In order to reach the Shannon limit, researchers have found more efficient error control coding schemes. However, the computational complexity of such error control coding schemes is a barrier to implementing them. Recently, researchers have found that bioinspired analog network decoding is a good approach with better combined power/speed performance than its digital counterparts. However, the lack of CAD (computer aided design) tools makes the analog implementation quite time consuming and error prone. Meanwhile, the performance loss due to the nonidealities of the analog circuits has not been systematically analyzed. Also, how to organize analog circuits so that the nonideal effects are minimized has not been discussed. In designing analog error control decoders, simulation is a time-consuming task because the bit error rate is quite low at high SNR (signal to noise ratio), requiring a large number of simulations. By using high-level VHDL simulations, the simulation is done both accurately and efficiently. Many researchers have found that error control decoders can be interpreted as operations of the sum-product algorithm on probability propagation networks, which is a kind of factor graph. Of course, analog error control decoders can also be described at a high-level using factor graphs. As a result, an automatic simulation tool is built. From its high-level factor graph description, the VHDL simulation files for an analog error control decoder can be automatically generated, making the simulation process simple and efficient. After analyzing the factor graph representations of analog error control decoders, we found that analog error control decoders have quite regular structures and can be built by using a small number of basic cells in a cell library, facilitating automatic synthesis. This dissertation also presents the cell library and how to automatically synthesize analog decoders from a factor graph description. All substantial nonideal effects of the analog circuit are also discussed in the dissertation. How to organize the circuit to minimize these effects and make the circuit optimized in a combined consideration of speed, performance, and power is also provided.