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ABSTRACTIn order to increase performance, circuit designers are beginning to move away fromtraditional, synchronous designs based on static logic. Recent design examples haveshown that signi�cant performance gains are realized when aggressive circuit styles areused. Circuit correctness in these aggressive circuit styles is highly timing dependent,and in industry they are typically designed by hand. In order to automate the process ofdesigning and verifying timed circuits, algorithms to explore the reachable state space ofthe circuit under the timing constraints are necessary.This thesis presents a new speci�cation method for timed circuits, timed event/level(TEL) structures, and new algorithms for exploring a timed state space. The TEL struc-ture speci�cation allows the designer to specify behavior controlled by signal transitions,which is best for representing sequencing, and behavior controlled by signal levels, whichis best for representing gate level circuits. This thesis also presents algorithms based onpartially ordered sets (POSETs) that explores the timed state space of the TEL structure.Results using the new speci�cation method and algorithms show orders of magnitudeimprovement over previous techniques in both speed and memory performance. Thealgorithms have also been successfully applied to several circuit examples from the recentlypublished experimental Gigahertz processor developed at IBM. The speed and memoryperformance improvements of the algorithm allow automatic synthesis and veri�cation ofcomplex timed circuits, making them an attractive design alternative.
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CHAPTER 1INTRODUCTIONTime is a great teacher, but unfortunately itkills all its pupils.- Hector BerliozIn order to increase performance, circuit designers are beginning to move away fromtraditional, synchronous designs based on static logic. Recent designs, such as the IntelRAPPID instruction length decoder described by Rotem in [60] and the IBM guTSmicroprocessor described by Hofstee in [35] have shown that large performance gainscan be realized using aggressive circuit styles which make many timing assumptions.The RAPPID chip is an asynchronous implementation of an instruction length decoderfor a Pentium II instruction set. It achieves a 300% performance improvement whiledissipating half the power of the synchronous implementation on the same process. TheguTS microprocessor is a synchronous implementation of a Power PC instruction setrunning at 1 Gigaherhz on a 0:25� CMOS process available in 1997. Although bothdesigns achieve signi�cant performance gains, they are experimental designs. Manyobstacles need to be overcome before the circuit styles developed in these designs canbe used in production. One of the main obstacles is the lack of design automation fortimed design styles.Design of e�cient timed circuits requires timing information to be used throughout thesynthesis and veri�cation loop. The synthesis process begins with a speci�cation of circuitbehavior that includes any timing assumptions the designer wishes to make. Althoughthe designer cannot make precise timing assumptions at the speci�cation stage, he doesknow something about the timing behavior of the circuit and timing relationships betweensignal transitions can be bounded. In order to generate a circuit for this speci�cation, thesynthesis tool then �nds its reachable state space. Even if the speci�cation contains notiming information, this would be an exponential problem, and adding timing informationcan complicate the problem further. However, if timing information is represented well



2it can sometimes designate large portions of the state space as unreachable and thereforereduce the time it takes to generate the reachable state space and synthesize the circuit.Once the state space is found, it is used by an algorithm presented by Myers in [50] tosynthesize a gate level timed circuit. In this algorithm a function block for each outputsignal, consisting of a C-element with a sum of products block for the set and anotherfor the reset. Each \product" block implements a single excitation region for a givenoutput signal. An excitation region for the output signal x is a maximally connectedset of states in which the signal is enabled to change to a given value. The algorithmalso determines set of excited states, which is the union of the excitation regions for agiven signal transition and an associated set of stable, or quiescent, states. For a risingtransition x+, this is the set of states where the signal x is stable high, and is similarlyde�ned for a falling transition. The algorithm then uses these sets of states to set up andsolve a covering problem whose constraints require that the resulting circuit is hazard-free.Once the physical design for the gate level circuit produced by the synthesis algorithmis complete, the circuit must formally veri�ed. Timing assumptions in the speci�cation aremade before there is any data available on the physical behavior of the circuit. Therefore,these assumptions must be checked once the circuit is synthesized to make sure the timingbehavior of the implementation is consistent with the speci�cation.This thesis develops the algorithms necessary to use timing information in both synthe-sis and veri�cation. It �rst describes a speci�cation method which is designed speci�callyfor circuits. It then presents an extension of the standard geometric region (or DBM)method of timing analysis that is capable of analyzing these speci�cations. Althoughthis method works well for some speci�cations, it can su�er from state space explosionwhen applied to highly concurrent examples. Therefore, we present a new algorithm,called partially ordered set (POSET) timing which can reduce the state space size byorders of magnitude. To further improve the speed of the algorithm, many optimizationsare made to deal with special cases that can eliminate many states. Finally, a formalframework for veri�cation using the algorithm is presented. The synthesis and veri�cationalgorithms are implemented in the CAD tool ATACS and are applied to many examples,including high performance synchronous circuits from a large industrial example. Thisindicates that the algorithm not only produces signi�cantly improved results when appliedto academic benchmarks, but can also be useful to industry in the design of futuregeneration, high-performance timed circuits.



31.1 Previous WorkThe development of algorithms to synthesize and analyze asynchronous circuits hasbeen a very active area of research. However most of this work has been directedtoward untimed design styles. These styles, while robust, require a large amount ofhand optimization in order to produce competitive performance. There has also beenextensive work in the area of veri�cation of timed systems. This work can be applied totimed circuits, however, approaches speci�cally designed for circuits lead to better resultsand automation. 1.1.1 Circuit Speci�cation ApproachesThe di�culty of circuit synthesis depends heavily on the type of speci�cations that areallowed. Generally, very restrictive speci�cation approaches make synthesis easier, butare not useful for large, complex designs. Restrictive speci�cation approaches may alsoresult in slower circuits, since designers cannot specify many of the optimizations theywould like to make. More exible and expressive speci�cation methods make synthesisharder, but allow faster and more complex circuits to be synthesized. In order for anasynchronous speci�cation method to allow the synthesis of fast, complex designs, itmust have good support for concurrency and timing information, and it must be able tospecify behavior based on both signal transitions and signal levels.There are currently two general approaches to specifying the behavior of asynchronouscircuits: language-based approaches and graph-based approaches. The two speci�cationmethods each allow a somewhat di�erent class of circuit to be speci�ed and requiredi�erent methods for synthesis. Therefore, the speci�cation method chosen can determineto a large extent the quality of the resulting circuit. Synthesis methods for language-based speci�cations directly translate a program into a circuit. One approach to this,proposed by van Berkel in [68] and Brunvand in [15], is syntax directed translation wherelanguage constructs are mapped directly to library blocks. In this method, signal levelsand concurrency are supported, but timing information cannot be speci�ed. Also, thecircuits produced tend to be redundant and slow since optimizations are not seen whensimply mapping program constructs to circuit blocks. In another language-based method,which is presented by Martin in [44], the speci�cation program is translated to a circuitusing a series of semantic preserving transformations. This approach also supports levels,but it requires a large amount of human intervention to be e�ective and has no support



4for timing.Graph-based speci�cation methods require a speci�cation that is lower level thanlanguage based methods, but can make synthesis of e�cient circuits easier. Many re-searchers, including Chu [22], Meng [47], Lin [43], Vanbekbergen [69], and Lavagno [41]use an interpreted Petri net or STG for speci�cation. STGs are very good at expressingconcurrency. However, the traditional STG synthesis methods restrict the types of choiceallowed in the net, and they have no support for the speci�cation of level informationor timing assumptions. There is an extension to STGs developed by Moon [49] thatdoes support levels, but it requires a restricted environment and synthesis algorithmsfor this extended speci�cation are not presented. Additionally, in [70] Vanbekbergenpresents extensions to STGs that support levels and timing in STGs. However, in thiswork algorithms for synthesizing timed STGs with levels are not presented. Anothergraph-based method, Kishinevsky's change diagrams, is similar to STGs but removes someof the restrictions by adding di�erent types of arcs to the speci�cation. These additionalarcs allow more disjunctive behavior to be speci�ed. However, change diagrams have noprovision for timing information. Yun [74, 75], Nowick [54], and Coates [25] specifycircuits using asynchronous state-machines, and perform synthesis using burst-modetechniques. The burst-mode method allows one signal level to be speci�ed on each arcof the state machine. However, burst-mode synthesis requires the fundamental-modeassumption which states that when a state change occurs, all of the changing outputsare allowed to settle before any change in the input signals. This can sometimes requireadding delay between the circuit and its environment so that the inputs to the circuitdo not change before the outputs settle. Also, state-machine based speci�cation isnot well-suited to expressing concurrency since state machines are inherently sequential.Finally, state machines do not express causality between output and input events directly,making it di�cult to utilize timing assumptions to optimize the circuit.The speci�cation method used in the version of the ATACS tool described by Myersin [50] is a combination of the graph-based and language-based approaches. While the toolaccepts language-based speci�cations as input, it does not directly use them for synthesis.Instead, ATACS compiles the input program into a graph, which is then used for synthesis.This version of ATACS uses timed event-rule(ER) structures, a variant of Winskel's eventstructures [72] with timing, for synthesis. Since timed ER structures separate causalityfrom choice, they are both easier to generate from high-level descriptions, and easier to



5analyze. Unlike all of the previously described speci�cation methods, timed ER structuresallow the use of explicit timing assumptions in synthesis. However, like STGs, timed ERstructures have no support for levels in the speci�cation. This can be quite limiting whentrying to express things like true OR causality and many language constructs, such asconditional loops. This thesis presents a new speci�cation method that adds levels to ERstructures. 1.1.2 Time Separation of Events AlgorithmsIf a speci�cation with timing information is used, a timing analysis step is necessary to�nd the timed state space. A number of timing analysis algorithms have been developed,and each is optimized to solve a di�erent class of problem. A time separation of eventsalgorithm is not designed explicitly for state space exploration. Its result is a minimumand maximum separation between two speci�ed events. It can be used for state spaceexploration indirectly by calling it repeatedly during a state space exploration algorithmto determine which events are allowed to occur. However, none of the existing time sepa-ration of events algorithms are suitable for timed state space exploration of a su�cientlyexpressive speci�cation.In [46], Dill presents an algorithm for �nding the minimum and maximum timeseparations between events in acyclic graphs. It is O(n3) in the number of events in thegraph. This algorithm can be used for timed state space exploration if the speci�cationgraph is acyclic. However, most circuit speci�cations are cyclic.In [51], Myers presents a polynomial time algorithm to compute an estimate of theminimum and maximum time di�erences between all events in a cyclic, choice-free graph.The algorithm works by unfolding the cyclic graph into an in�nite acyclic graph andexamining two �nite acyclic subgraphs of the in�nite graph to determine bounds on timedi�erences between events. The estimate is usually su�cient for timed state space analysisand can be improved by analyzing larger subgraphs. The algorithm is O(v � e) where vis the number of vertices and e is the number of edges in the subgraph analyzed. Thechoice-free restriction is too limiting however, since most circuits need a choice semanticsto represent non-deterministic behavior in the environment.CTSE, presented by Hulgaard in [37, 36], provides a way to �nd a single exact timedi�erence (separation) between two events in a cyclic graph including limited types ofchoice. This type of algorithm can be used for state space exploration by running thealgorithm to determine the minimum and maximum time separation between every pair



6of events in the speci�cation. However, it has two drawbacks. The �rst is that thealgorithm in [37, 36] is not able to analyze speci�cations with arbitrary choice and levelbased behavior. This drawback could be eliminated by the development of a more generalalgorithm. The second drawback is more fundamental. A time separation of eventsalgorithm provides the minimum or maximum time separation between two events thatis possible over em all possible executions of the speci�cation. A state space explorationalgorithm needs to know the minimum and maximum time separation between events thatcan lead to a given boolean state. In many cases, certain boolean states are only reachablewhen the time operation between two events is less than its overall maximum or greaterthan its overall minimum. Since time separation of events algorithms lack state dependenttiming information, a state space algorithm using this approach is approximate.1.1.3 Timed State Space Exploration AlgorithmsThe �rst dividing factor between time state space exploration algorithms is how theyrepresent time. The representation of the timing information has a huge impact on thegrowth of the state space. Timing behavior can either be modeled continuously (i.e.,dense-time), where the timers in the system can take on any value between their lowerand upper bounds, or discretely, where timers can only take on values that are multiplesof a discretization constant. Discrete time has the advantage that the timing analysistechnique is simpler and implicit techniques can be easily applied to improve performanceas shown by Burch in [18] and Bozga in [13]. The worst case complexity of this approachis O(jSj(k+1)n) where S is the number of untimed states, n is the maximum number ofplaces in the Petri net that can be marked, and k is the maximum value of any timingrequirement. This worst case complexity is often approached in actual circuits and thestate space explodes if the delay ranges are large and the discretization constant is setsmall enough to ensure exact exploration of the state space. For example a delay rangeof 117 to 269 has 153 discrete states if the discretization constant is set to one. Althoughthe discretization constant can be larger than one if there is a larger number that dividesall of the numbers used for delay ranges, this does not happen very often when delaynumbers from actual circuit data are used.Continuous time techniques eliminate the need for a discretization constant by break-ing the in�nite continuous timed state space into equivalence classes. All timing as-signments within an equivalence class lead to the same behavior and do not need to



7be explored separately. In order to reduce the size of the state space, the size of theequivalence classes should be as large as possible. In Alur's unit-cube (or region) approach[1], timed states with the same integral clock values and a particular linear ordering ofthe fractional values of the clocks are considered equivalent. Although this approacheliminates the need to discretize time its complexity of O(jSj n!ln 2( kln 2)n4(1=k)) is muchworse than discrete time and the state space using this method typically explodes if thedelay ranges are large.Dill [28], Berthomieu [12], Lewis [42], and Alur [3] present another approach tocontinuous time where the equivalence classes are represented as convex geometric regions(or zones). Geometric regions can be represented by sets of linear inequalities (alsoknown as di�erence bound matrices or DBMs). The worst case complexity of this timingrepresentation is worse than that of unit cube. However, the worst case complexity occursless often when verifying real circuits. The larger equivalence classes generated by thegeometric region method can often result in smaller state spaces than those generated bythe unit-cube approach. The number of geometric regions can explode with geometricapproaches since each untimed state has at least one geometric region associated withit for every �ring sequence that can result in that state. In highly concurrent systemswhere many interleavings are possible, the number of geometric regions per untimed stateis huge. In order for it to be e�ective, techniques are needed to reduce state space size.1.1.4 State Space ReductionA number of techniques have been proposed to deal with state explosion. Valmari [67],Godefroid [31] and McMillan [45] have proposed approaches that use stubborn sets[67], partial orders [31], or unfolding [45]. These techniques reduce the number ofstates explored by considering only a subset of the possible interleavings between events.They are targeted speci�cally at veri�cation, and they allow the removal of interleavingssince some interleavings are not relevant to the property that is being veri�ed. Theseapproaches have been successful, but they only deal with untimed veri�cation.The state space of timed systems is even larger than the state space of untimedsystems and has been more di�cult to reduce. Yoneda [73], Semenov [61], Verlind [71],and Bengtsson [11] have attacked this problem by reducing the number of interleav-ings explored using the partial order techniques developed for untimed systems. Thesealgorithms compute a set of event �rings that must be interleaved to ensure that the



8desired property is checked. Any event �rings not in the set are not interleaved. Thisreduces the state space signi�cantly for highly concurrent speci�cations. While reducingthe number of interleavings is useful, in [73, 61] one region is still required for every�ring sequence explored to reach a state. If most interleavings need to be explored, thesetechniques could still result in state explosion. The algorithms from [71, 11] do addressthe problem of generating a unique region for every �ring sequence. In [71] an algorithmwhich operates on timed Petri nets is proposed where transitions are given negative �ringtimes in order to build regions that do not depend on the �ring order. The work in [11]takes a related approach where the clocks associated with states in a timed automata areallowed to advance at di�erent rates. However, since these techniques do not �nd theentire state space, they cannot be applied to synthesis. Logic synthesis algorithms fortimed asynchronous circuits require that all of the boolean states allowed by the statespace are found in order to create a correct logic implementation [52]. If the synthesisalgorithm is given an incomplete state space, it cannot be guaranteed to generate logicthat correctly responds to all inputs to the circuit.Orbits, presented by Myers and Rokicki in [58, 59, 53], takes a somewhat di�erentapproach. It reduces the number of regions per untimed state by using partially orderedsets (or POSETs) of events rather than linear sequences to construct the geometricregions. Instead, the algorithm generates only one geometric region for any set of �ringsequences that di�er only in the �ring order of concurrent events. This algorithm isshown in [59] to result in very few geometric regions per untimed state. This algorithmdi�ers from the partial order approaches in that is still �nds a complete state spaceand improvement achieved by Orbits is not dependent on the veri�cation property.However, it is limited to speci�cations where the �ring time of an event can only becontrolled by a single predecessor event (known as the single behavioral place (or rule)restriction). In some cases, the single behavioral rule restriction can be worked aroundthrough transformations on the initial graphs [50], however the transformations cause alarge increase in the complexity of the graphs which need to be analyzed. This thesisextends the algorithms presented in [58, 53] to work with much more exible speci�cations.1.2 ContributionsThis thesis makes three main contributions to the area of synthesis and veri�cation oftimed circuits. The �rst contribution is in the area of speci�cation. This thesis introduces



9timed event/level(TEL) structures, an extension to the timed ER structures developed byMyers [50], which allows the general use of levels in the speci�cation of a timed circuit.TEL structures allow information about levels to be included in the ER structure in theform of an arbitrary boolean expression. This provides a number of advantages overother speci�cation methods. Since circuit behavior at its lowest level is based on thesampling of boolean values from wires, speci�cations with the ability to model this aremuch more compact than those based purely on signal events. Although purely eventbased speci�cations can model level-based circuit behavior, they are much larger, and thusthey are more time consuming to analyze than level based speci�cations. Additionally,this direct correspondence facilitates translation of a circuit into a TEL structure bothby compilation of a VHDL speci�cation and by directly translating schematics by hand.The next contribution is an algorithm to analyze the TEL structures e�ciently. Asmentioned earlier, this algorithm is an extension of the one introduced in by Rokickiin [58]. Although the algorithm does not improve the worst case complexity of thegeometric approach, it reduces the size of the state space for most circuit speci�cationsby eliminating the requirement that a new state must be generated by every possibleinterleaving of event �rings. The algorithm does this by creating timed states based ona partial order created from the execution sequence being explored, instead of the totalorder of the sequence. It is therefore referred to as the partially ordered set, or POSETalgorithm. The algorithm introduced in [58] is limited to speci�cations that meet thesingle behavioral rule requirement and have no level expressions. This thesis extendsthe algorithm to work on TEL structures and presents formal proofs for the correctnessof the algorithm which are lacking in [58]. It also discusses a number of optimizations,including the use of implicit representations such as (MTBDDs) to further reduce thememory requirements of the state space exploration.The �nal contribution is in the area of veri�cation of high-performance timed syn-chronous and asynchronous circuits. Due to the synchronous abstraction, timing veri�ca-tion for synchronous circuits is seen as a much simpler problem than that of asynchronouscircuits. However, in order to get the highest performance possible, synchronous designersare creating ever more aggressive circuit styles. These styles typically break the existingtiming methodology and it takes a long time before the synchronous timing tools catch up,by which time designers have begun to work with an even more aggressively timed circuitstyle. The result of this lag between circuit design and CAD support is that aggressive



10circuit styles are not used in production until long after they have been developed. Thisthesis shows how timing veri�cation approaches developed for asynchronous circuits canalso be used to verify timed synchronous circuits. Although the asynchronous algorithmshave much greater complexity than the algorithms used for synchronous circuits, theyhave the advantage that they can be applied to any type of circuit style without anyadaptations. This may help reduce the lag between the development of experimentalcircuit styles and their actual use.1.3 Thesis OverviewThe thesis is organized as follows: Chapter 2 introduces TEL structures. Chapter3 describes the changes made to the basic geometric algorithm to deal with multiplebehavioral rules and level expressions. Chapters 4 and 5 describe the POSET algorithmand its proof of correctness. Chapters 6 and 7 describe the optimizations that have beenmade to the algorithm to increase speed and memory performance. Chapter 8 discusseshow veri�cation properties are speci�ed and checked. Chapter 9 presents results, and�nally, Chapter 10 discusses conclusions and future work.



CHAPTER 2TIMED EVENT/LEVEL STRUCTURESThe mere formulation of a problem is farmore essential than its solution, which maybe merely a matter of mathematical or exper-imental skills.- Albert EinsteinAs discussed in the previous chapter, most existing asynchronous CAD tools haveone of two major weaknesses: they do not support explicit timing and they are purelyevent based. Timing assumptions can often make the di�erence between an asynchronouscircuit that is faster than the corresponding synchronous circuit and one that is slower.Timing assumptions can be made manually by the designer, but this is very error prone.The lack of the ability to specify signal levels limits the usefulness of the tool and makes itdi�cult to specify any behavior where sampling the value of a signal is necessary. Simpleconcepts, such as a loop on a condition, often have complex or imprecise speci�cationsif level information cannot be included. This makes asynchronous design tools harder touse and less appealing to industrial designers.This chapter describes timed event/level (TEL) structures, which we �rst present in [8].TEL structures are an extension to timed ER structures which allow the general use oflevels in the speci�cation of a timed circuit. Information about levels is included in theER structure in the form of an arbitrary boolean expression. This makes it possibleto extend the speci�cation languages accepted by ATACS to allow the speci�cation ofconditional loops and true OR causality, as well as all other constructs that require waitson boolean expressions. TEL structures can be analyzed using a modi�ed version of thegeometric timing analysis method we presented in [9]. The faster POSET algorithm,which we presented in [7] is also capable of analyzing TEL structures without addingsigni�cant overhead. Therefore, TEL structures facilitate more general speci�cationswithout decreasing synthesis performance.



122.1 Motivating ExampleOne of the important speci�cation constructs that is much easier to express withlevels is a loop on a condition. Any construct that requires sampling the value of asignal and then making a decision based on the result, is very di�cult to specify inpurely event-based semantics. One speci�cation where a conditional loop is required isthe sbuf-send-pk2 controller from the HP Post O�ce [25] benchmark suite. This exampleis cited by Yun in [75] as a motivation for the level extension to burst-mode circuits andhad to be modi�ed to be expressed as an STG for the SIS benchmark suite. It is also aninteresting example of the expressiveness of TEL structures.
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(a) (b)Figure 2.1. Speci�cations for sbuf-send-pk2 controller.The purpose of this controller, shown as an extended burst mode speci�cation inFigure 2.1(a), is to manage the transfer of packets between a sender and a receiver. First,the receiver asserts req, which requests a line to be sent from the sender. Then, the sendersends the line and raises sendline. When the receiver reads the line, it acknowledges thesender by raising ackline. Then the sender lowers sendline, and the receiver respondsby lowering ackline. This protocol continues until the receiver chooses to terminate it.To terminate the packet transfer, the receiver asserts done sometime after the fallingtransition of sendline but before it raises ackline again. When the sender detects thatdone has risen, it lowers sendline and also raises ack, indicating it has detected that
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Figure 2.2. Complete Petri net for sbuf-send-pk2 controller.the packet transfer is over. The receiver then lowers req, ackline, and done in paralleland the sender, in response to this, lowers ack. This is a reasonably simple speci�cationsince the extended burst-mode machine can sample the level of the signal done whenchoosing whether to transition to state 2 or state 3 from state 1. It also appears simplesince in burst-mode the environment is implicit and does not need to be expressed in thespeci�cation. Although this simpli�es the speci�cation, it makes it impossible to makedetailed timing assumptions about the behavior of the environment. Figure 2.1(b) showsa free choice STG that is used to specify this circuit in the SIS benchmark suite. It is notvery complex, but it is not complete. This STG only allows the transition done+ to occurbetween the transitions sendline- and ack+. In the description of the circuit, however,done+ can occur any time between a falling transition of sendline and a rising transitionof ackline. It is necessary to restrict the behavior of done in order to express this circuitas a free choice STG. The Petri net that speci�es the full behavior of the circuit, shown inFigure 2.2 is quite complex, and it does not have the free-choice property. This net wasderived from a state graph of the circuit using Petrify [26] and would be very di�cultto generate correctly either by hand or by compilation from a higher level language.Figure 2.3 shows the TEL structure that represents the circuit for sbuf-send-pk2 and
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15process circuit�[[req]; sendline+; [:done ^ ackline! sendline�; [:ackline]; sendline+; �j done ^ ackline! (ack+ k sendline�); [:req ^:ackline]; ack�; ]]endprocessprocess environment�[req+; [sendline]; ackline+;[ :sendline! (done+ k ackline�); [sendline]; ackline + [:sendline ^ ack];(req� k ackline� k done�); [:ack]j :sendline! ackline�; [sendline]; ackline+; �]]endprocessFigure 2.5. Handshaking expansion for sbuf-send-pk2 controller circuit.wait until the expression it contains is satis�ed. Waits can also be placed in guardedcommands, for example, [a ! b+ j c ! d+]. This guarded command chooses betweenexecuting b+ and d+ depending on whether a or c is true. The handshaking semanticsde�ned in [44] require that guards on guarded commands must be mutually exclusive. The� operator indicates a loop. If it used at the end of a guarded command it indicates thatcontrol returns to the beginning of the guarded command. If it is used at the beginningof a process, it indicates that the process repeats forever.The �rst thing to notice about the TEL structure which represents the handshakingexpansion is that each process in the speci�cation is represented with a separate TELstructure. In this case, there is one TEL structure for the circuit, and a second forits environment. This makes TEL structures both easier to compile to and easier toread. When this particular speci�cation is broken up into processes, it is clear that thecircuit itself is fairly simple, while the environment is more complex. TEL structuresare de�ned formally in the next section, however, intuitively they can be thought of asa graphical representation of timed handshaking expansions. Each signal transition in aprocess corresponds to an event in the TEL structure. In the �gure, events are shown asboxes connected by arrows. If the same transition occurs multiple times in a handshakingexpansion it may occur multiple times in the TEL structure, however an optimizing stepcan often remove multiple occurrences of events. The arrows that connect events arereferred to as rules, and are annotated with both a boolean expression and a lower andupper timing bound. Rules represent ordering relationships between events in a process.When two events occur sequentially in the handshaking expansion, a rule connects them.If there is a wait on a condition between these two events, the rule is annotated with



16that wait, indicating that the second event cannot occur until both the �rst event hasoccurred and the condition has been satis�ed. The timing bound, which distinguishesTEL structures from the previously described speci�cation methods, allows the designerto specify a range on the delay between the �rings of events in both the circuit and itsenvironment.The behavior of TEL structures can be illustrated by examining how the structure forthe sbuf-send-pk2 makes a choice based on the value of signal done. If done is low whensampled, the handshaking indicates that only the event sendline� can �re, otherwiseevents sendline� and ack+ occur in parallel. This choice is represented in the TELstructure by the conict relation (de�ned formally in the next section). If two events e1and e2 conict, indicated by e1#e2, either e1 or e2 can �re, but not both in the sameiteration. In this circuit, there are two sendline� events, sendline�=1 and sendline�=2,both of which cause the signal sendline to fall. However, the conict relation statesthat only one of them can occur. Additionally, ack+ conicts with sendline�=1. Boththe rules sendline+ ! ack+ and sendline+ ! sendline�=2 are annotated with theexpression hdone ^ acklinei, indicating that these rules cannot �re unless both done andackline are high. This corresponds to the condition done ^ ackline in the handshakingexpansion. The rule sendline+! sendline�=1 is annotated with the expression h:done^acklinei, corresponding to the other choice in the handshaking expansion. If done is lowwhen ackline rises, event sendline�=1 �res. If done is high when sampled, the TELstructure allows both ack+ and sendline�=2 to occur in parallel, just as speci�ed inthe handshaking expansion. This example shows how choices based on signal levels inhandshaking expansions can be directly represented by TEL structures.TEL structures can be used to represent speci�cations that are quite di�cult to expresswith purely event based speci�cation methods. Although they are no more expressivethan general Petri nets, they are more expressive than the free choice Petri nets which arerequired by most STG synthesis methods. Since they allow processes to be separated, theysigni�cantly simplify compilation, increase readability, and make it possible to compilelanguage constructs that involve levels. They also allow the designer to make timingassumptions in both the circuit and the environment which are not possible with theother speci�cation methods.



172.2 The semantics of TEL structuresEvent structures were introduced byWinskel [72] and timing has been added to them inseveral ways. Subrahmanyam added timing to event structures using temporal assertions[63]. Burns introduced timing in a deterministic version, the event-rule system, in whichcausality is represented using a set of rules, and a single delay value is associated witheach rule [20]. Timed ER structures, introduced by Myers in [50], allow a delay rangeto be associated with each rule. TEL structures, described formally below, extend timedER structures by allowing a boolean expression to be associated with each rule.2.2.1 Timed event/level structuresTEL structures are based on timed ER structures, which are fundamentally acyclic.Cyclic speci�cations are represented by in�nite timed ER structures, and state spaceexploration is done by dynamically creating the in�nite unrolling of the speci�cationuntil no new boolean states are possible. This type of acyclic semantics can also be usedfor TEL structures, but in order to make them more similar to the widely acceptedspeci�cation methods such as Petri nets, TEL structures are de�ned here as cyclicstructures.De�nition 2.2.1 A TEL structure is a 6-tuple T = hN; s0; A;E;R;#i where:1. N is the set of signals;2. s0 = f0; 1gN is the initial state;3. A � N � f+;�g [ $ is the set of actions;4. E � A� (N = f0; 1; 2:::g) is the set of events;5. R � E �E �N � (N [ f1g)� (b : f0; 1gN ! f0; 1g) is the set of rules;6. R0 is the set of initially marked rules;7. # � E �E is the conict relation.The signal set, N , contains the wires in the circuit speci�cation. The state s0 contains theinitial value of each signal inN . The action set, A, contains for each signal x in N , a risingtransition, x+, and a falling transition, x�, along with the sequencing event $, which isused to indicate an action that does not cause a signal transition. The event set, E,contains actions paired with instance indices (i.e., ha; ii), which are used to distinguishmultiple instances of a given signal transition within the speci�cation. For example,there may be two possible situations in which a signal x can rise in a speci�cation. These



18rising actions on x are distinguished by having two events, hx+; 1i and hx+; 2i. Pairingactions with instance indices allows an arbitrary number of events to be created fromeach action, including the sequencing action, $. Sequencing events are often used toexpress nondeterminism where a signal may or may not transition. Although, formallythe de�nition requires that all sequencing events be of the form h$; ii where i is an integer,sequencing events of the form $s where s is a string are used in this thesis in order tomake the purpose of the sequencing event more clear.Rules represent causality between events. Each rule, r, is of the form he; f; l; u; biwhere:1. e = enabling event,2. f = enabled event,3. hl; ui = bounded timing constraint, and4. b = a boolean function over the signals in N .A rule is enabled if its enabling event has occurred and its boolean function is true inthe current state. There are two possible semantics concerning the enabling of a rule.In one semantics, referred to as non-disabling semantics, once a rule becomes enabled,it cannot lose its enabling due to a change in the state. In the other semantics, referredto as disabling semantics, a rule can become enabled and then lose its enabling. Thiscan occur when another event �res, resulting in a state where the boolean function isno longer true. A single speci�cation can include rules with both types of semantics.Non-disabling semantics are typically used to specify environment behavior and disablingsemantics are typically used to specify logic gates. For the purposes of veri�cation, thedisabling of a boolean expression on a disabling rule is assumed to correspond to a failure,since it corresponds to a glitch on the input to a gate. A rule is satis�ed if it has beenat least l time units since it was enabled and expired if it has been at least u time unitssince it was enabled. Excluding conicts, an event cannot occur until every rule enablingit is satis�ed, and it must occur before every rule enabling it has expired.The conict relation, #, is used to model disjunctive behavior and choice. When twoevents e and e0 are in conict (denoted e # e0), this speci�es that either e can occur or e0can occur, but not both. Taking the conict relation into account, if two rules have thesame enabled event and conicting enabling events, then only one of the two mutuallyexclusive enabling events needs to occur to cause the enabled event. In the general case,
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Figure 2.6. Examples of TEL structures.an event is enabled when a maximal, non-conicting set of its enabling events has �red.The ability for an event to �re when only a subset of its enabling events have �red modelsa form of disjunctive causality. Events that are enabled by multiple conicting events aresimilar to merge places in Petri nets. Choice is modeled when two rules have the sameenabling event and conicting enabled events. In this case, only one of the enabled eventscan occur. An event e that is the enabling event of multiple rules that have conictingenabled events is similar to a choice place in a Petri net. Every pairwise conict in theTEL structure must be speci�ed, but this does not cause a problem for the user since TELstructures are typically generated from a higher level input language, such as VHDL [76].2.2.2 ExamplesFigure 2.6(a) shows an example of a TEL structure with non-disabling semantics. Ithas one conict, b+# c+, which indicates that either the event b+ or the event c+ canoccur after a �ring of a+, but not both. The conict also implies that only one of thesignals b+ or c+ is necessary to �re a�. The rules a+ ! b+, and a+ ! c+ do nothave level annotations. These rules function in exactly the same way as rules in standardER structures and are enabled as soon as their enabling event, a+, �res. Since theyhave a bounded timing constraint of h2; 5i, each of them becomes satis�ed 2 time unitsafter a+ �res and expired 5 time units after a+ �res. The rule b+ ! a� has a levelannotation, e, and does not become enabled until both b+ has �red and the signal e istrue. It becomes satis�ed 3 time units after it becomes enabled and expired 6 time units
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Figure 2.7. A delayed-reset domino gate.after it becomes enabled. The rule c+ ! a� also has a level annotation, hf _ gi, andbecomes enabled after c+ has �red and f _g is true. Since the semantics is non-disabling,once the expression has become true, the rule becomes satis�ed after 6 time units, evenif the expression later becomes false. Figure 2.6(b) shows an or gate represented as aTEL structure with disabling semantics, indicated by the \d" placed next to each levelexpression. The rule z� ! z+ becomes enabled when z� has �red and x _ y is true. Itbecomes satis�ed 2 time units later. If both x and y become false before z+ �res, therule is disabled, and it is not satis�ed again until 2 time units after x _ y becomes trueagain.Figure 2.7 and 2.8 are used to illustrate how TEL structures are used to model circuits.Figure 2.7 shows a delayed-reset domino gate. The gate computes the function (a_ b)^ cin two stages. The �rst stage computes a _ b while clk1 is high, and the next stagecomputes out1 ^ c while clk2 is high. Both gates precharge while their respective clocksare low. Since neither n-stack has a \foot" transistor to ensure that the path to groundis turned o� during the precharge phase, the timing of the circuit must guarantee thatall the inputs to the gate are low by the time the local clock for each stage falls.The TEL structure representation for the domino gate and its environment is shown inFigure 2.8. It includes one rising and one falling event for each signal. The speci�cationindicates that there is a global clock Gclk which rises 500 time units after it falls and falls500 time units after it rises. The inputs to the gate, a; b, and c, nondeterministically risesome time after the clock rises. The nondeterminism is modeled using the conict relationand sequencing events. Each rising event on an input conicts with a corresponding
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[(~c)] [(~b)] [(~a)]Figure 2.8. TEL structure for the gate in Fig. 2.7 and its environment.sequencing event. Since the rising event and the sequencing event conict, only one ofthem can occur. If the rising event for a signal �res, the signal rises in that clock cycle, ifthe sequencing event �res, it does not. A falling transition on the global clock is followedby falling transitions on all of the inputs, if they have risen. Again sequencing events andconicts are used to deal with the nondeterminism. If an input signal rises on the risingedge of Gclk then a falling event for that signal must occur when Gclk falls. Otherwise,a conicting sequencing event �res, preventing the falling event on the input signal frombecoming enabled as soon as that signal rises again. The Gclk signal also controls the�ring time of the two local clocks, clk1 and clk2. The local clock clk1 rises between 10and 30 time units after Gclk rises and falls 30 time units after Gclk falls. The other localclock, clk2 and the two gate outputs, out1 and out2 are speci�ed in a similar fashion.Although the TEL structure is readable for a small circuit, it would be di�cult tospecify a large macro at this level. ATACS provides support for two higher level inputlanguages, VHDL and the timed handshaking expansions described earlier. Designers
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library ieee;use ieee.std_logic_1164.all;use work.nondeterminism.all;entity level1 isport( clk1 : in std_logic;a : in std_logic;b : in std_logic;out1 : out std_logic);end level1;architecture BEHAVIORAL of level1 issignal out1_NEW : std_logic;beginout1 <= out1_NEW;out1_NEW <= '1' after delay(50, 70) when a= '1' or b = '1' else'0' after delay(10, 30) when clk1 = '0' elseout1_NEW;end BEHAVIORAL;entity level2 isport( clk2 : in std_logic;out1 : in std_logic;c : in std_logic;out2 : out std_logic);end level2;architecture BEHAVIORAL of level2 issignal out2_NEW : std_logic;beginout2 <= out2_NEW;out2_NEW <= '1' after delay(10, 30) when c = '1'and out1 = '1' else'0' after delay(20, 50) when clk2 = '0' elsereq_NEW;end BEHAVIORAL;Figure 2.9. VHDL description of the domino gate



23can specify circuits in these languages, and they are compiled into TEL structures usingtechniques described by Zheng and Myers in [76, 50]. Figure 2.9 shows the VHDLdescription of the two levels of logic used in the domino gate. The additional VHDLneeded to connect up these gates is not shown here since it is simply structural VHDLto connect the signals. Since standard VHDL allows only deterministic delays, andtiming veri�cation requires bounded delays, the VHDL speci�cation includes a package\nondeterminism" that allows for the use of the delay function. Calls to the delayfunction compile to a delay range in a TEL structure and are simulated in a VHDLsimulator by making random delay choices within the delay range. Since these gates arestate-holding, they cannot be speci�ed using simple assignments in VHDL. Instead eachsignal has a rise condition and a fall condition, which can be compiled directly to rulesin TEL structures. Using this interface, the designer can work in a familiar languagewithout having to �gure out how to represent circuits directly in TEL structures.2.2.3 Timed Firing SequencesThe behavior speci�ed by a TEL structure is de�ned with three types of operations:�ring of rules, �ring of events, and advancement of time. A time valued clock ci isassociated with each enabled rule ri. A rule can �re when the clock meets the lowerbound on the rule, and must �re when the clock reaches the upper bound on the rule.Using these semantics, the age of a clock never exceeds the upper bound of its associatedrule. The �ring of a rule may not immediately result in the �ring of an event. An event�res when a su�cient set of the rules that enable it have �red. If all of the rules enablingan event e have non-conicting enabling events, then e's su�cient set is all of the rulesthat enable it. If some of the rules enabling e have conicting enabling events then e has anumber of di�erent su�cient sets. For a set of rules, Rs, to be su�cient to �re e, all rulesthat enable e and are not in Rs must have enabling events that conict with the enablingevent of some rule in Rs. Events �re simultaneously with the last rule �ring that createsa su�cient set of �red rules. Time is advanced using a function max advance, whichreturns the maximum amount of time that can pass before a rule must �re or exceedits upper bound. These semantics de�ne a set of �ring sequences that contain both ruleand event �rings, where event �rings are placed in the sequence immediately followingthe �ring of its �nal enabling rule. In order for the analysis algorithm presented here tosucceed in �nding the state space of a TEL structure, it must be one-safe. In a one-safe



24TEL structure, when the enabling event of a rule �res, it cannot �re again until eitherthe enabled event of the rule �res, or an event that conicts with its enabled event �res.This property is similar to the one-safe property on Petri nets, which prevents placesfrom containing multiple tokens.The set of behaviors of a TEL structure is de�ned by a set of sequences � 2 ((R�)(E�))�where each �ring (rule or event) is numbered sequentially. In order to simplify thenotation, shorthand operations for dealing with �ring sequences need to be de�ned. Thefunction L is used to map an instance of a rule or event in the �ring sequence back tothe corresponding rule or event in the original speci�cation, and the 2 operator is usedto specify whether a type of �ring occurs in the sequence. Also, the functions l and uare used to return the lower and upper bound on a rule. Finally, it is useful to de�ne achoice set for each rule r = he; f; l; u; bi. The choice set of r contains all events which areenabled by e and conict with f :De�nition 2.2.2 The choice set of a rule r = he; f; l; u; bi is de�ned as follows:choice set (r) = ff 0 2 E j 9r0 = he; f 0; l0; u0; b0i 2 R ^ f 0#fgWhen the event f �res, all of the events in the choice set of r require another �ring of ebefore they have a chance to �re. Events that are not in the choice set of r do not requireanother �ring of e in order to �re.The state space of a TEL structure is found by exploring �ring sequences of eventsand rules. The boolean state which is used to evaluate the boolean expressions associatedwith rules is de�ned by the rule �ring sequence being explored, �. The state resultingfrom a rule �ring sequence, �(�) is simply the state that results when the �ring sequenceis executed starting from the initial state s0. We can now formally de�ne what it meansfor a rule r to be enabled by a �ring sequence �.De�nition 2.2.3 A rule r = he; f; l; u; bi 2 enabled(�0::n) if one of the following condi-tions is true:1. (r 2 R0) ^ (:9�j 2 �0::n : L(�j) = r) ^ (:9�j 2 �0::n : L(�j) 2 choice set(r)) ^(b(�(�0::n)) _ (non-disabling(r) ^ 9�j 2 �0::n : b(�(�0::j)))2. 9�i 2 �0::n : ((L(�i) = e) ^ (:9�j 2 �i+1::n : L(�j) = r) ^(:9�k 2 �i+1::n : L(�k) 2 choice set(r)) ^(b(�(�0::n)) _ (non-disabling(r) ^ 9�l 2 �i+1::n : b(�(�0::l)))))



25The �rst condition in the de�nition deals with rules that are initially marked. In orderto satisfy the �rst condition, a rule must be initially marked (i.e. r 2 R0), and there mustnot be any other �ring of the rule in the �ring sequence (i.e. :9�j 2 �0::n : L(�j) = r).There also must not be any other event �rings in the sequence that would cause thisrule to loose its chance to �re due to conict (i.e. :9�j 2 �0::n : L(�j) 2 choice set(r)).Finally, the boolean expression on the rule must either be satis�ed by the current �ringsequence, or be satis�ed at some point in the current �ring sequence for a non-disablingrule (i.e. (b(�(�0::n)) _ (non-disabling(r) ^ 9 : �j 2 � : b(�(�0::j))). This distinctionis made since non-disabling rules only require that the boolean expression become trueat some point before the rule �res. The second condition deals with all rule enablingsother than the �rst �rings of initially marked rules. In order for the second conditionto hold, the �ring sequence must contain a �ring of the enabling event of the rule (i.e.9�i 2 �0::n : L(�i) = e) and it must not contain a �ring of the rule that occurs after the�ring of the enabling event (i.e. :9�j 2 �i+1::n : L(�j) = r). The �ring sequence alsomust not contain a �ring of an event in the choice set of r that occurs after the �ring ofe (i.e. :9�k 2 �i+1::n : L(�k) 2 choice set(r)). Finally the boolean expression on the rulemust either be satis�ed by the current �ring sequence or, if the rule is non-disabling, itmust have been satis�ed at some point in the sequence after the �ring of the enablingevent (i.e. b(�(�0::n)) _ (non-disabling(r) ^ 9�l 2 �l+1::n : b(�(�0::l)))).When a su�cient set of rules has �red in the sequence, an event becomes enabled to�re. When an event �res, it \uses" the rule �rings. Therefore, we need to de�ne when arule �ring can be used to �re an event.De�nition 2.2.4 The usable relation on a �ring �i : L(�i) = he; f; l; u; bi and �ringsequence �0::n is de�ned as follows:usable(�i; �0::n), :9�j 2 �i+1::n : (L(�j) = f) _ (L(�j) 2 choice set(L(�i))).This de�nition means that a rule �ring is usable until its enabled event �res or anevent in its choice set �res. A rule r = he; f; l; u; bi remains usable when an event, f 0,that conicts with f �res, if f 0 and f do not share e as an enabling event. For example,consider the TEL structure in Figure 2.10, and assume that a+ and d+ have �red. A�ring of a+ ! c+ is made unusable by the �ring of event b+ since b+ is in the choiceset of a+! c+. However, the �ring of b+ does not make a �ring of d+! c+ unusable.This distinction is made since another �ring of a+ is necessary before c+ can �re, but
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b+ # c+Figure 2.10. Conict behavior.another �ring of d+ is not necessary before c+ can �re.Events �re when there is a su�cient set of usable rules.De�nition 2.2.5 The set of �rable events of a �ring sequence �0::n is de�ned as follows:firable(�) = ff 2 E j 8r = he; f; l; u; bi 2 R : 9�i 2 �0::n : L(�i) = r ^ usable(�i; �0::n)_9�j 2 �0::n : L(�j) = he0; f; l; u; bi ^ e0#e ^ usable(�j ; �0::n)gThe �rable set contains all events which have a su�cient set of usable rules in the �ringsequence. All of the rules that enable an event must either have a usable �ring in � orhave an enabling event which conicts with a rule that has a usable �ring in �.De�nition 2.2.5 allows us to de�ne the set of sequences which are allowed by the TELstructure, � 2 ((R�)(E�))� as follows:De�nition 2.2.6 A sequence � 2 � if and only if 8�i:1. L(�i) 2 R) L(�i) 2 enabled(�0:::i�1)2. L(�i) 2 E ) L(�i) 2 �rable(�0::i�1)3. L(�i) 2 R ^ �rable(�0:::i) 6= ; ) �i+1 2 �rable(�0:::i)The �rst requirement states that rules must be enabled when they �re. The secondrequirement of this de�nition states that all events must be in the �rable set when they�re. The third requirement is that if the �rable set of a rule �ring is not empty, an eventin the �rable set must follow it in the sequence.Each rule �ring �i can be associated with the event �ring that enabled the rule by thecausal event function, Ec, de�ned as follows :



27De�nition 2.2.7 Ec(�i; �) = �j where j is the maximum value less than i for whichL(�i) =2 enabled(�0:::j�1) and L(�i) 2 enabled(�0:::j)This means that the causal event for a rule �ring is the event �ring which causes the ruleto become enabled. This event may either be the enabling event for the rule or it may bean event that changes the value of a signal that causes the boolean expression associatedwith the rule to evaluate to true.Any sequence can be given a timing assignment � which maps an event to the timeat which it occurs. For each sequence, � 2 �, there is a set of valid timing assignments,referred to as valid(�).De�nition 2.2.8 A timing assignment � is valid for a sequence � if :8�i 2 � : �(�i) � �(�i+1) ^L(�i) 2 E ) �(�i) = �(�i�1) ^L(�i) 2 R) �(Ec(�i; �)) + l(L(�i)) � �(�i) � �(Ec(�i; �)) + u(L(�i)).This means that a timing assignment is valid if it corresponds to the order of the �ringsequence, all events �re simultaneously with the rule immediately preceding their �ring,and rules �re between their lower and upper bounds after their causal event. A �ringsequence � 2 � is reachable in the speci�cation TEL structure if and only if it can begiven a valid timing assignment.2.2.4 Examples of Firing SequencesIn order to clarify the formalism presented in the previous section, this section presentssome examples of timed �ring sequences which are reachable in the speci�cation shown inFigures 2.3 and 2.4. Any valid sequence must begin with some interleaving of rule �rings[ackline �=2; req+]; [req�; req+], and [done�; req+] since these are the only rules thatare initially enabled. Any sequence that does not begin with these rules it not reachable.Suppose that the �ring sequence begins with:[ackline-/2, req+], [done-, req+], [req-, req+], req+The rule �rings can be given any timing assignment between two and �ve, as long as theyare monotonically increasing. For example:f[ackline-/2, req+],2g f[done-, req+],3g f[req-, req+],4g freq+,4gis a valid timed �ring sequence. This sequence:f[ackline-/2, req+],3g f[done-, req+],2g f[req-, req+],4g freq+,4g



28is not a valid timed �ring sequence since the �ring times are not monotonically increasing.This sequence:f[ackline-/2, req+],2g f[done-, req+],3g f[req-, req+],4g freq+,5gis also invalid since the event �ring req+ does not �re simultaneously with the last rulein its su�cient set �ring. Also note that after req+ �res there are no usable rule �rings.The only rule �ring that is enabled by the valid �ring sequence:f[ackline-/2, req+],2g f[done-, req+],3g f[req-, req+],4g freq+,4gis [ack�; sendline+]. When this rule and the event sendline+ �re, the following �ringsequence is produced:[ackline-/2, req+], [done-, req+], [req-, req+], req+, [ack-,sendline+],sendline+In this sequence, req+ is causal to [ack�; sendline+] since [ack�; sendline+] is notenabled before req+ �res, and is enabled after req+ �res. Since [ack�; sendline+] isthe causal rule for sendline+, req+ is causal to sendline+. Therefore, a valid timingassignment must allow between two and �ve time units between req+ and sendline+.The following is a valid timing assignment:{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},{[ack-, sendline+],7}, {sendline+,7}The �rings, [req+; ackline+], ackline + =1 are added to the �ring sequence in a similarmanner resulting in the following timed �ring sequence:{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},{[ack-, sendline+],7}, {sendline+,7}, {[req+, ackline+/1],14},{ackline+/1,14}Although there are now multiple rules whose enabling events have �red, only one rule,[sendline+; sendline� =1], has a boolean expression which is satis�ed by the state. Thisrule, and the event sendline� =1 are now added to the sequence:{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},{[ack-, sendline+],7}, {sendline+,7}, {[req+, ackline+/1],14},{ackline+/1,14}, {[sendline+, sendline-/1], 18}, {sendline-/1,18}The event ackline+=1 is causal to [sendline+; sendline�=1] so a timing assignment fourtime units after ackline+=1 �res is valid for [sendline+; sendline�=1] and sendline�=1.



29There are now three enabled rules, [ackline+=1; ackline�=3], [ackline+=1; ackline�=1],and [ackline + =1; done+]. Each of these rules has the others in its choice set, so whenone of them �res, other rules lose their enabling. Suppose that [ackline + =1; done] ischosen to �re. The new timed �ring sequence is as follows:{[ackline-/2, req+],2} {[done-, req+],3} {[req-, req+],4} {req+,4},{[ack-, sendline+],7}, {sendline+,7}, {[req+, ackline+/1],14},{ackline+/1,14}, {[sendline+, sendline-/1], 18}, {sendline-/1,18},{[ackline+/1, done+], 20}, {done+, 20}The rule [ackline+ =1; done+] has a conict set consisting of [ackline+ =1; ackline� =3],since they share the same enabling event and have conicting enabled events. Since[ackline + =1; done+] has �red in the sequence, [ackline + =1; ackline � =3] loses itsenabling and does not get another chance to �re until the event ackline+ =1 �res again.This �ring sequence can, of course continue on inde�nitely. However, the shortsubsequence above illustrates most of the concepts about �ring sequences de�ned in thischapter. Since sequences are in�nite, it is necessary to de�ne equivalence classes betweensequences, so that an algorithm can determine when it is in a state it has seen before andcan stop adding new �rings to the sequence. This is the topic of the next chapter.2.3 SummaryThis chapter de�nes the TEL structure formalism and the set of timed �ring sequencesthat are speci�ed by a TEL structure. TEL structures conform more closely to circuitbehavior than purely event based formalisms. This makes it is easier to construct circuitspeci�cations using TEL structures than it is to construct them using purely event basedspeci�cation methods.



CHAPTER 3GEOMETRIC TIMING ANALYSISTime is what prevents everything from hap-pening at once.- John Archibald WheelerIn order to do synthesis or veri�cation of a TEL structure speci�cation, it is necessaryto �nd all of its allowable boolean states. The number of boolean states is �nite, but thenumber of �ring sequences generated by a cyclic speci�cation is in�nite. An algorithmthat tries to �nd all boolean states by exploring all �ring sequences never completes.Therefore, it is necessary to de�ne equivalence classes between �ring sequences. Any two�ring sequences that are in the same equivalence class are guaranteed to lead to the samefuture set of boolean states. Equivalence classes allow an algorithm to know when tostop. When it �nds a sequence which is in the same equivalence class as a previouslyexplored sequence, the algorithm knows that the current sequence cannot result in anynew behavior. This prevents the algorithm from attempting to explore in�nitely longsequences which allows it to complete. This chapter de�nes equivalence classes for timed�ring sequences and presents an algorithm for timed state space exploration based onthese equivalence classes.3.1 De�ning Equivalence ClassesThe in�nite nature of the set of timed �ring sequences is two-fold. The numberof sequences � 2 � that have valid timing assignments is in�nite. Additionally, eachindividual sequence can have an in�nite number of valid timing assignments. State spaceexploration requires that this in�nite set of sequence, timing assignment pairs be dividedinto a �nite set of equivalence classes. The obvious way to do this in the untimed case isto say that two sequences � and �0 represent equivalent states if the set of enabled rulesthat results from executing � and �0 is the same. Therefore, for state space exploration,the untimed state of the system is simply the set of enabled rules. This is equivalent to



31two Petri net �ring sequences being in the same equivalence class if they have the samemarking. The timed state of the system is represented by a set of active clocks. An activeclock is created whenever a rule becomes enabled, and eliminated when the rule �res.After a �ring sequence is executed, there is an active clock for every rule that is enabledby the execution of the �ring sequence. The set of possible timing assignments to thesequence determines the set of possible ages that the active clocks can have. This setof ages represents the timed state of the speci�cation at the end of the �ring sequence.Therefore, two �ring sequences can be said to lead to the same timed state if they result inthe same set of enabled rules, and the sets of possible ages for the active clocks resultingfrom the two sequences are the same.In order to determine the age of an active clock, ci, it is necessary to know which event�ring enabled the rule, ri, associated with it. Each enabled rule, ri, can be associatedwith the event �ring that enabled it by a modi�cation of the causal event function, Ec,de�ned in the previous chapter. The new function, Em (for marking event), is de�ned asfollows:De�nition 3.1.1 Em(ri; �0::n) = �j where j is the maximum value for whichri =2 enabled(�0:::j�1) and ri 2 enabled(�0:::j)This means that the marking event for an enabled rule is the event �ring which causesthe rule to become enabled. This event may either be the enabling event for the rule orit may change the value of a signal that causes the boolean expression associated withthe rule to evaluate to true.De�nition 3.1.1 can be used to formally de�ne max advance, the function that deter-mines how much time can advance without forcing a rule to �re for a �ring sequence �of length n.De�nition 3.1.2 The function max advance(�0::n; �) is de�ned as follows:max advance(�0::n; �) = minri2enabled(�0::n)(u(ri)� (�(�n)� �(Em(ri; �0::n)))The maximum amount that time can advance without a rule ri exceeding its upper boundis (u(ri) � (�(�n) � �(Em(ri; �0::n))), which is the di�erence between the upper boundon ri and its current age. The de�nition of max advance returns the minimum of thisexpression over all enabled rules. This is the maximum amount of time that can passbefore at least one rule must �re or exceed its upper bound.



32The max advance function is used to determine all of the possible clock ages that areallowed by a timing assignment, � , for a sequence of length n. It is computed as follows:De�nition 3.1.3 If ri 2 enabled(�0::n), ci must satisfy the following inequality:�(�n)� �(Em(ri; �0::n)) � ci � (�(�n)� �(Em(ri; �0::n)) +max advance(�0::n; �)This means that a clock is no younger than the time di�erence between the �ring of theevent that created it and the last event to �re in the sequence, and it must not exceed anage that would force another rule to �re. The set of values for a clock ci that are allowedby a timing assignment � are referred to as �(ci). Since the ages of the clocks determinewhich future states are possible, two sequences � and �0 can be said to have the sametimed state if enabled(�) = enabled(�0) and � is a valid timing assignment to � if and onlyif there is a valid timing assignment � 0 to �0 such that 8ri 2 enabled(�) : �(ci) = � 0(ci).This de�nition means that if the clock ages that can result from �ring � and �0 arethe same, the two sequences result in the same futures, and are therefore consideredequivalent. 3.2 Timed State Space ExplorationSuppose that there exists a representation M which gives the ages of the clocksallowed by a �ring sequence. A timed state, TS, then consists of enabled(�) �M . Thisrepresentation of a timed state allows two sequences to be compared to see if they havethe same timed state, and an algorithm which explicitly examines �rings sequences couldbe developed to explore the state space. However, �ring sequences can be very long.Storing and manipulating them would take a large amount of memory and time. In orderto produce acceptable performance, a state space exploration algorithm must compactlystore the useful information from the �ring sequence without storing the entire �ringsequence.In order to develop an algorithm to �nd all of the timed states without saving sequencesof �rings, more information needs to be stored in the timed state. The boolean stateresulting from the sequence is necessary in order to compute a set of enabled rules.Since the algorithm does not store the sequence itself, it must store the current state,and update it whenever an event �res. Therefore, the current state, sc, is added tothe timed state for use in the algorithm. Also, if the sequence is available, it is simpleto compute the set of rules whose enabling events have �red but whose enabled events



33have not. This set in not the same as the set of enabled rules, since it does not considerboolean expressions. However, this set is necessary in order to compute the set of enabledrules since only these rules are eligible to become enabled. This set is referred to asRm (for marked set) in the algorithm and added to the timed state. Next, since thealgorithm is not storing the sequence, it cannot compute the set of enabled rules fromthe sequence. It must store this set as well by adding and removing rules as events�re. In the algorithm the set Ren replaces enabled(�) in the timed state. It may seemthat adding both Rm and Ren to the timed state is redundant, however it is necessarysince rules can be disabling or non-disabling. When non-disabling rules become enabled,they remain enabled regardless of the current boolean state. Therefore, it cannot bedetermined whether non-disabling rules are enabled simply from looking at Rm and sc.Disabling rules can lose and regain their enabling many times before they �re dependingon the current boolean state. Therefore it is necessary to record which rules are currentlymarked so that the algorithm knows which rules to check and possibly add to Ren. Finally,if the algorithm were operating on a sequence, it could determine the set of usable rule�rings from the sequence. Since it cannot look at the whole sequence, it must maintainanother set, Rf (for �red rules), which contains usable rule �rings. This set is necessaryin order for the algorithm to determine which events can �re. With these additions, thetimed state for use in the algorithm now is as follows: Rm �Ren � sc �Rf �M .Using this representation, the timed state space of a TEL structure can be exploredusing the algorithm in Figure 3.1. The algorithm does a depth-�rst search of the timedstate space, �nding all the timed states that are reachable. It �rst initializes all of theelements of the timed state. The set Rm, is set to R0, the set of initially marked rules inthe TEL structure. The current state is set to the initial state of the TEL structure. TheRen set is created by including all marked rules whose boolean expressions are satis�edby the initial state. The timing information, M , is then initialized for all the enabledrules. All initially enabled rules have a minimum age of zero and a maximum age of theleast upper bound among them. Their relative age di�erences are all set to zero. Thealgorithm then initializes Rf to ;. After these steps, the algorithm has created the initialtimed state. It combines all the elements of the timed state into a data structure, TS, andadds it to the state space �. In order to use the state space for synthesis, the algorithmalso must store the set of possible transitions between states. This set is called �, and isinitially empty. After initializing �, the algorithm calls the function find timed enabled



34Algorithm 3.2.1 (Find timed states)state space �nd timed states(TEL structure TEL = hN; s0; A;E;R;R0;#i)fRm = R0;sc = s0;Ren = fhe; f; l; u; bi 2 Rm : b(sc)g;M = initialize timing(Ren; TEL);Rf = ;timed state TS = Ren �Rm � sc �Rf �M ;set of states � = fTSg;set of transitions � = ;;rule list RL = �nd timed enabled(TS;TEL);bool done=false;while (:done)fevent �red = false;rule r = he; f; l; u; bi = head(RL);push(TS, tail(RL));Rold = Ren;Rf = Rf [ r;Rm = Rm � r;Ren = Ren � r;if (8 ri = hei; f; li; ui; bii 2 R : ((ri 2 Rf )_ (9rj = hej ; f; lj ; uj ; bii 2 Rf : ei#ej))))fevent �red = true;if (f = hxi+;mi) sc[s index(xi)] = 1;else if (f = hxi�;mi) sc[s index(xi)] = 0;Rm = Rm � frj 2 R : f 2 choice set(rj)g;Rm = Rm [ fhei; fi; li; ui; bii 2 R : ei = fg;Rf = Rf � fhe; fi; li; ui; bii 2 Rf : fi = fg;Rf = Rf � frj 2 R : f 2 choice set(rj)g;Ren = Ren � frj 2 R : f 2 choice set(rj)g;Ren = Ren [ frj 2 Rm : bi(sc)g;foreach (ri = hei; fi; li; ui; bii 2 Ren [Rf : ri is disabling)if (:bi(sc))if (fail on disable) return fail;else Ren = Ren � ri;gM = update(TEL;M; r;Ren; Ren �Rold; event �red);TSold = TS;TS = Ren �Rm � sc �Rf �M ;if (TS =2 �)then� = S [ fTSg;� = � [ f(TSold; TS)g;RL=�nd timed enabled(TS, TEL);else if (TS 2 �) then� = � [ f(TSold; TS)g;if (stack is not empty) then (TS, AL)=pop();else done = true;greturn (�;�);g Figure 3.1. Timed state space exploration.



35Algorithm 3.2.2 (Find timed enabled)rule list RL �nd timed enabled(TS hRen;Rm; sc; Rf ;Mi; TEL hN; s0; A;E;R;R0;#i)frule list RL = ;;for each (r = he; f; l; u; bi 2 Ren)fif (min clock value(M,r) � l) add list(RL,r);return RL;g Figure 3.2. Find timed enabled rules.which returns the set of rules that are currently allowed to �re. The function is de�ned inFigure 3.2. It goes through all of the enabled rules and adds those whose clocks meet theirlower bounds to the list of rules that can �re. The method for extracting the minimumage of a rule's clock from the representation of the timing is discussed in the next section.The algorithm has now initialized everything and is ready to begin the main loop.The main loop of the algorithm continues until all of the reachable states have beenfound, a condition represented by the variable done. When the loop begins, the functionremoves the rule it is going to �re, r, from the front of the rule list(i.e head(RL)) andplaces the rest of the rule list (tail(AL)), and the timed state on the stack. Next, itsaved the current Ren set by assigning it to Rold. This is done so that the algorithm candetermine which rules in Ren are newly added. It then adds r to the �red set since it is�ring, and removes it from Rm and Ren since it is no longer available to �re. Next, thealgorithm checks if �ring of r causes an event to �re. An event �res if all of the rulesthat enable it are either in Rf or have enabling events that conict with the enablingevent of a rule that is in Rf . If an event can �re, the algorithm updates the state vector,using the s index function to �nd the index of the signal that is changing state in thestate vector. If a sequencing event �res, the state vector remains unchanged. Next thealgorithm updates the rule sets to reect the �ring of a new event. The marked set, Rm,loses all rules that contain f in their choice sets, since they have lost their chance to �re.The marked set gains all rules that have f , the �ring event, as their enabling event. The�red set loses all rules that enable f , and all rules that contain f in their choice sets.These rules are no longer usable since they have either been used or become unusabledue the the �ring of an event in their choice sets. The enabled set is also updated: itloses all rules that contain f in their choice sets and gains all rules in Rm whose booleanexpressions are satis�ed in the new state. The algorithm then checks for rules that have



36been disabled. If a disabling rule is in the enabled set and its boolean expression is nolonger true due to the �ring of f , it has been disabled. This can result in two di�erentoutcomes. If the designer wishes to consider disablings failures, since they correspond tohazards on the inputs of gates, then at this point the algorithm returns a fail condition.If the designer does not want the algorithm to fail on a disabling, the o�ending rule isremoved from the enabled set and the algorithm continues. After all the rule sets havebeen updated, the algorithm updates the timing information M . The details of this arediscussed in the next section. Next, the old timed state is saved in TSold and all of thesets are combined into the new timed state. The algorithm then checks to see if this newstate is already in the state space. If it is not in the state space, the new state is addedis added to � and a new transition, from TSold to TS, is added to the transition set �.Then a new list of rules to �re is computed from the current state. If the current stateis already in �, the algorithm removes a state and rule list from the stack and continuesthe main loop. If the stack is empty, then there are no more new states to be found andthe algorithm is completed.Untimed states are only explored if they can be reached given the timing informationin the speci�cation. This can eliminate large portions of the untimed state space for somedesigns when the algorithm is used for synthesis. Many states that are reachable withouttiming information are not reachable given the timing constraints in the speci�cation.However, the algorithm explores the entire timed state space, and the size of the timedstate space depends on the representation chosen for the timing information.3.3 Representing TimeThe timing analysis algorithm presented here uses geometric regions (also known aszones) to represent the timing information within a timed state. As discussed earlierin the chapter, whenever a rule ri is enabled, a clock ci is created to be used in timinganalysis. The minimum and maximum age di�erences of all the clocks are stored in aconstraint matrix M (also known as a di�erence bound matrix). Each entry mij in thematrix M has the value max(cj � ci), which is the maximum age di�erence of the clocks.A dummy clock c0 whose age is always 0 is also included. The maximum age di�erencebetween ci and c0 (m0i) is the maximum age of ci. The maximum age di�erence betweenc0 and ci (mi0) is the negation of the minimum age of ci. Note that M only needs tocontain information on the timing of currently enabled rules, not on every rule in the



37TEL structure. This particular way of representing timed regions was �rst introducedby Dill in [28]. The constraint matrix represents a convex jRenj dimensional region.Each dimension corresponds to an enabled rule, and the age at which a rule �res can beanywhere within the space.Many matrices can be used to represent the same region in space since some entries maybe underconstrained. However, there is a canonical representation where every constraintis maximally constraining. A set of constraints is maximally constraining if each constraintcan reach its maximum value for some timing assignment without violating any of theother constraints. In the algorithm, the matrix is made maximally constraining througha process called recanonicalization. Recanonicalization takes a matrix M where some ofthe mij 's are greater than max(cj � ci) and produces a matrix where all the mij's havetheir maximum allowed value. The assignment of the mij's so that they all have theirmaximum value is always unique, so the algorithm can determine when a given regionis equivalent to or contained in a region that has been seen before. Recanonicalizationis essentially the all pairs shortest path problem and can be done in O(n3) time withFloyd's algorithm [28].Geometric regions are used by Rokicki in Orbits [58, 59, 53] to do timed state spaceexploration on Orbital net speci�cations with the single behavioral place restriction. Thesingle behavioral place restriction is made in Orbits to ensure that the geometric regionsthat represent the time behavior of the system are always convex. If the values of clockscan exceed their upper bounds, the regions representing the time behavior may not beconvex. Figure 3.3 shows an example of this. In this speci�cation, either the separationbetween a+ and c+ must not exceed 5, or the separation between b+ and c+ must notexceed 4. Since TEL structure semantics does not require both upper bound constraints tobe met, the resulting region is non-convex. Since Floyd's algorithm only works on convexregions, this must be avoided. However, when rules are allowed to �re independently ofevents as they are in the state space exploration algorithm section, clocks can no longerexceed their upper bounds, and the regions are guaranteed to be convex. In this example,2 regions would be generated to cover the space shown in the �gure.The algorithm in Figure 3.4 shows how the function for updating timing informationused in Figure 3.1 is implemented with geometric regions. The function takes as inputthe TEL structure speci�cation, the constraint matrix, the rule that is �ring, the set ofenabled rules, the set of newly enabled rules, and a bit which indicates if an event is
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Figure 3.3. (a) TEL structure with multiple behavior rules, and (b) non-convex region.Algorithm 3.3.1 (Update)void update(TEL structure TEL hN; s0; A;E;R;R0;#i , geometric region M,rule r = he; f; l; u; bi, rule set Ren, Rnew, bool event �red) fif (M [index(r)][0] > �l) then M [index(r)][0] = �l;recanonicalize(M);project(M, index(r));if(event �red)fforall(ri = hei; fi; li; ui; bi 2 Rnew)fM [0][index(ri)] = 0;M [index(ri)][0] = 0;forall(rj 2 Rnew)M [index(rj)][index(ri)] = 0;M [index(ri)][index(rj)] = 0;forall(rj 2 Ren �Rnew)M [index(rj)][index(ri)]=M [index(rj)][0];M [index(ri)][index(rj)]=M [0][index(rj)];ggforall(ri = hei; fi; li; ui; bii 2 Ren)M [0][index(ri)]=ui;recanonicalize(M);normalize(M);g Figure 3.4. Procedure for updating the geometric region.



39�ring. The index function used in the algorithm takes a rule, and returns the index inthe constraint matrix that corresponds to it. The �rst step of the function is to check ifthe minimum age of the �ring rule's clock in the matrix is less than the lower bound onthe rule. If it is, the lower bound on the age of the rule in the matrix is set to the negationof minimum age of the rule. This ensures that the minimum age of each clock is no lessthan the di�erence between the time it is created and the time that the last event in thesequence �res. The row and column corresponding to the �red rule is then removed fromthe matrix by the project operation. Next, if an event �red, the algorithm adds clocksfor newly enabled rules. A rule is newly enabled if it is in Rnew. When a rule is initiallyenabled, its age is zero, so the entries in the matrix for its minimum and maximum ageare set to zero. If a set of rules is enabled at the same time, the relative ages di�erencebetween all pairs of rules in the set is zero. Therefore, entries in the matrix representingage di�erences between events in Rnew are set to zero. Age relationships between the newrules and the previously existing ones must also be entered in the matrix. The maximumage di�erence between a new rule and any previously existing rule is just the maximumage of the previously existing rule. Therefore, the new maximum age di�erence entriesare copied from row zero of the matrix which contains the maximum ages of existingrules. The minimum age di�erence between the new rule and a previously existing ruleis the minimum age of the previously existing rule, and this minimum age is copied fromcolumn zero of the matrix. Finally, the algorithm sets the maximum age of each rule inthe matrix to its speci�ed maximum age, u, and recanonicalizes the matrix. This allowstime to advance as far as possible without causing any rule to exceed its maximum age.The �nal step is normalization. The normalization step is necessary to deal with rulesthat have in�nite upper bounds and is described in detail by Rokicki in [58]. The newregion now represents all possible clock ages given the �ring sequence that is currentlybeing explored. 3.4 ExamplesFigure 3.5 shows an example of how the geometric algorithm would be applied to thesimple TEL structure shown at the top of the �gure. The �rst column shows the constraintmatrix at each step and the second column shows the region in space represented by thematrix. The recanonicalization procedure that is applied after each step is not shownhere, but is described in detail by Rokicki in [58]. Initially, rules r1 and r2 which have
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Figure 3.5. Firing rules.



41tokens to indicate they are initially marked, are given clocks c1 and c2. The initialconstraint matrix indicates that the maximum age for both clocks is 5. Since the lowertiming bounds on both r1 and r2 are less than 5, they are both added to the list of rulesthat can �re, RL. The rule r2 is chosen to �re. The clock for r2 is projected out of theconstraint matrix, and the matrix is constrained so that that all clocks that existed whenr2 �red must have a minimum age of 3. A new clock is added for the newly enabled rule,r4. It must be between 3 and 5 time units younger than the clock for r1 since the clockfor r1 has an age between 3 and 5 time units when it is added. The list of rules to �renow contains r1 and r4. The rule r1 is chosen to �re next, causing rules r3 and r5 tobecome enabled. The new rule list contains r4 and r5 but not r3 since the lower boundon r3 is 6, and the maximum age for r3 allowed by the matrix is 2. Next, r4 is chosento �re. It does not cause an event to �re, so no new clocks are added to the constraintmatrix. After r4 �res, the maximum age of the rule r3 can advance to 10, allowing it tobe placed on the new rule �ring list. The rule r3 can then �re, producing the last matrixand region in the �gure.The next example, shown in Figure 3.6, demonstrates how the algorithm works withlevel expressions. The TEL structure at the top of the �gure has similar behavior to theTEL structure shown in Figure 3.5, but it speci�es the behavior using levels instead ofevents. In the initial state, all of the signals are set to zero, except for A which is set toone. Rules r3 and r5 are enabled and have entries in the constraint matrix. They are alsoboth on the rule list since their lower bounds are reached by the maximums in the matrix.Rule r3 is chosen to �re, which causes B+ to �re. Due to the level expressions, no newrules are enabled when B+ �res. The rule r3 is projected out of the matrix when it �res,leaving a matrix containing only a clock for r5. The �ring of r5 allows C+ to �re. Now,the rule r7, which enables D+, becomes enabled. It is now the only enabled rule, sincer5 is projected when it �res. In a similar manner, the �ring of D+ generates a regioncontaining a single rule which enables x+. All of the rules enabling falling transitions onA+; B+; C+, and D+ are waiting for x to become high. When x rises, r2; r4; r6, and r8become enabled at the same time, and their age di�erences in the matrix are set to zero.The region which is shown for this matrix is projected into the c2; c4 plane. It shows thatc2 and c4 must be the same age and have a maximum age of 10. All of the downgoingtransitions can now occur in any order. When A;B;C, and D, have fallen, x can fall,returning the TEL structure to its initial state.
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433.5 SummaryThe algorithm presented in this chapter allows us to �nd the state space of any TELstructure. It is a substantial improvement over the geometric algorithm presented byRokicki in [58] since it can deal with multiple behavioral rules and boolean conditions. Itcan, however, generate a large number of regions since at least one region is generated foreach �ring sequence explored. The next chapters introduce the POSET algorithm, whichdramatically reduces the number of regions needed to represent the timed state space.



CHAPTER 4POSET TIMING IThe distinction between past, present, and fu-ture is only a stubbornly persistent illusion.- Albert EinsteinWhile the geometric algorithm described in the previous chapter eliminates the singlebehavioral rule restriction and analyzed speci�cations with level expressions, Rokicki [59]and Bozga [13] show that the number of geometric regions the algorithm generates canexplode for highly concurrent timed systems. In [59], an algorithm is described that usespartially ordered sets (POSETs) instead of linear sequences during state space explorationto mitigate this state explosion problem. POSET timing techniques take advantage of theinherent concurrency in the speci�cation and prevents additional regions from being addedfor di�erent sequences of �rings that allow the same set of future behaviors in the system.This results in a compression of the state space into fewer, larger geometric regions that,taken together, contain the same region in space as the set of regions generated by thestandard geometric technique.The speci�cations used by Rokicki in [59] di�er from TEL structures in two signi�cantways: they have the single behavioral rule restriction, and they do not include booleanexpressions. In order to develop a POSET algorithm that can analyze TEL structures,both of these shortcomings must be dealt with. In this chapter, we present an algorithmthat can analyze a class of TEL structure with multiple behavioral rules where all booleanexpressions are true. In the next chapter, we extend the algorithm to analyze TELstructures with more interesting boolean expressions.4.1 Creating Larger Equivalence ClassesThe semantics described in Chapter 3 require two �ring sequences to be in di�erentequivalence classes if they result in the same set of enabled rules but allow di�erent setsof values to be assigned to the active clocks. This is based on the observation that if two



45sequences � and �0 result in the same set of enabled rules, and allow the same set of valuesto be assigned to the active clocks, then a timed state is reachable from � if and only ifit is reachable from �0. However, in some cases the requirement that the allowable clockvalues for both sequences must be the same is too restrictive. With additional analysis,it is possible to derive a set of clock values for a set of enabled rules, enabled(�), whichare guaranteed to be allowed by some �ring sequence �0 where enabled(�) = enabled(�0).In other words, given a �ring sequence, �, it is possible to determine not only whichclock values are allowed for �, but also a set of clock values that are guaranteed to beallowed for some other reachable �ring sequence, �0, in which concurrent events are �redin a di�erent order. This allows the POSET algorithm to preemptively construct a largerregion for �, knowing that eventually a �ring sequence, �0, for which the clock values areallowed, is found during the depth �rst search. When �0 is found, the clock values that itallows are already represented in the region that is constructed for �, and an additionalregion is not generated. This e�ectively combines the regions for � and �0 and reducesthe number of regions in the state space.The computation necessary to determine this larger set of clock values is based on thecausality in the sequence. The causal event function, Ec, which returns the event that iscausal to a rule �ring, is de�ned in Chapter 2. In order to develop the POSET algorithm,more de�nitions concerning causality are necessary. The �rst de�nition states that anevent's causal rule �ring is the rule �ring immediately preceding it.De�nition 4.1.1 The causal rule �ring of an event �ring �i is the rule �ring immediatelypreceding it, �i�1.The rule �ring immediately preceding �i is its causal rule. The �ring of �i�1 places L(�i)in the �rable set and therefore controls its �ring time.We can now de�ne when an event �ring �i is causal to another event �ring �j .De�nition 4.1.2 Event �ring �i is causal to event �ring �j (causal(�i; �j; �)) if:�i = Ec(�i�1; �).An event �ring �i is causal to event �ring �j if �i is the causal event to �j 's causal rule.If �i is causal to �j then it is the �ring time of �i that determines the �ring time of �j.Since this chapter assumes that all boolean expressions are true, if an event �ring�i is causal to an event �ring �j, there is always a rule connecting L(�i) and L(�j) (i.e



46hL(�i); L(�j); l; u; b; i 2 Ri). The time separation between �j and its causal event �ring�i is always less than the upper bound on this rule, u. This is formalized in the followinglemma:Lemma 4.1.1 If �i is causal to �j in � then the inequality: �(�j) � �(�i) + u(�j�1) istrue for all valid timing assignments to �.The proof of this lemma (as well as all following lemmas and theorems) is given inthe appendix to this chapter. There is also a more general property that holds betweenany two event �rings �i and �j . If the �ring �i is the enabling event of a rule enabling�j, then the minimum time separation between the �rings �i and �j is at least the lowerbound on the rule.Lemma 4.1.2 If L(�k) = hL(�i); L(�j); l; u; bi ^ i < k < j then the inequality �(�j) ��(�i) + l(�k) is true for all valid timing assignments, � , to �.If all of the rules that enable the event �red by �i have empty choice sets, then thelower and upper bounds on these inequalities can always be met by some reordering ofthe �ring sequence that is in �. In order to prove this, a few more de�nitions and lemmasare required. The �rst is the de�nition of the required set, which contains the set of�rings in � that must occur in order for a �ring, �i, to meet the requirements speci�edby De�nition 2.2.6(1) and (2). If �i is the �rst �ring of an initially marked rule, then therequired set of �i is empty. If �i is a rule �ring, and is not the �rst �ring of an initiallyenabled rule, then its required set contains its enabling event. If �i is an event �ring,then �rings of all of the rules that enable it are required for it to �re. If �i is an event�ring, and �j is the enabled event of a rule whose enabling event is �i, then �j is in therequired set of �i. This requirement follows from the one-safe property. When a rule isenabled by the �ring of its enabling event, its enabled event must �re before its enablingevent can �re again. The last condition is the transitive closure of these requirements,if a �ring �j is required for �i then all events required for �j are also included in therequired set for �i. These requirements are de�ned formally as follows:



47De�nition 4.1.3 The required set of �i in �0::n (required(�i; �0::n)) is de�ned recursivelyas follows:1. L(�i) = r 2 R0 ^ :9�j 2 �0::i : L(�j) = L(�i)) required(�i; �0::n) = ;2. L(�i) = r 2 R ^ (L(�i) =2 R0 _ 9�j 2 �0::i�1 : L(�j) = L(�i)))Ec(�i; �0::n) 2 required(�i; �0::n).3. L(�i) = e 2 E ^ L(�j) = he0; e; l; u; bi ^ (:9�k 2 �j+1::i : L(�k) = he0; e; l; u; bi_(L(�k) = he0; f; l; u; bi ^ f#e))) �j 2 required(�i; �0::n).4. L(�i) = e 2 E ^ L(�j) = f ^ he; f; l; u; bi 2 R ^ i > j ) �j 2 required(�i; �0::n)5. �i 2 required(�j ; �0::n) ^ �j 2 required(�k; �0::n)) �i 2 requried(�k; �0::n)(Transitive closure.)A sequence �0 which is created from � by changing the �ring order is referred to asa reordering of �. The reordering is described using a reordering function �. When � isgiven a �ring sequence, �, �(�) returns a new �ring sequence which has the same �ringsoccurring in a di�erent order. When � is given a �ring �i, �(�i) returns the �ring numberof this �ring in the reordered �ring sequence. A sequence �0 is the result of a reordering�(�) if and only if 8�i 2 � : (�(�i) = x) �0x = �i). A �ring �i 2 � is equal to a �ring�0x 2 �0 if L(�i) = L(�0x), and they are both the same instance of L(�i) in their respectivesequences. It can be shown that if � meets the following conditions, then �(�) 2 � if � in�. The �rst requirement is that if �j is in the required set of �i, then �j cannot be madeto �re after �i in the new sequence. The second requirement is that if a rule �ring �i�1is followed by an event �ring �i, then �i�1 and �i are also consecutive in the reordering.The third requirement deals with choice. If �i is the �ring of a rule with a non-emptychoice set, then its enabled event may or may not �re following it. To determine this fromthe sequence, we de�ne a function next(�i; �; e) which returns the next event enabled bye that �res after �i. Suppose that L(�i) = he; f; l; u; bi and next(�i; �; e) = f . In order forthe reordered sequence to be valid, all of the �rings that occur between �i and f , cannotbe reordered arbitrarily. Once �i �res, no rule �ring, �k, which enables an event thatconicts with f can be reordered to occur before a rule �ring �j whose enabled event isf . This restriction is necessary to make sure that choices are not resolved di�erently inthe reordered �ring sequence and the original �ring sequence. If the next(�i; �; e) 6= fthen �i must not be reordered to occur after the event in its choice set that �res instead



48of f . If �i is reordered after the �ring of the event in its choice set, then L(�i) would notbe enabled when it �res since it loses its enabling when the event in its choice set �res.These conditions are de�ned formally as follows:De�nition 4.1.4 A reordering � of � is valid if:1. �j 2 required(�i; �)) �(�j) < �(�i)2. L(�i) = e 2 E ) �(�i) = �(�i�1) + 13. L(�i) = r = he; f; l; u; bi 2 R ^ choice set(r) 6= ; ^ L(�m) = next(�i; �; e) = f )8�j 2 �i+1::m;8�k 2 � :(L(�j) = he0; f; l0; u0; b0i) ^ (L(�k) 2 choice set(r))) �(�j) < �(�k)4. L(�i) = r = he; f; l; u; bi 2 R ^ choice set(r) 6= ; ^ L(�m) = next(�i; �; e) 6= f )�(�i) < �(�m)The next lemma states that, if a sequence � is in �, then any reordering of �, �(�) isalso in �.Lemma 4.1.3 Given � 2 � and � is a valid reordering of �, if �0 = �(�) then �0 2 �.Lemma 4.1.3 can be used to rede�ne what it means for two sequences to have thesame timed state. Previously two sequences, � and �0, are de�ned to result in the sametimed state if every set of clock ages that could result from a valid timing assignment to� could also result from a valid timing assignment to �0. The de�nition of a valid timingassignment is based on the concept of assigning �ring times to rules and events that �redin sequence, and therefore must assign �ring times that are consistent with the order thatrules and events �re in the sequence. Timing assignments that allow rules and events to�re out of order can be made if it is guaranteed that a sequence exists that can �re inorder with that timing assignment. The set of valid reorderings of a sequence � de�neswhen such a reordering exists by creating a partial order to which all of the sequencesthat can result from reordering � must conform.More formally, a sequence � is used to de�ne a partial order as follows.De�nition 4.1.5 A partial order consists of a set (�) and an ordering relationship (>).The partial order de�ned by a sequence � is as follows:1. � = f�i 2 �g



492. > = �i > �j if and only if 8�(�) : (� is valid ) �(�i) > �(�j))Two �rings are only ordered in the partial order if they always occur in the same orderfor all valid reorderings of �.The set of �ring sequences that can be derived by reordering the �rings in � in a waythat conforms to the partial order de�ned by � is referred to as PO(�). This set can beused to de�ne a new set of valid timing assignments for �.De�nition 4.1.6 A timing assignment � is PO valid for � if 9�0 2 PO(�) : � is validfor �0.Two sequences � and �0 can now be considered partial order equivalent if enabled(�) =enabled(�0) and � is a PO valid timing assignment to � if and only if there is a PO validtiming assignment � 0 to �0 such that 8ri 2 enabled(�) : �(ci) = � 0(ci). This de�nitioneliminates the ordering of concurrent events from consideration in creating the equivalenceclass, and therefore allows the equivalence classes to be larger. When a sequence � isexplored, a geometric region is created that includes all of the timing assignments thatare PO valid for �. A timing assignment is only PO valid for � if there is some untimedreachable �ring sequence for which it is valid. Therefore, even though a PO valid timingassignment may violate the ordering of �, it is guaranteed that the search eventually �ndsa �ring sequence for which it is valid. When this sequence is explored, the search canimmediately backtrack, thus eliminating timed states.In order to be able to build this larger region based on the partial order impliedby a �ring sequence, the algorithm must know what timing assignments are PO validfor � while � is being explored. Lemmas 4.1.1 and 4.1.2 show that there are upperand lower bounds on the separation between event �ring times that depend only oncausality. If causality is preserved in a reordering of a �ring sequence, these upperand lower bounds are preserved as well. Therefore if for all sequences �0 in PO(�),causal(�; �i; �j) ) causal(�0; �0(�(�i)); �0(�(�j ))), then all valid timing assignments to se-quences in PO(�) satisfy the inequalities in the lemmas. The next lemma states thatcausality is preserved by reordering.Lemma 4.1.4 If causal(�; �i; �j) and � is a valid reordering used to map � to �0,then causal(�0; �0(�(�i)); �0(�(�j )))



50If the geometric regions representing valid timing assignments are created based onLemmas 4.1.1 and 4.1.2, then the entire state space is found, but it may contain invalidtiming assignments since the lemmas do not guarantee that there are valid timing assign-ments that fall in the entire range allowed by the inequalities. This means that althoughall states in the state space are found, some extra states may be found as well. This mayresult in false negative veri�cation results or suboptimal synthesized circuits. In orderto explore the state space exactly, we need to be able to determine from the sequence�, the minimum value of x and the maximum value of y, for which if �i is causal to �j ,there exists a valid reordering of �, such that x < �(�(�i))� �(�(�j)) � y. Lemmas 4.1.1and 4.1.2 provide bounds for these values and if �i is not enabled by any rules withnon-empty choice sets, x and y are exactly the bounds from Lemmas 4.1.1 and 4.1.2.Theorem 4.1.1 For any �ring sequence � 2 � that has a valid timing assignment, if �iis causal to �j, and  L(�j) is not enabled by any rules with non-empty choice sets, thereexists a �ring sequence �0 2 � created from a reordering � for which there is a valid timingassignment � 0 where � 0(�0(�(�i))) + u(�j�1) = � 0(�0(�(�j ))).This theorem means that if an event �ring �i is causal to event �ring �j and the event�red by �j is not enabled by any rules with non-empty choice sets, then the maximumseparation between �rings �i and �j over all valid reorderings of the sequence is de�ned.There is always a reordering with a valid timing assignment where the age of the clockassociated with �j's causal rule reaches its upper bound. Therefore there is always areordering where the maximum separation between �i and �j is u(�j�1). This means itis possible to determine the maximum separation between �i and �j over all valid �ringsequences where �i is causal to �j by examining a single �ring sequence �.Theorem 4.1.2 For any �ring sequence � 2 � that has a valid timing assignment, if �iis the �ring of event e in �, there exists at least one rule �ring �j : L(�j) = he0; e; l; u; bfor which in some �ring sequence �0 2 � constructed from � there exists a valid timingassignment � 0 in which � 0(�0(�(Ec(�j ;�))) + l(�j) = � 0(�0(�(�i))).This theorem deals with minimum separations between event �rings. Unlike Theo-rem 4.1.1 it does not have the restriction that the event �ring in question is not enabledby rules with non-empty choice sets. Intuitively, the theorem states that for every event�ring �i, there exists a reordering with a valid timing assignment where �i �res at the
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Figure 4.1. A choice computation.minimum time allowed by the rules enabling it. This minimum time is the earliest timeat which all of of the rules enabling L(�i) have clocks whose ages meet the lower boundson the rules. The theorem shows that there is always a sequence where �i �res at thisminimum time.These theorems allow an algorithm to construct a region based state space representa-tion for the set of timing assignments that are possible in a speci�cation if it contains noconicts. When there are conicts, some rules have non-empty choice sets and the analysisbecomes more complex. Although Theorem 4.1.2 still applies, Theorem 4.1.1 only appliesto events that are not enabled by rules with non-empty choice sets. When a �ring �j isenabled by a rule with a non-empty choice set, the maximum time separation between�j and its causal event �i may not be able to reach u(�i�1) for any valid reordering of �.This is illustrated in Figure 4.1, where the rule hb+; x+i has a choice set consisting of y+and the rule hb+; y+i has a choice set consisting of x+. Assume that a+; b+, and c+ all�re at time zero. If c+ is causal to y+, r4 must �re after r3 but before both r1 and r2.If r4 �res before r3, then r3 is causal to y+. If r4 �res after r1 and r2 �re, then x+ �resinstead of y+. The event c+ can only be causal to y+ if r4 �res between one and two timeunits after it becomes enabled, and it cannot reach its upper bound, 100. It is possibleto compute the upper bound for events enabled by rules with non-empty choice sets, butthe computation is complex, and in the worst case can involve examining the entire �ringsequence. Therefore, when an event, ei, which is enabled by a rule with a non-emptychoice set �res, the maximum separation between ei and its causal event is set to themaximum allowed by the current �ring sequence. This means that all timing assignmentsto the �ring of ei that are in the region are valid for the current �ring sequence. Therefore



52no reordering of the rule �rings which enable ei is needed for ei to �re at the computedupper bound. This ensures that the resulting region is exact, but the restriction resultsin more regions being generated than may be necessary.The result of the restriction on reorderings imposed by rules with non-empty choicesets is that the worst-case complexity of the POSET algorithm, when applied to TELstructures with choice, is no better than the geometric algorithm presented in Chapter3. However, in practice most circuit speci�cations are dominated by concurrent behaviorrather than choice behavior. The POSET algorithm still shows signi�cant bene�t over thegeometric algorithm in such a speci�cation. In a speci�cation consisting mostly of choicebehavior, concurrency is limited and therefore state explosion is less of a problem. In thiskind of speci�cation the POSET algorithm essentially reduces to the geometric algorithmwith some additional overhead. Alternatively, the geometric algorithm can be useddirectly on such a speci�cation. Finally, we have found that for most circuit speci�cations,the additional restriction imposed by choice has little impact on the generated statespace. If the restriction is eliminated, larger regions are generated, which are supersetsof the actual regions, but new untimed states are rarely found. Therefore, eliminatingthe restriction may produce a conservative solution faster. If this is acceptable, eventsenabled by rules with non-empty choice sets can be treated the same as other events.4.2 POSET AlgorithmThe POSET algorithm creates the larger equivalence classes discussed in the previoussection by maintaining a POSET matrix in addition to the constraint matrix discussed inChapter 3. The POSET matrix stores the minimum and maximum possible separationsbetween event �ring times that can still e�ect future behavior. These separations rep-resent the set of possible timing assignments to the partial order that is created by the�ring sequence currently being explored. At each iteration, the separations in the POSETmatrix are copied into the entries of the constraint matrix that restrict the di�erences inthe ages of the rules. Events are projected out of the POSET matrix when their timinginformation is no longer needed, so the algorithm only needs to retain and operate onlocal timing information.When a new event �res and is added to the POSET matrix, the minimum andmaximum time separations between its �ring time and the �ring times of all other eventsin the matrix are determined. They must only allow timing assignments to the partial



53order that are valid. This means that the separations must be consistent with the causalityin the �ring sequence being explored. This is the major di�erence between the POSETtechnique described here and the work presented by Rokicki in [58, 59]. In [58, 59], itis not necessary to use explicit causality information since the causal rule is always thebehavioral rule. With multiple behavioral rules, causality must be considered in order tocompute a correct POSET matrix.Figure 4.2 shows the modi�ed update algorithm from Chapter 3 which uses the POSETmethod. It calls an algorithm to update the POSET when an event �res. It thenadvances time by projecting out the �ring rule, setting all of the maximum ages to therule maximums, recanonicalizing, and normalizingFigure 4.3 shows the algorithm which updates the POSET matrix, PM. The algorithm�rst examines all of the events currently in the POSET matrix and determines whatrelationship each event has to the �ring event, f . This is simple since all of the informationnecessary to do this is easily stored as the �ring sequence is being explored. If an eventei in PM is the causal event for the �ring event f , then the minimum separation betweenei and f in PM is set to the lower bound on rc, f 's causal rule. If f is enabled by arule with a non-empty choice set, then the maximum separation is set to the maximumage of rc that is allowed by the current constraint matrix. This sets the separation tothe maximum allowed by the current �ring sequence, not over all valid reorderings of thecurrent sequence. With this restriction, when an event which is enabled by a rule witha non-empty choice set �res, the maximum timing assignment that it can have is limitedby the maximum amount time can advance before another rule must �re.For example, consider the choice in Figure 4.1 and assume that events a+, b+, and c+all �re at the same time. The constraint matrix that results after r2 and r3 �re is shownin the �gure. If the rule r4 �res next, the event y+ �res. Event c+ is causal to y+, and r4is the causal rule. The maximum bound on r4 is 100, but this is not the value placed intothe POSET matrix by the algorithm. Since y+ is enabled by a rule with a non-emptychoice set, the value 2, which is the maximum age of r4 in the current constraint matrix,is used instead.Returning to the algorithm, if the �ring event is only enabled by rules with emptychoice sets, then the only limitation is the upper bound on the causal rule, and theseparation between f and ei is set to the upper bound on rc. If an event is not causal,but does enable one of the rules that enables f , then a constraint is added indicating that



54Algorithm 4.2.1 (Update)void update(TEL structure TEL hN; s0; A;E;R;R0;#i , geometric region M,POSET matrix PM, rule r = he; f; l; u; bi, rule set Ren, bool event �red) fif(event �red) thenupdate POSET(TEL;PM;M; r;Ren);project(M, index(r));forall(ri = hei; fi; li; ui; bii 2 Ren)M [0][index(ri)] = ui;recanonicalize(M);normalize(M);g Figure 4.2. Update the geometric region using POSETs.Algorithm 4.2.2 (Update POSET)void update POSET(TEL structure TEL = hN; s0; A;E;R;R0;#i, POSET matrix PM,constraint matrix M, causal rule rc = he; f; l; u; bi, rule set Ren) fforall(ei 6= f : ei is represented in PM)if(ei = e) then fPM[index(ei)][index(f)] = �l;if (9rj = hej ; f; lj; uj ; bji 2 R : choice set(rj) 6= ;) thenPM[index(f)][index(ei)] =M [0][index(rc)];else PM[index(f)][index(ei)] = u;g elseif(9ri = hei; f; li; ui; bii 2 R)fPM[index(ei)][index(f)] = �li;PM[index(tf )][index(ti)] =1;g elsefPM[index(ti)][index(tf )] =1;PM[index(tf )][index(ti)] =1;grecanonicalize(PM);forall (ei : is represented in PM)if (:9ri = hei; fi; li; ui; bii 2 Ren) project( PM, index(ei);project(M; index(rc));forall(ri = hei; fi; li; ui; bii 2 Ren) fM [index(ri)][0] = 0;forall(rj 2 Ren)fM [index(ri)][index(rj)] = PM[index(causal(ri)][index(causal(rj))];ggg Figure 4.3. Procedure for updating the geometric region.



55the lower bound on the rule must be met, but the upper bound is left unconstraintedby setting it to 1. If an event is unrelated to the �ring event then both the minimumanc maximum bounds are set to 1. Once all of the constraints have been added to thePOSET matrix, it is recanonicalized, causing all of the unconstrained entries to be setto the maximum value allowed by the constraints. The process of updating the POSETmatrix is completed by removing any events that no longer enable rules in Ren from thematrix.The constraints computed in the POSET matrix can then be used to compute anew constraint matrix when an event �res. The minimum age of each rule is set to0 since information about minimums is already included in the POSET matrix. Next,the algorithm sets each entry in the constraint matrix, which represent age di�erencesbetween rules, to the time seperation between their causal events. When the resultingconstraint matrix is recanonicalized, some of the inequalities that are copied from thePOSET matrix may be constrained further since the POSET inequalities do not takeinto account the fact that the age of a rule may not exceed its upper bound.4.3 ExampleFigure 4.4 shows timing analysis based on POSETs applied to the small TEL structureshown at the top of the �gure. This example shows how the algorithm solves two of theproblems that occur when using geometric regions for timed state space exploration:region splitting and multiple behavioral rules. In this example, initially the list of rulesthat can �re, RL, contains r2 and r1. The POSET matrix contains a single event, A+.The constraint matrix shows that the maximum age of both r2 and r1 is �ve. From thistimed state, either rule can �re. In this example, r2 is chosen. The POSET matrix nowcontains the minimum and maximum separations between the �ring times of A+ andB+. The values are copied into the constraint matrix, since they correspond to the agedi�erence between rules enabled by A+ and rules enabled by B+. After the all pairsshortest path algorithm is run, the separation of 7 that is possible between the �ring ofA+ and the �ring of B+ is reduced to 5 since the rule r1 has a maximum bound of 5.In this state r1 can �re, or r4 can �re. Rule r1 is chosen to �re next. When C+ �res,the POSET matrix no longer needs to contain A+ since it no longer enables any enabledrules. The POSET matrix shows that B+ could have �red at most 5 time units after C+and C+ could have �red at most 2 time units after B+. Now there are three enabled
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57rules and the region is 3-dimensional. In the �gure, a two dimensional projection of theregion onto the (c3; c4) plane is shown. This region shows the advantage of the POSETtechnique. Even though in this particular �ring sequence B+ �res before C+, the regionproduced here contains timing assignments where C+ �res before B+. Since B+ and C+occur in parallel, all of these timing assignments are valid for the partial order created bythe �ring sequence [r2; B+; r1; C+]. The dashed line in the middle of the region showsthe two regions that would be generated by the standard geometric technique. The upperregion contains timing assignments where B+ �res �rst, and the lower region containstiming assignments where C+ �res �rst. In this timed state, rules r4; r3, and r5 can �re.Once the rules r4 and r3 have �red, D+ �res. When D+ �res, information on eventB+ can be removed from the POSET matrix, but since C+ still is the enabling eventfor an enabled rule, r5, C+ remains. Two di�erent maximum separations between C+and D+ are possible depending on whether event C+ or B+ is causal to D+. This isdetermined by whether the rule r4 or r3 �res last. The �gure shows the two di�erentgeometric regions that result from the two di�erent �ring sequences. In this example, oneregion is a subset of the other, but this is not always the case.4.4 SummaryAlthough the POSET algorithm presented in the chapter does not improve on theworst case complexity of the geometric algorithm from Chapter 3, it produces a hugeperformance improvement over the geometric algorithm when it is applied to highlyconcurrent examples. In some cases, as shown in Chapter 9, the improvement is manyorders of magnitude. So far the POSET algorithm can only be applied to speci�cationswithout level expressions. The next chapter extends the bene�ts of the POSET algorithmto speci�cations with level expressions.



584.5 AppendixLemma 4.1.1 If �i is causal to �j in �0::n then the inequality: �(�j) � �(�i) + u(�j�1)is true for all valid timing assignments to �0::n.Proof: We know that the �ring of event �i enabled the rule whose �ring causes event �jto �re. This allows us to prove the desired inequality, �(�j) � �(�i) + u(�j�1).� is valid) �(�j�1) � �(Ec(�j�1; �)) + u(�j�1) fDefinition 2:2:8g) �(�j�1) � �(�i) + u(�j�1) f�i = Ec(�j�1; �);Definition 4:1:2)g) �(�j) � �(�i) + u(�j�1) fDefinition 2:2:8; If � is valid, �(�j) = �(�j�1)gLemma 4.1.2 If L(�k) = hL(�i); L(�j); l; u; bi ^ i < k < j then the inequality �(�j) ��(�i) + l(�k) is true for all valid timing assignments, � , to �.Proof:� is valid^ (�i = Ec(�k; �))) �(�k) � �(�i) + l(�k) fDefinition 2:2:8g (4.1)Now we need to show that �(�j) � �(�k) in order to prove the inequality. There are twocases to consider. The �rst is if �i is causal to �j in �.causal(�; �i; �j)) �k = �j�1 fDefinition 4:1:2g�k = �j�1 ) �(�j) = �(�k) fDefinition 2:2:8g�(�j) = �(�k) ^ (4:1)) �(�j) � �(�i) + l(�k)The second case is when �i is not causal to �j in �.:causal(�; �i; �j) ^ �i = Ec(�k; �) ^ L(�k) = hL(�i); L(�j); l; u; bi )k < j � 1 fDefinition 4:1:2gk < j � 1) �(�k) � �(�j) fDefinition 2:2:8 and Definition 2:2:6g�(�k) � �(�j) ^ (4:1)) �(�j) � �(�i) + l(�k)Before we can prove Lemmas 4.1.3 and 4.1.4 from the text, we need to prove twosupport lemmas concerning reorderings. The �rst lemma proves that a �ring of a rule r



59cannot be reordered to occur after a later �ring of r in the sequence. The second lemmaproves that an event cannot be reordered to occur after any future �rings of rules thatenable it.Lemma 4.4.1 Given that � 2 �, � is a valid reordering of �, and L(�i) 2 R:(L(�i) = L(�j) ^ i < j)) �(�i) < �(�j).Proof: Since L(�i) = L(�j), they share the same enabling event and the same enabledevent. De�nition 4.1.3(4) places the �ring of �i's enabled event in the required set of �j 'senabling event. Since �i is in the required set of its enabled event, �j's enabling event isin the required set of �j, and required sets are transitively closed, �i is in the requiredset of �j . Therefore �i cannot be reordered to occur after �j.Lemma 4.4.2 Given that � 2 �, � is a valid reordering of �, and L(�i) = e 2 E:(L(�i) = L(�j) ^ i < j)) �(�i) < �(�j).The rules that enable L(�i) and L(�j) are in their required sets. Since L(�i) = L(�j)these rules are identical. Since their enabling rules are identical, their enabling rules areordered by Lemma 4.4.1. Since the rules in the required set of �i are required by the rulesin the required set of �j, �i is in the required set of �j and they must remain ordered.Now we can prove the rest of the lemmas from the chapter.Lemma 4.1.3 Given that � 2 � and � is a valid reordering of �, if �0 = �(�) then�0 2 �.Proof: We need to show that 8�0x 2 �0, �0x meets the requirements for a sequence to bein � (De�nition 2.2.6). First we deal with event �rings. The only requirement on event�rings is stated in De�nition 2.2.6(2). All event �rings must satisfy the requirement.Case 1: L(�0x) = e 2 E.We need to show that L(�0x) 2 firable(�00:::x�1). The de�nition of �rable (De�nition 2.2.5)for events has a single requirement. An event L(�i) is in the �rable set for �i�1 if:8r = he; f; l; u; bi 2 R : 9�i 2 � : L(�i) = r ^ �i is usable _9�j 2 � : L(�j) = he0; f; l; u; bi ^ e0#e ^ �j is usableSince � 2 Sigma, this condition is true for �i. It is also true for �0x if no rule �ring thatis needed to �re �i in �, can be moved after �0x in �0, and no event �ring which would



60cause a needed rule �ring, �j , to become unusable before �i �res is moved between the�ring of �j and �i. If a rule �ring is needed to �re �i then it is in the required set of�i, therefore it �res before �0x by the de�nition of a valid reordering (Def. 4.1.4). Thereare two proof obligations to ensure that no event �ring which would cause a needed rule�ring, �j, to become unusable is moved between the �ring of �j and �i.1. If �j is a rule �ring used to �re �i, and �k is an event �ring which occurs after �iand would make �j unusable, then �k cannot be reordered to occur before �i. Thisis proved as follows:Suppose that L(�i) = e and L(�j) = r = he0; e; l; u; bi. An event �ring could makeL(�j) unusable if it is a �ring of e or it is a �ring of an event in the choice setof r. Suppose that �k is such an event �ring. If L(�k) = e, then e0 is one of itsenabling events, if L(�k) = f and f is in the choice set of r, e0 is also one of itsenabling events. There must be some �ring of e0 between �i and �k to enable L(�k).Therefore the �ring of e0 which occurs between �i and �k is in the required set of �k.The �ring �i is in the required set of any future �rings of e0 by De�nition 4.1.3(4).The �ring of e0 is in the required set of �k, and �i is in the required set of the �ringof e0, therefore, since required set are transitively closed, a �k cannot be reorderedto occur before �i.2. If �j is a rule �ring used to �re �i, and �k is an event �ring which occurs before �jand would make �j unusable, then �k cannot be reordered to occur after �j. Thisis proved as follows:Suppose the L(�i) = e and L(�j) = r = he0; e; l; u; bi. An event �ring could makeL(�j) unusable if it is a �ring of e or it is a �ring of an event in the choice set ofr. Suppose that �k is such an event �ring. If �k occurs before �j , there must be a�ring of e0 that occurs between �k and �j . This �ring is needed in order to �re �jand is in the required set of �j. The �ring of �k is in the required set of the �ringof e0 by De�nition 4.1.3(4). Therefore �k is in the required set of �j and cannot bereordered to occur after �j.This shows that L(�0x) 2 firable(�00:::x�1). The next two cases deal with the require-ments placed on rule �rings by De�nition 2.2.6



61Case 2: L(�0x) = r = he; f; l; u; bi 2 R: We need to show that r is always enabledwhen it �res (De�nition 2.2.6(1)). The requirements for a rule to be enabled are givenin De�nition 2.2.3. We need to show that in the reordering there is always a �ring of eto enable the rule that has not be used by another �ring of r or by the �ring of an eventin r's choice set. (Since we are assuming all boolean expressions are true, the booleanexpression part of the enabled de�nition is always satis�ed.) Formally, we need to showthat:9�0y 2 �00::n : L(�0y) = e ^:9�0w 2 �0x+1::n : L(�0w) = (�0x) ^:9�0z 2 �0x+1::n : L(�0z) = choice set(L(�0x))Since � 2 � this condition is satis�ed by all rule �rings �i 2 �. In order to show that isis satis�ed in �0 we need to show that �i's causal event �ring, �j , is not moved after �i,no �ring �k where L(�k) = L(�i) can be moved between the �ring of �j and �i, and no�ring �k where L(�k) 2 choice set(L(�i)) can be moved between �j and �i.The reordering restriction on the �ring of �i's causal event, �j , is guaranteed byDe�nition 4.1.3(2). The �ring of Ec(�i; �) is in the required set of of �i and therefore �jcannot be reordered after �i by the de�nition of reordering.The reordering restriction on other �rings of L(�i) is guaranteed by Lemma 4.4.1 forall �rings of L(�i) except the one immediately preceding �i. This �ring, which we will call�k can be moved between �j and �i without violating the requirement that rule �ringsremain ordered. However, since the TEL structure is one-safe this cannot happen. Since�k is the �ring of L(�i) immediately preceding �i, �j is the only �ring of event L(�j)that occurs between �k and �i. Since the TEL structure is one-safe, this implies that the�ring of of �k must occur before the �ring of �j since the �ring �k is necessary beforethe enabled event of L(�i) can �re, allowing a �ring of its enabling event, L(�j) to occur.Therefore, no rule �ring other than the �ring of L(�i) can be reordered to occur between�j and �i.The �nal restriction is that any �k : L(�k) 2 choice set(L(�i)) cannot be reorderedbetween �j and �i. Any �rings of �k have L(�j) as an enabling event by the de�nitionof choice set. Therefore a �ring of �k always has a �ring of L(�j) in its required set.Since event �rings must remain ordered by Lemma 4.4.2, �rings of �k separated from�i by more than one �ring of L(�j) are excluded. Now we consider a �ring of �k thatoccurs after �i, separated by one �ring of L(�j). The �ring of �i is necessary in order for



62�i's enabled event to �re again. L(�i)'s enabling event, L(�j), cannot �re again until itsenabled event �res. Therefore, �i must �re before L(�j) can �re again, and it is in therequired set of the next �ring of L(�j). This means it is also in the required set of �k,and �k cannot be reordered to �re before �i. Finally we consider the �ring of �k thatoccurs before �i, separated from �i, by one �ring of L(�j) which is the actual �j . In thiscase �k is in the required set of �j since �k must �re in order to �re the event that L(�j)enables. This event must �re before �j can �re and enable the rule again. Therefore �kis in the required set of �j and cannot be reordered to occur after it.We now need to prove that the remaining condition from De�nition 2.2.6 is met.Case 3: L(�0x) 2 R, we need to show that:L(�0x) 2 R ^ firable(�00::x) 6= ; ) L(�0x+1) 2 firable(�00::x) (4.2)If the �rable set of the subsequence ending in �i is non-empty in �, it is followed by anevent �ring �i+1. In a valid reordered sequence, any �ring which has a non-empty �rableset in � is followed by an event in �0. Therefore, if no rule �ring that has an empty�rable set in � has a non-empty one in �0, the requirement is satis�ed. Now we needto show that in a valid reordering it is not possible for a rule �ring to have an empty�rable set in � and a non-empty one in �0. Event �rings and their causal rule �ringsare reordered consecutively. Therefore, if a rule �ring, �i has an empty �rable set in �,and the result of its reordering, �0x, has a non-empty �rable set in �0, then any event inthe �rable set of the reordered �i is not the same event that actually used the rule �ringin �. This can only occur if the sequence is reordered in such a way that choices areresolved di�erently in � and �0. The de�nition of a valid reordering (De�nition 4.1.4(3)& (4)) forces all choices to be resolved in the same direction in � in �0. ThereforeL(�0i) 2 P ^ firable(�00::i) 6= ; ) L(�0i+1) 2 firable(�00::i) holds.We have now shown that �0 2 �Lemma 4.1.4 If causal(�; �i; �j) and � is a valid reordering used to map � to �0,then causal(�0; �0(�(�i)); �0(�(�j )))Proof: De�nition 4.1.4(2) states that L(�i) 2 E ) �(�i) = �(�i�1) + 1. Therefore�i's causal rule �ring is the same in both sequences. Now we just need to show that�j = Ec(�i�1; �) ) �0�(�j ) = Ec(�0�(�i�1); �0). If �j = Ec(�i�1; �), then it is in therequired set of �i and cannot be reordered to �re later than �i. This satis�es the �rst



63constraint of De�nition 2.2.7. Now we need to show that no other event �ring that enables�i�1 can be mapped between �j and �i�1. This event �ring would have to be a �ringof L(�j) since there are no boolean expressions. Since �rings of the same event remainordered, the only event �ring that could move between �j and �i�1 is the �ring of L(�j)immediately following �i�1. But, �i is the �ring of an event enabled by �j , so it is inthe required set of the next �ring of L(�j). Thus, the next �ring of L(�j) cannot bereordered to occur before �i. Therefore, there is no valid reordering of the �ring sequencewhere �0�(sj) 6= Ec(�0�(�i�1); �0). Therefore, causal(�0; �0(�(�i)); �0(�(�j ))) is true for all validreorderings.In order to prove the two theorems, additional de�nitions are necessary. Thesede�nitions specify the latest and earliest times that �rings can occur with a valid timingassignment:De�nition 4.9.1 De�ne the max valid timing assignment to an event �ring �i recur-sively as follows:1. L(�i) 2 R) max valid(�i) = min(max valid(Ec(�i; �))+u(�i);max valid(�i+1)))2. L(�i) 2 E ) max valid(�i) = max valid(�i�1)De�nition 4.9.2 De�ne the min valid timing assignment to a �ring �i recursively asfollows:1. L(�i) 2 R) min valid(�i) = max(min valid(Ec(�i; �)) + l(�i);min valid(�i�1))2. L(�i) 2 T ) min valid(�i) = min valid(�i�1)These de�nitions follow directly from the de�nition of a valid timing assignment.Events always �re simultaneously with their causal rule, so their minimum and maximum�ring times are determined by the minimum and maximum �ring times of this rule. Theminimum and maximum �ring times of a rule are determined by when the rule becomesenabled, and by the other �rings surrounding it in the sequence. Since the �ring orderof the sequence must be reected by the timing assignment, the maximum valid timingassignment to a rule �ring is limited by the maximum valid timing assignments of all�rings following it. For the minimum valid �ring time, the rule cannot �re before theminimum valid �ring time of all rules preceding it. These de�nitions allow us to prove



64upper and lower bounds on the times between event �rings that are possible over all validreorderings of a �ring sequence.Theorem 4.1.1 For any �ring sequence � 2 � that has a valid timing assignment, if �i iscausal to �j, and �j does not conict with any other event, there exists a �ring sequence�0 2 � for which there is a valid timing assignment � 0 where � 0(�0(�(�i))) + u(�j�1) =� 0(�0(�(�j ))).Proof: De�nition 4.9.1 states that this equation can always be satis�ed for any � where�i is causal to �j unless there is some �k that limits the maximum �ring time of �j. A�ring �k limits that maximum �ring time of �j if it �res after �j in � and has a lowermaximum valid �ring time than �j. Since �j is an event, it must �re at the same time asits causal rule �ring �j�1. All �rings limiting the �ring time of �j are actually limitingthe �ring time of �j�1 and must be moved to �re before �j�1. We need to show thatwe can create a valid reordering � which generates a sequence where all such �rings aremoved before the �ring of �j�1. Since �j is not enabled by a rule with a non-empty choiceset, only requirement (1) of De�nition 4.1.4 applies to the order of �rings relative to �j�1.Therefore, we can move all �k : �j =2 required(�k) before the �ring of �j�1. We create areordering � where:�(�k) > �(�j�1)) (k = j) _ �j 2 required(�k) _ (4.3)max valid(�k) � max valid(Ec(�j�1; �)) + u(�j�1)) (4.4)This implies the following in a sequence �0 = �(�) where �(�j) = x and �(�k) = y:y > x) �0x 2 required(�0y) _max valid(�0y) � max valid(Ec(�0x�1; �0)) + u(�0x�1) (4.5)Any �ring that occurs after �0x (which is the reordered �j) in the new sequence eitherdid not limit the �ring time of �j in � or requires �j to �re. All �rings that have �0xin their required sets can now be given timing assignments that do not limit the �ringtime of �0x because �0x must �re before they can �re, and moving its maximum validtiming assignment later also moves theirs later. Since no �rings that limit the �ring timeof �0x occur after �0x, this can always be done without violating the ordering constraint.Therefore there exists a �ring sequence �0 2 � for which there is a valid timing assignment� 0 where � 0(�0(�(�k))) + u(�j�1) = � 0(�0(�(�j )))



65Theorem 4.1.2 For any �ring sequence � 2 � that has a valid timing assignment, if �iis the �ring of event e in �, there exists at least one rule �ring �j : L(�j) = he0; e; l; u; bfor which in some �ring sequence �0 2 � constructed from � there exists a valid timingassignment � 0 in which � 0(�0(�(Ec(�j ;�))) + l(�j) = � 0(�0(�(�i))).Proof: The proof of this theorem is similar to the proof of the Theorem 4.1.1. The goalis to move any �rings that are limiting the minimum �ring time of �i to �re after �i.Since the �ring time of an event is determined by the rule �ring, we are again dealingwith the �ring time of the rule �ring �i�1. Since this time we are trying to move �ringsto occur after �i instead of before �i, De�nition 4.1.4(3) does not restrict the possiblereorderings relative to �i. Also any �ring that occurs after �i cannot be in the requiredset of any �ring that occurs before �i since � 2 �. Therefore all �rings that occur before�i that are not in the required set of �i and limit the minimum �ring time of �i can bereordered to �re after �i. When this is done, only �rings that are in the required set of�i limit its minimum �ring time. Since all of the rule �rings necessary to �re �i are in itsrequired set, there is at least one rule for which �i can �re at its minimum �ring time.



CHAPTER 5POSET TIMING IIGood order is the foundation of all things.- Edmund BurkeThe previous chapter presents a version of the POSET algorithm that analyzes TELstructures with multiple behavioral rules. This version of the algorithm assumes thatall boolean expressions in the TEL structure are true, which is clearly a severe limita-tion. Therefore, this chapter extends the algorithm further, to allow it to analyze TELstructures with non-trivial level expressions.The algorithm in Chapter 4 is based on the ability to take a sequence � 2 � andchange the �ring order so that a given timing assignment can be made to it. The chapterpresents a number of conditions which must be met by the reordering in order to ensurethat the new sequence is a valid �ring sequence for the TEL structure. These reorderingconditions do not consider the impact of boolean expressions. In order to modify thealgorithm from the last chapter to work on TEL structures with boolean expressions,additional reordering conditions which consider the impact of boolean expressions areneeded to guarantee that the reordered sequence preserves causality and conforms to therequirements in De�nition 2.2.6.5.1 Extending the Required SetThe �rst reordering restriction in De�nition 4.1.4 orders �rings based on requiredsets. If a �ring �j is in the required set of �i, �j must �re before �i in the reorderedsequence. This requirement still applies to TEL structures with boolean expressions,but the de�nition of required, De�nition 4.1.3, needs to be extended to consider booleanexpressions. The new de�nition of the required set is shown in De�nition 5.1.1 below.



67De�nition 5.1.1 The required set of �i in �0::n (required(�i; �0::n)) is de�ned recursivelyas follows:1. L(�i) = r 2 R0 ^ :9�j 2 �0::i : L(�j) = L(�i)) required(�i; �0::n) = ;2. L(�i) = r 2 R ^ :(L(�i) 2 R0 ^ :9�j 2 �0::i�1 : L(�j) = L(�i)))Ec(�i; �0::n) 2 required(�i; �0::n).3. L(�i) = e^L(�j) = he0; e; l; u; bi ^ (:9�k 2 �j+1::i : L(�k) = he0; e; l; u; bi _ (L(�k) =he0; f; l; u; bi ^ f#e))) �j 2 required(�i; �0::n).4. L(�i) = e ^ L(�j) = f ^ he; f; l; u; bi 2 R ^ i > j ) �j 2 required(�i; �0::n)5. �i 2 required(�j ; �0::n) ^ �j 2 required(�k; �0::n)) �i 2 requried(�k; �0::n)(Transitive closure.)6. L(�i) = he; f; l; u; bi ^ L(�j) = e ^ j < i ^ :9�k 2 �j::i : L(�k) = e)�j 2 required(�i; �)7. L(�i) = r = he; f; l; u; bi ^ r is disabling ^:b(�(�0::j�i;j+1::i�1)))�j 2 required(�i; �)8. L(�i) = r = he; f; l; u; bi ^ r is non-disabling ^ �j = Ec(�i; �0::n) ^:b(�(�0::k�1;k+1::j))) �k 2 required(�i; �)The �rst �ve items in the de�nition are from the previous chapter and the last three areextensions. The �rst extension concerns enabling events. De�nition 5.1.1(2) states thatthe causal event of a rule �ring is in the required set of that rule �ring. When thereare no boolean expressions, this causal event is always the enabling event of the rule.When boolean expressions are added, the enabling event could be an event that causesthe boolean expression to become true. If this is the case, the de�nition of required doesnot include the enabling event of every rule in its required set and this needs to be added.This is done formally in De�nition 5.1.1(6).Additions to the required set are also necessary to ensure that the boolean expressionis satis�ed when a rule �res. The causal event is in the required set, and this event maybe the one whose �ring causes the value of the boolean expression to change from falseto true. However, all of the other event �rings which are necessary to cause the booleanexpression to evaluate to true are not included by the original de�nition. Consider forexample the rule e+ ! f+ which has a boolean expression a ^ b, and assume that it isenabled by the �ring sequence a+; e+; b+. The original required de�nition includes only



68the �ring of b+ in the required set of [e+; f+]. De�nition 5.1.1(6) includes the �rings ofe+ and b+ in the required set. The �ring of a+ is not included by either the originalde�nition or De�nition 5.1.1(6), but it is needed in order for [e+; f+] to be enabled whenit �res. We need to add an additional condition to the required de�nition to deal withthis. The condition is slightly di�erent depending on whether the rule is disabling ornon-disabling and de�ned formally in De�nition 5.1.1(7) and (8). If the rule is disabling,the boolean condition must be true when the rule �res and all �rings necessary for itto be true must be in the required set. If the rule is non-disabling, then the booleanexpression only needs to be true when the rule becomes enabled. After the rule becomesenabled, the boolean expression can become false before the rule �res and the rule is stillenabled when it �res. De�nition 5.1.1(7) is for disabling rules. If a rule �ring �i is adisabling rule, and the removal of another �ring, �j , from the sequence would cause b toevaluate to false on the state generated by the sequence, then �j is in the required set of�i. De�nition 5.1.1(8) is for non-disabling rules. The condition is similar, but it requiresthat the boolean expression is true when the rule is enabled, not when it �res. Firingsthat are included in the required set of �i due to the conditions in De�nition 5.1.1(7) and(8) are referred to as the context set of �i, (context(�i; �)), since their �rings are requiredto create a boolean state in which �i can be enabled. These conditions include all �ringsneeded for a rule to be enabled when it �res in the sequence in the required set.5.2 Adding Reordering RestrictionsUnfortunately, the extension of the required set is not su�cient for De�nition 4.1.4 toguarantee that any valid reordering of a sequence � 2 � is also in �. Additions to thede�nition of a valid reordering are also necessary. The new de�nition of a valid reorderingis shown in De�nition 5.2.1 below:De�nition 5.2.1 A reordering � of � is valid if:1. �j 2 required(�i; �)) �(�j) < �(�i)2. L(�i) = e 2 E ) �(�i) = �(�i�1) + 13. L(�i) = r = he; f; l; u; bi 2 R ^ choice set(r) 6= ; ^ L(�m) = next(�i; �; e) = f )8�j 2 �i+1::m;8�k 2 � :(L(�j) = he0; f; l0; u0; b0i) ^ (L(�k) 2 choice set(r))) �(�j) < �(�k)



694. L(�i) = r = he; f; l; u; bi 2 R ^ choice set(r) 6= ; ^ L(�m) = next(�i; �; e) 6= f )�(�i) < �(�m)5. If �j 2 context(�i; �) ^ ((L(�j) = x+ ^ L(�k) = x�) _ (L(�j) = x� ^ L(�k) = x+))then (k > i) �(�k) > �(�i)) ^ (k < j ) �(�k) < �(�j)).6. If �j = Ec(�i; �) and �k occurs before �j and the �ring of �k would be causal to �iif it occurred after �j then �(�k) < �(�j).7. If �j = Ec(�i; �) and �k occurs after �j and the �ring of �k would be causal to �i ifit occurred before �j then �(�k) > �(�j).The �rst four parts of the de�nition are from the previous de�nition of valid reordering.These requirements, along with the new required set de�nition do ensure that no �ringsneeded to enable a rule are reordered to occur after it. However, they do not preventevents whose �ring may disable a rule �ring from being reordered to occur before its�ring. Consider again the rule e+ ! f+ with boolean expression a ^ b and the �ringsequence e+; a+; b+; [e+; f+]. All of the �rings in the sequence are now in the requiredset of [e+; f+], but there is nothing in the de�nition of reordering to prevent a �ring of a�from being reordered to occur before [e+; f+] as follows: e+; a+; b+; a�; [e+; f+]. Now,assuming that [e+; f+] is disabling, it is not enabled when it �res. This problem canalso occur with non-disabling rules. Consider that the �ring of a� is reordered to occurbefore the �ring of b+, creating the following �ring sequence: e+; a+; a�; b+; [e+; f+].In this sequence, the rule [e+; f+] is never enabled at all since its boolean expression isnever satis�ed.The �rst extention to the de�nition of valid reordering (item 5) ensures that thiscannot happen. This addition to the reordering de�nition ensures that if a �ring �j iscontext to �i, no �ring which reverses the e�ect of �j is reordered to occur between�j and �i. This addition, along with the new required set, is su�cient to ensure thatall reorderings of a sequence �i are valid. The addition is a bit overly restrictive sinceit prevents a reversing event from being reordered between a context event �ring andthe rule �ring in all cases. For non-disabling rules there are some situations where thereversing event does not disable the rule. However, for algorithmic purposes it is simplerto assume that reversing events can never be reordered.Another concern is the preservation of causality. When there are no boolean expres-sions, any reordering of the sequence where the rule �ring immediately preceding each



70event �ring does not change, preserves the causality in the sequence. The last rule �ringbefore an event, �i, �res is always the causal rule of �i by de�nition. If all booleanexpressions are true, then the enabling event for the rule �i�1 is always the causal eventfor event �ring �i. With boolean expressions, this is not the case. Another event �ringmay have caused the rule that �res in �i�1 to become enabled, by causing the currentstate to satisfy its boolean expression. A �ring sequence � must not be reordered in away that changes the identity of this event. Therefore, the algorithm needs an additionalreordering restriction that ensures that the identity of the causal event does not change.These restrictions are speci�ed in items 6 and 7 of De�nition 5.2.1.We have now de�ned a set of restrictions on reordering to ensure that the reorderedsequence is valid and that it preserves the causality of the original sequence. However,determining which reorderings meet these restrictions algorithmically is di�cult whenboolean expressions are complex. When only the restrictions from the previous chapterare used, the ability to reorder an event �ring is independent of other reordering deci-sions and each event movement can be made independently. When arbitrary booleanexpressions are included, the ability to change the �ring order of �i and �j can dependon whether the location of another event �k has been changed. For example, consider theboolean expression a ^ (b _ c) on a rule where the enabled event is f+. Suppose that inthe original �ring sequence a, b, and c are all true when f+ �res. Either b+ or c+ couldbe reordered to occur after f+ because doing so would not cause De�nition 5.1.1 to beviolated. However, once the decision has been made to reorder b+ after f+, c+ cannotbe reordered after f+. Since reordering decisions are no longer independent, it is di�cultto examine all possible reorderings at once since a reordering of one event may excludethe reordering of another event.Therefore, if POSET timing is used, the TEL structures are limited to those where eachboolean expression is either a single and term or a single or term. When this restrictionis used reorderings can again be considered independently. In a simple and expressionall context signals must remain before the rule �ring. In an or, the only context signal�rings are the causal event �ring and the enabling event. Any other �rings involved inthe or expression can be reordered to occur after the rule �ring. In practice, limitingthe speci�cation to single ands and ors does not prove to be a signi�cant limitation. Ifa more complex boolean expression is required, the results from the POSET algorithmare conservative. If an exact result with arbitrary expressions is needed, then either
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Figure 5.1. Transformations to simple and and or.the simpler, geometric algorithm for TEL structures from Chapter 3 can be used, orthe speci�cation can be transformed into one that contains only simple and and orexpressions.Figure 5.1 shows the transformation. Before a graph can be transformed, all booleanexpressions must be in sum of products form. Sequencing events are created for each ofthe terms and rules are added between the rule's enabling event and each of the sequencingevents. Rules are also added between each of the sequencing events and the enabled event.Each of the rules leading from the enabling event is assigned one of the terms from thesum of products and the delay from the original rule. The rules enabled by the sequencingevents are assigned a boolean expression of true and a delay of 0. All possible pairs ofsequencing events are added to the conict set. Only one of the sequencing events must�re in order to �re the enabled event. This transformation works without and algorithmicchanges if the rules with complex boolean expressions are non-disabling. If the rules areare disabling, the algorithm must keep know which rules are created by transformationand only generate a disabling error if all of them become disabled. This is necessary sincethe disabling of only one of the rules generated by the transformation does not indicatethat the originial rule is disabled. Although this transformation adds a signi�cant numberof extra rules and events for large expressions, large expressions are rare.5.3 Simpli�ed RestrictionsWhen the boolean expressions are restricted, simpler, more algorithmic versions of theadditional reordering restrictions can be developed. For any �ring �i 2 �:1. If L(�i) is a rule where b = true, there are no additional restrictions.2. If L(�i) is an event, then there are no additional restrictions.



723. If L(�i) is a disabling rule , no event which would disable L(�i) can be moved before�i.4. If L(�i) is a non-disabling rule, and �j = Ec(�i; �), no event which would preventthe �ring of �j from enabling �i can be moved before �j.5. If L(�i) is a rule with an and expression and �j is the causal event of �i then:(a) The enabling event of L(�i) cannot be moved after �j .(b) No context �ring can be moved after �j.6. If L(�i) is a rule with an or expression, and �j is the causal event to �i then:(a) The enabling event of L(�i) cannot be moved after �j .(b) No �ring which causes the or expression to become true can be moved before�j .(c) If L(�j) is the enabling event of L(�i), then no event can be reordered to occurafter �j if it would cause the or expression to be false when �j �res.The �rst four conditions apply equally to and and or expressions. Obviously, if thereis no boolean expression, then the old reordering restrictions that do not consider themare su�cient. If the �ring is an event, there are no additional restrictions since all of theadded conditions in the previous section concern rules. If a rule is disabling, a reorderingshould not cause a rule to become disabled if it does not do so in the original sequence.For example, if a disabling rule e+ ! f+ has a boolean expression a ^ b, a �ring ofa� cannot be reordered to occur before the rule �ring. If the rule is non-disabling, therestriction is needed that no event prevents the rule's causal event from enabling it. Forexample, consider the non-disabling rule e+ ! f+, which has boolean expression a ^ b,and causal event e+. If e+ is causal, then a^ b is true when it �res. No �ring of a� canbe moved to �re before e+ since it would not allow the �ring of e+ to enable the rule.There are speci�c additional restrictions for rules with and's and or's. If there is anand expression, then a reordering may change the causality or cause the new sequenceto be invalid if some signal �ring is moved later in the sequence. The restriction preventsa sequence from being created where the and expression is not true when the rule �res.Since no event �ring which e�ects the expression may be moved after the causal event,it also ensures that the causal event for the rule �ring remains the same. For example,



73consider a rule e+ ! f+ which has a boolean expression a ^ b, and assume that b+ iscausal in the �ring sequence. The fact that b+ is causal implies that there has been a�ring of e+ and a �ring of a+ somewhere in the sequence before b+. In a reordering, the�rings of e+ and a+ are not allowed to be moved after b+ in the �ring sequence.With or expressions, three conditions are necessary. As with and expressions, theenabling event must not be reordered to occur after the causal event. The reorderingalso must ensure that the boolean expression does not become true too early. If thereordering moves an event �ring that satis�es the or to occur before the causal eventthen the causality changes. Therefore, this is not allowed. For example, consider a rulee+ ! f+ which has a boolean expression a _ b, and assume that b+ is causal in the�ring sequence. The �ring of e+ cannot move after b+ just like in the and expression.However, no �ring of a+ can be allowed to move before b+ unlike in the and expression.If a+ �res �rst, then it is the causal event. The �nal condition ensures that the orexpression is satis�ed when the rule �res. If the enabling event is the causal event, thethe �ring which satis�ed the or expression cannot be moved after the �ring of the enablingevent. Arbitrary boolean expressions require combinations of these requirements whichcould be de�ned, but would be di�cult to implement in an algorithm that is buildinggeometric regions. The next section describes how these reordering conditions are usedto build geometric regions which represent timing assignments to reorderings of the �ringsequence. 5.4 Extended POSET AlgorithmThis section describes how the new reordering restrictions are implemented in thePOSET algorithm. The changes occur only in the function that updates the POSETmatrix. Time separations that are left unbounded by the algorithm in the previoussection are now assigned values to satisfy the new reordering restrictions.Figure 5.2 shows the procedure for updating the POSET matrix. It has one argumentthat the update in the previous chapter does not, Rused. This set contains the rules thatenable fc, the �ring event, and are in the �red set when fc, �res. These are the rule �ringsin the sequence that are used to �re fc. Like in the previous chapter, each entry in thematrix represents the maximum time separation possible between two event �rings overall possible valid reorderings of the �ring sequence. When a new event, fc, �res, entriesmust be added to store the separations between fc and all of the other events represented



74Algorithm 5.4.1 (Update the POSET)update poset(causal rule rc = hec; fc; lc; uc; bci, used rule set Rused, POSET matrix PM,constraint matrix M, TEL hN; s0; A;E;R;#i, state sc)fforall(ei : ei is represented in PM)fPM[index(f)][index(ei)] =1;PM[index(ei)][index(f)] =1;gforall(ei : ei is represented PM)fif(ei = causal(rc)) then fif(8r = he; fc; l; u; bi 2 R : choice set(r) = ;) thenPM[index(fc)][index(ei)] = uc;else PM[index(fc)][index(ei)] =M [0][index(rc)];if (disable(ei; fc)) thenPM[index(ei)][index(fc)] = 0;forall(r = he; fc; l; u; bi 2 Rused)ferc = causal(r);if(ei = e ^ PM[index(fc)][index(ei)] > �l) thenPM[index(ei)][index(fc)] = �l;if(ei = erc ^ PM[index(ef )][index(ei)] > �l) thenPM[index(erc)][index(ei)] = �l;if(and context(ei; r) ^ PM[index(erc)][index(ei)] > 0) thenPM[index(erc)][index(ei)] = 0;if(or context(ei; r) ^ PM[index(ei)][index(erc)] > 0) thenPM[index(ei)][index(erc)] = 0;ggrecanonicalize(PM);forall (ei : ei is represented in PM)fif (:9ri = hei; fi; li; ui; bii 2 Ren ^ :match(ei; sc)) thenproject( PM, index(ei));forall(ri = hei; fi; li; ui; bii 2 Ren) fM [index(ri)][0] = 0;forall(rj 2 Ren)fM [index(ri)][index(rj)] = PM[index(causal(ri)][index(causal(rj))];ggg Figure 5.2. Procedure for updating the POSET matrix.in the matrix. The function �rst initializes all of the new entries in the matrix to in�nity.A value of in�nity means that there is no reordering restriction that applies to this eventpair.The rest of the algorithm checks the various reordering restrictions and changes the



75values in the matrix accordingly. For each event ei in the POSET matrix, the algorithm�rst determines if ei is the causal event to the causal rule rc. If ei is the causal event andthe �ring event is not enabled by any rules with a non-empty choice set, then its �ringtime determines the upper bound on the �ring time of fc over all valid reorderings. Thisseparation is thus set to the upper bound of the causal rule, uc. If the �ring event fcis enabled by a rule with a non-empty choice set then, the upper bound in the POSETmatrix is set to the upper bound on the causal rule in the constraint matrix. This setsthe upper bound on the �ring time of fc to be the latest allowable by the current �ringsequence. Then, the function checks if this event �ring could disable a rule that enablesthe event in the POSET matrix that is currently being examined, ei. If it does, then fcmust always occur after ei, and their minimum separation is set to 0, indicating that fccannot occur before ei.The next step is to check all of the other reordering restrictions. Since the reorderingrestrictions are de�ned with respect to rule �rings, the algorithm needs to apply thereordering restrictions to all of the rule �rings that are used to �re the event fc. First,the algorithm extracts the causal event for the rule that it is considering, erc. In practice,it is simple to store the causal event of a rule when it becomes enabled. It then checks tosee if ei is an enabling event of r. If ei is the enabling event of r, then the lower bound onr must be met for any valid reordering and the lower bound in the matrix is set to �l if itis not already less than �l. The event ei may also be the causal event of r, and this alsoimplies the the minimum separation between ei and fc is l. Next, the algorithm checksfor events that are required for an expression associated with r to be satis�ed. Any suchevents must �re before the causal event, and therefore the minimum separation betweenthem and the causal event is set to 0. Note that an event can be considered and contexteven if it is associated with an or expression. If the causal event of a rule with an orexpression is its enabling event, then one other event is necessary in order for the orexpression to be true when the rule becomes enabled. This event is and context for theor rule. For events with or expressions, there is also an opposite restriction. Any eventsthat would cause the value of the or expression to become true before the causal event�res must not be reordered to occur before the causal event. Therefore the maximumseparation between ei and erc is set to 0 to ensure that erc cannot happen after ei. Theseentries in the POSET matrix ensure that none of the timing assignments allowed violatethe reordering restrictions.



76After the new constraints are added, the matrix is recanonicalized, which tightens allof the separations down to the maximum allowed by the known constraints. Finally, anyevents that are no longer relevant to future behavior of the system are removed fromthe matrix by the project function. An event can no longer e�ect future behavior if it isnot causal to any rule currently in the constraint matrix and the direction of the signaltransition no longer matches the current state (a+ no longer matches the current state ifa is low in the current state). The result is a POSET matrix that constrains the minimumand maximum separations between events to bounds that are implied by the causality inthe �ring sequence. Once this new POSET matrix is computed, it is used to update theconstraint matrix, as described in the previous chapter.This algorithm extends the bene�ts of POSET timing to speci�cations with levelexpressions. The additions that are necessary to support levels do not add signi�cantlyto computation time, since they simply consist of determining causality and contextrelationships. When TEL structures are limited to simple and or or terms, theserelationships can be determined by checks that occur when a rule becomes enabled, andrequire very little computation time.5.5 ExampleFigure 5.3 shows the application of the POSET algorithm applied to the TEL structurefragments at the top of the �gure. Initially, assume that a+ and v+ �re at the same timeand that the value of all signals other than a+ and v+ are false. Text between thematrices shows the currently �ring event, the �ring sequence, the causal event, and whichevents, if any, are and context and or context. Rule �rings are not shown in these �ringsequences since each event is enabled by a single rule, whose �ring immediately precedesthe event �ring. Two versions of the POSET matrix are shown after each �ring. The�rst shows the matrix after the algorithm sets the constraints but before it has beenrecanonicalized and extraneous events have been projected. The second column showsthe matrices after they have been recanonicalized and projected. This distinction is madeto show which separations are set explicitly by the algorithm and which separations aredetermined by the recanonicalization process.The �rst event to �re after the initial events is x+. The rule enabling x+ has a levelexpression of true, so none of the extra conditions added by this chapter are used. Themaximum separations between x+ and its causal event v+ is set to 5, the maximum
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Figure 5.3. Example for POSET algorithm with levels.



78bound on the rule connecting them. The minimum is set of -1, which is the minimum onv+ ! x+. The other separations are left unconstrained and set to in�nity, as indicatedby a dash (�). After the matrix is recanonicalized, the \�" entries are constraineddown to the maximum allowed by the other entries. The recanonicalized matrix showsthat x+ �res 1 to 5 time units after a+. Next, y+ �res. Its enabling rule also hasno level expression, so the additional restrictions are not used. The resulting POSETmatrix shows that x+ and y+ can �re in either order in the POSET de�ned by this �ringsequence since x+ is allowed to �re up to 4 time units after y+ and y+ is allowed to �reup to 4 time units after x+. The �ring of y+ is causes the next �ring, b+. This eventis enabled by a rule with a boolean expression and is used to illustrate the additionalreordering restrictions. Since y+ is causal to b+ the maximum separation between y+and b+ is set to 10. There are also two and context events, a+ and x+. These eventsmust occur before y+ to ensure that it remains causal. The matrix indicates that the�ring of a+ is already restricted to �re before y+ since PM [a+][y+] is set to -1, but theseparation between x+ and y+ needs to be restricted. The matrix that is created afterthe �ring of y+ shows that x+ and y+ can �re in either order and the �ring of x+ isallowed to occur up to 4 time units after the �ring of y+. After b+ �res, the entry inthe matrix PM [x+][y+] is changed from 4 to 0, indicating that x+ is no longer allowedto �re after y+. Minimum separations are also added to the matrix between y+ andb+ since y+ is causal to b+, and a+ and b+ since a+ enables b+. After the matrix isrecanonicalized, the unconstrained entries are �lled. Notice that the minimum separationbetween x+ and b+ is 2, which is the minimum bound of the rule enabling b+. Thisoccurs because x+ is not allowed to �re after y+ and y+ must occur 2 time units beforeb+. This illustrates how the restrictions added for context events ensure that they �reearly enough. The next two event �rings, w+ and z+ are similar to the �ring of b+, theyhave a single literal in their level expressions and their enabling events are and context.The �nal �ring, a�, is di�erent since its enabling rule has an or expression. Its causalevent is w+. Its enabling event, b+, is and context since it must �re before w+, and z+is or context since it must �re after w+. The entries in the matrix must be set so thatthis is the case. The minimum separation between b+ and a� from the previous �ring isalready 3 so it does not need to be changed. After the previous �ring w+ is allowed to�re after z+ since PM [w+][z+] is 4. After the �ring of a�, this separation is set to 0.Minimums are also set between the events a� and w+, and the events a� and b�. After



79recanonicalization the unconstrained entries are �lled in and entries concerning a+ areremoved since it no longer matches the value of the signal a after the �ring of a�.5.6 SummaryThe algorithm presented in this chapter allows for very expressive speci�cations to beanalyzed using POSETS. Its description is quite complex, but the extensions add onlyminimal overhead to the algorithm. All of the computations necessary to extend thealgorithm are done in constant time by storing relevant information when it is available.Since TEL structures with levels allow for circuits to be expressed more compactly,the extensions presented in this chapter signi�cantly improve the performance of thealgorithm.



CHAPTER 6OPTIMIZATIONSShow me a thoroughly satis�ed man, and I willshow you a failure.- Thomas A. EdisonThere are a number of optimizations to the POSET algorithm developed in the lasttwo chapters that can reduce the number of geometric regions generated and decreasestate space size. This chapter introduces �ve optimizations: subsets, supersets, untimedrules, merge, and interleaving. The �rst two optimizations, subsets and supersets, reducethe number of regions generated by checking if the current region contains or is containedin a region that has already been found. The untimed rule optimization reduces thenumber of regions generated by eliminating rule �ring interleavings with rules that havea [0;1] bound. The merge optimization reduces the number of untimed states found byconsidering markings equivalent if they would be equivalent in a Petri net. The interleav-ing optimization reduces state space size by eliminating some interleavings between rule�rings from consideration. These optimizations signi�cantly increase the size of examplesthat the algorithm can analyze. 6.1 SubsetsThe simplest optimization is to check for subsets when checking to see if a region hasbeen explored already. If a region is a subset of a region that has been explored, thenall of its possible future behaviors are explored by the exploration of the larger region.Any exploration starting from the smaller region generates redundant regions. Checkingfor a subset can be done simply by checking to see if all of the entries in one matrix aresmaller than their counterparts in the other matrix.Some examples of region matrices are shown in Figure 6.1. The region in Figure 6.1(b)is a subset of the region in Figure 6.1(a) since all of the entries in Figure 6.1(b) aresmaller than their corresponding entries in Figure 6.1(a). The matrices in Figure 6.1(c)
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Figure 6.1. Region matrices.and Figure 6.1(d) are not subsets of the matrix in Figure 6.1(a) since they both have atleast one entry that is larger than its counterpart in Figure 6.1(a).6.2 SupersetsAn optimization is also made when the current region is a superset of a region that isalready in the state space. Suppose that region M1 is a superset of region M2, and thatregionM2 is found �rst. When the algorithm �ndsM1 and compares it toM2 it �nds thatall of the entries in M1 are larger than their corresponding entries in M2. When M1 isstored in the state table, M2 can be removed since M1 represents all timing assignmentsthat are allowed by M1. This saves memory in representing the state space and mayalso save some time since there are fewer regions in the state space to compare againstwhen a new region is found. There is also likely to be a set of unexplored �rings on thestack that are placed there when M2 is the current region. Since M1 is a superset of M2,all of the unexplored �rings placed on the stack when M2 is the current region are alsogenerated by M1. The extraneous stack element created when M2 is the current regioncan be removed once the algorithm �ndsM1. This part of the optimization saves memoryby reducing the size of the stack. However, it can increase runtimes when the stack islarge since it requires examining the entire stack when each new region is generated.Figure 6.1 is also used to illustrate which regions are supersets. As discussed earlier,the region in Figure 6.1(b) is a subset of the region in Figure 6.1(a) so it cannot be asuperset. The region in Figure 6.1(c) is a superset of the region in Figure 6.1(a) since allof its elements are greater than or equal to the corresponding element in Figure 6.1(a).The region in Figure 6.1(d) is neither a subset nor a superset of the region in Figure 6.1(a)since it has one element which is larger than the corresponding element in Figure 6.1(a),(M [r1][r3]) and one element which is smaller, (M [r3][r1]).
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TEL merge Petri net merge

(a) (b)Figure 6.2. Merges.6.3 Untimed Rule OptimizationIf a rule has a timing bound of [0;1] it is referred to as an untimed rule. Untimedrules enforce ordering between events but they do not specify any timing. An untimedrule is always satis�ed as soon as it is enabled since its lower bound is 0, and it neverrestricts the �ring times of other enabled rules since its upper bound is1. Since untimedrules do not e�ect the �ring times of other rules and are always satis�ed as soon asthey are enabled, they do not need to be included in the geometric region. When theuntimed rule optimization is applied, entries for enabled untimed rules are not placedin the geometric region. The algorithm usually computes the list of rules that can �reby determining which rules represented in the current geometric region are satis�ed.Therefore, this optimization requires that the algorithm also check the set of untimedrules to determine if any are enabled and add those that are to the list of rules that can�re. This optimization makes the regions smaller in speci�cations with many untimedrules and it can also make the state space smaller since regions which are generated bydi�erent interleavings of untimed rule �rings are not distinguished.6.4 MergeThe next optimization deals with merges, which are used in a speci�cation to representdisjunctive or causality. Figure 6.2 shows examples of merges using a TEL structure andusing a Petri net. In both cases, either the �ring of a� or b� causes the �ring of c�.Both speci�cations require that the �rings of a� and b� are mutually exclusive. This isindicated explicitly in the TEL structure with the conict and implicitly in the Petri netby the assumption that the net is one-safe.



83When the algorithm is exploring the state space it compares the current set of enabledrules against the sets of enabled rules that have already been found and stored in thestate table. If the sets of enabled rules are di�erent, the algorithm assumes it has found anew state. State space exploration algorithms for Petri nets perform a similar operation.They check to see if the current marking has been found before, and if it has not theyassume they have found a new state. Most of the time a rule in a TEL structure has acorresponding place in a Petri net. However, when the speci�cation contains merges thisis not the case. Figure 6.2(a) has two rules, while Figure 6.2(b) has only one place. Analgorithm exploring the state space for a TEL structure �nds a di�erent set of enabledrules depending on whether a� or b� �red, but the algorithm exploring the Petri net �ndsthe same marked place regardless of whether a� or b� �res. This may cause an algorithmwhich explores Petri nets to perform better than the POSET algorithm described in thisthesis since the POSET algorithm has to �nd many more untimed states.Fortunately, merges which correspond to Petri nets can be detected during state spaceexploration. If the current set of enabled rules di�ers from a set in the state space onlyby di�erences in a merge, the two sets of enabled rules can be considered equivalent.Figure 6.3 shows the algorithm for performing this check. It determines if the two rulesets it is given, R1 and R2, are equivalent. When used in state space exploration, oneof the rule sets is the current set of enabled rules and the other is a set of enabledrules in the state table. The algorithm tries to match every rule in R1 to exactly onecorresponding rule in R2. It �rst checks whether the rule sets are the same size. If theyare not, then there is not a one-to-one match and the function returns false. Then, itchecks to see if the rule r1 2 R1 is in R2. If it is, the algorithm moves on to the nextrule. If r1 is not in R2 the algorithm checks if there are any rules in R2 that share theenabled event of r1, f , and have enabling events that conict with r1's enabling event, e.When the algorithm �nds such an event, its sets found to true and continues to searchall of the rules in R2. If it �nds another match, then the merge is not a simple Petrinet-like merge. It is a more complex structure that cannot be translated into a Petri netwithout creating additional places and transitions. When this kind of merge is detected,the algorithm returns false, indicating that the rule sets are di�erent. If the algorithmsearches through all of the rules in R2 and cannot �nd a match, the the algorithm alsoreturns false since there is no match to the rule from R1. If all of the rules in R1 can bematched to exactly one rule in R2, the algorithm returns true. This algorithm does add



84Algorithm 6.4.1 (Determine if two set of rules are equivalent)bool merge match(rule set R1, rule set R2)fif(jR1j 6= jR2j) return false;forall (r1 = he; f; l; u; bi 2 R1)fif (r1 =2 R2) thenbool found = false;forall (he0; f; l; u; bi 2 R2)fif (e#e0 ^ :found) thenfound = true;else if (e#e0 ^ found) return falsegif (found = false) return false;ggreturn true;g Figure 6.3. Procedure for matching two rule sets.some a slight amount of overhead (< 1%) to the algorithm, but for speci�cations withmany merges, it signi�cantly reduces memory consumption and runtime.In order to get the full bene�t of this optimization, regions need to be checked for mergeequivalence as well. Without this optimization, regions are only considered equivalentif they represent age di�erences between the same set of enabled rules. However, withthe optimization, if two sets of enabled rules are determined to be equivalent by thematching algorithm, then rules in the region can be matched as well. If region M1contains rule r1 = he; f; l; u; bi and region M2 contains rule r2 = he0; f; l; u; bi and e#e0,thenM1 can be compared toM2 by substituting r1 for r2 when doing the age comparisons.This optimization prevents state space exploration using TEL structures from performingworse than state space exploration using Petri nets on speci�cations with many merges.6.5 InterleavingThe previously described optimizations change the way the algorithm determines iftwo states are the same. This optimization reduces the state space by preventing certainredundant timed states from being generated by removing certain interleavings betweenrule �rings from consideration. The purpose of exploring di�erent interleavings betweenrule �rings is to ensure that all possible causal rules for each event �ring are explored.
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Figure 6.4. Example of interleaving optimization.If two di�erent rule �ring interleavings result in the same causal rule for a given event�ring, no additional information is generated by exploring both of them, due to the waythe POSET algorithm generates POSET matrices. When information on a new event, e,is added to the POSET matrix, the causal rule determines the upper bound on the timeseparation between the �ring of e and its causal event. If the causal rule has no levelexpression, two �ring sequences with the same causal rule for e always result in the sametime separations between the �ring of e and the other events in the matrix.Consider for example, the TEL structure in Figure 6.4. Initially, the �ring sequencer1; e1 has been explored. Since there are many possible interleavings between the �ringof r4 and the �ring of the other rules in the TEL structure, it reduces execution time ifonly one interleaving where r4 is causal to e4 is explored. Figure 6.5 shows the POSETmatrices generated as e4 �res when each of the rules enabling e4 is causal. The POSETmatrices show that when r4 is causal to e4, it generates a unique matrix that is nota subset of the matrices generated when the other rules are causal. The matrix inFigure 6.5(a) is the matrix generated whenever r4 �res last, regardless of whether r4 isenabled �rst or last. For example, the �ring sequences r1; e1; r2; e2; r3; e3; r6; r5; r4; e4 andr3; e3; r2; e2; r1; e1; r5; r6; r4; e4 result in the generation of the same POSET matrix. Sincethere are multiple �ring sequences where r4 �res last, this POSET matrix is generatedmultiple times when all rule �ring interleavings are explored. Additionally, since adi�erent geometric region is generated for each rule �ring interleaving, many additionalgeometric regions are generated by exploring all of the rule �ring interleavings which are
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POSET matrix: r4 is causal POSET matrix: r5 is causal POSET matrix: r6 is causal

Figure 6.5. POSET matrices with various causal places.going to create the same POSET matrix. In order to reduce the number of interleavingsexplored, the algorithm should only generate the POSET matrix in Figure 6.5(a) once,and not explore the other rule �ring interleavings that lead to it.The di�culty is deciding when a rule can be �red without interleaving it with othertoken �rings, and when it must be interleaved so it has a chance to be causal. In general,solving this problem could involve examining the entire �ring sequence that has beenexplored so far. However, in certain cases, interleavings can be eliminated by a structuralexamination of the TEL structure. It is di�cult to do this analysis for events which areenabled by rules with non-empty choice sets or boolean expressions, therefore, if a ruler, enables an event e which is enabled by a rule with a non-empty choice set, �rings of rare always interleaved. Also, if r has a boolean expression, r is always interleaved.The goal of the optimization is to generate only one POSET matrix per causal rule.One way to do this is to stipulate that a rule can only �re last if it is enabled last. If arule, r, is enabled while other rules that enable r's enabled event are not enabled, thenit is always �red as soon as a region is created that allows it to meet its lower bound.Firing sequences where it �res later than this are not considered. If all of the rules thatenable an event are enabled last in some �ring sequence, then this produces exactly one�ring sequence where each rule is causal. This is the case in the example in Figure 6.4,since each token can be created last in some �ring sequence. If this method is used onthe example in Figure 6.4, �ring sequences where r4 is causal and receives its token lastsuch as: r3; e3; r2; e2; r1; e1; r5; r6; r4; e4, and r3; e3; r2; e2; r1; e1; r6; r5; r4; e4, are explored.The �ring sequence r1; e1; r2; e2; r3; e3; r5; e6; r4; e4 and any other �ring sequence where r4is causal and does not receive its token last are eliminated. When rule r4 is enabled and
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Figure 6.6. TEL structure where p4 cannot be created last.
Restricted POSET matrix:

r4 is causal and e1 fires first

e1     e2     e3     e4

e1      0       5       5     -2

e2      5       0       5     -2

e3      5       5       0     -2

e4      3       3       3       0Figure 6.7. A restricted POSET matrix.other rules which enable e4 are not, the rule r4 is �red as soon as c4 can reach age 2, itslower bound. This approach produces a correct result for this example. However, if thetiming bounds are changed to those in Figure 6.6, r4 cannot be enabled last, but it can�re last. Clearly, in this case, a part of the state space is eliminated if the �ring of r4 isnot interleaved and a �ring sequence where r4 is causal is never explored. This indicatesthat there are some cases where the optimization cannot be made.In order to make the optimization in the algorithm, it is necessary to determine underwhat circumstances a rule can be enabled earlier than the other rules and still add newbehavior when it is causal. POSET matrices contain timing assignments for all of thevalid reorderings of the �ring sequence being explored. The set of timing assignmentsallowed by a particular set of reorderings can be found by restricting the POSET matrix



88in a way that forces events to �re in the desired order. This illustrates which �ringsequences are responsible for which timing assignments allowed by the POSET matrix.Figure 6.7 shows a restricted POSET matrix for the TEL structure from Figure 6.4. Therule r4 is causal to e4 and the matrix is restricted so that e1 must �re before e2 and e3, byplacing zeroes in the �rst row. This restriction implies that only �ring sequences where r4is enabled �rst are represented. This POSET is a subset of all of the POSETs shown inFigure 6.5, which indicates that the set of timing assignments allowed when r4 is enabled�rst and is causal are also allowed when any of the other rules are causal and when r4 isenabled later and is causal. Therefore, it is not necessary to explore the �ring sequencewhere r4 is enabled �rst and is causal. The �ring of r4 does not need to be interleavedwhen it is enabled �rst because the upper bound on r4 is less than or equal to the upperbounds on the other two rules that enable e4 in Figure 6.4. In Figure 6.6, r4 does need tobe interleaved since its upper bound is greater than the upper bound of the other rulesthat enable e4.To generalize, consider a rule r with bounds [l; u], which enabled event e. The evente is enabled by a set of rules fr1; :::; rng, all of whose upper bounds are greater than orequal to u. Now, assume that r is enabled at time �, and r is causal to e in the current�ring sequence. This means that event e �res no later than � + u. All of the the rulesthat enable e and are not enabled when r becomes enabled are enabled either at time �or some time later. Since e �res no later than � + u, the maximum clock age for a rulethat is not enabled when r becomes enabled is u or less. All ri 2 fr1:::rng have maximumbounds which are greater than u, therefore their clocks cannot exceed their upper boundswhen r is causal and becomes enabled earlier. Any of the rules that are not enabledwhen r becomes enabled can be �red after r without exceeding their upper bounds. Ifany of these rules �res after r, then r is not causal. Therefore, the clocks for rules thatare not enabled when r becomes enabled do not reach any values that are not guaranteedto be allowed by a �ring sequence where r is not causal. Rules that are enabled when rbecomes enabled may have clocks that exceed their upper bounds. However, these clockshave even larger values in sequences where a rule that is not enabled is causal to e. Thismeans that as the algorithm is exploring a �ring sequence � where r has become enabledbefore the other rules that enable e, any region that is generated by a continuation of� where r is causal to e is a subset of a region created by a �ring sequence where r isnot causal to e. Thus, the algorithm does not need to explore continuations of � where



89r is causal to e, and it does not need to interleave the �ring of r with all the other rule�rings to ensure that it has a chance to be causal. In speci�cations containing eventsthat are enabled by a large number of rules, this optimization can produce a signi�cantreduction in runtime. It also produces a signi�cant reduction in the number of geometricregions generated since a new region is generated for every rule �ring interleaving, andthe optimization reduces the number of rule �ring interleavings.6.6 SummaryA large number of the regions that are generated by the unoptimized POSET algorithmare redundant. These redundant regions signi�cantly reduce the size of the speci�cationthat can be analyzed. The optimizations presented in this chapter remove most of theseredundant regions and result in signi�cant performance improvement. The next chapterdescribes how the regions can be stored more compactly to save memory.



CHAPTER 7IMPLICIT METHODSThe biggest di�erence between time and spaceis that you can't reuse time.- Merrick FurstMemory is often the limiting factor when attempting to synthesize or verify a timedsystem. Even though the POSET algorithm dramatically reduces the number of regionsgenerated, the algorithm still requires a great deal of memory for large, complex speci-�cations. The optimizations discussed in the previous chapter address this problem byreducing the number of regions generated, reducing the size of the regions generated, orreducing the size of the stack. To further reduce the amount of memory needed, implicitmethods can be used to more e�ciently represent the state space. This chapter describesa method for representing geometric regions using implicit methods, �rst presented byThacker in [66, 65], which signi�cantly increases the size of speci�cation that can beanalyzed. 7.1 Representing Geometric RegionsMuch of the data compiled during state space exploration consists of bit vectors.Therefore, Bryant's binary decision diagrams (BDDs), which are a highly e�cient methodfor storing and manipulating Boolean functions[16] are used to represent the untimedstates. Geometric region information is integer-valued and standard BDDs can onlyrepresent binary data. Therefore multi-terminal binary decision diagrams MTBDDs areused to store the region matrices. MTBDDs are a type of BDD which allow terminalnodes to contain data, rather than just the constants TRUE and FALSE. Geometricregion matrices only have entries for currently enabled rules. However, to make therepresentation more manageable, when BDDs are used, the matrices are expanded to acanonical form, where rows and columns representing rules that are not enabled havebeen �lled with a \not an entry" symbol, the constant FALSE. MTBDDs collapse paths



91with common structural features to the fewest nodes possible. In addition, because of thenature of BDD implementations, it is possible for separate geometric regions with similarstructures to have common subregions stored in the same memory location.The �rst step in building an implicit representation is to use BDDs to store the bitvector that indicates which rules are in Rm (the set of rules whose enabling events have�red). To accomplish this, an atomic BDD is allocated to represent each rule. TheseBDDs are assembled into the array m = (m1; :::mn), where n is the number of rules inthe TEL structure. An atomic BDD is one which represents a single variable. As shownin Algorithm 7.1.1, a new BDD, �, is created with the value TRUE. Each member of therule set R is then considered. If that rule is a member of the Rm set, the correspondingmi BDD is added to �, otherwise the complement of the appropriate mi BDD is added.The resulting BDD uniquely represents the Rm set. In a TEL structure with four rules,where R = fr1; r2; r3; r4g, m = (m1;m2;m3;m4), and Rm = fr1; r3g, (meaning that rules1 and 3 are enabled, but rules 2 and 4 are not,) the implicit representation of the setof enabled rules would be composed of the product m1 ^ m2 ^ m3 ^ m4 and is shownin Figure 7.2(a). (Note that BDDs as shown are drawn to be relatively readable, anddo not necessarily indicate the actual node ordering or machine representation of thesestructures.)Algorithm 7.1.1 (Extract Rm BDD)bdd FindRmBDD(rule set R, rule set Rm, bdd array m) fbdd � = TRUEforeach (ri 2 R)if (ri 2 Ren) then� = � ^m[i]else� = � ^ :m[i]return �g Figure 7.1. Function to extract a BDD for the rule set Rm.It is also necessary to store the list of regions associated with each Rm set. To representthis list structure, a numerical index i is used to indicate that a given matrix is the ithmatrix associated with a given Rm set. Any number i can be viewed as a bit vector~i = (i0; :::; in), where i0 is the low order bit of the binary representation of i, and in is
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(b)(a) (c)Figure 7.2. MTBDD representation of (a) Rm, (b) the number \2", and (c) a geometricregion matrix.the high order bit. A set of BDD variables is used to represent the binary value of i,and a number BDD is constructed in a manner analogous to that used for the Rm set.For instance, the BDD shown in Figure 7.2(b) represents the number \2" in a four-bitnotation. Numbers of this form are used to create a dynamically sized array of matrices.In order to conserve space, precisely enough bits are used to represent the largest numbercurrently needed.A matrix with integer entries can be viewed as a function (N �N 7! Z), which takesrow and column indices and returns the appropriate matrix entry(M(r; c) = Mrc). Asquare matrix can also be viewed as a function from boolean values to integers, f0; 1gn�f0; 1gn 7! Z. The row and column indices of the geometric region matrices are thusparameterized. Each is represented as a boolean vector ~r = (r0; r1; r2; :::; rn) or ~c =(c0; c1; c2; :::cn), so the function can be viewed as M(~r;~c) =Mrc. MTBDDs presented byClarke in [24] are an ideal way to represent this type of function. BDDs are constructedfor each necessary row and column index, and stored in arrays r and c. The BDD for theith column index is stored in c[i] and the BDD for the ithrow index is stored in r[i]. Forexample, r[3] represents the value \3" using a set of variables which indicate that it is arow index. Each augmented matrix is then transformed into a MTBDD. Figure 7.3 showsthe algorithm used to accomplish the transformation. First, � is initialized to FALSE.Then each matrix location is considered in turn. If that location is not tagged as \notan entry", the BDD � is set to represent the appropriate indices and a terminal nodeis created with the proper value. The entry is then inserted into the matrix BDD usingthe ITE operator. This operator takes three parameters: the �rst must be a normal



93BDD, and the others may be either MTBDDs or normal BDDs. The e�ect of the callITE(�; ; �) is to take all paths in � which lead to TRUE and link them to , and allpaths in � that lead to FALSE and link them to �. (This is equivalent to the operation(� ^ ) _ (:� ^ �) if all parameters are normal BDDs.) Since any path not leading to avalid terminal ends in FALSE, there is no need to explicitly link \not an entry" locations.Figure 7.2(c) shows the MTBDD representation of the following matrix:0BBBB@ 0 20 x 15 x�2 0 x �2 xx x x x x0 5 x 0 xx x x x x 1CCCCASince rows 2 and 4 and columns 2 and 4 are �lled with \not an entry" (and since there isno row or column 5, 6, or 7), the BDD representation truncates those paths with FALSEas soon as possible. Matrices represented in this form can be compared for equality bychecking to see if they are the same MTBDD, which is a simple pointer check.Algorithm 7.1.2 (Construct Matrix MTBDD)mtbdd MakeMatrixBDD(int n, matrix M, bdd vector r, bdd vector c) fmtbdd � = FALSEforall (i : 0 � i � n)forall (j : 0 � j � n)f if M [i; j] 6= \not an entry00 thenf bdd � = r[i] ^ c[j]mtbdd  = terminal(M [i; j])� = ITE(�; ; �)ggreturn �g Figure 7.3. Function to create a MTBDD for the matrix M .A timed state is represented by a composition of BDDs, one for the Rm set, anotherfor the list index, and a third representing the geometric region matrix. Figure 7.4 showsthe complete MTBDD for the timed state where Rm = fr1; r3g, the link value is 2, and
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Figure 7.4. MTBDD representation of a timed state.



95the region is the one shown in the above matrix. When a new timed state is found, thetimed state list MTBDD TS is extended by the callTS = ITE(FindRmBDD(R;Rm;m) ^ i;MakeMatrixBDD(n;M; r; c); TS );where i is the list index BDD for this region. Since list indices are kept as small aspossible, a size check is made before adding this region to the array. If necessary, anextra bit (leading zero) is added to existing entries to accommodate the new growth.As shown in Figure 7.5, the index numbers are dynamically grown as the list lengthens.Index bits which do not appear in the �gure are don't cares, so matrix \zero" as shownin Figure 7.5(a) also appears as every even numbered matrix. Since the list is alwaystraversed in order, the array is FALSE terminated (much like a C string) so that the endof the array can be detected by the algorithm. When inserting matrix \one", the existingstructure is �rst restricted to require a two bit \zero" and then matrix one is ORed in,resulting in the structure shown in Figure 7.5(b). Note that adding a third matrix (asshown in Figure 7.5(c)) does not require the use of an additional bit, but adding a fourthmatrix would result in a �ve element list, (including the terminator) requiring three bits.7.2 Representing the Reduced State GraphThe goal of state space exploration for synthesis is to �nd all of the boolean statesof the system and the possible transitions between them. This information is necessaryin order for asynchronous logic synthesis algorithms to generate a circuit from the statespace, and it must be stored in addition to the region MTBDDs during state spaceexploration. This set of reachable states and transitions is referred to as the reducedstate graph, or RSG. To store the RSG, a pair of BDDs, � and �, are constructed asthe space is explored. The BDD � is the characteristic function representation of thereachable untimed states. The state vector ~s = (s0; s1; :::) represents the binary values ofthe signals in a given state. These variables may take on any one of the following values:0 denotes a stable low signal, R denotes a signal enabled to rise, 1 denotes a stable highsignal, and F denotes a signal enabled to fall. As each new untimed state is found, aBDD s, which represents the current signal values, is constructed in a fashion similar tothat used for the Rm set. �, which represents the total state space, is then extended bytaking the logical OR of the current state and the current value of � (� = � _ s). Forexample, the RSG shown in Figure 7.6(a) shows the reachable state space for a circuitwith three signals, a; b; and c. Figure 7.6(b) shows the BDD for the initial state RR0,
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97and Figure 7.6(c) shows the characteristic function BDD � for this state space. Allstates are reachable except for F01. � is the characteristic function representation ofthe transition relation and is constructed in an analogous manner. Each pair of states(s; s0) is represented by a pair of vectors ~s and ~s0, which indicate the values of each signalin the two adjacent states joined by a transition. A complication arises from the useof timing information in the exploration of the state space. When the timing analysisshows a state to be unreachable, it is not included from the state space. If these statesare ignored the signal enablings leading to each of them would be lost. Because timedcircuit synthesis is highly dependent on this information, circuits derived from such astate space would be suboptimal and possibly incorrect. To prevent this situation, atransition is inserted into N for every enabled signal, even if this is a \ghost" transitionleading to a timed unreachable state. Construction of an implicitly represented reducedstate graph in this way, not only reduces memory consumption, but also allows implicitmethods to be applied to logic synthesis [66].7.3 SummaryRepresenting the timed state space using implicit methods typically produces verysigni�cant memory savings when applied to large examples. However, since the core ofthe algorithm still operates on explicit matrix representations it requires a translationfrom an explicit matrix to an MTBDD every time a state is stored in the state table.This produces a large amount of runtime overhead and the BDD optimization degradesruntime. It is most useful for large examples which run out of memory using the explicitapproach.



CHAPTER 8VERIFICATIONTesting can prove the presence of bugs, butnever their absence.-Edsger DijkstraTiming veri�cation is essential in order to successfully design a timed system. Evenwhen timing information is designed in from the beginning, it is necessary to verify thatthe physical implementation meets the requirements of the speci�cation. State spaceexploration is the core problem in timed system veri�cation, which makes the POSETalgorithm directly applicable to veri�cation. However, one element is missing. The TELstructure speci�cation language de�ned in Chapter 2 does not provide a way to de�neproperties to be veri�ed. This chapter presents a method for property speci�cation, andformally de�nes the set of sequences for which veri�cation succeeds and fails.Many logics have been developed to specify temporal behavior of untimed concurrentsystems, such as LTL presented by Pnueli [56] and CTL presented by Browne [14], Dill [30]and Clarke [23]. The logics for untimed concurrent systems do not deal with concretetime values. For example: a occurs implies that eventually b occurs can be speci�ed,but a occurs implies that b occurs before 10 time units cannot be speci�ed. Since theselogics do not deal with concrete timing bounds, any properties that can be speci�edusing them can be checked after the timed state space is found by examining the reducedstate graph. This graph contains all reachable boolean states and all possible transitionsbetween them, and therefore completely describes the untimed behavior of the system.Although ATACS does not currently contain a facility to check LTL or CTL formulasagainst the state graph, Burch presents an algorithms exist to do so in [17].The problem of specifying and checking concrete timing bounds is more complex.Concrete timing requirements cannot be checked by an examination of the reducedstate graph since it does not contain concrete timing information. Concrete timingrequirements could be checked by examining the state graph along with the regions
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Figure 8.1. Example of a constraint rulegenerated for each state, but the information is more accessable during state spaceexploration. Methods have been proposed for the speci�cation of veri�cation propertieswith concrete timing bounds including complex and expressive temporal logics such asAlur's TCTL [2], Yoneda's TNL [73], Alur's MITL [4], and Alur's TPTL [5]. The POSETalgorithm could be used to verify properties expressed using these logics. However,it would require signi�cant modi�cation and would add complexity and overhead tothe process. Additionally, one the of goals of this thesis is to produce a speci�cationmethod that is accessible to circuit designers. Logics such as TCTL, TNL, MITL, andTPTL require a signi�cant amount of mathematical understanding in order to use theme�ectively. Therefore, we choose an approach that is simpler and less expressive, buteasier to understand. 8.1 Constraint RulesVeri�cation properties are speci�ed using a set of constraint rules: C � E �E �N �(N [ f1g) � (b : f0; 1gN ! f0; 1g). These constraint rules are similar to the constraintplaces described by Rokicki in [58]. Constraint rules never actually �re and they neverappear in a �ring sequence. Instead, the constraint rules are checked each time a rule orevent is added to the �ring sequence. Failures caused by constraint rules arise due to twoconditions:1. An event �res and any constraint rule enabling it is not satis�ed.2. A �ring results in a sequence which can be given a timing assignment which causesthe clock on a constraint rule to exceed its upper bound.Figure 8.1 shows a TEL structure fragment which contains a constraint rule. This rulerequires that the TEL structure must meet a number of requirements. The �rst require-



100ment is that c+ must �re no more than 10 time units after the rule hb+; c+; 3; 10; [e]ibecomes enabled. If c+ can ever �re later than this, the age of the constraint rule exceedsit upper bound and causes a failure. The next requirement is that b+ must �re at least 3time units before c+ �res, and the signal e must be high at least 3 time units before c+�res. These conditions are necessary in order for the constraint rule to be satis�ed whenc+ �res. If the constraint rule were disabling, then the rule would also require that e mustremain high from the time it rises to the time that c+ �res. This single constraint rulespeci�es a rather complex set of behavior requirements. Constraint rules, especially whencombined with the ability to specify sequencing events, provide a reasonably powerful wayin which to describe the behavior to be veri�ed.8.2 Success and Failure SequencesIn [27, 29], Dill presents a method for verifying speed independent circuits using tracetheory. This approach is based on dividing the set of possible execution sequences allowedby the speci�cation into a failure set, F , and a success set, S. The method is extendedto work with timed speci�cations by Burch in [18, 19]. In this method, explicit timeadvancement events are included in the speci�cation and in the execution sequences.This allows concrete time properties to be veri�ed with trace theory. This section adaptsthe trace theory concepts to �ring sequences and the continuous time model that is usedthroughout this thesis.In order to describe how trace theory can be applied to �ring sequences, we must �rstformally de�ne the behavior of constraint rules. The �rst de�nition concerns constraintrule enablings. Although constraint rules never �re, they are enabled in the same way asstandard rules. A constraint rule r 2 C is enabled in �0::n if it satis�es De�nition 2.2.3.Since constraint rules do not appear in the �ring sequence, and therefore cannot be givenan explicit timing assignment, the de�nitions concerning their timing behavior di�er fromthe de�nitions in Chapter 2 which concern standard rules.De�nition 8.2.1 A rule r = he; f; l; u; bi 2 constraint satis�ed(�; �0::n) i�:r 2 C ^ r 2 enabled(�0::n) ^ (�(�n)� �(Em(r; �0::n)) � l)This de�nition states that the constraint is satis�ed by �ring sequence �0::n and timingassignment � if � causes the constraint rule to become enabled at least l time units beforethe last �ring in the sequence. The next de�nition deals with the upper bound on the



101constraint rule.De�nition 8.2.2 A rule r = he; f; l; u; bi 2 constraint expired(�; �0::n) i�:r 2 C ^ r 2 enabled(�0::n) ^ (�(�n)� �(Em(r; �)) + max advance(�0::n; �) > u)This de�nition states that the constraint is exceeded by �ring sequence � and timingassignment � if � allows the age of r to exceed u before another rule or event is forced to�re. These de�nitions are su�cient to de�ne the a set of failure sequences.There are are four conditions that place a �ring sequence in the failure set, F . Theyare �rst described informally, and then presented formally below. The �rst conditionthat causes a failure is that the age of any clock associated with a constraint rule exceedsits upper bound. This indicates that an event has not �red soon enough. The secondcondition is that some constraint rule with e as an enabled event is not satis�ed whene �res. If this condition occurs, an event is �ring too early. The third condition is thata disabling rule becomes enabled and then loses its enabling. This indicates a hazard inthe circuit. The �nal condition is that a �nite �ring sequence is generated from a cyclicspeci�cation. This indicates a deadlock.We can now formalize the de�nition of the failure set, F . The null �ring sequence,containing no �rings, is in S. Therefore, there is a pre�x of every sequence that is not inF . The failure set can be described by de�ning which �rings, when added to a sequence� 2 S cause the resulting sequence and all extentions of the resulting sequence to be inF .De�nition 8.2.3 Assuming that �0::n 2 S, �0::n+1 2 F and �0::n+1(EjR)� 2 F i� one ofthe following conditions holds:1. 9� 2 valid(�0::n+1) : constraint expired(�; �0::n+1) 6= ;.2. L(�n+1) 2 E ^ 9� 2 valid(�0::n+1); r = he; L(�n+1); l; u; bi 2 R :r =2 constraint satis�ed(�; �0::n+1)).3. 9r = he; f; l; u; bi 2 R : r is disabling ^ r 2 enabled(�0::n) ^ :b(�(�0::n+1)).4. firable(�0::n+1) = ; ^ enabled(�0::n+1) = ;.The �rst condition states that the addition of any rule or event �ring which creates asequence which has a valid timing assignment where a constraint rule exceeds its upperbound is a failure. The second condition is that an event �ring causes a failure if any of



102Algorithm 8.3.1 (Check deadlock)RL=�nd timed enabled(TS, TEL, M);if(RL = ;) return failFigure 8.2. Check for deadlock.its enabling rules are not satis�ed when it �res. The third condition is that any �ringwhich causes the boolean expression on an enabled disabling rule to become false causes afailure. The �nal condition is that the enabled and �rable sets are empty. This indicatesthat the sequence ends at �n+1 and is �nite.These conditions completely describe the failure set F . The success set, S containsall sequences in � which are not in F (S = � � F ). The state space algorithm cannow be modi�ed to generate a failure whenever a �ring causes the generation of a failuresequence. 8.3 Checking for FailuresThe state space exploration algorithm presented in Chapter 3 already checks for onetype of failure, the disabling of a rule when its boolean expression becomes false. It nowneeds to check for three more conditions: a deadlock, a rule exceeding its upper bound,and an event �ring with an unsatis�ed constraint rule.Deadlock is the simplest check. The algorithm assumes that the speci�cations it isgiven are cyclic and that a deadlock is always a veri�cation failure. The modi�cation tothe state space exploration algorithm from Figure 3.1 is shown in Figure 8.2. Every timethe algorithm generates a new timed state, it computes the set of rules that are allowedto �re in that state and places them in RL. If the RL set is ever empty, then no rulescan �re from this state. If a rule cannot �re, an event cannot �re either, since the �ringof an event requires the �ring of a rule. Therefore, if RL is empty, the current sequencehas satis�ed condition 4 of De�nition 8.2.3 and the algorithm generates a fail result.The modi�cation of the algorithm to check timing violations on constraint rules ismore extensive. Since constraint rules do not �re, they are handled di�erently thanstandard rules. Clocks are created for them, but these clocks cannot be allowed toconstrain the �ring times of other rules. The �rst modi�cation to the algorithm concernsthe �nd timed enabled function from Figure 3.2. This function is modi�ed to preventconstraint rules from being added to the rule list. The modi�cation, shown in Figure 8.3,



103Algorithm 8.3.2 (Find timed enabled)rule list RL �nd timed enabled(Ren;M; TELhN; s0; A;E;R;R0;#; Ci)ffor each (r = he; f; l; u; bi 2 Ren)fif (min clock value(r, M) � l ^ r =2 C) add list(r, RL);return RL;g Figure 8.3. Find timed enabled rules.simply checks if a rule is a constraint rule before adding it to the rule list. This preventsconstraint rules from �ring. The next modi�cation is to the update function. It ensuresthat constraint rules do not restrict the �ring times of normal rules, and checks that thetiming bounds on constraint rules are always satis�ed. The new version of the updatefunction for the POSET algorithm is shown in Figure 8.4. First, the function updatesthe POSET matrix if an event �res. Then it projects the �ring rule. Next it checks tosee if any constraint rules have exceeded their upper bounds. If a rule has exceeded itsupper bound, the algorithm generates a failure. It then advances time by setting themaximum age of all normal rules to the maximum bound on the rule and the maximumage of all constraint rules to in�nity. Setting the maximum for constraint rules to in�nityensures that these bounds do not constrain the size of the region. The matrix is thenrecanonicalized. The next step is to check whether the minimum ages for all constraintrules which enable the �ring event are met. After the minimum age is checked, eachconstraint rule which enables the �ring event is projected8.4 ExampleFigure 8.5 illustrates the behavior of the new update algorithm applied to the TELstructure fragment at the top of the �gure. Clearly, both the lower and upper boundon the constraint rule in the �gure are violated. The �gure shows how the algorithmdetermines this. Initially, the POSET contains only a, and the constraint matrix containsages for rules ha; bi and ha; ci. Since both are enabled by a, their age di�erence is 0. Sincethe maximum age in the matrix for the constraint rule, is 5, in this state it does notviolate its upper bound. The minimum age on the constraint rule, 0, does violate itslower bound, 5, but this does not generate a failure since the event it enables, c, cannot�re yet. There is still time for ha; ci to reach its lower bound. When b �res, the POSETis updated to show that b �res between 2 and 5 time units after a. The constraint



104Algorithm 8.3.3 (Update)void update(TEL structure TEL hN; s0; A;E;R;R0;#; Ci , geometric region M, )POSET matrix PM, rule r = he; f; l; u; bi, rule set Ren, bool event �red) fif(event �red) thenupdate POSET(TEL;PM;M; r;Ren);project(M, index(r));forall(ri = hei; fi; li; ui; bii 2 C)fif (ri 2 Ren ^M [0][index(ri)] > ui) then return fail;forall(ri = hei; fi; li; ui; bii 2 Ren)if(ri 2 C) then M [0][index(ri)] =1;else M [0][index(ri)] = ui;grecanoncalize(M);normalize(M);if(event �red) then fforall(ri = hei; f; li; ui; bii 2 C)fif (ri =2 Ren _M [index(ri)][0] > �li) then return fail;project(M, index(ri));ggg Figure 8.4. Update the region and check constraints.matrix now contains the constraint rule ha; ci and the normal rule hb; ci. When time isadvanced, the maximum age of hb; ci is set to 5, its upper bound. The maximum agefor the constraint rule is set to in�nity so that its upper bound does not constrain thematrix. When the matrix is recanonicalized the constraint rule has a maximum age of10, and a minimum age of 2. The maximum exceeds its upper bound. The algorithmdetects this and generates a failure. However, in order to illustrate how lower bounds arechecked, suppose that the algorithm continues. When c �res, the maximum age of ha; ciis now 15 which still violates the upper bound constraint. The rule also now violates itsminimum constraint as well. Its enabled event, c has �red, and its minimum age, 4, doesnot reach its minimum bound, 5. Therefore, the algorithm generates a failure here for aminimum violation. If the algorithm were to continue, the rule ha; ci would be projectedfrom the matrix here since its enabled event has �red.
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1068.5 SummaryThe algorithm does not change signi�cantly when constraint rules are added andchecked. Their maximum ages are set to in�nity instead of their upper bounds, andthey must be projected when their enabling event �res instead of being individually �redand projected. The constraint checks require a simple examination of matrix entries.Constraint rules do add some overhead to the state space exploration process becausetheir ages must be computed in addition to the ages of the normal rules. However, theyadd no algorithmic overhead and allow for the speci�cation and veri�cation of real timeconstraints in a way that is easily understood and used by circuit designers.



CHAPTER 9RESULTSIn theory, there is no di�erence between theoryand practice. But, in practice, there is.-Jan L.A. van de SnepscheutThe POSET algorithm dramatically reduces the number of geometric regions gener-ated during state space exploration of highly concurrent systems. The new algorithm,along with the optimizations discussed in the previous chapters, is implemented withinthe CAD tool ATACS and produces very good results as illustrated by the examples inthis chapter. Although some examples in this chapter are discussed in the context ofsynthesis and others in the context of veri�cation, the same implementation of the POSETalgorithm is used to �nd the state space of both types of examples.The �rst set of results compares the POSET algorithm to Orbits[58] and demonstratesthat the ability to directly analyze speci�cations with multiple behavioral rules resultsin a large performance improvement. The second set of results compares the POSETalgorithm to timing approaches that are not based on geometric regions. These resultsshow that the POSET algorithm makes the geometric region representation competitivewhen delay ranges are small and superior when they are large. The third set of resultspresents the impact of the BDD method on runtime and memory usage. It shows thatusing BDDs often produces an order of magnitude reduction in memory requirements,but also can severely impact runtime. The �nal set of results describes the applicationof the POSET algorithm and TEL structures to real world synchronous circuits from theIBM guTS microprocessor. Two of the examples, are analyzed using both a purely eventbased speci�cation and a mixed level and event based speci�cation. Results on these ex-amples indicate that the more concise, level based representation produces a performanceimprovement. We believe that these results show that the algorithms developed in thisthesis are not only useful for the analysis of asynchronous circuits, but also for any highperformance circuit where aggressive timing assumptions are made.



1089.1 Comparison with Orbits
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Figure 9.1. TEL structure for a 2-bit counter.The �rst example is a n-bit synchronous counter. The basic operation of the counteris that when the clock goes high, the next value of the count is determined from theprevious value. When the clock goes low, the new value is latched and fed back todetermine the next count. The TEL structure for a 2-bit counter speci�cation is shown



109in Figure 9.1. If not otherwise indicated in the �gure, the rules have a time boundof [0, 5]. Figure 9.1 shows that this example has several events which are enabled bymultiple behavioral rules. In [50], Myers describes graph transformations that create anew speci�cation which satis�es the single behavioral rule restriction allowing veri�cationby Orbits [58, 59]. The counter could be speci�ed more compactly if boolean expressionsare used in the TEL structure, but Orbits cannot analyze a speci�cation with booleanexpressions. ATACS must be run on purely event based speci�cations in order to makecomparisons to Orbits. Results when boolean expressions are used are shown in latersections.Table 9.1 shows runtimes and regions generated using ATACS and Orbits for countersranging in size from 2 bits to 7 bits. The results using di�erent combinations of opti-mizations in ATACS are indicated in the tables as follows: \Geom" indicates the geometricalgorithm presented in Section 3 without any optimizations. \Geom+All" indicates thegeometric algorithm with all optimizations on. `PO" indicates the POSET algorithmwithout any optimizations. \Sub/sup" indicates the POSET algorithm with the subsetand superset optimizations. \Inter" indicates that only the interleaving optimization isused, and \all" indicates that subsets, supersets, and interleaving are used. The lastcolumn, \Orbits", gives the results of running Orbits. Orbits also contains manyoptimizations, all of which are used for this comparison. Entries of \mem" in thetable indicate that the machine, a 400MHz Pentium II with 384MB of physical memoryand 768Mb of swap space, runs out of memory. The example size is indicated next tothe example name, where \E" represents the number of events and \R" represents thenumber of rules. Runtime comparisons are di�cult between ATACS and Orbits sinceATACS is implemented in C and Orbits is implemented in Scheme. Although Orbits isrun on a compiled version of Scheme, which is much faster than interpreted Scheme, itsruntimes are still degraded by the di�erences in implementation language. For this reason,di�erences in regions generated are useful to compare the algorithms in an implementationindependent way.The maximum counter size that Orbits can analyze is 3 bits. Orbits requires 1648seconds and 10,222 regions to analyze a 3 bit counter, while the POSET algorithm withall optimizations can analyze a 3 bit counter in .07 seconds and 89 regions. This dramaticdi�erence in region count and runtime occurs because the graph transformation adds n!new events for each event that has n behavioral rules. In the 3-bit counter most of the



110Runtimes for counters (in seconds)Example E/R geom geom+All PO sub/sup inter all Orbitscnt2 40/77 .08 .04 .07 .07 .07 .07 5cnt3 45/98 17 .08 2 2 .07 .07 1648cnt4 93/215 mem 1.1 mem mem .73 .73 memcnt5 189/453 mem 19 mem mem 19 19 memcnt6 381/929 mem 250 mem mem 280 280 memcnt7 765/1886 mem 2436 mem mem 1945 1945 memRegions generated for countersExample E/R geom geom+All PO sub/sup inter all Orbitscnt2 40/77 211 57 171 168 57 49 240cnt3 45/98 5687 89 1627 1620 89 89 10222cnt4 93/215 mem 257 mem mem 257 257 memcnt5 189/453 mem 705 mem mem 705 705 memcnt6 381/929 mem 1857 mem mem 1857 1857 memcnt7 765/1886 mem 4737 mem mem 4737 4737 memTable 9.1. Results for counters.events are enabled by 4 rules, causing a huge combinatorial explosion in the number ofregions produced by Orbits. This example also shows the impact of the interleavingoptimization. For a 3 bit counter, the interleaving optimization reduces the region countfrom 1627 regions to 89 regions, and allows the algorithm to analyze up to a 7 bit counterwithout running out of memory. Since the number of events enabled by many rules is highin this example, eliminating unnecessary rule �ring interleavings produces a dramaticreduction in regions and runtime. This example also has another interesting result.Table 9.1 shows that the optimizations have a much greater e�ect than the POSETalgorithm on improving performance. Although the POSET algorithm does performbetter that the geometric algorithm when they are both run without optimizations, theregion counts are identical when the geometric algorithm and the POSET algorithm arerun with optimizations. This occurs because the interleaving optimization is able toeliminate rule �ring sequences that result in region splitting by the geometric algorithm.The next example is an asynchronous �fo composed of lazy-active/passive bu�ers(LAPB). These bu�ers perform one communication on their read port to receive a newdata value, followed by another communication on their write port to send the value onto the next stage. The TEL structure for one stage of the LAPB is shown in Figure 9.2.Rules which do not have a timing bound in the �gure have a bound of [1,5]. The values of
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Figure 9.2. TEL structure for one LAPB stage.Runtimes for LAPBs (in seconds)Example E/R geom geom+All PO sub/sup inter all OrbitsLAPB1 11/21 .02 .01 .01 .01 .006 .006 .13LAPB2 17/32 101 .2 .8 .5 .2 .2 2.5LAPB3 23/44 mem 1.4 13 7 1.4 1.2 34LAPB4 29/54 mem 50 mem 140 19 13 485LAPB5 35/65 mem 6429 mem mem mem 100 memLAPB6 41/76 mem mem mem mem mem 654 memRegions generated for LAPBsExample E/R geom geom+All PO sub/sup inter all OrbitsLAPB1 11/21 120 29 58 42 36 29 42LAPB2 17/32 39,536 463 873 538 293 237 464LAPB3 23/43 mem 2689 10,691 4500 1270 949 3271LAPB4 29/54 mem 22,418 mem 40,970 7494 4574 22,504LAPB5 35/65 mem 298,502 mem mem mem 25,419 memLAPB6 41/76 mem mem mem mem mem 140,663 memTable 9.2. Results for the LAPBs.L and U used in the �gure vary depending on where in the LAPB the stage occurs. If itis communicating with another lapb circuit, this range is [1; 5] like the rest of the ranges.



112If the circuit is communicating with a dissimilar circuit, these ranges are set to [100;1],since the behavior of the environment is assumed to be slow. When many LAPB stagesare composed together the resulting speci�cation has many events that are enabled bymultiple behavioral rules. The results generated for LAPB's ranging in length from 1stage to 6 stages are shown in Figure 9.2. The longest LAPB that Orbits can analyzeconsists of 4 bu�ers and requires 22,504 geometric regions and 485 seconds. The analysisof a LAPB with 4 bu�ers using the POSET algorithm and all optimizations requires 4188geometric regions and 17 seconds. The POSET algorithm can analyze up to six bu�ers.Also, in this example, the impact of the POSET algorithm is much greater than theimpact of the optimizations. For the largest example where both algorithms complete,the geometric algorithm with optimization is an order of magnitude slower and generatesan order of magnitude more regions than the POSET algorithm with optimizations.
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Figure 9.3. 2 level selector.The next example is the two level selector circuit shown in Figure 9.3. The circuit �rstreceives a request on the ReqA wire. This causes module A to send a request on the SelAwire. It receives a response either on the SAckB wire or the SAckC wire. Module Athen sends a request on either the ReqB or the ReqC wires, depending on which responseis received for the SelA request. For example, when module B receives the request onReqB, it sends a request on SelB. The response determines whether module B initiates acommunication on ReqOut1 or ReqOut2. When its output communication is complete, itsends an acknowledge on AckB. This allows module A to acknowledge that the selection
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Figure 9.4. TEL structure for one selector unit.is complete is by sending an acknowledge on AckA. The TEL structure for one selectorunit is shown in Figure 9.4. This circuit illustrates the behavior of the algorithm onspeci�cations with conict. Three versions of the example are analyzed. In the �rst, theB and C blocks are replaced with simple handshakes, and only the A block is analyzed.In the second, the B block is removed and replaced with a handshake. The third versioncontains all three selectors.



114Runtimes for Selectors (in seconds)Ex. E/R geom g+A PO sub/sup inter all -M app. Orbitssel1 18/31 .3 .02 .25 .1 .03 .03 .04 .03 .6sel2 37/76 mem 44 mem 44 11 5 7 5 152sel3 23/44 mem mem mem mem mem 587 710 295 memRegions generated for SelectorsEx. E/R geom g+A PO sub/sup inter all -M app. Orbitssel1 18/31 793 64 378 187 63 58 68 58 133sel2 37/76 mem 13213 mem 9476 4479 1736 2139 1711 5417sel3 53/110 mem mem mem mem mem 50320 67582 40291 memTable 9.3. Results for the selector unitThe results for this example are shown in Table 9.3. Since this example has conict,two additional columns are added. The �rst is \-M". This column gives results if themerging optimization is not used. All of the other columns contain results based on usingthe merging optimization along with the speci�ed one. The results in the \-M" columnare computed with all of the other optimizations on. The second additional column is\approx". It is added to the table to show the results when the conict restriction inthe POSET algorithm is removed. When the \approx" option is used, the algorithmdoes not check to see if an event is enabled by a rule with a non-empty choice set whencomputing upper bounds in the POSET matrix. All of the other optimizations are alsoused with this approximation. In this example and the next example, the set of reachableuntimed states found with this approximation is the same as the set of untimed statesfound with the exact algorithm. There is an improvement in runtime on the order of40% when the approximation is used on the largest example. This shows that the choicerestriction is adding extra regions and degrading performance somewhat, but that thee�ect is not dramatic. If conservative results are acceptable, this approximation canbe used to improve performance. If conservative results are not acceptable the runtimepenalty to achieve exact results is not prohibitive.Table 9.3 also shows that the POSET algorithm in ATACS compares favorably withOrbits. Orbits requires 152 seconds and 5417 regions to analyze the two selectorsversion, while the exact POSET algorithm with all optimizations requires only 1736regions. For the full circuit with both B and C blocks included, the POSET algorithmcompletes the analysis, using 54,725 regions, and Orbits runs out of memory and does
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Figure 9.5. The tag unit circuit.not complete. These results show that even when the algorithm restricts regions whenconicts occur, it still generates many fewer regions than Orbits. The results also showthat the merge optimization contributes to a signi�cant increase in performance.The �nal example comes from the Intel RAPPID design [60]. The RAPPID designis a fully asynchronous instruction length decoder for the x86 instruction set. Thisdesign is shown to be 3 times faster while using half the power of a correspondingsynchronous design from a 400 MHz x86 processor. The key to the performance is avery e�cient synchronization mechanism which is called the tagunit. One tagunit isshown in Figure 9.5. The operation of this circuit is that it can receive a tag from oneof seven other tag units (Tagini). If the instruction is ready (InstRdy) and the crossbaris ready (XBRdy), it tags out to one of seven other tag units (TagOuti) depending onthe length of the instruction (Lengthi). The the tagunit is checked for hazard-freedomusing ATACS and Orbits, and the results are shown in Table 9.4. In order to parameterizethe example, we veri�ed tagunits of various sizes where the size is the number of unitsfrom which a tag could be received and to which a tag can be transmitted. The tagunitspeci�cation contains many rules with non-empty choice sets, and the impact of thechoice restriction is illustrated using the approximation described previously. The resultof the approximation in the tagunit is similar to the result in the selector. Removing thechoice restriction produces approximately a 40% improvement in runtime for the largesttagunit. Unlike the selector, Orbits completes the largest tagunit speci�cation. Orbitsdoes not fail due to state explosion in this example, but ATACS with all optimizationsproduces approximately one third the regions that Orbits produces for all sizes of tagunit



116except size one. This example has fewer events which are enabled by large numbers ofrules, which explains the improved performance of Orbits. In this example the mergeoptimization is key to good performance. The speci�cation for the tagunit contains verylarge merges, and for the larger tag unit, the merge optimization is responsible for anorder of magnitude performance improvement in both speed and runtimes. Without themerge optimization, ATACS is not competitive to Orbits, which operates on timed Petrinets. Runtimes for tag units (in seconds)Ex. E/R geom g+A PO sub/sup inter all -M app. Orbitstag1 17/42 53 .4 1 .6 .3 .2 .2 .2 3.2tag2 25/69 mem 2.5 18 21 2.2 1.7 4.3 1.3 35tag3 33/98 mem 9.4 72 37 7 5.5 30 4.1 66tag4 41/134 mem 25 144 95 14 12 90 9 107tag5 49/188 mem 65 mem 199 37 34 302 22 162tag6 57/242 mem 135 mem mem 57 24 697 37 229tag7 65/304 mem 286 mem mem 103 103 1871 69 284Regions generated for tag unitsEx. E/R geom g+A PO sub/sup inter all -M app. Orbitstag1 17/42 20077 717 1133 619 378 253 253 253 442tag2 25/69 mem 1766 8127 3696 1011 676 1965 622 2751tag3 33/98 mem 3018 14265 6603 1755 1186 5903 1085 4816tag4 41/134 mem 4688 21956 10391 2680 1831 12912 1671 7409tag5 49/188 mem 6461 mem 14844 3771 2596 24523 2365 10530tag6 57/242 mem 8773 mem mem 5044 3497 40836 3183 14179tag7 65/304 mem 11051 mem mem 6483 4518 64191 4109 18356Table 9.4. Results for tagunit.The tagunit also provides a good example of the improvement that is gained byrepresenting a circuit in the more concise level based form. Table 9.5 shows that thelevel based tag unit requires less time and fewer regions than the event based tag unitfor all algorithm and optimization combinations. It also shows that the impact ofall optimizations are not as dramatic on the level based speci�cation, and that theinterleaving optimization produces no bene�t since it cannot be applied when rules havelevel expressions. When all optimizations are used, the POSET algorithm completesanalysis on the seven stage, level based tag unit in 13 seconds, using 1246 regions. This is



117nearly a �ve times improvement in runtime and region count over the POSET algorithmwith all optimizations on the event based speci�cation.Runtimes for tag units (in seconds)Ex. E/R geom g+A PO sub/sup inter all -M app. Orbitstag7 65/304 mem 286 mem mem 103 103 1871 69 284l tag7 101/180 117 13 28 17 28 17 79 13 n/aRegions generated for tag unitsEx. E/R geom g+A PO sub/sup inter all -M app. Orbitstag7 65/304 mem 11051 mem mem 6483 4518 64191 4109 18356l tag7 101/180 9151 2089 1727 1246 1727 1246 2389 1246 n/aTable 9.5. Comparison with level based tag unitIn our experience, ATACS with all of the optimizations performs better than Orbits inall speci�cations that have multiple behavioral rules. ATACS is also an improvement overOrbits since it can analyze level based speci�cation which more concisely represent thecircuit. If a speci�cation does not have multiple behavioral rules or level expressions, theATACS algorithm and the Orbits algorithm produce similar results.9.2 Comparison with Other Veri�cation MethodsGeometric region based timing analysis is often dismissed as impractical due to itsperformance on highly concurrent examples. These algorithms do perform quite poorlycompared to other algorithms if the POSET approach is not used. However, this sectionshows that the POSET algorithm far outperforms other approaches on highly concurrentspeci�cations.The �rst two examples, Alpha and Beta shown in Figure 9.6, are presented by Bozgain [13]. Each stage of the Alpha example is composed of a single event which can �rerepeatedly at a given interval and is not e�ected by any other events in the system.The authors of [13] show that techniques based on DBMs (i.e., geometric regions) canonly handle 5 stages of this highly concurrent example while their symbolic discrete-timetechnique using numerical decision diagrams (NDDs) can handle 18 stages in 12 hourson a SUN UltraSparc with 256MB of memory. A loglog plot of the results from [13] andour results using POSET timing on a SPARC 20 with 128 MB of memory are shownin Figure 9.7. These results indicate that POSET timing is orders of magnitude faster



118and more memory e�cient. In fact, our techniques found the reachable states space for512 stages in about 73 minutes using 112 MB of memory. This simple example clearlyhas only one untimed state regardless of the number of stages, and POSET timing canrepresent the timed state space using only one geometric region. Our technique does not�nd the region in its �rst iteration, however. It �rst �nds a number of smaller regionsbefore �nding the �nal region that is a superset of all the rest. Therefore, although itsperformance is very good, it does not analyze the example instantaneously.
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Figure 9.6. TEL structures for the Alpha and Beta examples.One stage of the Beta example is composed of one state bit per stage with two events,one to set and one to reset the bit. In [13], Bozga shows that DBMs can only handle 4stages while their technique can handle 9 stages. A semilog plot of their results and oursare shown in Figure 9.8. POSET timing can handle 14 stages in 108 MB of memory injust 16 minutes. For the Beta example, the number of states is exactly 2n where n is thenumber of stages, so POSET timing could handle an example with 32 times more untimedstates than in [13]. Again, POSET timing is able to represent all the timing behavior inthis example using one geometric region per state. Clearly, the Alpha and Beta examplesare ideally suited to our algorithm, but they are used in [13] to demonstrate the weaknessof traditional geometric region based methods.The last example is a STARI communication circuit described in detail by Greenstreetin [34, 33]. The STARI circuit is used to communicate between two synchronous systemsthat are operating at the same clock frequency, �, but are out-of-phase due to clock skewwhich can vary from 0 to skew. The TEL structure for the environment of this circuit iscomposed of a clk process (Figure 9.9(a)), a transmitter (Figure 9.9(b)), and a receiver(Figure 9.9(c)). The STARI circuit is composed of a number of FIFO stages built from 2C-elements and 1 NOR-gate per stage (Figure 9.9(d)), each of which has a delay bound



119

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Comparative Runtime Performance for the Alpha Example

Number of Stages

tim
e 

(in
 s

ec
on

ds
)

POSETS
NDD   
DBM   

Number of Stages

seconds

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

Comparative Memory Performance for the Alpha Example

Number of Stages

m
em

or
y 

(in
 k

by
te

s)

POSETS
NDD   
DBM   

KBytes

Number of StagesFigure 9.7. Comparative performance for the Alpha example.



120

0 2 4 6 8 10 12 14
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

tim
e 

(in
 s

ec
on

ds
)

Number of Stages

Comparative Runtime Performance for the Beta Example

POSETS
NDD   
DBM   

seconds

Number of Stages

0 2 4 6 8 10 12 14
10

2

10
3

10
4

10
5

10
6

Comparative Memory Performance for the Beta Example

Number of Stages

m
em

or
y 

(in
 k

by
te

s)

POSETS
NDD   
DBM   

Number of Stages

KBytes

Figure 9.8. Comparative performance for the Beta example.



121of [l; u]. There are two properties that need to be veri�ed: (1) each data value outputby the transmitter must be inserted into the FIFO before the next one is output (i.e.,ack(1)� precedes x(0):t� and x(0):f�) and (2) a new data value must be output by theFIFO before each acknowledgment from the receiver (i.e., x(n):t+ or x(n):f+ precedesack(n+1)�) [64]. To guarantee the second property, it is necessary to initialize the FIFOto be approximately half-full [33]. In addition to these two properties, we also veri�edthat every gate is hazard-free (i.e., once a gate is enabled, it cannot be disabled until ithas �red).

         ... [x(i).t-, x(i).t+], [x(i).f-, x(i).f-], [ack(i)+, ack(i)-] ...}

R0={[clk-, clk+], [x(0).t-, x(0).t+], [x(0).t-, x(0).f+], [ack(n)+, ack(n)-], 
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clk- x(0).t+ x(0).f+
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Figure 9.9. TEL structures for the STARI example (a) the clock process with timingconstraints = [�; �]; (b) the transmitter process and (c) the receiver process with timingconstraints = [0; skew]; and (d) a STARI FIFO stage with timing constraints = [l; u].There have been nice proofs of STARI's correctness by Greenstreet [33] and Hul-gaard [38], but they have been on abstract models. In [64], Tasiran states that COSPAN,which uses the unit-cube (or region) technique for timing veri�cation [6], runs out of
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123memory attempting to verify a 3 stage gate-level version of STARI on a machine with 1GB of memory. This paper goes on to describe an abstract model of STARI for whichthey could verify 8 stages in 92.4 MB of memory and 1.67 hours. We �rst veri�ed STARIat the gate-level with delays from [64] (i.e., � = 12, skew= 1, l = 1, and u = 2). UsingPOSET timing, we can verify a 3 stage STARI in 0.74 MB in only 0.40 seconds. Foran 8 stage STARI, the veri�cation took 12 MB and only 55 seconds. In fact, POSETtiming could verify 10 stages in 124 MB of memory in less than 20 minutes. This showsa nice improvement over the abstraction method and a dramatic improvement over thegate-level veri�cation in COSPAN. For 10 stages, POSET timing found 14,529 untimedstates and only needed 15,349 geometric regions to describe the timed state space. Thisrepresents a ratio of only 1.06 geometric regions per untimed state.Finally, the complexity of POSET timing is relatively independent of the timingbounds used. We also ran our experiments using l = 97 and u = 201, skew= 101,and � = 1193 which found more untimed states. With l = 102, we found less untimedstates. Both cases with higher precision delay numbers had comparable performance tothe one with lower precision delay numbers. This shows that higher precision timingbounds can be e�ciently veri�ed and can lead to di�erent behaviors. It would not bepossible to use this level of precision with a discrete-time or unit-cube based technique,since the number of states would explode with such large numbers.9.3 Implicit MethodsThis section describes the memory improvements that are achieved by the applicationof the MTBDD region representation described in Chapter 7. Results are presentedon a parameterized version of the high-performance FIFO element described by Molnarin [48] and the arbiter presented by Greenstreet in [32]. These speci�cations are highlyconcurrent and produce a large number of geometric regions.Figure 9.11 shows the memory usage pattern of the state space exploration for 4stages of the timed FIFO for both the explicit and implicit methods. The x-axis showsthe number of regions explored and the y-axis shows the maximum memory used to thatpoint in the state space exploration. The solid lines represent the implicit method and thedashed lines represent the explicit method. The graphs show that the implicit method notonly yields a signi�cant overall improvement in memory usage, but also that the memoryusage trends for the implicit method are much better. As the number of regions grows



124very large, the amount of memory used by the implicit method approaches an asymptoticvalue. This occurs since once the BDDs get mostly full, adding additional regions doesnot add signi�cant memory due to the node sharing behavior of BDDs. When the BDDsget large and a new region is added, most of the nodes needed for this state are alreadyin the current BDD, and very little new memory is necessary. With explicit methods, onthe other hand, each new region throughout the state space exploration requires a newallocation of memory, causing the memory usage of the explicit method to grow linearlywith the number of regions.
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Figure 9.11. FIFO memory performance.The second example is the arbiter design presented in [32]. Most arbiters are designedto minimize the probability of a metastability failure. However, since metastability is rare,this arbiter is designed to maximize performance when there is no metastability. It does soby using a highly concurrent, timed design. Instead of a standard four-phase handshake,this arbiter uses an asP� protocol [48] which uses timed pulses for communication. Thearbiter only works if the timing on the pulses is correct. The timed state space of thearbiter is very large due to its high concurrency. The TEL structure representing thearbiter has 30 signals, 67 events and 73 rules. Since the number of rules is high, thematrices representing these regions are quite large and use a lot of memory. The large



125state space and the large size of the regions make the arbiter an excellent candidate forthe use of MTBDDs to improve memory performance.The number of reachable boolean states is highly dependent on the delay rangesspeci�ed. Two versions of the arbiter are used to measure the MTBDD improvement.The delays in the �rst version result in the generation of 22,953 untimed states and101,273 regions when the POSET algorithm is used. State space exploration requires�550Mb of memory using the explicit representation and �130Mb of memory using theMTBDD representation, which is slightly more than a 3 times memory improvement.Unfortunately, the MTBDD representation results in an order of magnitude degradationin runtime. It takes �9000 seconds to complete compared to �2800 seconds for theexplicit representation. This is not a good tradeo� if there is su�cient memory tocomplete the state space exploration using the explicit method. However, the experimentusing the arbiter with the larger state space shows that the MTBDD method can allowlarger examples to be analyzed. By increasing the delay ranges, the state space size ofthe arbiter is increased to 45,552 untimed states and 149,708 regions. On this example,the explicit method runs out of memory after consuming over 850Mb while the MTBDDmethod complete using �300Mb and �17,000 seconds. These results show that, whileslow, the MTBDD method does allow examples to complete that could not completeusing the explicit method.9.4 Application to Synchronous CircuitsThe POSET algorithm in ATACS has been used to analyze several circuits from theguTS (gigahertz unit Test Site) integer microprocessor designed at IBM's Austin ResearchLaboratory and presented by Hofstee in [35]. The results of this experiment, which we�rst �rst present in [10], demonstrate that asynchronous analysis techniques can be usedto �ll gaps in synchronous design methodology for highly timed synchronous circuits.The purpose of the guTS design is to demonstrate the performance gains that canbe achieved using aggressive circuit design. It is implemented in a 0:25� CMOS processavailable in 1997. The high-performance of the circuit is a result of the circuit design,which is done in a dynamic circuit style known as delayed-reset domino and described byNokwa in [55] and Chappell in [21]. Although TEL structures and the POSET algorithmwere originally developed to analyze asynchronous circuits, they are well suited to theanalysis of delayed-reset domino circuits.



126The guTS microprocessor contains a set of macros which operate synchronously. Adelayed-reset domino macro consists of a number of levels of dynamic gates, each of whichreceives inputs from preceding layers. Standard domino gates use a common clock thatacts as a timing reference. In a delayed-reset design, each level of dynamic gates receivesits own, precisely timed clock, which is generated by a bu�er chain within the macro.The local clocks travel through the logic along with the data, a reset wave preceding eachcomputation wave. This technique allows approximately one-half cycle for each gate toreset and one-half cycle for each gate to evaluate. The cycle time for a delayed-resetdomino macro is set by adding the necessary precharge and evaluate times for a singlegate. If multiple gates operate on the same precharge signal, cycle time is set by addingthe evaluate delay through all the stages to the precharge delay. Due to the overlappingof the precharge and evaluate phases, the delayed-reset domino approach signi�cantlyincreases the amount of dynamic-logic that can be placed in a macro at a given clockfrequency.The delayed-reset domino gates used in the guTS processor lack the \foot" devicethat is included in a standard domino gate. The purpose of this device is to turn o� thegates' pulldown stack during the precharge phase. Removing this device allows the gateto switch 5% to 15% faster. Alternatively, the gate can compute a more complex logicfunction using the same transistor stack height [55]. In order to remove this transistor, itis necessary to ensure that the evaluate logic is not on during the precharge phase. Thisis the case if all inputs to the gate are guaranteed to be low during the precharge phase.To meet this requirement, the inputs to the macro must be pulsed. Combined with therequirement that the inputs to each gate remain stable high long enough to switch thedynamic node, this results in a two sided timing veri�cation problem which is unusualfor a synchronous design.In the guTS processor, the macro level timing veri�cation is done using extensiveSPICE level circuit simulation [57]. After the delay behavior of the macros is characterizedby designers in SPICE, it is incorporated into a chip level timing model for chip levelstatic timing veri�cation. This was a successful approach for this processor since itworked in �rst silicon. However, in order to ensure the correctness of the processor overall variations in delay, large amounts of delay margin are included in the design of themacros. If it is possible to formally verify the macros, less margin is necessary to havecon�dence in the processor's correctness, which IBM designers estimate may result in



127performance improvements up to 10%. The timing constraints that need to be checked inthe delayed reset domino macros are very similar to the correctness constraints necessaryfor asynchronous circuits, and the delayed reset domino circuits are quite similar toasynchronous circuits. Therefore, an asynchronous timing veri�cation tool is a naturalchoice to be used for formal veri�cation of the macros.9.4.1 Veri�cation of Gate Level ModelsATACS is used to verify several of the macros from the guTS processor. The �rstcircuit is a combined multiplexor and latch (MLE). This circuit is small enough to verifyat the gate level, and is shown in Figure 9.12. The goal with this circuit is to verify thatthe timing speci�cation which is supplied with the circuit indeed guarantees that thecircuit works correctly. The timing speci�cation describes the timing requirements thatmust be met by any circuit communicating with the MLE. It is derived from SPICElevel simulation and the circuit designers knowledge of how the circuit works. Thetiming speci�cations are also used as the basis for chip level static timing analysis. Inorder to ensure that the chip-level static timing analysis is modeling all timing behavior,each macro needs to be formally veri�ed in the environment described by the timingspeci�cation. ATACS veri�es the MLE circuit in a few seconds on a 400MHz Pentium II.The MLE circuit contains both static and dynamic gates. The inputs to static gatesare allowed to be unstable since this does not immediately cause a failure. However, ifa glitch on the output of a static gate propagates to the input of a dynamic gate, it cancause a failure. In the MLE circuit, the gate driving the signal \output complement" isstatic. In every cycle where \output complement" does not fall, there is a glitch on itsinputs. At the end of the precharge phase, the signal \Output " is always high and itfeeds one of the inputs to the static gate. When the clock rises, \output complement"always begins to fall. However, the signal \Output " falls later in the clock cycle if theselected data value is high. When \Output " falls, one of the inputs to the static gateis driven low and \output complement" rises again, producing a glitch. ATACS detectsthis glitch and determines that it cannot propagate to the output of the circuit.The next circuit is a dynamic PLA that is used in the processor's control circuitry.Dynamic PLAs are easy to generate automatically and have predictable area and delay.In order to make the PLAs fast, they are controlled using self-resetting circuitry. Anexample of the control circuitry is shown in Figure 9.13. The circuit uses a very aggressive
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Designed Celldelay = Evaluate:129 - 139, Precharge:149-153Figure 9.14. Model for the compare unit.transistors are all connected to a single node, n1, which has been precharged high. Thesensor transistors are sized so that one of them must be turned on for each input in orderfor n1 to discharge quickly. However, if one input arrives much earlier than the rest,eventually its single sensor transistor can discharge n1, erroneously causing the PLA tobegin evaluating early. This completion detection circuit is highly timing dependent andonly works if the inputs are guaranteed to arrive within a narrow time interval. After thefalling edge of n1 propagates through four inverters, the node n2 falls. When this nodefalls, transistor p1 is turned on which raises node n1, resetting the completion detectioncircuit. The line \and plane control" is used to gate transistors which determine if theand-plane of the PLA is in precharge or evaluate mode. The line \propagate control" isused in a similar manner to control whether the output of the and-plane can propagateto the or-plane of the PLA, which is not shown. This control circuitry is essentiallyasynchronous. Asynchronous, self-resetting circuits are di�cult for static tools to handlesince they often assume that a transition on an input causes only a single transition onan output. ATACS is able to verify the circuit using the designed delays in a few seconds.9.4.2 Veri�cation of Abstracted ModelsThe next circuit is a compare unit for two 64 bit quantities. It consists of 3 stages ofdelayed-reset domino logic. The logic in each stage is exactly the same. A stage consistsof a set of blocks that produce an output which indicates whether its two four bit inputs



130are equal. To do a 64 bit compare, a tree structure is used where the �rst stage has 16logic blocks, the second stage has 4 logic blocks, and the �nal stage has 1 logic block.Unlike the previous two examples, this circuit is too large for ATACS to verify it using arepresentation derived directly from its transistor level schematic. However, with a smallamount of abstraction, it can be veri�ed quickly. It is not necessary to model each of the64 bits entering the compare unit. Each block in the �rst level of logic is modeled as a gatethat waits for a single input and produces its output some variable amount of time later.Variability in input signal arrival times is accounted for by putting an independent delayrange on the arrival time of the abstracted input signal for each of the blocks in the �rstlevel of logic. When this signal rises in the abstracted model, it is equivalent to all eightinput bits to a block becoming stable in the actual circuit. Additionally, since the timingbehavior of each block is the same, the number of input blocks can be reduced from 16to 8 without e�ecting the timing behavior of the circuit. Figure 9.14 shows the structureof the model. Each block is represented as a TEL structure which raises its output signal129 to 139 time units after the block receives all of its inputs, and lowers its output 149to 153 time units after its local clock falls. A global clock which controls the transitiontimes of the local clocks is also modeled but not shown. It takes 3 seconds to explore thestate space of this model using the POSET state space algorithm on a 400MHz PentiumII. This circuit example also demonstrates the advantages of the level based speci�cation.A purely event based representation of the comparator takes 7 seconds to complete withthe POSET algorithm and generates three times as many regions. The iteration timeprovided by the POSET algorithm makes it reasonable to iteratively adjust the Celldelayvalues, global clock speed, and local clock timings to determine the working ranges of thecircuit under a variety of assumptions. The circuit veri�es for global clock cycles up to100ps less than the clock cycle necessary for correct operation in the Gigahertz processor.The next example is the veri�cation of the 64-bit adder portion of the MultifunctionFixed Point Unit (MFXU). This unit computes the results of the add, subtract, andcompare instructions for the processor. The core of the unit is the 64-bit parallel pre�xadder design presented by Silberman in [62], which is based on the algorithm describedby Kogge in [39]. The MFXU adder contains �ve stages of delayed reset domino logic.The �rst stage contains a true/complement mux, stages two through four compute thepropagate and generate signals for the adder, and the �fth stage implements a large muxwhich merges many di�erent signals. Each block contains a few domino gates, which can



131vary in delay. Attempts to verify this circuit at the gate level quickly use more thanhalf of a gigabyte of memory and do not complete. However, a conservative abstractionof the MFXU veri�es in ATACS using the POSET algorithm in about 3 minutes. Theveri�cation does not complete using the geometric algorithm.The structure of the MFXU abstraction is shown in Figure 9.15. There are two stepsinvolved in creating the conservative abstraction of the MFXU. The �rst is to reduce thecomplexity of each block by lumping the delay ranges for all of the di�erent gates into onedelay range which represents the minimum and maximum time di�erence between theblock receiving all of its inputs and generating all of its outputs. For example, supposea block contains two domino gates. One of the gates takes 100ps to evaluate and theother takes 150ps to evaluate. It is conservative to make a model for the block wherethe minimum evaluate time for the block is 100ps and the maximum evaluate time forthe block is 150ps. This abstraction does not capture the gate level behavior that oneoutput of the block is available after 100ps and the other is available after 150ps, but ifa circuit veri�es using the abstraction, its actual behavior veri�es also. An abstractionlike this is made for the precharge phase and the evaluate phase of each block. Then thenumber of blocks is decreased. The goal is to reduce the number of blocks, without hidingany interesting block interactions. This is done by analyzing a 32-bit wide slice of thedesign. Since each block operates on four bits of input, this corresponds to a model thatis eight blocks wide at its input. This model is large enough to include all of the types ofinterblock relationships of the larger design, and is small enough to verify quickly.This is done by starting at the last stage and working toward the �rst. Every block inthe last stage is included. Then, for every block in the last stage, at least two instancesof each type of block that provides inputs to the last stage are included in the fourthstage. In this case, four instances of the row3gen block which feeds sumout block in the�fth stage are included. Only one instance of the halfsum block is included since thereis only one halfsum block in the complete circuit. This process is then repeated for thefourth through �rst stages. The resulting model represents a conservative model of thepossible timing relationships in the circuit, and is small enough to verify quickly.The circuit, abstracted in this way, veri�es at its intended clock speed. Therefore, anygate-level timing relationships that are missed by the abstraction are not necessary inorder for the circuit to run at the speci�ed speed. If this is not the case, then the blockson the failure path can be speci�ed in more detail. Although this increases veri�cation
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Figure 9.15. MFXU structure.time, it should not make the problem intractable since the additional detail is limited toa few blocks. Even the abstracted version of this circuit is quite large, it has complextiming relationships which provide many possibilities for error. Formal veri�cation givescon�dence that all of the timing behaviors have been considered. Currently, ATACS doesnot have an automated method for generating circuit abstractions, and the abstractiondescribed for this example is done manually. It may be possible to adapt techniquespresented by Kikimoto in [40] to develop an automated method for abstracting blocks ofdomino gates.The �nal circuit is an arithmetic circuit used in the integer execution unit. It is ofmoderate complexity and therefore can be used to test the accuracy of an abstractedmodel compared to a gate level model. The gate level model is still somewhat abstract inthat it does not include the full 64-bit datapath, but each instance of a block is describedat the gate level. The results on this macro indicate that the limiting factor in clockspeed is the time that the inputs arrive to the macro, not gate to gate interactions insidethe macro. Because of this, the maximum clock speeds allowed by the abstracted model
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Figure 9.16. The CLZ circuit.and the gate level model are the same. In order for a gate level model to allow a circuit toverify at a higher clock speed than an abstracted model there need to be instances of fastgates in one stage feeding slow gates in another block in the next stage. Such instancesdo not occur in this example. 9.5 SummaryOur results show that the POSET algorithm when applied to TEL structures candramatically improve the e�ciency of timing veri�cation allowing larger, more concurrenttimed systems to be veri�ed. It does so without eliminating parts of the state space, so itdoes not limit the properties that can be veri�ed. Due to the e�ciency of the algorithmand the exibility of TEL structures, ATACS is very e�ective for the veri�cation of bothboth synchronous and asynchronous circuits. Since ATACS is designed for asynchronouscircuits, it can be used to verify many di�erent circuit styles by varying the constraintsthat are checked. When circuit-level timing speci�cations can be veri�ed, less marginis necessary in each circuit to ensure that the circuit works correctly, which can resultin higher performance. ATACS does a complete state space exploration. Therefore, itscomplexity is exponential and it is not practical to verify large circuits at the gate level.However, for most circuits, a higher level of abstraction is su�cient to verify that thecircuit can run at the desired speed. If this is not the case, it is possible to locally specify



134more detail on paths that fail without causing state explosion.9.6 Appendix - ReproducibilityAll results are run using the version of ATACS checked in to the ATACS CVS tree onming.elen.utah.edu under the tag wendy thesis. All of the speci�cation used in thischapter are checked into the CVS tree under the directory examples, in either the csp,er, or tel directory. The following table describes the location of the speci�cation forevery example in this section, the switches used to produce each result, and the machinethat the results are produced on.
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Example Machine Location Column Switchesn-bit counter ming csp/cntn synch.csp geom geometricgeom+All geometric, subsets,supersets, interleavPO posetssub/sup posets, subsets supersetsinter posets, interleavall posets, subsets,supersets, interleavn-stage FIFO ming csp/lapbnsv.csp geom geometricgeom+All geometric, subsets,supersets, interleavPO posetssub/sup posets, subsets supersetsinter posets, interleavall posets, subsets,supersets, interleavn-stage select ming er/selectorn.csp geom geometric, orbmatchg+A geometric, subsets,supersets, interleav,orbmatchPO posets, orbmatchsub/sup posets, subsets,supersets, orbmatchinter posets, interleav,orbmatchall posets, subsets,orbmatch, supersetsinterleav, orbmatch-M posets, subsets,supersets, interleavapp. poapprox, subsets,supersets, interleav,orbmatchTable 9.6. Location of examples.
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Example Machine Location Column Switchesn-stage tag ming er/tagn.csp geom geometric, orbmatchg+A geometric, subsets,supersets, interleav,orbmatchPO posets, orbmatchsub/sup posets, subsets,supersets, orbmatchinter posets, interleav,orbmatchall posets, subsets,orbmatch, supersetsinterleav, orbmatch-M posets, subsets,supersets, interleavapp. poapprox, subsets,supersets, interleav,orbmatchlevel tag ming csp/tag level.csp geom geometric, orbmatch, postprocg+A geometric, subsets, postprocsupersets, interleav,orbmatch, postprocPO posets, orbmatch, postprocsub/sup posets, subsets,supersets, orbmatch, postprocinter posets, interleav,orbmatchall posets, subsets, postprocorbmatch, supersetsinterleav, orbmatch, postproc-M posets, subsets,supersets, interleavapp. poapprox, subsets,supersets, interleav,orbmatch, postprocalpha ching csp/alpha.csp n/a posets, subsets, supersetsbeta ching csp/beta.csp n/a posets, subsets, supersetsn-stage stari ching er/stari oldn.er n/a posets, subsets, supersetsTable 9.7. Location of examples - continued.
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Example Machine Location Column Switchesarbiter ming tel/arbiter.er explicit posets, subsets, supersetsimplicit posets, subsetssupersets, bddbig arbiter ming tel/arbiter big.er explicit posets, subsets, supersetsimplicit posets, subsetssupersets, bddmle ming tel/mle.tel n/a disabling, posetspla ming tel/pla.tel n/a posetscomparator ming domino compare.tel n/a posets, subsets, supersetsmfxu ming tel/mfxu.tel n/a posets, subsets, supersetsclz ming tel/clz.tel n/a posets, subsets supersetsTable 9.8. Location of examples - continued.



CHAPTER 10CONCLUSIONS AND FUTURE WORKWhat does not kill me makes me stronger.- Friedrich Nietzche10.1 SummaryThe results from the previous chapter show that the algorithms presented in this thesissigni�cantly improve the e�ciency of timed state space exploration, allowing larger, moreconcurrent timed systems to be synthesized and veri�ed. These improvements come frommany sources. The �rst is in the improvement in the speci�cation method. The mainadvantage of the TEL structure formalism is that it conforms much more closely to gatelevel circuits than purely event based formalism. This makes circuit speci�cations easier toconstruct by hand and also easier to generate automatically. It also results in more concisecircuit speci�cations, which reduces the memory and runtime necessary to do state spaceexploration. The next improvement comes from the POSET algorithm. The POSETalgorithm is the key to improving performance on highly concurrent speci�cations. ThePOSET algorithm computes a single geometric region for many �ring sequences that di�erin the �ring order of concurrent events and dramatically reduces the number of regionsgenerated. Although the POSET algorithm is �rst presented by Rokicki in [58], it is verylimited there. This thesis presents a version of the POSET algorithm which works on avery broad class of speci�cations and it presents theory supporting the POSET algorithmwhich is missing in [58]. Additional improvements come from the optimizations. AsChapter 9 shows, optimizations, especially the optimization which eliminates redundantrule �ring interleavings, have a huge impact on performance. Also, for situations wherememory is the limiting factor, the MTBDD optimization is presented which decreasesmemory consumption by as much as an order of magnitude. In order to better specifyveri�cation properties, this thesis presents constraint rules. Constraint rules allow for theveri�cation of interesting concrete time properties without adding signi�cant overhead



139that impacts the performance of the algorithm. Finally, the exibility of the methodologyis shown by applying it to timed synchronous circuits. This shows that asynchronoustechniques can be useful to synchronous designers, even if they never believe that theyare designing asynchronous circuits.10.2 Future WorkAlthough we believe this thesis makes a signi�cant contribution to the area of timedcircuit design automation, there are many areas which it leaves unexplored. The workpresented here can be extended in many directions to improve the speci�cation method,optimize the algorithms, and increase the number and size of applications.10.2.1 Speci�cationThe examples of the tag unit and the IBM circuits show that the TEL structure spec-i�cation method conforms well to actual logic gates. However additional expressivenesscan be added to make the representation of the circuit more precise. Currently the delayrange on a rule is �xed. In physical circuits, the time it takes for a wire to switch dependson which transistor in the stack is the last one to activate. If this trigger transistor isdirectly connected to the switching wire, the rise or fall time of the wire is less than ifthe trigger transistor is at the bottom of the stack, connected to power or ground. Usingthe current TEL structure speci�cation, the variance can be partially modeled by usingmultiple behavioral rules to enable an event. However, it is di�cult to model gates thisway. Gates are most easily modeled using level expressions. When level expressions areused, the variance in delay due to di�erent trigger transistors is modeled by setting delayranges on each rule that are large enough to represent all possible trigger transistors. Inorder to make this model more precise, we plan to modify the TEL structure formalismin a way that allows a separate delay range to be speci�ed for each possible causal eventfor a rule.If each signal transition has a single trigger transistor, this extension is su�cient tomodel trigger signal dependent delay. However, delay ranges also vary depending on thenumber of transistors in the driving stack that are switching at the same time. If manydriving transistors switch at once, the delay on the output wire is more than if thereis only a single trigger transistor. Modeling this behavior is somewhat more di�cult.The model would need to contain a delay range for each combination of causal eventsfor each rule with a level expression and the algorithm must be modi�ed to determine



140which combinations of trigger transistors can simultaneously switch. This is a signi�cantincrease in complexity. In the future we plan to determine if the increased accuracyjusti�es the increase in complexity.Improvements can also be made to the veri�cation process. Although we believe thatconstraint rules are an e�ective way to specify concrete veri�cation properties, there isalso value in the ability to specify and verify properties in a formal timed logic. A logiccould be implemented in two ways. If it is possible to express the properties of a logicusing constraint rules, then a translation algorithm which converts timed logic formulasinto constraints is likely to be the best approach. If this is not possible, then substantialmodi�cations to the POSET algorithm are necessary in order to check logic formulas.10.2.2 AlgorithmsThere are a number of ways the POSET algorithm can be improved and extendedto allow for synthesis and veri�cation of larger designs. The �rst is the application ofpartial orders to veri�cation. The current POSET algorithm �nds the entire untimedstate space, which is necessary for synthesis. However, in veri�cation many states areoften not relevant to the properties being veri�ed. In a speci�cation with a large untimedstate space, such as the arbiter, partial orders can signi�cantly reduce state space sizeby eliminating irrelevant untimed states. In the future, we plan to combine Valmari andGodefroid's partial order approach [67, 31] with the POSET algorithm to explore thepotential improvement.Another possible algorithmic extension involves arbitrary boolean expressions. Al-though TEL structures allow arbitrary boolean expressions, the POSET algorithm cannotcurrently analyze analyze TEL structures containing them. Although speci�cations canbe transformed to avoid arbitrary boolean expressions, it is more e�cient to analyze themdirectly if possible. In the future, we plan to extend the POSET algorithm to operate onTEL structures with arbitrary boolean expressions.The next algorithmic improvement concerns the use of implicit methods. CurrentlyMTBDDs are used as a storage mechanism for the geometric regions to improve memoryperformance. The �rst step in extending their use is to implement the stack usingMTBDDs. However, this is also simply the use of MTBDDs as a memory optimizingdata structure. When implicit methods are used for state space exploration, they aretypically used not only to represent the states that have been found, but also to representa transition function that controls the generation of new states. The transition function



141is applied repeatedly to the initial state until a �xed point is reached. This is usuallya much faster process than enumerating the states explicitly. The POSET algorithmis very complex, and therefore it may be unrealistic to express it in a single transitionfunction. However, if this can be done, it could eliminate the runtime penalty incurredby the current BDD approach.The �nal algorithmic improvement is perhaps the most signi�cant. State space ex-ploration is a fundamentally exponential problem. Although better algorithms increasethe size of circuits that can be synthesized and veri�ed, this size will always be relativelysmall. In order for the technique to scale to industrial size problems, abstraction is needed.The larger IBM examples from Chapter 9 show the potential of abstraction. Gate levelmodels are beyond the capabilities of the algorithm but abstracted models verify relativelyquickly. The abstraction in Chapter 9 is done by hand. This is a time consuming anderror-prone process. Automated abstraction is needed in order for the timed circuitdesign methodology to be used extensively by circuit designers. When circuits can beautomatically abstracted, it is then possible to create a system for hierarchical veri�cationwhich scales to very large designs.10.2.3 ApplicationsAdditional work is also needed in the application of the algorithms presented here.Chapter 9 shows that asynchronous techniques can be applied to synchronous circuits.Since asynchronous algorithms are very general they can be applied directly to a circuitwhich uses any type of timing assumptions. However, synchronous circuits make a veryspeci�c timing assumption by using a clock. Timing analysis techniques designed forsynchronous circuits rely too much on this assumption and therefore are not easily exten-sible to new circuit styles. Asynchronous algorithms ignore it completely and thereforehave much worse performance. In the future, we plan to explore how the synchronousassumptions can be integrated more tightly with the asynchronous techniques to improvealgorithm performance on timed synchronous circuits.Although this thesis concentrates on the application of the POSET algorithm to timedcircuits, that is only one potential application. There are many problems which can bemodeled as timed concurrent systems, such as real-time distributed systems. Althoughasynchronous circuit researchers and real-time researchers are often working on similarproblems, there is little communication. We plan to attempt to remedy this by applying



142the work presented here to a broader class of concurrent systems and by looking for workin real-time systems that can be applied to asynchronous circuit design.The last application is really an extension to the work on the guTS processor shownin Chapter 9. In order to really test a CAD methodology it must be used on a real,industrial scale design in progress. The industrial circuits veri�ed by ATACS in this thesiswere already known to work at the time of veri�cation. The veri�cation process onlyfails when these circuits are speci�ed incorrectly. The �nal measure of a veri�cationtechnique is how quickly it �nds bugs and whether it can �nd them earlier in the designcycle than other methods such as simulation. This thesis shows that the algorithmspresented here can be used to verify circuits, but it does not show if they can increasedesigner productivity by �nding bugs faster. In the future we plan to apply the algorithmsdeveloped here to a large, industrial design and build on the knowledge that is gainedfrom the experience.
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