The Genetic Logic Lab is run by Chris Myers. The research in the lab focuses on the interdisciplinary synthetic biology work in the overlap between electrical engineering, mathematical modelling, and genetic biology. Examples of work include: the creation of genetic design automation programs similar to electronic design automation programs for circuit designs, stochastic verification of genetic models, and a repository for storing and sharing genetic constructs.
We are hosting an outreach event for undergraduate students interested in synthetic biology! Click here for more info and to register!
Rare events are of particular interest in biology because rare biochemical events may be catastrophic to a biological system. To estimate the probability of rare events, several weighted stochastic simulation methods have been developed. Unfortunately, the robustness of these methods is questionable. Here, an analysis of weighted stochastic simulation methods is presented. The methods considered here fail to accomplish the task of rare event simulation, in general, suggesting that new methods are necessary to adequately study rare biological events.
This work focuses on determining if there are differences in predicted circuit failure percentages for three different circuit layouts with identical expected functions, using stochastic analysis to simulate different noise sources. The results shed light on the difference between the intrinsic and extrinsic noise model predictions and if the differences in circuit layouts have any effect on glitch propensities. This, in turn, emphasizes the need to evaluate further the relative influence of intrinsic and extrinsic noise on a genetic circuit’s output to help designers predict circuit failures more accurately and, therefore, determine better design choices. Moreover, the percent failure predictions between different circuit layouts can help designers weigh different options of circuit topologies to determine which one is best suited for the intended purposes of the design.
With this work, a containerized API was created that is capable of automating the simulation of genetic circuits designed in SBOLCanvas using the working parts of the iBioSim tool. This API will help in the Design, Build, Test, Learn (DBTL) workflow for research in synthetic biology.
Many synthetic gene circuits are restricted to single-use applications or require iterative refinement for incorporation into complex systems. One example is the recombinase-based digitizer circuit, which has been used to improve weak or leaky biological signals. Here we present a workflow to quantitatively define digitizer performance and predict responses to different input signals. Using a combination of signal-to-noise ratio (SNR), area under a receiver operating characteristic curve (AUC), and fold change (FC), we evaluate three small-molecule inducible digitizer designs demonstrating FC up to 508x and SNR up to 3.77 dB. To study their behavior further and improve modularity, we develop a mixed phenotypic/mechanistic model capable of predicting digitizer configurations that amplify a synNotch cell-to-cell communication signal ($Δ$ SNR up to 2.8 dB). We hope the metrics and modeling approaches here will facilitate incorporation of these digitizers into other systems while providing an improved workflow for gene circuit characterization. Kiwimagi & Letendre et al. present a workflow to quantitatively define recombinase-based digitizer and predict responses to different input signals. With a mechanistic/phenotypic model that can predict circuit performance, they generate a synthetic cell-cell communication device that amplifies a synNotch output signal.
SBOLCanvas is a web-based application that can create and edit genetic constructs using the SBOL data and visual standards. SBOLCanvas allows a user to create a genetic design visually and structurally from start to finish. It also allows users to incorporate existing SBOL data from a SynBioHub repository. By the nature of being a web-based application, SBOLCanvas is readily accessible and easy to use. A live version of the latest release can be found at https://sbolcanvas.org.
Multiple input changes can cause unwanted switching variations, or glitches, in the output of genetic combinational circuits. These glitches can have drastic effects if the output of the circuit causes irreversible changes within or with other cells such as a cascade of responses, apoptosis, or the release of a pharmaceutical in an off-target tissue. Therefore, avoiding unwanted variation of a circuit’s output can be crucial for the safe operation of a genetic circuit. This paper investigates what causes unwanted switching variations in combinational genetic circuits using hazard analysis and a new dynamic model generator. The analysis is done in previously built and modeled genetic circuits with known glitching behavior. The dynamic models generated not only predict the same steady states as previous models but can also predict the unwanted switching variations that have been observed experimentally. Multiple input changes may cause glitches due to propagation delays within the circuit. Modifying the circuit’s layout to alter these delays may change the likelihood of certain glitches, but it cannot eliminate the possibility that the glitch may occur. In other words, function hazards cannot be eliminated. Instead, they must be avoided by restricting the allowed input changes to the system. Logic hazards, on the other hand, can be avoided using hazard-free logic synthesis. This paper demonstrates this by showing how a circuit designed using a popular genetic design automation tool can be redesigned to eliminate logic hazards.
Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints.
Most digital electronic circuits utilize a timing reference to synchronize the progression of signals and enable sequential memory elements. These designs may not be realizable in biological substrates due to the lack of a reliable high-frequency clock signal. Asynchronous designs eliminate the need for a clock with data encodings and request/acknowledge handshake protocols. This paper proposes a workflow to automate the design of asynchronous genetic circuits. This workflow extends genetic design tools by leveraging asynchronous logic design methods customized for this technology. This workflow is demonstrated on a genetic sensor that uses filtering and cellular communication to improve its reliability.