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ABSTRACT

In order to increase performance, circuit designers are beginning to use more aggressive
timed circuit designs instead of traditional synchronous static logic designs. Recent
design examples have shown that significant performance gains are achieved when these
aggressive circuit styles are used. Correct operation of these aggressive circuit styles is
critically dependent on timing, and in industry they are typically designed by hand. To
synthesize and verify timed circuits, the reachable state space of the circuit under the
timing constraints needs to be explored. However, complete state space exploration is an
exponential problem. State space explosion limits timed circuit designs to small sizes.

This dissertation presents a new automatic abstraction approach which enables mod-
ular design of large scale timed circuits. It attacks the state space explosion problem
by avoiding the generation of a flat state space for the design. Instead, it partitions a
design into blocks with manageable sizes, and performs synthesis and verification process
on each of them. The results for the blocks are integrated as the solution to the whole
design. This dissertation presents a series of theorems that supports modular synthesis
and verification. The concepts of safe abstraction and transformations are also described.
This dissertation presents techniques to partition a design and safe net reductions to
simplify the complexity when designing each block. Results show that design processes
using this method are orders of magnitude more efficient in design time and memory

usage.
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CHAPTER 1

INTRODUCTION

Current VLSI circuits are getting faster and more complex. In order to continue
to produce circuits of increasing speed, designers are moving away from pure static
synchronous designs to more aggressive timed circuit design styles. Generally, timed
circuits are a class of circuits that are optimized using explicit, bounded timing infor-
mation throughout the design process. Using timed circuits enables designs to achieve
high performance and low power consumption. One example is the Intel RAPPID
instruction length decoder for a Pentium II instruction set [71]. The RAPPID design is an
asynchronous implementation. It runs 3 times faster while dissipating only half the power
of the synchronous implementation on the same process. The performance gain is derived
from a highly timed asynchronous design. The second example is the self-resetting and
delayed-reset domino circuits widely used in a gigahertz research microprocessor (guTS) at
IBM [41]. The guT$S microprocessor is the first microprocessor that runs over 1 Gigahertz
on a 0.25um CMOS process available in 1997. The performance gain is derived from a
highly timed synchronous implementation. There are many timing assumptions made in
both examples, and the correct operation of the examples are heavily dependent upon
whether the timing constraints are satisfied. Therefore, extensive timing analysis and
verification is necessary during the design process. Unfortunately, these new circuit styles
cannot be efficiently and accurately synthesized, analyzed, and verified using traditional
static timing analysis methods. This lack of efficient analysis tools is one of the reasons
for the lack of mainstream acceptance of these design styles.

Most synthesis and verification methods require complete state space exploration
which is an exponential problem. One common problem often encountered in state
space exploration is the state explosion problem, which limits the size and complexity
of timed circuit designs. There exist many methods to deal with state explosion. In
this dissertation, a divide-and-conquer approach is proposed. This approach partitions

a design into blocks, each of which has a constrained interface. Each block is designed



individually, and the integration of the results of all blocks gives the solution for the
whole design. During design of each block, abstraction is applied to remove the irrelevant
information to reduce the complexity of designing each block. In this way, a design with
a large exponential state space is converted to a set of designs with small exponential
state space. This approach not only substantially reduces the computational cost of
synthesis and verification, but also solves large and complex design problems that cannot
be handled before.

The first section of this chapter gives an overview of timed circuit design methodologies
and the design flow of ATACS, our timed circuit design tool. The second section gives an
overview of the previous work on specification and verification of timed circuits, and
the methods to deal with the state explosion problem inherent in the synthesis and
verification of large designs. The last two sections give the contributions and outline of

this dissertation.

1.1 Design Flow for Timed Circuits

Designing a timed circuit involves the steps of specification, compilation, analysis,
synthesis, and verification. Figure 1.1 shows the design flow for our timed circuit design
tool ATACS. In ATACS, the design of timed circuits begins with a specification of circuit
behavior in a hardware description language including VHDL, timed handshaking expan-
sions (THSE) [63, 86], asynchronous finite state machines (AFSM) [42, 32, 84], and signal
transition graphs (STG) [28]. These specification methods are able to describe sequencing,
concurrency, and choice. Moreover, they support bounded timing information which is
used to optimize the circuit implementations during various design stages. The timing
parameters can come from the simulation of similar designs; or designers can make any
timing assumptions that they think reasonable for the circuits. The timing parameters
can be either bounded or unbounded.

The step of compilation translates the specification of a timed circuit to a timed
event/level structure (TEL) [10]. A TEL structure is a new data structure for describing
both event and level causality and timing behavior. The compilation step includes steps
to decompose a specification into basic events. These events are then translated to simple
TEL structures which are composed together in sequence, in parallel, and in conflict as
dictated by the structure in the specification.

The timing analysis algorithms such as the one shown in [65, 9, 10, 55] are applied
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Figure 1.1. Design flow for timed circuit design.

to a TEL structure to find the reachable state space of the system. This step begins
with an initial timed state which includes the set of all enabled causal relationships (or
rules), the values of all signal wires, and timing relationships between all rules. From this
timed state, all possible next timed states can be determined by firing the enabled rules.
From these states, subsequent timed states are determined recursively. As timed states
are found, they are stored to form a state graph. State space exploration is exponential
in the size of the design, and timing makes it even more complex. On the other hand,
timing information can help to identify states which are not reachable by the system,
thus reducing the total number of states leading to an optimized logic implementation.

After the state space is generated, logic synthesis is applied to extract ezcitation



and quiescent regions from the state graph for each output signal. For each excitation
region, logic equations are found that implement the region in a hazard-free manner. To
accomplish this, correctness conditions are used to determine in which states the logic
must evaluate to true, can evaluate to true, and must not evaluate to true. At this step,
the implementation is largely technology independent. The logic equations may use gates
that are either inefficient or non-existing. The step of technology mapping takes a set of
logic equations and a gate library and determines a gate netlist to implement the logic
equations.

Once the final circuit implementation is available, verification is applied to the circuit
against the specification to show that the synthesized circuit is a reliable implementation
of the specification [6]. The actual timing behavior of the implementation also needs to
be verified that it is consistent with the specification.

The step of performance analysis is also applied to the specification and the synthesized
circuit annotated with delay distribution information [54]. It is based on Monte-Carlo
and Markov chain analysis, and can find steady-state probability distributions. From
these distributions, the relative importance of every pin-to-pin delay in the circuit can be
determined to show performance of the timed circuit implementation and pinpoint areas

where optimization can lead to significant improvements in performances.

1.2 Related Work

All timing constraints of a timed circuit need to be checked to guarantee correct
operation. Therefore, verification plays a critical role in timed circuit design. However,
verification is not the only way to assure correctness An alternative is to design correct
circuits in the first place. This requires correct synthesis. The key to the successful design
of timed circuits and especially timed asynchronous circuits is a complete state space
exploration. The major challenge of synthesis and verification is state space explosion.
This problem happens in a system with many components that interact with each other
or systems that have data structures that can assume many different values, such as the
data path of a circuit. In such cases, the number of global states can be enormous. There
has been a lot of successful work developed to deal with such a problem. This section

gives an overview of the work to address the state explosion problem.



1.2.1 Circuit Specification Approaches

To automate the synthesis and verification of timed circuits, they need to be specified
in a hardware description language. The expense and quality of the design of timed
circuits depends on the type of specifications that are supported. In general, more flexible
and expressive specifications allow the synthesis of faster and more complex circuits, but
make the design process harder. More restricted specifications make the design process
easier, but the derived circuits may be slow and redundant. Moreover, the specification
method needs to provide an easy way to specify complex two-sided timing information
needed for timed circuit design.

In general, the specification of timed systems can be loosely classified into two groups:
those that use language-based specifications and those that use graph-based specifications.
These two different groups require different design methods, and may generate different
circuit implementations. The languages that are used to specify circuits include CSP
[48], Occam [21], Tangram [13, 12], and VHDL [86]. Language-based approaches, such
as those proposed by van Berkel [79] and Brunvand [22], often directly map language
constructs to library blocks using syntax-directed translation. The advantage of these
approaches is the ability to describe large complex systems hierarchically and combat
the state explosion problem by mapping language constructs directly into fixed circuit
modules. However, these approaches do not allow timing information to be specified,
and the resulting circuits may be slow and redundant since optimizations are not always
visible at such a high-level or are difficult to apply during syntax-directed translation.
Another approach proposed by Martin in [48] translates a specification program into a
self-timed circuit through a series of semantic preserving transformations. However, it
does not support timing specification and needs a lot of human intervention to work
effectively.

Graph-based approaches often specify circuit behavior in a lower level. It can often
produce very efficient and fast circuits since timing information can be used to optimize
the implementations. Graph-based methods include Petri Nets or STGs [28], I-nets [57],
change diagrams [81], asynchronous finite state machines [42, 32, 84|, and state graphs
[60]. These methods often require complete state space exploration to find all reachable
states in a design. Therefore, the state space explodes quickly as the complexity and size
of the designs grow. Since specifications in these approaches are at the signal transition

level, writing the specification is tedious and error prone for large designs.



Since hardware description languages are useful to organize large complex designs
hierarchically, and timing analysis and synthesis algorithms are more easily applied to
graphical representations, the specification method used in our synthesis and verification
tool ATACS is a combination of language-based and graph-based approaches. The tool
accepts VHDL or THSE descriptions [86] as well as AFSMs and STGs. Instead of syn-
thesizing circuits directly from these descriptions, ATACS compiles them into a graphical
representation, the TEL structure. Then, timing analysis algorithms are applied to find

the reachable state space of the system, which is used to derive the circuit implementation.

1.2.2 Synthesis

There exist some systematic techniques for the design of timed circuits. In [17],
Borriello describes a method which uses timing information in the design of transducers,
interfaces between synchronous and asynchronous circuits. In [46], Lavagno develops a
synthesis technique which uses methods similar to Chu [28] and Meng [53] to derive a
complex gate-level implementation which is then mapped to a gate library using syn-
chronous technology mapping techniques. In both methods, timing analysis is applied
after synthesis to verify that the implementation is hazard-free. If hazards are detected,
delay elements are added to avoid them, degrading the reliability and performance of the
implementation. In [63, 64], myers first applied timed state space exploration to timed
circuit synthesis. In his method, unreachable states of a design are eliminated based
on the specified timing information. Therefore, this method produces optimized timed
circuits. In [44], a direct synthesis method is proposed which synthesizes timed circuits
directly from STGs. This method does not suffer from the state explosion problem since
it does not explore the state space of the designs. The synthesized timed circuits using
this method have nearly the same area compared with the results derived using other
synthesis methods. However, this method can only be applied to a restricted class of
free-choice STGs limiting its applicability. Furthermore, it can result in path explosion

in the precedence graph derived for synthesis.

1.2.3 Verification
The purpose of verification is to give the designers confidence that resulting circuits
operate correctly. Therefore, the most crucial issue in verification is the definition of
correctness. In general, correctness is defined by two different approaches. One approach

is model checking [29]. This approach explores the state space exhaustively and checks



if the specified properties are satisfied in every state. Another one is to check the
conformance of the implementation to a specification [34]. Verification needs to show that
the implementation exceeds the minimum requirements stated in the specification. These
approaches raise another issue which is what properties need to be modeled and verified.
Traditionally, there are two important properties to be modeled: safety properties and
liveness properties. A safety property asserts that “nothing bad happens”. A liveness
property asserts that “something good happens”. In the verification of a timed circuit,
it is also important to verify timing properties in a specification.

One approach to circuit verification is model checking for finite state concurrent
system. It checks whether a model of the behavior of the circuit satisfies a specification
written as logical formulas. Most work in model checking is based on temporal logic
[30, 36]. In general, a temporal logic is a propositional or first-order logic augmented
with temporal modal operators which can assert how the behavior of the system evolves
over time. Bugs have been discovered in several asynchronous circuits using this approach,
and the modified designs have been shown correct [20, 56]. Although model checking has
the advantage of being automated, it can only deal with small designs because the global
state graph needs to be constructed before it can be checked and the state graph for large
circuits can be very large.

Reachability analysis is widely used in protocol verification [16, 85]. It constructs a
global state graph of a finite state system, then inspects the graph for errors. Verification
using this approach checks the satisfaction of properties in each state: safety, absence of
deadlock, liveness, timing constraints for timed circuits, and so on. The meaningfulness of
these properties depends on the interpretation of the formal model being used and on the
application. Reachability analysis cannot handle arbitrary liveness properties, because it
does not consider infinite behavior.

In [34], Dill describes a hierarchical verification approach based on conformance check-
ing using trace theory. In this approach, the circuit behavior is specified at different levels
of abstraction. Specifications at one level of abstraction are treated as the descriptions of
implementations at the higher levels of abstraction. If an implementation conforms to a
specification, the implementation can safely replace the specification in any context while
preserving correctness of the specification. In this hierarchical verification approach, ir-
relevant implementation details can be suppressed in moving from one level of abstraction

to the next. Therefore, it can greatly reduce the computational complexity of verification.



Dill’s approach can only be applied to speed-independent circuits. Verification methods

based on timed trace theory are described in [25, 70, 83, 87].

1.2.4 Timed State Space Exploration

Both synthesis and verification of timed circuits require complete timed state space
exploration. The state space can be found by exhaustively firing all events in a system.
Since the growth of the reachable state space is highly dependent upon the representation
of timing information, how to model timing behavior is a crucial issue in timed state space
exploration.

There are two models to represent timing behavior of a system: discrete time and
continuous time. In discrete time model [24, 18], time is broken into dicretization
constants, and timers in the system can only advance in multiples of a discretization
constant. Timing analysis using the discrete model is simpler and implicit methods can
be applied to improve performance. The discretization constant needs to be set small
enough to guarantee exact exploration of the state space. However, this can cause the
state space to explode if the delay ranges are large [70].

In the continuous time model, timers in the system can take on any value between
their lower bounds and upper bounds. A continuous time state space needs to be divided
into equivalence classes, otherwise, the state space is infinite. All timing behaviors
within an equivalence class must lead to the same state and do not need to be explored
separately. Therefore, the size of equivalences should be as large as possible to reduce
the number of timed states. In the region approach [1], timed states with the same
integral clock values and a particular linear ordering of the fractional values of the clocks
are equivalent. Although this approach eliminates the need to discretize time, the state
space can explode if the delay ranges are large. Another approach to continuous time
is to represent the equivalence classes as convex polyhedra called zones [33, 15, 47, 2].
The zones are represented by sets of linear inequalities (also know as difference bound
matrices or DBMs). Although its worst complexity is worse than the discrete-time or
region approaches, the zone approach often generates larger equivalence classes resulting
in smaller state spaces when verifying real circuits. However, the number of zones can
explode in highly concurrent systems. The reason for this explosion in the number of
zones is that every possible sequence of concurrent events results in a different zone,

even though these sequences result in the same untimed state. To solve this problem, a



POSET algorithm [65, 69] is proposed to consider partial ordered sets of events rather
than the linear sequences. This algorithm can reduce the number of zones substantially.
Belluomini extended the POSET algorithm to TEL structures and applied it to both
synchronous and asynchronous designs [7, 6, 9]. In [55], Mercer described an enhanced

version of the POSET method.

1.2.5 State Space Reduction

There exist many techniques and methods to deal with the state explosion problem.
In [44], a direct synthesis method is presented where timed circuits are directly derived
from signal transition graphs. It does not suffer from state space explosion at all since it
does not explore state space. However, the class of specifications that can be handled is
limited, and a similar approach cannot easily be applied to verification.

In systems with a large state space, explicit representations for the state graph can
cost too much memory to be practical for realistic systems. In [26, 52], a symbolic
representation for the state graph is presented. This symbolic representation is based on
an ordered binary decision diagram [23]. It represents logic functions which express tran-
sition relations between states. OBDDs provide a canonical form for boolean functions
which is substantially more compact, and very efficient algorithms have been developed for
manipulating them. In [76], an implicit method using multiterminal BDDs was described.
Because the symbolic representation captures some of the regularity in the state space of
circuits, it can represent systems with an extremely large number of states [52]. Although
implicit methods are able to represent systems with large state spaces, the exponential
complexity of verification is still a serious problem.

In a concurrent system, such as an asynchronous circuit, different processes may
perform independently without any synchronizations. Events executed concurrently often
lead to the same state. The execution of concurrent events is represented by an inter-
leaving sequence where the events are arbitrarily ordered with respect to one another.
Most verification approaches explore all possible interleaving sequences which can result
in an extremely large state space. In [37], a successful technique based on partial order
reduction is presented to reduce the number of states by considering only a subset of
the possible interleavings between events which is relevant to the property to be verified.
Stubborn sets [78] and unfolding [50] are based on a similar idea. These techniques are

targeted specifically at verification, because synthesis requires the information of the
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complete state space. In [83], the partial order reduction approach is extended to timed

systems.

1.2.6 Abstraction

Although the state reduction techniques in the last section are successful on some large
systems, many realistic systems are still too large to be handled. To reduce the complexity
incurred by state exploration, abstraction is necessary. In [4, 5, 68], safe approximations of
internal signal behavior are presented to reduce the state space under consideration, but
these methods suffer exponential complexity in the number of memory elements. In VIS
[19], non-determinism is used to abstract the behavior of some circuit signals. It is often
too conservative, and can introduce unreachable states which may exhibit hazards. In [67],
a model checker is proposed based on hierarchical reactive machines. By taking advantage
of the hierarchy information, it only tracks active variables so that the state space is
reduced and verification time is improved. This approach, however, is best suited for
software which has a more sequential nature. In [59], an abstraction technique is proposed
for validation coverage analysis and automatic test generation. It removes all datapath
elements which do not affect the control flow and groups the equivalent transitions
together, thus resulting in a dramatic reduction in the state space. It is difficult, however,
to distinguish the control from the datapath without help from the designers. In [45],
an abstraction approach for the design of speed-independent asynchronous circuits from
change diagrams is described. In this approach, each subcircuit is designed individually,
and they are then recombined to produce the final circuit. This approach, however, does
not address timing issues. In [66], Namjoshi and Kurshan describe an algorithm which
constructs a finite state “abstract” program from a possibly infinite state “concrete”
program by means of a syntactic program transformation. It can be applied to infinite
state programs or programs with large data paths, and it allows other reduction methods
to be applied for model checking. However, the iterative transformation may not finish.
In [39], a divide-and-conquer method for synthesis of asynchronous circuits is described.
This method breaks the state graph for a given problem into a number of simpler modular
subgraphs for each output. Each modular subgraph is solved individually. The result of
these small subgraphs are then integrated together contributing to the solution to the
given problem. Although this makes synthesis and verification easier, the quality of the

final solution may depend on the order in which the outputs are processed. Also, this
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method generates a complete state graph before it breaks the state graph, which is highly
undesirable for large complex designs. In [11], Belluomini described the verification of
domino circuits using ATACS. She found out that verifying flat circuits even of a moderate
size is too difficult to be done by ATACS, but with some hand abstraction, the verification
is completed quickly. Although doing abstraction by hand is possible, it requires an
expert user and methods must be developed to check that the abstractions are a reliable

model of the underlying behavior. This is the major motivation of this research.

1.3 Contributions

This dissertation presents an automatic abstraction technique that is used to address
state explosion problem in large designs. In timed circuit synthesis and verification, an
environment needs to be provided to define the input behavior that the circuit must
handle and output that the circuit should produce. During state space exploration, all
states including the states of the environment need to be found. Since the function of an
environment is to define the interface behavior for the circuit, the internal states of the
environment have no impact on the bahavior of the circuit as long as the communication
between the circuit and its environment remains the same. Based on the this observation,
the internal details of the environment can be abstracted away, and the state space of the
circuit and its environment can be reduced substantially.

When designing a circuit whose state space is too large to be represented, the divide-
and-conquer method has to be used. In ATACS, a large circuit is partitioned into smaller
blocks. For each block, the rest of blocks in the circuit and the environment for the whole
circuit become the environment for the block. After the partitioning, the block and its
environment contain the same amount of information that needs to be considered during
state space exploration as before. From the above discussion, it is known that the internal
states of the environment can be abstracted away. By using structural information, the
internal details of the environment for the block can be identified and removed. After the
environment is simplified, each block is synthesized or verified. This process is applied to
all blocks in the circuit. Once the results for all blocks are available, they are integrated
together to form the solution to the whole circuit. This idea can be illustrated by an
example shown in Figure 1.2. In Figure 1.2(a), a circuit has four components, each has
constrained interface. Suppose we would like to design component M2, components M1,

M3, M} and the environment for the whole circuit F together become the environment
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Figure 1.2. Illustration of modular design using abstraction.

for M2 as shown in Figure 1.2(b). Since M2 has a constrained interface, the environment
for M2, E_M2, contains internal signals whose behavior has no impact on M2. After
abstracting those signals away from the environment E_M2 as shown in Figure 1.2(c),
the complexity for designing M2 can be substantially reduced. The same process can be

repeated for M1, M8 and M. Although this approach does not solve the exponential
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complexity inherent in the state space exploration, it improves the speed and memory
usage of the design process by converting a large exponential problem into a set of small
exponential sub-problems with a just little overhead for abstraction. This dissertation also
gives theorems that prove the correctness of the design using our abstraction technique.
This abstraction technique is implemented in a compiler [86] frontend to our timed circuit
design tool ATACS and are applied to several examples. The results show that the design
process with our abstraction technique is not only orders of magnitude faster and more
memory efficient, but also successful on orders of magnitude more complex designs than
can be designed without using it.

There are three major contributions of this dissertation. The first contribution is the
theorems that give the theoretical support for the modular synthesis and verification of
timed circuits using the abstraction techniques presented in this dissertation. The modu-
lar synthesis theorem asserts that if each block of a system is synthesized correctly with an
abstracted version of the given environment, the composition of the results for all blocks
is the correct solution to the whole system. Similarly, the modular verification theorem
asserts that if each block of a system is verified correctly with an abstracted version of the
given environment, the whole system is also correct. The successful application of these
theorems is supported by safe transformations that reduce the complexity of a design
while preserving its behavior.

The second contribution is the abstraction technique that is applied to the TEL
structures. Since the state space of a design grows exponentially in size of a design,
it is easier to use a divide-and-conquer approach to solve a complex design problem. The
abstraction presented in this dissertation can aid designers to partition a circuit into
blocks with manageable sizes, choose a block for synthesis and verification, group the rest
of blocks and the environment for the whole circuit together as the environment for the
selected block, and then identify the don’t-care information for the block using specified
hierarchical information.

The third contribution of this dissertation is the safe net reductions and redundant
rule checks used by abstraction to remove the identified don’t-care information in the
environment while preserving the behavioral semantics of the block. These techniques
reduce the design complexity of the block by removing the part of the environment
specification which does not affect the operation of the block. These techniques have

been proved to be safe according to the definition of safe transformations. Combination
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of abstraction and safe transformations can make the design process much faster and

more memory efficient than designing the flat system.

1.4 Dissertation Outline

This dissertation is organized as follows: Chapter 2 gives an overview of the spec-
ification method used in ATACS and its behavioral semantics. In ATACS, specifications
in VHDL or THSE are compiled to TEL structures to specify the circuit behavior, and
timed trace theory is used as the semantics. This chapter serves as the groundwork for
the rest of this dissertation.

Chapter 3 defines the correctness of synthesis and verification, and safe transforma-
tions. This chapter also presents hierarchical synthesis and verification theorems which
are mathematically proved. The significance of these theorems is that any design process
using the abstraction in this dissertation is correct.

Chapter 4 describes the abstraction techniques. After a block is chosen for synthesis or
verification, this chapter describes how abstraction identifies the don’t-care information
for the block by taking advantage of the structural information given in a specification.
The abstraction technique for TEL structures with levels is different from that for TEL
structures without levels. In this chapter, safe abstraction is defined to handle levels.

Since the don’t-care information does not affect the behavior of the block, it is
necessary to remove it to reduce the complexity of designing the block. Chapter 5
describes several safe net reduction techniques that remove the don’t-care information
while preserving the behavioral semantics of the block. Chapter 6 describes techniques
to uncover and remove redundant rules in a TEL structure.

Chapter 7 gives experimental results using the techniques presented in this disserta-
tion. The comparison between the abstraction technique and the traditional flat design
approach is also given in this chapter.

Chapter 8 summarizes this dissertation, and discusses the future work and the neces-

sary improvement on our abstraction technique.



CHAPTER 2

CIRCUIT SPECIFICATIONS AND
SEMANTICS

Specification methods of timed circuits can be loosely divided into two groups: hard-
ware description language (HDL) methods and graphical representations. HDL spec-
ifications are expressive in describing large and complex systems with a modular and
hierarchical structure, while graphical representations are preferred during timing analysis
and synthesis. Therefore, combining the two approaches provides an easy way to describe
large and complex systems while the common timing analysis and synthesis algorithms
can still be applied to optimize the circuit implementations. In [86], a new compiler
frontend to ATACS is described. This compiler accepts inputs in VHDL or THSE, and
compiles them into a graphical representation, the timed event/level (TEL) structure [8].
The behavioral semantics of a TEL structure is defined by using trace theory [34]. In
this chapter, the first section gives an overview of the specification languages, namely,
THSE and the synthesizable subset of VHDL. TEL structures are described in the next
section. The third section gives a brief overview of the compilation procedure from a timed
specification to a TEL structure. The fourth section describes the behavioral semantics
of TEL structures, namely, timed trace theory. The last section describes how to derive

a trace structure from a TEL structure.

2.1 Timed Specifications
The first step in any design method is to specify what is to be built. This section gives
an overview of the syntax of THSE and a synthesizable subset of VHDL. Both languages

allow a bounded timing constraint associated with each signal transition.

2.1.1 Timed Handshaking Expansions
A system can be specified structurally, behaviorally, or in a mixed manner. In Timed

Handshaking Expansion (THSE), modules are the basic complete structures to specify
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module = module ID; declarations stmts endmodule
declarations = declarations sigdecl | sigdecl
sigdecl = type ID = {initial, delay};
stmts = stmts stmt | stmt
stmt = cmpt_stmt | process | gate | comstraint
empt_stmt = 1D ID(assoc-list)
assoclist = assoclist, ID =>1D | ID =>1D
process = process ID; commands endprocess
initial = true | false
delay = (INT,INT; INT,INT) | (INT,INT)
commands = commands ; cmnd | commands || cmnd | emnd
cmnd = action | selection | repetition

Figure 2.1. Modules, signal declarations, components and processes.

a system. The syntax of a subset of THSE is shown Figure 2.1. A module is composed
of two parts: a set of signal declarations and a set of concurrent statements executing in
parallel. Each declaration consists of a type (either input or output), a signal name,
an initial value (either true or false), and a bounded delay associated with transitions
on that signal. A delay is given in a form: (I, u,;l¢,us) where I, and u, are the lower
and upper bounds on a rising transition and [y and uy are the lower and upper bounds
on a falling transition. If the delay is given in a form: (l,,u,), the delays are equal on
rising and falling transitions. The lower bounds are non-negative integers and the upper
bounds are an integer greater than or equal to the lower bound or oc.

There are four kinds of concurrent statements: processes, gates, constraints, and
component statements. Processes are used to specify the behavior of a system. A process
consists a set of commands. The commands in the body of a process include actions,
selection commands, and repetition commands. Commands can be executed in sequence
(denoted C1; Cy) or in parallel (denoted Cy || C5). The actions are used to assign values
to the output signals. Signals can only take two values: true and false. There are two
actions associated with each signal z: x+ denotes that signal z changes from a low to
high value, and z— denotes that x changes from a high to low value. The language also
includes a skip action that does nothing and terminates immediately.

Selections and repetitions are used to control the flow of processes. A selection

command has the following form:
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where G; through (G, are boolean expressions, S; through S,, are sequences of commands
(G; is called a “guard”, and G; — S; is called a “guarded command”). The guard G;
of a guarded command is a boolean expression over a set of actions or signal values. The
actions in this expression can be composed conjunctively (denoted e; & --- & ey) in
which the expression evaluates to true when all actions in the set has occurred. Mutually
exclusive actions can be composed disjunctively (denoted ey | --- | e,) in which the
expression evaluates to true when exactly one action in the set has occurred. The guard
may include a combination of conjunctive and disjunctive clauses. The guard can also
be a skip action which evaluates to true immediately. If the expression is composed
of signal values, s or —s, the guard evaluates to true when the signal s is high or low,
respectively. Signals in the expression can also be composed conjunctively, disjunctively,
or in a combination of both. A guard can simply be true. There is a subtle difference
between a guard composed of actions and a guard composed of levels disjunctively. If
composed of levels disjunctively, the expression evaluates to true when one or more levels
evaluate to true. Signal levels in a disjunctive expression are not mutually exclusive while
actions must be. For example, the guard command [a+ | b+ — c¢+] specifies that ¢+ can
occur only after either a+ or b+ has occurred, but not both, while the guard command
[a | b — c+] specifies that ¢+ can occur after the value of either a or b, or both are high.

When a process executes a selection command, all guards in that selection command
are evaluated first. If one of the guards, G;, is true, then a sequence of commands, S;,
following that guard is executed. If multiple guards evaluate to true, only one guard is
chosen nondeterministically. There is a special form of selection command, [G], which
stands for [G — skip|, and is used to suspend the execution of a process until G evaluates
to true.

A repetition command has the following form:

During execution, one of the guarded commands is chosen for execution, then the control
loops back to the beginning of this command. If none of the guards evaluates to true, the
execution of this command terminates and the control goes to the next command. There

is a shorthand of this repetition command: *[S] that stands for x[true — S] where S is
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module emptystage;
input ztin;
input zfin;
input ackin;
output zt = {(100,200) };
output zf = {(100, 200) };
output ack = {true, (100, 200)};
process datastage;
*[[ztin+ — xt + | xfin+ — zf+] : [ackin—] :
[ztin— — zt — | zfin— — zf—] : [ackin+]]
endprocess
process ackstage;
[zt + | of+] :ack—: [zt — | xf—]: ack+]
endprocess
endmodule

Figure 2.2. The THSE code for a single empty STARI stage.

a sequence of commands. This command causes S to be executed forever. This is usually

used to define a reactive process:

When executing this command, the process waits until one of the guards is true, then
executes the commands following that guard, and repeats. Another type of repetition

construct is shown below:

The operation of this construct is similar to that of the selection defined above except
that after a guarded command followed by a ’x’ is executed, the control loops back to the
beginning of the selection command. Otherwise, the control goes to the next command.

Figure 2.2 shows an example to illustrate how to use the language constructs to specify
a circuit. The module in the example specifies that the circuit has three input signals and
three output signals. It also contains two processes to define the behavior of the circuit.

Besides processes, a module can also contain a set of gate and constraint statements.
Gates are used to describe the behavior of a system at the gate-level. A gate statement
has the following form:

gate ID;
G1 — T+
GQ — T—

endgate
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module emptystage;
input ztin;
input zfin;
input ackin;
output zt = {(100,200) };
output zf = {(100, 200) };
output ack = {true, (100,200)};
gate ct;

ackin & ~ xtin — xi+

~ ackin & ~ ztin — xt—
endgate
gate cf;

ackin & zfin — o f+

~ ackin & ~ zfin — zf—
endgate
gate ack;

at | xf = ack—

~xt & ~xf — ack+
endgate
endmodule

Figure 2.3. The gate-level THSE code for a single empty STARI stage.

G1 and G4 are boolean expressions over a set of signal values. G and G5 defines the
conditions when signal = can go high and low, respectively. Figure 2.3 shows the gate-level
specification for the circuit shown in Figure 2.2. A gate statement is defined for each
output signal. For example, in gate statement ct, signal xt goes high when the value of
ackin is high and value of ztin is low. zt goes low when the value of both ackin and xtin
is low.

Constraint statements are used to define timing properties among signals that are used

for verification. A constraint statement has the following form:

constraint ID;
G — (INT,INT) action

endconstraint

G can be a single action or a boolean expression over a set of signal values. The two
integers define a lower and upper bound when a signal event is required to occur after
another event has occurred or the boolean expression of G has evaluated to true. These
two integers are optional. In such case, they are assumed to be 0 and oc.

The component statements are used to specify the interconnection of the components,

and provide a way to modulize the design and to manage the design complexity. This
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module stari;
input clk = {(1200,1200)};
input ack3 = {true, (0,100)};
input z0t = {(0, 100) };
input z0f = {(0,100)};
efstage stagel(xztin => z0t, xfin => z0f, ackin => ack2,
xt => zlt, xf => z1f, ack => ackl);
fullstage stage2(xztin => x1t, xfin => z1f, ackin => ack3,
xt => 22t, xf => 22f, ack => ack2);

process clk;

*[clk+; clk—]
endprocess
process left;

*[[clk+] : [skip — z0t+; [clk—/1]; 20t—

|skip = z0f+; [clk—/1]; z0f—
IE

endprocess
process right;

«[[clk+] : ack3—: [clk—]: ack3+]:
endprocess
constraint notfulll;

ackl + @ — x0t+
endconstraint
constraint not full2;

ackl +Q — z0f+
endconstraint
constraint notemptyl;

2t + Q = ack3—
endconstraint
constraint notempty?2;

22f + @ — ack3—
endconstraint
endmodule

Figure 2.4. The THSE code for a 2-stage STARI.

language construct is new since [86]. A component is an instance of a module. A
component statement consists of a label, a type (i.e. module name) and an association list
which connects the inputs and outputs of the component to the signals in the module. A
component statement renames the signals declared in the component to the corresponding
signals in the association list. The association list of a component statement consists of
all input signals and a subset of output signals declared in the corresponding module.
The output signals not on the association list are internal to the module.

Figure 2.4 shows the THSE specification for a circuit that consists of 2 stages. There
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are two components in the module that specifies the structure of the circuit. The two
processes specify the environment of the circuit. The constraints specify the timing
properties that this circuit must satisfy. For example, constraint ackl+ — xz0t+ specifies
that signal 20¢ can go high only after ackl goes high. If this constraint is not satified,

the circuit is not correct.

2.1.2 A Synthesizable Subset of VHDL

The complete VHDL language contains many complicated language constructs that
are not synthesizable in ATACS. This section introduces a synthesizable subset of VHDL
to specify timed circuits.

The description of a system can be divided into two parts: the external view and the
internal view. The external view describes the interface between the internal structure
and the outside world. It specifies the number and types of the input and output signals.
The internal view describes how the circuit implements its function. In VHDL, an entity
describes the external interface, and one or more architecture bodies describe alternative
internal implementations.

The syntax rules for entities and architecture bodies are shown in Figure 2.5. The
identifier in an entity declaration names the module so that it can be referred to later.
The port clause, which is optional, names each of the ports, which together form the
interface to the entity. The ports can be thought of as being analogous to the pins of a
circuit. Each port of an entity has a type, which specifies the kind of information that
can be communicated. In this subset, the allowed data types are bit and std_logic. Each
port also has a mode which specifies whether information flows into or out of the entity
through the port. If the mode of a port is in, it means that the port can only read the
information. If the mode is out, it means that the port can only output the information
generated by the circuit. If the mode is inout, it means that the information can be both
read and output by the port.

The internal operation of a module is described by an architecture body. In general, an
architecture body applies some operations to the values on input ports, generating values
to be assigned to output ports. The operations can be described either by processes,
which contain sequential statements operating on values, or by a collection of components
representing subcircuits, or by both. The identifier in an architecture body names a
particular architecture body, and the entity name specifies which module is described by

this architecture body. A single entity may have one or more different architecture bodies.
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entity_declaration = entity ID is
[port(inter face list);]
end [entity | [ID];
(ID{,...} : [mode] type [:= expression)){;...}

4

inter face_list

mode = in | out | inout
architecture_body = architecture ID of entity_ID is
declarations
begin

concurrent_stmts
end [architecture] [ID];

signal_declarations | component_declarations

4

declarations

concurrent_stmts

4

process_stmt | component_stmit

Figure 2.5. The syntax rules for entities and architecture bodies.

The declarations in an architecture body include signals and component declarations. The
statements in the architecture body execute concurrently. In this synthesizable subset,
process statements and component instantiation statements are allowed in an architecture
body.

The syntax for signal and component declarations is shown in Figure 2.6. The signal
declarations are used to specify signals used in an architecture and their attributes. Each
signal declaration consists of a set of signal names, their data type, and an optional
initial value. Signals declared in the entity of an architecture are also visible inside the
architecture body and are used in the same way as signals declared in the architecture.

To synthesize a timed circuit, it is necessary to know how its environment behaves.
The signals that connect the outputs of the environment to the inputs of the circuit are
not synthesized. These signals are labeled by attaching a symbol “——@in” at the end of
the declarations of those signals. This symbol is recognized by the ATACS synthesis engine
but ignored by the simulator. This symbol is only used in the top level that contains the
specifications for the whole circuit and the environment.

When designing a large and complicated system, a hierarchical approach is a good
way to attack complexity. In this VHDL subset, component declarations and component
instantiation statements are used for hierarchical design. The syntax of component dec-
larations is shown in Figure 2.6. Similar to entity declarations, a component declaration

simply specifies the external interface to the component.
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signal_declarations = signal ID {, ---} : type [:= expression];
component_declaration = component ID [is]
port(inter face_list);

end [component] [ID];

Figure 2.6. The syntax rules for signal and component declarations.

component_stmt = [instantiation label :]
[component] component_name
portmap (association_list);
process_stmt = [process_label :] process [is]
variable_declarations
begin
sequential _stmts

end process [process_label];

Figure 2.7. The syntax rules for concurrent statements.

Concurrent statements in an architecture body are executed in parallel. A process
specifies the behavior of a system, and a component instantiation statement specifies the
interconnection between a subcircuit and the rest of the architecture body. The syntax
rules for process and component instantiation statements are shown in Figure 2.7.

If a component is used in an architecture, it must be declared first, and instantiated
by a component instantiation statement. A component instantiation statement specifies
a usage of such a module in a design. The syntax rules show that we may simply name
a component declared in the architecture body and provide actual signals to connect it
to the ports in the entity. When the statement is used, all signals in the component
are renamed to the corresponding actual signals in the association list. The label is
necessary to identify the component instance. A process statement consists of a set of
variable declarations and sequentially executed statements. The variable declarations in
a process specify attributes of variables. Variable are only used in the processes specifying
nondeterministic behavior of an environment. They are not synthesizable in ATACS. A
process contains a set of sequential statements including guard, assign, if, and while loop

statements. When the process is activated, it starts executing from the first sequential
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sequential_stmts = sequential_stmts; stmt
stmt = if_stmt | loop_stmt | guard | assign
if_stmt = if boolean_expression then
sequential_stmts
elsif boolean_expression then
sequential _stmts
else
sequential _stmts
endif;
loop_stmt = while boolean_expression loop
sequential_stmts
endloop;
guard = guard (G1,Gs);
| guard_or (Gy,---,G9);
| guard_and (Gq,- -, G9);
assign = assign(assign_stmt{, ---});
assign_stmt = 1D, expression, INT,INT

Figure 2.8. The syntax rules for sequential statements.

statement and continues until it reaches the last one. It then starts again from the
first one. This would be an infinite loop, and is desirable in electronic circuits because
circuits typically operate continuously until the power is shut down. The syntax rules for
sequential statements are shown in Figure 2.8.

An if statement consists of a set of if branches and an else branch. Each if branch con-
tains a boolean expression over a set of signal values and a set of sequential statements. If
one of expressions evaluates to true, the following statements are executed. If expressions
of multiple branches evaluate to true, the first branch in the statement is chosen. If none
of the expressions evaluates to true, the statements in the else branch are executed. A
while loop statement is used to describe a piece of repetitively executed program. A while
loop statement consists of a boolean expression and a set of sequential statements. If
the expression evaluates to true, the statements in the while loop statement are executed
repetitively until the expression evaluates to false. The expression can simply be a true
that causes the while loop statement to execute infinitely.

Guard and assign are two procedures that come from the handshake package devel-
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oped for ATACS. The procedure guard(s,v) takes a signal, s, and a value, v, and stalls
a process until the signal s has taken the value v. The VHDL code that implements

guard(s,v) is as follows:

if (s /= v) then
wait until s = v;
endif

In VHDL, a wast statement stalls the process until the expression s = v becomes true.
However, if the expression is true when the wait is executed, the process stalls until
the expression goes false and becomes true again. This can cause a system to deadlock.
To address this problem, the expression is checked before the execution of the wait
statement to make sure that the wait is ignored if the expression is true. The procedure
guard_or(sy, vy, S2,v2, - -) takes a set of signals and values and stalls a process until some
signal s; has taken value v;. Similarly, the procedure guard_and(sy, v, S2,v2, ) takes
a set of signals and values and stalls a process until all signals s; have taken value v;.
The procedure assign(s,v,l,u) takes a signal, s, a value, v, a lower bound of delay, I,
and an upper bound of delay, u, and changes the value of the signal s to v after after a
random delay between [ and w. This is a truly sequential statement in that the statement
following an assign procedure can execute only after the signal event created by the
assign procedure has occurred. The assign procedure also allows parallel assignments.
For example, assign(sy,v1,l1,u1,82,v9,l2,us) changes the values of s; and s to v; and

v9 in parallel.

2.2 Timed Event/Level Structures

Timed event/level (TEL) structures are a variant of Myers’ timed event-rule (ER)
structures [63] with a boolean condition added to each rule in the rule set. Event
structures were introduced by Winskel [82], and timing has been added to them in several
ways. Subrahmanyam added timing to event structures using temporal assertions [72].
Burns introduced timing in a deterministic version, the event-rule (ER) system, in which
causality is represented using a set of rules, and a single delay value is associated with each
rule [27]. Myers introduced timed ER structures that extend ER systems with bounded
timing constraints and add conflicts from event structures to model nondeterministic
behavior (namely, environmental choice). TEL structures, introduced by Belluomini [8],

extend timed ER structures by associating a boolean expression with each rule.
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The formal definition of a TEL structure is given below in which N' = {0,1,2,3,...}:

Definition 2.2.1 A timed event/level structure is N = (X, A, E, R, #,Sy) where
1. X is the set of signals;
2. AC Y x {+,—} is the set of atomic actions;
3. ECAxNU{$} is the set of events;
4. RCEXEXNx (NU{oc}) xz:{0,1}" = {0,1}) is the set of rules;
5. # C E x FE is the conflict relation;
6. So = {0,1}" x R x (R — Q) is the initial state.

A TEL structure can also be expressed as a directed cyclic graph where the nodes in the
graph are the corresponding events in the TEL, and the edges are the rules in the rule set
of the TEL. Each edge is labeled by a timing constraint and level for the corresponding
rule. Also in this dissertation, an edge may be labeled by a unique identifier that is used
to represent the corresponding rule in the explaination. The description of conflicts is
given later in this section.

In timed systems, the signal set, 3, contains all input, output, and internal wires in
the specification. The atomic action set, A, contains a rising transition and a falling
transition for each signal x € ¥, denoted by z+ and xz—, respectively. The occurrence of
an action is an event, and it is denoted (a,4) where a is the action and ¢ is an occurrence
index for the action. The first instance of this action has 7 = 0, and ¢ increments with each
subsequent instance. There is also a special kind of events: a sequencing event starting
with ’$’. Sequencing events do not represent any signal value changes in a system. They
are place holders for timing information and boolean level evaluations. In the early stage
of the VHDL compiler development [86], the introduction of sequencing events is for the
convenience of compilation. During abstraction, sequencing events are created to replace
the don’t-care events in a system. The don’t-care events are defined in a later chapter.
Since sequencing events cause no signal value change in a system, they should be removed,
whenever possible, to reduce the complexity of the design problem to be solved. Removal
of sequencing events is a crucial step for abstraction to be successful, as described in a
later chapter.

The rule set, R, is used to represent a causal dependence between two events. Each rule
of the form (e, f,1,u, z) is composed of an enabling event e € E, an enabled event f € E,

a bounded timing constraint (l,u) where | € N and u € N U oo, and a sum-of-product
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Figure 2.9. An example of conjunctive causality.

boolean expression z over the signals in the signal set V. Note that z is not shown in a rule
if the value of z is true. Given a rule r = (e, f,l,u, z), enabling(r) = e, enabled(r) = f,
lower(r) = [, upper(r) = u and level(r) = z. For an event e € F, the preset of
e (denoted ee) is the set of rules where e is the enabled event (i.e., enabled(r) = e
for all r € ee), and the postset of e (denoted ee) is the set of rules where e is the
enabling event (i.e., enabling(r) = e for all r € es). The size of the preset of an event
e (denoted size(ee)) is the number of rules in ee. Similarly, the size of the postset of
an event e (denoted size(ee)) is the number of rules in ee. For an event e € E, the
enabling set of e is the set of events that are the enabling events of the rules in the
preset of e (i.e., enabling set(e) = {t = enabling(r) | r € ee}), and the enabled set
of e is the set of events that are the enabled events of the rules in the postset of e (i.e.,
enabled_set(e) = {t = enabled(r) | r € ee}). A rule r is enabled if enabling(r) has
fired and level(r) evaluates to true in the current state. A timer is assigned to each
rule when it becomes enabled. timer(r) is initialized to zero when r is enabled. All
timers of enabled rules increase uniformly. The bounded timing constraint (I, u) places
a lower and upper bound on the timing of a rule. A rule r is said to be satisfied if r
is enabled and timer(r) > lower(r). A rule r is said to be ezpired if r is enabled and
timer(r) > upper(r). Ignoring conflicts, an event e cannot occur until r is satisfied for
all r € ee. This causality requirement is termed conjunctive. An event e must always
fire before every r € ee is expired. Since an event may be enabled by multiple rules, it is
possible that the difference in time between the enabled event and some enabling events
exceed the upper bound of their timing constraints, but not for all enabling events. These
timing constraints are the same as maz constraints [51] and type 2 arcs [80]. Figure 2.9
shows an example that expresses this conjunctive causality where ¢ is enabled by two
rules r1 and ry. Given a rule r = (e, f,l,u, z), EFT(f < r) and LFT(f < r) indicate the

earliest and latest firing time of f decided by r, and they are defined as follows:

EFT(f <) =t,+1 and LFI(f <+ r)=t+u
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Figure 2.10. Examples of conflict places for disjunctive causality and conflict outputs.

where ¢, is the time when r becomes enabled. If an event f is enabled by multiple
rules, for example, 1 = (a, f,l1,u1,21) and ro = (b, f,ls,u2,22), EFT(f < ry,ry) and
LFT(f < r1,79) are the earliest and latest firing time of f decided by r1 and ry, and they

are defined as follows:

EFT(f < r1,7m2) = max(t,, + 11, t,, +12)

LFT(f — 7“1,7”2) = 'm,a,m(tr2 + Uy, tr, + “2)

where ,, and ?,, are the times when r; and r9 become enabled.

There are two possible semantics concerning the enabling of a rule. In one semantics,
referred to as non-disabling semantics, once a rule becomes enabled, it cannot lose its
enabling due to a change in the state. In the other semantics, referred to as disabling
semantics, a rule can become enabled and then lose its enabling. This can occur when
another event fires, resulting in a state where the boolean function is no longer true.
A single specification can include rules with both types of semantics. Non-disabling
semantics are typically used to specify environment behavior and disabling semantics are
typically used to specify logic gates. For the purposes of verification, the disabling of
a boolean expression on a disabling rule is assumed to correspond to a failure, since it
corresponds to a glitch on the input to a gate.

The conflict relation in # is added to model disjunctive behavior and choice. When
two events e and €’ are in conflict (denoted e#te’), this specifies that either e can occur or
e’ can occur, but not both. Taking the conflict relation into account, if two rules have the
same enabled event and conflicting enabling events, then only one of the two mutually

exclusive enabling events needs to occur to cause the enabled event. This models a form
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of disjunctive causality. Choice is modeled when two rules have the same enabling event
and conflicting enabled events. In this case, only one of the enabled events can occur.
Figure 2.10 shows an example of disjunctive causality and an example of choice. The
circles in the figure, similar to the places in Petri nets, are conflict places which represent
conflicts among events. The events in the preset and postset of a place are in conflict. The
conflict places are just for notational convenience. If it is impossible to display conflicts
using conflict places, we label the conflicts using text in figures. The concept of conflict
places can be extended to single rules. We say that a single rule has a conflict place
implicitly. For example, if an event e has two rules in its preset, and their enabling events
are in conflict, then there is only one conflict place in the preset of e. If the enabling
events of the rules are not in conflict, we say that there are two conflict places in the
preset of e. This concept is used when analyzing safe net reductions in Chapter 5.

If an event e is enabled by multiple rules and there are conflicts in enabling set(ee),
we define a conflict-free set cfs(ee) to be the maximum subset of ee such that there is no
conflicts among the enabling events of the rules in cfs(ee). ee can be divided into several
different conflict-free sets. Firing e requires that all rules in a conflict-free set are satisfied.
EFT and LFT can be extended to reflect the conflicts, correspondingly. Suppose an event
e is enabled by r = (a,e,l1,u1,21), ro = (b, e,la,ug, 29), and r3 = (c,e,l3,uq, 24). Also,
a and ¢ are in conflict. Therefore, e has two conflict-free sets in its preset: cfsi(ee) =
{r1,ro} and cfsy(ee) = {ro,r3}. EFT(f < ri,79,73) and LFT(f < ri,79,73) are defined
as follows:

max(ty, + 11, t,, +12) if a and b fire

EFT(y < ri,79,73) = { max(ty, + la, try +13) if b and c fire

max(ty, + uy, tr, +ug) if a and b fire
max(ty, + ug, t,, +us) if b and c fire

LFT(y < r1,79,73) = {
where t, , t,,, and t,, are the time of when 7, 5, and r3 become satisfied.

A state S of a TEL structure N is a three-tuple (s, M, timer), where s = {0, 1}* is the
state bitvector of logic values of all signals in N, M is the marking, and timer is a function
R — Q. A marking M C R where all rules r € M are marked. Sy = (sg, My, timery) is
the initial state of N, where the signal values in the initial bitvector sy are determined in
the specification, the initial marking My contains all rules which are initially enabled, and
timerg(r) = 0 for all € R. An event e is enabled to fire in a state S if a cfs(ee) C M

and r is satisfied for all » € cfs(ee). enabled(S) is the set of all events which are enabled

to fire in the state S. The states of N change if either time passes or an event fires. In
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Figure 2.11. Example of a constraint rule

state S = (s, M, timer), time 7 can pass if for each e € enabled(S), there is at least one
r € ee such that timer(r) + 7 < upper(r). The state resulting from passing time 7 in S
is S’ = (s, M', timer'), where
1. s =s,
2. timer/(r) = timer(r) + 7 for all r € M.
If ¢ € enabled(S) where S = (s, M, timer), firing e leads the system to the next state.
After firing e, the state changes to S’ = (s', M', timer’), where
1. s’ = s after the corresponding signal value in s is changed,
2. M'= (M — ee)Uce, and
3. timer/(r) =0 for all r € ee.

A TEL structure, N, is safe if every rule in IV has at most one token in any reachable
marking. In a marking M, if a rule r has a token, we say that r € M. If r does not have

a token, r ¢ M. The safeness of N can be expressed as follows:
(M —ee)Nee =1

A TEL structure, N, is live if from every reachable marking, there exists a sequence of
events such that any event can fire.

Timing properties of a system are specified using a set of constraint rules: C C E x
E XN x (NU{oc}) x (b:{0,1}Y — {0,1}). These constraint rules are similar to the
constraint places described by Rokicki in [69]. Constraint rules never actually enable an
event to fire. Instead, the constraint rules are checked each time an event fires in a state.

Failures caused by constraint rules arise due to following three conditions:
1. There exists a constraint rule r € ee¢ such that » ¢ M when firing e.
2. timer(r) is not satisfied for any constraint rule r € ee when firing e.

3. timer(r) is expired for any constraint rule r € ee before firing e.
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Figure 2.12. The TEL structure of a single stage STARI.

Figure 2.11 shows a TEL structure fragment which contains a constraint rule. This
rule requires that the TEL structure must meet a number of requirements. The first
requirement is that ¢ must fire no more than 10 time units after the rule (b, ¢, 3, 10, 2)
becomes enabled. If ¢ can ever fire later than this, the age of the constraint rule exceeds
its upper bound and causes a failure. The next requirement is that b must fire at least
3 time units before ¢ fires, and the level z must be high at least 3 time units before ¢
fires. These conditions are necessary in order for the constraint rule to be satisfied when
c fires. If the constraint rule is disabling, then the rule would also require that z remains
high from the time it rises to the time that c¢ fires. This single constraint rule specifies
a rather complex set of requirements. Constraint rules, especially when combined with
the ability to specify sequencing events, provide a reasonably powerful way in which to

describe the behavior to be verified.

2.3 Translating Timed Specifications to TEL Structures
This section introduces the basic concepts of translating a timed specification to a
TEL structure. The details of the translation procedure can be found in [86].

During translation, a timed specification in HSE is decomposed to actions. A TEL



32

Xt+
[100,200] [100,200]
<~acking ~xtin <ackin& xtin>

Xt—

ack+, xf+

[100,200 [100,200] [100,200]
100,200 . . . .
<xt|xf> [<~xt &] ~xf>  <~ackina ~xfin acking. xfin>
ack- xf-

Figure 2.13. The TEL structure of a gate-level single stage STARI.

structure is created for each action. The TEL structures for the actions are composed in
parallel, in conflict, or in sequence depending on whether they are are executed in parallel,
in conflict, or in sequence. For the actions in the boolean expression of a guard, their
TEL structures are composed in parallel if these actions are composed conjunctively
in the expression, or their TEL structures are composed in conflict if the actions are
composed disjunctively in the expression. For a guarded command, the TEL structures
of the guard and the command are composed in sequence in that the command is executed
after the actions in the guard have occurred. If a process is repetitive, the TEL structures
for the actions executed last in the process are composed with the TEL structures for
the actions executed first in the process in sequence to describe the repetitive feature.
Since all processes in a module operate in parallel, their TEL structures are composed in
parallel. If a module is instantiated in another module through a component statement,
all signals in the instantiated module are renamed to the actual signals in the association
list, then the renamed TEL structure for the called module is composed in parallel with
the TEL structures for processes and other component statements in the calling module.
For a constraint statement, it is directly translated to a constraint rule as defined in the
last section. A gate is also directly translated to corresponding rules. Figure 2.12 shows
the fragment of the TEL structure translated from the THSE code for the 2-stage STARI
shown in the first section of this chapter. This fragment of TEL structure corresponds to
a single empty stage of the STARI shown in Figure 2.2 that is instantiated in the 2-stage
STARI. Figure 2.13 shows the TEL structure for the single empty stage STARI in the
gate-level THSE shown in Figure 2.3.
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A similar procedure is also applied to translate a timed specification in VHDL to a
TEL structure. The specification is decomposed to assigns and guards. Each branch
of an if statement can be regarded as a guarded command in HSE and is equivalently
decomposed as a guard procedure that interprets the boolean expression following if and
a set of sequential statements. A TEL structure is created for each guard and assign
procedure, then TEL structures for sequential statements are composed in sequence. For
an if statement, A TEL structure is created for each branch by creating a TEL for the
boolean expression and a TEL for the set of sequential statements in the branch and
composing these two TELs in sequence. Then, the TELs for all branches are composed
in conflict to reflect that only one of them can be chosen. If an if statement has an else
clause, the boolean expression of the clause is implicitly the negation of the conjunctive
composition of all boolean expressions in the leading if clauses. The TEL for the else

can be created similarly. For a while statement
while b loop CMD endloop;

where b is the boolean expression and CM D is a set of sequential statements. This while

statement can be regarded as the following guarded command in THSE:
[-b — skip | b - CMD; x;

so the TEL for a while statement can be created in the same as for the above guarded
command in THSE. Then, the TELs for all processes are composed in parallel. If the
architecture body contains a component instantiation statement, the signals in the TEL
for the component are renamed to the actual signals in the association list, then the
renamed TEL structure for the component is composed with the TEL structures for
processes and other component instantiation statements in the architecture body in

parallel.

2.4 Timed Trace theory

The semantic behavior for TEL structures is defined using timed trace theory [83].
This section provides a brief overview of timed trace theory which provides the necessary
mathematics for the proofs in the later chapters. Trace theory was first applied to the
verification of speed-independent circuits by Dill [35]. Later, timing was added so that

trace theory can be applied to the verification of timed circuits [25, 83].
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A timed trace, x, for a circuit is a finite or infinite sequence of timed events (i.e.,
x = egeq ...). Each timed event is of the form e; = (w;, ¢;) where w is a wire name in the
circuit, which represents a logic value change on that wire, and ¢ is a rational number
indicating when that change happens. A timed trace must also satisfy the following two

properties:
e Monotonicity: t; < t;4q for all 4 > 0, and
e Progress: if « is infinite then for any time ¢ there exists an ¢ such that ¢; > .

Monotonicity states that time can only advance forward, and progress states that there
is no limit on how long time can pass.
The following shows two useful operations on timed traces. Given a trace x = ejes...

and a set of signals, D, the function del(D)(z) is defined recursively as follows:

del(D)(z) =eny ifwy & D
del(D)(z) =y itw, €D

where y = del(D)(eges...) and e; = (wy,t1). This function deletes all events of a trace
whose wire names are in D. For example, given a trace ¢ = abcdbdac, del({a,c})(t) =
bdbd. It is extended naturally to sets of traces. Given a set of traces, X, the function
inverse delete del ! (D)(X) is the set {z' | del(D)(z') € X }. This function returns the set
of traces which would be in X if all events with wire names in D are deleted. Intuitively,
if 2 is a trace not containing symbols from D, del™'(D)(x) is the set of all traces that
can be generated by inserting events in D at any time into z. Some useful properties of

these two functions are listed below:

del(D)(X) =0 & X =0 (2.1)
del(D)(del ' (D')(X)) = del ' (D')(del(D)(X)) when DND' = (2.2)
del(D)(del '(D)(X)) = X (2.3)

del(D)(X N X') C del(D)(X) Ndel(D)(X") (2.4)

A prefiz-closed trace structure T is a four-tuple (I, 0, S, F). I is a set of input wires,
and O is a set of output wires where INO = (). A = IUO is the alphabet of the structure.

S is the success set which contains all successful traces of a system. F' is the failure set
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which contains all failure traces of a system. P = SUF is the set of all possible traces of a
system. The set S is prefix-closed, that means if a trace ¢ is a success, all prefixes of ¢ are
also successes. A trace structure must be receptive, meaning that PI C P. Intuitively,
this means a circuit cannot prevent the environment from sending an input.
Composition (||) combines two circuits into a single circuit. Composition of two trace
structures T = ([,0,S,F) and T = (I',;0",S’, F') is defined when O N O' = (. To
compose two trace structures, the alphabets of both trace structures must first be made
the same by adding new inputs as necessary to each structure. Inverse delete is extended

to trace structures for this step as follows:
del '(D)(T) = (IUD,0,del }(D)(S),del ' (D)(F)) (2.5)

This is defined only when D N A = ().
After the two alphabets of the two structures are made to match, we need to find the
traces that are consistent with the two structures. The intersection of these two trace

structures is defined as follows:
TNT ={INnI',ouo,SnS (FNP)Yu(PnEF")) (2.6)

This is defined only when A = A’ and O N O' = (. From this definition, a success trace
in the composite must be a success trace in both components. A failure trace in the
composite is a possible trace that is a failure trace in either component. The possible
traces for the composite are P N P'.

Composition can now be defined as follows:
T| T =del ' (A — A)(T)Nndel ' (A - A")(T") (2.7)

In the following chapters, {T,T"} is also used to indicate the composition of 7" and T".
Another useful operation is hide which is used to make some wires internal to the
circuit so that they can no longer be connected to other wires. Formally, given a trace

structure 7', hide(D)(T) is defined when D C O. hide(D)(T') is defined as follow:
hide(D)(T') = (1,0 — D,del(D)(S),del(D)(F)) (2.8)

where D is the set of wires to be hidden. Figure 2.14 shows a circuit with two components,
and signals ¢ and d connect the two components and are also outputs. Hiding signals

efficiently and correctly is the key goal of abstraction. Figure 2.15 shows the result of
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Figure 2.14. Block diagram of a circuit with two components.
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Figure 2.15. Signals ¢ and d are hidden.

hiding the signals ¢ and d in Figure 2.14. Hiding signals efficiently and correctly is the
key goal of abstraction.

A trace structure is failure-free if its failure set is empty. Given two trace structures,
T and T, we say T conforms to T' (denoted T < T") if I = I'/O = O', and for all
environments E, if E || T" is failure-free, so is E || T. Intuitively, if a system using T’
cannot fail, neither can a system using 7.

The following lemma gives a simple sufficient condition to determine conformance

between two trace structures.
Lemma 2.4.1 T <T if I=1I''O=0",F CF', and P C P'.

The condition F C F' assures that if the environment does not cause a failure in T", it

does not cause a failure in 7. The condition P C P’ assures that if 7" does not cause a
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failure in the environment, 1" does not cause one.
The next lemma shows that if 7' conforms to T, this conformance is maintained in

any environment.
Lemma 2.4.2 If T < T and T" is any trace structure, then T || T" <T" || T".

Proofs of these lemmas can be found in [35].

The following example is a C-element to illustrate how the trace structure models
a circuit behavior. A C-element is very useful in asynchronous designs. It is typically
used to signal the completion of several concurrent computations. The output value of
a C-element remains constant until all of its inputs are equal to the complement of the
output; the output then changes to its complement after some delay. Figure 2.16 shows
a two-input C-element and the state graph which can accept the S and F sets of the
corresponding trace structure.

The states of the state graph are all possible logical valuations for all signals in a
circuit and an additional state called a failure state. A stable state is a state in which the
value of the boolean function of the circuit is the same as the actual value of the output
wire. An unstable state is a state in which they are not the same. In the state graph of
the C-element, The initial values of the wires are either abc = 000 or abc = 111. State 1,
2, and 3 are stable states, and state 4 is an unstable state.

A hazard occurs if the value of a boolean function changes and then reverts to its
original value without waiting for the actual output of the gate to change. In a C-element,
changes in the inputs are restricted so that when all inputs are equal to the complement
of the output, they must remain constant until the output changes. Input transitions
that violate this restriction may cause hazards on an output, and lead the circuit to the

failure state, F'.

2.5 From a TEL to a Trace Structure
Both TEL structures and trace theory can be used to model the circuit behavior. This
section gives a brief description of how to derive the corresponding trace structure from
a TEL structure.
After a system is modeled by a TEL structure, the state space of the system can be
found by exhaustively firing all events in the system, and reachability analysis is used to
study the behavior of the system. Firing an event leads the system to another state. Firing

a sequence of events results in a sequence of states. A state S; is said to be reachable from
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another state S; if there exists a sequence of event firings that changes S; to S;. A firing
sequence or a run can be expressed as p = Sy 86883683 .2 Sn, where Sy is the
initial state, and S;4; is obtained from S; by passing some time and then firing e; 1. If an
event e, fires at the end of a firing sequence p, a new firing sequence p' = p oty Snt1-
Therefore, a firing sequence is prefiz-closed. Let time;(p) be the sum of time passed when

the system reaches the state S; from the initial state Sy through the firing sequence p. It

is true that timeg(p) = 0 and time; 1 (p) = time;(p) + 7 where t,i < 7 < tyqaz, Where

tess; = maz({lower(r) | r € M; and r € cfs;(ee;y1)})
tmin = min({tcss, | for all cfs;(ee;41) C ®e;q1})
tmaxz = maz({upper(r) | r € M; for r € ee;11})

Therefore, a run p produces a timed trace

(t1,timeq(p)) (t2,times(p)) ---

Since a timed system produces the timed traces by reachability analysis, the behavior
of a timed system can also be studied using timed trace theory. A function trace(N)
is defined to return a trace structure which contains the set of all possible timed traces
produced by a TEL structure V. This function uniquely connects a TEL structure and its

corresponding timed trace structure together. The following is the definition of trace(N).

Definition 2.5.1 Function trace(N) takes a TEL structure N, and returns a trace

structure T' = (I,0, P) where

b

environment

Figure 2.16. A C-element and its state graph.



1. I is the set of input signals in N;
2. O is the set of output and internal signals in N;

3. P is the set of all possible timed traces produced by N.
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CHAPTER 3

MODULAR SYNTHESIS AND
VERIFICATION

The purpose of synthesis is to generate the correct circuit implementation from a
given specification, and that of verification is to determine whether the given circuit
correctly implements its specification. Therefore, the obvious question is how to define
correctness. In general, the correctness of a circuit can be derived in two ways. First,
we can check properties of the circuit, and if all the properties are satisfied, the circuit
is claimed to be correct. Second, the correctness of the circuit can be defined relative
to its specification. If the specification is guaranteed to be correct, then the circuit is
also correct. Again, the correctness of the specification is determined by whether certain
properties are satisfied. Now, the question is what properties should be checked to assert
the correctness. Properties can be classified as either safety or liveness properties. In
general, a safety property is a condition on finite computations while a liveness property
is a condition on the indefinite future. Liveness properties cannot be verified easily.
Many methods either do not verify liveness properties, or do so in a limited way. In
timed circuits, all timing constraints also need to be checked. In ATACS, general liveness
properties are not checked. Instead, circuits are checked if they can deadlock. Timing is
another important issue in the synthesis and verification of timed circuits design. Even
when timing information is designed in from the beginning, it is necessary to verify that
the physical implementation meets the requirements of the specification. These properties
and timing constraints are checked during timed state space exploration to guarantee that
the synthesized circuit or the circuit to be verified is correct. In this way, verification
in ATACS is similar to model checking. This chapter describes the properties and the
timing constraints to satisfy the correctness requirement. The safe transformations which
preserve these properties are described next. In the last two sections, the theorems for
modular synthesis and verification are described. These theorems are proved using trace

theory.
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Figure 3.1. An example of deadlock.

3.1 Definition of Correctness

This section defines the correctness of circuits. Informally, a correct circuit keeps doing
things as expected. There are two conditions for a correct circuits: it must produce the
expected outputs for the given inputs; and the outputs must be produced in finite delay
after the inputs are given. The first condition describes a safety property and the second
one describes a liveness property. The expected outputs are determined by the function
of the circuit and the inputs. Also, the output signals cannot contain glitches that are
unexpected pulses on signal wires, and can cause the circuit either to malfunction or
fail. A circuit that may produce glitches on its output wires is hazardous. A correct
asynchronous circuit must be hazard-free. A correct circuit must also produce outputs
in a finite delay. It is obvious that a circuit is useless if it does not produce any outputs.
For timed circuits, we also impose timing properties on their correctness. For example,
we want a circuit to produce an output event b+ between 5 and 10 time units after an
input event a+ has occurred. The circuit is not correct if it produces a b+ beyond that
timing bound after a+.

In ATACS, the behavior of circuits is modeled by TEL structures. The first requirement
is that TEL structures must be safe. Also, circuits must be hazard-free. In Chapter 2, it
is described that a hazard appears when a signal is enabled by a disabling rule, but the
enabling condition is lost before the signal transition fully completes. This can result in
either the signal transition not being produced, or a glitch. Any trace that leads to this
situation can cause the circuit to fail. General liveness properties cannot be modeled in
ATACS. Instead, correct circuits must not deadlock, a limited liveness property. Deadlock

is the state where the circuit can halt for an infinite period of time and no outputs can
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ever be produced. Deadlock occurs when firing a signal, for example a, depends on some
other signal events which then depend on the firing of a. This situation is illustrated in
Figure 3.1. Another very illustrative and interesting example of deadlock can be found
in a law passed by the Kansas legislature early in this century. It said, in part, “When
two trains approach each other at a crossing, both shall come to a full stop and neither
shall start up again until the other has gone.” During state space exploration, a state
causing deadlock is found if the enabled rules in the current state are not enough to fire
an event. In other words, the enabled event set of a deadlock state is empty. Timing
properties of timed circuits are defined by constraint rules as described in Chapter 2 and
must be satisfied. Traces causing any constraint rule violations are failures. In summary,

the above conditions that cause failures are shown in the following definition.

Definition 3.1.1 Suppose o is a success trace that leads Sy of a TEL structure N to Sy,.
Firing e € E leads Sy, to Spy1. oe is a failure trace if one of the following conditions

hold:

1. (M, —ee)Nee £ ().

2. firing e causes a disabling rule r € M, to be disabled.

3. enabled(S,+1) = 0.

4. There exists a constraint rule r. € ee such that r. & M,, when firing e.
5. timer(r.) is not satisfied for any constraint rule r. € ee when firing e.

6. timer(r.) is expired for any constraint rule r. € ee before firing e.

The first condition asserts that the TEL structure must be safe. The second condition
asserts that firing an event must not cause an enabled disabling rule to be disabled. The
third condition defines deadlock. The last three conditions asserts that firing an event
causes a failure if any timing requirement is violated.

These conditions completely describe the failure set F' of a trace structure. During
state space exploration and timing analysis, all these conditions are checked, and a failure
trace is generated whenever a firing satisfies one of the above conditions. The procedure
that performes these checks is called fail. For example, given a TEL structure T', Pr is
the set of all possible traces produced by T, fail(Pr) returns a subset of Pr where the

traces are failures. F' = fail(Pr) where F is the failure set of trace(T).
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As described in the first chapter, an environment is necessary to define the interface
behavior of a circuit in the timed circuit design. It is essential for synthesis and verification
to know how the circuit behaves and how it interacts with its environment. The internal
details of the environment have no impact on the circuit. For modular synthesis and
verification to succeed, the definition of fail(P) must satisfy two requirements. The
first requirement asserts that during synthesis and verification of timed circuits, only the
behavior of the circuit is checked, and the internal behavior of the environment which
is not visible to the synthesis and verification is not checked. In other words, internal
failures of the environment do not cause the circuit to fail. The second requirement asserts
that if the relation between the possible trace sets of two trace structures is inclusive,
this relation is preserved between their corresponding failure sets returned by fail. These
two properties are given formally below. Suppose C' is the trace structure defining the
behavior of a circuit, £ is the trace structure of the environment describing the input
behavior for C', and X is the set of internal signals of E. In the following equations, P;

is the possible trace set of {C, E} and P, is the possible trace set of {C, hide(Xg)(E)}.
del(Xg)(fail(Py)) = fail(P) (3.1)

3.2 Definitions of Safe Transformations

In the design of a timed system, an environment must be provided. An environment
has two functions. First, it defines and supplies the input behavior which the system
must be able to process for correct operation. Second, the outputs of the system must not
cause the environment to fail. In other words, a correct system operating in the specified
environment does not cause any failure. Described in trace theory, fail(Pic ) = () where
C' is a correct circuit and F is the specified environment described as trace structures.
If the system operates in another environment, F’, that produces a superset of timed
traces of F, and if fail(Pjc p/y) = 0, it is true that fail(Pjc py) = 0. This is a direct
result of Equation 3.2 in the last section. This result is very useful in that if a given
environment, E, is complex, it can be transformed to a simpler one, E’, as long as it
produces a superset of timed traces. For synthesis, the resulting circuit may contain a
redundant part to deal with the extra behavior introduced by transformations, but the
synthesized circuit definitely works correctly in the originally specified environment that

supplies a subset of inputs that the synthesized circuit is able to process. For verification,
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if a system is verified with E’ without any failure, we can assert that the system is
also failure-free with E. However, verifying a system with a transformed environment
may result in a false negative answer. A false negative is that the violating states (i.e.
states where an error has been detected) are found when verifying a system with the
transformed environment, but these violating states may not be reachable if the system
is verified with the originally specified environment. This approach never results in a
false positive answer where the system is verified failure-free with E’ while verification
would detect violating states in the system with E. A false positive would happen only if
the transformations reduce the behavior of the environment so that the violating states
of the system may not be reachable during verification. If false negatives happen rarely,
transformations can substantially reduce the complexity of the environment.

In the above discussion, transformations must satisfy one requirement: the environ-
ment after transformations must produce a superset of timed traces that are produced
by the originally specified environment. Such transformations are defined to be safe.
Given an environment, F, the one derived through a series of safe transformations is
referred to as the “abstracted” environment of E. The following is the definition of safe

transformations.

Definition 3.2.1 (Safe Transformations) A system is described by a TEL structure
N. N' is derived by applying a transformation on N. Suppose Py and Py: are sets of
possible timed traces produced by N and N', respectively. If Py C Py, the transformation

is safe.

As described in the last section, internal signals of the environment can be removed
for synthesis and verification as long as the interface behavior of the environment with
the internal signals is preserved. Abstraction converts internal signals of the environment
into sequencing events. Then safe transformations are applied to remove sequencing
events from TELs under two conditions. First, removal of a sequencing event must not
reduce the specified untimed behavior of the environment. Second, the timing information
carried by the environment must be preserved in a conservative fashion. This can also be
described by trace theory. Suppose Ng is the TEL structure describing the behavior of
the environment, and T is its corresponding trace structure. The interface behavior of
Ty, is described by del(D)(Pg), where D is the set of signals internal to the environment,

and Py is the set of possible timed traces. In the abstracted environment, the internal
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signals, D, are removed from Ng to obtain the trace structure 74 = trace(abs(D)(Ng))
where the function abs(D)(Ng) returns a TEL N}, where the signals in D are abstracted
away from Npg using safe transformations. Let X; and X9 be the untimed trace sets
produced by abs(D)(Ng) and Npg, respectively. To preserve the interface behavior, a
safe transformation must satisfy that del(D)(X2) C X;. Since timing information is
preserved conservatively, it is true that del(D)(Pgr) C P4, where D contains the internal
signals of the environment to be removed and P,4 is the possible trace set of T'4.
Calculating the interface behavior of an environment can be conducted by state space
exploration to generate all possible timed traces and then applying function del to remove
all internal signals from the possible timed traces. However, state space exploration
is an exponential problem, which is computationally unfeasible for large systems. In-
stead, internal signals are removed from TEL structures using safe transformations before
state space exploration, and the possible timed traces produced by the abstracted TEL
structure include the specified interface behavior. The following lemma proves that the
unabstracted environment conforms to the abstracted environment if only the interface
behavior is considered. This conformation is used to prove the theorems of modular

synthesis and verification in the next section.

Lemma 3.2.1 A system is described by a TEL structure, N, its corresponding trace
structure is T', O is the set of all output signals in N, and D C O. If the function
abs(D)(N) uses only safe transformations, then hide(D)(T) < trace(abs(D)(N)).

Proof: Let P and P’ be the possible trace sets of hide(D)(7T) and trace(abs(D)(N)),
respectively. From the definition of safe transformations, we have P C P’. From prop-
erty 3.2, we have fail(P) C fail(P’). Therefore, from Lemma 2.4.1, we have hide(D)(T) <
trace(abs(D)(N)). O

3.3 Modular Synthesis and Verification
Given a specification, we can design the entire flat circuit at one time. This approach
only works well for small circuits. When the circuit gets large and complex, divide-and-
conquer approach is necessary. By partitioning a circuit into blocks, each with constrained
complexity, the design process can finish much faster by designing each block individually
for all blocks. The improvement in the speed of the design process comes from that all

irrelevant details to the block being designed is removed and the total information under
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consideration during the design process is substantially reduced. When a block is chosen
to be verified or synthesized, the rest of the circuit becomes its environment. As described
in Section 2, internal signals of the environment belong to those irrelevant details and
need to be removed to simplify the design problem. In the following two sections, a series

of theorems is formulated and proved that modular synthesis and verification are correct.

3.3.1 Modular Synthesis Theorems

Before giving the theorem for modular synthesis, it is necessary to define correct
synthesis. In ATACS, the behavior of a circuit is defined in a specification with an environ-
ment to specify the operating environment of the circuit. A state graph is generated by
exploring the timed state space of the circuit. If no error is found, an implementation is
derived from the state graph. The synthesized circuit operates correctly in the specified
environment. The correctly synthesized circuit consists of two parts of behavior. First,
the circuit implements a partial set of behavior defined in the specification. Second, extra
behavior may be introduced during synthesis to simplify the circuit impllementation. The
extra behavior is produced for the inputs not defined in the environment. Since the inputs
for the extra behavior are not defined in the environment, the circuit does produce the
extra behavior when operating in the environment. The definition of correct synthesis is

given as follows.

Definition 3.3.1 (Correct Synthesis) B and E are the circuit and its environment
specifications, respectively. If C is the circuit implementation correctly synthesized from
{B, E}, it is true that

fail(Py ) = 0 (3.3)

Pic.ry € Pg £y (3.4)

As described above, the internal signals of an environment can be abstracted away. The
resulting environment has the same or more interface behavior. Hence, the circuit working
in the environment after abstraction needs to be able to accept the newly introduced
behavior. It is obvious that the synthesized circuit still operates correctly given a subset of
the input that it can handle. The following lemma asserts that a circuit synthesized from a
specification with the abstracted environment still operates correctly in the unabstracted

environment.
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Lemma 3.3.1 B and E are the circuit and environment specifications, respectively. Xp
is the set of internal signals of E. C' is the circuit implementation synthesized correctly

from T = {B,abs(Xg)(E)}. Let T' = {C', E}, it is true that fail(Pr) = (.

Proof: First, let P, be the set of possible traces of {C’,abs(Xg)(E)}, and P, be the
set of possible traces of {C’, hide(Xg)(FE)}. Since C' is correctly synthesized from {B,
abs(Xpg)(E)}, therefore

fail(P) = 0 (3.5)
From Lemma 3.2.1 and 2.4.2, we have

{C' hide(Xg)(E)} < {C', abs(Xg)(E)} (3.6)

Therefore,
fail(P) = () (3.7)
From Property 3.1, we have
del(Xg)(fail(Pr) = 0) (3.8)

And from Property 2.1, we have
fail(Pp) = 0 (3.9)

An alternative to flat synthesis is to synthesize the circuit block by block. When a
block is chosen to synthesize, the rest of the circuit is treated as its environment. When
the results of all components are available, they are integrated together to determine the

solution to the whole design. This idea is formulated in the following lemma.

Lemma 3.3.2 A system {By, By} has two components: By and By. Cp and Cy are
the circuits correctly synthesized from By and By with By and Bi as the corresponding

environment. It is true that fail(Pic, ¢,3) = 0.

Proof: Since (] is the circuit correctly synthesized from B; with By as its environment,

its behavior can be expressed as follows:
Pc, = PLUP] (3.10)

and P C Pp, and P/ N Pp, = () where Pp, and Pp, are the sets of possible traces of B;

and By, respectively. Similarly, the behavior of Cy can be expressed as follows:

Pg, = P,U P (3.11)
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and P, C P, and P, N P, = (). The possible traces of {C1,Cs} is
P{C],CQ} = P6‘1 N PCZ (312)

Substitute Equation 3.10 and Equation 3.11 into Equation 3.12 and we have

Piey oy = (P10 P) U (PN Py) U (PN Py) U (PN Py) (3.13)
Since
fail( Py, p,y) = 0
P,y = (P10 Pp,)U(P[ N Pg,)
we have
fail(P N Pp,) = 0
Since P, C Ppg,, fail(P, N P,) = (. And also since P, C Pp,, P{ N Pg, = ), and

Pg, N Py = (), we have
PNPy =10 and PINP =0
Therefore,
fail (P, o)) = fail(P] N Py)

P} and Pj are the traces produced by C; and Cj for the inputs not defined in their
corresponding environments. The inputs to C} are the outputs from Cs, and the inputs
to Cy are the outputs from Cy. C; cannot produce P| until Cy produces outputs defined
by Pj, and the same for Cy. Sine both Cy and Cj must wait for each other mutually
to produce a trace in P| or Py, C; and Cy can never produce P| and P;. Therefore,

P/ NPy =0, and from Property 2.1, we have

fail(P{Cl 102}) = @

Combining the above two theorems, we can derive an important theorem of modular
synthesis. This theorem asserts that each block is synthesized with its corresponding
environment of which internal signals are abstracted away, the integration of the results
for all blocks is still the correct solution for the whole design. The theorem is shown as

follows:
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Theorem 3.3.1 A system {By,Bs} has two components: By and By. Xp, and Xp,
are sets of internal signals of By and Bs, respectively. Cy and Cs are the circuits
correctly synthesized from {By,abs(Xp,)(B2)} and {abs(Xp,)(B1),Bs}. It is true that
Fail(Pyc, o)) = 0.

Proof: Since C is the circuit correctly synthesized from {Bj, abs(Xp,)(B2)}, we have

fail(Pic, abs(xs,)(82)}) = 0 (3.14)
From Lemma 3.3.1, we have
fail(Pyc, p,)) =0 (3.15)
Similarly, we have
fail(P{Bl,Cz}) = @ (316)

From the above two equations, C; and Cs can also be thought of as circuits correctly
synthesized from By and By with By and B as the corresponding environment. Therefore,

according to Lemma 3.3.2 , we have
fail(P{ChC?}) = @ (317)

O

This lemma is extended to a system with a number of components more than 2.

3.3.2 Modular Verification Theorems
Given a circuit M consisting of two blocks My = {I;,01, P} and My = {I3, 09, P, },
the composition M; || My defines the behavior of M. P; and P, are the possible trace
sets of My and Ms, respectively. X1 and Xs are the set of internal signals of M; and Mo,

respectively. The composition of M; and M, is defined when the following conditions are

satisfied.
0O1N0Oy = ¢
X1=01 -1
Xo=02 - I
XiNXyg=9¢

To verify M, we can verify My and Ms, separately. If both are correct, M is also

correct. When verifying one block, the other one behaves like the environment for the
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former one. Therefore, the internal signals of the later one needs to be removed and the
result of the verification is not affected. If a different block is chosen, a similar process is

applied to its environment. This is formulated in the following theorem.

Theorem 3.3.2 Let X1 and X9 be internal signal sets of My and My, respectively. If
M, || hide(Xy)(My) is failure-free, and hide(X;)(M;) || My is failure-free, then M =
M, || My is failure-free.

Proof: First, the failure set of My || My is
(del ' (Xy)(fail(Py)) Ndel *(X1)(P2)) U (del *(X;)(fail(P)) N del ' (X,)(P))
Suppose M; || hide(X53)(M,) is failure-free. That means its failure set
(fail(P;) Ndel }(X;)(del(X5)(P))) U (P, Ndel 1 (X)) (fail(del(X5)(P)))) = ¢ (3.18)

Therefore,

fail(P;) Ndel ' (X;)(del(X;)(P)) = ¢ (3.19)
Py ndel ' (X)) (fail(del(X2)(P))) = ¢ (3.20)
From Property 2.3, Equation 3.19 can be transformed as follows:
del(X5)(del ' (Xy)(fail(P1))) Ndel ' (X:)(del(X2)(P)) = ¢
From Property 2.2,
del(X,)(del ' (Xy)(fail(P1))) N del(Xy)(del ' (X1)(P)) = ¢
From Property 2.4,

del(X3)(del 1 (Xy)(fail(Py)) Ndel L (X)(P))
C del(Xy)(del ' (Xy)(fail(Py))) N del(Xy)(del ! (X,)(P)) = ¢

Therefore,

del(X,)(del ' (Xy)(fail(Py)) Ndel (X)) (P)) = ¢

Finally, from Property 2.1,

del }(Xy)(fail(P)) Ndel *(X,)(P) = ¢ (3.21)
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Similarly, suppose My || hide(X;)(M;) is failure-free. Thus, its failure set
fail(P2) Ndel ' (X5)del(X;)(P1)) U (P> Ndel ' (X3)(fail(del(X1)Py))) = ¢

fail(P;) Ndel ' (Xo)del(X ) (Py)) = ¢ (3.22)
(P, Nndel ' (X,)(fail(del(X,)P1))) = ¢

By applying the same steps above to Equation 3.20, we can derive that
del ' (X)) (fail(P;)) Ndel ' (X,)(P)) = ¢ (3.23)

The union of Equations 3.21 and 3.23 is the failure set of M; || Ms. Since both
Equation 3.21 and 3.23 are empty, the failure set of My || My is empty. O

This theorem is naturally extended to a circuit consisting of more than two blocks.

Calculation of P is an exponential problem. Instead, we can apply abstraction and
safe transformations to its corresponding TEL structure to remove internal signals, then
the state space is explored to generate the new trace structure. Suppose N is a TEL
structure and 7' is the corresponding trace structure. From Lemma 3.3.1 we know that
hide(D)(T') conforms to trace(abs(D)(NN)). Suppose N; and N are the TEL structures
for M7 and My, respectively. Therefore, combined with Lemma 2.4.2, we know M; ||
hide(X5)(M>) conforms to M; || trace(abs(X5)(/Ny)) and hide(X;)(M;) || My conforms
trace(abs(X1)(Ny)) || M. From above the conclusion, we show another very important

theorem.

Theorem 3.3.3 Let X; and Xs be internal signal sets of My and My, respectively. If
M, || trace(abs(X3)(N2)) is failure-free, and trace(abs(X1)(N1)) || My is failure-free,
then M = M || My is failure-free.

Proof: From Lemma 3.2.1, we have
hide(X;)(M;) < trace(abs(X;)(/Ny))

hide(X,)(M,) < trace(abs(X5)(Ny))

From Lemma 2.4.2, we have
hide(X7)(M;) || My < trace(abs(X1)(Ny)) || My

M, || hide(X3)(Ms) < M, || trace(abs(X2)(Ny))
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Since trace(abs(X;)(N1)) | M2 and M, || trace(abs(X3)(Nz2)) are failure-free, then
hide(X;)(M;) || My and M, || hide(X3)(M3) are also failure-free. From Theorem 3.3.2,

M | My is failure-free. O



CHAPTER 4

ABSTRACTION

Synthesis and verification of timed systems are typically based on a complete state
space exploration. The state space can be derived by exhaustively firing all possible
transition sequences in the system. The number of states grows exponentially as the
complexity of the design grows in terms of the number of signals in the design. Therefore,
synthesis and verification of large and complex systems is difficult or even impossible
because of state explosion. In order to constrain the computational complexity, it is
necessary to suppress certain details of the design while keeping the important system
properties. While synthesizing or verifying a circuit, an environment needs to be provided
to describe the input behavior for the circuit. The environment is also viewed as a
testbench which supplies inputs to the circuit, and determine whether the output is
expected. From the circuit’s viewpoint, only the communications between the interfaces
of the circuit and the environment has impact on the correctness of the circuit. Therefore,
all behavior concerning the internal signals of the environment can be abstracted away.
During abstraction, the interface behavior of the environment needs to remain the same
or be extended conservatively. The environment after abstraction is referred to as the
abstracted environment, and the one before abstraction is referred to as the unabstracted
environment. It has been proven that if the circuit operates correctly in the abstracted
environment, it also operates correctly in the unabstracted environment.

The environment for the whole system is referred to as the system environment. In
practice, the system environment is usually designed very simply, typically containing
no internal signals. Therefore, there is not much abstraction needed. In general, a
large and complex system is not specified by a lump of declarations and statements.
Instead, it often has a well defined structure and is organized in a number of components.
Each component groups relative functions of the system and has a constrained interface,
therefore, constrained size and complexity. The operation of a component depends on

the conditions of the surrounding components. Therefore, the rest of the components
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and system environment can be treated as the environment for the component, which is
referred to as the block environment. Since the component has a limited interface, the
block environment may contain a lot of internal signals. After these internal signals are
abstracted away, the total number of signals under consideration can be much smaller
than the number of signals in the whole system and the size of the state space can
be dramatically reduced compared with the whole design. The abstraction approach
described in this dissertation does not change the exponential complexity of state space
exploration. Instead, with a little overhead it converts a big exponential problem into a
set of small exponential problems.

The abstraction approach in this dissertation operates as two steps. First, the TEL
structure for the whole system is found. If a component is chosen for synthesis or
verification, then, the interface signals of the selected component are found and the signals
not in the interface signals are internal signals of the block environment and all events on
the internal signals are converted into sequencing events. This step is called abstraction.
Second, these sequencing events are abstracted away using safe net reductions. This
chapter describes how abstraction is applied to TEL structures without levels in the first
section and ones with levels in the following section. The safe net reductions are described

in the next chapter.

Figure 4.1. Hierarchical organization of a specification.
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Figure 4.2. Organization of the TEL for the corresponding specification.
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4.1 Abstraction for TEL Structures Without Levels

In ATACS, the specification of a circuit is typically composed of a number of pro-
cesses defining its behavior and a number of components defining its structure, and each
component has a similar structure. The components in the lowest level consist of only
processes. The structure of a specification can be viewed as a tree shown in Figure 4.1.
The circle with a T' inside is the root node of the tree representing the specification on
the top level. The circles with *C” inside indicate the specifications of the components
on the different levels. The squares with P’ inside are the specifications for processes.
The node for a component can contain a set of pointers to the other components that
are used in this component. During compilation, the specification is decomposed into
processes, each process is compiled to a TEL structure, then the TEL structures of the
processes in the same component are composed in parallel. If the component contains a
number of other components, pointers in the containing component are assigned to point
to those components. After compilation, these TEL structures are also organized as a
tree shown in Figure 4.2. Now, a component contains a TEL structure that is the parallel
composition of the TELs for all processes in this component and a set of pointers to the
nodes of the components that are included in this component.

In the tree, the node for a component also contains a list of signals that consists of

interface signals and internal signals of the component. This signal list is referred to as
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Algorithm 4.1.1 (Find the TEL from the tree)
(TELstructure, interface_list) TEL(root, label){
if (root.label==label)
interface_list = root.interface_list;
result. TELstructure=NULL;
result=compose(result. TELstructure, root.t);
foreach (pointer pc in root to another node){
tmp = TEL(pc, label);
result.interface_list = tmp.interface_list;
result=compose(result. TELstructure, tmp.TELstructure);

}

return result;

Figure 4.3. Find the TEL for the whole design from the TEL tree.

Algorithm 4.1.2 (Change internal signal events to sequencing events)
replace_event( TELstructure, interface_list){
if (interface_list is empty)
return;
foreach(e € TELstructure.E)
if(the signal of e & interface_list)
replace e with a sequencing event;

Figure 4.4. Replace internal signal events with sequencing events.

the interface list. Each component has two sets of signals: input set and output set. Input
set consists of all signals connected to the component’s input ports. Output set consists of
all output signals to which the component’s output ports connect and all internal signals
of the component. The reason to include a component’s internal signals in the output set
is that the these signals are necessary during synthesis and verification, and we do not
want them to be abstracted away during abstraction as determined by these two sets of
signals. The union of these two sets forms the interface list that is the superset of the
union of inputs and outputs of the component.

A procedure shown in Figure 4.3 is used to find the TEL structure for the whole design.
This procedure takes two arguments: a pointer to the root of the tree of TEL structures
and a label of a component. The label indicates which component in the system is selected.

This procedure returns a pair. The first element of the pair is the TEL structure found for
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req(0) rea1) . eq(@)
|_env | ac), | fifoO | ack(1) | fifo1| ack) |F_env

Figure 4.5. Block Diagram of a 2-stage FIFO.

FIFO

(fit0)  (fifoD)

Figure 4.6. The organization of the TEL for a 2-stage FIFO.

the whole system and the second element of the pair is the interface list of the component
selected by the label. This procedure traverses the tree from the root and composes all
TEL structures it finds in parallel. In the meantime, it compares the label argument with
the label stored in the nodes for the components. If the label argument matches the label
stored in the node for a component, the interface list in that node is returned along with
the TEL structure for the whole system. The label argument is optional, that means no
component is chosen and the system is designed all at once. In such a case, the returned
interface list is empty. After the TEL structure for the whole system and the interface
list of the chosen component are available, a renaming procedure shown in Figure 4.4 is
used to replace the events on the internal signals to sequencing events. This procedure
takes two arguments: a TEL structure and an interface list of the chosen component, and
it replaces all events in the TEL whose signals are not in the interface list to sequencing
events.

The following figures illustrate how abstraction works. Figure 4.5 is the block diagram
of a 2-stage FIFO. This FIFO consists of two components that are the same single
fifo stage and two testbench processes serving as the environment for the components.
Figure 4.6 shows the organization of the TELs for the testbench and components. In
the figure, node testbench stores the TEL for the testbench processes as shown in Fig-
ure 4.7(a). Node fifo0 stores the instantiated TEL ¢0 for a single fifo stage as shown in
Figure 4.7(b) and the interface list (ack(0),req(1) : in; req(0),ack(l) : out). Similarly,
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ack(0)+ ack(2)+
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Figure 4.7. TEL structures for each block and environment.
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Figure 4.8. TEL of 2-stage FIFO before abstraction.
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Figure 4.9. TEL of 2-stage FIFO after abstraction.
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node fifol stores the instantiated TEL ¢1 for a single fifo stage as shown in Figure 4.7(c)
and the interface list (ack(1),req(2) : in;req(1),ack(2) : out). For simplicity, the rules
in the TELs without labeled timing have the timing constraint [90,100]. Suppose we
want to design fifo0 first. The abstraction procedure goes through the tree storing the
TELs starting at root FIFO and composes the TELs in parallel. When the node fifo0 is
reached, the interface list stored in that node is returned. The composition of the TELs
for the FIFO is shown in Figure 4.8. Next, the abstraction procedure changes all events
whose signals are not in the returned interface list to sequencing events. The signals
not in the interface list of fifo0 are req(2) and ack(2), that are the internal signals of
the environment for fifo0. After abstraction is done, the TEL for the fifo0 is shown in

Figure 4.9 where the events on req(2) and ack(2) are changed to sequencing events.

4.2 Abstraction for TEL Structures With Levels

The result of the compilation of a specification to a TEL with levels is still organized
as a tree as shown in Figure 4.2. Now the internal signals of the environment can appear
both on events and in levels. The events on the these internal signal can still be abstracted
away using the algorithms described in the last section. However, these internal signals in
the levels must also be removed because the definition for their values has been abstracted
away. Since the internal signals do not participate in the boolean evaluation of the new
levels, the new levels evaluate to true at a different time than the previous ones. This
section analyzes the change of the semantics of the TEL structures after removing the
internal signals of the environment in levels, and how to compensate for the change.

It is described in the last chapter that an event ¢ is enabled to fire when all rules in
the preset of ¢ are satisfied. A rule is satisfied if the enabling event of the rule has fired
and the level of the rule evaluates to true, and time has passed the lower bound of the
timing constraint of the rule since then. The level of a rule is a sum-of-product boolean
expression. For example, a rule r = (x,y,l,u,z) where z = ab + c¢d. z becomes true
when either both ¢ and b switch to high or both ¢ and d switch to high. Suppose a and
c are internal signals of the environment, the level turns into 2’ = b + d after removing
a and ¢, and it becomes true when either b or d switches to high. The rule r becomes
r" = (z,y,l,u,2'). Since it is possible that when 2’ evaluates to true is different than
when z does, r and 7’ may become satisfied at a different time, that results in a change

of the firing time of the enabled event y. Also, since the enabling condition of y has
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changed after some signals are removed from the level, the timed traces produced by the
system may be changed. In the last chapter, a transformation is defined to be safe if
it preserves the system’s behavior conservatively in terms of timed traces. This concept
can be applied to abstraction similarly. If removing internal signals from a level does
not reduce the untimed traces of the system and the specified firing time of an event is
preserved after the level of its enabling rule is changed, removing the internal signals from

the level is defined as a safe abstraction. This definition is formulated as follows:

Definition 4.2.1 (Safe Abstraction) Suppose there exists a rule r = (x,y,l,u,z) in a
TEL structure N. After abstracting some signals away from z, v becomes r' = (z,y,l',u’, 2")
and N becomes N'. Let T and T' be the ranges of firing time of y decided by v and r’,
respectively. The abstraction is safe if N' produces a superset of untimed traces of N and

T’ is a superset of T.

According to the definition, a safe abstraction must not reduce the untimed traces
produced by the system. How the untimed traces are preserved after the level of a rule is
changed? Suppose there exists a rule r = (x,y, [, u, z) where z = ab and b is the signal that
needs to be removed. To preserve the untimed traces, b in the level z must be replaced
by true. This results in 2/ = a. In the system, N, containing r, y can fire only after z,
a, and b have fired. While in the system N’ containing 7', y can fire after z and a have
fired. b may or may not fire before firing y so N’ produces a superset of untimed traces
of N. Now suppose z = a + b and b is the signal that needs to be removed. Again, b in
the level z must be replaced by true to preserve the untimed traces so z’ = true. On the
other hand, if b is simply removed and z’' = a, this results in a loss of the untimed traces
produced by N. The reason is explained as follows. In the new rule r' = (z,y,[, u,2")
where 2’ = a, y can fire after z and a have fired, while firing both x and b cannot cause y
to fire because 2z’ cannot evaluate to true. However, this firing sequence is allowed by the
rule r = (x,y,l,u,z) where z = a + b. In summary, if a signal is removed from a level,
this signal is replaced by true. This idea can be extended to a level that consists of a
sum-of-product boolean expression. If all signals in a product term need to be removed,
then the level simply becomes true based on the discussion for the level that consists of
a sum boolean expression.

Next, it is necessary to study how to preserve the timing of the rule after the level

of the rule has changed. To preserve the timing, the timing constraint of a rule with
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the level changed can be always changed to [I,00]. However, this adjustment may be
too conservative to be useful. Before we proceed to analyze the adjustment of timing
constraints of rules in a refined way, minimum and maximum firing separation time needs
to be defined. Firing separation time of a pair of events is the range of the difference of
the firing times between these two events. The minimum firing separation time (denoted
by min_st) is the lower bound of that range, and the maximum firing separation time

(denoted by max_st) is the upper bound of that range. For two events a and b,
min_st(a,b) = min(ty —t,) and max_st(a,b) = max(ty — t,)

where t, and t; are the corresponding firing time of @ and b. min_st(a, b) and max_st(a,b)
can be positive or negative. A positive value indicates that a fires before b. The firing
separation time can be used to indicate the firing time of an event relative to another
event if the firing time of the latter one is known.

To simplify the discussion, levels with a single product term are analyzed, then levels
with a sum expression, and last levels with a sum-of-products expression. Suppose
r = (x,y,l,u,z) where the level z = ab. min_st and max_st can be used to indicate
when a level becomes true relative to an event e by finding the separation times be-
tween the events that make the level become true and e. For example, in the above
rule r, z becomes true when both a and b switch to high, therefore, z becomes true
maz(min_st(z,a),min_st(z, b)) time units after = has fired. If both min_st(z,a) < 0 and
min_st(z,b) < 0, it indicates that both a and b fire before x does so z evaluates to true
before z fires. y can fire after x has fired and time has passed [ time units since then.
If either min_st(z,a) > 0 or min_st(z,b) > 0, y fires after z becomes true and time has
passed [ time units since then because z evaluates to true after z has fired. A similar
analysis can be applied if min_st is replaced with max_st, and a similar result can be

derived. Therefore, the EFT(y < r) and LFT(y < r) are defined as follows:
EFT(y < ) = maz(ty + mazr(min_st(z,a),min_st(z, b)) + 1, t5 +1);

LFT(y < r) = maz(ty + maz(max_st(z,a),max_st(z,b)) + u, t; + u);

where £, is the firing time of x.
Figure 4.10 shows six cases of timing relations between a and b. The horizontal bars
indicate the timing ranges that event a or b fires. From the figure, it is obvious that the

new level 2’ after removing either a or b from z becomes true at the same time or sooner
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Figure 4.10. Timing relations of two events a and b.

than z. This means that y may fire sooner than specified. For example, if a is removed
from z, then

EFT(y < r') = maz(t, + min_st(z,b) + 1, t; +1)
LFT(y < r') = maz(t, + max_st(z,b) +u, t,; + u)

where ' = (z,y,l,u,2') and 2/ = b. If min_st(z,a) > min_st(z,b) and max_st(z,a) >
max_st(z,b), then EFT(y + ') < EFT(y « r) and LFT(y + r') < LFT(y < r). The
same result can be derived if b is removed from z. Obviously, the the range of firing time
of y may change due to the removal of either a or b, therefore, this abstraction is not
safe. To preserve the specified timing behavior of y, it is necessary to compensate for
the loss of constraint from removing either a or b by adding a delay to EFT(y < r') and
LFT(y < r') so that EFT(y « r') < EFT(y < r) and LFT(y + ') > LFT(y < r). In the
case of removing a, the following equation must be satisfied to preserve the same timing

behavior of y.
EFT(y < r') = maz(t, + min_st(z,b) + 1 + Apin, tz +1)

LFT(y + r') = max(t, + max_st(z,b) + u + Az, tz + )
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Figure 4.11. The special case of the level with a product always being false.

where
Apin < max(min_st(z,a) — min_st(z,b), 0)
Apae > max(max_st(z,a) — max_st(x,b), 0)
In the case of removing b, a similar result can be derived. The above discussion is based

on the fact that part of the signals in a level are removed. If the whole product term is

removed, the range of firing time of y decided by r is as follows:
EFT(y A 'rl) =ty + 1+ Amin

LFT(y < ') =ty + u + Az

where

Apin = max(min_st(z,a), min_st(z,b), 0)
Apae = max(max_st(z,a), max_st(z,b), 0)

It is obvious that EFT(y < r') = EFT(y < r) and LFT(y < ') = LFT(y < r). Therefore,

I" and u' are defined as follows as z is changed to 2':
U'=14+Anin and o' =u+ Apes (4.1)

where Apin and Ap,q, are defined above. If 0 and oo are assigned to Ay, and Ay,
this abstraction is safe.

However, it should be noted that there is a special case where either a or b becomes
true and then becomes false before the other one becomes true as shown in Figure 4.11.
It translates to the level z always false. If z is abstracted as described above, the level
may obtain a chance to become true, and the rule with such a level may actually fire
the enabled event. This may change the untimed semantics of the rule. For the above

analysis to be correct, it is necessary to determine if the following equation is true.
max_st(z,—a) > min_st(z,b) or max_st(z,—b) > min_st(z,a) (4.2)

If Equation 4.2 is true, z is changed to false; otherwise, z is abstracted and the timing

constraints of the rule are modified as described above.
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Now, suppose r = (z,y,l,u,z) where z = a + b. z becomes true when either a or
b switch to high. Therefore, z becomes true min(min_st(z,a),min_st(z,b)) time units
after = has fired if both min_st(z,a) > 0 and min_st(z,b) > 0. The EFT(y < r) and
LFT(y < r) are defined as follows:

EFT(y < 1) = maz(t, + min(min_st(z,a),min_st(z,b)) + 1, t; +1)

LFT(y < r) = maxz(t, + max(max_st(z,a),max_st(x,b)) +u, t, + u)

where t, is the firing time of «.

Since removing a signal in a sum boolean expression results in a level with true,
EFT(y < 7') =1, +1 and LFT(y<«r')=t,+u

It is obvious that y fires sooner in the new rule. To make LFT(y < r) > LFT(y < r)" and

EFT(y < r) < EFT(y < r)’, the delay of the new rule must be adjusted as follows:

I'=14 Amin
u = u+ Apas
where
Apmin = maz(min(min_st(z,a), min_st(z,b)), 0)
Amez = mazr(max_st(zr,a), max_st(z,b), 0)

We have described a process how to abstract signals away from a level with a product
or sum term. This process can be similarly applied to a level with a sum-of-product
expression. If all signals in a product term are internal signals, the whole product term
needs to be removed resulting in a new level true. The timing constraint of the rule with
the level needs to be adjusted in the same way as the abstraction for a level with a sum
expression. On the other hand, if some signals in a product term are abstracted away,
the timing constraint of the rule with the level needs to be adjusted in the same way as
the abstraction for a level with a product expression.

It is shown from the above analysis that the key to safe abstraction for levels is
the knowledge of minimum and maximum separation times between two events in the
system. However, finding minimum and maximum separation times is as hard as state

space exploration which is an exponential problem. This results in a chicken-and-egg
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situation. The purpose of abstraction is to reduce the complexity of the problem under
consideration thus reducing the cost of state space exploration. If an approximation
algorithm is available to find conservative minimum and maximum separation times, the

abstraction can still be safe.



CHAPTER 5

SAFE NET REDUCTIONS

While analyzing a circuit, certain details need to be suppressed to constrain computa-
tional complexity. When the circuit is represented by a graph, this requires transformation
of the graph to remove some nodes and adjacent edges while preserving the important
system properties. There exists a lot of research work on simplifying Petri nets. Suzuhi
and Murata [73, 74] presented a method of stepwise refinement of transitions and places
into subnets. They show a sufficient condition that such subnets must satisfy, which are
dependent on the structure and initial marking of the net. The resulting net has the same
liveness and safety properties as that of the original net. However, this refinement process
has to be repeated every time the initial marking is changed. This makes automating
the refinement difficult. Berthelot [14] presented several transformations that depend
only on the structure of the net. In [62, 43, 61], several transformations for marked
graphs that are Petri nets without conflicts are presented. These transformations cut
places and transitions in the graph while preserving liveness and safety. However, these
transformations can only be applied to an untimed marked graph that has no choices and
the timing issue is not addressed.

Chapter 4 describes how to identify internal signals in an environment and convert
events on those signals into sequencing events, and also discusses the safe abstraction of
signals in levels. The sequencing events need to be removed before state space exploration
starts to reduce the computational complexity. This chapter describes net reduction
techniques that remove the sequencing events from TEL structures safely. As defined in
Chapter 3, a safe transformation must preserve the behavior of the system conservatively,
or it may hide some design errors that may possibly be uncovered after the design is
completed. The system’s behavior is determined by the timed traces that it can generate.
Therefore, it is required that the system after safe reductions must produce a superset of
timed traces that are produced by the system before the reductions. To prove a reduction

to be safe, we first show that the TEL structures after the reductions do not reduce the
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Figure 5.1. A case of Reduction 1.
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untimed trace set; second, we show that the reductions preserve the timing conservatively.
If these two requirements are satisfied, it guarantees that the TEL structure after safe
reductions produces a superset of timed traces that can be produced by the original
one. This chapter describes net reduction techniques that remove sequencing events with
different topologies in TEL structures. These reductions have been proved to be safe
according to the definition of safe transformations given in Chapter 3. We first present
simple reductions applied to TEL structures with no levels and no conflicts. Next, we
discuss how conflicts affect safe reductions and how to extend these reductions to TEL
structures containing choices. In the last section, we describe the extensions of reductions

to TEL structures with levels.

5.1 Safe Reductions for Conflict-Free TEL Structures

This section describes five safe net reductions for TEL structures without conflicts and
levels. These reductions remove sequencing events from nets with different topologies.
Reduction 1 is used when a TEL structure, N, contains a sequencing event, $, where
size($e) = 1 as shown in the example in Figure 5.1(a). In this case, size(e$) = 2. A new
TEL structure, N’, is derived from N by applying Reduction 1 removing the sequencing
event and all rules in its preset and postset from N. Then, for each 7; = (e;,$,1;,u;) € 3
and r; = ($,¢e;,1;,u;) € $o, a new rule r is created as follows: r = (e;, e, l; + 1, u; + uj).
For the TEL structure shown in Figure 5.1(a), the new TEL structure after the sequencing
event is removed is shown in Figure 5.1(b). This reduction preserves the system’s behavior

exactly in that the timed trace set produced by N’ is the same as that produced by N.
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Reduction 1 is naturally extended to sequencing events, $, where size(e$) > 2. This
reduction cuts the number of events and rules in a TEL by 1. To prove a reduction to be
safe in the rest of the chapter, we first show that the untimed trace set produced by the
TEL after the reduction includes that produced by the TEL before the reduction. Then,
we show that the timing of the events enabled by the sequencing events are preserved
conservatively in that they are the only events affected by the reduction. Lemma 5.1.1

asserts that Reduction 1 is safe.

Reduction 1 (For TEL structures without conflicts and levels) If there exists a
sequencing event $ in a TEL structure N where size($e) = 1, a new TEL structure N'

can be derived from N as follows:
. B =B {8},
o R\ = (R —{rj,r;}) U{r} where r; = (€;,$,1li,u;) € 0%, r; = ($.¢;,1;,u;) € So, and
r = (e, e, li + 1j,u; + uj).

Lemma 5.1.1 Reduction 1 is a safe transformation.

Proof: Consider the TEL N shown in Figure 5.1(a) and the abstracted TEL N’ shown
Figure 5.1(b). There are two possible untimed traces produced by N: {ab$c, ba$c}. These
map to the traces {abe, bac} produced by N’ so the first condition is satisfied. Next,
we must show that the set of timed traces produced by N’ contains all the timed traces
produced by N with the sequencing event deleted. Consider a timed trace £ = ejes ... in
which e; = (a,t,), ej = (b, 1), ex, = (3,tg), and ¢, = (¢,t.) with i <k, j <k, and k <.

The value of tg falls in the following range:
max{t, + l1,tp + lo} < tg < max{ty, + ui,tp + us} (5.1)
The value of ¢, comes from the range:
tg + 13 <t. <ty + us. (5.2)
Substituting Equation 5.1 into Equation 5.2 yields:
max{t, + l1,ty + lo} + 13 < t. < max{t, + uy,tp + us} + us. (5.3)
In the abstracted TEL N’, the value of t. comes from the range:

max{ta 4+ +l3,tp + 1o + 13} <t.< max{ta 4+ uy +us, tp +us + U3}.
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This is equivalent to Equation 5.3, so the range of values for ¢, before and after abstraction
are equal. This means that the abstracted TEL N’ produces the same timed traces as
the unabstracted TEL, N. The same result can be obtained if the above analysis is
applied to a sequencing event $ where size(e$) > 2. According to the definition of safe
transformation, Reduction 1 for TEL structure without conflicts is safe. O

Reduction 2 is applied to a TEL structure N when it contains a sequencing event
$ where size(e$) = 1 as one case shown in Figure 5.2(a). In this case, size($e) = 2.
Similar to Reduction 1, Reduction 2 removes the sequencing event $§ and all rules in its
preset and postset. Then, for each r; = (e;,$,l;,u;) € % and r; = ($,¢;,l;,u;) € So. a
new rule r = (e;, e;,l; +1;,u; + u;) is added to N. This reduction results in a new TEL
structure, N'. For the TEL structure shown in Figure 5.2(a), the new TEL structure after
the sequencing event is removed is shown in Figure 5.2(b). This reduction is naturally
extended to sequencing events $§ where size($e) > 2. This reduction cuts the number
of events and rules in a TEL by 1. It needs to be pointed out that extra interleavings
not seen before the reduction are created. In the case shown in Figure 5.2, after the
reduction, N’ could generate a trace (a,t,)(b,tq + l1 + l2)(¢, tq + u1 + u3), where ¢, is
when « fires. This trace is impossible in the system before the reduction. Reduction 2 is

defined and proved to be safe in the following definition and lemma.

Reduction 2 (For TEL structures without conflicts and levels) If there exists a
sequencing event $ in a TEL structure N where size(e$) =1, a new TEL structure N'

can be derived from N as follows:
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o R = (R—{ri,rj}) U{r} where rj = (e;,$,1;,u;) € o8, r; = ($,¢;.1j,u;) € So, and

r=(ei,ej, i +1j,ui +uy).
Lemma 5.1.2 Reduction 2 is a safe transformation.

Proof: Consider the TEL N shown in Figure 5.2(a) and the abstracted TEL N’ shown
Figure 5.2(b). There are two possible untimed traces produced by N: {a$bc, a$cb}. These
map to the untimed traces {abc, acb} produced by N’, so the first condition is satisfied.
Next, we must show that the timed traces produced by N’ contains all the timed traces
produced by N with the sequencing event deleted. Consider a timed trace z = ejesy ... in
which e; = (a.t,), ej = ($.%g), ex = (b, 1), and ¢; = (¢, t.) with ¢ < j, j < k, and j < [.

The value of t; falls in the following range:

to+11+1o <ty <ty+u+ us. (5.4)
The value of ¢, comes from the range:

ty+ 13 —ug <t,<ty+us—Is. (5.5)

After reduction, the value of ¢, can still be drawn from Equation 5.4, but the value of ¢,

comes from the range:

ty+ (I +13) — (ug +ug) <te <tp+ (ug +uz) — (lh +l2).
This can be rewritten as follows:

ty+ (I3 —ug) + (I —uy) <te <tp+ (ug —Ilo) + (ug — lq).

Since I; —uy < 0 and uy —I; > 0, the range of values for t. after abstraction is a superset
of those before abstraction. This means that the abstracted TEL N’ produces a superset
of traces of the unabstracted net N. The same result can be obtained if the above analysis
is applied to a sequencing event $§ where size($e) > 2. According to the definition of
safe transformation, Reduction 2 is safe. O

It seems to be natural to combine Reduction 1 and 2 to form a new reduction on a
sequencing event where size(e$) > 2 and size($e) > 2. Technically, this new reduction

is safe according to the definition of safe transformations. However, this reduction can
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Figure 5.4. An example of Reduction 1 that changes the semantics if initially enabled
rules are involved.

cause a safety violation in the reduced net. An untimed example is shown in Figure 5.3.
In the TEL structure shown in Figure 5.3(a), size(e$) = size($e) = 2. Figure 5.3(b)
shows the new TEL after § is removed. In the marking shown in Figure 5.3(b), firing ¢
results in a new marking shown in Figure 5.3(c). In this marking, firing a causes the rule
(a,d) to have two tokens, which is a safety violation. Therefore, this reduction is usually
avoided.

If an event is enabled by a rule in the initial marking, the event fires after a delay in the
timing constraint of the rule. If the postset of a sequencing event has rules in the initial
marking, Reduction 1 and 2 cannot be used because they change the timing semantics.
In the example shown in Figure 5.4(a), event b fires between Iy and ug time units after the
system starts the execution, while in Figure 5.4(b), b fires between [y + 1y and uq 4 uy time

units after the system starts the execution. In other words, the firing time of b is delayed



72

d
el i,
$

[I5,us]

b

Q

[1,,max(u; , u)] d

[1, ul
[|3,U3] b

I = |1+ |3
U =us+ max(u; , u)
(a) (b) (c)

Figure 5.5. A case of Reduction 3.

Us]

-

At

-

@y

a $
[|1,U1]\\$/.[/|2, u;]

[I5,us]

b

Figure 5.6. Unroll the self loop rule.

in the first execution cycle. Timing is changed instead of being preserved conservatively,
so Reduction 1 and 2 cannot be used in these situations.

A more complicated reduction is when a self loop appears on a sequencing event. An
example is shown in Figure 5.5(a). Self loops must be removed before the other safe
reductions can be used. This reduction changes the upper bound of the delay on each
rule in the preset of the sequencing event to the maximum of the original upper bound
and the upper bound of the self loop rule. The lower bounds remain the same. This
ensures that no matter when the last instance of the sequencing event occurred, the self
loop rule would be expired when the other rules in the preset become expired. This makes
the self loop redundant. The new TEL structure is shown in Figure 5.5(b). Reduction 3

is defined and proved to be safe in the following definition and lemma.

Reduction 3 (Remove self loops in TELs without conflicts and levels) If there
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exists a sequencing event $§ in a TEL structure N where a rule r = ($, 8,12, us) exists in

both e$ and $e. A new TEL structure N' can be derived from N as follows:

o ' =FE —{$},
e R =R—{r},

e upper(r;) = maz(u;, ug) for all r; € o$.
Lemma 5.1.3 Reduction 3 is a safe transformation.

Proof: Consider the TEL N shown in Figure 5.5(a) and the abstracted TEL N’ shown
in Figure 5.5(b). It is obvious that N and N’ produce the same untimed traces. Next, we
must show that the timed traces produced by N’ contains all the timed traces produced
by N. Consider a timed trace z = ejes . .. in which ¢; = ($,t§1), ej = (a,tq), er = (3, tg),
and e; = (b, 1), with i < j < k < [. The value of tg falls in the following range:

max{t, + Iy, tgl + s} < tg < max{t, + ul,tgl + usg} (5.6)

where tgl represents the firing time of the previous $ event. Figure 5.5(a) is redrawn in
Figure 5.6 to show this relationship where $’ is the last $ event. In N', the value of tg

falls in the following range:
ta +11 < tg <ty + max{uy,us} (5.7)

Since z < max{z,y} for any values of z and y, this means that ¢, +1; < max{t,+I1, tgl +
lo}. Since t, > tgl, this means that ¢, +max{uy,us} > max{t, +uq, tgl +us}. Therefore,
the range of values for tg after abstraction is a superset of those before abstraction. This
means that the abstracted net N’ produces a superset of traces of V. The same result can
be obtained if the above analysis is applied to a sequencing event § where size(e$) > 2
and size($e) > 2. According to the definition of safe transformation, Reduction 3 is safe.
O

After removal of the self loop, the TEL structure can be reduced to one of the cases
shown above and the sequencing event can be removed using either Reduction 1 or 2, as
described above. For the example shown in Figure 5.5(a), after Reduction 3, Reduction
1 can be applied to remove § and the final result is shown in Figure 5.5(c).

The first three reductions deal with a single sequencing event based on the sizes of

its preset and postset. They do not check the graphical structures of its neighbors and
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Figure 5.7. A case of Reduction 4.

SO+

how the sequencing event relates to them. The next two reductions fill this gap by
first checking the graphical structures of a group of sequencing events. If they have a
similar structure in a certain way, then all but one of them can be removed. Reduction
4 is applied to a TEL structure N when it contains two sequencing events $1 and $2
where enabled_set($1) = enabled_set($2) as in the case shown in Figure 5.7(a). In
Figure 5.7(a), ¢ is enabled by $1 and $2 which are enabled by a and b, respectively.
This TEL structure can be regarded as ¢ is enabled by a and b indirectly. Another
way to view this situation is to treat this TEL structure as a black box which has
two inputs a and b, and one output c. ¢ occurs after both a and b have occurred.
Reduction 4 merges $1 and $2 to $ and rules in their presets and postsets. Assume
enabling_set($1) N enabling set($2) = (J, Reduction 4 cuts one sequencing event and
the number of size($1e) rules from the TEL. When merging two rules from the postsets
of $1 and $2, respectively, the minimum of the lower bounds of the timing constraints of
these two rules is assigned to the lower bound of the new rule, and the maximum of the
upper bounds of the timing constraints of these two rules is assigned to the upper bound
of the new rule. In this way, the range of firing time of the events in the enabled _set($1)
and enabled_set($2) is preserved in the abstracted TEL structure, which produces a
superset of timed traces of the unabstracted TEL structure. This result is proven in the
following lemma. Reduction 4 is naturally extended to any number of sequencing events

that have the same set of enabled events.

Reduction 4 (Merge sequencing events with the same enabled set) If there ex-

ist two sequencing events $1 and $2 in a TEL structure N where enabled set($1) =
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enabled set($2), a new TEL structure N' can be derived from N as follows:
e ' =F — {$1,%2} U {$},
o for each ri = (e;,$1,1;,u;) € @31 and r; = (e;,$2,1;,u;) € o$2, they are changed to
ri = (e, 8, li,u;) and ;= (e;,$,1;,u;)
o R = (R—{ry,r,})U{r} where ry,, = ($1,¢,1, up,) € $1o, v,y = (32, ¢, 1y, uy,) € $2e,
and v = (8, ¢, min(ly, 1), maz (U, uy))-

Lemma 5.1.4 Reduction 4 is a safe transformation.

Proof: Consider the TEL structure N shown in Figure 5.7(a), it produces four possible
untimed traces: {ab$1$2c, ba$1$2¢, ab$2$1c, ba$2$1c, a$1b$2c, b$2a$lc}. The untimed
trace set produced by the abstracted TEL structure N’ has two traces: {ab$c, ba$c}. It
is obvious that N and N’ have the same untimed traces after all sequencing events in
the untimed traces are deleted, so the first condition is satisfied. Next, we must show
that the timed traces produced by N’ contains all the timed traces produced by N with
all sequencing events deleted. Consider a timed trace = = ejeg... where e; = (a,t,),
ej = (b ty), e = (81,151), & = (32,tg9) and ey, = (¢, t.) with i < k, j <[, and k < m,

I < m. The value of tg; and tgy fall in the following ranges:
ta+1 <tg <tg+wu (5.8)

by + 1o <tgo <ty + ug (5.9)

The value of ¢, comes from the range:
maz{tg; +l3,t590 + la} < t. < maz{ts; + us,tgo + ua} (5.10)
Substituting Equation 5.8 and 5.9 into Equation 5.10 yields:
max{t, + 1 + I3, tp +lo + 14} < t. < max{t, +us + uz, tp +uz +ug} (5.11)
In the abstracted TEL structure, N’, the value of tg and ¢, come from the ranges:
maz{t, + Ui, tp + lo} < tg < max{ty + ui,tp + us}. (5.12)
ts + min{ls, 4} < t, < tg + maz{us,us}. (5.13)
Substituting Equation 5.12 into Equation 5.13 yields:

maz{ty + 11 + min{ls, s}, ty + lo +min{ls, l4}} <t
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Figure 5.8. A case of Reduction 5.

< max{t, + ui + max{us,us}, tp + ug + maz{uz, us}}
Since a > min{a,b} and a < maz{a,b}, the following two equations are true:
maz{t, + 11 + min{ls, I}, tp + lo + min{ls, l4}} < max{ty +11 +13,tp + 1o+ 14}}

max{t, + ui + u3, tp + us + us} < maz{t, + ur + maz{uz, us}, tpy + us + max{uz,us}}

The range of values for ¢/, in N’ is a superset of ¢, in N. This means that the abstracted
TEL structure N’ produces a superset of timed traces of the unabstracted TEL structure
N. The same result can be obtained if the above analysis is applied to sequencing events
where the sizes of their presets and postsets are greater than 2. According to the definition
of safe transformation, Reudction 4 is safe. O

Reduction 5 is called when two sequencing events have the same set of enabling events.
One case is shown in Figure 5.8(a) where $1 and $2 have the same enabling event. Similar
to Reduction 4, Reduction 5 merges these two sequencing events. The enabling events of
all rules in their postsets are merged together. For two rules coming from the presets of
$1 and $2 respectively, since the sequencing events are merged into a single sequencing
event, they are merged together to form a new rule. The minimum of the lower bounds of
the timing constraints of these two rules is assigned to the lower bound of the new rule,
and the maximum of the upper bounds of the timing constraints of these two rules is
assigned to the upper bound of the new rule. The abstracted TEL structure for the one
shown in Figure 5.8(a) is shown Figure 5.8(b). In this way, the range of firing time of the
events in the enabled set($1) and enabled set($2) is preserved in the abstracted TEL
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structure, which produces a superset of timed traces of the unabstracted TEL structure.
This result is proven in the following lemma. Similar to Reduction 4, if $§1 and $2 enable
no common events, Reduction 5 cuts one sequencing event and size(e$1) rules from the
TEL. Reduction 5 is naturally extended to any number of sequencing events that have

the same enabling set of events.

Reduction 5 (Merge sequencing events with the same enabling set) If there ex-
ist two sequencing events $1 and $2 in a TEL structure N where enabling set($1) =

enabling set($2), a new TEL structure N' can be derived from N as follows:

« B' = E — {$1,52} U {5},

o for each rule r; = ($1,e;,1;,u;) € $1e and rj = ($2,¢;,1;,u;) € $2e, they are changed
to

rp = (8, e, li,wi) and v =($,e5,15,u;5)

e R = (R —{rm,rn}) U{r} where r,, = (a,81, 1, up,) € 81, r,, = (a,$2,1,,,u,)

€ 32, and r = (a,$, min(l,,, 1), maz(ty,, uy,)).
Lemma 5.1.5 Reduction 5 is a safe transformation.

Proof: Consider the TEL structure N shown in Figure 5.8(a) and its abstracted coun-
terpart N’ shown in Figure 5.8(b). There are six possible untimed traces produced by N
{a$1$2bc, a$1$2cb, a$2$1bec, a$281chb, a$2c¢$1b, a$1b$2¢}. The untimed trace set produced
by N' has two possible untimed traces: {a$bc,a$cb}. It is obvious that these two nets
have the same untimed traces after all sequencing events in the traces are deleted, so the
first condition is satisfied. Next, we must show that the timed traces produced by N’
include all the timed traces produced by N with the sequencing event deleted. Consider
a timed trace z = ejey... where e¢; = (a.t,), e; = ($1,tg1), ex = ($2,1g2), e = (b, 1),
and e, = (¢, t.) withi < j,i <k, j <, and k < m. The value of tg; and tg, fall in the
following ranges:

to +13 <tg1 <ty +us (5.14)
t, +14 < tgo < g+ ug (5.15)

The value of ¢, and ¢, comes from the range:

tg; + Ih <t < tgr +uy (5.16)
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tgo + 1o <tp <itgo 4+ un (5.17)
Substituting Equation 5.14 and 5.15 into Equation 5.16 and 5.17 yields:

to +11 + 13 <tp <ty+up + us

to+ 1o+ 1y <t.<ty,+ug+ uy
After reduction, the value of tg comes from the range:
to + min{ls, Iy} < tg < t, + maz{ug,us}. (5.18)

and the value of ¢, and ¢, still come from the range defined in Equation 5.16 and 5.17 where
tg1 and tgy are defined in Equation 5.18. Substituting Equation 5.18 into Equation 5.16
and 5.17 yields:

to + 11 +min{ls, 14} <t < to +uy + maz{us, us} (5.19)
to + 1o+ min{ls, la} <t <ty +us + maz{us,us} (5.20)
Since
to + 11 + mz’n{lg, l4} <t,+1l1+13
ta + u1 + us < ta + uy + ma:r{U3, U4}
and

ty + 1o + mz’n{lg,l4} <tg+1lo+1;3
to +ug +ug <ty +ug +maz{us,us}

the ranges of values for ¢ and ¢/, are a superset of ¢, and t.. This means that the abstracted
TEL structure N’ produces a superset of timed traces in the unabstracted TEL structure
N. The same result can be obtained if the above analysis is applied to sequencing events
where the sizes of their presets and postsets are greater than 2. According to the definition
of safe transformation, Reduction 5 is safe. O

One may ask the question: since Reduction 1 and 2 exist, why Reduction 4 and 5
are necessary to remove those sequencing events as illustrated in Figure 5.7 and 5.8. To
answer the question, we need to take a look at the example shown in Figure 5.9. For
simplicity, delays on all rules in this figure are not shown. In this figure, the sizes of the

presets and postsets of both the sequencing events are two. Neither Reduction 1 nor 2
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Figure 5.9. An example of the application of Reduction 4.

can be applied to remove either one of the sequencing events. However, Reduction 4 can
be used in this example to merge the two sequencing events together. Therefore, the new
TEL structure has one sequencing event and two rules less than the unabstracted one.
The new TEL structure is shown in Figure 5.9(b). Similar situations can be found that

only Reduction 5 is applicable.

5.2 Dealing With Conflicts
The TEL structures with the reductions described in the last section can be applied

when there are no conflicts. However, conflict-free TEL structures are not very capable of
modeling real systems. It is common that most TEL structures contain conflicts to model
choice, so it is necessary to extend the reductions to be able to handle conflicts. Given an
event in a TEL, there are two groups of conflicts involved with this event: conflicts among
the events in its enabling set and enabled set, and those between the event itself and other
events. The conflict relation between a pair of events must be carefully preserved if one
of them is abstracted away, otherwise, the untimed semantics of the system may change.

Consider the example shown in Figure 5.10(a). In the last section, Reduction 1 can
be applied, but now it has a conflict between a and b. For simplicity, the timing on the
rules is not shown. According to the semantics of conflicts, either firing a or b, but not
both, causes $ to fire. Therefore, this TEL can be decomposed to two equivalent TEL
structures as shown in Figure 5.10(b). During one execution cycle of the TEL, either one
of the TELs in Figure 5.10(b) is active. As proved in Lemma 5.1.1, the system produces
the same timed traces after Reduction 1 is applied to them. The abstracted TEL for

the one shown in Figure 5.10(a) is shown in Figure 5.10(c). Another example is shown
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Figure 5.10. An example of a sequencing event with a conflict in its preset.
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Figure 5.11. An example of a sequencing event where its postset has multiple rules but
only one conflict place.

in Figure 5.11(a) where there are two rules in the postset of the sequencing event, but
the enabled events of these two rules are in conflict. Similarly, this TEL fragment can
be decomposed to two equivalent TELs as shown in Figure 5.11(b). Since Reduction 1
can be applied to both of them safely, the sequencing event in the TEL in Figure 5.11(a)
can be abstracted away safely, and the abstracted TEL is shown in Figure 5.11(c). This
reduction assumes that the choices between events are timing independent. If, instead the
timing dependent choice semantics is applied, the reduction shown in Figure 5.11 creates
extra behavior. For example, in Figure 5.11(a), event ¢ has no chance to fire because the
rule ($, ¢, 1,3) always expires before the other rule becomes satisfied. In the TEL shown
in Figure 5.11(c), there exists a chance that event ¢ can fire. However, with the timing
independent choice semantics, choice between firing ¢ and d is made first, then the timing

is considered. Therefore, no extra behavior is created. The semantics of choices in the
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Figure 5.13. Another example where the sequencing event conflicts with another event.

TEL structures is timing independent. This discussion can be extended to a sequencing
event where the postset of the sequencing event has a number of rules greater than 2 but
all enabled events of the rules are in conflict. In other words, there is only one conflict
place in the postset of the sequencing event. Combining the analysis for the above two
examples, if there exists only one conflict place in the postset of a sequencing event,
Reduction 1 in Lemma 5.1.1 can be applied to remove the sequencing event without any
modification.

In the example shown in Figure 5.12(a), the sequencing event, $, has a conflict place

in its postset, and meanwhile the sequencing event itself conflicts with another event e,
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and $ and e have a common enabling event. During one execution cycle, either $ or e can
fire, but not both. Firing $ causes either ¢ or d to fire. This situation can be translated
to the following: after firing a and b, or b and f, only one of ¢, d, and e can fire. In
other words, ¢, d, and e are in conflict. To keep the same semantics, it is necessary to
add two new conflicts after the sequencing event, $, is abstracted away: c#e and d#te.
The abstracted TEL for the example shown in Figure 5.12(a) is shown in Figure 5.12(b).
Another example where the sequencing event $ conflicts with another event b is shown
in Figure 5.13(a). In this example, $§ and b enable some common events. Firing either
$ or b causes one of ¢ and d to fire. Since § is enabled by a, that means a and b must
be in conflict. Therefore, a new conflict between a and b needs to be added to the TEL
after $ is abstracted away. The above discussion of Reduction 1 for TEL structures with

conflicts is formalized and proved to be safe in the following definition and lemma.

Reduction 6 (Extension of Reduction 1 to TELs with conflicts) If there exists a
sequencing event, $, in a TEL structure N where there is only one conflict place in its

postset, a new TEL structure N' can be derived from N as follows:
. B =B {8},
o R\ = (R —{ry,r;}) U{r} where r; = (€;,$,li,u;) € 8%, r; = ($.¢;,1;,u;) € So, and
r = (e, e, li + 1j,u; + uy),
e if $ conflicts with e € F and enabling set($) N enabling set(e) # 0,

#' = # U{ef#x} for all x € enabled set($)

e if § conflicts with e € F and enabled set($) Nenabled set(e) # 0,

#' = # U {e#y} for all y € enabling set(9)
Lemma 5.2.1 Reduction 6 is a safe transformation.

Proof: Since only the timing of the enabled set of $ is changed and preserved in the
same way as in Lemma 5.1.1, we only need to show that N and N’ produce the same
untimed trace to prove this lemma. First consider the TEL N shown in Figure 5.11(a)
where the sequencing event does not conflict with other events and the correspond-
ing abstracted TEL N’ shown in Figure 5.11(c). N produces four possible untimed

traces: {ab$c, ba$c, ab¥d, ba$d}, while N’ also produces four possible untimed traces:
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Figure 5.14. An example of sequencing event where its preset has multiple rules but
only one conflict place.

{abe, bac, abd, bad}. 1t is obvious that these two untimed trace sets are the same after the
$ is deleted. Then, consider the TEL N shown in Figure 5.12(a) where the sequencing
event conflicts with e and they are enabled by b. The corresponding abstracted TEL
N' shown in Figure 5.12(b). The possible untimed traces produced by N has six traces:
{ab$c, ab$d, ba$c, baSd, bfe, fbe}. This maps to the possible untimed traces produced by
N' after § deleted: {abc, abd, bac,bad,bfe, fbe}, so N and N’ produce the same untimed
traces. Now consider the TEL N shown in Figure 5.13(a) where the sequencing event
conflicts with b and they enable common events ¢ and d. The corresponding abstracted
TEL N’ shown in Figure 5.13(b). The possible untimed traces produced by N has six
traces: {a$c,a$d,be,bd}. This maps to the possible untimed traces produced by N’
after § is deleted: {ac,ad,bec,bd}, so N and N’ produce the same untimed traces. Since
the timing of the events enabled by $§ is preserved as proved in Lemma 5.1.1, N and
N’ produce the same timed traces. According to the definition of safe transformations,
Reduction 1 is safe. O

Similar to Reduction 1, Reduction 2 can be extended to TEL structures with conflicts

as shown in the following definition and lemma.

Reduction 7 (Extension of Reduction 2 to TELs with conflicts) If there ezists a
sequencing event $ in a TEL structure N where there is only one conflict place in o$, a

new TEL structure N' can be derived from N as follows:

.E’:E7{$})
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Figure 5.15. An example of sequencing event conflicting with another event.
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Figure 5.16. An example of sequencing event conflicting with another event.

o R\ = (R —{ry,r;}) U{r} where r; = (€;,$,li,u;) € 0%, r; = ($.¢;,1;,u;) € So, and

r = (e, e, li + 1j,u; +uy),
e if $ conflicts with e € F and enabling set($) N enabling set(e) # 0,

#' = # U {eftx} for all x € enabled set($)

e if § conflicts with e € F and enabled_set($) Nenabled _set(e) # 0,

#' = # U {ef#y} for all y € enabling set(9)

Lemma 5.2.2 Reduction 7 is a safe transformation.

Proof: Consider the TEL, N, shown in Figure 5.14(a) where the sequencing event has
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Figure 5.17. Decompose a TEL into TELs where Reduction 8 can be applied.

only one conflict place in its preset. This TEL fragment can be decomposed into two
equivalent TELs as shown in Figure 5.14(b). Only one of them is active during one
execution cycle. It is obvious that $§ in these two TELs can be abstracted away safely
using Reduction 2 in Lemma 5.1.2, and the system produces a superset of timed traces of
N. N'is shown in Figure 5.14(c). If § conflicts with another event, we only need to show
that N and N’ produce the same untimed traces to prove this lemma because only the
timing of the enabled set of § is changed and preserved conservatively. First, consider the
TEL N shown in Figure 5.15(a) where § conflicts with another event e and they have the
same enabling set. N’ is shown in Figure 5.15(b) where new conflicts c#e and d#e are
created. N produces six possible untimed traces: {a$cd,a$dc, ae, b$cd, b$de, be}, while
N' also produces six possible untimed traces: {acd, adc, ae,bed, bde, be}. Tt is obvious
that these two untimed trace sets are the same after $§ is deleted. Then, consider the
TEL N shown in Figure 5.16(a) where $§ conflicts with e and they both enable d. N’
is shown in Figure 5.16(b) where new conflicts a#e and b#e are created. The possible
untimed traces produced by N has five traces: {a$cd, a$dc, bScd, b3dc, ed}. This maps to
the possible untimed traces produced by N’ after $ deleted: {acd, ade, bed, bde, ed}, so N
and N’ produce the same untimed traces. In both TEL structures shown in Figure 5.15
and Figure 5.16, only the timing of the rules in $e is changed and preserved conservatively
as proven in Lemma 5.1.2, so N’ produces a superset of timed traces of N. According to
the definition of safe transformations, Reduction 2 is safe. O

Examples shown in Figure 5.17(a) and Figure 5.7(a) have a similar structure, except

that the two sequencing events in Figure 5.17(a) are in conflict and there are also conflict
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Figure 5.18. An example of Reduction 8.

places in their presets and postsets. The example shown in Figure 5.17(a) can be
decomposed into four equivalent TEL structures, each of which has a structure shown in
Figure 5.18(a). If the reduction shown in Figure 5.18 is safe, merging the two sequencing
events in Figure 5.17(a) is also safe. The above discussion is formalized and proved to be

safe in the following definition and lemma.

Reduction 8 (Extension of Reduction 4 to TELs with conflicts) If there exist two
sequencing events $1 and $2 in a TEL structure N where $1 conflicts with $2, and
enabled set($1) = enabled _set($2). A new TEL structure, N', can be derived from
N as follows:

e £'=F —{$1,%2} U {$},
o for each vy = (e;,$1,1;,u;) € 81 and r; = (e;,$2,1;,u;) € 082, they are changed to

7‘; = (ei,$alia“i> and 7‘; = <eja$aljv“‘j>

o R = (R—{ry,r,})U{r} where ry,, = ($1,¢,l,, up,) € $1e, v,y = (32, ¢, 1y, up,) € $2e,

and r = (8, c,min(lm, In), maz (U, up))
Lemma 5.2.3 Reduction 8 is a safe transformation.

Proof: Consider the TEL structure N shown in Figure 5.18(a), it produces two possible
untimed traces: {a$le,b$2c}. The untimed trace set produced by the abstracted TEL
structure N’ in Figure 5.18(b) has two traces: {a$c,b$c}. It is obvious that N and N’

have the same untimed traces after sequencing events are deleted, so the first condition
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is satisfied. Next, we must show that the timed traces produced by N’ contains all the
timed traces produced by N with all sequencing events deleted. Consider a timed trace
x = ejey... where e; = (a,1,), e; = (81,1g1), ex, = (¢, t.) with i < j < k. The value of tg;
falls in the following range:

t, +11 < tg; < tg +uy (5.21)

The value of ¢, comes from the range:
to+11 +13<t.<ty,+u+ us (5.22)

In the abstracted TEL structure N', suppose a occurs, the value of ¢. come from the

ranges:
to + 11 +min{ls, Iy} < t. <ty +uy + maz{ug,ug}
Since a > min{a, b} and a < maz{a,b}, the following two equations are true:
to+ 1 +min{ls,la} <to+1 + 13

ta + u1 + u3 < ta + uy + ma.’E{U3,U4}

The range of values for ¢, in N’ is the superset of ¢, in N. The same result can be derived
if b and $2 fire in N or b fires in N’. This means that the abstracted TEL structure,
N’, produces a superset of timed traces of the unabstracted TEL structure, N. The
same result can be obtained if the above analysis is applied to sequencing events where
the sizes of their presets and postsets are greater than 2. If there exist multiple conflict
places in the preset and postset of the sequencing events as shown in Figure 5.17(a), the
TEL can be decomposed into equivalent TELs as shown in Figure 5.17(b). Each of them
has the structure where the reduction in Figure 5.18 can be applied. Therefore, after
merging the sequencing events, the TEL produces a superset of traces of the one shown
in Figure 5.17(a). According to the definition of safe transformation, Reduction 8 is safe.
O

Similarly, the TEL structure shown in Figure 5.19(a) can also be decomposed into four
TEL structures shown in Figure 5.19(b). If the reduction shown in Figure 5.20 is safe,
merging the two sequencing events in Figure 5.19(a) is also safe. The above discussion is

formalized and proved to be safe in the following definition and lemma.
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Figure 5.19. Decompose a TEL into TELs where Reduction 9 can be applied.
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Figure 5.20. An example of Reduction 9.

Reduction 9 (Extension of Reduction 5 to TELs with conflicts) If there exist two
sequencing events $1 and $2 in a TEL structure N where $1 and $2 are in conflict, and
enabling set($1) = enabling set($2). A new TEL structure N' can be derived from
N as follows:

o B'=E — {$1,$2} U {$},

o for each rule vy = (31, €;,1;,u;) € $1e and r; = ($2,¢;5,1;,u;) € $2e, they are changed

to

ri = (8, eili,u;) and ;= (8,ej,1j,u;)

e R = (R —{rm,rn}) U{r} where r,, = (a,81, 1, up,) € 81, r,, = (a,$2,1,,, u,)

€ 32, and r = (a,$, min(l,,, 1), max (U, u,))
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Lemma 5.2.4 Reduction 9 is a safe transformation.

Proof: Consider the TEL structure, N, shown in Figure 5.20(a) and its abstracted
counterpart, N', shown in Figure 5.20(b). There are two possible untimed traces produced
by N: {a$1b,a$2c}. The untimed trace set produced by N’ also has two possible untimed
traces: {a$b,a$c}. It is obvious that these two nets have the same untimed traces after
all sequencing events in the traces are deleted, so the first condition is satisfied. Next, we
must show that the timed traces produced by N’ contains all the timed traces produced
by N with the sequencing event deleted. Consider a timed trace x = ejeq ... where
e; = (a,t,), ej = (81,1g1), and e, = (b, %) with i < j < k. The value of tg falls in the
following range:

to +13 <ty <1, +us3 (5.23)
The value of ¢, comes from the range:
tor + 1 <ty <tg +ug (5.24)
Substituting Equation 5.23 into Equation 5.24 yields:
to 4+l 415 <ty <ty +up + us
After abstraction, the value of g comes from the range:
to + min{ls, Iy} < tg < t, + maz{ug,us}. (5.25)

and the value of ¢ still comes from the range defined in Equation 5.24 where ¢, is defined

in Equation 5.25. Substituting Equation 5.25 into Equation 5.24 yields:
to + 11+ min{ls, 14} <t < tq +uy + maz{us, us} (5.26)
Since
to+ 1 4+ min{ls, ls} < to+ 1 + 13
to +ur +us <ty +ur +maz{us,us}

the range of value for ¢} is a superset of ;. The same result can be derived if the above
analysis is applied to the timed trace that contains events a, $2, and c. This means that
the abstracted TEL structure, N’, produces a superset of timed traces in the unabstracted

TEL structure, N. If there exist multiple conflict places in the preset and postset of the
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Figure 5.21. An example of Reduction 10.
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sequencing events as shown in Figure 5.19(a), the TEL can be decomposed into equivalent
TELs as shown in Figure 5.19(b). Each of them has the structure where the reduction in
Figure 5.20 can be applied. Therefore, after merging the sequencing events, the abstracted
TEL produces a superset of traces of the one shown in Figure 5.19(a). According to the
definition of safe transformation, Reduction 9 is safe. O

Another reduction is similar to Reduction 3 where the sequencing event forms a loop
as shown in Figure 5.21. In Figure 5.21, $1 and $2 form a loop where $2 is in both the
preset and postset of $1 and $1 is also in both the preset and postset of $2. Also, $2
conflicts with the events in both the enabling set and enabled set of $1. In this example,
$2 conflicts with @ and b. The semantics of this TEL is as follows: after firing a, $1
can occur since event a and $2 are in conflict. Next, either b or $2 can fire. Before
firing b, $2 can fire an infinite number of times. If the upper bound delay along the path
$1 — $2 — $1 is greater than 0, this means that b may not fire for an infinite amount
of time. After removing $2 and changing upper(r) to oo for all r € $1e, the system still

produces the same set of timed traces. This can be proven by the following lemma.

Reduction 10 (Reduction 10) If there exist two sequencing event $1 and $2 in a TEL
structure N, $2 is in both enabling set and enabled set of $1, and $2 conflicts with the
event e € enabling_set($1) and e € enabled_set($1). A new TEL structure, N', can be

derived from N as follows:

e R =R —{ri,ro} where ri ={$2,81,11,u1} € 81 and ro = {$1,982,15, us} € $le,
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Figure 5.22. An example of Reduction 1 for a TEL with levels.
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e if up +uy > 0, upper(r) = oo for all r € o$1.
Lemma 5.2.5 Reduction 10 is a safe transformation.

Proof: Consider the TEL N shown in Figure 5.21(a) and the abstracted TEL N’ shown in
Figure 5.21(b). There is only one untimed trace produced by N: {a$1($281)*b}. ($1$2)*
means that the sequence of $2 and $1 can occur zero or infinite number of times. After
deleting the sequencing events, the untimed trace becomes ab which is what is produced
by N'. In N, $1 can fire once or an infinite number of times before b fires. The first time
$1 fires, t, + 11 < tg < to + up. After an infinite number of times of firing $1, tg; = oc.

Therefore, The value of £, comes from the following ranges:
to +11 +13 <tp < oo (5.27)

It is obvious that ¢, determined in Equation 5.27 is the same as that obtained from N’.
Therefore, N and N’ produce the same set of timed traces. According to the definition

of safe transformations, this reduction is safe. O

5.3 Dealing With Levels
Reduction 1, 2, 4, and 5 can be extended to TEL structures with levels. However,
extension of each reduction to handle levels has different constraints. For Reduction 1
and 2, it is required that all rules in the postset of a sequencing event must have a level of
true; otherwise, the timing behavior changes. Figure 5.22 shows an example of Reduction

1 for a TEL with levels. Figure 5.23 shows an illegal application of Reduction 1 for a



a b
[h’dT\\\’//fL’uﬂ
$
l[biuﬂ
<z>

C
(a)

Figure 5.23. Reduction 1 for TEL with levels that causes a change in timing.

[ UZNS’ 4]

b C
(a)

di =[ h+ L u+ w)
d; =[ b+ |3, ut w)

(b)

d
dl/\Z
<z> <z>
b C

ch= [li+l5 ustug]
d,= [|1+|3 U1+U3]

(b)

Figure 5.24. An example of Reduction 2 for a TEL with levels.

<z1> <72>

$1 $2
[13 U%\CA » Us]
(a)

a b
l['l’ul] L['z’UZ]

a b
[|1,uﬂ\ 12 U]
<z1> <z2>

[min(ls , 1),
rnax(u3,u4)]

O &

o

(b)

Figure 5.25. An example of Reduction 4 for a TEL with levels.
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TEL with levels where the rule in the postset of the sequencing event has a level. In
Figure 5.23(a), c fires between [3 and ug time units after the level z evaluates to true,
while in Figure 5.23(b), ¢ fires between max(ly +13,12+13) and max(uy +usz, ug +u3) time
units after the level z evaluates to true. Obviously, timing constraints have changed after
the redunction. Figure 5.24 shows Reduction 2 for a TEL with levels. For Reduction
4, it is required that all rules in the postsets of sequencing events must have the same
level expression because it is impossible to merge two rules with different levels. For
Reduction 5, it is required that all rules in the presets of sequencing events must have
the same level expression. Figure 5.25 shows an example of Reduction 4 for a TEL with

levels. Figure 5.26 shows an example of Reduction 5 for a TEL with levels.



CHAPTER 6

REMOVING REDUNDANT RULES

A rule puts a constraint on the firing time of an event. If the event is enabled by
multiple rules, and the firing time of the event is independent of one of them, then that
rule is redundant. Informally, a rule is redundant in a TEL structure if its omission
does not change the behavior specified. In other words, given a TEL structure, N, and
a rule, 7, a new TEL structure, N’, constructed by removing r from its rule set has
the same timed traces as N. The general approach to determine if a rule is redundant
requires finding the minimum and maximum separation times between any two events,
however, the calculation of minimum and maximum separation times is an exponential
problem. This approach is very undesirable because the purpose of determining and
removing redundant rules is to reduce the computational cost of state space exploration.
Therefore, an approximate method is necessary. For TEL structures without levels, we
can determine if a rule is redundant by analyzing the structure of the net around the
rules of interest and the relations of their timing constraints. If the rules have levels, an
approximate algorithm is necessary to calculate the worst-case minimum and maximum
separation time between every two events in a TEL structure so that this information
can be used to determine the redundancy of a rule. This chapter starts with the formal
definition of redundant rules. In the second section, a structural analysis method is
described to check if a rule is redundant for conflict-free TEL structures without levels.
The following section describes how conflicts in the TEL structures affect the above
methods. In the last section a method to determine redundancy of rules with levels is
described based on the assumption that the minimum and maximum separation time

between every two events in a TEL structure is available.

6.1 Definition of Redundant Rules

A redundant rule is defined to be a rule such that removing it from a TEL structure

does not change the timed trace set produced, so the first requirement that a redundant
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rule must satisfy is that removing it does not reduce the untimed traces specified. Sec-
ondly, timing must be preserved exactly for the system to produce the same timed traces.
In Chapter 2, a rule is said to be enabled if its enabling event has fired and the boolean
expression of its level evaluates to true. A rule is satisfied if it is enabled and the timer
of the rule exceeds the lower bound of the timing constraint. A rule is expired if it is
enabled and the timer of the rule exceeds the upper bound of the timing constraint. If
an event is enabled by multiple rules and suppose there is no conflict among the enabling
events, the event is enabled to fire when all enabling rules are satisfied. The event is
forced to fire before all enabling rules become expired. Note that some may be expired
as long as at least one has not expired. Therefore, the rules in the preset of the event
determine a range of firing time of the event. The lower bound of this range is decided
by the rule which is the last one to become satisfied. The upper bound of this range is
decided by the rule which is the last one to become expired. If a rule in the preset of the
event is neither the last one becoming satisfied nor the last one becoming expired, that
means it does not constrain the timing behavior of the event so it is redundant. Recall
in Chapter 2, EFT(e < ry, ---, r,) and LFT(e « r1, -+, ry,) define the lower and upper
bound of the range of firing time of e decided by ry, --- r,, respectively. Redundant

rules are formally defined as follows:

Definition 6.1.1 (Redundant Rules) Given a TEL structure, N, an event e € F such
that size(ee) > 2 and a rule r € ee, 1 is redundant if removing r does not reduce the

untimed traces produced by N, and the following equations are satisfied:

EFT(e <1y, =+ 1, -+, 1) =EFT(e <1y, -+, 1)

LFT(e <11, -+ 7, <+, Ty) =LFT(e <11, -+, Ty)

From the above discussion, the omission of redundant rules in a TEL does not have any
impact on the system behavior. However, the existence of redundant rules increases the
computational cost to explore the state space because more rules need to be considered.
Therefore, it is highly desirable and necessary to remove redundant rules whenever
possible to reduce the cost of state space exploration. Recall the definition of safe trans-
formations that a transformation is safe if the transformed system produces a superset
of timed traces of the system before the transformation. According to this definition, it

is obvious that removing redundant rules is another kind of safe transformation in that
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Figure 6.1. A TEL fragment with a redundant rule.

the system produces the same timed traces after the redundant rules are removed.
Figure 6.1 shows a simple example of a redundant rule. The TEL fragment in the
example has three rules: r1 = (a,¢, 1,3), ro = (b,¢,2,4), and r3 = (a,b,2,4). This TEL
structure produces only one untimed trace {abc}. In this TEL fragment, either r1 or ro
is potentially redundant because the untimed trace set produced by the TEL after rq or

ro is removed includes abc. Suppose %, is when event a fires. We have

EFT(b<13) =t,+2 and LFT(b<r3) =t,+4

and

EFT(c+ 7 )=1t,+1 and LFT(c<+ 1) =1,+3

From above equations, we can derive the earliest and latest firing time of ¢ determined

by r9:
EFT(c — r9) =EFT(b < r3) +2 and LFT(c < ry) =LFT(b+« r3) +4

Since EFT(b < r3) and LFT(b < r3) are available, the above two equations can be

reformulated as follows:
EFT(c < 19) =t,+4 and LFT(c<ro) =1, +8

Since c is enabled by r; and r9, the range of firing time of ¢ determined by 71 and 7 is

defined as follows:
EFT(c < 71, 19) = maxz(EFT(c < r1), EFT(c < r3))

LFT(c < 71, 12) = max(LFT(c <— 1), LFT(c < r32))
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Figure 6.2. An example where removing a rule changes the untimed behavior of a TEL.

Obviously, in this example,
EFT(c <~ 11, r9) = EFT(c < 19) and LFT(c < ry, r9) = LFT(c < 19)

This indicates that the timing behavior of ¢ is solely constrained by rule ry, which makes
rule 71 redundant. A similar analysis can be applied to 9, and the result shows it is not
redundant.

An example shown in Figure 6.2 illustrates a situation where removing a rule changes
the untimed semantics of the system even if timing is preserved exactly. In the example,
the event d is enabled by two rules: r = (b,d,2,5) and r9 = (¢, d,2,5), and b conflicts
with c¢. If one of 71 and 79 fires, d fires sometime between 3 and 8 time units after a has
fired. However, removing either one of the them changes the untimed traces produced
by the TEL. For example, if 71 is removed, the TEL does not produce untimed traces
containing events b and d. Similar result is obtained if 9 is removed. Therefore, both rq

and r9 cannot be redundant.

6.2 Redundancy Check for Conflict-Free TEL Structures
Without Levels

If an event is enabled by multiple rules, according to the definition of redundant rules,
it is necessary to know when these rules become satisfied and expired, and the order of
when they become satisfied and expired to determine if one of them is redundant. This
requires the information of the minimum and maximum separation times between every
pair of events in the system. Unfortunately, calaulation of the minimum and maximum
separation times has an exponential complexity in the size of the system. This makes the

genaral method of removing redundant rules as hard as state space exploration. Since
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the information of the minimum and maximum separation times between an arbitrary
pair of events is not available until the exponential procedure is done, we have to restrict
the general analysis approach to a subset of TEL structures so that calaulation of the
minimum and maximum separation times between two events is not required. Instead,
such information is derived by a simple structural analysis. This section describes the
method to determine redundant rules for TEL structures without conflicts and levels.
This method explores the topology of TEL structures to find if there exists a certain
structure that the separation time among the events in the enabling set of an event can
be obtained easily.

The example shown in Figure 6.1 in the last section points out one kind of structure
that can be used to determine redundant rules. This structure can be generalized in
Figure 6.3(a). In this triangle structure, an event is enabled by two rules r; and ro,
and there is another rule r that connects the enabling events of vy and ro so that the
separation time between enabling events of r; and r9 can be obtained by just checking
the timing constraint of . Since the separation time between enabling events of 1 and 79
is available, it can be determined if either ry or ry is redundant as shown in the following

lemma.

Lemma 6.2.1 (Redundancy Check for Rules not in the Initial Marking) Given
A TEL structure, N, that contains an event e € E and two rules r1 € ee and ro € ee.
If there exists a rule r € R such that enabling(r) = enabling(ry) and enabled(r) =

enabling(ry), ro is redundant if the following equations are satisfied:

lower(ry) + lower(r) > lower(ry) and upper(ri) -+ upper(r) > upper(ra)
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Rule ry is redundant if size(eb) =1 and the following equations are satisfied:

lower(ry) + lower(r) < lower(ry) and upper(r;) -+ upper(r) < upper(ry)

To fire ¢ in Figure 6.3(a), a needs to fire first resulting in a marking shown in
Figure 6.3(b), then b fires resulting a marking in Figure 6.3(c). If the initial marking
is as shown in Figure 6.3(b), the rule r and 79 are initially enabled. This indicates
implicitly that a has fired. Firing c requires b to fire first. In this case, all three rules are
involved in firing ¢, the firing time of ¢ is the same in the first execution cycle as that
in the following execution cycles. Therefore, for the purpose of redundancy check, the
TEL shown in Figure 6.3(b) is consider the same as that in Figure 6.3(a). However, if
the TEL has the initial marking shown in Figure 6.3(c), the firing time of ¢ is different in
the first execution cycle where 1 and ry are initially enabled. The reason is that r is not
involved in the firing of ¢ in the initial marking. A rule is redundant if it does not affect
the firing time of the event enabled by the rule in every execution cycle when it is enabled
to fire, so one more step to check if r; or r9 is redundant in the initial marking needs
to performed. Besides using Lemma 6.2.1 to decide if either ry or 79 is redundant, it is
also necessary to check that either one is also redundant in the initial marking. To make
an initially enabled rule r redundant, there must exist another rule that constrains the
timing behavior in such a way that it does not change after r is removed. The following

lemma gives the conditions to check if a rule in the initial marking is redundant.

Lemma 6.2.2 (Redundancy Check for Rules in the Initial Marking) Given a TEL
structure, N, in which there is a v € R and also r € My, if there exists another r,, and

the following equations are true:
lower(r,) > lower(r) and upper(r;) > upper(r)

then 1 s redundant in the initial marking M.

This triangle structure only involves three rules. Redundancy check on this kind of
TEL structure can be handled very fast, but also limits the applicability of this method.
Figure 6.4(a) shows an alternative TEL to those shown in Figure 6.3 based on the same
idea. In this kind of TEL structure, there is not a single rule from a to b. Instead, a
reaches b through a path. A path P from a to b is a sequence of rules so that a can

reach b through P by traversing the graph. Lemma 6.2.1 can still be applied to this kind
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of TEL, only lower(r) and upper(r) in Lemma 5.2.5 need to be replaced by lower(P)
and upper(P). lower(P) and upper(P) of a path P = ry — ry--- — r, are defined as
follows:

lower(P) = lower(r;) + lower(ry) + - -- + lower(ry)
upper(P) = upper(r;) + upper(rz) + - -+ + upper(ry)

And also to check if r; is redundant, it needs to change the condition that size(eb) =1
in Lemma 5.2.5 to size(eenabled(r)) = 1 for all 7 in P. Figure 6.4(b) shows an example
of this kind of TEL structure. In the example, path P from a to b is (r3 r4), where r3 =
(a,d,2,4) and rqy = (d,b,3,7). lower(P) =5 and upper(P) = 11. Since r; = (b,¢, 1,5)
and ry = (a, ¢, 5,11), and lower(r;)+lower(P) > lower(ry) and upper(r;)+upper(P) >
upper(rsy), according to Lemma 6.2.1, 79 is redundant. However, redundancy check for
this kind of TEL structure requires calculating the transitive closure among all events in
a TEL to decide if there is a path between a pair of events. Calculation of the transitive
closure has complexity O(n?) where n is the number of events in the TEL. If n is big,
finding the transitive closure is very computationally expensive, therefore the algorithm
handling the more general structures should be used in a limited way and preferably when

no other transformations work.

6.3 Extending Redundancy Check to Handle Conflicts

The last section describes a method to determine redundant rules in a TEL structure
without conflicts. This section extends the method to TELs with conflicts. In a TEL with

conflicts, a rule that is identified redundant according to Lemma 6.2.1 and Lemma 6.2.2



101

b # C a b

ry 2 % rk\ / 2 Iy I'3
e e
(a) (b) (c)

Figure 6.5. Redundancy check with an enabling conflict set.

is called a potentially redundant rule. If a potentially redundant rule does not change
the untimed semantics of a TEL, it becomes a truly redundant rule. It is obvious that
a potentially redundant rule is automatically a truly redundant rule if the TEL has no
conflicts. There are two groups of conflicts that need to be considered when deciding if
a potentially redundant rule r is truly redundant: the conflicts among the events in the
enabling set of the event enabled(r) and conflicts involved with enabled(r).

First, consider the conflicts among the events in the enabling set of an event. As shown
in Figure 6.2, if all events in the enabling set of another event e conflicts with each other,
in other words, there is only one conflict place in the preset of e, none of rules in ee can
be redundant because removing any one of them reduces the specified untimed behavior.
Figure 6.5(a) shows an example where the TEL, N, has a conflict between b and ¢. e
is enabled by 7, r9, and r3. Since b conflicts with ¢, either firing of a and b or firing of
a and c is required to fire e. N can be decomposed to two equivalent TELs shown in
Figure 6.5(b) and Figure 6.5(c). Only one of the two TEL structures is active during an
execution cycle. Suppose 7 is potentially redundant only due to ro, and it is removed from
both the TELs. In the case shown in Figure 6.5(b), the firing time of e does not change.
However, in the case shown in Figure 6.5(c), e may fire sooner than specified because it
is possible that EFT(e « ry, r3) # EFT(e « r3) and LFT(e + ry, r3) # LFT(e + r3).
Since the firing time of e may change after r; is removed, r; is not truly redundant. rq
is truly redundant if it is redundant due to both ry and r3. Let an enabling conflict set
of an event ¢ be a set of rules in the preset of ¢ whose enabling events conflict with each
other, and an enabled conflict set of an event e be a set of rules in the postset of ¢ whose
enabled events conflict with each other. If an enabling conflict set is used to decide the
redundancy of another rule, that rule is redundant if it is redundant due to all rules in

the enabling conflict set. Now suppose ro is potentially redundant due to ri. However,
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Figure 6.7. Redundancy check for rules in the same postset of an event where their
enabled events are in conflict.

removing 9 changes the semantics of the TEL structure. The reason is as follows: before
removing 19, e fires after a and b, or a and ¢ have fired. After removing ry, e fires only
after a and ¢ have fired. Since b and c¢ are in conflict, this may cause deadlock. If both
ro and rg are redundant and removed, the system produces the same timed traces.

In summary, a rule cannot make another rule in the same enabling conflict set redun-
dant. If a rule in an enabling conflict set makes another rule not in this enabling conflict
set redundant, then all rules in the conflict set must make that rule redundant for it to be
truly redundant. On the other hand, a rule in an enabling conflict set is truly redundant
if all rules in the same conflict set are redundant.

Now consider the situation where the enabled event of a potentially redundant rule
conflicts with other events. Figure 6.6 shows an example where the TEL, N, contains
a conflict between ¢ and d that are enabled by a. Suppose r9 is redundant due to r3.
The untimed trace set produced by N is {abe, abd, bac, bad, adb}. After removing ry, the
untimed trace set produced by N’ is {abed, abde, bacd, badce, adbe, bead}. The change in
the untimed semantics is because the conflict between ¢ and d disappears after removing

ro. In N, a choice is made between ¢ and d after a fires that only one of them can fire. In
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Figure 6.8. The enabling conflicts that affect the conditions for redundancy check.

N', no choice is made after a fires because there is no conflict between ¢ and d. Now both
c and d can fire in parallel after a does. Now suppose r3 is redundant because of ry. The
untimed trace set produced by N is still {abc, abd, bac, bad, adb}. After removing r3, the
untimed trace set produced by N’ is the same. Therefore, r3 is truly redundant in this
case. Based on the above discussion, a potentially redundant rule r is truly redundant
if it is not in any enabled conflict set of any events in a TEL. However, in the situation
shown in Figure 6.7(a), both ry and ry are in the enabled conflict set of a, and if they are
redundant and removed together, the new TEL structure still produces the same timed
traces. This is because the TELs before and after 1 and ro are removed produces the
same two untimed traces: {aeb, aec}. And also removing r; and 9 does not change the
timing behavior of b and ¢, so the new TEL produces the same timed traces. Figure 6.7(b)
shows a TEL alternative to the one shown in Figure 6.7(a). In this case, if both r4 and
r; are redundant and removed together, the behavior described by this TEL does not
change. The reason is the same for the TEL shown in Figure 6.7(a). If r3 and rg are
redundant based on their own triangle redundancy check, they can be removed together,
and it is necessary to create two new conflicts e#b and d#c to keep the same untimed
traces. Based on the above discussion, it is required that removing a rule does not change
the conflict relation of any pair of events.

In Lemma 6.2.1 and Figure 6.3, the conditions using timing constraints of rules r, rq,
and r9 to decide if 9 is redundant is based on an assumption that there is no conflict
among the enabling events of the rules in the preset of b. If it is not true as shown in
Figure 6.8 where a conflicts with d, then checking conditions defined in Lemma 6.2.1 is
no longer correct. The reason is explained as follows: since a conflicts with d, the earliest

firing time of b has two values shown as follows:

EFT(b < ;) = tq + lower(r;)
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EFT(b < rj) = tq + lower(r;)

where £, and t; are the earliest firing time of a and d.
EFT(c < 11, 79) = max(t, + lower(ry), t, + lower(r)) (6.1)
The earliest firing time of ¢ decided by only r; is defined as follows:
EFT(c < 71) = t, + lower(r) (6.2)
If t, = EFT(b < r;), then
EFT(c < 1) = t4 + lower(r;) + lower(ry)

EFT(c < 71, m2) = maxz(t, + lower(ry), t, + lower(r;) + lower(r;))

According to Lemma 6.2.1,
EFT(c < 1) = EFT(c < 1y, 72) (6.3)
However, if ¢, = EFT(b < r;), then
EFT(c < r1) = tq + lower(r;) + lower(r;)

EFT(c < r1, 72) = max(t, + lower(ry), tq+ lower(r;) + lower(ry))

It is possible that
EFT(c < r1) # EFT(c < r1,79)

Therefore, it is required that there are no conflicts among the events in the enabling set

of b for the checking conditions defined in Lemma 6.2.1 to be correct.

6.4 General Redundancy Check for TEL structures

This section discusses the general method to determine the redundancy of a rule
based on an assumption that a conservative estimate of the minimum and maximum
separation time between two events is available. We first show two simple redundancy
checks for TEL structures with levels that do not require such information. As shown
in Figure 6.9(a), rule r and 71 now have levels z and z1, respectively. If r9 is redundant
based on Lemma 6.2.1 ignoring levels, ry is still redundant when the levels are taken into
consideration. The reason is as follows: if 9 is checked to be redundant ignoring levels,

that means rq is the last one to become satisfied and expired. Adding a level into rq
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Figure 6.9. Two simple redundancy checks for TEL structures with levels.

delays r; to become satisfied and expired so it does not change the redundancy of rs.
Similarly, in the example shown in Figure 6.9(b), if 7y is redundant based on Lemma 6.2.1
ignoring the level on r3, 1 is still redundant when the level on ry is considered.

The above two simple cases are applicable only when ry has a level but r and r;
does not, or vice versa. If this is not true, the information of separation time between
two events is required. In the first section, if an event is enabled by multiple rules,
one of them is redundant if it is neither the last one to become satisfied nor the last
one to become expired. This requires knowing when a rule becomes enabled. To make
the following discussion easier, we define a reference event e,..; and the minimum and
maximum separation times between e,.; and another event e are represented as t._min
and t._maq, respectively. Therefore, te_ i = min_st(eyer,€) and to e = max_st(eqs,e).

A rule is enabled when the enabling event has fired and the level evaluates to true.
As described in Chapter 4, if the boolean expression of a level only consists of a product,
for example z = ab, z evaluates to true at t,_ i = Mmax(te_min, to_min) and t,_min =
max(ta_mazs tb_maz)- If the expression only consists of a sum term, for example z = a+¥,
z evaluates to true at t,_nin = Min(te_min, to_min) and t;_maz = Max(ta_maz, tb_maz)- The
time when an expression with a sum-of-product evaluates to true can be derived similarly.
Given a rule r = (e, f,1, u, z), the earliest time when it is enabled is max(te_min, tz_min),
and the latest time when it is enabled is max(te_maz, tz_maz). Therefore, the lower and

upper bounds of the range that r becomes satisfied are
m(I,.’I,‘(te_mm, tz_min) +1 and mam(te_ma:m tz_ma:n) +1

Similarly, the lower and upper bounds of the range that r becomes expired are
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max(te_mins tz_min) +u  and  max(te_maz, tz_maz) + ¢

Suppose an event is enabled by two rules: r; and r9. If the lower bound of the range
when r9 becomes satisfied is larger that the upper bound of the range when r; becomes
satisfied and the lower bound of the range when ro becomes expired is larger than the
upper bound of the range when r; becomes expired, then r; is redundant.

There is a special case when the level only consists of a product. If the level always
evaluates to false, the rule with this level would never become enabled, so it is automat-

ically redundant.



CHAPTER 7

EXPERIMENTAL RESULTS

The goal of the automatic abstraction techniques described in this dissertation is
to avoid state space explosion in large and complex designs by partitioning designs
into blocks with constrained complexity and exploring the state space of each block
individually. To reduce the state space, it is necessary to remove the sequencing events
and associated rules in a system whenever possible under the constraint that the system
behavior is preserved conservatively.

This automatic abstraction technique has been incorporated into the VHDL and THSE
compiler [86] frontend of the ATACS tool. In this chapter, several examples are presented,
and their state space is explored using Bap, an enhanced version of the POSET timing
analysis algorithm [55]. Next, the state space of each component in these examples is
explored after abstraction. For the purpose of easy comparison between the runtimes of
state space exploration of the whole designs and the runtimes of state space exploration of
the designs using abstraction, all examples shown in this chapter have a regular structure
so that they can be expanded easily. However, it does not necessarily mean that the
abstraction technique is limited to only circuits with a regular structure. When a design
suffers state explosion, that means that the state space of the design is too large to fit in
the memory. Abstraction not only improves the runtime of state exploration, but also the
memory usage because the state space of each component can be substantially smaller
than the whole design. Besides showing the comparison of runtimes, the comparison of

the memory usage is also shown for the whole design and each component.

7.1 Simple FIFOs
The first example is a dataless version of the precharge half buffer (PCHB) from [49].
In one experiment, we explored the state space of the whole PCHBs with different number
of stages without using abstraction, and ATACS finishes successfully up to 7 stages. In

another experiment, we explored the state space of the PCHBs with different number of
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Figure 7.1. Illustration of how modular design works on each stage and how abstraction
reduces the complexity of designing each stage.

stages with asbtraction on. In this experiment, a single stage of the PCHB is selected,
and the rest of the stages of the PCHB and the environment for the whole PCHB are
combined to be the environment for the selected stage. Before the state space of the
selected stage is explored, its environment is simplified using the abstraction approach
described in this dissertation. This process can be illustrated in the Figure 7.1. The same
process is applied to the other stages of the PCHB. Then, the runtimes for the state space
exploration of all stages in the PCHB are added together to form the time to finish the
whole PCHB. Note that the runtime for each stage also includes the time for abstraction
on that stage. Comparative runtimes and memory usages for the state space exploration
of 1 through 9 stages are shown in Figure 7.2 and Figure 7.3, respectively. While ATACS
can only finish PCHBs up to 7 stages on the flat design, it easily finishes 100 stages in

about 6.2 minutes with a maximum memory usage of 4 MB with abstraction on.
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Figure 7.3. Memory usage for PCHB example.

The second example is a multiple stage controller for a self-timed FIFO from Sun
Microsystems. In [58], a highly optimized hand designed timed circuit implementation is
presented. The purpose of this FIFO is to compare the performance of an asynchronous
FIFO with that of a clocked shift register using the same data path. The FIFO uses a

pulse-like protocol to advance data along the pipeline. Aggressive timing assumptions



110

module fifo;
input fin = {(180,inf; 180, 260)};
input seinb = {true, (90,110;90,inf)};
output seouth = {true, (90,110)};
output fout = {(90,110)};
output eout = {true, (90,110)};
output foutb = {true, (90,110)};
output eoutb = {(90,110)};
process seoutb;
«[[fin+]; seoutb—; [eout—]; seoutb+; [eout+]]
endprocess
process eout;
*[[seoutb—]; eoutb+; eout—; [seouth + & f outb+]; eoutb—; eout+]
endprocess
process fout;
[[eoutb+]; foutb—; fout+; [seinb—]; foutb+; fout—; [seinb+]]
endprocess
endmodule

Figure 7.4. The timed HSE code for the SUN FIFO.

are made for the FIFO to achieve high performance. In a pipeline using transparent data
latches, the movement of a datum from one stage of a pipeline to the next involves two
actions: capturing the data value in the latches of the next stage; and unlatching the data
latches in the present stage to free them to capture the next datum. Tight control of the
timing relationships between these two actions is important if robust and fast circuits
are to be achieved. Speed suffers if the unlatching action is too late compared with the
latching action. Robustness suffers if the unlatching action takes place before the latching
action is complete. The delay requirements of latching and unlatching must be satisfied
regardless of the speed at which the pipeline operates.

The operation of the FIFO is very simple: whenever a stage that is Full is followed
by a stage that is Empty, the data in the full stage is moved to the empty stage and the
states of both stages are changed correspondingly. Figure 7.5 shows the control circuit
for a single stage of the FIFO. When a request comes in (FIN+) and the FIFO is empty
(EOUT is high), the data is latched (En_bar+ and En—). In parallel, the insertion is
acknowledged (SEOUT —) and the next stage is requested to accept the data (FOUT+).
When the next stage accepts the data (SEIN —), the FIFO is set to be empty (EOUT+)
and the latch is opened (En_bar— and En+). The THSE code for a single stage FIFO is
shown in Figure 7.4.

The correctness of this circuit is highly dependent on timing parameters. By using
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Figure 7.5. The control circuit for a single stage FIFO.
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Figure 7.6. Synthesis time for FIFO example.

ATACS, the same efficient circuit is derived [77]. We run the same experiments for the
FIFO as we did for the PCHB. Without using abstraction, ATACS can only finish the
FIFO up to 4 stages. For the 5-stage FIFO, we had to kill the process after it ran for over
a day. With abstraction on, however, ATACS easily proceeds to 100 stages, which takes
approximately 31 minutes and 13 MB memory. The direct method [44] can also finish
100 stages, but it takes over 300 minutes. Comparative results upto 6 stages are shown

in Figure 7.6.
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Figure 7.7. The STARI interface.

7.2 STARI: A Communication Circuit

The last example is a STARI communication circuit described in detail in [38]. STARI
is a self-timed FIFO that is used to communicate between two synchronous systems
that are operating at the same clock frequency, but are out-of-phase due to clock skew.
These two systems communicate as though they are part of an ideal synchronous systems
(Figure 7.7). During each period of the clock, one value is inserted into the FIFO by
the transmitter and one value is removed by the receiver. Because data is inserted
and removed at the same rate, no control signals are required to prevent underflow and
overflow. However, due to the clock skew, there can be short term fluctuations in the
clock rate at the receiver or transmitter and it can appear that one of them is working
faster than the other. STARI responds to these fluctuations by building up more data in
the FIFO when the transmitter is working faster, and by supplying data from the FIFO
when the receiver is working faster.

For correct operation of the STARI, the following two properties need to be verified:
1.  Each data value output by the transmitter must be inserted into the FIFO before

the next one is output.
2. A new data value must be output by the FIFO before each acknowledgment from
the receiver.

To guarantee the second property, it is necessary to initialize the FIFO to be approxi-
mately half-full [38]. Intuitively, the longer and faster the FIFO, the more skew it can
tolerate. The correctness of the above properties depends on the length of the FIFO, the
clock speed, the magnitude of the skew, and the speed of operation of the FIFO stages.

In the STARI circuit, each signal x is represented by the dual-rail code as shown in
Table 7.8. The “empty” value is necessary to distinguish between two consecutive data

items of the same value and one data value asserted for a long time.
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xt x.f X
0 0 E(empty)
0 1  F(false)
1 0  T(true)
1 1 illegal

Figure 7.8. Dual rail coding.
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Figure 7.9. Stage k of STARL.

The typical STARI circuit consists of n identical stages, each of which is composed of
2 C-elements and 1 NOR-gate per stage as shown in Figure 7.9. The timed HSE code for
a single stage STARI is shown in Figure 2.2. The TEL structure of the first stage of the
STARI is shown in Figure 2.12 in chapter 2.

In [75], the authors state that COSPAN which uses a region technique for timing
verification [3] ran out of memory attempting to verify a 3 stage gate-level version of
STARI on a machine with 1 GB of memory. In [7], a flat gate-level design for 10
stages can be verified in 124 MB and 20 minutes using POSET timing. Our automated
abstraction method verifies a 14 stage STARI in about 5 minutes with a maximum
memory usage of 23 MB of memory for a single stage . Figure 7.10 shows the comparative
runtimes for verification using Bap timing [55] with and without abstraction on STARI.
Bap is an enhanced version of the POSET timing analysis algorithm. As shown in the
chart, Bap can verify STARI for up to 12 stages with a memory usage of 277 MB.

In the first few stages, the runtime for verification with abstaction is larger because
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Figure 7.10. Runtimes for STARI verification.

abstraction itself takes time. When the complexity of the design grows, the runtime
for flat verification grows much faster. As the designs become more and more complex,
the time for abstraction dominates the total synthesis time. However, since abstraction
runtime grows polynomially in the size of the specification, the total synthesis time with
abstraction grows in an approximately polynomial manner. This is substantially better
than the exponential growth in the analysis of flat designs.

As shown in Figure 7.10, the runtime for state space exploration using abstraction is
not as good as that for the examples in the first section. The reason is that sequencing
events cannot be totally abstracted away in STARI. For example, in the 8 stage STARI,
there are 44 sequencing events for each stage before the transformations. After the
transformations, 36 sequencing events in stage 1, 40 in stage 4, and 38 in stage 8 are
removed. Chapter 5 describes several situations that the sequencing events cannot be
removed. For example, if the preset and postset of a sequencing event contain multiple
rules of which the enabling events or the enabled events are not in conflict, it cannot
be removed as it often causes a safety violation. As designs grow, the number of such
sequencing events can become large. This increases the cost of state space exploration
dramatically. Sequencing events with size(e$) > 1 and size($e) > 1 are inevitable.
Redundancy check described in Chapter 6 needs to be used in such cases to reduce the

size of preset or postset of a sequencing event until some reduction techniques can be
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applied. More general redundancy check is needed to expose more sequencing events to
be reduced.

This example, as well as the ones shown in the first section, is parameterizable. One
may argue the utility of flat synthesis in that for all examples shown in this chapter only
one stage needs to be built and copied to create the other stages. However, synthesis of
a flat design can lead to a simpler circuit implementation. For STARI, if each stage is
built from the circuit shown in Figure 7.9, this design works correctly using the timing
parameters shown in Figure 2.12. If a flat design of, for example, an 8 stage STARI, is
synthesized, the C-elements in the first 3 stages used to store the data can be reduced
to simple buffers. In the last 3 stages, a generalized C-element using one less transistor
can be used. Only the middle two stages require full C-elements. 80 literals and 160
transistors are required to implement a 8 stage STARI consisting of the same stages,
while the 8 stage STARI synthesized from the flat design requires 56 literals and 136

transistors. Synthesis using our abstraction techniques derives the same results.



CHAPTER 8

CONCLUSIONS

8.1 Summary

State space exploration is required for designing high-performance timed circuits.
However, state space explosion limits synthesis and verification methods to small de-
signs. This dissertation described a theoretical framework and techniques to avoid state
space explosion encountered in large designs by partitioning a design into blocks with
constrained complexity and designing the blocks separately. When designing a block, the
rest of the circuit and the system environment together are regarded as the environment
that defines the operating condition for the block. Since only the behavior on the interface
of the environment for the block is essential, the internal signals of the environment need
to be abstracted away. After removing the internal signals in the environment, the total
number of states of a block and its abstracted environment can be dramatically reduced,
thus significantly reducing the runtime and memory usage for state space exploration.

In this dissertation, we gave an overview of the specification method of timed circuits
using hardware description languages such as THSE and a synthesizable subset of VHDL
for ATACS. These languages include constructs for specifying sequencing, concurrency,
choice, and two-sided timing constraints. They also support the structural specification
of a circuit. Specifications in these languages are compiled to a graphical representation,
TEL structures, to which timing analysis algorithms are applied. The behavioral seman-
tics of TEL structures are defined using timed trace theory. In this dissertation, we have
proven, by using timed trace theory, the correctness of a series of theorems that support
modular synthesis and verification. We described the concept of safe abstraction that
deals with abstracting signals away from levels in TEL structures. It can create extra
behavior not specified originally. We also described the concept of safe transformations
and defined conditions that safe transformations must satisfy. Then, we described two

groups of techniques based on the definition of safe transformations to reduce the number
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of events and rules in a TEL structure. The first is safe net reductions that remove the
sequencing events and rules in their presets and postsets, and creates new rules that
preserve the causal and timing behavior between the enabling sets and enabled sets of
the sequencing events. They can remove most sequencing events in a TEL structure. Safe
net reductions can create extra behavior not specified originally. The second is removing
redundant rules. This technique identifies and removes rules in a TEL structure that have
no effect on the behavior. Redundancy check preserves the behavior precisely. These two
groups of techniques are used alternatively to achieve the best result in terms of the
number of sequening events left and the number of rules in the TEL structure. Safe net
reductions are applied first, then redundancy check is applied to reveal more situations
that can be simplified by safe net reductions. We have applied the techniques described
in this dissertation to several examples including the classic STARI example, and our
results show that modular synthesis and verification with abstraction is not only several
orders of magnitude faster, but also capable of analyzing several orders of magnitude

more complex systems that can be handled previously.

8.2 Future Work

Abstraction is essential when analyzing systems with a huge number of states such as
a circuit with a data path. The work presented in this dissertation is only a starting point
where there is much work that needs to be done in order to make it practically useful. This
section describes the areas that we believe to be the most important research problems

that must be addressed.

8.2.1 Specification

In Chapter 5, we discussed that if there exist initially enabled rules in the postset
of a sequencing event, Reduction 1 and 2 cannot be applied without creating extra
behavior. Also, in Chapter 6, a different redundancy check must be applied if initially
enabled rules appear. The reason is that semantics of initially enabled rules are different
from the corresponding non-initially enabled rules. In order to make safe reductions and
redundancy more applicable, it is necessary to introduce special kinds of rules into TEL
structures. These rules are similar to initially enabled rules. However, after firing the

enabled events in the first execution cycle, they are removed during the timing analysis.
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8.2.2 Calculation of Separation Time Estimates Between Events

In the discussion of safe abstraction in Chapter 4 and redundancy check for TEL
structures with levels in Chapter 6, it is assumed that the separation time between
events are known. As mentioned, calculating separation time is as hard as state space
exploration, and should be avoided. In order to make safe abstraction and redundancy
check viable for TEL structures with levels, it is necessary to develop an approximate
algorithm to calculate a conservative estimate of the separation time. This algorithm must
incur low computational cost. In [63], Myers described such an approximate algorithm
to compute a estimate of the minimum and maximum separation time between all events
in a cyclic, choice-free graph. It has a polynomial complexity. It is highly desirable to
extend this algorithm to apply to TEL structures with arbitrary choice and levels while

maintaining the polynomial complexity.

8.2.3 Automatic Partitioning of Designs

The quality of abstraction has several aspects. One of them is that each block
after partitioning must have a balanced and constrained complexity. The complexity
of state space exploration algorithms is exponential in the size of TEL structures. Extra
time is required if abstraction is applied, and time for abstraction for each block grows
polynomially in the size of TEL structures. Therefore, the total time for synthesis and
verification of a block consists of two portions: time for state space exploration with an
exponential complexity in the size of the block and time for abstraction with a polynomial
complexity in the size of TEL structures. If the size of the block is too large, the cost
of designing a block is close to that of the whole circuit. If the size of each block is
too small, then the number of blocks after partitioning is too large, and the overhead
for abstraction can grow substantially. Also, the current abstraction technique selects
a block in a circuit based on the specified structural information. In other words, a
designer chooses a component from a circuit by hand. This process becomes tedious and
time-consuming if the circuit consists of many components and levels of hierarchy. To
address the above problem, it is necessary to develop an algorithm that takes advantage of
the specified structural information to partition a circuit so that each block has a balanced
and constrained complexity, so the speed of the design processes using abstraction can

be improved in a maximum way.
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8.2.4 Refinement Guided Abstraction

Safe abstractions in Chapter 4 and safe net reductions in Chapter 5 create extra
behavior that may result in violating states that are unreachable in the original circuit.
This may produce a false negative answer for verification. When this situation happens,
abstraction has to go backwards to eliminate the extra behavior causing the fake violating
states. One method is to run abstraction again without using a safe abstraction or
net reduction technique that creates extra behavior. If this is not enough, more such
transformations are removed and abstraction needs to be performed again. An alternative
is to analyze the error traces and find out if they are caused by removing some sequencing
events. If it is true, these sequencing events are restored and timing analysis is performed

again.

8.2.5 Structural Analysis for TEL Structures

For safe net reductions described in Chapter 5, it is required that the net after
reductions preserves safeness and liveness of the original net. In [31], Commoner described
an analysis approach to determine the safeness and liveness of a net based on its structure.
However, his approach can only be applied to marked graphs that are a class of Petri-net
without choices. In [40], Hack described and proved the sufficient conditions for a
free-choice Petri-net to be safe and live. The above approaches either cannot handle
choice at all or in a limited way. It is desirable to develop a method to decide the safeness
and liveness of a net with arbitrary structure, so more complex safe transformations that

preserve safeness and liveness of nets can be developed.

8.2.6 Combining Partial Order Reduction with Abstraction

As introduced in the first chapter, partial order reduction reduces the state space by
considering only a subset of all possible interleavings between two concurrent events. This
technique is widely used in verification world, but not in synthesis because all behaviors
of a circuit need to be considered. In timed circuit design, the internal bebehavior of an
environment has no impact on how a circuit is synthesized or verified, therefore, partial
order reduction can also be used to simplify the environment besides the abstraction
technique described in this dissertation. If these two techniques can be combined together,

better results can be obtained.
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