in the

laboratory and less detailed understanding of the regulatory mechanisms that underlie

a GRN [3, 16, 22, 64, 88]. Cello parametrization, as well as gate composition, provides

an abstracted design to reduce part characterization and facilitate modeling. Therefore,

if it would be accepted as a standard for genetic gates, part reusability across different

laboratories would grow and cooperation would then be facilitated.

5.3 Future Work

The automatic modeler presented in this work has opened lines of communication with

researchers from different domains of the synthetic biology community. There are plans

in motion to further develop, and integrate, the automatic model generator of this work

into genetic design workflows of automatic genetic design. One can only hypothesize

what would the evolution of this tool be in the future. Nonetheless, in the following

sections, several lines of potential research objectives are described that would promote
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further expansion of the automatic model generator developed in this work.

5.3.1 Experimental Data

Hypothesis or model driven genetic design is dependent upon experimental data [61,

62, 109]. Experimental data provides parameter values and validation data, and both

modeling and experiments can profit from each other in an iterative learning process.

In the scope of this thesis work, more detailed characterization of genetic parts allows

for more accurate and precise model predictions. The automated model generator of this

work uses parameter values for kmRNAidim
and kTFidim

taken from literature. Characteri-

zation of these two parameter values for each mRNA and protein (TF) from the library

of genetic parts would greatly improve the model predictive capabilities and produce

more accurate results. Furthermore, high-throughput characterization using RNAseq data

and the model predictions of the mathematical model can help with the debugging and

comparison of genetic circuits performance and underlying biological phenomena (like

gate-toxicity) [13].

Additionally, characterization of new genetic parts not only allows for modeling of

genetic circuits in other organisms besides Escherichia coli (E. coli), but also for different

contexts (like genomic vs. plasmid genetic circuits). In the following sections, a more

detailed explanation of possible characterization efforts that can be employed to expand

the automatic model generator of this work follows.

5.3.1.1 Estimation of Parameters

Systems biology has developed new -omics tools that offer the potential to take a ”snap-

shot” of the inner workings of a circuit in a single experiment [13]. One very popu-

lar transcriptomic methods of these, RNA sequencing (RNA-seq), enables one to quantify

the mRNA levels of each gate of a circuit with nucleotide resolution [110]. This high-

throughput experiment allows for a complete analysis of a genetic circuit and its impact

on the organism, the transfer functions of each genetic gate or part when not in isolation,

maximum and minimum levels of transcription, and many other transcriptome analyses

[111].

In this thesis work, genetic gates characterized in E. coli were used. However, the

development of a model that allows for the estimation of biochemical parameters from
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RNA-seq, Ribo-seq and proteomics profiling data could be implemented that would allow

to use the automated model generator of this work with genetic gates characterized in

different environments. This means that the user could feed the automated model gen-

erator RNA-seq and Ribo-seq data, and the model generator could estimate the Cello

parametrization of each gate, and therefore automatically generate a dynamic model for

the circuit with the correct parameter values. The following sections describe in more

details how this automated estimation of parameters can help extend the use of the auto-

mated model generator of this work.

5.3.1.2 Adjusting Parameters

The ideal modular, orthogonal genetic part, or gate would have the same response

function in different genetic and biochemical contexts. However, this is rarely true for most

genetic parts. Most genetic gates, when composed into a genetic circuit, have divergent

behavior from when they are characterized in isolation. Furthermore, each organism has a

unique biochemical and genetic environment that greatly influences the dynamic behavior

of genetic gates.

The automated estimation of parameters using RNA-seq and Ribo-seq could be used

to estimate the Cello parameters of each gate when combined as a genetic circuit for a

particular environment. This can help to calibrate already-known parameters of genetic

gates when in different genetic or biochemical environments and account for the context-

dependent variability of them. Furthermore, it can also be used to estimate the kmRNAidim

and kTFidim
values for each mRNA and TF of a system, which are missing from the Cello

genetic gate library, as well as adjust ymax, ymin, n, and κ for each gate.

Also, if we want to have a predicted behavior of a circuit for an organism we do not

have characterization for, we can adjust the model using Ribo and RNA-seq data of the

most similar organism available, and have a better estimate of how a circuit would work

on the novel chassis.

5.3.1.3 Parameters for Novel Chassis

The automatic model generator of this work was used with gates characterized in E.

coli. However, if parametrization were to exist for other organisms that can assimilate the

genetic gates used in this work or any homologues of the TetR-family repressors, the auto-
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matic model generator could be used to dynamically model their behavior. This automated

model generator does not necessarily need to work only with TetR-family homologues. As

long as a genetic circuit uses promoters that can be repressed or activated, gates follow the

gate composition proposed in the Cello project, and characterization follows the proposed

Cello parametrization, the automated model generator can generate a dynamic model for

it. Therefore, the only missing information needed for this automatic model generator

to work in many other organisms other than E. Coli is the same parametrization scheme,

since gates that follow these conditions already exist. Whether these parameters are ob-

tained only through experimentation, or through the automated estimation of parameters

described in previous sections, is irrelevant.

There are already TetR-homologues that work in yeast [46, 87, 112] and genetic gates

using these promoters and that follow the gate composition of the Cello project have been

created. However, parametrization as the one used in this work and the Cello project is still

underway. Once these parameter values are available, modeling, simulation, and analysis

of the results like the ones presented here could be done for genetic circuits in yeast.

5.3.1.4 Plasmid Versus Genomic Parameters

As the synthetic biology field progresses from a proof-of-concept principle to practical

applications, it is important to develop single-copy synthetic genetic circuits that are inte-

grated to the genome of the host organism. This would minimize cell-resource consump-

tion and reduce performance variation from the synthetic circuits that are introduced to a

host organism.

The automated model generator can generate dynamic models for these circuits if the

parameter values for these are available. There are experiments currently underway for the

characterization of genomic-integrated genetic gates using the proposed Cello parametriza-

tion, which would allow the dynamic model generator of this work to generate dynamic

models of them. The dynamic model generator of this work could then be used to generate

dynamic models for a same circuit when it is plasmid or genomic integrated and analyze

the differences between them. The differences found could help elucidate underlying

biological phenomena that differentiates performance between them like gate toxicity, re-

source allocation, and many other effects. The automated model generator could also have
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the option for the user to specify if they want the synthetic genetic circuit they designed to

be modeled as a plasmid or genomic integrated circuit.

5.3.1.5 CRISPR/dCas9 Circuits

Recently, programmable and orthogonal CRISPR/dCas9 transcription factors have been

developed [113–117]. These transcription factors can be used to build genetic circuits

with dCas9-mediated repression. The CRISPR/dCas9 transcription factor system can yield

orthogonal genetic gates with low variability and that show minimal retroactivity or effects

on cell growth [113]. This makes the gates relatively easy to combine into Boolean logic

circuits since the different guide-RNA’s have very high specificity, and therefore there is

no gate interference and/or leakage. Genetic circuits constructed this way are amongst the

largest ever built in any organism [113].

The automatic model generator of this work can easily be adapted to model CRISPR

gates and create automatic models for circuits that implement them. Estimation of the

parameters for these gates could be done by analysis of results or the automatic estima-

tion of parameters proposed earlier. This would expand the automated model generator

of this work to not only work with Cello composed and parameterized gates, but also

CRISPR/dCas9 mediated repression gates, and have another method to generate models

and simulations for circuits in yeast.

5.3.2 Stochastic Analysis

The deterministic framework of ODE analysis is appropriate to describe the mean

behavior of a system, with underlying assumptions such that the variables vary in a de-

terministic and continuous fashion. In other words, there is no randomness or stochastic-

ity associated with the model, and the same results are obtained given the same initial

conditions [118]. However, the stochastic nature of biochemical reactions, even at the

single-gene level [119], generates significant intrinsic genetic noise to a system [82]. Fur-

thermore, the underlying assumption of continuous-deterministic models that the num-

ber of molecules is high (or that the volume of the system is infinite) can be invalid for

biochemical systems where there are very few transcription factors or only one copy DNA

segment [21]. Since transcription factors, enzymes, and DNA copies can exist in systems

at a low concentration such as a single molecule per cell, any realistic analysis of these
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systems must include stochastic effects, and therefore stochastic modeling and analysis

[14].

In order to capture the stochastic behavior, a stochastic chemical kinetics approach must

be taken. With this approach, reactions are assigned propensities of occurring, rather than

a rate of reaction, and molecule numbers can be estimated [6, 19]. Simulation requires a

Monte Carlo approach, such as Gillespie’s stochastic simulation algorithm (SSA), which is

already implemented in iBioSim [89]. In a SSA simulation, each simulation step selects a

random time for the next reaction and a reaction to perform, and it repeats this process

until a preselected time limit is reached [6], and, therefore, each simulation is unique. This

generates different simulation for the same initial conditions every time the simulation is

done, and propensities and probabilities of certain states or dynamic behaviors occurring

can be calculated.

Therefore, to be able to produce a stochastic model and analysis on circuits like the ones

modeled and analyzed on this thesis work, a translation from RPU units to molecule count

has to be developed. This translation would map RPU units to actual molecule count in a

cell, and with it, the propensity of each reaction rate. Both of these mappings are needed

to enable stochastic modeling and simulation. A stochastic analysis would not only allow

for more precise models, but also for other types of analysis, which are described in the

next sections.

5.3.2.1 Parametric Sensitivity Analysis

A stochastic model would also allow to implement a sensitivity analysis of the kinetic

model [120–124], which would allow one to systematically study the dependence of the

quantities of interest on the parameters that define the model and the initial conditions

in which it is simulated. A parametric sensitivity analysis (PSA) analyzes how changes in

the output of a model can be appropriated to different input parameters or variables with

a wide range of applications for systems biology. The reasons of performing a PSA vary

from the determination of which parameters require additional research at the stage of

model calibration and identification, to analysis of the robustness of a circuit and the model

results, to a reduction or abstraction of the model via the identification of the parameters

that are not relevant for its dynamics [121]. This is useful not only during the design pro-
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cess of a circuit, but also on the iterative build/learning process workflow once a genetic

circuit is designed. It can help researches learn which genetic gates need a bigger difference

in the ON/OFF promoter activity, or which gates need more isolation/stability from the

environment, to identify model predictions that are inconsistent with experimental data,

suggesting novel experimentation to either validate or falsify a model and many other

uses [125].

The automated model generator of this work could be adapted to have the option to

perform a PSA on the automatically generated stochastic model.

5.3.2.2 Glitch Propensity

An automatically generated stochastic model can also allow one to calculate the proba-

bility of certain states or dynamic behavior, running the analysis multiple times and com-

puting the probability from the results.

In this thesis work, we analyzed function hazards and observed glitch behavior pre-

dicted using the deterministic-continuous approach of an ODE model analysis. This rep-

resents the average behavior expected for a system. However, with analysis of a stochas-

tic model of the same circuits, we could compute the probabilities of each possible glitch

behavior and have the automated model generator report these probabilities. In this way,

anyone using this model generator can have an idea of the risks of this unwanted switching

behavior happening and determine if they need to restrict the allowed input changes to the

circuit to make certain that the glitching behavior does not occur.

5.3.3 Circuit Hazard Identification

As of now, to analyze a circuit’s function hazards and glitch behavior using the dy-

namic model generator of this work is not an automatic process, and a certain grasp of the

topic is needed in order to perform this analysis. To make this analysis available to any

user without the need of any understanding on how to do so, it would prove very useful

to implement an algorithm that can automatically detect function hazards on a circuit and

report them back to the user. This report can also include a list of input changes that may

cause a glitching behavior. If a stochastic model of the circuit is available (Sections 5.3.2

and 5.3.2.2), the probability of a glitch can also be reported. This automated analysis can be

integrated in the automated model generator of this work, or as a stand-alone application
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that can be exported to other software tools, like Cello [16].

5.3.4 Complexity Score

Circuit complexity is measured by the size and depth of a circuit. Complexity scores for

electronic circuits essentially depend only on number of gates and can be easily calculated

from the truth table or Karnaugh map of a circuit. However, deriving a complexity score

for synthetic biology is not as simple since firstly, genetic circuits for a given truth table

differ in both gene numbers and quantity of regulation factors and levels, and secondly,

circuit performance is not guaranteed due to nonlinear interactions present when the ge-

netic circuit is introduced into a host cell [126].

Larger genetic circuits have produce a larger metabolic burden or load on the host

cell and are harder/more costly to build [111]. Therefore, a complexity score may help

a designer to set an upper limit on the complexity of a circuit if the known limit for the

organism intended is known.

Deriving or adopting a complexity score suitable for genetic circuits and developing

an algorithm that can calculate such a score would be indeed be a valuable asset for the

automated model generator.

5.3.5 Circuit Performance

Circuit performance can be thought of as the capacity of a circuit to reproduce faith-

fully or successfully the truth table. There are two essential factors that determine the

performance of a circuit, which are the extent that the high and low output signal of each

genetic gate can be practically distinguished, and the transient dynamics after changes in

the inputs that may produce incorrect results [126, 127].

The automated model generator of this work could be expanded to calculate an pre-

dicted circuit performance. This metric could be based solely on a statistical analysis of the

difference between the predicted steady-state output and experimental results. Marchisio

et al. [126, 127] propose the difference of the minimal and maximal output at steady-state

for each gate as a main parameter to quantify gate and circuit performance. Whichever

method is preferred, a report (along with complexity score) could be reported as soon as

the automated model generator produces the dynamic model, so as to help the user in the

design process of a genetic circuit.
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5.3.6 Consortium Simulation

Microbial consortia can perform more complicated tasks and endure more changeable

environments than monocultures can [128]. Moreover, if a genetic circuit is too large for

a single organism to handle, the circuit can be subdivided into smaller genetic circuits

for each strain of the consortium, since the division of labor would make the burden of

each circuit smaller. This makes synthetic biology for microbial consortium a new and

important frontier for synthetic biology.

As biological research on bacteria consortium progresses, a modeling scheme has to be

developed to accompany this progress. Mathematical models that describe a consortium

of cells are becoming a necessary tool to drive, rather than supplement, design of these

systems. From an engineering standpoint, the special considerations for modeling bac-

terial consortium has to be taken into account when building mathematical models that

describe the interactions not only within each cell, but also between the different cells that

compose the consortium. This will especially provide insights on unknown interactions

(such as resource competition), when the predictions of the model can be compared to

experimental results, and the information revealed can help genetic circuit designers to

achieve desired symbiotic behaviors.

There are several attempts in the systems biology research discipline to develop models

that describe the dynamic behavior of gut microbia in [129–133], to cite a few. However,

modeling and analysis of well-defined synthetic genetic networks are more amenable to

detailed mathematical modeling and analysis [134]. A possible future course for this work

would be to develop or implement an existing mathematical model for synthetic symbiotic

ecosystems into the automated model generator of this work, which would enable to

automatically create models for these systems without extensive knowledge on the topic.
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Figure 5.1. Design/Model/Build/Test/Learn workflow. An expanded version of the
Design Build Test pipeline [39] and a proposed workflow for model-based design of
genetic circuits.
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