ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2786211
Architectural-Level Synthesis Of Asynchronous Systems

Article - April 1999

Source: CiteSeer

CITATIONS READS
6 68

3authors, including:
N Erik Brunvand
University of Utah
117 PUBLICATIONS 1,342 CITATIONS

SEE PROFILE

All content following this page was uploaded by Erik Brunvand on 07 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2786211_Architectural-Level_Synthesis_Of_Asynchronous_Systems?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2786211_Architectural-Level_Synthesis_Of_Asynchronous_Systems?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Utah?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-b1f802cc47838ed0cc0d2609459b8d66-XXX&enrichSource=Y292ZXJQYWdlOzI3ODYyMTE7QVM6MTQ5NjgxMjEyNDk3OTI3QDE0MTI2OTgxOTA5NjU%3D&el=1_x_10&_esc=publicationCoverPdf

ARCHITECTURAL-LEVEL SYNTHESIS OF
ASYNCHRONOUS SYSTEMS

by

Brandon M. Bachman

A thesis submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical Engineering
The University of Utah

December 1998

Copyright (© Brandon M. Bachman 1998

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Brandon M. Bachman

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Chris J. Myers

Erik Brunvand

Christian Schlegel

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Brandon M. Bachman in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Chris J. Myers
Chair, Supervisory Committee

Approved for the Major Department

Om P. Gandhi
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Asynchronous circuit design has the potential to produce circuits superior to those of
synchronous circuit design. Current synchronous methods of architectural-level synthesis
do not exploit properties inherent to asynchronous circuits. This research describes
potential optimizations and techniques that can be applied to the architectural-level
design of asynchronous systems. The proposed methods take advantage of asynchronous
circuit properties such as data-dependent delays, modularity, and composiblity. The
optimization problems of scheduling and allocation are studied. For scheduling, some
counterintuitive properties of delays in a system are shown. The design space is studied
and several filters to reduce the size of the design space are proposed. To evaluate and
test these ideas the CAD tool Mercury was developed and is described in detail. Mercury
is unique in that it can take an abstract model of a design, in this case a data flow graph,
and from that generate both an optimal structural view of an asynchronous datapath for
the design, as well as the necessary behavioral control to operate that datapath. Several
case studies are presented utilizing the tool and methods to illustrate the practical aspects

of this work.

To my loving wife, Marianne, and to my parents, Danel and Patricia.

CONTENTS

ABS T R ACT . . iv

LIST OF FIGURES e e viii

LIST OF TABLES e X

ACKNOWLEDGEMENTS e xi
CHAPTERS

1. INTRODUCTION 1

1.1 Motivation e 2

1.2 Related Work e 3

1.3 Contributions e 5

1.4 Thesis Outline e 6

2. ARCHITECTURAL LEVEL MODELING 8

2.1 Representation and Modeling 8

2.2 Modeling Resources. 12

2.3 System Constraints e 15

2.4 0utput ... 16

2.4.1 Datapath Generation 16

2.4.2 Control Generation i 20

3. DESIGN SPACE EXPLORATION i, 25

3.1 Binding 26

3.2 Scheduling 26

3.2.1 ASAP Scheduling 27

3.2.2 ALAP Scheduling 28

3.2.3 Mobility. . . .o 29

3.2.4 Force-Directed Scheduling. 30

3.2.5 Statistical Delay Calculation......... 31

3.2.6 Monte-Carlo Delay Calculation.......... 32

3.3 Typical Delay e 33

3.4 Resource Allocation. i 34

3.4.1 Left-Edge Algorithm i 36

3.4.2 Clique COvering.ttt e 39

4. THE DESIGN SPACE e 41

4.1 Reducing the Design Space 42

4.2 Filters 43

4.2.1 Infeasible Edges. 43

4.2.2 Redundancy 44

4.2.3 Implied Edges 46

4.2.4 Minimal Latency 47

4.2.5 Constraints e 48

4.2.6 Maximally Shared Resources 48

4.2.7 No Change In Objectives 49

4.3 Hierarchal Exploration 49

5. SYSTEM IMPLEMENTATION 52

5.1 General Algorithm. 52

5.2 Optimizations e 55

5.2.1 Dynamic Transitive Closure 56

5.2.2 Dynamic Scheduling 57

6. CASE STUDIES 60

6.1 Differential Equation Solver 60

6.2 Elliptical Wave Filter 65

6.2.1 Comparison with Synchronous Methods. 69

6.3 Inverse Discrete Cosine Transform 70

7. CONCLUSIONS .. e e 75

7.1 Possible Extensions 76
APPENDICES

A. SAMPLE VHDL DATAPATH i, 79

B. SAMPLE VHDL CONTROL i, 82

C. SAMPLE VHDL CONFIGURATION 85

REFERENCES .. 86

vil

1.1
21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

Mercury design flow. 7
Behavioral VHDL and corresponding data flow graph. 10
Input format for a data flow graph (DFG)........... 11
Sample data flow graph and model description. 12
Request /acknowledge interface with four-phase handshake protocol. 13
Input format for the datapath resource library (DRL).................. 14
Sample datapath resource library (DRL). 15
Input format for constraints. 15
Sample constraints specification. 16
Datapath format. 17
Datapath generated from sample model description.................... 18
Timing diagram showing handshaking protocol. 23
Structural control generated by the ATACS CAD tool................ ... 24
As-soon-as-possible and as-late-as-possible scheduling. 28
Critical windows derived from as-soon-as-possible scheduling. 29
As-soon-as-possible and as-late-as-possible algorithms. 30
Force-directed scheduling. 31
A data flow graph with four operations: A, B, Cand D. 31
Data flow graphs without and with resource edges. 35
Synchronous methods vs. asynchronous approach. 36
Asynchronous left-edge algorithm. 37
Example using the asynchronous left-edge algorithm. 38
Compatibility graph for clique covering. 39
Exploration space of 3 compatible operations. 42
Infeasible edge. 44
Procedure to determine if adding a resource edge creates a valid design. ... 45
Design space showing redundancy. 45
Implied edge. 46

4.6
4.7
5.1
5.2
9.3
5.4
9.5
5.6
5.7
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Minimal latency filter. e 48
Grouping of resources for hiearchal exploration. 50
Pareto Points. 53
Exploring the design space using a branch-and-bound search. 54
Exploration tree. 55
Updating dynamic transitive closure for insertion of an edge............. 58
Updating dynamic transitive closure for deletion of an edge. 58
Updating ASAP schedule for insertion or deletion of an edge. 59
Updating ALAP schedule for insertion or deletion of an edge. 59
DIFFEQ: minimum latency solution 64
DIFFEQ: minimum area solution 64
Functional notation for the elliptical wave filter. 65
Elliptical wave filter data flow graph. 66
Elliptical wave filter datapath.. 68
Comparison with synchronous methods. 70
Inverse discrete cosine transform data flow graph. 72
IDCT: sample minimum latency datapath. 74

ix

6.1
6.2
6.3
6.4
6.5
6.6

LIST OF TABLES

DIFFEQ: experimental results using nonhierarchal approach. 62
DIFFEQ: experimental results using hierarchal approach. 63
DIFFEQ: comparison of unique Pareto point solutions. 65
EWF': experimental results using hierarchal approach. 67
EWF: comparison of unique solutions using hierarchal approach. 69
IDCT: experimental results using hierarchal approach. 73

ACKNOWLEDGEMENTS

I am in debt to many people who have made this work possible. Among my colleagues,
I am thankful to Robert Thacker for always offering a helping hand, to Wendy Belluomini
for much good criticism and advice, to Chris Krieger for many excellent nuggets of
understanding, and to Hao Zheng for carrying this work forward. In addition, I would like
to thank Luli Josephson for reviewing this work, and Hans Jacobson for his comments.

I would like to express a deep gratitude to my advisor Dr. Chris J. Myers. Over the
past several years I have been continually impressed with his constant guidance, technical
expertise, and endless encouragement. I would also like to thank Dr. Erik Brunvand and
Dr. Christian Schlegel for serving on my supervisory committee. Their comments and
assistance have been valuable.

Most of all, I express my thanks to Eric Mercer. I am grateful for his loyal friendship,
which included much patience, perseverance, and assistance on my behalf. His savvy
technical skills have made this work much better than it would have been otherwise.
Through many years of school he has complemented my many weaknesses with strength
and he is the unsung hero of this work.

Finally, my wife and family deserve special thanks. I would like to express my gratitude

for their love, support, and sacrifice.

CHAPTER 1

INTRODUCTION

Sometimes when I consider the tremendous consequences from little things
... a chance word ... a tap on the shoulder or a wink of an eye,
I am tempted to think there are no little things.

Emily Dickensen

Asynchronous designs are rapidly becoming an attractive alternative to synchronous
designs. As technology advances, the integrated circuit industry continues to increase
clock speeds, increase density, and decrease transistor sizes making global synchronization
across large chips more difficult to maintain. To solve this problem, many modern chips
have a number of communicating clocking domains which can greatly increase design
complexity. As a result, asynchronous design is being looked at as an alternative because
it has the potential to reduce, and in some cases, eliminate the growing challenges of
synchronous design. Asynchronous circuits consist of groups of independent modules
which communicate using handshaking protocols. This makes asynchronous designs
attractive because they do not have clock skew problems, thus reducing power-expensive
global clocks and routing issues. In addition, asynchronous design offers the potential
for average-case performance in place of worst-case performance, they are adaptable to
environmental conditions, and exhibit ease in composability. For these reasons, there is
a growing interest in asynchronous design.

Architectural-level synthesis is the process of taking an abstract behavioral model of
a desired circuit and refining it to an optimal macroscopic structure. In an ideal world,
everything would be possible at no cost. But, there are no blank checks in circuit design.
Issues such as latency, area, and power must be taken into consideration to balance
trade-offs in a design. Architectural-level synthesis is an approach to managing these
trade-offs at a macroscopic level.

The abstract model used at the architectural-level generally begins as a data flow

graph that does not contain implementation parameters such as a mapping to specific

resources or technology. The synthesis process takes this abstract model and generates
a structural view of the circuit by determining the necessary resources and parameters
to implement the behavioral model. The goal of architectural synthesis is to generate an
optimal circuit from an abstract model. The model consists of two components: datapath
and control.

The datapath is the portion of the circuit composed of interconnected components that
move data and operate on it. The components are usually multi-bit bused structures that
contain a high density of arithmetic functions. The control circuitry directs the movement
of data and execution of the datapath resources. When combined, the datapath and
control work together to make a circuit functional.

The focus of this research is on the automation of architectural-level synthesis for
asynchronous systems. This includes the automated generation of an optimal asyn-
chronous datapath and corresponding control. This work merges methods from syn-
chronous architectural-level design with those used to generate asynchronous control
circuits and exploits asynchronous circuit properties to design highly optimized asyn-

chronous systems.

1.1 Motivation

Digital signal-processing, high-speed multimedia, graphics, and telecommunications
applications are computationally-intensive. In these applications, the datapath requires
the largest area of the logic circuitry, sometimes as much as 80% of a complete design.
For these applications the datapath is the critical factor when trying to achieve design
objectives such as minimal area and latency. The challenge for a datapath designer
is to arrive at the best implementation for a given function. Many datapaths today
are hand-crafted using a Register- Transfer Level (RTL) specification. Using this model
storage of data is represented using register variables, and transformations are represented
by arithmetic and logical operators.

Typically, designers arrive at a particular design through trial and error methods. This
approach is time-consuming and does not yield optimal results. Furthermore, such designs
are rarely scalable to new technologies and it is easy for a designer to lose performance
when they commit to a specific design early in a design cycle. To make matters worse,
when designers find their datapath to be suboptimal they can rarely afford to go back and

redesign it. The continuing trend in the design of application-specific integrated circuit

(ASIC) is one of increasing complexity and density, making a trial and error approach
increasingly difficult. This leads to the growing need for automated methods which can
quickly yield good designs.

The ideal asynchronous design tool would allow designers to quickly generate the
desired structure and provide information that would help them determine the best
solutions. Each possible solution would be superior in at least one objective, such as
size or latency, or in a combination of two or more objectives. This would give the
designer the ability to test a variety of good solutions, helping to quickly and efficiently
decide on a datapath structure that best implements a function. Automating the design
and implementation of such a major portion of the chip would yield substantial reductions
in design time, increase productivity, ease specification, modification, and enhance design

re-usability.

1.2 Related Work

It is a common practice for synchronous circuits to be formally modeled and automat-
ically synthesized. There are many existing tools which support automatic translation
of an algorithmic-level specification to a register-transfer level representation [22]. The
use of such models and automated tools for asynchronous circuits has been limited to
synthesizing control circuitry. Thus, many systems exist for the synthesis of untimed
asynchronous control circuits [27].

A number of different styles for designing asynchronous control circuits exist. One
method is to constrain signals to change only one at a time. The system must allow each
signal time to settle before other signals can change [41]. This is called the fundamental-
mode restriction. Burst-mode extends fundamental-mode to allow for a set, or burst,
of inputs to arrive concurrently, followed by a burst of outputs [17, 35, 45]. Another
method, delay-insensitive [12, 19, 33] assumes that the delays in wires and gates are
unbounded. Speed-independent circuits [6, 16, 32] are similar, but assume that wire delays
are negligible. Most methods are based on the assumption that nothing is known about
the delays between signal transitions. This means that the circuit must be constrained
to work correctly even in cases which never occur in physical implementations.

For asynchronous control circuits, an emerging area of research embraces timed asyn-
chronous circuits [34]. This method allows a lower and an upper timing bound to be

assigned to the relationships between signals. These circuits make use of the timing

information to eliminate unnecessary circuitry and to increase performance.

At the architectural-level, tools that automate datapath synthesis are just emerging.
Heuristic techniques for synchronous design have been extended to asynchronous circuits
[5], but many require the designer to manually specify where resources are shared [2, 8].
Work has also been done by Beerel to extend the synchronous techniques in [25] by using
a mixed-integer linear programming technique to yield globally optimal solutions.

This work is related to work previously done in synchronous architectural-level syn-
thesis and also work done in the area of asynchronous control circuits. For synchronous
architectural-level synthesis, a vast array of algorithms and tools have been proposed.
In general, these optimization problems are intractable and their solutions depend on
solving associated sub-problems.

The subproblems are usually also intractable and are often solved through the use
of heuristics. The subproblems are categorized into general areas which include binding,
allocation, and scheduling. Binding is the process of mapping an operation to a resource.
Where several resources can perform the same operation, the problem is extended to a
module selection problem. When more than one operation has the same type, resource
sharing or allocation can be employed. Allocation determines the quantity of each type
of resource used to implement the operations. Scheduling is the process of denoting each
operation’s start time subject to precedence constraints specified by a data flow graph.

To solve the scheduling problem, it is broken down in its simplest form to a unit-
delay model in which all operations have equivalent delay. Different algorithms have
been proposed to address constrained and unconstrained scheduling of individual oper-
ations. These algorithms include unconstrained as-soon-as-possible (ASAP) scheduling,
and latency-constrained as-late-as-possible (ALAP) scheduling [18]. These algorithms
are specific to synchronous design problems. This research modifies these algorithms for
application to asynchronous optimization problems.

Scheduling with resource constraints is also very important because with resource
dominated circuits, resource usage determines the circuit area. Solutions have been
developed using an exact integer linear-programming model [24, 13]. This approach
is suitable for medium scale examples, but fails to solve problems with a large number
of variables or constraints. Another method is force directed scheduling (FDS) [36]. This
method attempts to use the concept of force to optimally schedule operations. All these

algorithms are currently restricted to synchronous design problems.

The timed models used for control circuits motivate the use of delay assumptions
in datapath resources. When a timed model is applied to asynchronous datapath re-
sources, the design evaluation space can be reduced, unnecessary circuitry eliminated,
and increased performance achieved. The work described here is designed to be used in
conjunction with the ATACS tool framework [34], which can further refine the generated
asynchronous control circuitry. The result is a completely automated tool flow for refining

asynchronous specifications from a behavioral level to a structural level.

1.3 Contributions

The focus of this work has been to explore and develop a method of architectural-level
synthesis for asynchronous circuits. In particular, the issues of scheduling and allocation
for asynchronous resources are confronted. While binding and resource selection are also
important issues that can affect scheduling and allocation this study does not attempt to
utilize their potential benefits at this time.

For asynchronous circuits to become a viable and superior alternative to synchronous
circuits, good asynchronous computer-aided design tools need to be created. These
tools, at a minimum, need to have comparable functionality to synchronous tools while
maintaining a similar ease of use. Since developing such tools would be a very large
and time consuming process, it is argued that asynchronous tools should build on work
already done and that they should be as compatible as reasonably possible with current
synchronous tools. This would expedite the transition for designers from synchronous
design to asynchronous design without learning a completely re-engineered design process.

Scheduling optimization problems use synchronous techniques to find critical windows
of time for resources with asynchronous delays. Relative timing of operations is used in
conjunction with the analysis of the critical window of operations. From this, an estimate
of the typical delay of each configuration may be made. Furthermore, for allocating
resources to specific operations, a technique was developed that uses information from
scheduling in conjunction with the information derived from the data flow graph. Using
both sources of information, a heuristic algorithm efficiently solves the allocation problem.

Exploring all possible configurations to implement a given design is difficult because
the number of possible solutions grows exponentially with respect to the size of the data
flow graph. Several exact and heuristic filters to reduce the size of the design space are im-

plemented. These filters are very effective in reducing the exploration time for the circuit

design. These filters include: pruning the design space when implied edges are detected,
removing redundant designs from consideration, solving for a minimal-latency solution
efficiently, and detecting when a maximal configuration is achieved without exploring an
entire branch of the design space. Several case studies illustrate the effectiveness of these
filters.

This study necessitated a CAD tool for experimenting with the various automatic
methods of scheduling, allocation, design space exploration, and the effect of the proposed
filters. The CAD tool Mercury has been developed for this purpose. Figure 1.1 shows the
design flow of the tool. Mercury is unique in that it can take an abstract model of a design,
in this case a data flow graph, and from that generate both an optimal structural view of
an asynchronous datapath for the design, as well as the necessary behavioral control to
coordinate that datapath. The generated structural view consists of an interconnected
block diagram of functional units, latches, control, and multiplexors.

The generated asynchronous control can be refined further to logic gates using the
existing ATACS tool. The end result is a fully specified asynchronous design which can
be tested and verified. Mercury implements these ideas by generating output which
can leverage synchronous tools for a common framework of simulation and functional
verification. Furthermore, the development and use of Mercury demonstrates the idea
that a CAD tool can generate a reliable and efficient asynchronous circuit for minimum

cost and design time.

1.4 Thesis Outline

Chapter 2 discusses issues relating to the architectural modeling of asynchronous
designs. Mercury’s model input format and intermediate circuit representations are
examined. The chapter continues with a description of then generation of a structural
view of the datapath and a behavioral view of the control from an abstract model. The
chapter concludes with an illustration of how the resource and constraint libraries are
modeled. The exponential nature of the design space is reviewed in Chapter 3. The
chapter continues with illustrations of how each configuration in the design space is
evaluated using asynchronous versions of binding, scheduling, and resource allocation.
These techniques are compared and contrasted with traditional synchronous methods.
The study proceeds with a discussion in Chapter 4 of the proposed methods of using

filters to reduce the design space. Several filters are presented, some of which are exact

SR
Resour ce
_ Library (Constraints)
Datapath
4 N 4 N
Design Exploration Structural VHDL
I[:)I%tvz\i/ Resource Resource Sharin
HDL Graph | Selection : g —| Control
ap Determine Schedule
Behavioral VHDL
o J o J
1} 1} Environment
S Y
CycleTime Area | Behavioral VHDL
Critical Path Used

Figure 1.1. Mercury design flow.

and others which are heuristic. Chapter 5 describes the algorithm used to explore the
design space. Optimizations used to reduce the execution time of exploration are also
illustrated. These optimizations include using dynamic transitive closure and dynamic
path analysis. Several case studies for using the presented methods to build asynchronous
circuits are presented in Chapter 6. In the case studies, the effectiveness of each filter is
given, along with examples of the resulting asynchronous circuits. Chapter 7 summarizes

the contributions and results of this work and offers ideas for possible extensions.

CHAPTER 2

ARCHITECTURAL LEVEL MODELING

Mistrust endeavors which require new clothes.

—FE. M. Forster

2.1 Representation and Modeling

It is often beneficial to simplify a circuit representation with a model. A useful model
contains all of the relevant design features without including implementation details.
These models give designers and CAD tools a common method of conveying information
about a circuit. Circuits can be modeled differently according to the desired level of
abstraction. Stages of abstraction include, but are not limited to, architectural, logic,
and transistor. For example, at the architectural level, circuits are modeled showing
required operations and their dependencies. At the logic level, circuits are modeled with
interconnected logic blocks and logic networks. At the transistor level a physical view of
the circuit is modeled.

Generally the design of a circuit progresses through these various tiers of abstraction
until a physical view of the circuit is obtained. At each stage, the model of the circuit
becomes less abstract as successively finer detail is introduced. Each level adds just
enough information to capture essential features of that level. Before progressing to the
next step, the model can be simulated, validated, and verified.

The top level of the design process, the most abstract, is the architectural-level. Here,
the function of the entire system is described in algorithmic terms with the behavior of a
circuit being modeled in a hardware description language (HDL). Consequently, this level
of modeling is often referred to as behavioral modeling. An HDL provides well-defined
semantics and syntax for a model. This gives a consistent and unambiguous representation
of a specification which can be used to exchange information between designers and tools.

Although HDLs such as VHDL and Verilog evolved from traditional programming

languages, they are different in many ways. For example, they generally default to

concurrent operations in place of statements which execute sequentially. In this regard,
HDLs are related more closely to parallel programming languages than to traditional
sequential programming languages. HDLs also allow for the definition of ports into and
out of the circuit, along with their required data formats and parameters. HDLs place a
large emphasis on the specification of detailed timing constraints for each circuit compo-
nent. In addition, many of the HDLs support different views for a circuit. For example,
a behavioral view and a structural view are typically supported. Architectural-level
synthesis tools generally support the transformation of behavioral models into structural
models.

Using such a formally defined model is beneficial for several reasons. First and
foremost, when a system design is needed the system requirements can be specified
unambiguously and completely. Engineers have the task of designing a system that
meets customer requirements. Using a formal model to specify the system requirements
reduces the risk of incomplete or ambiguous specifications. It also gives the engineer the
opportunity to explore alternative implementations, and find the best design, given the
customer’s criteria.

Second, formal modeling allows for design validation and verification. Using a hier-
archal approach, subsystems and subcomponents can be individually tested. At each
level in the design hierarchy, the composite system can be tested and verified. While
functional validation is useful, models can also be used as a starting point to formal
design verification. Formal verification uses formal logic and rules of inference to deduce
the correctness of a design. Formal verification is a complex problem itself and is an active
area of research for both synchronous and asynchronous circuits [3, 7, 38]. While formal
verification is not yet an everyday practice, there has already been significant progress in
this area and there is an optimistic horizon in its future.

Finally, a formal model allows synthesizing a circuit automatically. If a design can
be formally specified, it can, in theory, be translated to a circuit that performs that
function. The automated generation of circuits is beneficial because it reduces the time
of a design and thus, more time can be spent exploring alternative designs rather than
being consumed with the details of a particular design. Furthermore, if the translation is
automated and the translation process itself is verified, then confidence that the resulting
circuit is correct rises.

In essence, a formal model used in conjunction with computer-aided design tools is

10

a means to achieving a reliable and efficient circuit for minimal cost and with minimum
design time. By providing better tools for the design process, many errors can be avoided,
delays minimized, and costs contained.

For this work, VHDL [4, 43] is used. VHDL is a verbose language used to specify and
document large systems. It is used to model both the control and the datapath of a design.
VHDL is employed to model the control, in part, because it can be simulated and verified
using current synchronous CAD tools and also because a subset of the language can be
successfully compiled into a format that can be synthesized into a timed asynchronous
control circuit [46].

The first step in the design process is to take a formal behavioral model and translate
it into a representation that illustrates the flow of data from one operation to the next.
Figure 2.1 shows the behavioral VHDL representation of a differential equation solver
with its corresponding data flow graph.

The refinement of the VHDL model into a good data flow graph is a difficult task
because several optimizations are possible. These optimizations include: tree-height
reduction, constant and variable propagation, common subexpression elimination, and
dead code elimination. Each of these optimizations affects the resulting data flow graph,
which in turn limits or enhances the synthesis process. Methods from compiler theory

have been developed in [1, 42] which solve these and similar problems. It is assumed that

architecture BEHAVIOR of DIFFEQ is
begin
process
variable x,a,y,u,dx,xl,ul,yl: in slv(7 downto 0);
begin
wait until start’event and start ='1’;
X :=X_port; y:=y_port; a:=a port;
u ;= u_port; dx := dx_port;
DIFFEQ_LOOF:
while (x < a) loop
x| :=x + dx;
u:=u-@*x*u*dx)-(3*y* dx);
yl =y + (u* dx);
x =xl;u:=ul;y:=yl;
end loop DIFFEQ_LOOP;
y_port<=y;
end process;

Time1l

Time 2

Time3

Time4

Figure 2.1. Behavioral VHDL and corresponding data flow graph.

11

these optimizations have been made and translation to a data flow graph has already
taken place, so Mercury accepts input in the format of a data flow graph similar to that
shown in Figure 2.1.

A data flow graph is relatively simple to specify. Textually, the format given in
Figure 2.2 is used. It first defines the name of the graph, then lists each of the primary
inputs and primary outputs of the system with their corresponding sizes. Next, nodes
in the graph are listed with their operation type, name, and size. The nodes are linked
together using edges. An edge can exist between any two nodes as long as the edge does
not create a cycle in the graph. Finally, inputs are linked to nodes which utilize them,
and outputs emanate from nodes that produce them.

It should be noted that the user can optionally specify an ordering for input operands
to a node. This can be important when an operation, such as subtraction, is non-
commutative. If an ordering is not specified, then the operations are evaluated according
to alphabetical order. Using this format allows the function of the circuit to be modeled.
Figure 2.3 shows a sample data flow graph and its corresponding specification. This

model permits a design to be further refined using binding, scheduling, and allocation.

dfg name {
input in-name bit-width

input in-name bit-width
output out-name bit-width

ouput out-name bit-width
node operation node-name bit-width

node operation node-name bit-width
edge node-name — node-name port

edge node-name — node-name port
datain in-name — node-name port

datain in-name — node-name port
dataout node-name — out-name

dataout node-name — out-name

Figure 2.2. Input format for a data flow graph (DFG).

12

dfg sample {
input A 32
input B 32
input C 32
B C output D 32
\ / node + opA 32

B
/ node * opB 32
OpA opB node * opC 32
edge opA -> opC

edge opB -> opC
opC datain A -> opA
datain B -> opA
D datain B -> opB
datain C -> opB

dataout opC -> D

Figure 2.3. Sample data flow graph and model description.

2.2 Modeling Resources

To unify the design process, some underlying requirements must be made about
functions in the resource library. Here it is required that each resource in the library
is an asynchronous system that follows a specific communication protocol. None of
the resources are synchronized by a global clock. A protocol is a sequence of events
in a communication transaction. Many handshaking protocols exist, such as two-phase
transition signaling or four-phase signaling. For these two predominate methods, there is
ongoing debate concerning the better choice. The four-phase protocol requires twice as
many actions as two-phase, but the actions are usually simpler. In general, when operator
delays dominate communication costs, then four-phase is better. Four-phase may also be
better for precharged arithmetic units since the return to zero naturally fits the precharge
phase. When transmission delays dominate communication costs, two-phase is better.

Mercury currently supports only the four-phase protocol with a bundled data path.
The bundled-data approach uses a set of control wires to indicate the validity of a set,
or bundle of data wires. Similar self-timed modules that follow a two-phase protocol are
used in [11]. In either protocol, the control wires for each bundle include two signals.
The first signal is used to request (REQ) an action. Once the receiver of the request
has completed its function it sends an acknowledgement (ACK) back to the sender to

complete the transaction. Figure 2.4 illustrates the request/acknowledge protocol. With

13

Datain

Dataout

‘Datain

R
Sender o,) ’ ' L
(Control) éAck Receiver /
R
Dataout =
Ack

Figure 2.4. Request/acknowledge interface with four-phase handshake protocol.

a four-phase protocol, each signal transition is considered along with its direction of
movement. For example, a rising request is distinguished from a falling request. There
are several methods of employing the four-phase handshake, including, early, late, and
broad protocols [20].

Mercury uses the early protocol in which the rising edge of the request line indicates
that data is available, and the rising edge of the acknowledge line indicates that the
computation has been completed and the sender no longer needs to hold the inputs
stable. The falling edge of the ACK signal resets the component to an available state.
The bundled data approach requires data in the bundle to be valid at the receiver before
the receiver sees a change on the control signals. In figure 2.4 the light regions indicate
when data are valid and the shaded regions indicate when data are invalid.

For simplicity, it is assumed that the interface of each device is delay-insensitive. This
means that the protocol is insensitive to delays through circuit components and the wires
that connect them. Obviously, this does not accurately model the physical properties
of system components and wires. This makes building a truly delay-insensitive circuit
difficult, as demonstrated by [30]. This issue is left for the next level of refinement in the
synthesis process.

Although self-timed delay-insensitive circuits involve signaling overhead for the hand-
shake communication, they offer several appealing advantages. Generally, they give better
performance than synchronous systems because they tend to reflect average-case delays
rather than worst-case delays for a system. In some cases, this alone can be a major

performance benefit. Second, they allow a system to be upgraded incrementally. Each

14

component can be individually replaced without changing or doing extensive redesign
of the entire system. Third, very robust systems can be implemented because timing
and functionality are separated. For example, when a circuit is required to operate
over a wide range of voltage and temperature conditions, self-timed systems are ideal
because they easily adapt to their environment. Finally, self-timed components allow
the construction of systems in a hierarchical and uniform fashion. This characteristic
is very beneficial because designs can be assembled without considering detailed timing
characteristics. When timing characteristics are available and considered, the circuit can
be more aggressively optimized.

Using the self-timed circuit methodology, asynchronous resources are annotated in
the resource library with timing information. This information is used to optimize the
configuration of resources. Each supported function of a given resource is modeled with
a minimum, maximum, and typical computational delay. These correspond to the data-
dependent computational delays of each function. For this work, it is required that
operations have bounded delays. In addition, the area and the bit-width of each resource
must be given. The order in which the functional units are listed for a resource determines
the operation select code used by control to select the proper operation. Figure 2.5 shows
the input format of the resource library. The user can use standard operations such as
addition, subtraction, and multiplication, or can create more complex custom resources
and operations.

For the best results, the parameters of each resource should correspond to the physical

properties of the resource. Each library generally maps to a specific technology. This

drl name {
resource-name bit-width area
operation-type [min-delay,max-delay,typ-delay]

operation-name [min-delay, max-delay,typ-delay]

resource-name bit-width area
operation-type [min-delay,max-delay,typ-delay]

operation-name [min-delay, max-delay,typ-delay]

Figure 2.5. Input format for the datapath resource library (DRL).

15

gives a modular approach that leaves room for expansion to future technologies without
requiring a change in the specifications of a design. A small sample library is shown in

Figure 2.6.

2.3 System Constraints

Constraints on the design can also be specified. These are valuable because they can
focus the design search, reducing the time required to achieve a good solution. The user
can specify an upper limit on both the desired area and the desired delay. For example, if
the user sets a maximum desired delay for a system, the tool stops exploration (evaluating
all possible configurations) of any branch where that value of latency is exceeded, yielding
a significant savings in execution time.

The user can also specify the maximum number of instances for any particular resource
type. The format for specifying these values is shown in Figure 2.7. The use of constraints
is optional, but they are usually beneficial for large designs, because the more constrained
a design is, the quicker a good solution can be found. A sample constraints specification

is shown in Figure 2.8.

drl myLib {
ALU 32 452
+ [12,28,15]
- [12,30,16]
Multiplier 32 671
*[34,82,61]

Figure 2.6. Sample datapath resource library (DRL).

constraints name {
max-area = val
max-delay = val

resource-name = val

resource-name = val

}

Figure 2.7. Input format for constraints.

16

constraints myCon {
max-area = 923
max-delay = 102
ALU =1
Multiplier = 1

}

Figure 2.8. Sample constraints specification.

2.4 Output

At this level, the goal of refinement is to generate an optimized structural view of a
system from a behavioral description. Using the three sources of information a data
flow graph, a library of functional resources, and a set of constraints all the necessary
information to refine the system is available. In Mercury, after a data flow graph has
been bound, scheduled, and allocated, a structural view of the datapath is generated and
a behavioral view of control for the datapath is also generated. Both views are specified

by Mercury using VHDL. The following sections describe these processes.

2.4.1 Datapath Generation

The datapath is organized as follows. First, latches are instantiated for each of the
primary inputs, outputs, and data edges in the data flow graph. Latches for the outputs
are not always required. They are only required when a functional unit is resued for other
operations after the output is generated. In other words, in cases where the functional
unit can not hold the output for the duration of the system. This relaxes the requirement
for latches on all outputs. This optimization however, is not currently implemented.
Next, Each functional unit is instantiated and when more than one operation is mapped
to the same functional unit, multiplexors are used to route the appropriate operands at
the appropriate time. At the output of the functional unit, latches are used to carry the
data to the next operation, or to the primary outputs. This datapath format is illustrated
in Figure 2.9.

Figure 2.10 shows one possible arrangement for the datapath generated by the Mercury
tool from the specification given in Figure 2.3. The datapath works in the following way.
When the global request signal, sample_req, is asserted, data from the primary inputs are
latched. When all of the required operands for a given computation are available, and the

functional unit is available, the computation begins. In the example given in Figure 2.10,

'

Multiplexor

'

Input
—

Latch
Req J L>Ack

Functional Unit

+ e

Latch

17

Output

'

Figure 2.9. Datapath format.

Latch

Rqu L>Ack

18

T 40 1T :388ys yeyn 4o A31sdaaTtun :Auedwoad :ABoTouyaay
86/91/9 :83Ep vewyseg ‘g , Aanoaal :asubrsap ardues uBrsap
< |baJa—atdues
soe~atdues K _l
L] M Ly2iet

—
4]

ysyer =

]
——— _ Zxnu
S;m\DOI 1 1o0-aTduf 170U —1 uyo1er1 A —gnam\u

I m uyozer A —Suam\m

— — Zxnu *\ yojeq B

yajer OSQm\/\

Figure 2.10. Datapath generated from sample model description.

19

the multiplier is shared between two operations, requiring two 2x1 multiplexors to be
used (one for each operand).

After each computation is completed, the results are stored in a latch for future
use by other operations and the functional unit then becomes available for its next
operation. Finally, the system acknowledges on the sample_ack signal it has completed
its computation when all of the primary outputs have latched their data.

While the entire system is modeled in this way, each subcomponent of the system is also
modeled with a similar protocol. In the example, the ALU and multiplier, when requested,
also latch their inputs, and hold their outputs until their results are acknowledged by their
environment. This allows components to be generated and used in a hierarchal fashion.
The only exception to this protocol is a multiplexor component, because it does not latch
its inputs or its outputs.

Additional optimizations can be made to the datapath to reduce the number of latches
required to implement a system. Sharing latches that hold data for disjoint periods of
time is one such optimization. This, however, is a difficult problem to solve because of the
inherently asynchronous lifetime of data. In theory, this problem is similar to the resource
sharing problem, in that the sharing of latches can incur the use of additional multiplexors,
which in turn require more area, and the additional complexity usually complicates the
control further. For these reasons, and in order to simplify the generation of the datapath
and control, this optimization is not currently applied.

To generate the datapath, Mercury takes a bound, scheduled, and allocated data flow
graph and builds a VHDL model. A sample VHDL structural model for the datapath
is listed in Appendix A. This model corresponds to the behavioral model shown in
Figure 2.10. The generation of the model begins by first defining the entity of the
primary system with primary outputs, inputs, and handshaking signals. For the structural
architecture of the entity, the components used by the system are declared. In the
example, the components ALU, Mult, mux2, latch, and CTRL, are all declared. The
components refer to resources defined in the library shown in Figure 2.6, except for the
controller component, CTRL and multiplexors, which Mercury generates.

Next, intermediate signals are declared. These are the signals which are used between
the ports of the latches, multipliers, controller, and functional units. All of these signals
are internal to the system. After the signals are declared, each of the required components

is then instantiated. Where more than one instance of a device is used allowing concurrent

20

operation, multiple instantiations are declared. Where operations are serialized and more
than one operation is mapped to an individual resource, multiplexors are instantiated
to select the data. Finally, the ports of each of the components are wired up to the

appropriate signals to complete the design of the datapath.

2.4.2 Control Generation

Generating the control corresponding to a particular configuration of the datapath is
determined, in part, by the protocol used between components. Each of the components
in the datapath follows a four-phase handshake protocol using request and acknowledge
signals. Following this protocol, Mercury builds a control module for each datapath
configuration.

The control is built using the request and acknowledge signals from each of the
components, such as functional units, latches, and the primary request and acknowledge
signals. When multiplexors are used, their select bits are generated by the control but
no handshaking signals. Using VHDL, the communication protocol of each component is
modeled with VHDL processes. When a process is activated during simulation, it starts
executing from the first statement and continues until it reaches the last. All statements
in a process take zero simulation time except for “wait” statements. So, it is only through
the execution of “wait” statements that simulation time advances. Each process executes
concurrently with respect to other processes. The behavioral VHDL for the controller is
shown in Appendix B.

Each instance of a latch in the system is modeled in the control with an individual
process. Each latch is initially unoccupied. Latches on primary inputs wait on the primary
request of the system. The data are latched when the primary request is received. These
latches return to an available state when the entire system has been acknowledged. Shown
below is an example of this type of process:

-- controls latch 1_A at the source
procb:process

begin
wait until sample_req = ’1’;
A_req <= ’1’ after delay(2,4);
wait until sample_req = ’0’;

A_req <= ’0’ after delay(2,4);
end process;

Each functional unit instance is modeled with a unique process. Because each func-

21

tional unit can be used for more than one operation, these processes control the ordering of
each operation using the resource. This is done by waiting for the appropriate operands
to become available. When they become available, the multiplexors are set, and the
correct data is steered to the functional unit. The functional units reset to an available
state after they have completed their operations. Shown below is an example of this type

of process:

—-- controls resource Mult_1
proc9:process
begin
wait until Mult_1_ack = ’0’ and B_ack = ’1’ and
C_ack = ’1’ and sample_req = ’1’;
Mult_1_mux2_sel <= ’0’ after delay(0,1);
Mult_1_req <= ’1’ after delay(2,4);
wait until 1_2_ack = ’17;
Mult_1_req <= ’0’ after delay(2,4);
wait until Mult_1_ack = ’0’ and 1_1_ack
1_2_ack = ’1’ and sample_req
Mult_1_mux2_sel <= ’1’ after delay(0,1);
Mult_1_req <= ’1’ after delay(2,4);

’1’ and
717;

wait until D_ack = ’1°’;
Mult_1_req <= ’0’ after delay(2,4);
wait until sample_req = ’0’;

end process;

Intermediate latches between operations wait for acknowledgement from the preceding
computation before latching the resulting data. The latch then waits for the resource
that uses that data to be requested before returning to an available state. Where many
operations are performed by a single resource, the select bits of the multiplexor are used
to ensure the resource is performing the right computation on the correct data values.
Sequencing of operations is handled by the control. Shown below is an example of this
type of process:

-- controls latch between nodes opA and opC
procl:process
begin
wait until ALU_1_ack = ’1°’;
1_1_req <= ’1’ after delay(2,4);
wait until Mult_1_req = ’1’ and Mult_1_mux2_sel = ’1’;

1_1_req <= ’0’ after delay(2,4);
end process;

When all the primary outputs of the system have acknowledged, the system’s primary

22

acknowledge is asserted. After the environment responds by lowering the request signal,

the entire system is reset to an available state. Shown below is an example of this process.

-- controls the ack of the entire system
proc3:process

begin
wait until D_ack = ’1’ and sample_req = ’1’;
sample_ack <= ’1’ after delay(2,4);
wait until D_ack = ’0’ and sample_req = ’0’;

sample_ack <= ’0’ after delay(2,4);
end process;

Using this control specification, Mercury is compatible with synchronous VHDL sim-
ulators. Figure 2.11 shows a wave diagram for the handshaking signals of the control.
The simulation was done using ViewLogic’s VHDL simulator FusionSpeedwave.

In addition, this model of the control is compatible with the asynchronous CAD tool
ATACS [46, 34], which is designed to further refine the control to a gate-level model.
Figure 2.12 shows a view of the control generated by ATACS using the behavioral VHDL
description. The control has 40 literals and requires 94 transistors to implement.

For ease in compilation, simulation, and verification, a VHDL configuration is often
very useful. The configuration maps each instance of a component to a specific VHDL ar-
chitecture model of that component. Appendix C shows a sample configuration generated

by Mercury.

‘[020%01d Suiyeyspuey Jurmoys werdeip Surwi], "T1'g 2InS1g

/ CTRL/ SAMPLE_REQ
/ CTRL/ SAMPLE_ACK
/ CTRL/ MULT_1_MJUX2_SEL__out
/ CTRL/ ALU_1_REQ
/ CTRL/ ALU_1_ACK

/ CTRL/ ALU_1_OP

/ CTRL/ MULT_1_REQ
/ CTRL/ MULT_1_ACK
/ CTRL/ L_1_REQ

/ CTRL/ L_1_ACK

/ CTRL/ L_2_REQ

/ CTRL/ L_2_ACK

/ CTRL/ D_REQ

/ CTRL/ D_ACK

/ CTRL/ A_REQ

/ CTRL/ A_ACK

/ CTRL/ B_REQ

/ CTRL/ B_ACK

/ CTRL/ C_REQ

/ CTRL/ C_ACK

— » -~ —@ — o

Il

j[

00

€
><

T(/ CTRL/ SAMPLE_REQ

T

50n 100n
Ti me (Seconds)

150n

€¢

24

au_ 1 ack + sample_req a req
sample_req I_l_req | _breg
L creq
sample_req
mult_1_ack 1 I_2 req mult_1_ack + __dreq
@ mult_1 mux2_sel + @
dak sample ack
a_ack |_1_ack
b_ack ~mult_1_ack
dulreq ~sample_ack
sample_req d_ack
~_1 ack b_ack
I_1 ack + c_ack
~mult_1 ack +
1_2 ack sample_req mult_1_req
mult_1_mux2_sel ~l_2_ack
1_1 ack - @ |_2 ack
~c_ack - mult_1_ack }DO
~sample_req - ~mult_1_mux2_sel

Figure 2.12. Structural control generated by the ATACS CAD tool.

CHAPTER 3

DESIGN SPACE EXPLORATION

The real voyage of discovery consists not in
seeking new landscapes, but in having new eyes.

—Marcel Proust

Many different valid hardware implementations may exist for a given data flow graph,
each with a specific configuration of hardware resources and corresponding control logic.
The set of possible configurations is the design space of the system. For efficiency
and structure, the exploration of the design space is divided into three main subtasks:
binding, scheduling, and allocation. As discussed in Chapter 2, binding determines a
mapping between operations in the data flow graph and resources in a library. Scheduling
determines when operations are executed, and allocation determines which resources
can be shared between operations, giving the quantity of each type of resource used
to implement the operations in the data flow graph.

Some systems perform binding and allocation followed by scheduling [14, 31]. In these
methods, delay and area information is estimated and then back-annotated for verifica-
tion. Other methods perform scheduling before binding and allocation [21, 40]. This
approach works well for resource-dominated circuits such as DSP and processor designs.
ASIC circuits, however, are generally not resource dominated but control dominated, and
therefore perform binding before scheduling and allocation. This permits estimating the
required steering logic and also allows for a more precise assessment of delays. In this
case, the scheduling problem is not constrained by binding or allocation and it can be
solved efficiently. Binding and allocation, however, generally dominate the complexity of
the problem [18, 15].

In an asynchronous circuit, an operation can execute as soon as the resource to which
it is bound is available and all of its data inputs are available. Since time steps are
not explicit and timing is not discrete, it is unclear how to effectively apply the tasks

of binding, scheduling, and allocation. Mercury uses a hybrid approach in which it

26

directly extends the principles of synchronous scheduling. First, binding is performed,
then scheduling and allocation are performed to determine the timing and allocation of
resources. When accurate models are used for area, delay, and interconnect, this approach

can work for both resource-dominated and non-resource-dominated circuits.

3.1 Binding

The first step is to create a binding for the operations in a data flow graph. This
determines a mapping between operations in a data flow graph and resources. A binding
may associate more than one operation to a specific resource type in the library. A
covering relationship can be defined among types to represent the fact that a resource
implements more than one operation. For example, an ALU may cover several operations
like addition and subtraction.

In order to produce a valid binding it is necessary that all operations are bound to a
library resource. Where this is not the case, a partial binding is created. Mercury does
not consider nor allow partial bindings because this would prevent a data flow graph from
being accurately scheduled and allocated.

There is currently a limited supply of asynchronous components in which to build a
circuit. Therefore, Mercury does not focus on binding and resource selection. While
binding and resource selection are important issues, their potential benefits are not
utilized at this time. For simplicity, Mercury requires that the library contains at least
one resource to satisfy each operation type used in the data flow graph. Then, to perform

binding, Mercury binds the first resource in the library which satisfies the operation.

3.2 Scheduling

For synchronous systems, scheduling determines when operations are executed in time.
This can be done efficiently using discrete-time intervals based on a global clock. In
an asynchronous circuit, the absence of a global clock and the asynchronous timing
of events make scheduling difficult. The scheduling of resources is dependent only on
the availability of the resource and its inputs. For accurate asynchronous scheduling,
resources must be modeled with data-dependent completion delays. Since binding is
done prior to scheduling, delay information is extracted from the given binding.

Traditional scheduling of synchronous designs assigns a given start and finish time with
each operation. In asynchronous scheduling, the start and finish times of operations have

a limited use because data-dependent delays have a significant impact on performance

27

[9]. While scheduling information is useful, it has a limited use in asynchronous design
because it is very difficult to break time into discrete bins. Furthermore, discrete methods
rapidly become computationally infeasible as discretization constants are made small to
allow for finer granularity.

For these reasons, scheduling information is not used here to explictily schedule an
operation to a specific time. It is only used to determine conservative windows of time in
which a operation may occur. The actual schedule is determined by resource sharing and
the order of operations. This makes the scheduling of operations for asynchronous design
an optional task. It is shown later, however, that this scheduling information can be very
helpful in reducing the time required to find a good solution. We leverage synchronous
methods to find the potential start and finish times of each operation.

For these tasks, two common algorithms are used. Mercury uses the synchronous
method of ASAP (as-soon-as-possible) scheduling to find the conservative windows of
time in which an operation may be utilizing a resource. ALAP (as-late-as-possible)
scheduling is used in conjunction with ASAP scheduling to find the mobility of each

operation in the data flow graph [18]. The following sections describe these methods.

3.2.1 ASAP Scheduling

ASAP scheduling, or scheduling without resource constraints, is used to determine a
lower bound on the latency of the system. ASAP scheduling is solved in polynomial time
by iterating through the nodes of the data flow graph in topological order. Each node is
scheduled by setting its start time to the maximum ending time of all its predecessors.
The ending time of each operation is computed by adding either the minimum, maximum,
or typical delay of the operation to its starting time. This gives three ASAP schedules
for each operation.

Figure 3.1a illustrates how the synchronous ASAP algorithm would schedule resources
for the differential equation solver. The ASAP algorithm is shown in Figure 3.3. Because
resources can be scheduled without limit, configurations that limit the number of resources
only have a latency greater than or equal to that of the unconstrained ASAP schedule.

By design, operations in an asynchronous system always start as soon as they can.
This means the difference between a minimum (best-case) ASAP schedule and maximum
(worst-case) ASAP schedule yields a range of time in which the operation starts its
computation. In this manner, scheduling takes on a nontraditional definition. Namely,

scheduling involves denoting an operation with a window of time when a resource is most

28

likely used for a given operation. These ranges of time are called critical windows because
these windows are used during resource sharing to determine the range of time when other
operations should not try to utilize a given resource to avoid resource conflicts. Resource
conflicts lead to a loss in performance because one operation may have to wait for the
resource to become available.

Using the data flow graph from Figure 3.1, each node is scheduled as-soon-as-possible
using a minimum, maximum and typical delay. For this example, it is assumed that
each multiplication operation has a minimum delay of four, a typical delay of five, and
a maximum delay of six. All other operations have a minimum delay of one, typical
delay of two, and maximum delay of three. Figure 3.2 shows the critical windows for the
start times of each operation determined by ASAP scheduling for the differential equation

solver example.

3.2.2 ALAP Scheduling
ALAP scheduling is the complement of ASAP scheduling and is used for latency-
constrained scheduling. In this case, operations are scheduled as late as possible by

setting the finish time for each operation to be the minimum start time of all of its

successors. Again, like the ASAP algorithm, unless explicitly constrained, resources can

Figure 3.1. As-soon-as-possible and as-late-as-possible scheduling.

29

| [+]000
[123)

N 1 Critical
L _1[4,5,6] [45 6] [4,5,6] | Start
_(_. Window

_" Best-Case Start
_11[8,10,12]
- 1[9,12,15]
| _ |a- Typicd Start
[min,typ,max] L__|a- Worst-Case Start

Figure 3.2. Critical windows derived from as-soon-as-possible scheduling.

be used without limit.

The ALAP algorithm is shown in Figure 3.3. The variable x is the latency bound,
and is chosen to be the delay of the schedule computed by the ASAP algorithm. Again,
best-case, worst-case, and typical ALAP schedules are derived using minimum, maximum,
and typical data-dependent resource delays respectively. Figure 3.1 illustrates how the
synchronous ALAP algorithm would schedule resources for the differential equation solver.

The computational complexity of both ASAP and ALAP is O(V+E).

3.2.3 Mobility
Using the difference of ALAP and ASAP scheduling, the mobility of each operation
is computed. This is an important quantity because it represents the span of time in
which an operation may be started. To illustrate, assume that for a specific operation
the best-case ASAP start time is 5, and the best-case ALAP start time is 18. Then the
mobility of the operation is 13.
If an operation has zero mobility then it is started only at a single given time, or

else the schedule would exceed the calculated latency. The critical path of the system

30

ASAP (G(V,E)) {
foreach v; in topological order
schedule #7 to max (t]S + delay;) where j:(vjv;) € E
return(t°);

}

ALAP (G(V,E),x) {
Schedule v,, by setting t; = &
foreach wv; in reverse topological order
schedule ¢/ to min (t]’ - delay;) where j:(v;,v;) € E

}

Figure 3.3. As-soon-as-possible and as-late-as-possible algorithms.

is determined when the latency bound of ALAP scheduling is set to that given by the
ASAP algorithm. Then, taking the difference between scheduled operations according to
ASAP and ALAP, each operation that has zero mobility is on the critical path of the

system.

3.2.4 Force-Directed Scheduling

Another method used for discrete time based methods is Force-Directed Scheduling
[36]. This method attempts to balance the concurrency of operations assigned to func-
tional units. To do this, a concept of force is developed for each resource. One common
analogy is to view the force of each operation as a spring. Then, a dataflow graph can be
viewed as a set of springs pushing against their successors and predecessors. Additional
forces to account for the sharing of functional units is also taken into consideration. With
this model, a state of equilibrium is found between the forces. When this occurs, the
concurrency of operations assigned to functional units gives the sharing of resources. An
example of a schedule for the differential equation solver using this method is shown
in Figure 3.4. Using this method, only two multipliers and two ALUs are required to
complete the system in four time steps. This is an improvement over the ASAP method
which requires four multipliers, and the ALAP method which requires three ALUs to
complete in the same amount of time. Later, our results are compared against the FDS

algorithm, and a similiar method called Force-Directed List Scheduling (FDLS) [36].

31

Figure 3.4. Force-directed scheduling.

3.2.5 Statistical Delay Calculation

It is critical that accurate estimates be used for asynchronous scheduling in order to
achieve optimal scheduling and resource sharing. The delay of a system is more accurately
calculated by using the statistical analysis approach presented in [9]. This method models
operations with a probability distribution representing the likelihood of completion after
a given amount of time. To illustrate, consider the example in Figure 3.5. In this case,
operation D cannot begin its computation until all three of its incoming operands A, B,
and C are available. An approach that simply finds the starting time of D by taking the

maximum completion delay of A, B, and C is shown in [9] to potentially underestimate

R B R B
(a) (8) (c)

\i
Cfij

Figure 3.5. A data flow graph with four operations: A, B, C and D.

32

the performance of the system by as much as 21%. This is because worst-case timing
analysis only calculates a pessimistic delay.

The statistical delay method is more accurate than these methods. It first calculates
the uncertainty of the start time for the system by using delay distributions of operations
A, B, and C. In this example, it is assumed that the completion times are normally dis-
tributed. The resulting distribution represents the window of time in which an operation
may start its calculation. For any time ¢, assuming statistical independence on each of
the inputs A through C, the distribution of D can be calculated. For the probability
density function of A, the notation f4 is used. So, the probability that operation A has
completed by time ¢ is:

P(Ay <t) = Fa) = [fatrat

This means the probability that D can start its computation at time ¢ is:

P(D, <1)= P(A; <) P(Bf <) P(C; < 1)

By substituting the first equation into the second for A, B and C and taking the

derivative of both sides, the start time distribution for D is:

fo(t) = Fa(t) - Fp(t) - fc(t) + Fp(t) - Fo(t) - fa(t) + Fa(t) - Fo(t) - f5(t)

Finally, to find the distribution of time for which the operation D is finished, the start
time distribution of D is convolved with its computational delay distribution. The ending
time distribution is then propagated in a like manner to D’s succeeding operations. Using
this model the data flow graph can be analyzed and a timing model can be generated.

It is clear that asynchronous scheduling using this method is more accurate but is a
computationally expensive task. The shortcoming of this method is that the assumption
of independence between signals is not always valid. Systems that have diverging signals
from a common source operation that then reconverge at a later point in the data flow
graph should, in theory, exhibit some dependence. This means that the assumption of

independence in this method could lead to erroneous calculations.

3.2.6 Monte-Carlo Delay Calculation
Another method for computing the delay of the system is Monte-Carlo. The Monte-

Carlo technique simulates the system until the overall delay of the system converges to a

33

specific time. Since in this method the delay of the system is calculated using Gaussian
random variables to model the delays of each operation, Monte-Carlo yields the typical
delay of the system.

The advantage of the Monte-Carlo method is that it takes into account signal depen-
dencies. The drawback of the Monte-Carlo method is the large processing time required
for convergence, making this type of delay estimation unsuitable during synthesis.

A couple of observations are in order at this point. First, the ASAP and ALAP
scheduling techniques are suitable for calculating the conservative schedules for a system.
From these schedules, the window of time in which an operation starts and completes
can be found, albeit conservatively. Using the ASAP and ALAP schedules, it can be
determined which resources are, or are not, in conflict and then share them appropriately.
The ASAP and ALAP method cannot determine exactly when, in the typical case, an
operation starts and completes. When a more accurate technique is required, the Monte-

Carlo method can be used.

3.3 Typical Delay

Although very elusive, it is important to have some notion of the typical delay of a
system, because in an asynchronous design, minimizing the typical delay is the primary
objective when trying to reduce the overall latency. The worst-case, or even best-case,
completion delays of two designs can be equal, but each can have different typical delays.
Analyzing a design does not require knowing the typical system delay, it only requires
knowing, with some degree of accuracy, if the typical delay is better or worse than a
competing design.

It was originally thought that as operations are serialized to enable resource sharing
the values of the worst-case delay and typical delay of the system would increase together.
This would allow us to simply use the worst-case delay of the system as an indicator of the
typical delay. Using this method, it seems logical that if a design had a larger worst-case
delay, it would then also have a larger typical delay. This, however, is not the case,
because it is possible for the worst-case delay of the system to increase, while the typical
delay of the system actually decreases.

Using the differential equation solver, from Figure 2.1, the worst-case delay of the
system was compared with the Monte-Carlo typical delay of the system. For the addition,

subtraction, and comparison operations (ALU operations), delays of two, five, and eight

34

are used. These correspond to the minimum, typical, and maximum delay of each
operation. For all other operations, delays of four, five, and six are used. Note that
for this example, all operations in the data flow graph have the same typical delay. Only
the best-case and worst-case delays vary. Exploration is then done on the system to find
all configurations of the system. It was discovered, that as operations in the graph were
serialized that the typical delay of the system did not track the worst case delay of the
system. While the worst case delay of the system monotonically increased, the typical
delay increased as expected, but it also decreased with certain configurations.

Further analysis of the differential equation solver example showed that this occurs
because each ALU on the critical path improves the typical delay by three units. When
other operations are on the critical path, they only improve the typical delay by one unit.
In other words, it is better for the critical path to be composed with ALUs in place of
other operations, because while the worst-case delay may increase, the typical delay is
better. This illustrates that the typical delay of the system does not always track the

worst-case delay of the system.

3.4 Resource Allocation

Resource sharing is used to minimize the area required for a design. This is done
by determining which operations are scheduled to a particular instance of a resource.
An optimum resource sharing is one that minimizes the number of required resource
instances. Two or more operations can share the same resource if they are of the same
type and they are not in conflict with each other. Operations are in conflict if their
execution windows overlap in time. This happens when either operation starts before
the other has completed. Operations that are scheduled in disjoint windows of time are
guaranteed not to overlap and are, therefore, always compatible. The conflict window
is determined by using the best-case ASAP schedule to determine the start time of the
window and the worst-case ALAP schedule to determine the stop time of the window.

Another way to show that two operations are compatible is to analyze the data flow
graph. If there is a path from operation i to operation j, then those two operations are
compatible regardless of their scheduled windows of time. This is because the existence
of a path guarantees that operation ¢ must complete before operation 5 begins. The more
edges present in a graph, the more sharing that can potentially occur. Edges used to

explicitly denote two sharable operations are known as resource edges and are added to

35

the data flow graph during exploration. They are distinguished from data edges, because
they do not imply the transfer of data from one operation to the next. Resource edges
enforce that the two operations occur at disjoint times and denote the ordering in which
operations must occur.

Figure 3.6 shows a data flow graph with only data edges. In this configuration, four
multipliers are required and three ALUs. With resource edges, only two multipliers and
one ALU are required. Granted, however, in this case, the overall delay of the system
may not be equal. Note that there are many ways to add resource edges to the graph.
Each resource edge added to the graph, in essence covers an aggregate of all the possible
discrete time schedules that the given operation sequencing and resource sharing would
produce. Hence, scheduling of operations is done independent of the discretization of
time. For efficiency, Mercury utilizes both the information from the data flow graph and
where applicable, conservative scheduling information to perform resource sharing.

This approach is beneficial for asynchronous design because the computational com-
plexity is constant with regard to the discretization of time. Using resource edges, in
effect, allows scheduling to take on a continuous time paradigm. Owur tests showed

that synchronous methods, such as Force-Directed Scheduling, become computationally

Figure 3.6. Data flow graphs without and with resource edges.

36

infeasible as the granularity of time is increased. Figure 3.7 illustrates the crossover in the
usefulness of the two methods. Being able to discretize time without a loss in performance
is important for asynchronous design because of the naturally continuous nature of events

which can occur in an asynchronous circuit.

3.4.1 Left-Edge Algorithm

Using the left-edge algorithm from [26], it is possible to do resource sharing. The
algorithm first sorts the operations or nodes by their scheduled start time, or left-edge. 1t
considers one instance of a resource at a time and assigns as many operations as possible
to that instance by searching the nodes sorted in ascending order. Each iteration of the
algorithm considers a new instance of the resource, until all operations are allocated to a
specific resource instance.

The algorithm in [26] is used to perform asynchronous resource sharing, but with two
modifications. First, the left-edge of each operation is determined by its scheduled start
time in place of a specific clock cycle. The right-edge of each operation is determined by
its scheduled stop time. This reflects the window of time in which the resources should

not be shared. In the tool Mercury, the user can specify a more liberal window of time

Synchronous
Methods

CPU
Time

Asynchronous
Approach

Discretization constant (delta)

Figure 3.7. Synchronous methods vs. asynchronous approach.

37

if desired. For example the user could specify the typical start time to typical stop time.
Second, the existence of a path between two operations is tested. When a path exists
between two operations, it does not matter if the operations are scheduled at potentially
conflicting times, the two operations are considered compatible because the existence of
a path guarantees the operations are serialized with respect to each other.

The asynchronous version of the left-edge algorithm is shown in Figure 3.8. The
complexity of the algorithm is O(ViogV'). While the algorithm is not exact, it is found,
in practice to give very good results efficiently.

Solving for an optimal configuration of resource sharing exactly is an exponentially
difficult problem. Figure 3.9 illustrates the asynchronous left-edge algorithm on an
example and shows why an exact solution is difficult. The example shows that the
ordering of operations can, in some cases, determine the quality of the solution. In
the example, each node in the data flow graph is the same operation, and the resource
bound to each operation has a minimum computational delay of one and a maximum
computational delay of three. The schedule for each node gives the interval in which the
operation can use the resource. The nodes are sorted according to their start times.

Initially, the algorithm would pick A or B and start scheduling operations, since they
both have the same left-edge. Assuming that operation A is picked first, the algorithm will

share it with operation C, even though there is an overlapping window of time, because

Asynchronous-Left-Edge (I) {
Sort elements of I in a list L in ascending order of l;;¢-
instance = 1;
foreach operation in [in L {
linstance = instance;
t=1;
foreach operation k in L starting at [+ 1 {
if Kmin_start >= tmaz_stop O path between ¢ and k {
Kinstance = instance;
t=k
remove k from L;
¥
¥
instance++;
remove [from L;

Figure 3.8. Asynchronous left-edge algorithm.

38

Minigmum Start Maximum Stop
a % 1 2 3’7: 5 6 7 8 9

The order of selection
determines the
configuration of sharing.

-

E selected before F

— &

F selected before E :

Figure 3.9. Example using the asynchronous left-edge algorithm.

a path exists between A and C, and C has the next lowest left edge. The next step is
to pick either E or F to share with A and C. From the example, note that operations E
and F both have the same potential start time. If E is evaluated before F as a potential
node to share with A and C, then an optimal solution is found. If F is evaluated before
E, then the solution is not optimal. To find an exact solution to resource sharing, the
order of picking nodes has to be considered.

Because of the complexity of an exact solution, we do not consider the ordering of
nodes. But for consistency, the algorithm is stabilized by sorting each node first, by its
left-edge, and second, by the name of the node in the graph. This guarantees that the
algorithm always gives the same answer for the same scheduled graph even though it may

not always be an optimal solution.

39

3.4.2 Clique Covering

Another method of resource sharing is clique covering [23]. A clique is defined as a
maximally connected set of operations in a graph. Clique covering is the process of finding
a minimum number of maximal cliques. It attempts to solve the problem by creating a
resource compatibility graph. The compatibility graph has edges between all nodes that
are compatible. Similar to the left-edge technique, two operations are compatible if a
path exists between them, or if they have disjoint time frames.

A solution to the clique covering problem can be determined by iteratively searching
for the maximum clique in the graph and then deleting it from the graph until there are
no more nodes in the graph. Each clique is assigned an instance of the resource. The
clique covering problem is intractable, and so, heuristic techniques have been developed.

One common heuristic to find the maximum clique in a graph first calculates the
degree of each node. The degree of a node is determined by the number of adjacent
nodes. Next, the node with the highest degree is selected. Then, adjacent nodes are
iteratively selected in a similar manner. If the node under inspection is adjacent to all
previously selected nodes then it is selected to be part of the clique. It is hoped that by
picking the node with the highest degree at each iteration the largest possible clique will
be created.

The complexity of the clique covering algorithm is O(V?). This makes the algorithm
much more complex than the left-edge algorithm. The algorithm is also slower because it
requires dynamic creation and manipulation of the compatibility graph. In nearly all tests,
clique covering gave the same or worse results than the left-edge algorithm. Figure 3.10

shows the compatibility graph for the example in Figure 3.9. The figure shows why
_________ [r————n
[|
®—© NI
X | \ ‘ | I ‘ |
\ 1 |
|
I |
I |
I |

@H—@

\\||

________ AN B - ==

Figure 3.10. Compatibility graph for clique covering.

40

the left-edge algorithm can perform, in many circumstances, better than clique covering.
Using the heuristic, operation F would be selected as the starting node since it is the
highest degree node in the compatibility graph. Next, either operations A or C would
be selected to be part of the clique, since they are the next highest degree nodes. By
limiting the choices to A and C, the optimal solution which requires F to be paired with
B or D does not occur.

The example shows that in this case the clique covering technique would not yield
the best solution, whereas, the left-edge algorithm still has the potential to find the
better solution. The clique covering heuristic could be modified to randomly select nodes
instead of selecting those with the highest degree first. If this were the case, it would have
the potential of finding the better solution, but the algorithm still requires much more
computation time, making it an undesirable choice. For essentially the same results, the
left-edge algorithm is a more efficient method of determining resource sharing.

Resource sharing and allocation determine, in part, the area a particular design
requires. The total area can be computed by summing the area of each resource in-
stance. In addition, where resource sharing has occurred, the area of each multiplexor
is added to the total. The area each latch requires is neglected because the number of
latches for each configuration in the design space is currently constant. The area of the
control is not added to the total since Mercury only generates a behavioral model of the
control. After refining the control to the gate level using ATACS, area estimations could
be extracted and taken into consideration. For now, the supposition that the circuits will

be resource-dominated is made, and it is assumed the area of the control is negligible.

CHAPTER 4

THE DESIGN SPACE

God is in the details
—Mies van der Rohe

The design space of this problem is all possible configurations of the data flow graph
that can be used to create a datapath. Design space exploration starts with the user-
provided data flow graph and incrementally adds resource edges to the graph. Each added
edge serializes more operations. Each serialized operation reduces the area of the system
because better resource sharing may occur. But this in turn may increase the latency
of the system. When exploring the design space, three different types of edges are used.
These include data edges, resource edges, and implied edges.

Data edges are edges that show the relationship between computed values and their
future use. These edges are initially provided by the user via the specification. Resource
edges are added between operations during exploration to allow the operations to share
the same physical resource, they also imply the ordering precedence of operations. An
implied edge is an edge which can be inferred between two compatible resources based on
conservative timing analysis. A data dependency edge between two operations implies a
resource edge between the operations if they are compatible operations, but a resource
edge between two operations does not imply a data dependency edge.

To illustrate the design space, an example consisting of three compatible operations
A, B, and C, with no data dependencies between their operations is used. Compatible
operations are operations which can share the same resource. The design space for this
configuration is shown in Figure 4.1. Edges between operations in the figure denote
resource edges. In this case, the three concurrent operations yield a design space of 27
configurations. Infeasible configurations are denoted with an I and redundant configura-

tions with an R. These are discussed later in more detail.

42

9,
®
©
©

(A=)
(a) (&)

(o) (©

;

Lreks

Py

fili

py)

;
:
:

:
:

Figure 4.1. Exploration space of 3 compatible operations.

4.1 Reducing the Design Space

Many graphing problems are intractable because the design space grows exponentially
in relationship to the number of nodes in the graph. The exponential explosion of
the design space makes it very difficult to evaluate all possibilities in a finite amount
of time. Evaluating each possible configuration of a data flow graph to find the best
asynchronous datapath configuration has the exponential characteristic common to other
graphing problems. Therefore, it is advantageous to eliminate as many configurations in
the design space as possible before they are analyzed. Several optimizations to reduce
the design space are used. This chapter first gives a brief overview of exploration and
then discusses each of the optimizations.

The complexity of the design space for a configuration in which all operations are

concurrent, compatible, and not dependent on one another grows at a rate of 0(3"("’1)/2),

43

where n is the number of nodes in the graph. This configuration has the worst possi-
ble complexity, since graphs with data dependencies or graphs having noncompatible
resources constrain the system and reduce the number of edges which can be added to
serialize operations.

The complexity of the design space is derived as follows: between two independent
nodes, a choice of three possibilities is made during exploration. An edge can be added
from 7 to 7, or an edge can be added from j to ¢, or no edge is added at all. Between
n nodes, there are n(n — 1) possible directed edges. Picking both edges between any
two nodes would create a cycle in the graph, so it is only possible for half of the edges

to be added to the graph at any given time. So the complexity of the design space is
0(3”(”71)/2).

4.2 Filters

Filters are special checks done during the exploration of the design space. Several
filters are integrated into Mercury that eliminate much of the required design exploration.
These filters include detecting and eliminating redundant designs, eliminating infeasible
configurations, detecting maximum resource sharing, and considering operations which
have implied serialization. An efficient pruning technique is also used when solving for
a minimal-latency solution. While none of these filters exponentially decrease the design
space for all configurations, each significantly reduces the design space and required run-

time to find a solution.

4.2.1 Infeasible Edges

In exploring the design space, all possible orderings of adding resource edges to the
original data flow graph are potentially considered. Since edges are directional, each
direction of an edge between two nodes is explored. This means that with the addition
of certain edges, the original acyclic data flow graph could become cyclic. Edges which
create a cyclic graph are infeasible. The first filter eliminates designs which are created
by an infeasible resource edge. More formally, if there is a path from the target of a
candidate edge to the source of the candidate edge, then the candidate edge would create
an infeasible design. The existence of a path from the target to the source node can
be determined by finding the transitive closure of the data flow graph and using it to
determine the existence of a path between the two nodes. If an edge is infeasible, then

the design is not considered and design space exploration is pruned at that point.

44

Figure 4.2 illustrates a candidate edge from node C to A which would create an
infeasible design, since it would create a cyclic dependency between operations. For the
example in Figure 4.1, those designs which are created by infeasible edges are denoted

with an I.

4.2.2 Redundancy

The second filter eliminates redundant designs. A design is redundant if the addition
of an edge creates a design equivalent to one previously explored. To detect whether a
candidate resource edge creates a redundancy, the algorithm shown in Figure 4.3 is used.
The algorithm detects if a candidate edge is redundant by checking for the existence of
a path from the source of the candidate edge to the target of the candidate edge. If
there exists a path, then the candidate edge would create a redundant design. Next,
the algorithm goes to the candidate edges’ target and checks all of its resource edge
predecessors. If there is a path from any one of those predecessors source operation back
to the original candidate source operation, through a resource edge, then the newly added
edge creates a redundant design. In the final step, the algorithm goes to the candidate
edges’ source and checks all of its resource edge successors. If there is a path from the
original candidate edge target to any one of the successors targets, through a resource
edge, then the design is also redundant.

The design space illustrated in Figure 4.1 has several redundant designs which are
marked with an R. Each of these designs is eliminated from consideration with the
redundancy filter. When a redundant design is detected, the design space is pruned

and no further configurations along that branch of the exploration are considered. The

\\\ Infeasible Edge

Figure 4.2. Infeasible edge.

45

foreach new edge e = (x,y)
if (3 path y — x) then
infeasible
if (3 path x — y) then
redundant
foreach € = (x,y) € Eresource
if (3 path x> — x) then
redundant
foreach € = (x,¥") € Eresource
if (3 path y — y’) then
redundant

Figure 4.3. Procedure to determine if adding a resource edge creates a valid design.

design space can be pruned because all future combinations of edges originating from a
redundant one, are identical configurations to ones explored previously.

Many redundant designs are detected during exploration. It has been found that
pruning the design space using this algorithm yields a significant reduction in exploration
and runtime without sacrificing the quality of the solutions.

To further illustrate this filter, a simplified version of our original example is created by
adding a data dependency edge from node A to B. Figure 4.4 shows the reduced design

space. In this example, design 6 is redundant because of design 4. Note that in this

Sl b
[

Redundant

Resource
‘. Edge
R

©

N

Figure 4.4. Design space showing redundancy.

46

case all operations are serialized in the same manner for both cases. Unlike the previous
example, design 7 was not eliminated as being redundant because the edge from A to B

is a data edge and not a resource edge.

4.2.3 Implied Edges

As mentioned earlier, implied edges are edges which are not in the original data flow
graph, but can be added to the graph without affecting the scheduling of operations.
Implied edges are important because they may affect the sharing of resources. An
edge is implied between two operations if first, they have the same type of operation,
and second, according to timing analysis it is determined that the two operations can
never be in conflict with each other. To do a conservative resource analysis, the critical
window of the resource is calculated using ASAP scheduling. If any two resources
have overlapping critical windows then there cannot be an implied edge between those
operations. Figure 4.5 illustrates an implied edge. Implied edges are always used to imply
sharable operations when doing resource sharing, so if a candidate edge is an implied edge,
then adding the candidate edge does not yield additional information and consequently
the candidate edge does not need to be explicitly added to the graph. When an implied
edge is detected, explicitly considering the edge is not required so the design space can

be pruned.

Best-Case

ASAP Mobility

Worgt-Case \\\ _

ALAP — Implied Edge
Best-Case \\
ASAP \\
Worst-Case Mobility
ALAP

Figure 4.5. Implied edge.

47

4.2.4 Minimal Latency

When performance is the key optimization goal it is often the case that the designer
would like the best possible performance for a design using minimal area. This is known
as the latency-constrained minimum-area problem. When a designer seeks to find only
minimal latency solutions, though, an additional optimization can significantly reduce
the design space of the exploration.

For this optimization, it must be assumed that latency monotonically increases as each
candidate edge is added to a design. It is believed that this is a fair assumption, because
each additional edge either leaves the design unchanged or further serializes operations.
Serializing an operation and employing resource sharing potentially add delay to the
system, but does not decrease the delay. This is because larger muxes are required to
feed multiple operands to the resource and the computation may potentially be delayed
due to a resource conflict. From this, the design space is pruned when a candidate edge is
found, which increases the overall latency of the system, because future designs originating
from that configuration have equal or longer latencies. The overall system latency is
calculated using unconstrained ASAP scheduling. When solving for a minimal-latency
solution, if the overall system latency is greater than the value determined by typical
ASAP scheduling, then the design space can be pruned.

This filter can be optimized further, and additional savings can be made by comparing
the ASAP and ALAP bounds of source and target operations of a candidate edge. If
the best-case start time of the source of a candidate resource edge is greater than the
worst-case completion time of the target, then it can be concluded that there is no way
to serialize the two operations without additional system delay. This is because the edge
would force one of the operations out of its zone of mobility, which would in turn lengthen
the critical path of the system. Figure 4.6 illustrates this comparison. The overall delay
is increased because the edge forces the target and all of its successors to shift to later
starting times, which in turn expands the overall delay of the schedule, forcing the design
to have nonminimal latency. Using this technique is very efficient, because it does not
require calculating the overall system delay with the added candidate resource edge. In
order to prune the design space, this method only needs to examine the original schedule
and determine if adding an edge between two given operations would lengthen the critical

path.

48

Best-Case
Mobility ASAP
4
7 Worst-Case
/ ——— ALAP
Best-Case ,* Edgeincreases|atency
ASAP
Worst-Case Mobility
ALAP

Figure 4.6. Minimal latency filter.

4.2.5 Constraints

Constraints can be specified by the designer to aide design space exploration. For
example, the designer may know the total area that the design can occupy, or may specify
a maximum limit on the number of allocated instances of a resource. Considering these
constraints does not always significantly reduce the exploration of the system without
opening the possibility of suboptimal solutions. Unlike delay, the system area does not
monotonically increase or decrease as candidate edges are added. The area may increase
if the cost of interconnect logic is greater than the savings given by resource sharing. This
makes it difficult to prune the design space using a method similar to the minimal-latency

optimization.

4.2.6 Maximally Shared Resources

Detecting when a resource is maximally shared is another optimization. Maximum
sharing occurs when only one instance of the resource is required by allocation for a group
of similar operations. Once a resource is maximally shared, further exploration of that
resource is not productive. This is because the addition of more resource edges to the data
flow graph, between compatible operations that are already assigned to the resource, does
not change the allocation for the resource. For this reason, when a resource is maximally
shared, no further exploration is performed for operations which are allocated to that

resource. When all resources required by the data flow graph are maximally shared, all

49

operations of the system are maximally serialized, and this branch of the design space
can be pruned from further exploration.

This optimization is exact because when all operations are serialized, further resource
sharing is not possible. This means that the total area required by the design does not
decrease, and the addition of resource edges either increases the latency of the system
or leaves it unchanged. Since adding edges does not decrease the overall latency of the
system, further exploration does not yield a configuration better than a configuration

with maximum serialization, which uses a minimum number of resource edges.

4.2.7 No Change In Objectives

Another filter detects when, after the addition of a candidate resource edge, there is
no change in the values of all objectives. If there is no change, then the design space
is pruned and further exploration is not done with the edge included. In this case, it is
assumed that a resource edge is useless when it has no effect, so the algorithm skips to
edges that make a difference in the design. The assumption may not however be correct
if, later in the exploration additional resource edges have been added to the graph and
then the edge does make a difference in the sharing or sequencing of operations. When
this occurs, the two paths of exploration are no longer parallel. If this occurs, then this
filter may cause the quality of results to deteriorate since unique solutions will not be
evaluated. This method is a very aggressive heuristic that significantly reduces the time

required to find a solution; however there is a tradeoff in the quality of solutions.

4.3 Hierarchal Exploration

Another method to reduce the design space uses a hierarchal exploration approach.
In this method, not all combinations of resource edges between operations are explored.
The hierarchal approach groups each operation in the data flow graph according to their
type. Then, exploration is done separately for each group. For example, exploration is
done for all ALU operations separately from exploration for multiply operations.

Each group is explored by adding resource edges between operation pairs in the group.
Edges between operations that are not in the group are not modified. Resource edges in
a group that affect the overall area and delay in a favorable manner (critical edges) are
stored. When the critical edges for each group are found, all possible combinations of
the critical edges are added to the original data flow graph. Each new configuration is

evaluated and a final set of solutions is discovered.

o0

This approach detects edges that do not have an impact on scheduling or allocation
and removes them from further consideration. Extracting groups of edges reduces the
complexity of the design space. This happens because, in general, the sum of the
complexity of each groups’ design space is much smaller than the complexity of exploring
the entire design space all at one time. Furthermore, if a group does not have any
favorable edges, then that group, or set of operations, is dominated by other operations
in the graph. This focuses exploration on groups of operations which have the potential
to optimize the overall design further. Figure 4.7 illustrates the hierarchal grouping of
resources for the differential equation solver.

The solutions produced using this method, however, may not be globally optimal:
when critical edges are determined for each group, it is assumed that other operations are
scheduled and allocated without constraint. This means that it is possible to skip critical
edges that are dependent on other critical edges, which are not part of the current group
being explored. For example, if edge A from group X is not a critical edge, independent
of edges from other groups, it would not be considered. But, if critical edge B from
group Y were added to the graph causing A to become a critical edge, then A should be
considered. Using the hierarchal approach, edge A would be skipped.

Figure 4.7. Grouping of resources for hiearchal exploration.

o1

Mercury implements the hierarchal approach and we observe its effectiveness in the
case studies of Chapter 6. It is has been found to be very beneficial when solving large

designs where the design space is too large to efficiently solve using nonhierarchal methods.

CHAPTER 5

SYSTEM IMPLEMENTATION

To iterate is human, to recurse: divine!

—L.P. Deutsch

5.1 General Algorithm

The engine of the exploration system uses a branch-and-bound algorithm to explore
the design space. The design space is searched for the best possible set of schedules and
allocations by incrementally adding resource edges to the data flow graph. Each resource
edge added can affect the performance, area, or other attributes of the system. Thus,
after each edge is added, the newly created graph is analyzed for performance in terms
of area and latency.

Trade-offs between area and latency are managed by using Pareto points [10]. Any
point in the design space which is superior to all other points in one objective, or
a combination of objectives, is a Pareto point. Each design space may have many
Pareto points that correspond to unique design configurations not dominated by others.
Therefore, each Pareto point is worth consideration as a candidate configuration for
implementation. Figure 5.1 illustrates the concept of a Pareto point for two objectives:
delay and area. The concept could can be extended into the third demension using
another objective such as power.

Mercury evaluates each configuration in the design space according to two objectives:
delay and area. These objectives are used to find Pareto points. If the new design is a
Pareto point, then that configuration is stored in a set of Pareto point solutions. Solutions
which are added to the set may be better than former solutions in the set, so any former
solutions which are no longer Pareto points are removed from the list.

The branch-and-bound algorithm for this problem is illustrated in Figure 5.2. The
algorithm begins by selecting two operations A and B from the graph and determining if

adding a candidate resource edge between the two operations satisfies all of the bounding

93

210 G
| Region of
DGRt non-Pareto
l point designs
XK=
Area >1< 7777777777777777777
X
100
13 32
Delay

Figure 5.1. Pareto Points.

conditions. This includes not being filtered by any active filters from Chapter 4. For
example, if the filter for checking redundant configurations is active, the algorithm skips
over any edges that create a redundant graph. Or, if only a minimal-latency solution is
desired, then the edge must satisfy the minimal-latency filter, or it is dropped.

Each time a candidate edge is filtered, or the algorithm exceeds constraints, the design
space is pruned. If the candidate resource edge satisfies all of the bounding conditions,
then the algorithm recurses into another level of the exploration. The next level considers
all remaining edges with and without the candidate resource edge. Recursion continues
until all possible edges between any two compatible operations have been explored or
pruned. Once the algorithm completes, the Pareto points remaining in the solution set
are the best solutions.

Using this algorithm on a data flow graph with three concurrent nodes, the design
space shown in Figure 4.1 would be found from the exploration tree shown in Figure 5.3.
In Figure 5.3, each branch indicates a level of recursion from the algorithm and each bold

node represents one of the configurations in the design space. For this example, infeasible

explore(operation a, operation b, binding bi) {

pareto_points pp;

if (b == end_operation) {
b = first_operation;
a = next_operation;

}

if (a == end_operation)
return pp;

while (any active filter is not satisfied) {
b = next operation;
if (b == end_operation) {
b = first_operation;
a = next_operation;
if (a == end_operation)
return pp;
}
}

/* Recurse without adding resource edge */
pp + = explore(a,b+1,bi);
add-resource-edge(a—b,bi);

/* Calculate the area and latency of the configuration */
pareto p = evaluate_design(binding);
if (p == Pareto_point)
pp + = design(bi,p);
/* Recurse with the resource edge added */
pp + = explore(a,b+1,bi);

remove-resource-edge(a—b,bi);

return pp;

Figure 5.2. Exploring the design space using a branch-and-bound search.

o4

95

y
(o
Y Y

no@ [__) no AC

Y \

_] [no BA] [BA) (noBA)

T P @) @ e

e . O

. c_:EiJ}A]QB) (noBc) (noBC)|(cA I (CA;} (ca)

‘o (29 D) () @9 bR @) ()
s

[no BC] (no CB) [no CA]

\ Y

Figure 5.3. Exploration tree.

designs are filtered from exploration and are not shown. Six redundant designs are shown
with dashed boxes. They correspond to the redundant designs in Figure 4.1.

Note that exploration does not grow symmetrically, but rather grows to the right.
This is because each added edge constrains the system further. KEdges which are not
added to the system do not constrain the system, so more options are available latter in

exploration. Twenty-five designs that are evaluated during exploration.

5.2 Optimizations
At each step in the branch-and-bound tree, the graph is evaluated with only one
change from the prior step. This change is the addition or removal of a single edge from

the graph. Each time an edge is added or removed from the graph, a topological sort

o6

must be done on the graph, and the ASAP and ALAP schedules must be updated. In
addition, the transitive closure of the system, which determines whether a path exists
between any two operations, must be updated.

To gain as much efficiency as possible for incremental changes, two optimizations are
employed. The first is dynamic transitive closure on the graph; the second is dynamic

analysis of the ASAP and ALAP schedules.

5.2.1 Dynamic Transitive Closure

The transitive closure of a graph supports reachability queries. For example: is there a
path between vertices 7 and j in the graph? Once a transitive closure has been calculated
for a graph, boolean-path queries can be answered in constant time. This makes the
classical transitive closure method good for static graphs which are created once and
queried many times. If, however, as in the method presented here, there are many updates
to the graph, followed by only a few queries, the classical approach is computationally
expensive because it would compute the answer to all queries from scratch after each
update.

Using a dynamic transitive closure algorithm, it is possible to update the reachability
of vertices more efficiently. A dynamic transitive closure algorithm developed by Cicerone
[39] which is a generalization of another algorithm proposed by La Poutré and van
Leeuwen [37] is used. Other similar algorithms include Italiano’s [28, 29] algorithm and
Yellin’s algorithm [44].

The algorithm proposed by Cicerone uses a counting technique to solve the problem.
Information on edges existing in the graph is maintained explicitly in an adjacency matrix.

As resource edges are added or deleted, the adjacency matrix is updated to reflect the
changes in structure of the graph. If the transitive closure matrix contains a count of
zero, then no path exists between the pair of operations. If the count is greater than zero,
then a path exists and the count represents the number of adjacent edges creating a path
through the pair of operations. When an edge is inserted into the graph, the transitive
closure is updated. Figure 5.4 shows the algorithm for updating the adjacency matrix
when an edge is added to the graph.

The algorithm works as follows. First, the new edge is added to the graph G. Then,
each operation, or node k£ with a path to the source 4, is considered. A queue is initialized
with the value of the target operation 5. Then, while that queue is not empty, the count,

which indicates a path from k to the current operation on the queue, h, is incremented.

o7

If the count becomes equal to one, then each successor of h is added to the queue. The
successors are added to the queue in this case because the new edge caused two previously
unreachable nodes to become reachable. The transitive closure of each of the successors
needs to reflect the existence of the new path. If the count is greater than one, then
the successors are already aware that a path exists between the two operations from a
previous edge insertion, and no further updating is required. Otherwise, the successors
are pushed onto the queue. The algorithm continues until all successors of the newly
added edge are updated with the new path, or are already aware of the path. The delete
operation works in a similar, but opposite, manner and is shown in Figure 5.5.

Using the algorithms in Figure 5.4 and 5.5 when inserting and deleting edges from the
graph, it has been proven in [39] that the total time required to insert ¢ consecutive edges
in a graph G, with n vertices and m edges is O(n(g+m)), and the total time required to
delete g consecutive edges in graph G is also O(n(g+m)). Furthermore, it has been proven
that it achieves O(n) amortized time per operation. The adjacency matrix requires O(n?)
storage space. Like other methods, queries can still be answered in constant time. This

is an improvement over non-dynamic solutions that have a complexity of O(n?).

5.2.2 Dynamic Scheduling

After each insertion or removal of a candidate edge, the schedule of a data flow graph
must be recomputed. Since only one edge has changed in the data flow graph, a method
called dynamic scheduling updates the ASAP and ALAP schedules without recalculating
the schedule for every operation in the graph.

For dynamic ASAP scheduling, each added edge between a source and target operation
can only affect the schedule of the target operation and the target’s successor operations.
Therefore, when an edge is added, the schedule of the target operation is recomputed. If
its schedule is changed, then the algorithm recurses to each of its successor operations and
recomputes their schedules. The algorithm continues recursing through any successors
whose schedule has changed until there are no more successors, or there is no change in
any successor’s schedule. When removing an edge, the same algorithm can be used, since
again, only the target operation, and its successors are affected by the removal of the
edge. Figure 5.6 illustrates the ASAP-update algorithm.

For dynamic ALAP scheduling, the concept is the same, but the operation is more
difficult. In this case, if the overall delay of the system changes, all operation’s schedules

also change, so the ALAP schedule must be entirely recomputed. To determine if the

insert(i,5) {
G =G U {(.)}
foreach k € V
if (Clk,i] > 1)
set-queue(Qy,(i,7))
while @) is not empty
pop-queue(Qy;(I,h))
if (h #£ k)
Clk,h] = Clk,h] +1
if (C[k,h] == 1)
foreach (h,y) € out|[h]
push-queue(Qy,(h,y))

Figure 5.4. Updating dynamic transitive closure for insertion of an edge.

delete(i,5) {
foreach k € V
if (Clk.] > 1)
set-queue(Qy,(4,7))
while @) is not empty
pop-queue(Qy;(l,h))
if (h # k)
Clk,h] = Clk,h] —1
if (C[k,h] == 0)
foreach (h,y) € outlh]
push-queue(Qy,(h.y))

Figure 5.5. Updating dynamic transitive closure for deletion of an edge.

o8

99

overall delay of the system has changed, the delay of the new ASAP schedule can be
compared with the delay of the prior ALAP schedule. If there is no change in the overall
delay of the system, then the algorithm recomputes only those operations which are
affected using a method similar to dynamic ASAP scheduling. Figure 5.7 illustrates the
ALAP-update algorithm.

ASAP-update(target) {
compute new-schedule for target;
if (target’s prior-schedule != target’s new-schedule)
prior-schedule = new-schedule;

foreach (successor of target i)
ASAP-addedge(i);

Figure 5.6. Updating ASAP schedule for insertion or deletion of an edge.

ALAP-update(target) {

if (new overall delay == old overall delay)
recompute(target);

else
schedule-ALAP(); }

recompute(target) {
compute new-schedule for target;
if (targets prior-schedule != targets new-schedule)
prior-schedule = new-schedule;
foreach (successor of target)
recompute(i);

Figure 5.7. Updating ALAP schedule for insertion or deletion of an edge.

CHAPTER 6

CASE STUDIES

Be careful of going in search of Adventure.
It is ridiculously easy to find.

William Least Heat Moon

To test the effectiveness of the filters, three common high-level synthesis benchmarks
are used: a differential equation solver (DIFFEQ), a fifth order elliptical wave filter
(EWF), and an inverse discrete cosine transform (IDCT). The differential equation solver
is the smallest of the three examples with a total of 11 operations. The elliptical wave
filter is larger yet with 32 operations. The inverse discrete cosine transform is the largest,
with 46 operations.

All of the case studies were performed using a Pentium IT 400 Mhz processor with
a 512 kilobyte level 2 cache and 384 megabytes of synchronous DRAM. The operating
system used is RedHat Linux version 5.0, and the source code for Mercury was compiled
using GNU C++ version 2.8.1. Memory was not an issue for any of the tests. Maximum
memory utilization during exploration was approximately 13 megabytes. Throughout

each test, CPU utilization was at, or near capacity.

6.1 Differential Equation Solver

Using the data flow graph for the differential equation solver shown in Figure 2.1,
exploration is done using both the hierarchal and nonhierarchal approaches. By default,
the infeasible edge filter is always active for each of these tests, since exploring infeasible
designs is not useful. ALU operations are modeled with a minimum delay of one, typical
delay of two, and maximum delay of three. It is assumed that they require 21 units of
area. Multiply operations have a minimum delay of four, a typical delay of five, and a
maximum delay of six. It is assumed that they require 43 units of area. Multiplexors
are modeled with a base area of three units, corresponding to a 2x1 multiplexor. For an

(Nz1) multiplexor the area is modeled as base x (N — 1).

61

A selection of designs from the solution set were tested using ViewLogic’s VHDL
simulator FusionSpeedwave. A simple validation procedure was done in which each of the
primary inputs were assigned values, then the global request of the system was asserted.
When an acknowledge was received, the values of the primary outputs were checked. All
designs were checked to have correct functionality.

The results of exploration using hierarchal and nonhierarchal methods are shown in
Table 6.1 and Table 6.2 respectively. The table shows which filters are active for each
test, the amount of CPU time required to run the test to completion, the total number
of configurations explored, and the number of solutions in the final Pareto point set.
Performing a complete exploration of the design space, in the worst case, required the
evaluation of over 22 million configurations and took several hours to complete. With the
use of the filters, the design space is pruned and runtime is reduced.

The hierarchal approach reduced the design space even further. This heuristic broke
the graph up into two sets: ALU operations and multiplication operations. Using this
approach, fewer solutions are found. However, the quality of the solutions is nearly as
good.

For example, comparing the results of the nonhierarchal approach using none of the
filters, with the hierarchal approach, also using none of the filters, it is found that the
first method yielded 292 solutions, while the second method yielded only 82 solutions.
Of the 292 solutions, there are five unique Pareto points. Of the 82 solutions from the
hierarchal approach there are also five unique Pareto points. In other words, all solutions
landed on one of the five Pareto points, but did so with differing configurations of resource
edges. The unique Pareto points are shown in Table 6.3. The tradeoff in the two methods
between the quality and quantity of solutions and time required to find a solution seems
reasonable. The comparison is also done for the case when all filters, excluding the
minimal-latency filter, are used. Again, both methods yield five unique Pareto points.
The results are shown in Table 6.3.

A structural view of one solution with minimum latency is shown in Figure 6.1. A
solution with minimum area is shown in Figure 6.2. In the figures, note that the control
block area appears to dominate the chip. This however, is actually not the case. It only

appears larger in the figure to facilitate showing the individual control wires.

Table 6.1. DIFFEQ: experimental results using nonhierarchal approach.

Filters

Implied | Redundant | Shared | No Change | CPU Time | Size | Solutions
8318.58s | 22167679 292
X 8132.70s | 21714011 292
X 7326.50s | 19614054 292
X X 7313.12s | 19214280 292
X 558.68s | 1503207 81
X X 539.96s | 1489156 81
X X 515.156s | 1436817 81
X X X 513.47s | 1423064 81
X 10.72s 32280 34
X X 10.77s 32250 34
X X 9.96s 30059 34
X X X 10.13s 30029 34
X X 3.53s 10801 16
X X X 3.69s 10788 16
X X X 3.49s 9972 16
X X X X 3.48s 9959 16

Solving for minimal-latency solutions only:
329.34s 865444 31
X 299.10s 797678 31
X 281.54s 758056 31
X X 254.10s 700662 31
X 34.98s 95134 14
X X 33.69s 91524 14
X X 32.81s 93894 14
X X X 31.76s 90284 14
X .81s 1984 14
X X .82s 1976 14
X X 763 1964 14
X X X 79s 1956 14
X X .42s 968 12
X X X .45s 963 12
X X X .42s 950 12
X X X X .50s 945 12

62

Table 6.2. DIFFEQ: experimental results using hierarchal approach.

Filters

Implied | Redundant | Shared | No Change | CPU Time | Size | Solutions
72.18s | 162015 82
X 64.78s | 159913 82
X 65.75s | 161935 82
X X 65.06s | 159833 82
X 8.43s | 20909 26
X X 8.44s | 20741 26
X X 8.71s | 20905 26
X X X 9.71s | 20737 26
X 1.45s 2741 24
X X 1.31s 2737 24
X X 1.23s 2653 24
X X X 1.30s 2649 24
X X .48s 887 12
X X X 458 885 12
X X X .b2s 878 12
X X X X .bls 876 12

Solving for minimal-latency solutions only:
ATs 1039 3
X 458 1038 3
X .28s 579 3
X X .29s 579 3
X .30s 578 3
X X .25s 578 3
X X .07 53 3
X X X .08s 53 3
X .07s 52 3
X X .10s 52 3
X X .08s 53 3
X X X .09s 53 3
X X Als 52 3
X X X Als 52 3
X X X 13s 53 3
X X X X .07s 53 3

63

Figure 6.1. DIFFEQ: minimum latency solution

Figure 6.2. DIFFEQ: minimum area solution

64

65

Table 6.3. DIFFEQ: comparison of unique Pareto point solutions.

No Filters With Filters
Nonhierarchal Hierarchal Nonhierarchal Hierarchal
Area | Delay | Area | Delay || Area | Delay || Area | Delay

119 32 119 32 119 32 119 32
157 19 157 19 157 19 157 19
172 17 172 17 172 17 172 17
195 16 195 16 195 16 195 16
210 14 210 14 210 14 210 14

6.2 Elliptical Wave Filter

The second case study uses a fifth order digital elliptical wave filter. The functional
dependencies of the filter are shown in Figure 6.3 after it has been transformed using
common subexpression elimination and distributivity to reduce the number of multipli-
cations and additions. Figure 6.4 shows the resulting data flow graph and Table 6.4 shows
the experimental results using the hierarchal approach.

The same parameters for the functional unit were used as in the differential equation
solver example. For these results, the hierarchal approach is used with a maximum block
size of ten. This means that the algorithm randomly breaks each set of similar operations
into blocks of ten. Exploration is then done only considering resource edges between
operations in each block. Runtime grows rapidly as the block size is increased. After
exploration is done on all sets, exploration is done again considering only critical resource
edges which are included in the individual block Pareto point solutions. One datapath
generated by Mercury is shown in Figure 6.5.

A comparison between the quality of solutions for the hierarchal approach using all of

o1 =11

09 = 126 % i1 + 125 % i9 + 112 x 43 + 56 * (i4 + i7 + ig)

03 = 160 * (i1 +149) + 152 x i3 + 9 * i5 + 80 * (14 + i7 + 4g)
0427*(i1+i2+i3+i7+i8)+6*i4
05:140*(21+22)+133*23+8*'L5+70*('L4+'L7+'Lg)
()5:144*(i1+i2+i3+i4)+9*i5+232*i7+240*i8
07:162*(i1 +i2+i3+i4)+10*i6+261*i7+270*i8
08:150*(i1 +i2+i3+i4)+250*i7+269*i8
092135*(i1 +i2+i3+i4)+225*i7+243*i8

Figure 6.3. Functional notation for the elliptical wave filter.

66

Figure 6.4. Elliptical wave filter data flow graph.

Table 6.4. EWF: experimental results using hierarchal approach.

Filters

Implied | Redundant | Shared | No Change | CPU Time | Size | Solutions
160814.64s | 58194121 18
X 160534.51s | 58171711 18
X 160631.13s | 58194121 18
X X 160447.96s | 58171711 18
X 1361.72s | 5444983 12
X X 1380.11s | 5444569 12
X X 1350.12s | 5444983 12
X X X 1355.12s | 5444569 12
X 51.33s 20509 11
X X 52.50s 20500 11
X X 49.71s 20509 11
X X X 49.68s 20500 11
X X 62.89s 6291 16
X X X 14.84s 6282 16
X X X 14.89s 6291 16
X X X X 14.99s 6282 16

Solving for minimal-latency solutions only:
325.65s 88630 12
X 346.81s 88630 12
X 323.35s 88630 12
X X 298.69s 88630 12
X 80.91s 22047 12
X X 76.77s 22047 12
X X 75.61s 22047 12
X X X 80.07s 22047 12
X 0.95s 392 4
X X 0.91s 392 4
X X 0.92s 392 4
X X X 0.87s 392 4
X X 0.83s 365 4
X X X 0.95s 365 4
X X X 0.89s 365 4
X X X X 0.82s 365 4

67

68

Figure 6.5. Elliptical wave filter datapath.

69

the filters and using none of the filters is shown in Table 6.5. Here, some of the nonfiltered
Pareto points are better than the filtered solutions. In addition, the quality of solutions

between using all of the filters except the no change in objectives filter is also compared.

6.2.1 Comparison with Synchronous Methods.

To compare our methods with synchronous designs the elliptical wave filter is used
with modified resource delays. In this case, the minimum, typical, and maximum delays
for ALU operations is set to one, and for multiply operations each delay is set to two.
Because the minimum, typical, and maximum delays are all equal, the model corresponds
to a synchronous design. Then to compare our results with those obtained in [36], the
maximum delay of the system is set to 21 time units. This means exploration finds all
solutions with a delay equal to, or less than 21. The area of a multiplier is modeled to
be twice the size of adders. Using all filters and the hierarchal approach to exploration,
it took just over 10 seconds to find all solutions in which the latency of the system is
between 17 and 21 time units. Our results are comparable with FDS, FDLS, and ASAP
methods. Figure 6.6 shows the results. It shows that the more time given for the system
to complete, the less adders and multipliers are required because operations are serialized
and share fewer functional units. The FDLS method found better results for a case where
the delay of the system is 18 this result, however, was achieved by re-timing.

Next, the delay of the adders and multipliers were scaled by a factor of 10. The
granularity is adjusted to allow for the modeling of a typical delay. A typical delay of 9
for adders and 17 for multipliers is used. The system is then optimized for typical delay

with a maximum system delay of 210 time units. Figure 6.6 shows the results. Again,

Table 6.5. EWF: comparison of unique solutions using hierarchal approach.

No Filters With All Filters | Except No Change
Area | Delay | Area | Delay Area | Delay
272 57 272 72 272 61
287 50 287 65 287 59
302 48 302 61
310 45 310 50 310 48
325 40 325 48 325 40
363 39 340 40 363 39
378 38 378 38 378 38
416 37 416 37 416 37

70

Synchronous New method with all filters and hierarchal
methods
Delays<=21 _
FDS FDLS ASAP &s Delays <= 210
17 3 3 4 3 | #Adders Typica 150 3 | #Adders
3 3 4 3 | #Multipliers (Max) (170) | 3 | #Multipliers
18 3| 2 3 158 1 2
M aximum 2 2 2 (180) | 3
Delay = Scale Max = 176
19 2 2 2
5 5 Delay by 10 (200) >
21| 2 2 2 Granularity 183 %
1] 1 1 adjusted for (210)
45 (2200 | 1 | 10.3s
1989 CPU 1998 CPU
Adder = 1 unit of delay Adder = 10 max, 9 typica
Multiplier = 2 units of delay Multiplier = 20 max, 17 typical

Figure 6.6. Comparison with synchronous methods.

exploration took just over 10 seconds, and several solutions were obtained. While the
required time to find the solutions remained constant, the FDS and FDLS methods at
this point become computationally unreasonable.

It should also be noted, that several nonintuitive results were obtained. For example,
the case were the typical delay is 158, and the case where the typical delay is 183. In both
of these solutions, the number of allocated adders is less than the number of allocated
multipliers. This is because the typical delay of multipliers compared with its worst-case
delay is proportionally less than the typical delay of adders and their worst-case delay.
Hence, the typical delay of the system can be optimized in greater proportion when more

multipliers are on the critical path in place of adders.

6.3 Inverse Discrete Cosine Transform
The inverse discrete cosine transform (IDCT), is the most difficult example to solve
because of the high degree of parallelism between operations. The data flow graph for

the IDCT is shown in Figure 6.7. The only reasonable method to solve this problem is to

71

use the hierarchal approach. The results, using this method with a block size of four, are
shown in Table 6.6. A sample minimum latency datapath using this method is shown in

Figure 6.8.

72

Figure 6.7. Inverse discrete cosine transform data flow graph.

Table 6.6. IDCT: experimental results using hierarchal approach.

Filters
Implied | Redundant | Shared | No Change | CPU Time | Size | Solutions
X
X
X X
X
X X
X X
X X X
X 5459.77s | 1542648 1142
X X 5268.17s | 1542647 1142
X X 5350.47s | 1542648 1142
X X X 5441.79s | 1542647 1142
X X 4407.99s | 1245450 1142
X X X 4421.15s | 1245449 1142
X X X 4405.91s | 1245450 1142
X X X X 4413.49s | 1245449 1142
Solving for minimal-latency solutions only:
15.35s 9885 62
X 15.37s 9885 62
X 15.38s 9885 62
X X 14.77s 9885 62
X 13.14s 7511 62
X X 14.00s 7511 62
X X 13.78s 7511 62
X X X 13.58s 7511 62
X 5.80s 898 148
X X 5.79s 898 148
X X 5.92s 898 148
X X X 6.19s 898 148
X X 6.29s 898 148
X X X 6.27s 898 148
X X X 5.99s 898 148
X X X X 5.92s 898 148

.

CHAPTER 7

CONCLUSIONS

A man who has lived in many places is not likely to be deceived by the
local errors of his native village; the scholar has lived in many times
and is therefore in some degree immune from the great cataract of
nonsense that pours from the press and the microphone of his own age.

C. S. Lewis

Architectural-level synthesis of asynchronous circuits is indeed a very difficult problem.
Several factors contribute to this. First, accurately calculating the typical delay of a
system is hard. Second, the design space grows at an exponential rate. Finally, exact
methods of determining resource sharing are computationally infeasible.

There are several advantages over synchronous architectural-level synthesis methods.
For example, scheduling of resources is optional. After all, for asynchronous design, re-
source sharing determines the final schedule. Regardless of when operations are scheduled,
they always execute as-soon-as-possible, because of the asynchronous control paradigm.
Second, the cycle-time of the clock is one objective that does not need to be considered.
For synchronous design, determining the optimal cycle time for a design can itself be an
intractable problem. For asynchronous design, this problem is not a factor.

Architectural-level synthesis is beneficial in producing optimized designs in a short
time and is a vital part of analysis in the design conceptualization phase. It also elevates
the abstraction level of models to that of hardware languages. This supports a way of
reasoning about multiple objectives in a design using a common framework.

Part of this research necessitated the design and development of a CAD tool for explo-
ration, simulation, and analysis of asynchronous circuits at the architectural-level. This
brings an automated design flow for asynchronous circuits one step closer to realization.
While most research in asynchronous circuits focuses on controller synthesis, this work
addresses data path synthesis.

A methodology for the design and synthesis of asynchronous circuits from high-level

specifications has been presented. Our method extends synchronous methods of schedul-

76

ing and resource allocation to asynchronous circuit design. Techniques presented in this
work have been used for the architectural optimization of systems.

The large size of the design space has been addressed and several filters have been
proposed and implemented to reduce the required exploration of the design space. In
addition, a hierarchal approach has been presented and applied, allowing large complex
designs to be optimized.

An automated method for generating an optimal data path and its control has been
presented. The structures are specified using VHDL to provide a standard language
interface. The benefit of this method is not only using a style compatible with synchronous
simulation tools, but also one that is compatible with asynchronous controller logic
synthesis techniques. The method and algorithms presented have been implemented
in the tool Mercury. Using the tool, a set of examples has been synthesized.

It was found that the filters are very effective in reducing the required exploration
time. When heuristic methods are used, there is a reasonable trade-off between the time
required to generate a solution, and the quality and quantity of solutions. Where exact
methods failed to efficiently solve a complex problem, the heuristic methods made the
problem manageable.

An actual comparison between our method and hand designs was not performed, but,
designs created by trial and error methods usually outperform automated methods. This
is because of the extra refinement done by hand which can hide protocol, control, and
computation delays. Our method, however, yields a substantial reduction in design time.

Compared with synchronous methods it is demonstrated that the proposed methods
are advantageous as time is made more discrete to increase granularity. This is because
synchronous methods become computationally infeasible, but, the complexity of our
method remains constant regardless of the granularity of time. This is important for
asynchronous scheduling, because time can be modeled very accurately without sacrificing
performance. It has been illustrated that using resource edges is an effective way to
serialize operations and determine scheduling. In addition, it was illustrated that solutions

using this method are competitive with traditional synchronous methods.

7.1 Possible Extensions
This work demonstrates a feasible method to perform asynchronous architectural-level

synthesis. Several open problems and possible extensions are briefly discussed here.

7

The current method associates a latch with each data edge in the data flow graph.
While this suffices, it is inefficient. Latch sharing can be employed to reduce the number of
latches required for a design without, in most cases, affecting latency. It is hypothesized
that the latch sharing problem is analogous to the resource sharing optimization, but
potentially more complex. This is because not only are the [lifetimes of variables data
dependent, but when the results of a computation are used more than once, there are mul-
tiple lifetimes that can be considered for alternative configurations. A thorough analysis
of latch sharing methods and their applicability to specific situations and communication
protocols is necessary.

Another improvement to the process could be made by generating more realistic
information about asynchronous resources. The physical properties of asynchronous
devices need to be accurately evaluated. Accurate models of the physical characteristics
of asynchronous devices is necessary for architectural-level synthesis to generate optimal
solutions.

Furthermore, because low power is an often cited advantage of asynchronous design,
the evaluation should include not only the required area and data-dependent delays,
but also a detailed power analysis. Generating an accurate model to estimate power
consumption in an asynchronous device would be very useful. It would permit power
consumption to be a third objective considered in the evaluation of a design.

The goal of an ongoing and promising area of related research is to find efficient
methods of calculating the typical delay of a system. It was demonstrated here that
accurately evaluating the delay is not a trivial task. Mercury currently uses a conservative
method to perform this calculation. More accurate calculations will lead to better resource
sharing and consequently better solutions.

To reduce the design space, several heuristic and nonheuristic methods have been
presented, but they still do not completely harness the exponential explosion of the design
space. Additional methods need to be developed to prune the required exploration of a
system. One such method may consider negative information to prune branches of the
exploration tree. Using negative information, a design would be evaluated not only in
terms of what resource edges have been added to the data flow graph, but also in terms
of which edges were selected not to be added to the data flow graph. Both pieces of
information potentially contribute to what can be concluded about future configurations

along a branch of exploration.

78

Where heuristic methods are used, they have the potential for improvement. For
example, the hierarchal method of decomposing a high-level design into smaller, more
manageable blocks may be improved. The grouping of operations into blocks is currently
done randomly, a more structured approach may yield improved overall results.

The problem of optimally binding resources remains open for further research. This
problem has been given considerable attention for synchronous design and it appears that
some of these ideas can be extended to asynchronous design as well.

Another important, but neglected, area related to this research is protocol synthesis.
In this work only a four-phase handshake protocol is used. However, this may not be
the best choice for a design. Finding the optimal protocol for a design is not a trivial
task because of timing considerations, the required overhead of each protocol, and the
intricacies of each method. Determining an optimal protocol for asynchronous designs
remains open for debate and additional research.

Finally, refining an asynchronous datapath from a structural level to a gate level is
required before a realization of a circuit can be made. The modular use of functional
units in this works allows a hierarchal approach of refinement to be used. In other words,
each resource can be synthesized to the gate level independent of other modules. While
this makes the task easier, it is still difficult. An automated, technology independent,
approach for this task would further reduce the development time of an asynchronous

device.

APPENDIX A

SAMPLE VHDL DATAPATH

library IEEE;
use IEEE.std_logic_1164.all;

entity sample is

port(A: in std_logic_vector(31 downto 0);
B: in std_logic_vector(31 downto 0);
C: in std_logic_vector(31 downto 0);
D: out std_logic_vector(31 downto 0);
sample_req: in std_logic;
sample_ack: out std_logic);

end sample;

architecture structural of sample is
component ALU
port(a : in std_logic_vector(31 downto 0);

b : in std_logic_vector (31 downto 0);
op : in std_logic_vector(l downto 0);
res: out std_logic_vector(31 downto 0);
req: in std_logic;
ack: out std_logic);

end component;

component Mult
port(a : in std_logic_vector(31 downto 0);
b : in std_logic_vector(31 downto 0);
res: out std_logic_vector(31 downto 0);
req: in std_logic;
ack: out std_logic);
end component;

component mux2
port(a : in std_logic_vector(31 downto 0);
b : in std_logic_vector (31 downto 0);
sel: in std_logic;
res: out std_logic_vector(31 downto 0));
end component;

component latch

port(d : in std_logic_vector(31 downto 0);
q : out std_logic_vector(31 downto 0);
req: in std_logic;
ack: out std_logic);

end component;

component sample_ctrl
port(signal Mult_1_mux2_sel : inout std_logic;

signal ALU_1_req : inout std_logic;

signal ALU_1_ack : in std_logic;

signal ALU_1_op : out std_logic_vector (1l downto 0);
signal Mult_1_req : inout std_logic;

signal Mult_1_ack : in std_logic;

signal 1_1_req, 1_2_req : out std_logic;
signal 1_1_ack, 1_2_ack : in std_logic;

signal A_req, B_req : out std_logic;
signal A_ack, B_ack : in std_logic;
signal C_req, D_req : out std_logic;
signal C_ack, D_ack : in std_logic;
signal sample_req : in std_logic;
signal sample_ack : out std_logic);

end component;

signal opA_1, opB_2 : std_logic_vector (31 downto 0);
signal Mult_1_mux2_sel : std_logic;
signal Mult_1_a, Mult_1_b : std_logic_vector (31 downto 0);
signal ALU_1_res : std_logic_vector (31 downto 0);
signal ALU_1_req, ALU_1_ack : std_logic;
signal ALU_1_op : std_logic_vector(l downto 0);
signal Mult_1_res : std_logic_vector (31 downto 0);
signal Mult_1_req, Mult_1_ack : std_logic;
signal 1_1_req, 1_1_ack : std_logic;
signal 1_2_req, 1_2_ack : std_logic;
signal A_req, A_ack : std_logic;
signal B_req, B_ack : std_logic;
signal C_req, C_ack : std_logic;
signal D_req, D_ack : std_logic;

signal A_isig, B_isig, C_isig : std_logic_vector(31 downto 0);

begin
Mult_1_mux2_1: mux2 port map(B_isig,opA_1,Mult_1_mux2_sel,Mult_1_a);
Mult_1_mux2_2: mux2 port map(C_isig,opB_2,Mult_1_mux2_sel,Mult_1_b);

1_1: latch port map(ALU_1_res,opA_1,1_1_req,1_1_ack);
1_2: latch port map(Mult_1_res,opB_2,1_2_req,l_2_ack);
1_D: latch port map(Mult_1_res,D,D_req,D_ack);

1_A: latch port map(A,A_isig,A_req,A_ack);

1_B: latch port map(B,B_isig,B_req,B_ack);
1_C: latch port map(C,C_isig,C_req,C_ack);

ALU_1: ALU port map(A_isig,B_isig,ALU_1_op,ALU_1_res,
ALU_1_req,ALU_1_ack);

Mult_1: Mult port map(Mult_1_a,Mult_1_b,Mult_1_res,
Mult_1_req,Mult_1_ack);

CTRL: sample_ctrl port map(Mult_1_mux2_sel,ALU_1_req,ALU_1_ack,
ALU_1_op,Mult_1_req,Mult_1_ack,1_1_req,
1_1_ack,1_2_req,1_2_ack,D_req,D_ack,
A_req,A_ack,B_req,B_ack,C_req,C_ack,
sample_req,sample_ack) ;

end structural;

81

APPENDIX B

SAMPLE VHDL CONTROL

library IEEE;
use IEEE.std_logic_1164.all;
use work.nond.all;

entity sample_ctrl is

port(signal Mult_1_mux2_sel : inout std_logic := ’1’;
signal ALU_1_req : inout std_logic;
signal ALU_1_ack : in std_logic;
signal ALU_1_op : out std_logic_vector(l downto 0) := "00";
signal Mult_1_req : inout std_logic;
signal Mult_1_ack : in std_logic;

signal 1_1_req : out std_logic;
signal 1_1_ack : in std_logic;
signal 1_2_req : out std_logic;
signal 1_2_ack : in std_logic;
signal D_req : out std_logic;
signal D_ack : in std_logic;
signal A_req : out std_logic;
signal A_ack : in std_logic;
signal B_req : out std_logic;
signal B_ack : in std_logic;
signal C_req : out std_logic;
signal C_ack : in std_logic;
signal sample_req : in std_logic;
signal sample_ack : out std_logic);
end sample_ctrl;

architecture behavioral of sample_ctrl is
begin
-- controls latch between nodes opA and opC
procl:process
begin
wait until ALU_1_ack = ’1°’;
1_1_req <= ’1’ after delay(2,4);
wait until Mult_1_req = ’1’ and Mult_1_mux2_sel = ’1’;
1_1_req <= ’0’ after delay(2,4);
end process;

-- controls latch between nodes opB and opC

proc2:process
begin
wait until
1 _2_req <=
wait until
1_2_req <=
end process;

Mult_1_ack = ’1’ and Mult_1_mux2_sel
71’ after delay(2,4);
Mult_1_req = ’1’ and Mult_1_mux2_sel
70’ after delay(2,4);

—-- controls the ack of the entire sample system

proc3:process
begin
wait until

D_ack = ’1’ and sample_req = ’1’;
sample_ack <= ’1’ after delay(2,4);
D_ack = ’0’ and sample_req = ’0’;

wait until

sample_ack <= ’0’ after delay(2,4);

end process;

-- controls latch 1_D between the nodes opC and sink

proc4:process
begin

wait until Mult_1_ack = ’1’ and Mult_1_mux2_sel =
sample_req = ’17;
D_req <= ’1’ after delay(2,4);

wait until

sample_req = ’0’;

D_req <= ’0’ after delay(2,4);

end process;

-- controls latch 1_A at the source

procb:process
begin
wait until

sample_req = ’1’;

A_req <= ’1’ after delay(2,4);

wait until

sample_req = ’0’;

A_req <= ’0’ after delay(2,4);

end process;

—-- controls latch 1_B at the source

proc6:process
begin
wait until

sample_req = ’1’;

B_req <= ’1’ after delay(2,4);

wait until

sample_req = ’0’;

B_req <= ’0’ after delay(2,4);

end process;

-- controls latch 1_C at the source

’1’ and

proc7:process

begin
wait until sample_req = ’1’;
C_req <= ’1’ after delay(2,4);
wait until sample_req = ’0’;

C_req <= ’0’ after delay(2,4);
end process;

—-- controls resource ALU_1
proc8:process
begin
wait until ALU_1_ack = ’0’ and A_ack = ’1’ and
B_ack = ’1’ and sample_req = ’1’;
ALU_1_req <= ’1’ after delay(2,4);

wait until 1_1_ack = ’1’;
ALU_1_req <= ’0’ after delay(2,4);
wait until sample_req = ’0’;

end process;

-- controls resource Mult_1
proc9:process
begin
wait until Mult_1_ack = ’0’ and B_ack = ’1’ and
C_ack = ’1’ and sample_req = ’1’;
Mult_1_mux2_sel <= ’0’ after delay(0,1);
Mult_1_req <= ’1’ after delay(2,4);
wait until 1_2_ack = ’17;
Mult_1_req <= ’0’ after delay(2,4);
wait until Mult_1_ack = ’0’ and 1_1_ack
1_2_ack = ’1’ and sample_req
Mult_1_mux2_sel <= ’1’ after delay(0,1);
Mult_1_req <= ’1’ after delay(2,4);

1’ and
717;

wait until D_ack = ’1°;
Mult_1_req <= ’0’ after delay(2,4);
wait until sample_req = ’0’;

end process;

end behavioral;

84

APPENDIX C

SAMPLE VHDL CONFIGURATION

configuration cfg_sample of sample is
for structural

—-- Latches for data edges
for 1_1: latch use entity WORK.latch(behavioral); end for;
for 1_2: latch use entity WORK.latch(behavioral); end for;

-- Latches for outputs
for 1_D: latch use entity WORK.latch(behavioral); end for;

-- Latches for inputs

for 1_A: latch use entity WORK.latch(behavioral); end for;
for 1_B: latch use entity WORK.latch(behavioral); end for;
for 1_C: latch use entity WORK.latch(behavioral); end for;

-- System Control
for CTRL: sample_ctrl use entity WORK.sample_ctrl(behavioral); end for;

-- Resources used
for ALU_1: ALU use entity WORK.ALU(behavioral); end for;
for Mult_1: Mult use entity WORK.Mult(behavioral); end for;

—- Muxes used
for Mult_1_mux2_1: mux2 use entity WORK.mux2(behavioral); end for;
for Mult_1_mux2_2: mux2 use entity WORK.mux2(behavioral); end for;
end for;
end cfg_sample;

1]

2]

[10]

[11]

[12]

[13]

REFERENCES

A. AvO, R. S., AND ULLMAN, J. Compiliers: Principles, Techniques and Tools.
Addison-Wesley, Reading, MA, 1988.

AKELLA, V., AND GOPALAKRISHNAN, G. SHILPA: A high-level synthesis system for
self-timed circuits. In Proc. International Conf. Computer-Aided Design (ICCAD)
(Nov. 1992), IEEE Computer Society Press, pp. 587 591.

ALUR, R. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University, August 1991.

ASHENDEN, P. J. The Designer’s Guide to VHDL. Morgan Kaufmann, San
Francisco, CA, 1995.

BaAbpia, R. M., AND CORTADELLA, J. High-level synthesis of asynchronous systems:

Scheduling and process synchronization. In Proc. European Conference on Design
Automation (EDAC) (1993), IEEE Computer Society Press, pp. 70-74.

BEEREL, P., AND MEgNG, T.-Y. Automatic gate-level synthesis of speed-
independent circuits. In Proc. International Conf. Computer-Aided Design (ICCAD)
(Nov. 1992), IEEE Computer Society Press, pp. 581 587.

BEEREL, P. A., BurcH, J. R., AND MENG, T. H.-Y. Efficient verification of

speed-independent circuits. In IEEE Transactions on Computer-Aided Design (May
1994).

BERKEL, K. v. Handshake Circuits: An Intermediary between Communicating
Processes and VLSI. PhD thesis, Eindhoven University of Technology, 1992.

BERKELAAR, M. Statistical delay calculation, a linear time method. In ACM/IEEE
International Workshop on Timing Issues in the Specification and Synthesis of
Digital Systems (1997), IEEE Computer Society Press, pp. 15 24.

BRAYTON, R., AND SPENCE, R. Sensitivity and Optimization. Elsevier, 1980.

BRUNVAND, E. Designing self-timed systems using concurrent programs. Journal of
VLSI Signal Processing 7, 1/2 (Feb. 1994), 47 59.

BruNvAND, E., AND SPROULL, R. F. Translating concurrent programs into

delay-insensitive circuits. In International Conference on Computer-Aided Design,
ICCAD-1989 (1989), IEEE Computer Society Press.

C-T. Hwang, J.-H. L., AND Hsu, Y.-C. A formal approach to the scheduling
problem in high-level synthesis. In International Conference on Computer-Aided

87

Design, ICCAD-1991 (1991), IEEE Computer Society Press, pp. 464 475.

[14] CAMPOSANO, R., AND ROSENSTIEL, W. Synthesizing circuits from behavioral
descriptions. In IEEE Transactions on CAD/ICAS (1989), IEEE Computer Society
Press, pp. 171-180.

[15] CAMPOSANO, R., AND WOLF, W. High-Level Synthesis. Kluwer Academic, 1991.

[16] CHU, T.-A. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifica-
tions. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[17] CoAaTES, B., Davis, A., AND STEVENS, K. The Post Office experience: Designing
a large asynchronous chip. Integration, the VLSI journal 15, 3 (Oct. 1993), 341 366.

[18] DE MICHELL, G. Synthesis and Optimization of Digital Circuits. McGraw-Hill, Inc.,
New York, New York, 1994.

[19] EBERGEN, J. C. Translating Programs into Delay-Insensitive Circuits. PhD thesis,
Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1987.

[20] FURBER, S. B., AND Liu, J. Dynamic logic in four-phase micropipelines. In

Proc. International Symposium on Advanced Research in Asynchronous Circuits and
Systems (Mar. 1996), IEEE Computer Society Press.

[21] GAJski, D. Silicon Compilation. Addison-Wesley, 1987.

[22] GAJskl, D. Introduction to High-Level Synthesis. IEEE Design & Test of Comput-
ers, 1994.

[23] GAREY, M., AND JOHNSON, D. Computers and Intractability. Freeman, New York,
1979.

[24] GEBOTYS, C., AND ELMASRY, M. Optimal VLSI Architectural Synthesis. Kluwer
Academic, 1992.

[25] HAFER, L. J., AND PARKER, A. C. A formal method for the specification, analysis,
and design of register-transfer level digital logic. In IEEE Transactions on Computer-
Aided Design (1983), IEEE Computer Society Press.

[26] HASHIMOTO, A., AND STEVENS, J. Wire routing by optimizing channel assignment
within large apertures. In Proceedings of the 8th Design Automation Workshop
(1971), IEEE Computer Society Press, pp. 155-163.

[27] HAuCK, S. Asynchronous design methodologies: An overview. Tech. Rep. TR 93-

05-07, Department of Computer Science and Engineering, University of Washington,
Seattle, 1993.

[28] ITALIANO, G. F. Amortized efficiency of a path retrieval data structure. In
Theoretical Computer Science (1986), pp. 48:273-281.

[29] ITALIANO, G. F. Finding paths and deleting edges in directed acyclic graphs. In
Information Processing Letters (1988), pp. 28:5 11.

[30]

[31]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

88

MARTIN, A. J. The limitations to delay-insensitivity in asynchronous circuits. In
Sizth MIT Conference on Advanced Research in VLSI (1990), W. J. Dally, Ed., MIT
Press, pp. 263 278.

McFARLAND, M. J. Using bottom-up design techniques in the synthesis of digital
hardware from abstract behavioral descriptions. In Design Automation Conference
(1986), IEEE Computer Society Press, pp. 474-480.

MEeNG, T. H.-Y., BRODERSEN, R. W., AND MESSERSCHMITT, D. G. Automatic
synthesis of asynchronous circuits from high-level specifications. IEEFE Transactions
on Computer-Aided Design 8, 11 (Nov. 1989), 1185 1205.

MOLNAR, C. E., FANG, T.-P., AND ROSENBERGER, F. U. Synthesis of delay-

insensitive modules. In 1985 Chapel Hill Conference on Very Large Scale Integration
(1985), H. Fuchs, Ed., Computer Science Press, pp. 67 86.

MvYERS, C. J. Computer-Aided Synthesis and Verification of Gate-Level Timed
Circuits. PhD thesis, Stanford University, 1995.

Nowick, S. M., aAND DiLL, D. L. Automatic synthesis of locally-clocked asyn-
chronous state machines. In Proc. International Conf. Computer-Aided Design

(ICCAD) (Nov. 1991), IEEE Computer Society Press, pp. 318 321.

PauriN, P., AND KNIGHT, J. Force-directed scheduling for the behavioral synthe-
sis of asic’s. In IEEE/ACM International Conference on Computer-Aided Design
(1989), IEEE Computer Society Press, pp. 661-679.

PouTrE, J. A. L., AND VAN LEEUWEN, J. Maintenance of transitive closure and
transitive reduction of graphs. In Graph-Theoretic Concepts in Computer Science,
Lecture Notes in Computer Science 314 (1988), Springer-Verlag, pp. 106 120.

Rokicki, T. G., AND MYERS, C. J. Automatic verificaton of timed circuits. In

International Conference on Computer-Aided Verification (1994), Springer-Verlag,
pp- 468 480.

S. CICERONE, D. FrIGIONI, U. N.; AND PUGLIESE, F. Counting edges in a dag. In

Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science
1197 (1996), Springer-Verlag, pp. 85-100.

THOMAS, D., LAGNESE, E., WALKER, R., NESTOR, J., RAJAN, J., AND BLACK-
BURN, R. Algorithmic and Register Trasfer Level Synthesis: The System Architect’s
Workbench. Kluwer Academic, 1990.

UNGER, S. H. Asynchronous Sequential Switching Circuits. Wiley-Interscience,
John Wiley & Sons, Inc., New York, 1969.

WATSON, D. High-Level Languages and their Compilers. Addison-Wesley, Reading,
MA, 1989.

YALAMANCHILI, S. VHDL Starter’s Guide. Prentice-Hall Inc, Upper Saddle River,
NJ, 1998.

89

[44] YELLIN, D. M. Speeding up dynamic transitive closure for bounded degree graphs.
In Acta Informatica (1993), pp. 30:369 384.

[45] Yun, K. Y., DL, D. L., AND NOWICK, S. M. Synthesis of 3D asynchronous
state machines. In Proc. International Conf. Computer Design (ICCD) (Oct. 1992),
IEEE Computer Society Press, pp. 346—-350.

[46] ZHENG, H. Specification and compilation of mixed-timed systems using vhdl.
Master’s thesis, University of Utah, 1998.

https://www.researchgate.net/publication/2786211

