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ABSTRACTAsynchronous circuit design has the potential to produce circuits superior to those ofsynchronous circuit design. Current synchronous methods of architectural-level synthesisdo not exploit properties inherent to asynchronous circuits. This research describespotential optimizations and techniques that can be applied to the architectural-leveldesign of asynchronous systems. The proposed methods take advantage of asynchronouscircuit properties such as data-dependent delays, modularity, and composiblity. Theoptimization problems of scheduling and allocation are studied. For scheduling, somecounterintuitive properties of delays in a system are shown. The design space is studiedand several �lters to reduce the size of the design space are proposed. To evaluate andtest these ideas the CAD tool Mercury was developed and is described in detail. Mercuryis unique in that it can take an abstract model of a design, in this case a data ow graph,and from that generate both an optimal structural view of an asynchronous datapath forthe design, as well as the necessary behavioral control to operate that datapath. Severalcase studies are presented utilizing the tool and methods to illustrate the practical aspectsof this work.
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CHAPTER 1INTRODUCTIONSometimes when I consider the tremendous consequences from little things. . . a chance word . . . a tap on the shoulder or a wink of an eye,I am tempted to think there are no little things.|Emily DickensenAsynchronous designs are rapidly becoming an attractive alternative to synchronousdesigns. As technology advances, the integrated circuit industry continues to increaseclock speeds, increase density, and decrease transistor sizes making global synchronizationacross large chips more di�cult to maintain. To solve this problem, many modern chipshave a number of communicating clocking domains which can greatly increase designcomplexity. As a result, asynchronous design is being looked at as an alternative becauseit has the potential to reduce, and in some cases, eliminate the growing challenges ofsynchronous design. Asynchronous circuits consist of groups of independent moduleswhich communicate using handshaking protocols. This makes asynchronous designsattractive because they do not have clock skew problems, thus reducing power-expensiveglobal clocks and routing issues. In addition, asynchronous design o�ers the potentialfor average-case performance in place of worst-case performance, they are adaptable toenvironmental conditions, and exhibit ease in composability. For these reasons, there isa growing interest in asynchronous design.Architectural-level synthesis is the process of taking an abstract behavioral model ofa desired circuit and re�ning it to an optimal macroscopic structure. In an ideal world,everything would be possible at no cost. But, there are no blank checks in circuit design.Issues such as latency, area, and power must be taken into consideration to balancetrade-o�s in a design. Architectural-level synthesis is an approach to managing thesetrade-o�s at a macroscopic level.The abstract model used at the architectural-level generally begins as a data owgraph that does not contain implementation parameters such as a mapping to speci�c



2resources or technology. The synthesis process takes this abstract model and generatesa structural view of the circuit by determining the necessary resources and parametersto implement the behavioral model. The goal of architectural synthesis is to generate anoptimal circuit from an abstract model. The model consists of two components: datapathand control.The datapath is the portion of the circuit composed of interconnected components thatmove data and operate on it. The components are usually multi-bit bused structures thatcontain a high density of arithmetic functions. The control circuitry directs the movementof data and execution of the datapath resources. When combined, the datapath andcontrol work together to make a circuit functional.The focus of this research is on the automation of architectural-level synthesis forasynchronous systems. This includes the automated generation of an optimal asyn-chronous datapath and corresponding control. This work merges methods from syn-chronous architectural-level design with those used to generate asynchronous controlcircuits and exploits asynchronous circuit properties to design highly optimized asyn-chronous systems. 1.1 MotivationDigital signal-processing, high-speed multimedia, graphics, and telecommunicationsapplications are computationally-intensive. In these applications, the datapath requiresthe largest area of the logic circuitry, sometimes as much as 80% of a complete design.For these applications the datapath is the critical factor when trying to achieve designobjectives such as minimal area and latency. The challenge for a datapath designeris to arrive at the best implementation for a given function. Many datapaths todayare hand-crafted using a Register-Transfer Level (RTL) speci�cation. Using this modelstorage of data is represented using register variables, and transformations are representedby arithmetic and logical operators.Typically, designers arrive at a particular design through trial and error methods. Thisapproach is time-consuming and does not yield optimal results. Furthermore, such designsare rarely scalable to new technologies and it is easy for a designer to lose performancewhen they commit to a speci�c design early in a design cycle. To make matters worse,when designers �nd their datapath to be suboptimal they can rarely a�ord to go back andredesign it. The continuing trend in the design of application-speci�c integrated circuit



3(ASIC) is one of increasing complexity and density, making a trial and error approachincreasingly di�cult. This leads to the growing need for automated methods which canquickly yield good designs.The ideal asynchronous design tool would allow designers to quickly generate thedesired structure and provide information that would help them determine the bestsolutions. Each possible solution would be superior in at least one objective, such assize or latency, or in a combination of two or more objectives. This would give thedesigner the ability to test a variety of good solutions, helping to quickly and e�cientlydecide on a datapath structure that best implements a function. Automating the designand implementation of such a major portion of the chip would yield substantial reductionsin design time, increase productivity, ease speci�cation, modi�cation, and enhance designre-usability. 1.2 Related WorkIt is a common practice for synchronous circuits to be formally modeled and automat-ically synthesized. There are many existing tools which support automatic translationof an algorithmic-level speci�cation to a register-transfer level representation [22]. Theuse of such models and automated tools for asynchronous circuits has been limited tosynthesizing control circuitry. Thus, many systems exist for the synthesis of untimedasynchronous control circuits [27].A number of di�erent styles for designing asynchronous control circuits exist. Onemethod is to constrain signals to change only one at a time. The system must allow eachsignal time to settle before other signals can change [41]. This is called the fundamental-mode restriction. Burst-mode extends fundamental-mode to allow for a set, or burst,of inputs to arrive concurrently, followed by a burst of outputs [17, 35, 45]. Anothermethod, delay-insensitive [12, 19, 33] assumes that the delays in wires and gates areunbounded. Speed-independent circuits [6, 16, 32] are similar, but assume that wire delaysare negligible. Most methods are based on the assumption that nothing is known aboutthe delays between signal transitions. This means that the circuit must be constrainedto work correctly even in cases which never occur in physical implementations.For asynchronous control circuits, an emerging area of research embraces timed asyn-chronous circuits [34]. This method allows a lower and an upper timing bound to beassigned to the relationships between signals. These circuits make use of the timing



4information to eliminate unnecessary circuitry and to increase performance.At the architectural-level, tools that automate datapath synthesis are just emerging.Heuristic techniques for synchronous design have been extended to asynchronous circuits[5], but many require the designer to manually specify where resources are shared [2, 8].Work has also been done by Beerel to extend the synchronous techniques in [25] by usinga mixed-integer linear programming technique to yield globally optimal solutions.This work is related to work previously done in synchronous architectural-level syn-thesis and also work done in the area of asynchronous control circuits. For synchronousarchitectural-level synthesis, a vast array of algorithms and tools have been proposed.In general, these optimization problems are intractable and their solutions depend onsolving associated sub-problems.The subproblems are usually also intractable and are often solved through the useof heuristics. The subproblems are categorized into general areas which include binding,allocation, and scheduling. Binding is the process of mapping an operation to a resource.Where several resources can perform the same operation, the problem is extended to amodule selection problem. When more than one operation has the same type, resourcesharing or allocation can be employed. Allocation determines the quantity of each typeof resource used to implement the operations. Scheduling is the process of denoting eachoperation's start time subject to precedence constraints speci�ed by a data ow graph.To solve the scheduling problem, it is broken down in its simplest form to a unit-delay model in which all operations have equivalent delay. Di�erent algorithms havebeen proposed to address constrained and unconstrained scheduling of individual oper-ations. These algorithms include unconstrained as-soon-as-possible (ASAP) scheduling,and latency-constrained as-late-as-possible (ALAP) scheduling [18]. These algorithmsare speci�c to synchronous design problems. This research modi�es these algorithms forapplication to asynchronous optimization problems.Scheduling with resource constraints is also very important because with resourcedominated circuits, resource usage determines the circuit area. Solutions have beendeveloped using an exact integer linear-programming model [24, 13]. This approachis suitable for medium scale examples, but fails to solve problems with a large numberof variables or constraints. Another method is force directed scheduling (FDS) [36]. Thismethod attempts to use the concept of force to optimally schedule operations. All thesealgorithms are currently restricted to synchronous design problems.



5The timed models used for control circuits motivate the use of delay assumptionsin datapath resources. When a timed model is applied to asynchronous datapath re-sources, the design evaluation space can be reduced, unnecessary circuitry eliminated,and increased performance achieved. The work described here is designed to be used inconjunction with the ATACS tool framework [34], which can further re�ne the generatedasynchronous control circuitry. The result is a completely automated tool ow for re�ningasynchronous speci�cations from a behavioral level to a structural level.1.3 ContributionsThe focus of this work has been to explore and develop a method of architectural-levelsynthesis for asynchronous circuits. In particular, the issues of scheduling and allocationfor asynchronous resources are confronted. While binding and resource selection are alsoimportant issues that can a�ect scheduling and allocation this study does not attempt toutilize their potential bene�ts at this time.For asynchronous circuits to become a viable and superior alternative to synchronouscircuits, good asynchronous computer-aided design tools need to be created. Thesetools, at a minimum, need to have comparable functionality to synchronous tools whilemaintaining a similar ease of use. Since developing such tools would be a very largeand time consuming process, it is argued that asynchronous tools should build on workalready done and that they should be as compatible as reasonably possible with currentsynchronous tools. This would expedite the transition for designers from synchronousdesign to asynchronous design without learning a completely re-engineered design process.Scheduling optimization problems use synchronous techniques to �nd critical windowsof time for resources with asynchronous delays. Relative timing of operations is used inconjunction with the analysis of the critical window of operations. From this, an estimateof the typical delay of each con�guration may be made. Furthermore, for allocatingresources to speci�c operations, a technique was developed that uses information fromscheduling in conjunction with the information derived from the data ow graph. Usingboth sources of information, a heuristic algorithm e�ciently solves the allocation problem.Exploring all possible con�gurations to implement a given design is di�cult becausethe number of possible solutions grows exponentially with respect to the size of the dataow graph. Several exact and heuristic �lters to reduce the size of the design space are im-plemented. These �lters are very e�ective in reducing the exploration time for the circuit



6design. These �lters include: pruning the design space when implied edges are detected,removing redundant designs from consideration, solving for a minimal-latency solutione�ciently, and detecting when a maximal con�guration is achieved without exploring anentire branch of the design space. Several case studies illustrate the e�ectiveness of these�lters.This study necessitated a CAD tool for experimenting with the various automaticmethods of scheduling, allocation, design space exploration, and the e�ect of the proposed�lters. The CAD tool Mercury has been developed for this purpose. Figure 1.1 shows thedesign ow of the tool. Mercury is unique in that it can take an abstract model of a design,in this case a data ow graph, and from that generate both an optimal structural view ofan asynchronous datapath for the design, as well as the necessary behavioral control tocoordinate that datapath. The generated structural view consists of an interconnectedblock diagram of functional units, latches, control, and multiplexors.The generated asynchronous control can be re�ned further to logic gates using theexisting ATACS tool. The end result is a fully speci�ed asynchronous design which canbe tested and veri�ed. Mercury implements these ideas by generating output whichcan leverage synchronous tools for a common framework of simulation and functionalveri�cation. Furthermore, the development and use of Mercury demonstrates the ideathat a CAD tool can generate a reliable and e�cient asynchronous circuit for minimumcost and design time. 1.4 Thesis OutlineChapter 2 discusses issues relating to the architectural modeling of asynchronousdesigns. Mercury's model input format and intermediate circuit representations areexamined. The chapter continues with a description of then generation of a structuralview of the datapath and a behavioral view of the control from an abstract model. Thechapter concludes with an illustration of how the resource and constraint libraries aremodeled. The exponential nature of the design space is reviewed in Chapter 3. Thechapter continues with illustrations of how each con�guration in the design space isevaluated using asynchronous versions of binding, scheduling, and resource allocation.These techniques are compared and contrasted with traditional synchronous methods.The study proceeds with a discussion in Chapter 4 of the proposed methods of using�lters to reduce the design space. Several �lters are presented, some of which are exact
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Figure 1.1. Mercury design ow.and others which are heuristic. Chapter 5 describes the algorithm used to explore thedesign space. Optimizations used to reduce the execution time of exploration are alsoillustrated. These optimizations include using dynamic transitive closure and dynamicpath analysis. Several case studies for using the presented methods to build asynchronouscircuits are presented in Chapter 6. In the case studies, the e�ectiveness of each �lter isgiven, along with examples of the resulting asynchronous circuits. Chapter 7 summarizesthe contributions and results of this work and o�ers ideas for possible extensions.



CHAPTER 2ARCHITECTURAL LEVEL MODELINGMistrust endeavors which require new clothes.|E. M. Forster2.1 Representation and ModelingIt is often bene�cial to simplify a circuit representation with a model. A useful modelcontains all of the relevant design features without including implementation details.These models give designers and CAD tools a common method of conveying informationabout a circuit. Circuits can be modeled di�erently according to the desired level ofabstraction. Stages of abstraction include, but are not limited to, architectural, logic,and transistor. For example, at the architectural level, circuits are modeled showingrequired operations and their dependencies. At the logic level, circuits are modeled withinterconnected logic blocks and logic networks. At the transistor level a physical view ofthe circuit is modeled.Generally the design of a circuit progresses through these various tiers of abstractionuntil a physical view of the circuit is obtained. At each stage, the model of the circuitbecomes less abstract as successively �ner detail is introduced. Each level adds justenough information to capture essential features of that level. Before progressing to thenext step, the model can be simulated, validated, and veri�ed.The top level of the design process, the most abstract, is the architectural-level. Here,the function of the entire system is described in algorithmic terms with the behavior of acircuit being modeled in a hardware description language (HDL). Consequently, this levelof modeling is often referred to as behavioral modeling. An HDL provides well-de�nedsemantics and syntax for a model. This gives a consistent and unambiguous representationof a speci�cation which can be used to exchange information between designers and tools.Although HDLs such as VHDL and Verilog evolved from traditional programminglanguages, they are di�erent in many ways. For example, they generally default to



9concurrent operations in place of statements which execute sequentially. In this regard,HDLs are related more closely to parallel programming languages than to traditionalsequential programming languages. HDLs also allow for the de�nition of ports into andout of the circuit, along with their required data formats and parameters. HDLs place alarge emphasis on the speci�cation of detailed timing constraints for each circuit compo-nent. In addition, many of the HDLs support di�erent views for a circuit. For example,a behavioral view and a structural view are typically supported. Architectural-levelsynthesis tools generally support the transformation of behavioral models into structuralmodels.Using such a formally de�ned model is bene�cial for several reasons. First andforemost, when a system design is needed the system requirements can be speci�edunambiguously and completely. Engineers have the task of designing a system thatmeets customer requirements. Using a formal model to specify the system requirementsreduces the risk of incomplete or ambiguous speci�cations. It also gives the engineer theopportunity to explore alternative implementations, and �nd the best design, given thecustomer's criteria.Second, formal modeling allows for design validation and veri�cation. Using a hier-archal approach, subsystems and subcomponents can be individually tested. At eachlevel in the design hierarchy, the composite system can be tested and veri�ed. Whilefunctional validation is useful, models can also be used as a starting point to formaldesign veri�cation. Formal veri�cation uses formal logic and rules of inference to deducethe correctness of a design. Formal veri�cation is a complex problem itself and is an activearea of research for both synchronous and asynchronous circuits [3, 7, 38]. While formalveri�cation is not yet an everyday practice, there has already been signi�cant progress inthis area and there is an optimistic horizon in its future.Finally, a formal model allows synthesizing a circuit automatically. If a design canbe formally speci�ed, it can, in theory, be translated to a circuit that performs thatfunction. The automated generation of circuits is bene�cial because it reduces the timeof a design and thus, more time can be spent exploring alternative designs rather thanbeing consumed with the details of a particular design. Furthermore, if the translation isautomated and the translation process itself is veri�ed, then con�dence that the resultingcircuit is correct rises.In essence, a formal model used in conjunction with computer-aided design tools is



10a means to achieving a reliable and e�cient circuit for minimal cost and with minimumdesign time. By providing better tools for the design process, many errors can be avoided,delays minimized, and costs contained.For this work, VHDL [4, 43] is used. VHDL is a verbose language used to specify anddocument large systems. It is used to model both the control and the datapath of a design.VHDL is employed to model the control, in part, because it can be simulated and veri�edusing current synchronous CAD tools and also because a subset of the language can besuccessfully compiled into a format that can be synthesized into a timed asynchronouscontrol circuit [46].The �rst step in the design process is to take a formal behavioral model and translateit into a representation that illustrates the ow of data from one operation to the next.Figure 2.1 shows the behavioral VHDL representation of a di�erential equation solverwith its corresponding data ow graph.The re�nement of the VHDL model into a good data ow graph is a di�cult taskbecause several optimizations are possible. These optimizations include: tree-heightreduction, constant and variable propagation, common subexpression elimination, anddead code elimination. Each of these optimizations a�ects the resulting data ow graph,which in turn limits or enhances the synthesis process. Methods from compiler theoryhave been developed in [1, 42] which solve these and similar problems. It is assumed that
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architecture BEHAVIOR of DIFFEQ is 
begin
process

begin
   wait until start’event and start = ’1’;

   u := u_port; dx := dx_port;
   DIFFEQ_LOOP:
   while (x < a) loop 

   x := x_port; y:= y_port; a := a_port;

   variable x,a,y,u,dx,xl,ul,yl: in slv(7 downto 0);

      xl := x + dx;
      ul := u - (3 * x * u * dx) - (3 * y * dx);
      yl := y + (u * dx);
      x  := xl; u := ul; y := yl;
   end loop DIFFEQ_LOOP; 
   y_port <= y;
end process;
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Figure 2.1. Behavioral VHDL and corresponding data ow graph.



11these optimizations have been made and translation to a data ow graph has alreadytaken place, so Mercury accepts input in the format of a data ow graph similar to thatshown in Figure 2.1.A data ow graph is relatively simple to specify. Textually, the format given inFigure 2.2 is used. It �rst de�nes the name of the graph, then lists each of the primaryinputs and primary outputs of the system with their corresponding sizes. Next, nodesin the graph are listed with their operation type, name, and size. The nodes are linkedtogether using edges. An edge can exist between any two nodes as long as the edge doesnot create a cycle in the graph. Finally, inputs are linked to nodes which utilize them,and outputs emanate from nodes that produce them.It should be noted that the user can optionally specify an ordering for input operandsto a node. This can be important when an operation, such as subtraction, is non-commutative. If an ordering is not speci�ed, then the operations are evaluated accordingto alphabetical order. Using this format allows the function of the circuit to be modeled.Figure 2.3 shows a sample data ow graph and its corresponding speci�cation. Thismodel permits a design to be further re�ned using binding, scheduling, and allocation.dfg name finput in-name bit-width. . .input in-name bit-widthoutput out-name bit-width. . .ouput out-name bit-widthnode operation node-name bit-width. . .node operation node-name bit-widthedge node-name ! node-name port. . .edge node-name ! node-name portdatain in-name ! node-name port. . .datain in-name ! node-name portdataout node-name ! out-name. . .dataout node-name ! out-nameg Figure 2.2. Input format for a data ow graph (DFG).



12
dfg sample { 

       input B 32
       input C 32
       output D 32
       node + opA  32
       node  * opB  32
       node  * opC 32

       datain A -> opA
       datain B -> opA

       datain C -> opB 
       dataout opC -> D

       edge opA -> opC
       edge opB -> opC 

}

       input A 32

       datain B -> opB

opBopA

opC  *

 * +

A C

D

B  B

Figure 2.3. Sample data ow graph and model description.2.2 Modeling ResourcesTo unify the design process, some underlying requirements must be made aboutfunctions in the resource library. Here it is required that each resource in the libraryis an asynchronous system that follows a speci�c communication protocol. None ofthe resources are synchronized by a global clock. A protocol is a sequence of eventsin a communication transaction. Many handshaking protocols exist, such as two-phasetransition signaling or four-phase signaling. For these two predominate methods, there isongoing debate concerning the better choice. The four-phase protocol requires twice asmany actions as two-phase, but the actions are usually simpler. In general, when operatordelays dominate communication costs, then four-phase is better. Four-phase may also bebetter for precharged arithmetic units since the return to zero naturally �ts the prechargephase. When transmission delays dominate communication costs, two-phase is better.Mercury currently supports only the four-phase protocol with a bundled data path.The bundled-data approach uses a set of control wires to indicate the validity of a set,or bundle of data wires. Similar self-timed modules that follow a two-phase protocol areused in [11]. In either protocol, the control wires for each bundle include two signals.The �rst signal is used to request (REQ) an action. Once the receiver of the requesthas completed its function it sends an acknowledgement (ACK) back to the sender tocomplete the transaction. Figure 2.4 illustrates the request/acknowledge protocol. With
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AckFigure 2.4. Request/acknowledge interface with four-phase handshake protocol.a four-phase protocol, each signal transition is considered along with its direction ofmovement. For example, a rising request is distinguished from a falling request. Thereare several methods of employing the four-phase handshake, including, early, late, andbroad protocols [20].Mercury uses the early protocol in which the rising edge of the request line indicatesthat data is available, and the rising edge of the acknowledge line indicates that thecomputation has been completed and the sender no longer needs to hold the inputsstable. The falling edge of the ACK signal resets the component to an available state.The bundled data approach requires data in the bundle to be valid at the receiver beforethe receiver sees a change on the control signals. In �gure 2.4 the light regions indicatewhen data are valid and the shaded regions indicate when data are invalid.For simplicity, it is assumed that the interface of each device is delay-insensitive. Thismeans that the protocol is insensitive to delays through circuit components and the wiresthat connect them. Obviously, this does not accurately model the physical propertiesof system components and wires. This makes building a truly delay-insensitive circuitdi�cult, as demonstrated by [30]. This issue is left for the next level of re�nement in thesynthesis process.Although self-timed delay-insensitive circuits involve signaling overhead for the hand-shake communication, they o�er several appealing advantages. Generally, they give betterperformance than synchronous systems because they tend to reect average-case delaysrather than worst-case delays for a system. In some cases, this alone can be a majorperformance bene�t. Second, they allow a system to be upgraded incrementally. Each



14component can be individually replaced without changing or doing extensive redesignof the entire system. Third, very robust systems can be implemented because timingand functionality are separated. For example, when a circuit is required to operateover a wide range of voltage and temperature conditions, self-timed systems are idealbecause they easily adapt to their environment. Finally, self-timed components allowthe construction of systems in a hierarchical and uniform fashion. This characteristicis very bene�cial because designs can be assembled without considering detailed timingcharacteristics. When timing characteristics are available and considered, the circuit canbe more aggressively optimized.Using the self-timed circuit methodology, asynchronous resources are annotated inthe resource library with timing information. This information is used to optimize thecon�guration of resources. Each supported function of a given resource is modeled witha minimum, maximum, and typical computational delay. These correspond to the data-dependent computational delays of each function. For this work, it is required thatoperations have bounded delays. In addition, the area and the bit-width of each resourcemust be given. The order in which the functional units are listed for a resource determinesthe operation select code used by control to select the proper operation. Figure 2.5 showsthe input format of the resource library. The user can use standard operations such asaddition, subtraction, and multiplication, or can create more complex custom resourcesand operations.For the best results, the parameters of each resource should correspond to the physicalproperties of the resource. Each library generally maps to a speci�c technology. Thisdrl name fresource-name bit-width areaoperation-type [min-delay,max-delay,typ-delay]. . .operation-name [min-delay,max-delay,typ-delay]. . .resource-name bit-width areaoperation-type [min-delay,max-delay,typ-delay]. . .operation-name [min-delay,max-delay,typ-delay]g Figure 2.5. Input format for the datapath resource library (DRL).



15gives a modular approach that leaves room for expansion to future technologies withoutrequiring a change in the speci�cations of a design. A small sample library is shown inFigure 2.6. 2.3 System ConstraintsConstraints on the design can also be speci�ed. These are valuable because they canfocus the design search, reducing the time required to achieve a good solution. The usercan specify an upper limit on both the desired area and the desired delay. For example, ifthe user sets a maximum desired delay for a system, the tool stops exploration (evaluatingall possible con�gurations) of any branch where that value of latency is exceeded, yieldinga signi�cant savings in execution time.The user can also specify the maximum number of instances for any particular resourcetype. The format for specifying these values is shown in Figure 2.7. The use of constraintsis optional, but they are usually bene�cial for large designs, because the more constraineda design is, the quicker a good solution can be found. A sample constraints speci�cationis shown in Figure 2.8.drl myLib fALU 32 452+ [12,28,15]- [12,30,16]Multiplier 32 671* [34,82,61]g Figure 2.6. Sample datapath resource library (DRL).constraints name fmax-area = valmax-delay = valresource-name = val. . .resource-name = valg Figure 2.7. Input format for constraints.



16constraints myCon fmax-area = 923max-delay = 102ALU = 1Multiplier = 1g Figure 2.8. Sample constraints speci�cation.2.4 OutputAt this level, the goal of re�nement is to generate an optimized structural view of asystem from a behavioral description. Using the three sources of information|a dataow graph, a library of functional resources, and a set of constraints{all the necessaryinformation to re�ne the system is available. In Mercury, after a data ow graph hasbeen bound, scheduled, and allocated, a structural view of the datapath is generated anda behavioral view of control for the datapath is also generated. Both views are speci�edby Mercury using VHDL. The following sections describe these processes.2.4.1 Datapath GenerationThe datapath is organized as follows. First, latches are instantiated for each of theprimary inputs, outputs, and data edges in the data ow graph. Latches for the outputsare not always required. They are only required when a functional unit is resued for otheroperations after the output is generated. In other words, in cases where the functionalunit can not hold the output for the duration of the system. This relaxes the requirementfor latches on all outputs. This optimization however, is not currently implemented.Next, Each functional unit is instantiated and when more than one operation is mappedto the same functional unit, multiplexors are used to route the appropriate operands atthe appropriate time. At the output of the functional unit, latches are used to carry thedata to the next operation, or to the primary outputs. This datapath format is illustratedin Figure 2.9.Figure 2.10 shows one possible arrangement for the datapath generated by the Mercurytool from the speci�cation given in Figure 2.3. The datapath works in the following way.When the global request signal, sample req, is asserted, data from the primary inputs arelatched. When all of the required operands for a given computation are available, and thefunctional unit is available, the computation begins. In the example given in Figure 2.10,
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Figure 2.10. Datapath generated from sample model description.



19the multiplier is shared between two operations, requiring two 2x1 multiplexors to beused (one for each operand).After each computation is completed, the results are stored in a latch for futureuse by other operations and the functional unit then becomes available for its nextoperation. Finally, the system acknowledges on the sample ack signal it has completedits computation when all of the primary outputs have latched their data.While the entire system is modeled in this way, each subcomponent of the system is alsomodeled with a similar protocol. In the example, the ALU and multiplier, when requested,also latch their inputs, and hold their outputs until their results are acknowledged by theirenvironment. This allows components to be generated and used in a hierarchal fashion.The only exception to this protocol is a multiplexor component, because it does not latchits inputs or its outputs.Additional optimizations can be made to the datapath to reduce the number of latchesrequired to implement a system. Sharing latches that hold data for disjoint periods oftime is one such optimization. This, however, is a di�cult problem to solve because of theinherently asynchronous lifetime of data. In theory, this problem is similar to the resourcesharing problem, in that the sharing of latches can incur the use of additional multiplexors,which in turn require more area, and the additional complexity usually complicates thecontrol further. For these reasons, and in order to simplify the generation of the datapathand control, this optimization is not currently applied.To generate the datapath, Mercury takes a bound, scheduled, and allocated data owgraph and builds a VHDL model. A sample VHDL structural model for the datapathis listed in Appendix A. This model corresponds to the behavioral model shown inFigure 2.10. The generation of the model begins by �rst de�ning the entity of theprimary system with primary outputs, inputs, and handshaking signals. For the structuralarchitecture of the entity, the components used by the system are declared. In theexample, the components ALU, Mult, mux2, latch, and CTRL, are all declared. Thecomponents refer to resources de�ned in the library shown in Figure 2.6, except for thecontroller component, CTRL and multiplexors, which Mercury generates.Next, intermediate signals are declared. These are the signals which are used betweenthe ports of the latches, multipliers, controller, and functional units. All of these signalsare internal to the system. After the signals are declared, each of the required componentsis then instantiated. Where more than one instance of a device is used allowing concurrent



20operation, multiple instantiations are declared. Where operations are serialized and morethan one operation is mapped to an individual resource, multiplexors are instantiatedto select the data. Finally, the ports of each of the components are wired up to theappropriate signals to complete the design of the datapath.2.4.2 Control GenerationGenerating the control corresponding to a particular con�guration of the datapath isdetermined, in part, by the protocol used between components. Each of the componentsin the datapath follows a four-phase handshake protocol using request and acknowledgesignals. Following this protocol, Mercury builds a control module for each datapathcon�guration.The control is built using the request and acknowledge signals from each of thecomponents, such as functional units, latches, and the primary request and acknowledgesignals. When multiplexors are used, their select bits are generated by the control butno handshaking signals. Using VHDL, the communication protocol of each component ismodeled with VHDL processes. When a process is activated during simulation, it startsexecuting from the �rst statement and continues until it reaches the last. All statementsin a process take zero simulation time except for \wait" statements. So, it is only throughthe execution of \wait" statements that simulation time advances. Each process executesconcurrently with respect to other processes. The behavioral VHDL for the controller isshown in Appendix B.Each instance of a latch in the system is modeled in the control with an individualprocess. Each latch is initially unoccupied. Latches on primary inputs wait on the primaryrequest of the system. The data are latched when the primary request is received. Theselatches return to an available state when the entire system has been acknowledged. Shownbelow is an example of this type of process:-- controls latch l_A at the sourceproc5:processbeginwait until sample_req = '1';A_req <= '1' after delay(2,4);wait until sample_req = '0';A_req <= '0' after delay(2,4);end process;Each functional unit instance is modeled with a unique process. Because each func-



21tional unit can be used for more than one operation, these processes control the ordering ofeach operation using the resource. This is done by waiting for the appropriate operandsto become available. When they become available, the multiplexors are set, and thecorrect data is steered to the functional unit. The functional units reset to an availablestate after they have completed their operations. Shown below is an example of this typeof process:-- controls resource Mult_1proc9:processbeginwait until Mult_1_ack = '0' and B_ack = '1' andC_ack = '1' and sample_req = '1';Mult_1_mux2_sel <= '0' after delay(0,1);Mult_1_req <= '1' after delay(2,4);wait until l_2_ack = '1';Mult_1_req <= '0' after delay(2,4);wait until Mult_1_ack = '0' and l_1_ack = '1' andl_2_ack = '1' and sample_req = '1';Mult_1_mux2_sel <= '1' after delay(0,1);Mult_1_req <= '1' after delay(2,4);wait until D_ack = '1';Mult_1_req <= '0' after delay(2,4);wait until sample_req = '0';end process;Intermediate latches between operations wait for acknowledgement from the precedingcomputation before latching the resulting data. The latch then waits for the resourcethat uses that data to be requested before returning to an available state. Where manyoperations are performed by a single resource, the select bits of the multiplexor are usedto ensure the resource is performing the right computation on the correct data values.Sequencing of operations is handled by the control. Shown below is an example of thistype of process:-- controls latch between nodes opA and opCproc1:processbeginwait until ALU_1_ack = '1';l_1_req <= '1' after delay(2,4);wait until Mult_1_req = '1' and Mult_1_mux2_sel = '1';l_1_req <= '0' after delay(2,4);end process;When all the primary outputs of the system have acknowledged, the system's primary



22acknowledge is asserted. After the environment responds by lowering the request signal,the entire system is reset to an available state. Shown below is an example of this process.-- controls the ack of the entire systemproc3:processbeginwait until D_ack = '1' and sample_req = '1';sample_ack <= '1' after delay(2,4);wait until D_ack = '0' and sample_req = '0';sample_ack <= '0' after delay(2,4);end process;Using this control speci�cation, Mercury is compatible with synchronous VHDL sim-ulators. Figure 2.11 shows a wave diagram for the handshaking signals of the control.The simulation was done using ViewLogic's VHDL simulator FusionSpeedwave.In addition, this model of the control is compatible with the asynchronous CAD toolATACS [46, 34], which is designed to further re�ne the control to a gate-level model.Figure 2.12 shows a view of the control generated by ATACS using the behavioral VHDLdescription. The control has 40 literals and requires 94 transistors to implement.For ease in compilation, simulation, and veri�cation, a VHDL con�guration is oftenvery useful. The con�guration maps each instance of a component to a speci�c VHDL ar-chitecture model of that component. Appendix C shows a sample con�guration generatedby Mercury.
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CHAPTER 3DESIGN SPACE EXPLORATIONThe real voyage of discovery consists not inseeking new landscapes, but in having new eyes.|Marcel ProustMany di�erent valid hardware implementations may exist for a given data ow graph,each with a speci�c con�guration of hardware resources and corresponding control logic.The set of possible con�gurations is the design space of the system. For e�ciencyand structure, the exploration of the design space is divided into three main subtasks:binding, scheduling, and allocation. As discussed in Chapter 2, binding determines amapping between operations in the data ow graph and resources in a library. Schedulingdetermines when operations are executed, and allocation determines which resourcescan be shared between operations, giving the quantity of each type of resource usedto implement the operations in the data ow graph.Some systems perform binding and allocation followed by scheduling [14, 31]. In thesemethods, delay and area information is estimated and then back-annotated for veri�ca-tion. Other methods perform scheduling before binding and allocation [21, 40]. Thisapproach works well for resource-dominated circuits such as DSP and processor designs.ASIC circuits, however, are generally not resource dominated but control dominated, andtherefore perform binding before scheduling and allocation. This permits estimating therequired steering logic and also allows for a more precise assessment of delays. In thiscase, the scheduling problem is not constrained by binding or allocation and it can besolved e�ciently. Binding and allocation, however, generally dominate the complexity ofthe problem [18, 15].In an asynchronous circuit, an operation can execute as soon as the resource to whichit is bound is available and all of its data inputs are available. Since time steps arenot explicit and timing is not discrete, it is unclear how to e�ectively apply the tasksof binding, scheduling, and allocation. Mercury uses a hybrid approach in which it



26directly extends the principles of synchronous scheduling. First, binding is performed,then scheduling and allocation are performed to determine the timing and allocation ofresources. When accurate models are used for area, delay, and interconnect, this approachcan work for both resource-dominated and non-resource-dominated circuits.3.1 BindingThe �rst step is to create a binding for the operations in a data ow graph. Thisdetermines a mapping between operations in a data ow graph and resources. A bindingmay associate more than one operation to a speci�c resource type in the library. Acovering relationship can be de�ned among types to represent the fact that a resourceimplements more than one operation. For example, an ALU may cover several operationslike addition and subtraction.In order to produce a valid binding it is necessary that all operations are bound to alibrary resource. Where this is not the case, a partial binding is created. Mercury doesnot consider nor allow partial bindings because this would prevent a data ow graph frombeing accurately scheduled and allocated.There is currently a limited supply of asynchronous components in which to build acircuit. Therefore, Mercury does not focus on binding and resource selection. Whilebinding and resource selection are important issues, their potential bene�ts are notutilized at this time. For simplicity, Mercury requires that the library contains at leastone resource to satisfy each operation type used in the data ow graph. Then, to performbinding, Mercury binds the �rst resource in the library which satis�es the operation.3.2 SchedulingFor synchronous systems, scheduling determines when operations are executed in time.This can be done e�ciently using discrete-time intervals based on a global clock. Inan asynchronous circuit, the absence of a global clock and the asynchronous timingof events make scheduling di�cult. The scheduling of resources is dependent only onthe availability of the resource and its inputs. For accurate asynchronous scheduling,resources must be modeled with data-dependent completion delays. Since binding isdone prior to scheduling, delay information is extracted from the given binding.Traditional scheduling of synchronous designs assigns a given start and �nish time witheach operation. In asynchronous scheduling, the start and �nish times of operations havea limited use because data-dependent delays have a signi�cant impact on performance



27[9]. While scheduling information is useful, it has a limited use in asynchronous designbecause it is very di�cult to break time into discrete bins. Furthermore, discrete methodsrapidly become computationally infeasible as discretization constants are made small toallow for �ner granularity.For these reasons, scheduling information is not used here to explictily schedule anoperation to a speci�c time. It is only used to determine conservative windows of time inwhich a operation may occur. The actual schedule is determined by resource sharing andthe order of operations. This makes the scheduling of operations for asynchronous designan optional task. It is shown later, however, that this scheduling information can be veryhelpful in reducing the time required to �nd a good solution. We leverage synchronousmethods to �nd the potential start and �nish times of each operation.For these tasks, two common algorithms are used. Mercury uses the synchronousmethod of ASAP (as-soon-as-possible) scheduling to �nd the conservative windows oftime in which an operation may be utilizing a resource. ALAP (as-late-as-possible)scheduling is used in conjunction with ASAP scheduling to �nd the mobility of eachoperation in the data ow graph [18]. The following sections describe these methods.3.2.1 ASAP SchedulingASAP scheduling, or scheduling without resource constraints, is used to determine alower bound on the latency of the system. ASAP scheduling is solved in polynomial timeby iterating through the nodes of the data ow graph in topological order. Each node isscheduled by setting its start time to the maximum ending time of all its predecessors.The ending time of each operation is computed by adding either the minimum, maximum,or typical delay of the operation to its starting time. This gives three ASAP schedulesfor each operation.Figure 3.1a illustrates how the synchronous ASAP algorithm would schedule resourcesfor the di�erential equation solver. The ASAP algorithm is shown in Figure 3.3. Becauseresources can be scheduled without limit, con�gurations that limit the number of resourcesonly have a latency greater than or equal to that of the unconstrained ASAP schedule.By design, operations in an asynchronous system always start as soon as they can.This means the di�erence between a minimum (best-case) ASAP schedule and maximum(worst-case) ASAP schedule yields a range of time in which the operation starts itscomputation. In this manner, scheduling takes on a nontraditional de�nition. Namely,scheduling involves denoting an operation with a window of time when a resource is most



28likely used for a given operation. These ranges of time are called critical windows becausethese windows are used during resource sharing to determine the range of time when otheroperations should not try to utilize a given resource to avoid resource conicts. Resourceconicts lead to a loss in performance because one operation may have to wait for theresource to become available.Using the data ow graph from Figure 3.1, each node is scheduled as-soon-as-possibleusing a minimum, maximum and typical delay. For this example, it is assumed thateach multiplication operation has a minimum delay of four, a typical delay of �ve, anda maximum delay of six. All other operations have a minimum delay of one, typicaldelay of two, and maximum delay of three. Figure 3.2 shows the critical windows for thestart times of each operation determined by ASAP scheduling for the di�erential equationsolver example. 3.2.2 ALAP SchedulingALAP scheduling is the complement of ASAP scheduling and is used for latency-constrained scheduling. In this case, operations are scheduled as late as possible bysetting the �nish time for each operation to be the minimum start time of all of itssuccessors. Again, like the ASAP algorithm, unless explicitly constrained, resources can
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Figure 3.1. As-soon-as-possible and as-late-as-possible scheduling.
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Figure 3.2. Critical windows derived from as-soon-as-possible scheduling.be used without limit.The ALAP algorithm is shown in Figure 3.3. The variable � is the latency bound,and is chosen to be the delay of the schedule computed by the ASAP algorithm. Again,best-case, worst-case, and typical ALAP schedules are derived using minimum, maximum,and typical data-dependent resource delays respectively. Figure 3.1 illustrates how thesynchronous ALAP algorithm would schedule resources for the di�erential equation solver.The computational complexity of both ASAP and ALAP is O(V+E).3.2.3 MobilityUsing the di�erence of ALAP and ASAP scheduling, the mobility of each operationis computed. This is an important quantity because it represents the span of time inwhich an operation may be started. To illustrate, assume that for a speci�c operationthe best-case ASAP start time is 5, and the best-case ALAP start time is 18. Then themobility of the operation is 13.If an operation has zero mobility then it is started only at a single given time, orelse the schedule would exceed the calculated latency. The critical path of the system



30ASAP (G(V,E)) fforeach vi in topological orderschedule tSi to max (tSj + delayj) where j:(vj ,vi) 2 Ereturn(tS);gALAP (G(V,E),�) fSchedule vn by setting tSn = �foreach vi in reverse topological orderschedule tLi to min (tLj - delayi) where j:(vi,vj) 2 Eg Figure 3.3. As-soon-as-possible and as-late-as-possible algorithms.is determined when the latency bound of ALAP scheduling is set to that given by theASAP algorithm. Then, taking the di�erence between scheduled operations according toASAP and ALAP, each operation that has zero mobility is on the critical path of thesystem. 3.2.4 Force-Directed SchedulingAnother method used for discrete time based methods is Force-Directed Scheduling[36]. This method attempts to balance the concurrency of operations assigned to func-tional units. To do this, a concept of force is developed for each resource. One commonanalogy is to view the force of each operation as a spring. Then, a dataow graph can beviewed as a set of springs pushing against their successors and predecessors. Additionalforces to account for the sharing of functional units is also taken into consideration. Withthis model, a state of equilibrium is found between the forces. When this occurs, theconcurrency of operations assigned to functional units gives the sharing of resources. Anexample of a schedule for the di�erential equation solver using this method is shownin Figure 3.4. Using this method, only two multipliers and two ALUs are required tocomplete the system in four time steps. This is an improvement over the ASAP methodwhich requires four multipliers, and the ALAP method which requires three ALUs tocomplete in the same amount of time. Later, our results are compared against the FDSalgorithm, and a similiar method called Force-Directed List Scheduling (FDLS) [36].
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SiFigure 3.4. Force-directed scheduling.3.2.5 Statistical Delay CalculationIt is critical that accurate estimates be used for asynchronous scheduling in order toachieve optimal scheduling and resource sharing. The delay of a system is more accuratelycalculated by using the statistical analysis approach presented in [9]. This method modelsoperations with a probability distribution representing the likelihood of completion aftera given amount of time. To illustrate, consider the example in Figure 3.5. In this case,operation D cannot begin its computation until all three of its incoming operands A, B,and C are available. An approach that simply �nds the starting time of D by taking themaximum completion delay of A, B, and C is shown in [9] to potentially underestimate
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32the performance of the system by as much as 21%. This is because worst-case timinganalysis only calculates a pessimistic delay.The statistical delay method is more accurate than these methods. It �rst calculatesthe uncertainty of the start time for the system by using delay distributions of operationsA, B, and C. In this example, it is assumed that the completion times are normally dis-tributed. The resulting distribution represents the window of time in which an operationmay start its calculation. For any time t, assuming statistical independence on each ofthe inputs A through C, the distribution of D can be calculated. For the probabilitydensity function of A, the notation fA is used. So, the probability that operation A hascompleted by time t is: P (Af � t) = FA(t) = Z t0 fA(t)dtThis means the probability that D can start its computation at time t is:P (Ds � t) = P (Af � t) � P (Bf � t) � P (Cf � t)By substituting the �rst equation into the second for A, B and C and taking thederivative of both sides, the start time distribution for D is:fD(t) = FA(t) � FB(t) � fC(t) + FB(t) � FC(t) � fA(t) + FA(t) � FC(t) � fB(t)Finally, to �nd the distribution of time for which the operation D is �nished, the starttime distribution of D is convolved with its computational delay distribution. The endingtime distribution is then propagated in a like manner to D's succeeding operations. Usingthis model the data ow graph can be analyzed and a timing model can be generated.It is clear that asynchronous scheduling using this method is more accurate but is acomputationally expensive task. The shortcoming of this method is that the assumptionof independence between signals is not always valid. Systems that have diverging signalsfrom a common source operation that then reconverge at a later point in the data owgraph should, in theory, exhibit some dependence. This means that the assumption ofindependence in this method could lead to erroneous calculations.3.2.6 Monte-Carlo Delay CalculationAnother method for computing the delay of the system is Monte-Carlo. The Monte-Carlo technique simulates the system until the overall delay of the system converges to a



33speci�c time. Since in this method the delay of the system is calculated using Gaussianrandom variables to model the delays of each operation, Monte-Carlo yields the typicaldelay of the system.The advantage of the Monte-Carlo method is that it takes into account signal depen-dencies. The drawback of the Monte-Carlo method is the large processing time requiredfor convergence, making this type of delay estimation unsuitable during synthesis.A couple of observations are in order at this point. First, the ASAP and ALAPscheduling techniques are suitable for calculating the conservative schedules for a system.From these schedules, the window of time in which an operation starts and completescan be found, albeit conservatively. Using the ASAP and ALAP schedules, it can bedetermined which resources are, or are not, in conict and then share them appropriately.The ASAP and ALAP method cannot determine exactly when, in the typical case, anoperation starts and completes. When a more accurate technique is required, the Monte-Carlo method can be used. 3.3 Typical DelayAlthough very elusive, it is important to have some notion of the typical delay of asystem, because in an asynchronous design, minimizing the typical delay is the primaryobjective when trying to reduce the overall latency. The worst-case, or even best-case,completion delays of two designs can be equal, but each can have di�erent typical delays.Analyzing a design does not require knowing the typical system delay, it only requiresknowing, with some degree of accuracy, if the typical delay is better or worse than acompeting design.It was originally thought that as operations are serialized to enable resource sharingthe values of the worst-case delay and typical delay of the system would increase together.This would allow us to simply use the worst-case delay of the system as an indicator of thetypical delay. Using this method, it seems logical that if a design had a larger worst-casedelay, it would then also have a larger typical delay. This, however, is not the case,because it is possible for the worst-case delay of the system to increase, while the typicaldelay of the system actually decreases.Using the di�erential equation solver, from Figure 2.1, the worst-case delay of thesystem was compared with the Monte-Carlo typical delay of the system. For the addition,subtraction, and comparison operations (ALU operations), delays of two, �ve, and eight



34are used. These correspond to the minimum, typical, and maximum delay of eachoperation. For all other operations, delays of four, �ve, and six are used. Note thatfor this example, all operations in the data ow graph have the same typical delay. Onlythe best-case and worst-case delays vary. Exploration is then done on the system to �ndall con�gurations of the system. It was discovered, that as operations in the graph wereserialized that the typical delay of the system did not track the worst case delay of thesystem. While the worst case delay of the system monotonically increased, the typicaldelay increased as expected, but it also decreased with certain con�gurations.Further analysis of the di�erential equation solver example showed that this occursbecause each ALU on the critical path improves the typical delay by three units. Whenother operations are on the critical path, they only improve the typical delay by one unit.In other words, it is better for the critical path to be composed with ALUs in place ofother operations, because while the worst-case delay may increase, the typical delay isbetter. This illustrates that the typical delay of the system does not always track theworst-case delay of the system.3.4 Resource AllocationResource sharing is used to minimize the area required for a design. This is doneby determining which operations are scheduled to a particular instance of a resource.An optimum resource sharing is one that minimizes the number of required resourceinstances. Two or more operations can share the same resource if they are of the sametype and they are not in conict with each other. Operations are in conict if theirexecution windows overlap in time. This happens when either operation starts beforethe other has completed. Operations that are scheduled in disjoint windows of time areguaranteed not to overlap and are, therefore, always compatible. The conict windowis determined by using the best-case ASAP schedule to determine the start time of thewindow and the worst-case ALAP schedule to determine the stop time of the window.Another way to show that two operations are compatible is to analyze the data owgraph. If there is a path from operation i to operation j, then those two operations arecompatible regardless of their scheduled windows of time. This is because the existenceof a path guarantees that operation i must complete before operation j begins. The moreedges present in a graph, the more sharing that can potentially occur. Edges used toexplicitly denote two sharable operations are known as resource edges and are added to



35the data ow graph during exploration. They are distinguished from data edges, becausethey do not imply the transfer of data from one operation to the next. Resource edgesenforce that the two operations occur at disjoint times and denote the ordering in whichoperations must occur.Figure 3.6 shows a data ow graph with only data edges. In this con�guration, fourmultipliers are required and three ALUs. With resource edges, only two multipliers andone ALU are required. Granted, however, in this case, the overall delay of the systemmay not be equal. Note that there are many ways to add resource edges to the graph.Each resource edge added to the graph, in essence covers an aggregate of all the possiblediscrete time schedules that the given operation sequencing and resource sharing wouldproduce. Hence, scheduling of operations is done independent of the discretization oftime. For e�ciency, Mercury utilizes both the information from the data ow graph andwhere applicable, conservative scheduling information to perform resource sharing.This approach is bene�cial for asynchronous design because the computational com-plexity is constant with regard to the discretization of time. Using resource edges, ine�ect, allows scheduling to take on a continuous time paradigm. Our tests showedthat synchronous methods, such as Force-Directed Scheduling, become computationally
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36infeasible as the granularity of time is increased. Figure 3.7 illustrates the crossover in theusefulness of the two methods. Being able to discretize time without a loss in performanceis important for asynchronous design because of the naturally continuous nature of eventswhich can occur in an asynchronous circuit.3.4.1 Left-Edge AlgorithmUsing the left-edge algorithm from [26], it is possible to do resource sharing. Thealgorithm �rst sorts the operations or nodes by their scheduled start time, or left-edge. Itconsiders one instance of a resource at a time and assigns as many operations as possibleto that instance by searching the nodes sorted in ascending order. Each iteration of thealgorithm considers a new instance of the resource, until all operations are allocated to aspeci�c resource instance.The algorithm in [26] is used to perform asynchronous resource sharing, but with twomodi�cations. First, the left-edge of each operation is determined by its scheduled starttime in place of a speci�c clock cycle. The right-edge of each operation is determined byits scheduled stop time. This reects the window of time in which the resources shouldnot be shared. In the tool Mercury, the user can specify a more liberal window of time
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Figure 3.7. Synchronous methods vs. asynchronous approach.



37if desired. For example the user could specify the typical start time to typical stop time.Second, the existence of a path between two operations is tested. When a path existsbetween two operations, it does not matter if the operations are scheduled at potentiallyconicting times, the two operations are considered compatible because the existence ofa path guarantees the operations are serialized with respect to each other.The asynchronous version of the left-edge algorithm is shown in Figure 3.8. Thecomplexity of the algorithm is O(V logV ). While the algorithm is not exact, it is found,in practice to give very good results e�ciently.Solving for an optimal con�guration of resource sharing exactly is an exponentiallydi�cult problem. Figure 3.9 illustrates the asynchronous left-edge algorithm on anexample and shows why an exact solution is di�cult. The example shows that theordering of operations can, in some cases, determine the quality of the solution. Inthe example, each node in the data ow graph is the same operation, and the resourcebound to each operation has a minimum computational delay of one and a maximumcomputational delay of three. The schedule for each node gives the interval in which theoperation can use the resource. The nodes are sorted according to their start times.Initially, the algorithm would pick A or B and start scheduling operations, since theyboth have the same left-edge. Assuming that operation A is picked �rst, the algorithm willshare it with operation C, even though there is an overlapping window of time, becauseAsynchronous-Left-Edge (I) fSort elements of I in a list L in ascending order of lstart.instance = 1;foreach operation in l in L flinstance = instance;t = l;foreach operation k in L starting at l + 1 fif kmin start >= tmax stop or path between t and k fkinstance = instance;t = kremove k from L;gginstance++;remove l from L;gg Figure 3.8. Asynchronous left-edge algorithm.
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Figure 3.9. Example using the asynchronous left-edge algorithm.a path exists between A and C, and C has the next lowest left edge. The next step isto pick either E or F to share with A and C. From the example, note that operations Eand F both have the same potential start time. If E is evaluated before F as a potentialnode to share with A and C, then an optimal solution is found. If F is evaluated beforeE, then the solution is not optimal. To �nd an exact solution to resource sharing, theorder of picking nodes has to be considered.Because of the complexity of an exact solution, we do not consider the ordering ofnodes. But for consistency, the algorithm is stabilized by sorting each node �rst, by itsleft-edge, and second, by the name of the node in the graph. This guarantees that thealgorithm always gives the same answer for the same scheduled graph even though it maynot always be an optimal solution.



393.4.2 Clique CoveringAnother method of resource sharing is clique covering [23]. A clique is de�ned as amaximally connected set of operations in a graph. Clique covering is the process of �ndinga minimum number of maximal cliques. It attempts to solve the problem by creating aresource compatibility graph. The compatibility graph has edges between all nodes thatare compatible. Similar to the left-edge technique, two operations are compatible if apath exists between them, or if they have disjoint time frames.A solution to the clique covering problem can be determined by iteratively searchingfor the maximum clique in the graph and then deleting it from the graph until there areno more nodes in the graph. Each clique is assigned an instance of the resource. Theclique covering problem is intractable, and so, heuristic techniques have been developed.One common heuristic to �nd the maximum clique in a graph �rst calculates thedegree of each node. The degree of a node is determined by the number of adjacentnodes. Next, the node with the highest degree is selected. Then, adjacent nodes areiteratively selected in a similar manner. If the node under inspection is adjacent to allpreviously selected nodes then it is selected to be part of the clique. It is hoped that bypicking the node with the highest degree at each iteration the largest possible clique willbe created.The complexity of the clique covering algorithm is O(V 2). This makes the algorithmmuch more complex than the left-edge algorithm. The algorithm is also slower because itrequires dynamic creation and manipulation of the compatibility graph. In nearly all tests,clique covering gave the same or worse results than the left-edge algorithm. Figure 3.10shows the compatibility graph for the example in Figure 3.9. The �gure shows why
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Figure 3.10. Compatibility graph for clique covering.



40the left-edge algorithm can perform, in many circumstances, better than clique covering.Using the heuristic, operation F would be selected as the starting node since it is thehighest degree node in the compatibility graph. Next, either operations A or C wouldbe selected to be part of the clique, since they are the next highest degree nodes. Bylimiting the choices to A and C, the optimal solution which requires F to be paired withB or D does not occur.The example shows that in this case the clique covering technique would not yieldthe best solution, whereas, the left-edge algorithm still has the potential to �nd thebetter solution. The clique covering heuristic could be modi�ed to randomly select nodesinstead of selecting those with the highest degree �rst. If this were the case, it would havethe potential of �nding the better solution, but the algorithm still requires much morecomputation time, making it an undesirable choice. For essentially the same results, theleft-edge algorithm is a more e�cient method of determining resource sharing.Resource sharing and allocation determine, in part, the area a particular designrequires. The total area can be computed by summing the area of each resource in-stance. In addition, where resource sharing has occurred, the area of each multiplexoris added to the total. The area each latch requires is neglected because the number oflatches for each con�guration in the design space is currently constant. The area of thecontrol is not added to the total since Mercury only generates a behavioral model of thecontrol. After re�ning the control to the gate level using ATACS, area estimations couldbe extracted and taken into consideration. For now, the supposition that the circuits willbe resource-dominated is made, and it is assumed the area of the control is negligible.



CHAPTER 4THE DESIGN SPACE God is in the details|Mies van der RoheThe design space of this problem is all possible con�gurations of the data ow graphthat can be used to create a datapath. Design space exploration starts with the user-provided data ow graph and incrementally adds resource edges to the graph. Each addededge serializes more operations. Each serialized operation reduces the area of the systembecause better resource sharing may occur. But this in turn may increase the latencyof the system. When exploring the design space, three di�erent types of edges are used.These include data edges, resource edges, and implied edges.Data edges are edges that show the relationship between computed values and theirfuture use. These edges are initially provided by the user via the speci�cation. Resourceedges are added between operations during exploration to allow the operations to sharethe same physical resource, they also imply the ordering precedence of operations. Animplied edge is an edge which can be inferred between two compatible resources based onconservative timing analysis. A data dependency edge between two operations implies aresource edge between the operations if they are compatible operations, but a resourceedge between two operations does not imply a data dependency edge.To illustrate the design space, an example consisting of three compatible operationsA, B, and C, with no data dependencies between their operations is used. Compatibleoperations are operations which can share the same resource. The design space for thiscon�guration is shown in Figure 4.1. Edges between operations in the �gure denoteresource edges. In this case, the three concurrent operations yield a design space of 27con�gurations. Infeasible con�gurations are denoted with an I and redundant con�gura-tions with an R. These are discussed later in more detail.
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Figure 4.1. Exploration space of 3 compatible operations.4.1 Reducing the Design SpaceMany graphing problems are intractable because the design space grows exponentiallyin relationship to the number of nodes in the graph. The exponential explosion ofthe design space makes it very di�cult to evaluate all possibilities in a �nite amountof time. Evaluating each possible con�guration of a data ow graph to �nd the bestasynchronous datapath con�guration has the exponential characteristic common to othergraphing problems. Therefore, it is advantageous to eliminate as many con�gurations inthe design space as possible before they are analyzed. Several optimizations to reducethe design space are used. This chapter �rst gives a brief overview of exploration andthen discusses each of the optimizations.The complexity of the design space for a con�guration in which all operations areconcurrent, compatible, and not dependent on one another grows at a rate of O(3n(n�1)=2),



43where n is the number of nodes in the graph. This con�guration has the worst possi-ble complexity, since graphs with data dependencies or graphs having noncompatibleresources constrain the system and reduce the number of edges which can be added toserialize operations.The complexity of the design space is derived as follows: between two independentnodes, a choice of three possibilities is made during exploration. An edge can be addedfrom i to j, or an edge can be added from j to i, or no edge is added at all. Betweenn nodes, there are n(n � 1) possible directed edges. Picking both edges between anytwo nodes would create a cycle in the graph, so it is only possible for half of the edgesto be added to the graph at any given time. So the complexity of the design space isO(3n(n�1)=2). 4.2 FiltersFilters are special checks done during the exploration of the design space. Several�lters are integrated into Mercury that eliminate much of the required design exploration.These �lters include detecting and eliminating redundant designs, eliminating infeasiblecon�gurations, detecting maximum resource sharing, and considering operations whichhave implied serialization. An e�cient pruning technique is also used when solving fora minimal-latency solution. While none of these �lters exponentially decrease the designspace for all con�gurations, each signi�cantly reduces the design space and required run-time to �nd a solution. 4.2.1 Infeasible EdgesIn exploring the design space, all possible orderings of adding resource edges to theoriginal data ow graph are potentially considered. Since edges are directional, eachdirection of an edge between two nodes is explored. This means that with the additionof certain edges, the original acyclic data ow graph could become cyclic. Edges whichcreate a cyclic graph are infeasible. The �rst �lter eliminates designs which are createdby an infeasible resource edge. More formally, if there is a path from the target of acandidate edge to the source of the candidate edge, then the candidate edge would createan infeasible design. The existence of a path from the target to the source node canbe determined by �nding the transitive closure of the data ow graph and using it todetermine the existence of a path between the two nodes. If an edge is infeasible, thenthe design is not considered and design space exploration is pruned at that point.



44Figure 4.2 illustrates a candidate edge from node C to A which would create aninfeasible design, since it would create a cyclic dependency between operations. For theexample in Figure 4.1, those designs which are created by infeasible edges are denotedwith an I. 4.2.2 RedundancyThe second �lter eliminates redundant designs. A design is redundant if the additionof an edge creates a design equivalent to one previously explored. To detect whether acandidate resource edge creates a redundancy, the algorithm shown in Figure 4.3 is used.The algorithm detects if a candidate edge is redundant by checking for the existence ofa path from the source of the candidate edge to the target of the candidate edge. Ifthere exists a path, then the candidate edge would create a redundant design. Next,the algorithm goes to the candidate edges' target and checks all of its resource edgepredecessors. If there is a path from any one of those predecessors source operation backto the original candidate source operation, through a resource edge, then the newly addededge creates a redundant design. In the �nal step, the algorithm goes to the candidateedges' source and checks all of its resource edge successors. If there is a path from theoriginal candidate edge target to any one of the successors targets, through a resourceedge, then the design is also redundant.The design space illustrated in Figure 4.1 has several redundant designs which aremarked with an R. Each of these designs is eliminated from consideration with theredundancy �lter. When a redundant design is detected, the design space is prunedand no further con�gurations along that branch of the exploration are considered. The
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CFigure 4.2. Infeasible edge.



45foreach new edge e = (x,y)if (9 path y ! x) theninfeasibleif (9 path x ! y) thenredundantforeach e' = (x',y) 2 Eresourceif (9 path x' ! x) thenredundantforeach e' = (x,y') 2 Eresourceif (9 path y ! y') thenredundantFigure 4.3. Procedure to determine if adding a resource edge creates a valid design.design space can be pruned because all future combinations of edges originating from aredundant one, are identical con�gurations to ones explored previously.Many redundant designs are detected during exploration. It has been found thatpruning the design space using this algorithm yields a signi�cant reduction in explorationand runtime without sacri�cing the quality of the solutions.To further illustrate this �lter, a simpli�ed version of our original example is created byadding a data dependency edge from node A to B. Figure 4.4 shows the reduced designspace. In this example, design 6 is redundant because of design 4. Note that in this
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46case all operations are serialized in the same manner for both cases. Unlike the previousexample, design 7 was not eliminated as being redundant because the edge from A to Bis a data edge and not a resource edge.4.2.3 Implied EdgesAs mentioned earlier, implied edges are edges which are not in the original data owgraph, but can be added to the graph without a�ecting the scheduling of operations.Implied edges are important because they may a�ect the sharing of resources. Anedge is implied between two operations if �rst, they have the same type of operation,and second, according to timing analysis it is determined that the two operations cannever be in conict with each other. To do a conservative resource analysis, the criticalwindow of the resource is calculated using ASAP scheduling. If any two resourceshave overlapping critical windows then there cannot be an implied edge between thoseoperations. Figure 4.5 illustrates an implied edge. Implied edges are always used to implysharable operations when doing resource sharing, so if a candidate edge is an implied edge,then adding the candidate edge does not yield additional information and consequentlythe candidate edge does not need to be explicitly added to the graph. When an impliededge is detected, explicitly considering the edge is not required so the design space canbe pruned.
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474.2.4 Minimal LatencyWhen performance is the key optimization goal it is often the case that the designerwould like the best possible performance for a design using minimal area. This is knownas the latency-constrained minimum-area problem. When a designer seeks to �nd onlyminimal latency solutions, though, an additional optimization can signi�cantly reducethe design space of the exploration.For this optimization, it must be assumed that latency monotonically increases as eachcandidate edge is added to a design. It is believed that this is a fair assumption, becauseeach additional edge either leaves the design unchanged or further serializes operations.Serializing an operation and employing resource sharing potentially add delay to thesystem, but does not decrease the delay. This is because larger muxes are required tofeed multiple operands to the resource and the computation may potentially be delayeddue to a resource conict. From this, the design space is pruned when a candidate edge isfound, which increases the overall latency of the system, because future designs originatingfrom that con�guration have equal or longer latencies. The overall system latency iscalculated using unconstrained ASAP scheduling. When solving for a minimal-latencysolution, if the overall system latency is greater than the value determined by typicalASAP scheduling, then the design space can be pruned.This �lter can be optimized further, and additional savings can be made by comparingthe ASAP and ALAP bounds of source and target operations of a candidate edge. Ifthe best-case start time of the source of a candidate resource edge is greater than theworst-case completion time of the target, then it can be concluded that there is no wayto serialize the two operations without additional system delay. This is because the edgewould force one of the operations out of its zone of mobility, which would in turn lengthenthe critical path of the system. Figure 4.6 illustrates this comparison. The overall delayis increased because the edge forces the target and all of its successors to shift to laterstarting times, which in turn expands the overall delay of the schedule, forcing the designto have nonminimal latency. Using this technique is very e�cient, because it does notrequire calculating the overall system delay with the added candidate resource edge. Inorder to prune the design space, this method only needs to examine the original scheduleand determine if adding an edge between two given operations would lengthen the criticalpath.
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Figure 4.6. Minimal latency �lter.4.2.5 ConstraintsConstraints can be speci�ed by the designer to aide design space exploration. Forexample, the designer may know the total area that the design can occupy, or may specifya maximum limit on the number of allocated instances of a resource. Considering theseconstraints does not always signi�cantly reduce the exploration of the system withoutopening the possibility of suboptimal solutions. Unlike delay, the system area does notmonotonically increase or decrease as candidate edges are added. The area may increaseif the cost of interconnect logic is greater than the savings given by resource sharing. Thismakes it di�cult to prune the design space using a method similar to the minimal-latencyoptimization. 4.2.6 Maximally Shared ResourcesDetecting when a resource is maximally shared is another optimization. Maximumsharing occurs when only one instance of the resource is required by allocation for a groupof similar operations. Once a resource is maximally shared, further exploration of thatresource is not productive. This is because the addition of more resource edges to the dataow graph, between compatible operations that are already assigned to the resource, doesnot change the allocation for the resource. For this reason, when a resource is maximallyshared, no further exploration is performed for operations which are allocated to thatresource. When all resources required by the data ow graph are maximally shared, all



49operations of the system are maximally serialized, and this branch of the design spacecan be pruned from further exploration.This optimization is exact because when all operations are serialized, further resourcesharing is not possible. This means that the total area required by the design does notdecrease, and the addition of resource edges either increases the latency of the systemor leaves it unchanged. Since adding edges does not decrease the overall latency of thesystem, further exploration does not yield a con�guration better than a con�gurationwith maximum serialization, which uses a minimum number of resource edges.4.2.7 No Change In ObjectivesAnother �lter detects when, after the addition of a candidate resource edge, there isno change in the values of all objectives. If there is no change, then the design spaceis pruned and further exploration is not done with the edge included. In this case, it isassumed that a resource edge is useless when it has no e�ect, so the algorithm skips toedges that make a di�erence in the design. The assumption may not however be correctif, later in the exploration additional resource edges have been added to the graph andthen the edge does make a di�erence in the sharing or sequencing of operations. Whenthis occurs, the two paths of exploration are no longer parallel. If this occurs, then this�lter may cause the quality of results to deteriorate since unique solutions will not beevaluated. This method is a very aggressive heuristic that signi�cantly reduces the timerequired to �nd a solution; however there is a tradeo� in the quality of solutions.4.3 Hierarchal ExplorationAnother method to reduce the design space uses a hierarchal exploration approach.In this method, not all combinations of resource edges between operations are explored.The hierarchal approach groups each operation in the data ow graph according to theirtype. Then, exploration is done separately for each group. For example, exploration isdone for all ALU operations separately from exploration for multiply operations.Each group is explored by adding resource edges between operation pairs in the group.Edges between operations that are not in the group are not modi�ed. Resource edges ina group that a�ect the overall area and delay in a favorable manner (critical edges) arestored. When the critical edges for each group are found, all possible combinations ofthe critical edges are added to the original data ow graph. Each new con�guration isevaluated and a �nal set of solutions is discovered.



50This approach detects edges that do not have an impact on scheduling or allocationand removes them from further consideration. Extracting groups of edges reduces thecomplexity of the design space. This happens because, in general, the sum of thecomplexity of each groups' design space is much smaller than the complexity of exploringthe entire design space all at one time. Furthermore, if a group does not have anyfavorable edges, then that group, or set of operations, is dominated by other operationsin the graph. This focuses exploration on groups of operations which have the potentialto optimize the overall design further. Figure 4.7 illustrates the hierarchal grouping ofresources for the di�erential equation solver.The solutions produced using this method, however, may not be globally optimal:when critical edges are determined for each group, it is assumed that other operations arescheduled and allocated without constraint. This means that it is possible to skip criticaledges that are dependent on other critical edges, which are not part of the current groupbeing explored. For example, if edge A from group X is not a critical edge, independentof edges from other groups, it would not be considered. But, if critical edge B fromgroup Y were added to the graph causing A to become a critical edge, then A should beconsidered. Using the hierarchal approach, edge A would be skipped.
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Figure 4.7. Grouping of resources for hiearchal exploration.



51Mercury implements the hierarchal approach and we observe its e�ectiveness in thecase studies of Chapter 6. It is has been found to be very bene�cial when solving largedesigns where the design space is too large to e�ciently solve using nonhierarchal methods.



CHAPTER 5SYSTEM IMPLEMENTATIONTo iterate is human, to recurse: divine!|L.P. Deutsch5.1 General AlgorithmThe engine of the exploration system uses a branch-and-bound algorithm to explorethe design space. The design space is searched for the best possible set of schedules andallocations by incrementally adding resource edges to the data ow graph. Each resourceedge added can a�ect the performance, area, or other attributes of the system. Thus,after each edge is added, the newly created graph is analyzed for performance in termsof area and latency.Trade-o�s between area and latency are managed by using Pareto points [10]. Anypoint in the design space which is superior to all other points in one objective, ora combination of objectives, is a Pareto point. Each design space may have manyPareto points that correspond to unique design con�gurations not dominated by others.Therefore, each Pareto point is worth consideration as a candidate con�guration forimplementation. Figure 5.1 illustrates the concept of a Pareto point for two objectives:delay and area. The concept could can be extended into the third demension usinganother objective such as power.Mercury evaluates each con�guration in the design space according to two objectives:delay and area. These objectives are used to �nd Pareto points. If the new design is aPareto point, then that con�guration is stored in a set of Pareto point solutions. Solutionswhich are added to the set may be better than former solutions in the set, so any formersolutions which are no longer Pareto points are removed from the list.The branch-and-bound algorithm for this problem is illustrated in Figure 5.2. Thealgorithm begins by selecting two operations A and B from the graph and determining ifadding a candidate resource edge between the two operations satis�es all of the bounding
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Figure 5.1. Pareto Points.conditions. This includes not being �ltered by any active �lters from Chapter 4. Forexample, if the �lter for checking redundant con�gurations is active, the algorithm skipsover any edges that create a redundant graph. Or, if only a minimal-latency solution isdesired, then the edge must satisfy the minimal-latency �lter, or it is dropped.Each time a candidate edge is �ltered, or the algorithm exceeds constraints, the designspace is pruned. If the candidate resource edge satis�es all of the bounding conditions,then the algorithm recurses into another level of the exploration. The next level considersall remaining edges with and without the candidate resource edge. Recursion continuesuntil all possible edges between any two compatible operations have been explored orpruned. Once the algorithm completes, the Pareto points remaining in the solution setare the best solutions.Using this algorithm on a data ow graph with three concurrent nodes, the designspace shown in Figure 4.1 would be found from the exploration tree shown in Figure 5.3.In Figure 5.3, each branch indicates a level of recursion from the algorithm and each boldnode represents one of the con�gurations in the design space. For this example, infeasible
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explore(operation a, operation b, binding bi) fpareto points pp;if (b == end operation) fb = �rst operation;a = next operation;gif (a == end operation)return pp;while (any active �lter is not satis�ed) fb = next operation;if (b == end operation) fb = �rst operation;a = next operation;if (a == end operation)return pp;gg/* Recurse without adding resource edge */pp + = explore(a,b+1,bi);add-resource-edge(a!b,bi);/* Calculate the area and latency of the con�guration */pareto p = evaluate design(binding );if (p == Pareto point)pp + = design(bi,p);/* Recurse with the resource edge added */pp + = explore(a,b+1,bi);remove-resource-edge(a!b,bi);return pp;gFigure 5.2. Exploring the design space using a branch-and-bound search.
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CB CBFigure 5.3. Exploration tree.designs are �ltered from exploration and are not shown. Six redundant designs are shownwith dashed boxes. They correspond to the redundant designs in Figure 4.1.Note that exploration does not grow symmetrically, but rather grows to the right.This is because each added edge constrains the system further. Edges which are notadded to the system do not constrain the system, so more options are available latter inexploration. Twenty-�ve designs that are evaluated during exploration.5.2 OptimizationsAt each step in the branch-and-bound tree, the graph is evaluated with only onechange from the prior step. This change is the addition or removal of a single edge fromthe graph. Each time an edge is added or removed from the graph, a topological sort



56must be done on the graph, and the ASAP and ALAP schedules must be updated. Inaddition, the transitive closure of the system, which determines whether a path existsbetween any two operations, must be updated.To gain as much e�ciency as possible for incremental changes, two optimizations areemployed. The �rst is dynamic transitive closure on the graph; the second is dynamicanalysis of the ASAP and ALAP schedules.5.2.1 Dynamic Transitive ClosureThe transitive closure of a graph supports reachability queries. For example: is there apath between vertices i and j in the graph? Once a transitive closure has been calculatedfor a graph, boolean-path queries can be answered in constant time. This makes theclassical transitive closure method good for static graphs which are created once andqueried many times. If, however, as in the method presented here, there are many updatesto the graph, followed by only a few queries, the classical approach is computationallyexpensive because it would compute the answer to all queries from scratch after eachupdate.Using a dynamic transitive closure algorithm, it is possible to update the reachabilityof vertices more e�ciently. A dynamic transitive closure algorithm developed by Cicerone[39] which is a generalization of another algorithm proposed by La Poutr�e and vanLeeuwen [37] is used. Other similar algorithms include Italiano's [28, 29] algorithm andYellin's algorithm [44].The algorithm proposed by Cicerone uses a counting technique to solve the problem.Information on edges existing in the graph is maintained explicitly in an adjacency matrix.As resource edges are added or deleted, the adjacency matrix is updated to reect thechanges in structure of the graph. If the transitive closure matrix contains a count ofzero, then no path exists between the pair of operations. If the count is greater than zero,then a path exists and the count represents the number of adjacent edges creating a paththrough the pair of operations. When an edge is inserted into the graph, the transitiveclosure is updated. Figure 5.4 shows the algorithm for updating the adjacency matrixwhen an edge is added to the graph.The algorithm works as follows. First, the new edge is added to the graph G. Then,each operation, or node k with a path to the source i, is considered. A queue is initializedwith the value of the target operation j. Then, while that queue is not empty, the count,which indicates a path from k to the current operation on the queue, h, is incremented.



57If the count becomes equal to one, then each successor of h is added to the queue. Thesuccessors are added to the queue in this case because the new edge caused two previouslyunreachable nodes to become reachable. The transitive closure of each of the successorsneeds to reect the existence of the new path. If the count is greater than one, thenthe successors are already aware that a path exists between the two operations from aprevious edge insertion, and no further updating is required. Otherwise, the successorsare pushed onto the queue. The algorithm continues until all successors of the newlyadded edge are updated with the new path, or are already aware of the path. The deleteoperation works in a similar, but opposite, manner and is shown in Figure 5.5.Using the algorithms in Figure 5.4 and 5.5 when inserting and deleting edges from thegraph, it has been proven in [39] that the total time required to insert q consecutive edgesin a graph G, with n vertices and m edges is O(n(q+m)), and the total time required todelete q consecutive edges in graphG is also O(n(q+m)). Furthermore, it has been proventhat it achieves O(n) amortized time per operation. The adjacency matrix requires O(n2)storage space. Like other methods, queries can still be answered in constant time. Thisis an improvement over non-dynamic solutions that have a complexity of O(n2).5.2.2 Dynamic SchedulingAfter each insertion or removal of a candidate edge, the schedule of a data ow graphmust be recomputed. Since only one edge has changed in the data ow graph, a methodcalled dynamic scheduling updates the ASAP and ALAP schedules without recalculatingthe schedule for every operation in the graph.For dynamic ASAP scheduling, each added edge between a source and target operationcan only a�ect the schedule of the target operation and the target's successor operations.Therefore, when an edge is added, the schedule of the target operation is recomputed. Ifits schedule is changed, then the algorithm recurses to each of its successor operations andrecomputes their schedules. The algorithm continues recursing through any successorswhose schedule has changed until there are no more successors, or there is no change inany successor's schedule. When removing an edge, the same algorithm can be used, sinceagain, only the target operation, and its successors are a�ected by the removal of theedge. Figure 5.6 illustrates the ASAP-update algorithm.For dynamic ALAP scheduling, the concept is the same, but the operation is moredi�cult. In this case, if the overall delay of the system changes, all operation's schedulesalso change, so the ALAP schedule must be entirely recomputed. To determine if the
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insert(i,j) fG = G [ f(i,j)gforeach k 2 Vif (C[k,i] � 1)set-queue(Qk,(i,j))while Qk is not emptypop-queue(Qk,(l,h))if (h 6= k)C[k,h] = C[k,h] +1if (C[k,h] == 1)foreach (h,y) 2 out[h]push-queue(Qk,(h,y))g Figure 5.4. Updating dynamic transitive closure for insertion of an edge.
delete(i,j) fG = G � f(i,j)gforeach k 2 Vif (C[k,i] � 1)set-queue(Qk,(i,j))while Qk is not emptypop-queue(Qk,(l,h))if (h 6= k)C[k,h] = C[k,h] �1if (C[k,h] == 0)foreach (h,y) 2 out[h]push-queue(Qk,(h,y))g Figure 5.5. Updating dynamic transitive closure for deletion of an edge.



59overall delay of the system has changed, the delay of the new ASAP schedule can becompared with the delay of the prior ALAP schedule. If there is no change in the overalldelay of the system, then the algorithm recomputes only those operations which area�ected using a method similar to dynamic ASAP scheduling. Figure 5.7 illustrates theALAP-update algorithm.ASAP-update(target) fcompute new-schedule for target;if (target's prior-schedule != target's new-schedule)prior-schedule = new-schedule;foreach (successor of target i)ASAP-addedge(i);gFigure 5.6. Updating ASAP schedule for insertion or deletion of an edge.ALAP-update(target) fif (new overall delay == old overall delay)recompute(target);elseschedule-ALAP(); grecompute(target) fcompute new-schedule for target;if (targets prior-schedule != targets new-schedule)prior-schedule = new-schedule;foreach (successor of target i)recompute(i);gFigure 5.7. Updating ALAP schedule for insertion or deletion of an edge.



CHAPTER 6CASE STUDIESBe careful of going in search of Adventure.It is ridiculously easy to �nd.|William Least Heat MoonTo test the e�ectiveness of the �lters, three common high-level synthesis benchmarksare used: a di�erential equation solver (DIFFEQ), a �fth order elliptical wave �lter(EWF), and an inverse discrete cosine transform (IDCT). The di�erential equation solveris the smallest of the three examples with a total of 11 operations. The elliptical wave�lter is larger yet with 32 operations. The inverse discrete cosine transform is the largest,with 46 operations.All of the case studies were performed using a Pentium II 400 Mhz processor witha 512 kilobyte level 2 cache and 384 megabytes of synchronous DRAM. The operatingsystem used is RedHat Linux version 5.0, and the source code for Mercury was compiledusing GNU C++ version 2.8.1. Memory was not an issue for any of the tests. Maximummemory utilization during exploration was approximately 13 megabytes. Throughouteach test, CPU utilization was at, or near capacity.6.1 Di�erential Equation SolverUsing the data ow graph for the di�erential equation solver shown in Figure 2.1,exploration is done using both the hierarchal and nonhierarchal approaches. By default,the infeasible edge �lter is always active for each of these tests, since exploring infeasibledesigns is not useful. ALU operations are modeled with a minimum delay of one, typicaldelay of two, and maximum delay of three. It is assumed that they require 21 units ofarea. Multiply operations have a minimum delay of four, a typical delay of �ve, and amaximum delay of six. It is assumed that they require 43 units of area. Multiplexorsare modeled with a base area of three units, corresponding to a 2x1 multiplexor. For an(Nx1) multiplexor the area is modeled as base � (N � 1).



61A selection of designs from the solution set were tested using ViewLogic's VHDLsimulator FusionSpeedwave. A simple validation procedure was done in which each of theprimary inputs were assigned values, then the global request of the system was asserted.When an acknowledge was received, the values of the primary outputs were checked. Alldesigns were checked to have correct functionality.The results of exploration using hierarchal and nonhierarchal methods are shown inTable 6.1 and Table 6.2 respectively. The table shows which �lters are active for eachtest, the amount of CPU time required to run the test to completion, the total numberof con�gurations explored, and the number of solutions in the �nal Pareto point set.Performing a complete exploration of the design space, in the worst case, required theevaluation of over 22 million con�gurations and took several hours to complete. With theuse of the �lters, the design space is pruned and runtime is reduced.The hierarchal approach reduced the design space even further. This heuristic brokethe graph up into two sets: ALU operations and multiplication operations. Using thisapproach, fewer solutions are found. However, the quality of the solutions is nearly asgood.For example, comparing the results of the nonhierarchal approach using none of the�lters, with the hierarchal approach, also using none of the �lters, it is found that the�rst method yielded 292 solutions, while the second method yielded only 82 solutions.Of the 292 solutions, there are �ve unique Pareto points. Of the 82 solutions from thehierarchal approach there are also �ve unique Pareto points. In other words, all solutionslanded on one of the �ve Pareto points, but did so with di�ering con�gurations of resourceedges. The unique Pareto points are shown in Table 6.3. The tradeo� in the two methodsbetween the quality and quantity of solutions and time required to �nd a solution seemsreasonable. The comparison is also done for the case when all �lters, excluding theminimal-latency �lter, are used. Again, both methods yield �ve unique Pareto points.The results are shown in Table 6.3.A structural view of one solution with minimum latency is shown in Figure 6.1. Asolution with minimum area is shown in Figure 6.2. In the �gures, note that the controlblock area appears to dominate the chip. This however, is actually not the case. It onlyappears larger in the �gure to facilitate showing the individual control wires.
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Table 6.1. DIFFEQ: experimental results using nonhierarchal approach.FiltersImplied Redundant Shared No Change CPU Time Size Solutions8318.58s 22167679 292X 8132.70s 21714011 292X 7326.50s 19614054 292X X 7313.12s 19214280 292X 558.68s 1503207 81X X 539.96s 1489156 81X X 515.15s 1436817 81X X X 513.47s 1423064 81X 10.72s 32280 34X X 10.77s 32250 34X X 9.96s 30059 34X X X 10.13s 30029 34X X 3.53s 10801 16X X X 3.69s 10788 16X X X 3.49s 9972 16X X X X 3.48s 9959 16Solving for minimal-latency solutions only:329.34s 865444 31X 299.10s 797678 31X 281.54s 758056 31X X 254.10s 700662 31X 34.98s 95134 14X X 33.69s 91524 14X X 32.81s 93894 14X X X 31.76s 90284 14X .81s 1984 14X X .82s 1976 14X X .76s 1964 14X X X .79s 1956 14X X .42s 968 12X X X .45s 963 12X X X .42s 950 12X X X X .50s 945 12
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Table 6.2. DIFFEQ: experimental results using hierarchal approach.FiltersImplied Redundant Shared No Change CPU Time Size Solutions72.18s 162015 82X 64.78s 159913 82X 65.75s 161935 82X X 65.06s 159833 82X 8.43s 20909 26X X 8.44s 20741 26X X 8.71s 20905 26X X X 9.71s 20737 26X 1.45s 2741 24X X 1.31s 2737 24X X 1.23s 2653 24X X X 1.30s 2649 24X X .48s 887 12X X X .45s 885 12X X X .52s 878 12X X X X .51s 876 12Solving for minimal-latency solutions only:.47s 1039 3X .45s 1038 3X .28s 579 3X X .29s 579 3X .30s 578 3X X .25s 578 3X X ..07 53 3X X X .08s 53 3X .07s 52 3X X .10s 52 3X X .08s 53 3X X X .09s 53 3X X .11s 52 3X X X .11s 52 3X X X .13s 53 3X X X X .07s 53 3
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Figure 6.1. DIFFEQ: minimum latency solution

Figure 6.2. DIFFEQ: minimum area solution



65Table 6.3. DIFFEQ: comparison of unique Pareto point solutions.No Filters With FiltersNonhierarchal Hierarchal Nonhierarchal HierarchalArea Delay Area Delay Area Delay Area Delay119 32 119 32 119 32 119 32157 19 157 19 157 19 157 19172 17 172 17 172 17 172 17195 16 195 16 195 16 195 16210 14 210 14 210 14 210 146.2 Elliptical Wave FilterThe second case study uses a �fth order digital elliptical wave �lter. The functionaldependencies of the �lter are shown in Figure 6.3 after it has been transformed usingcommon subexpression elimination and distributivity to reduce the number of multipli-cations and additions. Figure 6.4 shows the resulting data ow graph and Table 6.4 showsthe experimental results using the hierarchal approach.The same parameters for the functional unit were used as in the di�erential equationsolver example. For these results, the hierarchal approach is used with a maximum blocksize of ten. This means that the algorithm randomly breaks each set of similar operationsinto blocks of ten. Exploration is then done only considering resource edges betweenoperations in each block. Runtime grows rapidly as the block size is increased. Afterexploration is done on all sets, exploration is done again considering only critical resourceedges which are included in the individual block Pareto point solutions. One datapathgenerated by Mercury is shown in Figure 6.5.A comparison between the quality of solutions for the hierarchal approach using all ofo1 = i1o2 = 126 � i1 + 125 � i2 + 112 � i3 + 56 � (i4 + i7 + i8)o3 = 160 � (i1 + i2) + 152 � i3 + 9 � i5 + 80 � (i4 + i7 + i8)o4 = 7 � (i1 + i2 + i3 + i7 + i8) + 6 � i4o5 = 140 � (i1 + i2) + 133 � i3 + 8 � i5 + 70 � (i4 + i7 + i8)o6 = 144 � (i1 + i2 + i3 + i4) + 9 � i6 + 232 � i7 + 240 � i8o7 = 162 � (i1 + i2 + i3 + i4) + 10 � i6 + 261 � i7 + 270 � i8o8 = 150 � (i1 + i2 + i3 + i4) + 250 � i7 + 269 � i8o9 = 135 � (i1 + i2 + i3 + i4) + 225 � i7 + 243 � i8Figure 6.3. Functional notation for the elliptical wave �lter.
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Figure 6.4. Elliptical wave �lter data ow graph.
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Table 6.4. EWF: experimental results using hierarchal approach.FiltersImplied Redundant Shared No Change CPU Time Size Solutions160814.64s 58194121 18X 160534.51s 58171711 18X 160631.13s 58194121 18X X 160447.96s 58171711 18X 1361.72s 5444983 12X X 1380.11s 5444569 12X X 1350.12s 5444983 12X X X 1355.12s 5444569 12X 51.33s 20509 11X X 52.50s 20500 11X X 49.71s 20509 11X X X 49.68s 20500 11X X 62.89s 6291 16X X X 14.84s 6282 16X X X 14.89s 6291 16X X X X 14.99s 6282 16Solving for minimal-latency solutions only:325.65s 88630 12X 346.81s 88630 12X 323.35s 88630 12X X 298.69s 88630 12X 80.91s 22047 12X X 76.77s 22047 12X X 75.61s 22047 12X X X 80.07s 22047 12X 0.95s 392 4X X 0.91s 392 4X X 0.92s 392 4X X X 0.87s 392 4X X 0.83s 365 4X X X 0.95s 365 4X X X 0.89s 365 4X X X X 0.82s 365 4
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Figure 6.5. Elliptical wave �lter datapath.



69the �lters and using none of the �lters is shown in Table 6.5. Here, some of the non�lteredPareto points are better than the �ltered solutions. In addition, the quality of solutionsbetween using all of the �lters except the no change in objectives �lter is also compared.6.2.1 Comparison with Synchronous Methods.To compare our methods with synchronous designs the elliptical wave �lter is usedwith modi�ed resource delays. In this case, the minimum, typical, and maximum delaysfor ALU operations is set to one, and for multiply operations each delay is set to two.Because the minimum, typical, and maximum delays are all equal, the model correspondsto a synchronous design. Then to compare our results with those obtained in [36], themaximum delay of the system is set to 21 time units. This means exploration �nds allsolutions with a delay equal to, or less than 21. The area of a multiplier is modeled tobe twice the size of adders. Using all �lters and the hierarchal approach to exploration,it took just over 10 seconds to �nd all solutions in which the latency of the system isbetween 17 and 21 time units. Our results are comparable with FDS, FDLS, and ASAPmethods. Figure 6.6 shows the results. It shows that the more time given for the systemto complete, the less adders and multipliers are required because operations are serializedand share fewer functional units. The FDLS method found better results for a case wherethe delay of the system is 18 this result, however, was achieved by re-timing.Next, the delay of the adders and multipliers were scaled by a factor of 10. Thegranularity is adjusted to allow for the modeling of a typical delay. A typical delay of 9for adders and 17 for multipliers is used. The system is then optimized for typical delaywith a maximum system delay of 210 time units. Figure 6.6 shows the results. Again,Table 6.5. EWF: comparison of unique solutions using hierarchal approach.No Filters With All Filters Except No ChangeArea Delay Area Delay Area Delay272 57 272 72 272 61287 50 287 65 287 59302 48 302 61310 45 310 50 310 48325 40 325 48 325 40363 39 340 40 363 39378 38 378 38 378 38416 37 416 37 416 37



70
3
3

3
2

2
2

2
1

# Adders
# Multipliers

17 3
3

3
3

4
4

FDS FDLS ASAP

18

19

21

3
2

2
2

2
1

2
2

2
1

Maximum
Delay

2-6 min each. ??

Synchronous

10.1s
1998 CPU1989 CPU

Adder = 1 unit of delay

Multiplier = 2 units of delay

Scale Max
Delay by 10

New method with all filters and hierarchal
methods

Granularity 
adjusted for 
typical delay

Adder = 10 max, 9 typical

Multiplier = 20 max, 17 typical

158

183

192
10.3s

# Adders
# Multipliers3

3

2
3

2
2

1
2

2
1

150

176

(180)

(210)

(170)

(200)

(220)

Delays <= 210Delays <= 21

Typical
(Max)

Figure 6.6. Comparison with synchronous methods.exploration took just over 10 seconds, and several solutions were obtained. While therequired time to �nd the solutions remained constant, the FDS and FDLS methods atthis point become computationally unreasonable.It should also be noted, that several nonintuitive results were obtained. For example,the case were the typical delay is 158, and the case where the typical delay is 183. In bothof these solutions, the number of allocated adders is less than the number of allocatedmultipliers. This is because the typical delay of multipliers compared with its worst-casedelay is proportionally less than the typical delay of adders and their worst-case delay.Hence, the typical delay of the system can be optimized in greater proportion when moremultipliers are on the critical path in place of adders.6.3 Inverse Discrete Cosine TransformThe inverse discrete cosine transform (IDCT), is the most di�cult example to solvebecause of the high degree of parallelism between operations. The data ow graph forthe IDCT is shown in Figure 6.7. The only reasonable method to solve this problem is to



71use the hierarchal approach. The results, using this method with a block size of four, areshown in Table 6.6. A sample minimum latency datapath using this method is shown inFigure 6.8.
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Table 6.6. IDCT: experimental results using hierarchal approach.FiltersImplied Redundant Shared No Change CPU Time Size SolutionsX XX XXX XX XX X X X 5459.77s 1542648 1142X X 5268.17s 1542647 1142X X 5350.47s 1542648 1142X X X 5441.79s 1542647 1142X X 4407.99s 1245450 1142X X X 4421.15s 1245449 1142X X X 4405.91s 1245450 1142X X X X 4413.49s 1245449 1142Solving for minimal-latency solutions only:15.35s 9885 62X 15.37s 9885 62X 15.38s 9885 62X X 14.77s 9885 62X 13.14s 7511 62X X 14.00s 7511 62X X 13.78s 7511 62X X X 13.58s 7511 62X 5.80s 898 148X X 5.79s 898 148X X 5.92s 898 148X X X 6.19s 898 148X X 6.29s 898 148X X X 6.27s 898 148X X X 5.99s 898 148X X X X 5.92s 898 148
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Figure 6.8. IDCT: sample minimum latency datapath.



CHAPTER 7CONCLUSIONSA man who has lived in many places is not likely to be deceived by thelocal errors of his native village; the scholar has lived in many timesand is therefore in some degree immune from the great cataract ofnonsense that pours from the press and the microphone of his own age.|C. S. LewisArchitectural-level synthesis of asynchronous circuits is indeed a very di�cult problem.Several factors contribute to this. First, accurately calculating the typical delay of asystem is hard. Second, the design space grows at an exponential rate. Finally, exactmethods of determining resource sharing are computationally infeasible.There are several advantages over synchronous architectural-level synthesis methods.For example, scheduling of resources is optional. After all, for asynchronous design, re-source sharing determines the �nal schedule. Regardless of when operations are scheduled,they always execute as-soon-as-possible, because of the asynchronous control paradigm.Second, the cycle-time of the clock is one objective that does not need to be considered.For synchronous design, determining the optimal cycle time for a design can itself be anintractable problem. For asynchronous design, this problem is not a factor.Architectural-level synthesis is bene�cial in producing optimized designs in a shorttime and is a vital part of analysis in the design conceptualization phase. It also elevatesthe abstraction level of models to that of hardware languages. This supports a way ofreasoning about multiple objectives in a design using a common framework.Part of this research necessitated the design and development of a CAD tool for explo-ration, simulation, and analysis of asynchronous circuits at the architectural-level. Thisbrings an automated design ow for asynchronous circuits one step closer to realization.While most research in asynchronous circuits focuses on controller synthesis, this workaddresses data path synthesis.A methodology for the design and synthesis of asynchronous circuits from high-levelspeci�cations has been presented. Our method extends synchronous methods of schedul-



76ing and resource allocation to asynchronous circuit design. Techniques presented in thiswork have been used for the architectural optimization of systems.The large size of the design space has been addressed and several �lters have beenproposed and implemented to reduce the required exploration of the design space. Inaddition, a hierarchal approach has been presented and applied, allowing large complexdesigns to be optimized.An automated method for generating an optimal data path and its control has beenpresented. The structures are speci�ed using VHDL to provide a standard languageinterface. The bene�t of this method is not only using a style compatible with synchronoussimulation tools, but also one that is compatible with asynchronous controller logicsynthesis techniques. The method and algorithms presented have been implementedin the tool Mercury. Using the tool, a set of examples has been synthesized.It was found that the �lters are very e�ective in reducing the required explorationtime. When heuristic methods are used, there is a reasonable trade-o� between the timerequired to generate a solution, and the quality and quantity of solutions. Where exactmethods failed to e�ciently solve a complex problem, the heuristic methods made theproblem manageable.An actual comparison between our method and hand designs was not performed, but,designs created by trial and error methods usually outperform automated methods. Thisis because of the extra re�nement done by hand which can hide protocol, control, andcomputation delays. Our method, however, yields a substantial reduction in design time.Compared with synchronous methods it is demonstrated that the proposed methodsare advantageous as time is made more discrete to increase granularity. This is becausesynchronous methods become computationally infeasible, but, the complexity of ourmethod remains constant regardless of the granularity of time. This is important forasynchronous scheduling, because time can be modeled very accurately without sacri�cingperformance. It has been illustrated that using resource edges is an e�ective way toserialize operations and determine scheduling. In addition, it was illustrated that solutionsusing this method are competitive with traditional synchronous methods.7.1 Possible ExtensionsThis work demonstrates a feasible method to perform asynchronous architectural-levelsynthesis. Several open problems and possible extensions are briey discussed here.



77The current method associates a latch with each data edge in the data ow graph.While this su�ces, it is ine�cient. Latch sharing can be employed to reduce the number oflatches required for a design without, in most cases, a�ecting latency. It is hypothesizedthat the latch sharing problem is analogous to the resource sharing optimization, butpotentially more complex. This is because not only are the lifetimes of variables datadependent, but when the results of a computation are used more than once, there are mul-tiple lifetimes that can be considered for alternative con�gurations. A thorough analysisof latch sharing methods and their applicability to speci�c situations and communicationprotocols is necessary.Another improvement to the process could be made by generating more realisticinformation about asynchronous resources. The physical properties of asynchronousdevices need to be accurately evaluated. Accurate models of the physical characteristicsof asynchronous devices is necessary for architectural-level synthesis to generate optimalsolutions.Furthermore, because low power is an often cited advantage of asynchronous design,the evaluation should include not only the required area and data-dependent delays,but also a detailed power analysis. Generating an accurate model to estimate powerconsumption in an asynchronous device would be very useful. It would permit powerconsumption to be a third objective considered in the evaluation of a design.The goal of an ongoing and promising area of related research is to �nd e�cientmethods of calculating the typical delay of a system. It was demonstrated here thataccurately evaluating the delay is not a trivial task. Mercury currently uses a conservativemethod to perform this calculation. More accurate calculations will lead to better resourcesharing and consequently better solutions.To reduce the design space, several heuristic and nonheuristic methods have beenpresented, but they still do not completely harness the exponential explosion of the designspace. Additional methods need to be developed to prune the required exploration of asystem. One such method may consider negative information to prune branches of theexploration tree. Using negative information, a design would be evaluated not only interms of what resource edges have been added to the data ow graph, but also in termsof which edges were selected not to be added to the data ow graph. Both pieces ofinformation potentially contribute to what can be concluded about future con�gurationsalong a branch of exploration.



78Where heuristic methods are used, they have the potential for improvement. Forexample, the hierarchal method of decomposing a high-level design into smaller, moremanageable blocks may be improved. The grouping of operations into blocks is currentlydone randomly, a more structured approach may yield improved overall results.The problem of optimally binding resources remains open for further research. Thisproblem has been given considerable attention for synchronous design and it appears thatsome of these ideas can be extended to asynchronous design as well.Another important, but neglected, area related to this research is protocol synthesis.In this work only a four-phase handshake protocol is used. However, this may not bethe best choice for a design. Finding the optimal protocol for a design is not a trivialtask because of timing considerations, the required overhead of each protocol, and theintricacies of each method. Determining an optimal protocol for asynchronous designsremains open for debate and additional research.Finally, re�ning an asynchronous datapath from a structural level to a gate level isrequired before a realization of a circuit can be made. The modular use of functionalunits in this works allows a hierarchal approach of re�nement to be used. In other words,each resource can be synthesized to the gate level independent of other modules. Whilethis makes the task easier, it is still di�cult. An automated, technology independent,approach for this task would further reduce the development time of an asynchronousdevice.



APPENDIX ASAMPLE VHDL DATAPATHlibrary IEEE;use IEEE.std_logic_1164.all;entity sample isport(A: in std_logic_vector(31 downto 0);B: in std_logic_vector(31 downto 0);C: in std_logic_vector(31 downto 0);D: out std_logic_vector(31 downto 0);sample_req: in std_logic;sample_ack: out std_logic);end sample;architecture structural of sample iscomponent ALUport(a : in std_logic_vector(31 downto 0);b : in std_logic_vector(31 downto 0);op : in std_logic_vector(1 downto 0);res: out std_logic_vector(31 downto 0);req: in std_logic;ack: out std_logic);end component;component Multport(a : in std_logic_vector(31 downto 0);b : in std_logic_vector(31 downto 0);res: out std_logic_vector(31 downto 0);req: in std_logic;ack: out std_logic);end component;component mux2port(a : in std_logic_vector(31 downto 0);b : in std_logic_vector(31 downto 0);sel: in std_logic;res: out std_logic_vector(31 downto 0));end component;component latch



80port(d : in std_logic_vector(31 downto 0);q : out std_logic_vector(31 downto 0);req: in std_logic;ack: out std_logic);end component;component sample_ctrlport(signal Mult_1_mux2_sel : inout std_logic;signal ALU_1_req : inout std_logic;signal ALU_1_ack : in std_logic;signal ALU_1_op : out std_logic_vector(1 downto 0);signal Mult_1_req : inout std_logic;signal Mult_1_ack : in std_logic;signal l_1_req, l_2_req : out std_logic;signal l_1_ack, l_2_ack : in std_logic;signal A_req, B_req : out std_logic;signal A_ack, B_ack : in std_logic;signal C_req, D_req : out std_logic;signal C_ack, D_ack : in std_logic;signal sample_req : in std_logic;signal sample_ack : out std_logic);end component;signal opA_1, opB_2 : std_logic_vector(31 downto 0);signal Mult_1_mux2_sel : std_logic;signal Mult_1_a, Mult_1_b : std_logic_vector(31 downto 0);signal ALU_1_res : std_logic_vector(31 downto 0);signal ALU_1_req, ALU_1_ack : std_logic;signal ALU_1_op : std_logic_vector(1 downto 0);signal Mult_1_res : std_logic_vector(31 downto 0);signal Mult_1_req, Mult_1_ack : std_logic;signal l_1_req, l_1_ack : std_logic;signal l_2_req, l_2_ack : std_logic;signal A_req, A_ack : std_logic;signal B_req, B_ack : std_logic;signal C_req, C_ack : std_logic;signal D_req, D_ack : std_logic;signal A_isig, B_isig, C_isig : std_logic_vector(31 downto 0);beginMult_1_mux2_1: mux2 port map(B_isig,opA_1,Mult_1_mux2_sel,Mult_1_a);Mult_1_mux2_2: mux2 port map(C_isig,opB_2,Mult_1_mux2_sel,Mult_1_b);l_1: latch port map(ALU_1_res,opA_1,l_1_req,l_1_ack);l_2: latch port map(Mult_1_res,opB_2,l_2_req,l_2_ack);l_D: latch port map(Mult_1_res,D,D_req,D_ack);l_A: latch port map(A,A_isig,A_req,A_ack);



81l_B: latch port map(B,B_isig,B_req,B_ack);l_C: latch port map(C,C_isig,C_req,C_ack);ALU_1: ALU port map(A_isig,B_isig,ALU_1_op,ALU_1_res,ALU_1_req,ALU_1_ack);Mult_1: Mult port map(Mult_1_a,Mult_1_b,Mult_1_res,Mult_1_req,Mult_1_ack);CTRL: sample_ctrl port map(Mult_1_mux2_sel,ALU_1_req,ALU_1_ack,ALU_1_op,Mult_1_req,Mult_1_ack,l_1_req,l_1_ack,l_2_req,l_2_ack,D_req,D_ack,A_req,A_ack,B_req,B_ack,C_req,C_ack,sample_req,sample_ack);end structural;



APPENDIX BSAMPLE VHDL CONTROLlibrary IEEE;use IEEE.std_logic_1164.all;use work.nond.all;entity sample_ctrl isport(signal Mult_1_mux2_sel : inout std_logic := '1';signal ALU_1_req : inout std_logic;signal ALU_1_ack : in std_logic;signal ALU_1_op : out std_logic_vector(1 downto 0) := "00";signal Mult_1_req : inout std_logic;signal Mult_1_ack : in std_logic;signal l_1_req : out std_logic;signal l_1_ack : in std_logic;signal l_2_req : out std_logic;signal l_2_ack : in std_logic;signal D_req : out std_logic;signal D_ack : in std_logic;signal A_req : out std_logic;signal A_ack : in std_logic;signal B_req : out std_logic;signal B_ack : in std_logic;signal C_req : out std_logic;signal C_ack : in std_logic;signal sample_req : in std_logic;signal sample_ack : out std_logic);end sample_ctrl;architecture behavioral of sample_ctrl isbegin-- controls latch between nodes opA and opCproc1:processbeginwait until ALU_1_ack = '1';l_1_req <= '1' after delay(2,4);wait until Mult_1_req = '1' and Mult_1_mux2_sel = '1';l_1_req <= '0' after delay(2,4);end process;



83-- controls latch between nodes opB and opCproc2:processbeginwait until Mult_1_ack = '1' and Mult_1_mux2_sel = '0';l_2_req <= '1' after delay(2,4);wait until Mult_1_req = '1' and Mult_1_mux2_sel = '1';l_2_req <= '0' after delay(2,4);end process;-- controls the ack of the entire sample systemproc3:processbeginwait until D_ack = '1' and sample_req = '1';sample_ack <= '1' after delay(2,4);wait until D_ack = '0' and sample_req = '0';sample_ack <= '0' after delay(2,4);end process;-- controls latch l_D between the nodes opC and sinkproc4:processbeginwait until Mult_1_ack = '1' and Mult_1_mux2_sel = '1' andsample_req = '1';D_req <= '1' after delay(2,4);wait until sample_req = '0';D_req <= '0' after delay(2,4);end process;-- controls latch l_A at the sourceproc5:processbeginwait until sample_req = '1';A_req <= '1' after delay(2,4);wait until sample_req = '0';A_req <= '0' after delay(2,4);end process;-- controls latch l_B at the sourceproc6:processbeginwait until sample_req = '1';B_req <= '1' after delay(2,4);wait until sample_req = '0';B_req <= '0' after delay(2,4);end process;-- controls latch l_C at the source



84proc7:processbeginwait until sample_req = '1';C_req <= '1' after delay(2,4);wait until sample_req = '0';C_req <= '0' after delay(2,4);end process;-- controls resource ALU_1proc8:processbeginwait until ALU_1_ack = '0' and A_ack = '1' andB_ack = '1' and sample_req = '1';ALU_1_req <= '1' after delay(2,4);wait until l_1_ack = '1';ALU_1_req <= '0' after delay(2,4);wait until sample_req = '0';end process;-- controls resource Mult_1proc9:processbeginwait until Mult_1_ack = '0' and B_ack = '1' andC_ack = '1' and sample_req = '1';Mult_1_mux2_sel <= '0' after delay(0,1);Mult_1_req <= '1' after delay(2,4);wait until l_2_ack = '1';Mult_1_req <= '0' after delay(2,4);wait until Mult_1_ack = '0' and l_1_ack = '1' andl_2_ack = '1' and sample_req = '1';Mult_1_mux2_sel <= '1' after delay(0,1);Mult_1_req <= '1' after delay(2,4);wait until D_ack = '1';Mult_1_req <= '0' after delay(2,4);wait until sample_req = '0';end process;end behavioral;



APPENDIX CSAMPLE VHDL CONFIGURATIONconfiguration cfg_sample of sample isfor structural-- Latches for data edgesfor l_1: latch use entity WORK.latch(behavioral); end for;for l_2: latch use entity WORK.latch(behavioral); end for;-- Latches for outputsfor l_D: latch use entity WORK.latch(behavioral); end for;-- Latches for inputsfor l_A: latch use entity WORK.latch(behavioral); end for;for l_B: latch use entity WORK.latch(behavioral); end for;for l_C: latch use entity WORK.latch(behavioral); end for;-- System Controlfor CTRL: sample_ctrl use entity WORK.sample_ctrl(behavioral); end for;-- Resources usedfor ALU_1: ALU use entity WORK.ALU(behavioral); end for;for Mult_1: Mult use entity WORK.Mult(behavioral); end for;-- Muxes usedfor Mult_1_mux2_1: mux2 use entity WORK.mux2(behavioral); end for;for Mult_1_mux2_2: mux2 use entity WORK.mux2(behavioral); end for;end for;end cfg_sample;
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