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ABSTRACTIn order to in
rease performan
e, 
ir
uit designers are beginning to use more aggressivetimed 
ir
uit designs instead of traditional syn
hronous stati
 logi
 designs. Re
entdesign examples have shown that signi�
ant performan
e gains are a
hieved when theseaggressive 
ir
uit styles are used. Corre
t operation of these aggressive 
ir
uit styles is
riti
ally dependent on timing, and in industry they are typi
ally designed by hand. Tosynthesize and verify timed 
ir
uits, the rea
hable state spa
e of the 
ir
uit under thetiming 
onstraints needs to be explored. However, 
omplete state spa
e exploration is anexponential problem. State spa
e explosion limits timed 
ir
uit designs to small sizes.This dissertation presents a new automati
 abstra
tion approa
h whi
h enables mod-ular design of large s
ale timed 
ir
uits. It atta
ks the state spa
e explosion problemby avoiding the generation of a 
at state spa
e for the design. Instead, it partitions adesign into blo
ks with manageable sizes, and performs synthesis and veri�
ation pro
esson ea
h of them. The results for the blo
ks are integrated as the solution to the wholedesign. This dissertation presents a series of theorems that supports modular synthesisand veri�
ation. The 
on
epts of safe abstra
tion and transformations are also des
ribed.This dissertation presents te
hniques to partition a design and safe net redu
tions tosimplify the 
omplexity when designing ea
h blo
k. Results show that design pro
essesusing this method are orders of magnitude more eÆ
ient in design time and memoryusage.
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CHAPTER 1INTRODUCTIONCurrent VLSI 
ir
uits are getting faster and more 
omplex. In order to 
ontinueto produ
e 
ir
uits of in
reasing speed, designers are moving away from pure stati
syn
hronous designs to more aggressive timed 
ir
uit design styles. Generally, timed
ir
uits are a 
lass of 
ir
uits that are optimized using expli
it, bounded timing infor-mation throughout the design pro
ess. Using timed 
ir
uits enables designs to a
hievehigh performan
e and low power 
onsumption. One example is the Intel RAPPIDinstru
tion length de
oder for a Pentium II instru
tion set [71℄. The RAPPID design is anasyn
hronous implementation. It runs 3 times faster while dissipating only half the powerof the syn
hronous implementation on the same pro
ess. The performan
e gain is derivedfrom a highly timed asyn
hronous design. The se
ond example is the self-resetting anddelayed-reset domino 
ir
uits widely used in a gigahertz resear
h mi
ropro
essor (guTS) atIBM [41℄. The guTS mi
ropro
essor is the �rst mi
ropro
essor that runs over 1 Gigahertzon a 0:25�m CMOS pro
ess available in 1997. The performan
e gain is derived from ahighly timed syn
hronous implementation. There are many timing assumptions made inboth examples, and the 
orre
t operation of the examples are heavily dependent uponwhether the timing 
onstraints are satis�ed. Therefore, extensive timing analysis andveri�
ation is ne
essary during the design pro
ess. Unfortunately, these new 
ir
uit styles
annot be eÆ
iently and a

urately synthesized, analyzed, and veri�ed using traditionalstati
 timing analysis methods. This la
k of eÆ
ient analysis tools is one of the reasonsfor the la
k of mainstream a

eptan
e of these design styles.Most synthesis and veri�
ation methods require 
omplete state spa
e explorationwhi
h is an exponential problem. One 
ommon problem often en
ountered in statespa
e exploration is the state explosion problem, whi
h limits the size and 
omplexityof timed 
ir
uit designs. There exist many methods to deal with state explosion. Inthis dissertation, a divide-and-
onquer approa
h is proposed. This approa
h partitionsa design into blo
ks, ea
h of whi
h has a 
onstrained interfa
e. Ea
h blo
k is designed



2individually, and the integration of the results of all blo
ks gives the solution for thewhole design. During design of ea
h blo
k, abstra
tion is applied to remove the irrelevantinformation to redu
e the 
omplexity of designing ea
h blo
k. In this way, a design witha large exponential state spa
e is 
onverted to a set of designs with small exponentialstate spa
e. This approa
h not only substantially redu
es the 
omputational 
ost ofsynthesis and veri�
ation, but also solves large and 
omplex design problems that 
annotbe handled before.The �rst se
tion of this 
hapter gives an overview of timed 
ir
uit design methodologiesand the design 
ow of ATACS, our timed 
ir
uit design tool. The se
ond se
tion gives anoverview of the previous work on spe
i�
ation and veri�
ation of timed 
ir
uits, andthe methods to deal with the state explosion problem inherent in the synthesis andveri�
ation of large designs. The last two se
tions give the 
ontributions and outline ofthis dissertation.1.1 Design Flow for Timed Cir
uitsDesigning a timed 
ir
uit involves the steps of spe
i�
ation, 
ompilation, analysis,synthesis, and veri�
ation. Figure 1.1 shows the design 
ow for our timed 
ir
uit designtool ATACS. In ATACS, the design of timed 
ir
uits begins with a spe
i�
ation of 
ir
uitbehavior in a hardware des
ription language in
luding VHDL, timed handshaking expan-sions (THSE) [63, 86℄, asyn
hronous �nite state ma
hines (AFSM) [42, 32, 84℄, and signaltransition graphs (STG) [28℄. These spe
i�
ation methods are able to des
ribe sequen
ing,
on
urren
y, and 
hoi
e. Moreover, they support bounded timing information whi
h isused to optimize the 
ir
uit implementations during various design stages. The timingparameters 
an 
ome from the simulation of similar designs; or designers 
an make anytiming assumptions that they think reasonable for the 
ir
uits. The timing parameters
an be either bounded or unbounded.The step of 
ompilation translates the spe
i�
ation of a timed 
ir
uit to a timedevent/level stru
ture (TEL) [10℄. A TEL stru
ture is a new data stru
ture for des
ribingboth event and level 
ausality and timing behavior. The 
ompilation step in
ludes stepsto de
ompose a spe
i�
ation into basi
 events. These events are then translated to simpleTEL stru
tures whi
h are 
omposed together in sequen
e, in parallel, and in 
on
i
t asdi
tated by the stru
ture in the spe
i�
ation.The timing analysis algorithms su
h as the one shown in [65, 9, 10, 55℄ are applied
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Figure 1.1. Design 
ow for timed 
ir
uit design.to a TEL stru
ture to �nd the rea
hable state spa
e of the system. This step beginswith an initial timed state whi
h in
ludes the set of all enabled 
ausal relationships (orrules), the values of all signal wires, and timing relationships between all rules. From thistimed state, all possible next timed states 
an be determined by �ring the enabled rules.From these states, subsequent timed states are determined re
ursively. As timed statesare found, they are stored to form a state graph. State spa
e exploration is exponentialin the size of the design, and timing makes it even more 
omplex. On the other hand,timing information 
an help to identify states whi
h are not rea
hable by the system,thus redu
ing the total number of states leading to an optimized logi
 implementation.After the state spa
e is generated, logi
 synthesis is applied to extra
t ex
itation



4and quies
ent regions from the state graph for ea
h output signal. For ea
h ex
itationregion, logi
 equations are found that implement the region in a hazard-free manner. Toa

omplish this, 
orre
tness 
onditions are used to determine in whi
h states the logi
must evaluate to true, 
an evaluate to true, and must not evaluate to true. At this step,the implementation is largely te
hnology independent. The logi
 equations may use gatesthat are either ineÆ
ient or non-existing. The step of te
hnology mapping takes a set oflogi
 equations and a gate library and determines a gate netlist to implement the logi
equations.On
e the �nal 
ir
uit implementation is available, veri�
ation is applied to the 
ir
uitagainst the spe
i�
ation to show that the synthesized 
ir
uit is a reliable implementationof the spe
i�
ation [6℄. The a
tual timing behavior of the implementation also needs tobe veri�ed that it is 
onsistent with the spe
i�
ation.The step of performan
e analysis is also applied to the spe
i�
ation and the synthesized
ir
uit annotated with delay distribution information [54℄. It is based on Monte-Carloand Markov 
hain analysis, and 
an �nd steady-state probability distributions. Fromthese distributions, the relative importan
e of every pin-to-pin delay in the 
ir
uit 
an bedetermined to show performan
e of the timed 
ir
uit implementation and pinpoint areaswhere optimization 
an lead to signi�
ant improvements in performan
es.1.2 Related WorkAll timing 
onstraints of a timed 
ir
uit need to be 
he
ked to guarantee 
orre
toperation. Therefore, veri�
ation plays a 
riti
al role in timed 
ir
uit design. However,veri�
ation is not the only way to assure 
orre
tness An alternative is to design 
orre
t
ir
uits in the �rst pla
e. This requires 
orre
t synthesis. The key to the su

essful designof timed 
ir
uits and espe
ially timed asyn
hronous 
ir
uits is a 
omplete state spa
eexploration. The major 
hallenge of synthesis and veri�
ation is state spa
e explosion.This problem happens in a system with many 
omponents that intera
t with ea
h otheror systems that have data stru
tures that 
an assume many di�erent values, su
h as thedata path of a 
ir
uit. In su
h 
ases, the number of global states 
an be enormous. Therehas been a lot of su

essful work developed to deal with su
h a problem. This se
tiongives an overview of the work to address the state explosion problem.



51.2.1 Cir
uit Spe
i�
ation Approa
hesTo automate the synthesis and veri�
ation of timed 
ir
uits, they need to be spe
i�edin a hardware des
ription language. The expense and quality of the design of timed
ir
uits depends on the type of spe
i�
ations that are supported. In general, more 
exibleand expressive spe
i�
ations allow the synthesis of faster and more 
omplex 
ir
uits, butmake the design pro
ess harder. More restri
ted spe
i�
ations make the design pro
esseasier, but the derived 
ir
uits may be slow and redundant. Moreover, the spe
i�
ationmethod needs to provide an easy way to spe
ify 
omplex two-sided timing informationneeded for timed 
ir
uit design.In general, the spe
i�
ation of timed systems 
an be loosely 
lassi�ed into two groups:those that use language-based spe
i�
ations and those that use graph-based spe
i�
ations.These two di�erent groups require di�erent design methods, and may generate di�erent
ir
uit implementations. The languages that are used to spe
ify 
ir
uits in
lude CSP[48℄, O

am [21℄, Tangram [13, 12℄, and VHDL [86℄. Language-based approa
hes, su
has those proposed by van Berkel [79℄ and Brunvand [22℄, often dire
tly map language
onstru
ts to library blo
ks using syntax-dire
ted translation. The advantage of theseapproa
hes is the ability to des
ribe large 
omplex systems hierar
hi
ally and 
ombatthe state explosion problem by mapping language 
onstru
ts dire
tly into �xed 
ir
uitmodules. However, these approa
hes do not allow timing information to be spe
i�ed,and the resulting 
ir
uits may be slow and redundant sin
e optimizations are not alwaysvisible at su
h a high-level or are diÆ
ult to apply during syntax-dire
ted translation.Another approa
h proposed by Martin in [48℄ translates a spe
i�
ation program into aself-timed 
ir
uit through a series of semanti
 preserving transformations. However, itdoes not support timing spe
i�
ation and needs a lot of human intervention to worke�e
tively.Graph-based approa
hes often spe
ify 
ir
uit behavior in a lower level. It 
an oftenprodu
e very eÆ
ient and fast 
ir
uits sin
e timing information 
an be used to optimizethe implementations. Graph-based methods in
lude Petri Nets or STGs [28℄, I-nets [57℄,
hange diagrams [81℄, asyn
hronous �nite state ma
hines [42, 32, 84℄, and state graphs[60℄. These methods often require 
omplete state spa
e exploration to �nd all rea
hablestates in a design. Therefore, the state spa
e explodes qui
kly as the 
omplexity and sizeof the designs grow. Sin
e spe
i�
ations in these approa
hes are at the signal transitionlevel, writing the spe
i�
ation is tedious and error prone for large designs.



6Sin
e hardware des
ription languages are useful to organize large 
omplex designshierar
hi
ally, and timing analysis and synthesis algorithms are more easily applied tographi
al representations, the spe
i�
ation method used in our synthesis and veri�
ationtool ATACS is a 
ombination of language-based and graph-based approa
hes. The toola

epts VHDL or THSE des
riptions [86℄ as well as AFSMs and STGs. Instead of syn-thesizing 
ir
uits dire
tly from these des
riptions, ATACS 
ompiles them into a graphi
alrepresentation, the TEL stru
ture. Then, timing analysis algorithms are applied to �ndthe rea
hable state spa
e of the system, whi
h is used to derive the 
ir
uit implementation.1.2.2 SynthesisThere exist some systemati
 te
hniques for the design of timed 
ir
uits. In [17℄,Borriello des
ribes a method whi
h uses timing information in the design of transdu
ers,interfa
es between syn
hronous and asyn
hronous 
ir
uits. In [46℄, Lavagno develops asynthesis te
hnique whi
h uses methods similar to Chu [28℄ and Meng [53℄ to derive a
omplex gate-level implementation whi
h is then mapped to a gate library using syn-
hronous te
hnology mapping te
hniques. In both methods, timing analysis is appliedafter synthesis to verify that the implementation is hazard-free. If hazards are dete
ted,delay elements are added to avoid them, degrading the reliability and performan
e of theimplementation. In [63, 64℄, myers �rst applied timed state spa
e exploration to timed
ir
uit synthesis. In his method, unrea
hable states of a design are eliminated basedon the spe
i�ed timing information. Therefore, this method produ
es optimized timed
ir
uits. In [44℄, a dire
t synthesis method is proposed whi
h synthesizes timed 
ir
uitsdire
tly from STGs. This method does not su�er from the state explosion problem sin
eit does not explore the state spa
e of the designs. The synthesized timed 
ir
uits usingthis method have nearly the same area 
ompared with the results derived using othersynthesis methods. However, this method 
an only be applied to a restri
ted 
lass offree-
hoi
e STGs limiting its appli
ability. Furthermore, it 
an result in path explosionin the pre
eden
e graph derived for synthesis.1.2.3 Veri�
ationThe purpose of veri�
ation is to give the designers 
on�den
e that resulting 
ir
uitsoperate 
orre
tly. Therefore, the most 
ru
ial issue in veri�
ation is the de�nition of
orre
tness. In general, 
orre
tness is de�ned by two di�erent approa
hes. One approa
his model 
he
king [29℄. This approa
h explores the state spa
e exhaustively and 
he
ks



7if the spe
i�ed properties are satis�ed in every state. Another one is to 
he
k the
onforman
e of the implementation to a spe
i�
ation [34℄. Veri�
ation needs to show thatthe implementation ex
eeds the minimum requirements stated in the spe
i�
ation. Theseapproa
hes raise another issue whi
h is what properties need to be modeled and veri�ed.Traditionally, there are two important properties to be modeled: safety properties andliveness properties. A safety property asserts that \nothing bad happens". A livenessproperty asserts that \something good happens". In the veri�
ation of a timed 
ir
uit,it is also important to verify timing properties in a spe
i�
ation.One approa
h to 
ir
uit veri�
ation is model 
he
king for �nite state 
on
urrentsystem. It 
he
ks whether a model of the behavior of the 
ir
uit satis�es a spe
i�
ationwritten as logi
al formulas. Most work in model 
he
king is based on temporal logi
[30, 36℄. In general, a temporal logi
 is a propositional or �rst-order logi
 augmentedwith temporal modal operators whi
h 
an assert how the behavior of the system evolvesover time. Bugs have been dis
overed in several asyn
hronous 
ir
uits using this approa
h,and the modi�ed designs have been shown 
orre
t [20, 56℄. Although model 
he
king hasthe advantage of being automated, it 
an only deal with small designs be
ause the globalstate graph needs to be 
onstru
ted before it 
an be 
he
ked and the state graph for large
ir
uits 
an be very large.Rea
hability analysis is widely used in proto
ol veri�
ation [16, 85℄. It 
onstru
ts aglobal state graph of a �nite state system, then inspe
ts the graph for errors. Veri�
ationusing this approa
h 
he
ks the satisfa
tion of properties in ea
h state: safety, absen
e ofdeadlo
k, liveness, timing 
onstraints for timed 
ir
uits, and so on. The meaningfulness ofthese properties depends on the interpretation of the formal model being used and on theappli
ation. Rea
hability analysis 
annot handle arbitrary liveness properties, be
ause itdoes not 
onsider in�nite behavior.In [34℄, Dill des
ribes a hierar
hi
al veri�
ation approa
h based on 
onforman
e 
he
k-ing using tra
e theory. In this approa
h, the 
ir
uit behavior is spe
i�ed at di�erent levelsof abstra
tion. Spe
i�
ations at one level of abstra
tion are treated as the des
riptions ofimplementations at the higher levels of abstra
tion. If an implementation 
onforms to aspe
i�
ation, the implementation 
an safely repla
e the spe
i�
ation in any 
ontext whilepreserving 
orre
tness of the spe
i�
ation. In this hierar
hi
al veri�
ation approa
h, ir-relevant implementation details 
an be suppressed in moving from one level of abstra
tionto the next. Therefore, it 
an greatly redu
e the 
omputational 
omplexity of veri�
ation.



8Dill's approa
h 
an only be applied to speed-independent 
ir
uits. Veri�
ation methodsbased on timed tra
e theory are des
ribed in [25, 70, 83, 87℄.1.2.4 Timed State Spa
e ExplorationBoth synthesis and veri�
ation of timed 
ir
uits require 
omplete timed state spa
eexploration. The state spa
e 
an be found by exhaustively �ring all events in a system.Sin
e the growth of the rea
hable state spa
e is highly dependent upon the representationof timing information, how to model timing behavior is a 
ru
ial issue in timed state spa
eexploration.There are two models to represent timing behavior of a system: dis
rete time and
ontinuous time. In dis
rete time model [24, 18℄, time is broken into di
retization
onstants, and timers in the system 
an only advan
e in multiples of a dis
retization
onstant. Timing analysis using the dis
rete model is simpler and impli
it methods 
anbe applied to improve performan
e. The dis
retization 
onstant needs to be set smallenough to guarantee exa
t exploration of the state spa
e. However, this 
an 
ause thestate spa
e to explode if the delay ranges are large [70℄.In the 
ontinuous time model, timers in the system 
an take on any value betweentheir lower bounds and upper bounds. A 
ontinuous time state spa
e needs to be dividedinto equivalen
e 
lasses, otherwise, the state spa
e is in�nite. All timing behaviorswithin an equivalen
e 
lass must lead to the same state and do not need to be exploredseparately. Therefore, the size of equivalen
es should be as large as possible to redu
ethe number of timed states. In the region approa
h [1℄, timed states with the sameintegral 
lo
k values and a parti
ular linear ordering of the fra
tional values of the 
lo
ksare equivalent. Although this approa
h eliminates the need to dis
retize time, the statespa
e 
an explode if the delay ranges are large. Another approa
h to 
ontinuous timeis to represent the equivalen
e 
lasses as 
onvex polyhedra 
alled zones [33, 15, 47, 2℄.The zones are represented by sets of linear inequalities (also know as di�eren
e boundmatri
es or DBMs). Although its worst 
omplexity is worse than the dis
rete-time orregion approa
hes, the zone approa
h often generates larger equivalen
e 
lasses resultingin smaller state spa
es when verifying real 
ir
uits. However, the number of zones 
anexplode in highly 
on
urrent systems. The reason for this explosion in the number ofzones is that every possible sequen
e of 
on
urrent events results in a di�erent zone,even though these sequen
es result in the same untimed state. To solve this problem, a



9POSET algorithm [65, 69℄ is proposed to 
onsider partial ordered sets of events ratherthan the linear sequen
es. This algorithm 
an redu
e the number of zones substantially.Belluomini extended the POSET algorithm to TEL stru
tures and applied it to bothsyn
hronous and asyn
hronous designs [7, 6, 9℄. In [55℄, Mer
er des
ribed an enhan
edversion of the POSET method.1.2.5 State Spa
e Redu
tionThere exist many te
hniques and methods to deal with the state explosion problem.In [44℄, a dire
t synthesis method is presented where timed 
ir
uits are dire
tly derivedfrom signal transition graphs. It does not su�er from state spa
e explosion at all sin
e itdoes not explore state spa
e. However, the 
lass of spe
i�
ations that 
an be handled islimited, and a similar approa
h 
annot easily be applied to veri�
ation.In systems with a large state spa
e, expli
it representations for the state graph 
an
ost too mu
h memory to be pra
ti
al for realisti
 systems. In [26, 52℄, a symboli
representation for the state graph is presented. This symboli
 representation is based onan ordered binary de
ision diagram [23℄. It represents logi
 fun
tions whi
h express tran-sition relations between states. OBDDs provide a 
anoni
al form for boolean fun
tionswhi
h is substantially more 
ompa
t, and very eÆ
ient algorithms have been developed formanipulating them. In [76℄, an impli
it method using multiterminal BDDs was des
ribed.Be
ause the symboli
 representation 
aptures some of the regularity in the state spa
e of
ir
uits, it 
an represent systems with an extremely large number of states [52℄. Althoughimpli
it methods are able to represent systems with large state spa
es, the exponential
omplexity of veri�
ation is still a serious problem.In a 
on
urrent system, su
h as an asyn
hronous 
ir
uit, di�erent pro
esses mayperform independently without any syn
hronizations. Events exe
uted 
on
urrently oftenlead to the same state. The exe
ution of 
on
urrent events is represented by an inter-leaving sequen
e where the events are arbitrarily ordered with respe
t to one another.Most veri�
ation approa
hes explore all possible interleaving sequen
es whi
h 
an resultin an extremely large state spa
e. In [37℄, a su

essful te
hnique based on partial orderredu
tion is presented to redu
e the number of states by 
onsidering only a subset ofthe possible interleavings between events whi
h is relevant to the property to be veri�ed.Stubborn sets [78℄ and unfolding [50℄ are based on a similar idea. These te
hniques aretargeted spe
i�
ally at veri�
ation, be
ause synthesis requires the information of the
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omplete state spa
e. In [83℄, the partial order redu
tion approa
h is extended to timedsystems. 1.2.6 Abstra
tionAlthough the state redu
tion te
hniques in the last se
tion are su

essful on some largesystems, many realisti
 systems are still too large to be handled. To redu
e the 
omplexityin
urred by state exploration, abstra
tion is ne
essary. In [4, 5, 68℄, safe approximations ofinternal signal behavior are presented to redu
e the state spa
e under 
onsideration, butthese methods su�er exponential 
omplexity in the number of memory elements. In VIS[19℄, non-determinism is used to abstra
t the behavior of some 
ir
uit signals. It is oftentoo 
onservative, and 
an introdu
e unrea
hable states whi
h may exhibit hazards. In [67℄,a model 
he
ker is proposed based on hierar
hi
al rea
tive ma
hines. By taking advantageof the hierar
hy information, it only tra
ks a
tive variables so that the state spa
e isredu
ed and veri�
ation time is improved. This approa
h, however, is best suited forsoftware whi
h has a more sequential nature. In [59℄, an abstra
tion te
hnique is proposedfor validation 
overage analysis and automati
 test generation. It removes all datapathelements whi
h do not a�e
t the 
ontrol 
ow and groups the equivalent transitionstogether, thus resulting in a dramati
 redu
tion in the state spa
e. It is diÆ
ult, however,to distinguish the 
ontrol from the datapath without help from the designers. In [45℄,an abstra
tion approa
h for the design of speed-independent asyn
hronous 
ir
uits from
hange diagrams is des
ribed. In this approa
h, ea
h sub
ir
uit is designed individually,and they are then re
ombined to produ
e the �nal 
ir
uit. This approa
h, however, doesnot address timing issues. In [66℄, Namjoshi and Kurshan des
ribe an algorithm whi
h
onstru
ts a �nite state \abstra
t" program from a possibly in�nite state \
on
rete"program by means of a synta
ti
 program transformation. It 
an be applied to in�nitestate programs or programs with large data paths, and it allows other redu
tion methodsto be applied for model 
he
king. However, the iterative transformation may not �nish.In [39℄, a divide-and-
onquer method for synthesis of asyn
hronous 
ir
uits is des
ribed.This method breaks the state graph for a given problem into a number of simpler modularsubgraphs for ea
h output. Ea
h modular subgraph is solved individually. The result ofthese small subgraphs are then integrated together 
ontributing to the solution to thegiven problem. Although this makes synthesis and veri�
ation easier, the quality of the�nal solution may depend on the order in whi
h the outputs are pro
essed. Also, this



11method generates a 
omplete state graph before it breaks the state graph, whi
h is highlyundesirable for large 
omplex designs. In [11℄, Belluomini des
ribed the veri�
ation ofdomino 
ir
uits using ATACS. She found out that verifying 
at 
ir
uits even of a moderatesize is too diÆ
ult to be done by ATACS, but with some hand abstra
tion, the veri�
ationis 
ompleted qui
kly. Although doing abstra
tion by hand is possible, it requires anexpert user and methods must be developed to 
he
k that the abstra
tions are a reliablemodel of the underlying behavior. This is the major motivation of this resear
h.1.3 ContributionsThis dissertation presents an automati
 abstra
tion te
hnique that is used to addressstate explosion problem in large designs. In timed 
ir
uit synthesis and veri�
ation, anenvironment needs to be provided to de�ne the input behavior that the 
ir
uit musthandle and output that the 
ir
uit should produ
e. During state spa
e exploration, allstates in
luding the states of the environment need to be found. Sin
e the fun
tion of anenvironment is to de�ne the interfa
e behavior for the 
ir
uit, the internal states of theenvironment have no impa
t on the bahavior of the 
ir
uit as long as the 
ommuni
ationbetween the 
ir
uit and its environment remains the same. Based on the this observation,the internal details of the environment 
an be abstra
ted away, and the state spa
e of the
ir
uit and its environment 
an be redu
ed substantially.When designing a 
ir
uit whose state spa
e is too large to be represented, the divide-and-
onquer method has to be used. In ATACS, a large 
ir
uit is partitioned into smallerblo
ks. For ea
h blo
k, the rest of blo
ks in the 
ir
uit and the environment for the whole
ir
uit be
ome the environment for the blo
k. After the partitioning, the blo
k and itsenvironment 
ontain the same amount of information that needs to be 
onsidered duringstate spa
e exploration as before. From the above dis
ussion, it is known that the internalstates of the environment 
an be abstra
ted away. By using stru
tural information, theinternal details of the environment for the blo
k 
an be identi�ed and removed. After theenvironment is simpli�ed, ea
h blo
k is synthesized or veri�ed. This pro
ess is applied toall blo
ks in the 
ir
uit. On
e the results for all blo
ks are available, they are integratedtogether to form the solution to the whole 
ir
uit. This idea 
an be illustrated by anexample shown in Figure 1.2. In Figure 1.2(a), a 
ir
uit has four 
omponents, ea
h has
onstrained interfa
e. Suppose we would like to design 
omponent M2, 
omponents M1,M3, M4 and the environment for the whole 
ir
uit E together be
ome the environment
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M2E_M2 (
)Figure 1.2. Illustration of modular design using abstra
tion.for M2 as shown in Figure 1.2(b). Sin
e M2 has a 
onstrained interfa
e, the environmentfor M2, E M2, 
ontains internal signals whose behavior has no impa
t on M2. Afterabstra
ting those signals away from the environment E M2 as shown in Figure 1.2(
),the 
omplexity for designing M2 
an be substantially redu
ed. The same pro
ess 
an berepeated for M1, M3 and M4. Although this approa
h does not solve the exponential
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omplexity inherent in the state spa
e exploration, it improves the speed and memoryusage of the design pro
ess by 
onverting a large exponential problem into a set of smallexponential sub-problems with a just little overhead for abstra
tion. This dissertation alsogives theorems that prove the 
orre
tness of the design using our abstra
tion te
hnique.This abstra
tion te
hnique is implemented in a 
ompiler [86℄ frontend to our timed 
ir
uitdesign tool ATACS and are applied to several examples. The results show that the designpro
ess with our abstra
tion te
hnique is not only orders of magnitude faster and morememory eÆ
ient, but also su

essful on orders of magnitude more 
omplex designs than
an be designed without using it.There are three major 
ontributions of this dissertation. The �rst 
ontribution is thetheorems that give the theoreti
al support for the modular synthesis and veri�
ation oftimed 
ir
uits using the abstra
tion te
hniques presented in this dissertation. The modu-lar synthesis theorem asserts that if ea
h blo
k of a system is synthesized 
orre
tly with anabstra
ted version of the given environment, the 
omposition of the results for all blo
ksis the 
orre
t solution to the whole system. Similarly, the modular veri�
ation theoremasserts that if ea
h blo
k of a system is veri�ed 
orre
tly with an abstra
ted version of thegiven environment, the whole system is also 
orre
t. The su

essful appli
ation of thesetheorems is supported by safe transformations that redu
e the 
omplexity of a designwhile preserving its behavior.The se
ond 
ontribution is the abstra
tion te
hnique that is applied to the TELstru
tures. Sin
e the state spa
e of a design grows exponentially in size of a design,it is easier to use a divide-and-
onquer approa
h to solve a 
omplex design problem. Theabstra
tion presented in this dissertation 
an aid designers to partition a 
ir
uit intoblo
ks with manageable sizes, 
hoose a blo
k for synthesis and veri�
ation, group the restof blo
ks and the environment for the whole 
ir
uit together as the environment for thesele
ted blo
k, and then identify the don't-
are information for the blo
k using spe
i�edhierar
hi
al information.The third 
ontribution of this dissertation is the safe net redu
tions and redundantrule 
he
ks used by abstra
tion to remove the identi�ed don't-
are information in theenvironment while preserving the behavioral semanti
s of the blo
k. These te
hniquesredu
e the design 
omplexity of the blo
k by removing the part of the environmentspe
i�
ation whi
h does not a�e
t the operation of the blo
k. These te
hniques havebeen proved to be safe a

ording to the de�nition of safe transformations. Combination



14of abstra
tion and safe transformations 
an make the design pro
ess mu
h faster andmore memory eÆ
ient than designing the 
at system.1.4 Dissertation OutlineThis dissertation is organized as follows: Chapter 2 gives an overview of the spe
-i�
ation method used in ATACS and its behavioral semanti
s. In ATACS, spe
i�
ationsin VHDL or THSE are 
ompiled to TEL stru
tures to spe
ify the 
ir
uit behavior, andtimed tra
e theory is used as the semanti
s. This 
hapter serves as the groundwork forthe rest of this dissertation.Chapter 3 de�nes the 
orre
tness of synthesis and veri�
ation, and safe transforma-tions. This 
hapter also presents hierar
hi
al synthesis and veri�
ation theorems whi
hare mathemati
ally proved. The signi�
an
e of these theorems is that any design pro
essusing the abstra
tion in this dissertation is 
orre
t.Chapter 4 des
ribes the abstra
tion te
hniques. After a blo
k is 
hosen for synthesis orveri�
ation, this 
hapter des
ribes how abstra
tion identi�es the don't-
are informationfor the blo
k by taking advantage of the stru
tural information given in a spe
i�
ation.The abstra
tion te
hnique for TEL stru
tures with levels is di�erent from that for TELstru
tures without levels. In this 
hapter, safe abstra
tion is de�ned to handle levels.Sin
e the don't-
are information does not a�e
t the behavior of the blo
k, it isne
essary to remove it to redu
e the 
omplexity of designing the blo
k. Chapter 5des
ribes several safe net redu
tion te
hniques that remove the don't-
are informationwhile preserving the behavioral semanti
s of the blo
k. Chapter 6 des
ribes te
hniquesto un
over and remove redundant rules in a TEL stru
ture.Chapter 7 gives experimental results using the te
hniques presented in this disserta-tion. The 
omparison between the abstra
tion te
hnique and the traditional 
at designapproa
h is also given in this 
hapter.Chapter 8 summarizes this dissertation, and dis
usses the future work and the ne
es-sary improvement on our abstra
tion te
hnique.



CHAPTER 2CIRCUIT SPECIFICATIONS ANDSEMANTICSSpe
i�
ation methods of timed 
ir
uits 
an be loosely divided into two groups: hard-ware des
ription language (HDL) methods and graphi
al representations. HDL spe
-i�
ations are expressive in des
ribing large and 
omplex systems with a modular andhierar
hi
al stru
ture, while graphi
al representations are preferred during timing analysisand synthesis. Therefore, 
ombining the two approa
hes provides an easy way to des
ribelarge and 
omplex systems while the 
ommon timing analysis and synthesis algorithms
an still be applied to optimize the 
ir
uit implementations. In [86℄, a new 
ompilerfrontend to ATACS is des
ribed. This 
ompiler a

epts inputs in VHDL or THSE, and
ompiles them into a graphi
al representation, the timed event/level (TEL) stru
ture [8℄.The behavioral semanti
s of a TEL stru
ture is de�ned by using tra
e theory [34℄. Inthis 
hapter, the �rst se
tion gives an overview of the spe
i�
ation languages, namely,THSE and the synthesizable subset of VHDL. TEL stru
tures are des
ribed in the nextse
tion. The third se
tion gives a brief overview of the 
ompilation pro
edure from a timedspe
i�
ation to a TEL stru
ture. The fourth se
tion des
ribes the behavioral semanti
sof TEL stru
tures, namely, timed tra
e theory. The last se
tion des
ribes how to derivea tra
e stru
ture from a TEL stru
ture.2.1 Timed Spe
i�
ationsThe �rst step in any design method is to spe
ify what is to be built. This se
tion givesan overview of the syntax of THSE and a synthesizable subset of VHDL. Both languagesallow a bounded timing 
onstraint asso
iated with ea
h signal transition.2.1.1 Timed Handshaking ExpansionsA system 
an be spe
i�ed stru
turally, behaviorally, or in a mixed manner. In TimedHandshaking Expansion (THSE), modules are the basi
 
omplete stru
tures to spe
ify



16module ) module ID; de
larations stmts endmodulede
larations ) de
larations sigde
l j sigde
lsigde
l ) type ID = finitial; delayg;stmts ) stmts stmt j stmtstmt ) 
mpt stmt j pro
ess j gate j 
onstraint
mpt stmt ) ID ID(asso
 list)asso
 list ) asso
 list; ID => ID j ID => IDpro
ess ) pro
ess ID; 
ommands endpro
essinitial ) true j falsedelay ) hINT; INT; INT; INTi j hINT; INTi
ommands ) 
ommands ; 
mnd j 
ommands k 
mnd j 
mnd
mnd ) a
tion j sele
tion j repetitionFigure 2.1. Modules, signal de
larations, 
omponents and pro
esses.a system. The syntax of a subset of THSE is shown Figure 2.1. A module is 
omposedof two parts: a set of signal de
larations and a set of 
on
urrent statements exe
uting inparallel. Ea
h de
laration 
onsists of a type (either input or output), a signal name,an initial value (either true or false), and a bounded delay asso
iated with transitionson that signal. A delay is given in a form: hlr; ur; lf ; uf i where lr and ur are the lowerand upper bounds on a rising transition and lf and uf are the lower and upper boundson a falling transition. If the delay is given in a form: hlr; uri, the delays are equal onrising and falling transitions. The lower bounds are non-negative integers and the upperbounds are an integer greater than or equal to the lower bound or 1.There are four kinds of 
on
urrent statements: pro
esses, gates, 
onstraints, and
omponent statements. Pro
esses are used to spe
ify the behavior of a system. A pro
ess
onsists a set of 
ommands. The 
ommands in the body of a pro
ess in
lude a
tions,sele
tion 
ommands, and repetition 
ommands. Commands 
an be exe
uted in sequen
e(denoted C1;C2) or in parallel (denoted C1 k C2). The a
tions are used to assign valuesto the output signals. Signals 
an only take two values: true and false. There are twoa
tions asso
iated with ea
h signal x: x+ denotes that signal x 
hanges from a low tohigh value, and x� denotes that x 
hanges from a high to low value. The language alsoin
ludes a skip a
tion that does nothing and terminates immediately.Sele
tions and repetitions are used to 
ontrol the 
ow of pro
esses. A sele
tion
ommand has the following form:



17[G1 ! S1 j � � � j Gn ! Sn℄where G1 through Gn are boolean expressions, S1 through Sn are sequen
es of 
ommands(Gi is 
alled a \guard", and Gi ! Si is 
alled a \guarded 
ommand"). The guard Giof a guarded 
ommand is a boolean expression over a set of a
tions or signal values. Thea
tions in this expression 
an be 
omposed 
onjun
tively (denoted e1 & � � � & en) inwhi
h the expression evaluates to true when all a
tions in the set has o

urred. Mutuallyex
lusive a
tions 
an be 
omposed disjun
tively (denoted e1 j � � � j en) in whi
h theexpression evaluates to true when exa
tly one a
tion in the set has o

urred. The guardmay in
lude a 
ombination of 
onjun
tive and disjun
tive 
lauses. The guard 
an alsobe a skip a
tion whi
h evaluates to true immediately. If the expression is 
omposedof signal values, s or :s, the guard evaluates to true when the signal s is high or low,respe
tively. Signals in the expression 
an also be 
omposed 
onjun
tively, disjun
tively,or in a 
ombination of both. A guard 
an simply be true. There is a subtle di�eren
ebetween a guard 
omposed of a
tions and a guard 
omposed of levels disjun
tively. If
omposed of levels disjun
tively, the expression evaluates to true when one or more levelsevaluate to true. Signal levels in a disjun
tive expression are not mutually ex
lusive whilea
tions must be. For example, the guard 
ommand [a+ j b+! 
+℄ spe
i�es that 
+ 
ano

ur only after either a+ or b+ has o

urred, but not both, while the guard 
ommand[a j b! 
+℄ spe
i�es that 
+ 
an o

ur after the value of either a or b, or both are high.When a pro
ess exe
utes a sele
tion 
ommand, all guards in that sele
tion 
ommandare evaluated �rst. If one of the guards, Gi, is true, then a sequen
e of 
ommands, Si,following that guard is exe
uted. If multiple guards evaluate to true, only one guard is
hosen nondeterministi
ally. There is a spe
ial form of sele
tion 
ommand, [G℄, whi
hstands for [G ! skip℄, and is used to suspend the exe
ution of a pro
ess until G evaluatesto true.A repetition 
ommand has the following form:�[G1 ! S1 j � � � j Gn ! Sn℄During exe
ution, one of the guarded 
ommands is 
hosen for exe
ution, then the 
ontrolloops ba
k to the beginning of this 
ommand. If none of the guards evaluates to true, theexe
ution of this 
ommand terminates and the 
ontrol goes to the next 
ommand. Thereis a shorthand of this repetition 
ommand: �[S℄ that stands for �[true ! S℄ where S is



18module emptystage;input xtin;input xfin;input a
kin;output xt = fh100; 200ig;output xf = fh100; 200ig;output a
k = ftrue; h100; 200ig;pro
ess datastage;�[[xtin+! xt+ j xfin+! xf+℄ : [a
kin�℄ :[xtin� ! xt� j xfin�! xf�℄ : [a
kin+℄℄endpro
esspro
ess a
kstage;�[[xt+ j xf+℄ : a
k� : [xt� j xf�℄ : a
k+℄endpro
essendmoduleFigure 2.2. The THSE 
ode for a single empty STARI stage.a sequen
e of 
ommands. This 
ommand 
auses S to be exe
uted forever. This is usuallyused to de�ne a rea
tive pro
ess:�[[G1 ! S1 j : : : j Gn ! Sn℄℄When exe
uting this 
ommand, the pro
ess waits until one of the guards is true, thenexe
utes the 
ommands following that guard, and repeats. Another type of repetition
onstru
t is shown below: [G1 ! S1 j : : : j Gn ! Sn; �℄The operation of this 
onstru
t is similar to that of the sele
tion de�ned above ex
eptthat after a guarded 
ommand followed by a '�' is exe
uted, the 
ontrol loops ba
k to thebeginning of the sele
tion 
ommand. Otherwise, the 
ontrol goes to the next 
ommand.Figure 2.2 shows an example to illustrate how to use the language 
onstru
ts to spe
ifya 
ir
uit. The module in the example spe
i�es that the 
ir
uit has three input signals andthree output signals. It also 
ontains two pro
esses to de�ne the behavior of the 
ir
uit.Besides pro
esses, a module 
an also 
ontain a set of gate and 
onstraint statements.Gates are used to des
ribe the behavior of a system at the gate-level. A gate statementhas the following form: gate ID;G1 ! x+G2 ! x�endgate



19module emptystage;input xtin;input xfin;input a
kin;output xt = fh100; 200ig;output xf = fh100; 200ig;output a
k = ftrue; h100; 200ig;gate 
t;a
kin & � xtin! xt+� a
kin & � xtin! xt�endgategate 
f ;a
kin & xfin! xf+� a
kin & � xfin! xf�endgategate a
k;xt j xf ! a
k�� xt & � xf ! a
k+endgateendmoduleFigure 2.3. The gate-level THSE 
ode for a single empty STARI stage.G1 and G2 are boolean expressions over a set of signal values. G1 and G2 de�nes the
onditions when signal x 
an go high and low, respe
tively. Figure 2.3 shows the gate-levelspe
i�
ation for the 
ir
uit shown in Figure 2.2. A gate statement is de�ned for ea
houtput signal. For example, in gate statement 
t, signal xt goes high when the value ofa
kin is high and value of xtin is low. xt goes low when the value of both a
kin and xtinis low.Constraint statements are used to de�ne timing properties among signals that are usedfor veri�
ation. A 
onstraint statement has the following form:
onstraint ID;G! hINT; INTi a
tionend
onstraintG 
an be a single a
tion or a boolean expression over a set of signal values. The twointegers de�ne a lower and upper bound when a signal event is required to o

ur afteranother event has o

urred or the boolean expression of G has evaluated to true. Thesetwo integers are optional. In su
h 
ase, they are assumed to be 0 and 1.The 
omponent statements are used to spe
ify the inter
onne
tion of the 
omponents,and provide a way to modulize the design and to manage the design 
omplexity. This



20module stari;input 
lk = fh1200; 1200ig;input a
k3 = ftrue; h0; 100ig;input x0t = fh0; 100ig;input x0f = fh0; 100ig;efstage stage1(xtin => x0t; xfin => x0f; a
kin => a
k2;xt => x1t; xf => x1f; a
k => a
k1);fullstage stage2(xtin => x1t; xfin => x1f; a
kin => a
k3;xt => x2t; xf => x2f; a
k => a
k2);pro
ess 
lk;�[
lk+; 
lk�℄endpro
esspro
ess left;�[[
lk+℄ : [skip! x0t+; [
lk�/1℄; x0t�jskip! x0f+; [
lk�/1℄; x0f�℄℄ :endpro
esspro
ess right;�[[
lk+℄ : a
k3� : [
lk�℄ : a
k3+℄ :endpro
ess
onstraint notfull1;a
k1 +�! x0t+end
onstraint
onstraint notfull2;a
k1 +�! x0f+end
onstraint
onstraint notempty1;x2t+�! a
k3�end
onstraint
onstraint notempty2;x2f +�! a
k3�end
onstraintendmodule Figure 2.4. The THSE 
ode for a 2-stage STARI.language 
onstru
t is new sin
e [86℄. A 
omponent is an instan
e of a module. A
omponent statement 
onsists of a label, a type (i.e. module name) and an asso
iation listwhi
h 
onne
ts the inputs and outputs of the 
omponent to the signals in the module. A
omponent statement renames the signals de
lared in the 
omponent to the 
orrespondingsignals in the asso
iation list. The asso
iation list of a 
omponent statement 
onsists ofall input signals and a subset of output signals de
lared in the 
orresponding module.The output signals not on the asso
iation list are internal to the module.Figure 2.4 shows the THSE spe
i�
ation for a 
ir
uit that 
onsists of 2 stages. There



21are two 
omponents in the module that spe
i�es the stru
ture of the 
ir
uit. The twopro
esses spe
ify the environment of the 
ir
uit. The 
onstraints spe
ify the timingproperties that this 
ir
uit must satisfy. For example, 
onstraint a
k1+! x0t+ spe
i�esthat signal x0t 
an go high only after a
k1 goes high. If this 
onstraint is not sati�ed,the 
ir
uit is not 
orre
t.2.1.2 A Synthesizable Subset of VHDLThe 
omplete VHDL language 
ontains many 
ompli
ated language 
onstru
ts thatare not synthesizable in ATACS. This se
tion introdu
es a synthesizable subset of VHDLto spe
ify timed 
ir
uits.The des
ription of a system 
an be divided into two parts: the external view and theinternal view. The external view des
ribes the interfa
e between the internal stru
tureand the outside world. It spe
i�es the number and types of the input and output signals.The internal view des
ribes how the 
ir
uit implements its fun
tion. In VHDL, an entitydes
ribes the external interfa
e, and one or more ar
hite
ture bodies des
ribe alternativeinternal implementations.The syntax rules for entities and ar
hite
ture bodies are shown in Figure 2.5. Theidenti�er in an entity de
laration names the module so that it 
an be referred to later.The port 
lause, whi
h is optional, names ea
h of the ports, whi
h together form theinterfa
e to the entity. The ports 
an be thought of as being analogous to the pins of a
ir
uit. Ea
h port of an entity has a type, whi
h spe
i�es the kind of information that
an be 
ommuni
ated. In this subset, the allowed data types are bit and std logi
. Ea
hport also has a mode whi
h spe
i�es whether information 
ows into or out of the entitythrough the port. If the mode of a port is in, it means that the port 
an only read theinformation. If the mode is out, it means that the port 
an only output the informationgenerated by the 
ir
uit. If the mode is inout, it means that the information 
an be bothread and output by the port.The internal operation of a module is des
ribed by an ar
hite
ture body. In general, anar
hite
ture body applies some operations to the values on input ports, generating valuesto be assigned to output ports. The operations 
an be des
ribed either by pro
esses,whi
h 
ontain sequential statements operating on values, or by a 
olle
tion of 
omponentsrepresenting sub
ir
uits, or by both. The identi�er in an ar
hite
ture body names aparti
ular ar
hite
ture body, and the entity name spe
i�es whi
h module is des
ribed bythis ar
hite
ture body. A single entity may have one or more di�erent ar
hite
ture bodies.



22entity de
laration ) entity ID is[port(interfa
e list); ℄end [entity ℄ [ID℄;interfa
e list ) (IDf; : : :g : [mode℄ type [:= expression℄)f; : : :gmode ) in j out j inoutar
hite
ture body ) ar
hite
ture ID of entity ID isde
larationsbegin
on
urrent stmtsend [ar
hite
ture℄ [ID℄;de
larations ) signal de
larations j 
omponent de
larations
on
urrent stmts ) pro
ess stmt j 
omponent stmtFigure 2.5. The syntax rules for entities and ar
hite
ture bodies.The de
larations in an ar
hite
ture body in
lude signals and 
omponent de
larations. Thestatements in the ar
hite
ture body exe
ute 
on
urrently. In this synthesizable subset,pro
ess statements and 
omponent instantiation statements are allowed in an ar
hite
turebody.The syntax for signal and 
omponent de
larations is shown in Figure 2.6. The signalde
larations are used to spe
ify signals used in an ar
hite
ture and their attributes. Ea
hsignal de
laration 
onsists of a set of signal names, their data type, and an optionalinitial value. Signals de
lared in the entity of an ar
hite
ture are also visible inside thear
hite
ture body and are used in the same way as signals de
lared in the ar
hite
ture.To synthesize a timed 
ir
uit, it is ne
essary to know how its environment behaves.The signals that 
onne
t the outputs of the environment to the inputs of the 
ir
uit arenot synthesized. These signals are labeled by atta
hing a symbol \���in" at the end ofthe de
larations of those signals. This symbol is re
ognized by the ATACS synthesis enginebut ignored by the simulator. This symbol is only used in the top level that 
ontains thespe
i�
ations for the whole 
ir
uit and the environment.When designing a large and 
ompli
ated system, a hierar
hi
al approa
h is a goodway to atta
k 
omplexity. In this VHDL subset, 
omponent de
larations and 
omponentinstantiation statements are used for hierar
hi
al design. The syntax of 
omponent de
-larations is shown in Figure 2.6. Similar to entity de
larations, a 
omponent de
larationsimply spe
i�es the external interfa
e to the 
omponent.



23signal de
larations ) signal ID f; � � �g : type [:= expression℄;
omponent de
laration ) 
omponent ID [is℄port(interfa
e list);end [
omponent℄ [ID℄;Figure 2.6. The syntax rules for signal and 
omponent de
larations.
omponent stmt ) [instantiation label :℄[
omponent℄ 
omponent nameportmap (asso
iation list);pro
ess stmt ) [pro
ess label :℄ pro
ess [is℄variable de
larationsbeginsequential stmtsend pro
ess [pro
ess label℄;Figure 2.7. The syntax rules for 
on
urrent statements.Con
urrent statements in an ar
hite
ture body are exe
uted in parallel. A pro
essspe
i�es the behavior of a system, and a 
omponent instantiation statement spe
i�es theinter
onne
tion between a sub
ir
uit and the rest of the ar
hite
ture body. The syntaxrules for pro
ess and 
omponent instantiation statements are shown in Figure 2.7.If a 
omponent is used in an ar
hite
ture, it must be de
lared �rst, and instantiatedby a 
omponent instantiation statement. A 
omponent instantiation statement spe
i�esa usage of su
h a module in a design. The syntax rules show that we may simply namea 
omponent de
lared in the ar
hite
ture body and provide a
tual signals to 
onne
t itto the ports in the entity. When the statement is used, all signals in the 
omponentare renamed to the 
orresponding a
tual signals in the asso
iation list. The label isne
essary to identify the 
omponent instan
e. A pro
ess statement 
onsists of a set ofvariable de
larations and sequentially exe
uted statements. The variable de
larations ina pro
ess spe
ify attributes of variables. Variable are only used in the pro
esses spe
ifyingnondeterministi
 behavior of an environment. They are not synthesizable in ATACS. Apro
ess 
ontains a set of sequential statements in
luding guard, assign, if, and while loopstatements. When the pro
ess is a
tivated, it starts exe
uting from the �rst sequential



24sequential stmts ) sequential stmts; stmtstmt ) if stmt j loop stmt j guard j assignif stmt ) if boolean expression thensequential stmtselsif boolean expression thensequential stmtselsesequential stmtsendif ;loop stmt ) while boolean expression loopsequential stmtsendloop;guard ) guard (G1; G2);j guard or (G1; � � � ; G2);j guard and (G1; � � � ; G2);assign ) assign(assign stmtf; � � �g);assign stmt ) ID; expression; INT; INTFigure 2.8. The syntax rules for sequential statements.statement and 
ontinues until it rea
hes the last one. It then starts again from the�rst one. This would be an in�nite loop, and is desirable in ele
troni
 
ir
uits be
ause
ir
uits typi
ally operate 
ontinuously until the power is shut down. The syntax rules forsequential statements are shown in Figure 2.8.An if statement 
onsists of a set of if bran
hes and an else bran
h. Ea
h if bran
h 
on-tains a boolean expression over a set of signal values and a set of sequential statements. Ifone of expressions evaluates to true, the following statements are exe
uted. If expressionsof multiple bran
hes evaluate to true, the �rst bran
h in the statement is 
hosen. If noneof the expressions evaluates to true, the statements in the else bran
h are exe
uted. Awhile loop statement is used to des
ribe a pie
e of repetitively exe
uted program. A whileloop statement 
onsists of a boolean expression and a set of sequential statements. Ifthe expression evaluates to true, the statements in the while loop statement are exe
utedrepetitively until the expression evaluates to false. The expression 
an simply be a truethat 
auses the while loop statement to exe
ute in�nitely.Guard and assign are two pro
edures that 
ome from the handshake pa
kage devel-



25oped for ATACS. The pro
edure guard(s; v) takes a signal, s, and a value, v, and stallsa pro
ess until the signal s has taken the value v. The VHDL 
ode that implementsguard(s; v) is as follows: if (s /= v) thenwait until s = v;endifIn VHDL, a wait statement stalls the pro
ess until the expression s = v be
omes true.However, if the expression is true when the wait is exe
uted, the pro
ess stalls untilthe expression goes false and be
omes true again. This 
an 
ause a system to deadlo
k.To address this problem, the expression is 
he
ked before the exe
ution of the waitstatement to make sure that the wait is ignored if the expression is true. The pro
edureguard or(s1; v1; s2; v2; � � �) takes a set of signals and values and stalls a pro
ess until somesignal si has taken value vi. Similarly, the pro
edure guard and(s1; v1; s2; v2; � � �) takesa set of signals and values and stalls a pro
ess until all signals si have taken value vi.The pro
edure assign(s; v; l; u) takes a signal, s, a value, v, a lower bound of delay, l,and an upper bound of delay, u, and 
hanges the value of the signal s to v after after arandom delay between l and u. This is a truly sequential statement in that the statementfollowing an assign pro
edure 
an exe
ute only after the signal event 
reated by theassign pro
edure has o

urred. The assign pro
edure also allows parallel assignments.For example, assign(s1; v1; l1; u1; s2; v2; l2; u2) 
hanges the values of s1 and s2 to v1 andv2 in parallel. 2.2 Timed Event/Level Stru
turesTimed event/level (TEL) stru
tures are a variant of Myers' timed event-rule (ER)stru
tures [63℄ with a boolean 
ondition added to ea
h rule in the rule set. Eventstru
tures were introdu
ed by Winskel [82℄, and timing has been added to them in severalways. Subrahmanyam added timing to event stru
tures using temporal assertions [72℄.Burns introdu
ed timing in a deterministi
 version, the event-rule (ER) system, in whi
h
ausality is represented using a set of rules, and a single delay value is asso
iated with ea
hrule [27℄. Myers introdu
ed timed ER stru
tures that extend ER systems with boundedtiming 
onstraints and add 
on
i
ts from event stru
tures to model nondeterministi
behavior (namely, environmental 
hoi
e). TEL stru
tures, introdu
ed by Belluomini [8℄,extend timed ER stru
tures by asso
iating a boolean expression with ea
h rule.
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ture is given below in whi
h N = f0; 1; 2; 3; : : :g:De�nition 2.2.1 A timed event/level stru
ture is N = h�; A;E;R;#; S0i where1. � is the set of signals;2. A � �� f+;�g is the set of atomi
 a
tions;3. E � A�N [ f$g is the set of events;4. R � E �E �N � (N [ f1g) � z : f0; 1gN ! f0; 1g) is the set of rules;5. # � E �E is the 
on
i
t relation;6. S0 = f0; 1gN �R� (R! Q) is the initial state.A TEL stru
ture 
an also be expressed as a dire
ted 
y
li
 graph where the nodes in thegraph are the 
orresponding events in the TEL, and the edges are the rules in the rule setof the TEL. Ea
h edge is labeled by a timing 
onstraint and level for the 
orrespondingrule. Also in this dissertation, an edge may be labeled by a unique identi�er that is usedto represent the 
orresponding rule in the explaination. The des
ription of 
on
i
ts isgiven later in this se
tion.In timed systems, the signal set, �, 
ontains all input, output, and internal wires inthe spe
i�
ation. The atomi
 a
tion set, A, 
ontains a rising transition and a fallingtransition for ea
h signal x 2 �, denoted by x+ and x�, respe
tively. The o

urren
e ofan a
tion is an event, and it is denoted (a; i) where a is the a
tion and i is an o

urren
eindex for the a
tion. The �rst instan
e of this a
tion has i = 0, and i in
rements with ea
hsubsequent instan
e. There is also a spe
ial kind of events: a sequen
ing event startingwith '$'. Sequen
ing events do not represent any signal value 
hanges in a system. Theyare pla
e holders for timing information and boolean level evaluations. In the early stageof the VHDL 
ompiler development [86℄, the introdu
tion of sequen
ing events is for the
onvenien
e of 
ompilation. During abstra
tion, sequen
ing events are 
reated to repla
ethe don't-
are events in a system. The don't-
are events are de�ned in a later 
hapter.Sin
e sequen
ing events 
ause no signal value 
hange in a system, they should be removed,whenever possible, to redu
e the 
omplexity of the design problem to be solved. Removalof sequen
ing events is a 
ru
ial step for abstra
tion to be su

essful, as des
ribed in alater 
hapter.The rule set, R, is used to represent a 
ausal dependen
e between two events. Ea
h ruleof the form he; f; l; u; zi is 
omposed of an enabling event e 2 E, an enabled event f 2 E,a bounded timing 
onstraint hl; ui where l 2 N and u 2 N [ 1, and a sum-of-produ
t
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r1 r2

ba

fFigure 2.9. An example of 
onjun
tive 
ausality.boolean expression z over the signals in the signal set N . Note that z is not shown in a ruleif the value of z is true. Given a rule r = he; f; l; u; zi, enabling(r) = e, enabled(r) = f ,lower(r) = l, upper(r) = u and level(r) = z. For an event e 2 E, the preset ofe (denoted �e) is the set of rules where e is the enabled event (i.e., enabled(r) = efor all r 2 �e), and the postset of e (denoted e�) is the set of rules where e is theenabling event (i.e., enabling(r) = e for all r 2 e�). The size of the preset of an evente (denoted size(�e)) is the number of rules in �e. Similarly, the size of the postset ofan event e (denoted size(e�)) is the number of rules in e�. For an event e 2 E, theenabling set of e is the set of events that are the enabling events of the rules in thepreset of e (i.e., enabling set(e) = ft = enabling(r) j r 2 �eg), and the enabled setof e is the set of events that are the enabled events of the rules in the postset of e (i.e.,enabled set(e) = ft = enabled(r) j r 2 e�g). A rule r is enabled if enabling(r) has�red and level(r) evaluates to true in the 
urrent state. A timer is assigned to ea
hrule when it be
omes enabled. timer(r) is initialized to zero when r is enabled. Alltimers of enabled rules in
rease uniformly. The bounded timing 
onstraint hl; ui pla
esa lower and upper bound on the timing of a rule. A rule r is said to be satis�ed if ris enabled and timer(r) � lower(r). A rule r is said to be expired if r is enabled andtimer(r) � upper(r). Ignoring 
on
i
ts, an event e 
annot o

ur until r is satis�ed forall r 2 �e. This 
ausality requirement is termed 
onjun
tive. An event e must always�re before every r 2 �e is expired. Sin
e an event may be enabled by multiple rules, it ispossible that the di�eren
e in time between the enabled event and some enabling eventsex
eed the upper bound of their timing 
onstraints, but not for all enabling events. Thesetiming 
onstraints are the same as max 
onstraints [51℄ and type 2 ar
s [80℄. Figure 2.9shows an example that expresses this 
onjun
tive 
ausality where 
 is enabled by tworules r1 and r2. Given a rule r = he; f; l; u; zi, EFT(f  r) and LFT(f  r) indi
ate theearliest and latest �ring time of f de
ided by r, and they are de�ned as follows:EFT(f  r) = tr + l and LFT(f  r) = tr + u
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l1 u1[ , ] l2 u2[ , ]

ba
a # b

f

a

b c
b # c

l1 u1[ , ] l2 u2[ , ](a) (b)Figure 2.10. Examples of 
on
i
t pla
es for disjun
tive 
ausality and 
on
i
t outputs.where tr is the time when r be
omes enabled. If an event f is enabled by multiplerules, for example, r1 = ha; f; l1; u1; z1i and r2 = hb; f; l2; u2; z2i, EFT(f  r1; r2) andLFT(f  r1; r2) are the earliest and latest �ring time of f de
ided by r1 and r2, and theyare de�ned as follows:EFT(f  r1; r2) = max(tr1 + l1; tr2 + l2)LFT(f  r1; r2) = max(tr2 + u1; tr2 + u2)where tr1 and tr2 are the times when r1 and r2 be
ome enabled.There are two possible semanti
s 
on
erning the enabling of a rule. In one semanti
s,referred to as non-disabling semanti
s, on
e a rule be
omes enabled, it 
annot lose itsenabling due to a 
hange in the state. In the other semanti
s, referred to as disablingsemanti
s, a rule 
an be
ome enabled and then lose its enabling. This 
an o

ur whenanother event �res, resulting in a state where the boolean fun
tion is no longer true.A single spe
i�
ation 
an in
lude rules with both types of semanti
s. Non-disablingsemanti
s are typi
ally used to spe
ify environment behavior and disabling semanti
s aretypi
ally used to spe
ify logi
 gates. For the purposes of veri�
ation, the disabling ofa boolean expression on a disabling rule is assumed to 
orrespond to a failure, sin
e it
orresponds to a glit
h on the input to a gate.The 
on
i
t relation in # is added to model disjun
tive behavior and 
hoi
e. Whentwo events e and e0 are in 
on
i
t (denoted e#e0), this spe
i�es that either e 
an o

ur ore0 
an o

ur, but not both. Taking the 
on
i
t relation into a

ount, if two rules have thesame enabled event and 
on
i
ting enabling events, then only one of the two mutuallyex
lusive enabling events needs to o

ur to 
ause the enabled event. This models a form
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tive 
ausality. Choi
e is modeled when two rules have the same enabling eventand 
on
i
ting enabled events. In this 
ase, only one of the enabled events 
an o

ur.Figure 2.10 shows an example of disjun
tive 
ausality and an example of 
hoi
e. The
ir
les in the �gure, similar to the pla
es in Petri nets, are 
on
i
t pla
es whi
h represent
on
i
ts among events. The events in the preset and postset of a pla
e are in 
on
i
t. The
on
i
t pla
es are just for notational 
onvenien
e. If it is impossible to display 
on
i
tsusing 
on
i
t pla
es, we label the 
on
i
ts using text in �gures. The 
on
ept of 
on
i
tpla
es 
an be extended to single rules. We say that a single rule has a 
on
i
t pla
eimpli
itly. For example, if an event e has two rules in its preset, and their enabling eventsare in 
on
i
t, then there is only one 
on
i
t pla
e in the preset of e. If the enablingevents of the rules are not in 
on
i
t, we say that there are two 
on
i
t pla
es in thepreset of e. This 
on
ept is used when analyzing safe net redu
tions in Chapter 5.If an event e is enabled by multiple rules and there are 
on
i
ts in enabling set(�e),we de�ne a 
on
i
t-free set 
fs(�e) to be the maximum subset of �e su
h that there is no
on
i
ts among the enabling events of the rules in 
fs(�e). �e 
an be divided into severaldi�erent 
on
i
t-free sets. Firing e requires that all rules in a 
on
i
t-free set are satis�ed.EFT and LFT 
an be extended to re
e
t the 
on
i
ts, 
orrespondingly. Suppose an evente is enabled by r1 = ha; e; l1; u1; z1i, r2 = hb; e; l2; u2; z2i, and r3 = h
; e; l3; u4; z4i. Also,a and 
 are in 
on
i
t. Therefore, e has two 
on
i
t-free sets in its preset: 
fs1(�e) =fr1; r2g and 
fs2(�e) = fr2; r3g. EFT(f  r1; r2; r3) and LFT(f  r1; r2; r3) are de�nedas follows: EFT(y  r1; r2; r3) = � max(tr1 + l1; tr2 + l2) if a and b �remax(tr2 + l2; tr3 + l3) if b and 
 �reLFT(y  r1; r2; r3) = � max(tr1 + u1; tr2 + u2) if a and b �remax(tr2 + u2; tr3 + u3) if b and 
 �rewhere tr1 , tr2 , and tr3 are the time of when r1, r2, and r3 be
ome satis�ed.A state S of a TEL stru
ture N is a three-tuple hs;M; timeri, where s = f0; 1g� is thestate bitve
tor of logi
 values of all signals inN ,M is the marking, and timer is a fun
tionR ! Q. A marking M � R where all rules r 2 M are marked. S0 = hs0;M0; timer0i isthe initial state of N , where the signal values in the initial bitve
tor s0 are determined inthe spe
i�
ation, the initial markingM0 
ontains all rules whi
h are initially enabled, andtimer0(r) = 0 for all r 2 R. An event e is enabled to �re in a state S if a 
fs(�e) � Mand r is satis�ed for all r 2 
fs(�e). enabled(S) is the set of all events whi
h are enabledto �re in the state S. The states of N 
hange if either time passes or an event �res. In
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a b

c

[2,5] [3,10]<z>CFigure 2.11. Example of a 
onstraint rulestate S = hs;M; timeri, time � 
an pass if for ea
h e 2 enabled(S), there is at least oner 2 �e su
h that timer(r) + � � upper(r). The state resulting from passing time � in Sis S0 = hs0;M 0; timer0i, where1. s0 = s,2. timer0(r) = timer(r) + � for all r 2M 0.If e 2 enabled(S) where S = hs;M; timeri, �ring e leads the system to the next state.After �ring e, the state 
hanges to S0 = hs0;M 0; timer0i, where1. s0 = s after the 
orresponding signal value in s is 
hanged,2. M 0 = (M � �e) [ e�, and3. timer0(r) = 0 for all r 2 e�.A TEL stru
ture, N , is safe if every rule in N has at most one token in any rea
hablemarking. In a marking M , if a rule r has a token, we say that r 2M . If r does not havea token, r 62M . The safeness of N 
an be expressed as follows:(M � �e) \ e� = ;A TEL stru
ture, N , is live if from every rea
hable marking, there exists a sequen
e ofevents su
h that any event 
an �re.Timing properties of a system are spe
i�ed using a set of 
onstraint rules: C � E �E � N � (N [ f1g) � (b : f0; 1gN ! f0; 1g). These 
onstraint rules are similar to the
onstraint pla
es des
ribed by Roki
ki in [69℄. Constraint rules never a
tually enable anevent to �re. Instead, the 
onstraint rules are 
he
ked ea
h time an event �res in a state.Failures 
aused by 
onstraint rules arise due to following three 
onditions:1. There exists a 
onstraint rule r 2 �e su
h that r 62M when �ring e.2. timer(r) is not satis�ed for any 
onstraint rule r 2 �e when �ring e.3. timer(r) is expired for any 
onstraint rule r 2 �e before �ring e.
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Figure 2.12. The TEL stru
ture of a single stage STARI.Figure 2.11 shows a TEL stru
ture fragment whi
h 
ontains a 
onstraint rule. Thisrule requires that the TEL stru
ture must meet a number of requirements. The �rstrequirement is that 
 must �re no more than 10 time units after the rule hb; 
; 3; 10; zibe
omes enabled. If 
 
an ever �re later than this, the age of the 
onstraint rule ex
eedsits upper bound and 
auses a failure. The next requirement is that b must �re at least3 time units before 
 �res, and the level z must be high at least 3 time units before 
�res. These 
onditions are ne
essary in order for the 
onstraint rule to be satis�ed when
 �res. If the 
onstraint rule is disabling, then the rule would also require that z remainshigh from the time it rises to the time that 
 �res. This single 
onstraint rule spe
i�esa rather 
omplex set of requirements. Constraint rules, espe
ially when 
ombined withthe ability to spe
ify sequen
ing events, provide a reasonably powerful way in whi
h todes
ribe the behavior to be veri�ed.2.3 Translating Timed Spe
i�
ations to TEL Stru
turesThis se
tion introdu
es the basi
 
on
epts of translating a timed spe
i�
ation to aTEL stru
ture. The details of the translation pro
edure 
an be found in [86℄.During translation, a timed spe
i�
ation in HSE is de
omposed to a
tions. A TEL
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Figure 2.13. The TEL stru
ture of a gate-level single stage STARI.stru
ture is 
reated for ea
h a
tion. The TEL stru
tures for the a
tions are 
omposed inparallel, in 
on
i
t, or in sequen
e depending on whether they are are exe
uted in parallel,in 
on
i
t, or in sequen
e. For the a
tions in the boolean expression of a guard, theirTEL stru
tures are 
omposed in parallel if these a
tions are 
omposed 
onjun
tivelyin the expression, or their TEL stru
tures are 
omposed in 
on
i
t if the a
tions are
omposed disjun
tively in the expression. For a guarded 
ommand, the TEL stru
turesof the guard and the 
ommand are 
omposed in sequen
e in that the 
ommand is exe
utedafter the a
tions in the guard have o

urred. If a pro
ess is repetitive, the TEL stru
turesfor the a
tions exe
uted last in the pro
ess are 
omposed with the TEL stru
tures forthe a
tions exe
uted �rst in the pro
ess in sequen
e to des
ribe the repetitive feature.Sin
e all pro
esses in a module operate in parallel, their TEL stru
tures are 
omposed inparallel. If a module is instantiated in another module through a 
omponent statement,all signals in the instantiated module are renamed to the a
tual signals in the asso
iationlist, then the renamed TEL stru
ture for the 
alled module is 
omposed in parallel withthe TEL stru
tures for pro
esses and other 
omponent statements in the 
alling module.For a 
onstraint statement, it is dire
tly translated to a 
onstraint rule as de�ned in thelast se
tion. A gate is also dire
tly translated to 
orresponding rules. Figure 2.12 showsthe fragment of the TEL stru
ture translated from the THSE 
ode for the 2-stage STARIshown in the �rst se
tion of this 
hapter. This fragment of TEL stru
ture 
orresponds toa single empty stage of the STARI shown in Figure 2.2 that is instantiated in the 2-stageSTARI. Figure 2.13 shows the TEL stru
ture for the single empty stage STARI in thegate-level THSE shown in Figure 2.3.
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edure is also applied to translate a timed spe
i�
ation in VHDL to aTEL stru
ture. The spe
i�
ation is de
omposed to assigns and guards. Ea
h bran
hof an if statement 
an be regarded as a guarded 
ommand in HSE and is equivalentlyde
omposed as a guard pro
edure that interprets the boolean expression following if anda set of sequential statements. A TEL stru
ture is 
reated for ea
h guard and assignpro
edure, then TEL stru
tures for sequential statements are 
omposed in sequen
e. Foran if statement, A TEL stru
ture is 
reated for ea
h bran
h by 
reating a TEL for theboolean expression and a TEL for the set of sequential statements in the bran
h and
omposing these two TELs in sequen
e. Then, the TELs for all bran
hes are 
omposedin 
on
i
t to re
e
t that only one of them 
an be 
hosen. If an if statement has an else
lause, the boolean expression of the 
lause is impli
itly the negation of the 
onjun
tive
omposition of all boolean expressions in the leading if 
lauses. The TEL for the else
an be 
reated similarly. For a while statementwhile b loop CMD endloop;where b is the boolean expression and CMD is a set of sequential statements. This whilestatement 
an be regarded as the following guarded 
ommand in THSE:[:b ! skip j b ! CMD; �℄;so the TEL for a while statement 
an be 
reated in the same as for the above guarded
ommand in THSE. Then, the TELs for all pro
esses are 
omposed in parallel. If thear
hite
ture body 
ontains a 
omponent instantiation statement, the signals in the TELfor the 
omponent are renamed to the a
tual signals in the asso
iation list, then therenamed TEL stru
ture for the 
omponent is 
omposed with the TEL stru
tures forpro
esses and other 
omponent instantiation statements in the ar
hite
ture body inparallel. 2.4 Timed Tra
e theoryThe semanti
 behavior for TEL stru
tures is de�ned using timed tra
e theory [83℄.This se
tion provides a brief overview of timed tra
e theory whi
h provides the ne
essarymathemati
s for the proofs in the later 
hapters. Tra
e theory was �rst applied to theveri�
ation of speed-independent 
ir
uits by Dill [35℄. Later, timing was added so thattra
e theory 
an be applied to the veri�
ation of timed 
ir
uits [25, 83℄.
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e, x, for a 
ir
uit is a �nite or in�nite sequen
e of timed events (i.e.,x = e0e1 : : :). Ea
h timed event is of the form ei = (wi; ti) where w is a wire name in the
ir
uit, whi
h represents a logi
 value 
hange on that wire, and t is a rational numberindi
ating when that 
hange happens. A timed tra
e must also satisfy the following twoproperties:� Monotoni
ity: ti � ti+1 for all i � 0, and� Progress: if x is in�nite then for any time t there exists an i su
h that ti > t.Monotoni
ity states that time 
an only advan
e forward, and progress states that thereis no limit on how long time 
an pass.The following shows two useful operations on timed tra
es. Given a tra
e x = e1e2:::and a set of signals, D, the fun
tion del(D)(x) is de�ned re
ursively as follows:del(D)(x) = e1y if w1 62 Ddel(D)(x) = y if w1 2 Dwhere y = del(D)(e2e3:::) and e1 = (w1; t1). This fun
tion deletes all events of a tra
ewhose wire names are in D. For example, given a tra
e t = ab
dbda
, del(fa; 
g)(t) =bdbd. It is extended naturally to sets of tra
es. Given a set of tra
es, X, the fun
tioninverse delete del�1(D)(X) is the set fx0 j del(D)(x0) 2 Xg. This fun
tion returns the setof tra
es whi
h would be in X if all events with wire names in D are deleted. Intuitively,if x is a tra
e not 
ontaining symbols from D, del�1(D)(x) is the set of all tra
es that
an be generated by inserting events in D at any time into x. Some useful properties ofthese two fun
tions are listed below:del(D)(X) = ; , X = ; (2.1)del(D)(del�1(D0)(X)) = del�1(D0)(del(D)(X)) when D \D0 = ; (2.2)del(D)(del�1(D)(X)) = X (2.3)del(D)(X \X 0) � del(D)(X) \ del(D)(X 0) (2.4)A pre�x-
losed tra
e stru
ture T is a four-tuple hI;O; S; F i. I is a set of input wires,and O is a set of output wires where I\O = ;. A = I[O is the alphabet of the stru
ture.S is the su

ess set whi
h 
ontains all su

essful tra
es of a system. F is the failure set
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h 
ontains all failure tra
es of a system. P = S[F is the set of all possible tra
es of asystem. The set S is pre�x-
losed, that means if a tra
e t is a su

ess, all pre�xes of t arealso su

esses. A tra
e stru
ture must be re
eptive, meaning that PI � P . Intuitively,this means a 
ir
uit 
annot prevent the environment from sending an input.Composition (k) 
ombines two 
ir
uits into a single 
ir
uit. Composition of two tra
estru
tures T = hI;O; S; F i and T 0 = hI 0; O0; S0; F 0i is de�ned when O \ O0 = ;. To
ompose two tra
e stru
tures, the alphabets of both tra
e stru
tures must �rst be madethe same by adding new inputs as ne
essary to ea
h stru
ture. Inverse delete is extendedto tra
e stru
tures for this step as follows:del�1(D)(T ) = hI [D;O;del�1(D)(S);del�1(D)(F )i (2.5)This is de�ned only when D \A = ;.After the two alphabets of the two stru
tures are made to mat
h, we need to �nd thetra
es that are 
onsistent with the two stru
tures. The interse
tion of these two tra
estru
tures is de�ned as follows:T \ T 0 = hI \ I 0; O [O0; S \ S0; (F \ P 0) [ (P \ F 0)i (2.6)This is de�ned only when A = A0 and O \ O0 = ;. From this de�nition, a su

ess tra
ein the 
omposite must be a su

ess tra
e in both 
omponents. A failure tra
e in the
omposite is a possible tra
e that is a failure tra
e in either 
omponent. The possibletra
es for the 
omposite are P \ P 0.Composition 
an now be de�ned as follows:T k T 0 = del�1(A0 �A)(T ) \ del�1(A�A0)(T 0) (2.7)In the following 
hapters, fT; T 0g is also used to indi
ate the 
omposition of T and T 0.Another useful operation is hide whi
h is used to make some wires internal to the
ir
uit so that they 
an no longer be 
onne
ted to other wires. Formally, given a tra
estru
ture T , hide(D)(T) is de�ned when D � O. hide(D)(T ) is de�ned as follow:hide(D)(T ) = hI;O �D;del(D)(S);del(D)(F )i (2.8)whereD is the set of wires to be hidden. Figure 2.14 shows a 
ir
uit with two 
omponents,and signals 
 and d 
onne
t the two 
omponents and are also outputs. Hiding signalseÆ
iently and 
orre
tly is the key goal of abstra
tion. Figure 2.15 shows the result of
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Figure 2.14. Blo
k diagram of a 
ir
uit with two 
omponents.
a

b

f

e

Figure 2.15. Signals 
 and d are hidden.hiding the signals 
 and d in Figure 2.14. Hiding signals eÆ
iently and 
orre
tly is thekey goal of abstra
tion.A tra
e stru
ture is failure-free if its failure set is empty. Given two tra
e stru
tures,T and T 0, we say T 
onforms to T 0 (denoted T � T 0) if I = I 0; O = O0, and for allenvironments E, if E k T 0 is failure-free, so is E k T . Intuitively, if a system using T 0
annot fail, neither 
an a system using T .The following lemma gives a simple suÆ
ient 
ondition to determine 
onforman
ebetween two tra
e stru
tures.Lemma 2.4.1 T � T 0 if I = I 0; O = O0; F � F 0; and P � P 0:The 
ondition F � F 0 assures that if the environment does not 
ause a failure in T 0, itdoes not 
ause a failure in T . The 
ondition P � P 0 assures that if T 0 does not 
ause a



37failure in the environment, T does not 
ause one.The next lemma shows that if T 
onforms to T 0, this 
onforman
e is maintained inany environment.Lemma 2.4.2 If T � T 0 and T 00 is any tra
e stru
ture, then T k T 00 � T 0 k T 00.Proofs of these lemmas 
an be found in [35℄.The following example is a C-element to illustrate how the tra
e stru
ture modelsa 
ir
uit behavior. A C-element is very useful in asyn
hronous designs. It is typi
allyused to signal the 
ompletion of several 
on
urrent 
omputations. The output value ofa C-element remains 
onstant until all of its inputs are equal to the 
omplement of theoutput; the output then 
hanges to its 
omplement after some delay. Figure 2.16 showsa two-input C-element and the state graph whi
h 
an a

ept the S and F sets of the
orresponding tra
e stru
ture.The states of the state graph are all possible logi
al valuations for all signals in a
ir
uit and an additional state 
alled a failure state. A stable state is a state in whi
h thevalue of the boolean fun
tion of the 
ir
uit is the same as the a
tual value of the outputwire. An unstable state is a state in whi
h they are not the same. In the state graph ofthe C-element, The initial values of the wires are either ab
 = 000 or ab
 = 111. State 1,2, and 3 are stable states, and state 4 is an unstable state.A hazard o

urs if the value of a boolean fun
tion 
hanges and then reverts to itsoriginal value without waiting for the a
tual output of the gate to 
hange. In a C-element,
hanges in the inputs are restri
ted so that when all inputs are equal to the 
omplementof the output, they must remain 
onstant until the output 
hanges. Input transitionsthat violate this restri
tion may 
ause hazards on an output, and lead the 
ir
uit to thefailure state, F .2.5 From a TEL to a Tra
e Stru
tureBoth TEL stru
tures and tra
e theory 
an be used to model the 
ir
uit behavior. Thisse
tion gives a brief des
ription of how to derive the 
orresponding tra
e stru
ture froma TEL stru
ture.After a system is modeled by a TEL stru
ture, the state spa
e of the system 
an befound by exhaustively �ring all events in the system, and rea
hability analysis is used tostudy the behavior of the system. Firing an event leads the system to another state. Firinga sequen
e of events results in a sequen
e of states. A state Sj is said to be rea
hable from



38another state Si if there exists a sequen
e of event �rings that 
hanges Si to Sj. A �ringsequen
e or a run 
an be expressed as � = S0 e1! S1 e2! S2 e3! : : : en! Sn, where S0 is theinitial state, and Si+1 is obtained from Si by passing some time and then �ring ei+1. If anevent en+1 �res at the end of a �ring sequen
e �, a new �ring sequen
e �0 = � en+1�! Sn+1.Therefore, a �ring sequen
e is pre�x-
losed. Let timei(�) be the sum of time passed whenthe system rea
hes the state Si from the initial state S0 through the �ring sequen
e �. Itis true that time0(�) = 0 and timei+1(�) = timei(�) + � where tmin � � � tmax, wheret
fsi = max(flower(r) j r 2Mi and r 2 
fsi(�ei+1)g)tmin = min(ft
fsi j for all 
fsi(�ei+1) � �ei+1g)tmax = max(fupper(r) j r 2Mi for r 2 �ei+1g)Therefore, a run � produ
es a timed tra
e(t1; time1(�)) (t2; time2(�)) � � �Sin
e a timed system produ
es the timed tra
es by rea
hability analysis, the behaviorof a timed system 
an also be studied using timed tra
e theory. A fun
tion tra
e(N)is de�ned to return a tra
e stru
ture whi
h 
ontains the set of all possible timed tra
esprodu
ed by a TEL stru
ture N . This fun
tion uniquely 
onne
ts a TEL stru
ture and its
orresponding timed tra
e stru
ture together. The following is the de�nition of tra
e(N).De�nition 2.5.1 Fun
tion tra
e(N) takes a TEL stru
ture N , and returns a tra
estru
ture T = hI;O; P i where
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Figure 2.16. A C-element and its state graph.



391. I is the set of input signals in N ;2. O is the set of output and internal signals in N ;3. P is the set of all possible timed tra
es produ
ed by N .



CHAPTER 3MODULAR SYNTHESIS ANDVERIFICATIONThe purpose of synthesis is to generate the 
orre
t 
ir
uit implementation from agiven spe
i�
ation, and that of veri�
ation is to determine whether the given 
ir
uit
orre
tly implements its spe
i�
ation. Therefore, the obvious question is how to de�ne
orre
tness. In general, the 
orre
tness of a 
ir
uit 
an be derived in two ways. First,we 
an 
he
k properties of the 
ir
uit, and if all the properties are satis�ed, the 
ir
uitis 
laimed to be 
orre
t. Se
ond, the 
orre
tness of the 
ir
uit 
an be de�ned relativeto its spe
i�
ation. If the spe
i�
ation is guaranteed to be 
orre
t, then the 
ir
uit isalso 
orre
t. Again, the 
orre
tness of the spe
i�
ation is determined by whether 
ertainproperties are satis�ed. Now, the question is what properties should be 
he
ked to assertthe 
orre
tness. Properties 
an be 
lassi�ed as either safety or liveness properties. Ingeneral, a safety property is a 
ondition on �nite 
omputations while a liveness propertyis a 
ondition on the inde�nite future. Liveness properties 
annot be veri�ed easily.Many methods either do not verify liveness properties, or do so in a limited way. Intimed 
ir
uits, all timing 
onstraints also need to be 
he
ked. In ATACS, general livenessproperties are not 
he
ked. Instead, 
ir
uits are 
he
ked if they 
an deadlo
k. Timing isanother important issue in the synthesis and veri�
ation of timed 
ir
uits design. Evenwhen timing information is designed in from the beginning, it is ne
essary to verify thatthe physi
al implementation meets the requirements of the spe
i�
ation. These propertiesand timing 
onstraints are 
he
ked during timed state spa
e exploration to guarantee thatthe synthesized 
ir
uit or the 
ir
uit to be veri�ed is 
orre
t. In this way, veri�
ationin ATACS is similar to model 
he
king. This 
hapter des
ribes the properties and thetiming 
onstraints to satisfy the 
orre
tness requirement. The safe transformations whi
hpreserve these properties are des
ribed next. In the last two se
tions, the theorems formodular synthesis and veri�
ation are des
ribed. These theorems are proved using tra
etheory.
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Figure 3.1. An example of deadlo
k.3.1 De�nition of Corre
tnessThis se
tion de�nes the 
orre
tness of 
ir
uits. Informally, a 
orre
t 
ir
uit keeps doingthings as expe
ted. There are two 
onditions for a 
orre
t 
ir
uits: it must produ
e theexpe
ted outputs for the given inputs; and the outputs must be produ
ed in �nite delayafter the inputs are given. The �rst 
ondition des
ribes a safety property and the se
ondone des
ribes a liveness property. The expe
ted outputs are determined by the fun
tionof the 
ir
uit and the inputs. Also, the output signals 
annot 
ontain glit
hes that areunexpe
ted pulses on signal wires, and 
an 
ause the 
ir
uit either to malfun
tion orfail. A 
ir
uit that may produ
e glit
hes on its output wires is hazardous. A 
orre
tasyn
hronous 
ir
uit must be hazard-free. A 
orre
t 
ir
uit must also produ
e outputsin a �nite delay. It is obvious that a 
ir
uit is useless if it does not produ
e any outputs.For timed 
ir
uits, we also impose timing properties on their 
orre
tness. For example,we want a 
ir
uit to produ
e an output event b+ between 5 and 10 time units after aninput event a+ has o

urred. The 
ir
uit is not 
orre
t if it produ
es a b+ beyond thattiming bound after a+.In ATACS, the behavior of 
ir
uits is modeled by TEL stru
tures. The �rst requirementis that TEL stru
tures must be safe. Also, 
ir
uits must be hazard-free. In Chapter 2, itis des
ribed that a hazard appears when a signal is enabled by a disabling rule, but theenabling 
ondition is lost before the signal transition fully 
ompletes. This 
an result ineither the signal transition not being produ
ed, or a glit
h. Any tra
e that leads to thissituation 
an 
ause the 
ir
uit to fail. General liveness properties 
annot be modeled inATACS. Instead, 
orre
t 
ir
uits must not deadlo
k, a limited liveness property. Deadlo
kis the state where the 
ir
uit 
an halt for an in�nite period of time and no outputs 
an



42ever be produ
ed. Deadlo
k o

urs when �ring a signal, for example a, depends on someother signal events whi
h then depend on the �ring of a. This situation is illustrated inFigure 3.1. Another very illustrative and interesting example of deadlo
k 
an be foundin a law passed by the Kansas legislature early in this 
entury. It said, in part, \Whentwo trains approa
h ea
h other at a 
rossing, both shall 
ome to a full stop and neithershall start up again until the other has gone." During state spa
e exploration, a state
ausing deadlo
k is found if the enabled rules in the 
urrent state are not enough to �rean event. In other words, the enabled event set of a deadlo
k state is empty. Timingproperties of timed 
ir
uits are de�ned by 
onstraint rules as des
ribed in Chapter 2 andmust be satis�ed. Tra
es 
ausing any 
onstraint rule violations are failures. In summary,the above 
onditions that 
ause failures are shown in the following de�nition.De�nition 3.1.1 Suppose � is a su

ess tra
e that leads S0 of a TEL stru
ture N to Sn.Firing e 2 E leads Sn to Sn+1. �e is a failure tra
e if one of the following 
onditionshold:1. (Mn � �e) \ e� 6= ;.2. �ring e 
auses a disabling rule r 2Mn to be disabled.3. enabled(Sn+1) = ;.4. There exists a 
onstraint rule r
 2 �e su
h that r
 62Mn when �ring e.5. timer(r
) is not satis�ed for any 
onstraint rule r
 2 �e when �ring e.6. timer(r
) is expired for any 
onstraint rule r
 2 �e before �ring e.The �rst 
ondition asserts that the TEL stru
ture must be safe. The se
ond 
onditionasserts that �ring an event must not 
ause an enabled disabling rule to be disabled. Thethird 
ondition de�nes deadlo
k. The last three 
onditions asserts that �ring an event
auses a failure if any timing requirement is violated.These 
onditions 
ompletely des
ribe the failure set F of a tra
e stru
ture. Duringstate spa
e exploration and timing analysis, all these 
onditions are 
he
ked, and a failuretra
e is generated whenever a �ring satis�es one of the above 
onditions. The pro
edurethat performes these 
he
ks is 
alled fail. For example, given a TEL stru
ture T , PT isthe set of all possible tra
es produ
ed by T , fail(PT ) returns a subset of PT where thetra
es are failures. F = fail(PT ) where F is the failure set of tra
e(T ).



43As des
ribed in the �rst 
hapter, an environment is ne
essary to de�ne the interfa
ebehavior of a 
ir
uit in the timed 
ir
uit design. It is essential for synthesis and veri�
ationto know how the 
ir
uit behaves and how it intera
ts with its environment. The internaldetails of the environment have no impa
t on the 
ir
uit. For modular synthesis andveri�
ation to su

eed, the de�nition of fail(P ) must satisfy two requirements. The�rst requirement asserts that during synthesis and veri�
ation of timed 
ir
uits, only thebehavior of the 
ir
uit is 
he
ked, and the internal behavior of the environment whi
his not visible to the synthesis and veri�
ation is not 
he
ked. In other words, internalfailures of the environment do not 
ause the 
ir
uit to fail. The se
ond requirement assertsthat if the relation between the possible tra
e sets of two tra
e stru
tures is in
lusive,this relation is preserved between their 
orresponding failure sets returned by fail. Thesetwo properties are given formally below. Suppose C is the tra
e stru
ture de�ning thebehavior of a 
ir
uit, E is the tra
e stru
ture of the environment des
ribing the inputbehavior for C, and XE is the set of internal signals of E. In the following equations, P1is the possible tra
e set of fC;Eg and P2 is the possible tra
e set of fC;hide(XE)(E)g.del(XE)(fail(P1)) = fail(P2) (3.1)fail(P1) � fail(P2) if P1 � P2 (3.2)3.2 De�nitions of Safe TransformationsIn the design of a timed system, an environment must be provided. An environmenthas two fun
tions. First, it de�nes and supplies the input behavior whi
h the systemmust be able to pro
ess for 
orre
t operation. Se
ond, the outputs of the system must not
ause the environment to fail. In other words, a 
orre
t system operating in the spe
i�edenvironment does not 
ause any failure. Des
ribed in tra
e theory, fail(PfC;Eg) = ; whereC is a 
orre
t 
ir
uit and E is the spe
i�ed environment des
ribed as tra
e stru
tures.If the system operates in another environment, E0, that produ
es a superset of timedtra
es of E, and if fail(PfC;E0g) = ;, it is true that fail(PfC;Eg) = ;. This is a dire
tresult of Equation 3.2 in the last se
tion. This result is very useful in that if a givenenvironment, E, is 
omplex, it 
an be transformed to a simpler one, E0, as long as itprodu
es a superset of timed tra
es. For synthesis, the resulting 
ir
uit may 
ontain aredundant part to deal with the extra behavior introdu
ed by transformations, but thesynthesized 
ir
uit de�nitely works 
orre
tly in the originally spe
i�ed environment thatsupplies a subset of inputs that the synthesized 
ir
uit is able to pro
ess. For veri�
ation,



44if a system is veri�ed with E0 without any failure, we 
an assert that the system isalso failure-free with E. However, verifying a system with a transformed environmentmay result in a false negative answer. A false negative is that the violating states (i.e.states where an error has been dete
ted) are found when verifying a system with thetransformed environment, but these violating states may not be rea
hable if the systemis veri�ed with the originally spe
i�ed environment. This approa
h never results in afalse positive answer where the system is veri�ed failure-free with E0 while veri�
ationwould dete
t violating states in the system with E. A false positive would happen only ifthe transformations redu
e the behavior of the environment so that the violating statesof the system may not be rea
hable during veri�
ation. If false negatives happen rarely,transformations 
an substantially redu
e the 
omplexity of the environment.In the above dis
ussion, transformations must satisfy one requirement: the environ-ment after transformations must produ
e a superset of timed tra
es that are produ
edby the originally spe
i�ed environment. Su
h transformations are de�ned to be safe.Given an environment, E, the one derived through a series of safe transformations isreferred to as the \abstra
ted" environment of E. The following is the de�nition of safetransformations.De�nition 3.2.1 (Safe Transformations) A system is des
ribed by a TEL stru
tureN . N 0 is derived by applying a transformation on N . Suppose PN and PN 0 are sets ofpossible timed tra
es produ
ed by N and N 0, respe
tively. If PN � PN 0, the transformationis safe.As des
ribed in the last se
tion, internal signals of the environment 
an be removedfor synthesis and veri�
ation as long as the interfa
e behavior of the environment withthe internal signals is preserved. Abstra
tion 
onverts internal signals of the environmentinto sequen
ing events. Then safe transformations are applied to remove sequen
ingevents from TELs under two 
onditions. First, removal of a sequen
ing event must notredu
e the spe
i�ed untimed behavior of the environment. Se
ond, the timing information
arried by the environment must be preserved in a 
onservative fashion. This 
an also bedes
ribed by tra
e theory. Suppose NE is the TEL stru
ture des
ribing the behavior ofthe environment, and TE is its 
orresponding tra
e stru
ture. The interfa
e behavior ofTE is des
ribed by del(D)(PE), where D is the set of signals internal to the environment,and PE is the set of possible timed tra
es. In the abstra
ted environment, the internal



45signals, D, are removed from NE to obtain the tra
e stru
ture TA = tra
e(abs(D)(NE))where the fun
tion abs(D)(NE) returns a TEL N 0E where the signals in D are abstra
tedaway from NE using safe transformations. Let X1 and X2 be the untimed tra
e setsprodu
ed by abs(D)(NE) and NE, respe
tively. To preserve the interfa
e behavior, asafe transformation must satisfy that del(D)(X2) � X1. Sin
e timing information ispreserved 
onservatively, it is true that del(D)(PE) � PA, where D 
ontains the internalsignals of the environment to be removed and PA is the possible tra
e set of TA.Cal
ulating the interfa
e behavior of an environment 
an be 
ondu
ted by state spa
eexploration to generate all possible timed tra
es and then applying fun
tion del to removeall internal signals from the possible timed tra
es. However, state spa
e explorationis an exponential problem, whi
h is 
omputationally unfeasible for large systems. In-stead, internal signals are removed from TEL stru
tures using safe transformations beforestate spa
e exploration, and the possible timed tra
es produ
ed by the abstra
ted TELstru
ture in
lude the spe
i�ed interfa
e behavior. The following lemma proves that theunabstra
ted environment 
onforms to the abstra
ted environment if only the interfa
ebehavior is 
onsidered. This 
onformation is used to prove the theorems of modularsynthesis and veri�
ation in the next se
tion.Lemma 3.2.1 A system is des
ribed by a TEL stru
ture, N , its 
orresponding tra
estru
ture is T , O is the set of all output signals in N , and D � O. If the fun
tionabs(D)(N) uses only safe transformations, then hide(D)(T ) � tra
e(abs(D)(N)).Proof: Let P and P 0 be the possible tra
e sets of hide(D)(T ) and tra
e(abs(D)(N)),respe
tively. From the de�nition of safe transformations, we have P � P 0. From prop-erty 3.2, we have fail(P ) � fail(P 0). Therefore, from Lemma 2.4.1, we have hide(D)(T ) �tra
e(abs(D)(N)). 23.3 Modular Synthesis and Veri�
ationGiven a spe
i�
ation, we 
an design the entire 
at 
ir
uit at one time. This approa
honly works well for small 
ir
uits. When the 
ir
uit gets large and 
omplex, divide-and-
onquer approa
h is ne
essary. By partitioning a 
ir
uit into blo
ks, ea
h with 
onstrained
omplexity, the design pro
ess 
an �nish mu
h faster by designing ea
h blo
k individuallyfor all blo
ks. The improvement in the speed of the design pro
ess 
omes from that allirrelevant details to the blo
k being designed is removed and the total information under
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onsideration during the design pro
ess is substantially redu
ed. When a blo
k is 
hosento be veri�ed or synthesized, the rest of the 
ir
uit be
omes its environment. As des
ribedin Se
tion 2, internal signals of the environment belong to those irrelevant details andneed to be removed to simplify the design problem. In the following two se
tions, a seriesof theorems is formulated and proved that modular synthesis and veri�
ation are 
orre
t.3.3.1 Modular Synthesis TheoremsBefore giving the theorem for modular synthesis, it is ne
essary to de�ne 
orre
tsynthesis. In ATACS, the behavior of a 
ir
uit is de�ned in a spe
i�
ation with an environ-ment to spe
ify the operating environment of the 
ir
uit. A state graph is generated byexploring the timed state spa
e of the 
ir
uit. If no error is found, an implementation isderived from the state graph. The synthesized 
ir
uit operates 
orre
tly in the spe
i�edenvironment. The 
orre
tly synthesized 
ir
uit 
onsists of two parts of behavior. First,the 
ir
uit implements a partial set of behavior de�ned in the spe
i�
ation. Se
ond, extrabehavior may be introdu
ed during synthesis to simplify the 
ir
uit impllementation. Theextra behavior is produ
ed for the inputs not de�ned in the environment. Sin
e the inputsfor the extra behavior are not de�ned in the environment, the 
ir
uit does produ
e theextra behavior when operating in the environment. The de�nition of 
orre
t synthesis isgiven as follows.De�nition 3.3.1 (Corre
t Synthesis) B and E are the 
ir
uit and its environmentspe
i�
ations, respe
tively. If C is the 
ir
uit implementation 
orre
tly synthesized fromfB, Eg, it is true that fail(PfC;Eg) = ; (3.3)PfC;Eg � PfB;Eg (3.4)As des
ribed above, the internal signals of an environment 
an be abstra
ted away. Theresulting environment has the same or more interfa
e behavior. Hen
e, the 
ir
uit workingin the environment after abstra
tion needs to be able to a

ept the newly introdu
edbehavior. It is obvious that the synthesized 
ir
uit still operates 
orre
tly given a subset ofthe input that it 
an handle. The following lemma asserts that a 
ir
uit synthesized from aspe
i�
ation with the abstra
ted environment still operates 
orre
tly in the unabstra
tedenvironment.



47Lemma 3.3.1 B and E are the 
ir
uit and environment spe
i�
ations, respe
tively. XEis the set of internal signals of E. C 0 is the 
ir
uit implementation synthesized 
orre
tlyfrom T = fB;abs(XE)(E)g. Let T 0 = fC 0; Eg, it is true that fail(PT 0) = ;.Proof: First, let P1 be the set of possible tra
es of fC 0;abs(XE)(E)g, and P2 be theset of possible tra
es of fC 0;hide(XE)(E)g. Sin
e C 0 is 
orre
tly synthesized from fB,abs(XE)(E)g, therefore fail(P1) = ; (3.5)From Lemma 3.2.1 and 2.4.2, we havefC 0;hide(XE)(E)g � fC 0;abs(XE)(E)g (3.6)Therefore, fail(P2) = ; (3.7)From Property 3.1, we have del(XE)(fail(PT 0) = ; (3.8)And from Property 2.1, we have fail(PT 0) = ; (3.9)2 An alternative to 
at synthesis is to synthesize the 
ir
uit blo
k by blo
k. When ablo
k is 
hosen to synthesize, the rest of the 
ir
uit is treated as its environment. Whenthe results of all 
omponents are available, they are integrated together to determine thesolution to the whole design. This idea is formulated in the following lemma.Lemma 3.3.2 A system fB1; B2g has two 
omponents: B1 and B2. C1 and C2 arethe 
ir
uits 
orre
tly synthesized from B1 and B2 with B2 and B1 as the 
orrespondingenvironment. It is true that fail(PfC1;C2g) = ;.Proof: Sin
e C1 is the 
ir
uit 
orre
tly synthesized from B1 with B2 as its environment,its behavior 
an be expressed as follows:PC1 = P1 [ P 01 (3.10)and P1 � PB1 and P 01 \ PB2 = ; where PB1 and PB2 are the sets of possible tra
es of B1and B2, respe
tively. Similarly, the behavior of C2 
an be expressed as follows:PC2 = P2 [ P 02 (3.11)



48and P2 � PB2 and P 02 \ PB1 = ;. The possible tra
es of fC1; C2g isPfC1;C2g = PC1 \ PC2 (3.12)Substitute Equation 3.10 and Equation 3.11 into Equation 3.12 and we havePfC1 ;C2g = (P1 \ P2) [ (P1 \ P 02) [ (P 01 \ P2) [ (P 01 \ P 02) (3.13)Sin
e fail(PfC1;B2g) = ;PfC1;B2g = (P1 \ PB2) [ (P 01 \ PB2)we have fail(P1 \ PB2) = ;Sin
e P2 � PB2 , fail(P1 \ P2) = ;. And also sin
e P1 � PB1 , P 01 \ PB2 = ;, andPB1 \ P 02 = ;, we have P1 \ P 02 = ; and P 01 \ P2 = ;Therefore, fail(PfC1;C2g) = fail(P 01 \ P 02)P 01 and P 02 are the tra
es produ
ed by C1 and C2 for the inputs not de�ned in their
orresponding environments. The inputs to C1 are the outputs from C2, and the inputsto C2 are the outputs from C1. C1 
annot produ
e P 01 until C2 produ
es outputs de�nedby P 02, and the same for C2. Sine both C1 and C2 must wait for ea
h other mutuallyto produ
e a tra
e in P 01 or P 02, C1 and C2 
an never produ
e P 01 and P 02. Therefore,P 01 \ P 02 = ;, and from Property 2.1, we havefail(PfC1;C2g) = ;2 Combining the above two theorems, we 
an derive an important theorem of modularsynthesis. This theorem asserts that ea
h blo
k is synthesized with its 
orrespondingenvironment of whi
h internal signals are abstra
ted away, the integration of the resultsfor all blo
ks is still the 
orre
t solution for the whole design. The theorem is shown asfollows:



49Theorem 3.3.1 A system fB1; B2g has two 
omponents: B1 and B2. XB1 and XB2are sets of internal signals of B1 and B2, respe
tively. C1 and C2 are the 
ir
uits
orre
tly synthesized from fB1,abs(XB2)(B2)g and fabs(XB1)(B1),B2g. It is true thatfail(PfC1;C2g) = ;.Proof: Sin
e C1 is the 
ir
uit 
orre
tly synthesized from fB1, abs(XB2)(B2)g, we havefail(PfC1;abs(XB2 )(B2)g) = ; (3.14)From Lemma 3.3.1, we have fail(PfC1;B2g) = ; (3.15)Similarly, we have fail(PfB1 ;C2g) = ; (3.16)From the above two equations, C1 and C2 
an also be thought of as 
ir
uits 
orre
tlysynthesized fromB1 and B2 withB2 andB1 as the 
orresponding environment. Therefore,a

ording to Lemma 3.3.2 , we havefail(PfC1;C2g) = ; (3.17)2This lemma is extended to a system with a number of 
omponents more than 2.3.3.2 Modular Veri�
ation TheoremsGiven a 
ir
uit M 
onsisting of two blo
ks M1 = fI1; O1; P1g and M2 = fI2; O2; P2g,the 
omposition M1 k M2 de�nes the behavior of M . P1 and P2 are the possible tra
esets of M1 and M2, respe
tively. X1 and X2 are the set of internal signals of M1 and M2,respe
tively. The 
omposition of M1 and M2 is de�ned when the following 
onditions aresatis�ed. O1 \O2 = �X1 = O1 � I2X2 = O2 � I1X1 \X2 = �To verify M , we 
an verify M1 and M2, separately. If both are 
orre
t, M is also
orre
t. When verifying one blo
k, the other one behaves like the environment for the



50former one. Therefore, the internal signals of the later one needs to be removed and theresult of the veri�
ation is not a�e
ted. If a di�erent blo
k is 
hosen, a similar pro
ess isapplied to its environment. This is formulated in the following theorem.Theorem 3.3.2 Let X1 and X2 be internal signal sets of M1 and M2, respe
tively. IfM1 k hide(X2)(M2) is failure-free, and hide(X1)(M1) k M2 is failure-free, then M =M1 kM2 is failure-free.Proof: First, the failure set of M1 kM2 is(del�1(X2)(fail(P1)) \ del�1(X1)(P2)) [ (del�1(X1)(fail(P2)) \ del�1(X2)(P1))Suppose M1 k hide(X2)(M2) is failure-free. That means its failure set(fail(P1) \ del�1(X1)(del(X2)(P2))) [ (P1 \ del�1(X1)(fail(del(X2)(P2)))) = � (3.18)Therefore, fail(P1) \ del�1(X1)(del(X2)(P2)) = � (3.19)P1 \ del�1(X1)(fail(del(X2)(P2))) = � (3.20)From Property 2.3, Equation 3.19 
an be transformed as follows:del(X2)(del�1(X2)(fail(P1))) \ del�1(X1)(del(X2)(P2)) = �From Property 2.2,del(X2)(del�1(X2)(fail(P1))) \ del(X2)(del�1(X1)(P2)) = �From Property 2.4,del(X2)(del�1(X2)(fail(P1)) \ del�1(X1)(P2))� del(X2)(del�1(X2)(fail(P1))) \ del(X2)(del�1(X1)(P2)) = �Therefore, del(X2)(del�1(X2)(fail(P1)) \ del�1(X1)(P2)) = �Finally, from Property 2.1,del�1(X2)(fail(P1)) \ del�1(X1)(P2) = � (3.21)



51Similarly, suppose M2 k hide(X1)(M1) is failure-free. Thus, its failure setfail(P2) \ del�1(X2)del(X1)(P1)) [ (P2 \ del�1(X2)(fail(del(X1)P1))) = �fail(P2) \ del�1(X2)del(X1)(P1)) = � (3.22)(P2 \ del�1(X2)(fail(del(X1)P1))) = �By applying the same steps above to Equation 3.20, we 
an derive thatdel�1(X1)(fail(P2)) \ del�1(X2)(P1) = � (3.23)The union of Equations 3.21 and 3.23 is the failure set of M1 k M2. Sin
e bothEquation 3.21 and 3.23 are empty, the failure set of M1 kM2 is empty. 2This theorem is naturally extended to a 
ir
uit 
onsisting of more than two blo
ks.Cal
ulation of P is an exponential problem. Instead, we 
an apply abstra
tion andsafe transformations to its 
orresponding TEL stru
ture to remove internal signals, thenthe state spa
e is explored to generate the new tra
e stru
ture. Suppose N is a TELstru
ture and T is the 
orresponding tra
e stru
ture. From Lemma 3.3.1 we know thathide(D)(T ) 
onforms to tra
e(abs(D)(N)). Suppose N1 and N2 are the TEL stru
turesfor M1 and M2, respe
tively. Therefore, 
ombined with Lemma 2.4.2, we know M1 khide(X2)(M2) 
onforms toM1 k tra
e(abs(X2)(N2)) and hide(X1)(M1) kM2 
onformstra
e(abs(X1)(N1)) kM2. From above the 
on
lusion, we show another very importanttheorem.Theorem 3.3.3 Let X1 and X2 be internal signal sets of M1 and M2, respe
tively. IfM1 k tra
e(abs(X2)(N2)) is failure-free, and tra
e(abs(X1)(N1)) k M2 is failure-free,then M =M1 kM2 is failure-free.Proof: From Lemma 3.2.1, we havehide(X1)(M1) � tra
e(abs(X1)(N1))hide(X2)(M2) � tra
e(abs(X2)(N2))From Lemma 2.4.2, we havehide(X1)(M1) k M2 � tra
e(abs(X1)(N1)) k M2M1 k hide(X2)(M2) �M1 k tra
e(abs(X2)(N2))



52Sin
e tra
e(abs(X1)(N1)) k M2 and M1 k tra
e(abs(X2)(N2)) are failure-free, thenhide(X1)(M1) k M2 and M1 k hide(X2)(M2) are also failure-free. From Theorem 3.3.2,M1 k M2 is failure-free. 2



CHAPTER 4ABSTRACTIONSynthesis and veri�
ation of timed systems are typi
ally based on a 
omplete statespa
e exploration. The state spa
e 
an be derived by exhaustively �ring all possibletransition sequen
es in the system. The number of states grows exponentially as the
omplexity of the design grows in terms of the number of signals in the design. Therefore,synthesis and veri�
ation of large and 
omplex systems is diÆ
ult or even impossiblebe
ause of state explosion. In order to 
onstrain the 
omputational 
omplexity, it isne
essary to suppress 
ertain details of the design while keeping the important systemproperties. While synthesizing or verifying a 
ir
uit, an environment needs to be providedto des
ribe the input behavior for the 
ir
uit. The environment is also viewed as atestben
h whi
h supplies inputs to the 
ir
uit, and determine whether the output isexpe
ted. From the 
ir
uit's viewpoint, only the 
ommuni
ations between the interfa
esof the 
ir
uit and the environment has impa
t on the 
orre
tness of the 
ir
uit. Therefore,all behavior 
on
erning the internal signals of the environment 
an be abstra
ted away.During abstra
tion, the interfa
e behavior of the environment needs to remain the sameor be extended 
onservatively. The environment after abstra
tion is referred to as theabstra
ted environment, and the one before abstra
tion is referred to as the unabstra
tedenvironment. It has been proven that if the 
ir
uit operates 
orre
tly in the abstra
tedenvironment, it also operates 
orre
tly in the unabstra
ted environment.The environment for the whole system is referred to as the system environment. Inpra
ti
e, the system environment is usually designed very simply, typi
ally 
ontainingno internal signals. Therefore, there is not mu
h abstra
tion needed. In general, alarge and 
omplex system is not spe
i�ed by a lump of de
larations and statements.Instead, it often has a well de�ned stru
ture and is organized in a number of 
omponents.Ea
h 
omponent groups relative fun
tions of the system and has a 
onstrained interfa
e,therefore, 
onstrained size and 
omplexity. The operation of a 
omponent depends onthe 
onditions of the surrounding 
omponents. Therefore, the rest of the 
omponents



54and system environment 
an be treated as the environment for the 
omponent, whi
h isreferred to as the blo
k environment. Sin
e the 
omponent has a limited interfa
e, theblo
k environment may 
ontain a lot of internal signals. After these internal signals areabstra
ted away, the total number of signals under 
onsideration 
an be mu
h smallerthan the number of signals in the whole system and the size of the state spa
e 
anbe dramati
ally redu
ed 
ompared with the whole design. The abstra
tion approa
hdes
ribed in this dissertation does not 
hange the exponential 
omplexity of state spa
eexploration. Instead, with a little overhead it 
onverts a big exponential problem into aset of small exponential problems.The abstra
tion approa
h in this dissertation operates as two steps. First, the TELstru
ture for the whole system is found. If a 
omponent is 
hosen for synthesis orveri�
ation, then, the interfa
e signals of the sele
ted 
omponent are found and the signalsnot in the interfa
e signals are internal signals of the blo
k environment and all events onthe internal signals are 
onverted into sequen
ing events. This step is 
alled abstra
tion.Se
ond, these sequen
ing events are abstra
ted away using safe net redu
tions. This
hapter des
ribes how abstra
tion is applied to TEL stru
tures without levels in the �rstse
tion and ones with levels in the following se
tion. The safe net redu
tions are des
ribedin the next 
hapter.
P P C C

P P CC

P P PP

P P

T

. . .

. . .
. . .

... ...

. . .

. . .

Figure 4.1. Hierar
hi
al organization of a spe
i�
ation.
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tFigure 4.2. Organization of the TEL for the 
orresponding spe
i�
ation.4.1 Abstra
tion for TEL Stru
tures Without LevelsIn ATACS, the spe
i�
ation of a 
ir
uit is typi
ally 
omposed of a number of pro-
esses de�ning its behavior and a number of 
omponents de�ning its stru
ture, and ea
h
omponent has a similar stru
ture. The 
omponents in the lowest level 
onsist of onlypro
esses. The stru
ture of a spe
i�
ation 
an be viewed as a tree shown in Figure 4.1.The 
ir
le with a T inside is the root node of the tree representing the spe
i�
ation onthe top level. The 
ir
les with 'C' inside indi
ate the spe
i�
ations of the 
omponentson the di�erent levels. The squares with 'P ' inside are the spe
i�
ations for pro
esses.The node for a 
omponent 
an 
ontain a set of pointers to the other 
omponents thatare used in this 
omponent. During 
ompilation, the spe
i�
ation is de
omposed intopro
esses, ea
h pro
ess is 
ompiled to a TEL stru
ture, then the TEL stru
tures of thepro
esses in the same 
omponent are 
omposed in parallel. If the 
omponent 
ontains anumber of other 
omponents, pointers in the 
ontaining 
omponent are assigned to pointto those 
omponents. After 
ompilation, these TEL stru
tures are also organized as atree shown in Figure 4.2. Now, a 
omponent 
ontains a TEL stru
ture that is the parallel
omposition of the TELs for all pro
esses in this 
omponent and a set of pointers to thenodes of the 
omponents that are in
luded in this 
omponent.In the tree, the node for a 
omponent also 
ontains a list of signals that 
onsists ofinterfa
e signals and internal signals of the 
omponent. This signal list is referred to as



56Algorithm 4.1.1 (Find the TEL from the tree)hTELstru
ture, interfa
e listi TEL(root, label)fif(root.label==label)interfa
e list = root.interfa
e list;result.TELstru
ture=NULL;result=
ompose(result.TELstru
ture, root.t);forea
h(pointer p
 in root to another node)ftmp = TEL(p
, label);result.interfa
e list = tmp.interfa
e list;result=
ompose(result.TELstru
ture, tmp.TELstru
ture);greturn result;g Figure 4.3. Find the TEL for the whole design from the TEL tree.Algorithm 4.1.2 (Change internal signal events to sequen
ing events)repla
e event(TELstru
ture, interfa
e list)fif(interfa
e list is empty)return;forea
h(e 2 TELstru
ture.E)if(the signal of e 62 interfa
e list)repla
e e with a sequen
ing event;g Figure 4.4. Repla
e internal signal events with sequen
ing events.the interfa
e list. Ea
h 
omponent has two sets of signals: input set and output set. Inputset 
onsists of all signals 
onne
ted to the 
omponent's input ports. Output set 
onsists ofall output signals to whi
h the 
omponent's output ports 
onne
t and all internal signalsof the 
omponent. The reason to in
lude a 
omponent's internal signals in the output setis that the these signals are ne
essary during synthesis and veri�
ation, and we do notwant them to be abstra
ted away during abstra
tion as determined by these two sets ofsignals. The union of these two sets forms the interfa
e list that is the superset of theunion of inputs and outputs of the 
omponent.A pro
edure shown in Figure 4.3 is used to �nd the TEL stru
ture for the whole design.This pro
edure takes two arguments: a pointer to the root of the tree of TEL stru
turesand a label of a 
omponent. The label indi
ates whi
h 
omponent in the system is sele
ted.This pro
edure returns a pair. The �rst element of the pair is the TEL stru
ture found for
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req(1)

fifo0 fifo1ack(1) r_env
req(0)

ack(0)l_env ack(2)

req(2)Figure 4.5. Blo
k Diagram of a 2-stage FIFO.
FIFO

testbench

fifo0 fifo1

t0 t1Figure 4.6. The organization of the TEL for a 2-stage FIFO.the whole system and the se
ond element of the pair is the interfa
e list of the 
omponentsele
ted by the label. This pro
edure traverses the tree from the root and 
omposes allTEL stru
tures it �nds in parallel. In the meantime, it 
ompares the label argument withthe label stored in the nodes for the 
omponents. If the label argument mat
hes the labelstored in the node for a 
omponent, the interfa
e list in that node is returned along withthe TEL stru
ture for the whole system. The label argument is optional, that means no
omponent is 
hosen and the system is designed all at on
e. In su
h a 
ase, the returnedinterfa
e list is empty. After the TEL stru
ture for the whole system and the interfa
elist of the 
hosen 
omponent are available, a renaming pro
edure shown in Figure 4.4 isused to repla
e the events on the internal signals to sequen
ing events. This pro
eduretakes two arguments: a TEL stru
ture and an interfa
e list of the 
hosen 
omponent, andit repla
es all events in the TEL whose signals are not in the interfa
e list to sequen
ingevents.The following �gures illustrate how abstra
tion works. Figure 4.5 is the blo
k diagramof a 2-stage FIFO. This FIFO 
onsists of two 
omponents that are the same single�fo stage and two testben
h pro
esses serving as the environment for the 
omponents.Figure 4.6 shows the organization of the TELs for the testben
h and 
omponents. Inthe �gure, node testben
h stores the TEL for the testben
h pro
esses as shown in Fig-ure 4.7(a). Node �fo0 stores the instantiated TEL t0 for a single �fo stage as shown inFigure 4.7(b) and the interfa
e list (a
k(0); req(1) : in; req(0); a
k(1) : out). Similarly,
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)Figure 4.7. TEL stru
tures for ea
h blo
k and environment.
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Figure 4.8. TEL of 2-stage FIFO before abstra
tion.
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Figure 4.9. TEL of 2-stage FIFO after abstra
tion.



59node �fo1 stores the instantiated TEL t1 for a single �fo stage as shown in Figure 4.7(
)and the interfa
e list (a
k(1); req(2) : in; req(1); a
k(2) : out). For simpli
ity, the rulesin the TELs without labeled timing have the timing 
onstraint [90,100℄. Suppose wewant to design �fo0 �rst. The abstra
tion pro
edure goes through the tree storing theTELs starting at root FIFO and 
omposes the TELs in parallel. When the node �fo0 isrea
hed, the interfa
e list stored in that node is returned. The 
omposition of the TELsfor the FIFO is shown in Figure 4.8. Next, the abstra
tion pro
edure 
hanges all eventswhose signals are not in the returned interfa
e list to sequen
ing events. The signalsnot in the interfa
e list of �fo0 are req(2) and a
k(2), that are the internal signals ofthe environment for �fo0. After abstra
tion is done, the TEL for the �fo0 is shown inFigure 4.9 where the events on req(2) and a
k(2) are 
hanged to sequen
ing events.4.2 Abstra
tion for TEL Stru
tures With LevelsThe result of the 
ompilation of a spe
i�
ation to a TEL with levels is still organizedas a tree as shown in Figure 4.2. Now the internal signals of the environment 
an appearboth on events and in levels. The events on the these internal signal 
an still be abstra
tedaway using the algorithms des
ribed in the last se
tion. However, these internal signals inthe levels must also be removed be
ause the de�nition for their values has been abstra
tedaway. Sin
e the internal signals do not parti
ipate in the boolean evaluation of the newlevels, the new levels evaluate to true at a di�erent time than the previous ones. Thisse
tion analyzes the 
hange of the semanti
s of the TEL stru
tures after removing theinternal signals of the environment in levels, and how to 
ompensate for the 
hange.It is des
ribed in the last 
hapter that an event t is enabled to �re when all rules inthe preset of t are satis�ed. A rule is satis�ed if the enabling event of the rule has �redand the level of the rule evaluates to true, and time has passed the lower bound of thetiming 
onstraint of the rule sin
e then. The level of a rule is a sum-of-produ
t booleanexpression. For example, a rule r = hx; y; l; u; zi where z = ab + 
d. z be
omes truewhen either both a and b swit
h to high or both 
 and d swit
h to high. Suppose a and
 are internal signals of the environment, the level turns into z0 = b + d after removinga and 
, and it be
omes true when either b or d swit
hes to high. The rule r be
omesr0 = hx; y; l; u; z0i. Sin
e it is possible that when z0 evaluates to true is di�erent thanwhen z does, r and r0 may be
ome satis�ed at a di�erent time, that results in a 
hangeof the �ring time of the enabled event y. Also, sin
e the enabling 
ondition of y has



60
hanged after some signals are removed from the level, the timed tra
es produ
ed by thesystem may be 
hanged. In the last 
hapter, a transformation is de�ned to be safe ifit preserves the system's behavior 
onservatively in terms of timed tra
es. This 
on
ept
an be applied to abstra
tion similarly. If removing internal signals from a level doesnot redu
e the untimed tra
es of the system and the spe
i�ed �ring time of an event ispreserved after the level of its enabling rule is 
hanged, removing the internal signals fromthe level is de�ned as a safe abstra
tion. This de�nition is formulated as follows:De�nition 4.2.1 (Safe Abstra
tion) Suppose there exists a rule r = hx; y; l; u; zi in aTEL stru
ture N . After abstra
ting some signals away from z, r be
omes r0 = hx; y; l0; u0; z0iand N be
omes N 0. Let T and T0 be the ranges of �ring time of y de
ided by r and r0,respe
tively. The abstra
tion is safe if N 0 produ
es a superset of untimed tra
es of N andT0 is a superset of T.A

ording to the de�nition, a safe abstra
tion must not redu
e the untimed tra
esprodu
ed by the system. How the untimed tra
es are preserved after the level of a rule is
hanged? Suppose there exists a rule r = hx; y; l; u; zi where z = ab and b is the signal thatneeds to be removed. To preserve the untimed tra
es, b in the level z must be repla
edby true. This results in z0 = a. In the system, N , 
ontaining r, y 
an �re only after x,a, and b have �red. While in the system N 0 
ontaining r0, y 
an �re after x and a have�red. b may or may not �re before �ring y so N 0 produ
es a superset of untimed tra
esof N . Now suppose z = a + b and b is the signal that needs to be removed. Again, b inthe level z must be repla
ed by true to preserve the untimed tra
es so z0 = true. On theother hand, if b is simply removed and z0 = a, this results in a loss of the untimed tra
esprodu
ed by N . The reason is explained as follows. In the new rule r0 = hx; y; l; u; z0iwhere z0 = a, y 
an �re after x and a have �red, while �ring both x and b 
annot 
ause yto �re be
ause z0 
annot evaluate to true. However, this �ring sequen
e is allowed by therule r = hx; y; l; u; zi where z = a + b. In summary, if a signal is removed from a level,this signal is repla
ed by true. This idea 
an be extended to a level that 
onsists of asum-of-produ
t boolean expression. If all signals in a produ
t term need to be removed,then the level simply be
omes true based on the dis
ussion for the level that 
onsists ofa sum boolean expression.Next, it is ne
essary to study how to preserve the timing of the rule after the levelof the rule has 
hanged. To preserve the timing, the timing 
onstraint of a rule with



61the level 
hanged 
an be always 
hanged to [l;1℄. However, this adjustment may betoo 
onservative to be useful. Before we pro
eed to analyze the adjustment of timing
onstraints of rules in a re�ned way, minimum and maximum �ring separation time needsto be de�ned. Firing separation time of a pair of events is the range of the di�eren
e ofthe �ring times between these two events. The minimum �ring separation time (denotedby min st) is the lower bound of that range, and the maximum �ring separation time(denoted by max st) is the upper bound of that range. For two events a and b,min st(a; b) = min(tb � ta) and max st(a; b) =max(tb � ta)where ta and tb are the 
orresponding �ring time of a and b. min st(a; b) and max st(a; b)
an be positive or negative. A positive value indi
ates that a �res before b. The �ringseparation time 
an be used to indi
ate the �ring time of an event relative to anotherevent if the �ring time of the latter one is known.To simplify the dis
ussion, levels with a single produ
t term are analyzed, then levelswith a sum expression, and last levels with a sum-of-produ
ts expression. Supposer = hx; y; l; u; zi where the level z = ab. min st and max st 
an be used to indi
atewhen a level be
omes true relative to an event e by �nding the separation times be-tween the events that make the level be
ome true and e. For example, in the aboverule r, z be
omes true when both a and b swit
h to high, therefore, z be
omes truemax(min st(x; a); min st(x; b)) time units after x has �red. If both min st(x; a) � 0 andmin st(x; b) � 0, it indi
ates that both a and b �re before x does so z evaluates to truebefore x �res. y 
an �re after x has �red and time has passed l time units sin
e then.If either min st(x; a) > 0 or min st(x; b) > 0, y �res after z be
omes true and time haspassed l time units sin
e then be
ause z evaluates to true after x has �red. A similaranalysis 
an be applied if min st is repla
ed with max st, and a similar result 
an bederived. Therefore, the EFT(y  r) and LFT(y  r) are de�ned as follows:EFT(y  r) = max(tx +max(min st(x; a); min st(x; b)) + l; tx + l);LFT(y  r) = max(tx +max(max st(x; a); max st(x; b)) + u; tx + u);where tx is the �ring time of x.Figure 4.10 shows six 
ases of timing relations between a and b. The horizontal barsindi
ate the timing ranges that event a or b �res. From the �gure, it is obvious that thenew level z0 after removing either a or b from z be
omes true at the same time or sooner
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t1 2t t3 t4(e) (f)Figure 4.10. Timing relations of two events a and b.than z. This means that y may �re sooner than spe
i�ed. For example, if a is removedfrom z, then EFT(y  r0) = max(tx + min st(x; b) + l; tx + l)LFT(y  r0) = max(tx + max st(x; b) + u; tx + u)where r0 = hx; y; l; u; z0i and z0 = b. If min st(x; a) > min st(x; b) and max st(x; a) >max st(x; b), then EFT(y  r0) < EFT(y  r) and LFT(y  r0) < LFT(y  r). Thesame result 
an be derived if b is removed from z. Obviously, the the range of �ring timeof y may 
hange due to the removal of either a or b, therefore, this abstra
tion is notsafe. To preserve the spe
i�ed timing behavior of y, it is ne
essary to 
ompensate forthe loss of 
onstraint from removing either a or b by adding a delay to EFT(y  r0) andLFT(y  r0) so that EFT(y  r0) � EFT(y  r) and LFT(y  r0) � LFT(y  r). In the
ase of removing a, the following equation must be satis�ed to preserve the same timingbehavior of y. EFT(y  r0) = max(tx + min st(x; b) + l +�min; tx + l)LFT(y  r0) = max(tx + max st(x; b) + u+�max; tx + u)
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Figure 4.11. The spe
ial 
ase of the level with a produ
t always being false.where �min � max(min st(x; a)� min st(x; b); 0)�max � max(max st(x; a)� max st(x; b); 0)In the 
ase of removing b, a similar result 
an be derived. The above dis
ussion is basedon the fa
t that part of the signals in a level are removed. If the whole produ
t term isremoved, the range of �ring time of y de
ided by r is as follows:EFT(y  r0) = tx + l +�minLFT(y  r0) = tx + u+�maxwhere �min = max(min st(x; a); min st(x; b); 0)�max = max(max st(x; a); max st(x; b); 0)It is obvious that EFT(y  r0) = EFT(y  r) and LFT(y  r0) = LFT(y  r). Therefore,l0 and u0 are de�ned as follows as z is 
hanged to z0:l0 = l +�min and u0 = u+�max (4.1)where �min and �max are de�ned above. If 0 and 1 are assigned to �min and �max,this abstra
tion is safe.However, it should be noted that there is a spe
ial 
ase where either a or b be
omestrue and then be
omes false before the other one be
omes true as shown in Figure 4.11.It translates to the level z always false. If z is abstra
ted as des
ribed above, the levelmay obtain a 
han
e to be
ome true, and the rule with su
h a level may a
tually �rethe enabled event. This may 
hange the untimed semanti
s of the rule. For the aboveanalysis to be 
orre
t, it is ne
essary to determine if the following equation is true.max st(x;:a) � min st(x; b) or max st(x;:b) � min st(x; a) (4.2)If Equation 4.2 is true, z is 
hanged to false; otherwise, z is abstra
ted and the timing
onstraints of the rule are modi�ed as des
ribed above.



64Now, suppose r = hx; y; l; u; zi where z = a + b. z be
omes true when either a orb swit
h to high. Therefore, z be
omes true min(min st(x; a); min st(x; b)) time unitsafter x has �red if both min st(x; a) � 0 and min st(x; b) � 0. The EFT(y  r) andLFT(y  r) are de�ned as follows:EFT(y  r) = max(tx +min(min st(x; a); min st(x; b)) + l; tx + l)LFT(y  r) = max(tx +max(max st(x; a); max st(x; b)) + u; tx + u)where tx is the �ring time of x.Sin
e removing a signal in a sum boolean expression results in a level with true,EFT(y  r0) = tx + l and LFT(y  r0) = tx + uIt is obvious that y �res sooner in the new rule. To make LFT(y  r) � LFT(y  r)0 andEFT(y  r) � EFT(y  r)0, the delay of the new rule must be adjusted as follows:l0 = l +�minu0 = u+�maxwhere �min = max(min(min st(x; a); min st(x; b)); 0)�max = max(max st(x; a); max st(x; b); 0)We have des
ribed a pro
ess how to abstra
t signals away from a level with a produ
tor sum term. This pro
ess 
an be similarly applied to a level with a sum-of-produ
texpression. If all signals in a produ
t term are internal signals, the whole produ
t termneeds to be removed resulting in a new level true. The timing 
onstraint of the rule withthe level needs to be adjusted in the same way as the abstra
tion for a level with a sumexpression. On the other hand, if some signals in a produ
t term are abstra
ted away,the timing 
onstraint of the rule with the level needs to be adjusted in the same way asthe abstra
tion for a level with a produ
t expression.It is shown from the above analysis that the key to safe abstra
tion for levels isthe knowledge of minimum and maximum separation times between two events in thesystem. However, �nding minimum and maximum separation times is as hard as statespa
e exploration whi
h is an exponential problem. This results in a 
hi
ken-and-egg



65situation. The purpose of abstra
tion is to redu
e the 
omplexity of the problem under
onsideration thus redu
ing the 
ost of state spa
e exploration. If an approximationalgorithm is available to �nd 
onservative minimum and maximum separation times, theabstra
tion 
an still be safe.



CHAPTER 5SAFE NET REDUCTIONSWhile analyzing a 
ir
uit, 
ertain details need to be suppressed to 
onstrain 
omputa-tional 
omplexity. When the 
ir
uit is represented by a graph, this requires transformationof the graph to remove some nodes and adja
ent edges while preserving the importantsystem properties. There exists a lot of resear
h work on simplifying Petri nets. Suzuhiand Murata [73, 74℄ presented a method of stepwise re�nement of transitions and pla
esinto subnets. They show a suÆ
ient 
ondition that su
h subnets must satisfy, whi
h aredependent on the stru
ture and initial marking of the net. The resulting net has the sameliveness and safety properties as that of the original net. However, this re�nement pro
esshas to be repeated every time the initial marking is 
hanged. This makes automatingthe re�nement diÆ
ult. Berthelot [14℄ presented several transformations that dependonly on the stru
ture of the net. In [62, 43, 61℄, several transformations for markedgraphs that are Petri nets without 
on
i
ts are presented. These transformations 
utpla
es and transitions in the graph while preserving liveness and safety. However, thesetransformations 
an only be applied to an untimed marked graph that has no 
hoi
es andthe timing issue is not addressed.Chapter 4 des
ribes how to identify internal signals in an environment and 
onvertevents on those signals into sequen
ing events, and also dis
usses the safe abstra
tion ofsignals in levels. The sequen
ing events need to be removed before state spa
e explorationstarts to redu
e the 
omputational 
omplexity. This 
hapter des
ribes net redu
tionte
hniques that remove the sequen
ing events from TEL stru
tures safely. As de�ned inChapter 3, a safe transformation must preserve the behavior of the system 
onservatively,or it may hide some design errors that may possibly be un
overed after the design is
ompleted. The system's behavior is determined by the timed tra
es that it 
an generate.Therefore, it is required that the system after safe redu
tions must produ
e a superset oftimed tra
es that are produ
ed by the system before the redu
tions. To prove a redu
tionto be safe, we �rst show that the TEL stru
tures after the redu
tions do not redu
e the
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ase of Redu
tion 1.untimed tra
e set; se
ond, we show that the redu
tions preserve the timing 
onservatively.If these two requirements are satis�ed, it guarantees that the TEL stru
ture after saferedu
tions produ
es a superset of timed tra
es that 
an be produ
ed by the originalone. This 
hapter des
ribes net redu
tion te
hniques that remove sequen
ing events withdi�erent topologies in TEL stru
tures. These redu
tions have been proved to be safea

ording to the de�nition of safe transformations given in Chapter 3. We �rst presentsimple redu
tions applied to TEL stru
tures with no levels and no 
on
i
ts. Next, wedis
uss how 
on
i
ts a�e
t safe redu
tions and how to extend these redu
tions to TELstru
tures 
ontaining 
hoi
es. In the last se
tion, we des
ribe the extensions of redu
tionsto TEL stru
tures with levels.5.1 Safe Redu
tions for Con
i
t-Free TEL Stru
turesThis se
tion des
ribes �ve safe net redu
tions for TEL stru
tures without 
on
i
ts andlevels. These redu
tions remove sequen
ing events from nets with di�erent topologies.Redu
tion 1 is used when a TEL stru
ture, N , 
ontains a sequen
ing event, $, wheresize($�) = 1 as shown in the example in Figure 5.1(a). In this 
ase, size(�$) = 2. A newTEL stru
ture, N 0, is derived from N by applying Redu
tion 1 removing the sequen
ingevent and all rules in its preset and postset from N . Then, for ea
h ri = hei; $; li; uii 2 �$and rj = h$; ej ; lj ; uji 2 $�, a new rule r is 
reated as follows: r = hei; ej ; li + lj ; ui + uji.For the TEL stru
ture shown in Figure 5.1(a), the new TEL stru
ture after the sequen
ingevent is removed is shown in Figure 5.1(b). This redu
tion preserves the system's behaviorexa
tly in that the timed tra
e set produ
ed by N 0 is the same as that produ
ed by N .



68Redu
tion 1 is naturally extended to sequen
ing events, $, where size(�$) > 2. Thisredu
tion 
uts the number of events and rules in a TEL by 1. To prove a redu
tion to besafe in the rest of the 
hapter, we �rst show that the untimed tra
e set produ
ed by theTEL after the redu
tion in
ludes that produ
ed by the TEL before the redu
tion. Then,we show that the timing of the events enabled by the sequen
ing events are preserved
onservatively in that they are the only events a�e
ted by the redu
tion. Lemma 5.1.1asserts that Redu
tion 1 is safe.Redu
tion 1 (For TEL stru
tures without 
on
i
ts and levels) If there exists asequen
ing event $ in a TEL stru
ture N where size($�) = 1, a new TEL stru
ture N 0
an be derived from N as follows:� E0 = E � f$g,� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji.Lemma 5.1.1 Redu
tion 1 is a safe transformation.Proof: Consider the TEL N shown in Figure 5.1(a) and the abstra
ted TEL N 0 shownFigure 5.1(b). There are two possible untimed tra
es produ
ed by N : fab$
, ba$
g. Thesemap to the tra
es fab
, ba
g produ
ed by N 0, so the �rst 
ondition is satis�ed. Next,we must show that the set of timed tra
es produ
ed by N 0 
ontains all the timed tra
esprodu
ed by N with the sequen
ing event deleted. Consider a timed tra
e x = e1e2 : : : inwhi
h ei = (a; ta), ej = (b; tb), ek = ($; t$), and el = (
; t
) with i < k, j < k, and k < l.The value of t$ falls in the following range:maxfta + l1; tb + l2g � t$ � maxfta + u1; tb + u2g (5.1)The value of t
 
omes from the range:t$ + l3 � t
 � t$ + u3: (5.2)Substituting Equation 5.1 into Equation 5.2 yields:maxfta + l1; tb + l2g+ l3 � t
 � maxfta + u1; tb + u2g+ u3: (5.3)In the abstra
ted TEL N 0, the value of t
 
omes from the range:maxfta + l1 + l3; tb + l2 + l3g � t
 � maxfta + u1 + u3; tb + u2 + u3g:
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(a) (b)Figure 5.2. A 
ase of Redu
tion 2.This is equivalent to Equation 5.3, so the range of values for t
 before and after abstra
tionare equal. This means that the abstra
ted TEL N 0 produ
es the same timed tra
es asthe unabstra
ted TEL, N . The same result 
an be obtained if the above analysis isapplied to a sequen
ing event $ where size(�$) > 2. A

ording to the de�nition of safetransformation, Redu
tion 1 for TEL stru
ture without 
on
i
ts is safe. 2Redu
tion 2 is applied to a TEL stru
ture N when it 
ontains a sequen
ing event$ where size(�$) = 1 as one 
ase shown in Figure 5.2(a). In this 
ase, size($�) = 2.Similar to Redu
tion 1, Redu
tion 2 removes the sequen
ing event $ and all rules in itspreset and postset. Then, for ea
h ri = hei; $; li; uii 2 �$ and rj = h$; ej ; lj ; uji 2 $�, anew rule r = hei; ej ; li + lj; ui + uji is added to N . This redu
tion results in a new TELstru
ture, N 0. For the TEL stru
ture shown in Figure 5.2(a), the new TEL stru
ture afterthe sequen
ing event is removed is shown in Figure 5.2(b). This redu
tion is naturallyextended to sequen
ing events $ where size($�) > 2. This redu
tion 
uts the numberof events and rules in a TEL by 1. It needs to be pointed out that extra interleavingsnot seen before the redu
tion are 
reated. In the 
ase shown in Figure 5.2, after theredu
tion, N 0 
ould generate a tra
e (a; ta)(b; ta + l1 + l2)(
; ta + u1 + u3), where ta iswhen a �res. This tra
e is impossible in the system before the redu
tion. Redu
tion 2 isde�ned and proved to be safe in the following de�nition and lemma.Redu
tion 2 (For TEL stru
tures without 
on
i
ts and levels) If there exists asequen
ing event $ in a TEL stru
ture N where size(�$) = 1, a new TEL stru
ture N 0
an be derived from N as follows:



70� E0 = E � f$g,� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji.Lemma 5.1.2 Redu
tion 2 is a safe transformation.Proof: Consider the TEL N shown in Figure 5.2(a) and the abstra
ted TEL N 0 shownFigure 5.2(b). There are two possible untimed tra
es produ
ed by N : fa$b
, a$
bg. Thesemap to the untimed tra
es fab
, a
bg produ
ed by N 0, so the �rst 
ondition is satis�ed.Next, we must show that the timed tra
es produ
ed by N 0 
ontains all the timed tra
esprodu
ed by N with the sequen
ing event deleted. Consider a timed tra
e x = e1e2 : : : inwhi
h ei = (a; ta), ej = ($; t$), ek = (b; tb), and el = (
; t
) with i < j, j < k, and j < l.The value of tb falls in the following range:ta + l1 + l2 � tb � ta + u1 + u2: (5.4)The value of t
 
omes from the range:tb + l3 � u2 � t
 � tb + u3 � l2: (5.5)After redu
tion, the value of tb 
an still be drawn from Equation 5.4, but the value of t

omes from the range:tb + (l1 + l3)� (u1 + u2) � t
 � tb + (u1 + u3)� (l1 + l2):This 
an be rewritten as follows:tb + (l3 � u2) + (l1 � u1) � t
 � tb + (u3 � l2) + (u1 � l1):Sin
e l1�u1 � 0 and u1� l1 � 0, the range of values for t
 after abstra
tion is a supersetof those before abstra
tion. This means that the abstra
ted TEL N 0 produ
es a supersetof tra
es of the unabstra
ted net N . The same result 
an be obtained if the above analysisis applied to a sequen
ing event $ where size($�) > 2. A

ording to the de�nition ofsafe transformation, Redu
tion 2 is safe. 2It seems to be natural to 
ombine Redu
tion 1 and 2 to form a new redu
tion on asequen
ing event where size(�$) � 2 and size($�) � 2. Te
hni
ally, this new redu
tionis safe a

ording to the de�nition of safe transformations. However, this redu
tion 
an
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)Figure 5.3. A redu
tion that 
auses a safety violation.
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]2 1 2[ 1 ,l +l   u +u(a) (b)Figure 5.4. An example of Redu
tion 1 that 
hanges the semanti
s if initially enabledrules are involved.
ause a safety violation in the redu
ed net. An untimed example is shown in Figure 5.3.In the TEL stru
ture shown in Figure 5.3(a), size(�$) = size($�) = 2. Figure 5.3(b)shows the new TEL after $ is removed. In the marking shown in Figure 5.3(b), �ring 
results in a new marking shown in Figure 5.3(
). In this marking, �ring a 
auses the ruleha; di to have two tokens, whi
h is a safety violation. Therefore, this redu
tion is usuallyavoided.If an event is enabled by a rule in the initial marking, the event �res after a delay in thetiming 
onstraint of the rule. If the postset of a sequen
ing event has rules in the initialmarking, Redu
tion 1 and 2 
annot be used be
ause they 
hange the timing semanti
s.In the example shown in Figure 5.4(a), event b �res between l2 and u2 time units after thesystem starts the exe
ution, while in Figure 5.4(b), b �res between l1+ l2 and u1+u2 timeunits after the system starts the exe
ution. In other words, the �ring time of b is delayed
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Figure 5.6. Unroll the self loop rule.in the �rst exe
ution 
y
le. Timing is 
hanged instead of being preserved 
onservatively,so Redu
tion 1 and 2 
annot be used in these situations.A more 
ompli
ated redu
tion is when a self loop appears on a sequen
ing event. Anexample is shown in Figure 5.5(a). Self loops must be removed before the other saferedu
tions 
an be used. This redu
tion 
hanges the upper bound of the delay on ea
hrule in the preset of the sequen
ing event to the maximum of the original upper boundand the upper bound of the self loop rule. The lower bounds remain the same. Thisensures that no matter when the last instan
e of the sequen
ing event o

urred, the selfloop rule would be expired when the other rules in the preset be
ome expired. This makesthe self loop redundant. The new TEL stru
ture is shown in Figure 5.5(b). Redu
tion 3is de�ned and proved to be safe in the following de�nition and lemma.Redu
tion 3 (Remove self loops in TELs without 
on
i
ts and levels) If there



73exists a sequen
ing event $ in a TEL stru
ture N where a rule r = h$; $; l2; u2i exists inboth �$ and $�. A new TEL stru
ture N 0 
an be derived from N as follows:� E0 = E � f$g,� R0 = R� frg,� upper(ri) = max(ui; u2) for all ri 2 �$.Lemma 5.1.3 Redu
tion 3 is a safe transformation.Proof: Consider the TEL N shown in Figure 5.5(a) and the abstra
ted TEL N 0 shownin Figure 5.5(b). It is obvious that N and N 0 produ
e the same untimed tra
es. Next, wemust show that the timed tra
es produ
ed by N 0 
ontains all the timed tra
es produ
edby N . Consider a timed tra
e x = e1e2 : : : in whi
h ei = ($; t�1$ ), ej = (a; ta), ek = ($; t$),and el = (b; tb), with i < j < k < l. The value of t$ falls in the following range:maxfta + l1; t�1$ + l2g � t$ � maxfta + u1; t�1$ + u2g (5.6)where t�1$ represents the �ring time of the previous $ event. Figure 5.5(a) is redrawn inFigure 5.6 to show this relationship where $0 is the last $ event. In N 0, the value of t$falls in the following range:ta + l1 � t$ � ta +maxfu1; u2g (5.7)Sin
e x � maxfx; yg for any values of x and y, this means that ta+l1 � maxfta+l1; t�1$ +l2g. Sin
e ta � t�1$ , this means that ta+maxfu1; u2g � maxfta+u1; t�1$ +u2g. Therefore,the range of values for t$ after abstra
tion is a superset of those before abstra
tion. Thismeans that the abstra
ted net N 0 produ
es a superset of tra
es of N . The same result 
anbe obtained if the above analysis is applied to a sequen
ing event $ where size(�$) > 2and size($�) > 2. A

ording to the de�nition of safe transformation, Redu
tion 3 is safe.2 After removal of the self loop, the TEL stru
ture 
an be redu
ed to one of the 
asesshown above and the sequen
ing event 
an be removed using either Redu
tion 1 or 2, asdes
ribed above. For the example shown in Figure 5.5(a), after Redu
tion 3, Redu
tion1 
an be applied to remove $ and the �nal result is shown in Figure 5.5(
).The �rst three redu
tions deal with a single sequen
ing event based on the sizes ofits preset and postset. They do not 
he
k the graphi
al stru
tures of its neighbors and
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ase of Redu
tion 4.how the sequen
ing event relates to them. The next two redu
tions �ll this gap by�rst 
he
king the graphi
al stru
tures of a group of sequen
ing events. If they have asimilar stru
ture in a 
ertain way, then all but one of them 
an be removed. Redu
tion4 is applied to a TEL stru
ture N when it 
ontains two sequen
ing events $1 and $2where enabled set($1) = enabled set($2) as in the 
ase shown in Figure 5.7(a). InFigure 5.7(a), 
 is enabled by $1 and $2 whi
h are enabled by a and b, respe
tively.This TEL stru
ture 
an be regarded as 
 is enabled by a and b indire
tly. Anotherway to view this situation is to treat this TEL stru
ture as a bla
k box whi
h hastwo inputs a and b, and one output 
. 
 o

urs after both a and b have o

urred.Redu
tion 4 merges $1 and $2 to $ and rules in their presets and postsets. Assumeenabling set($1) \ enabling set($2) = ;, Redu
tion 4 
uts one sequen
ing event andthe number of size($1�) rules from the TEL. When merging two rules from the postsetsof $1 and $2, respe
tively, the minimum of the lower bounds of the timing 
onstraints ofthese two rules is assigned to the lower bound of the new rule, and the maximum of theupper bounds of the timing 
onstraints of these two rules is assigned to the upper boundof the new rule. In this way, the range of �ring time of the events in the enabled set($1)and enabled set($2) is preserved in the abstra
ted TEL stru
ture, whi
h produ
es asuperset of timed tra
es of the unabstra
ted TEL stru
ture. This result is proven in thefollowing lemma. Redu
tion 4 is naturally extended to any number of sequen
ing eventsthat have the same set of enabled events.Redu
tion 4 (Merge sequen
ing events with the same enabled set) If there ex-ist two sequen
ing events $1 and $2 in a TEL stru
ture N where enabled set($1) =



75enabled set($2), a new TEL stru
ture N 0 
an be derived from N as follows:� E0 = E � f$1; $2g [ f$g,� for ea
h ri = hei; $1; li; uii 2 �$1 and rj = hej ; $2; lj ; uji 2 �$2, they are 
hanged tor0i = hei; $; li; uii and r0j = hej ; $; lj ; uji� R0 = (R�frm; rng)[frg where rm = h$1; 
; lm; umi 2 $1�, rn = h$2; 
; ln; uni 2 $2�,and r = h$; 
;min(lm; ln);max(um; un)i.Lemma 5.1.4 Redu
tion 4 is a safe transformation.Proof: Consider the TEL stru
ture N shown in Figure 5.7(a), it produ
es four possibleuntimed tra
es: fab$1$2
; ba$1$2
; ab$2$1
; ba$2$1
, a$1b$2
, b$2a$1
g. The untimedtra
e set produ
ed by the abstra
ted TEL stru
ture N 0 has two tra
es: fab$
; ba$
g. Itis obvious that N and N 0 have the same untimed tra
es after all sequen
ing events inthe untimed tra
es are deleted, so the �rst 
ondition is satis�ed. Next, we must showthat the timed tra
es produ
ed by N 0 
ontains all the timed tra
es produ
ed by N withall sequen
ing events deleted. Consider a timed tra
e x = e1e2 : : : where ei = (a; ta),ej = (b; tb), ek = ($1; t$1), el = ($2; t$2) and em = (
; t
) with i < k, j < l, and k < m,l < m. The value of t$1 and t$2 fall in the following ranges:ta + l1 � t$1 � ta + u1 (5.8)tb + l2 � t$2 � tb + u2 (5.9)The value of t
 
omes from the range:maxft$1 + l3; t$2 + l4g � t
 � maxft$1 + u3; t$2 + u4g (5.10)Substituting Equation 5.8 and 5.9 into Equation 5.10 yields:maxfta + l1 + l3; tb + l2 + l4g � t
 � maxfta + u1 + u3; tb + u2 + u4g (5.11)In the abstra
ted TEL stru
ture, N 0, the value of t$ and t
 
ome from the ranges:maxfta + l1; tb + l2g � t$ � maxfta + u1; tb + u2g: (5.12)t$ +minfl3; l4g � t0
 � t$ +maxfu3; u4g: (5.13)Substituting Equation 5.12 into Equation 5.13 yields:maxfta + l1 +minfl3; l4g; tb + l2 +minfl3; l4gg � t0
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b c

a
[

]
,

$

(a) (b)Figure 5.8. A 
ase of Redu
tion 5.� maxfta + u1 +maxfu3; u4g; tb + u2 +maxfu3; u4ggSin
e a � minfa; bg and a � maxfa; bg, the following two equations are true:maxfta + l1 +minfl3; l4g; tb + l2 +minfl3; l4gg �maxfta + l1 + l3; tb + l2 + l4ggmaxfta + u1 + u3; tb + u2 + u4g � maxfta + u1 +maxfu3; u4g; tb + u2 +maxfu3; u4ggThe range of values for t0
 in N 0 is a superset of t
 in N . This means that the abstra
tedTEL stru
ture N 0 produ
es a superset of timed tra
es of the unabstra
ted TEL stru
tureN . The same result 
an be obtained if the above analysis is applied to sequen
ing eventswhere the sizes of their presets and postsets are greater than 2. A

ording to the de�nitionof safe transformation, Reud
tion 4 is safe. 2Redu
tion 5 is 
alled when two sequen
ing events have the same set of enabling events.One 
ase is shown in Figure 5.8(a) where $1 and $2 have the same enabling event. Similarto Redu
tion 4, Redu
tion 5 merges these two sequen
ing events. The enabling events ofall rules in their postsets are merged together. For two rules 
oming from the presets of$1 and $2 respe
tively, sin
e the sequen
ing events are merged into a single sequen
ingevent, they are merged together to form a new rule. The minimum of the lower bounds ofthe timing 
onstraints of these two rules is assigned to the lower bound of the new rule,and the maximum of the upper bounds of the timing 
onstraints of these two rules isassigned to the upper bound of the new rule. The abstra
ted TEL stru
ture for the oneshown in Figure 5.8(a) is shown Figure 5.8(b). In this way, the range of �ring time of theevents in the enabled set($1) and enabled set($2) is preserved in the abstra
ted TEL



77stru
ture, whi
h produ
es a superset of timed tra
es of the unabstra
ted TEL stru
ture.This result is proven in the following lemma. Similar to Redu
tion 4, if $1 and $2 enableno 
ommon events, Redu
tion 5 
uts one sequen
ing event and size(�$1) rules from theTEL. Redu
tion 5 is naturally extended to any number of sequen
ing events that havethe same enabling set of events.Redu
tion 5 (Merge sequen
ing events with the same enabling set) If there ex-ist two sequen
ing events $1 and $2 in a TEL stru
ture N where enabling set($1) =enabling set($2), a new TEL stru
ture N 0 
an be derived from N as follows:� E0 = E � f$1; $2g [ f$g,� for ea
h rule ri = h$1; ei; li; uii 2 $1� and rj = h$2; ej ; lj ; uji 2 $2�, they are 
hangedto r0i = h$; ei; li; uii and r0j = h$; ej ; lj ; uji� R0 = (R � frm; rng) [ frg where rm = ha; $1; lm; umi 2 �$1, rn = ha; $2; ln; uni2 �$2, and r = ha; $;min(lm; ln);max(um; un)i.Lemma 5.1.5 Redu
tion 5 is a safe transformation.Proof: Consider the TEL stru
ture N shown in Figure 5.8(a) and its abstra
ted 
oun-terpart N 0 shown in Figure 5.8(b). There are six possible untimed tra
es produ
ed by N :fa$1$2b
; a$1$2
b; a$2$1b
; a$2$1
b, a$2
$1b; a$1b$2
g. The untimed tra
e set produ
edby N 0 has two possible untimed tra
es: fa$b
; a$
bg. It is obvious that these two netshave the same untimed tra
es after all sequen
ing events in the tra
es are deleted, so the�rst 
ondition is satis�ed. Next, we must show that the timed tra
es produ
ed by N 0in
lude all the timed tra
es produ
ed by N with the sequen
ing event deleted. Considera timed tra
e x = e1e2 : : : where ei = (a; ta), ej = ($1; t$1), ek = ($2; t$2), el = (b; tb),and em = (
; t
) with i < j, i < k, j < l, and k < m. The value of t$1 and t$2 fall in thefollowing ranges: ta + l3 � t$1 � ta + u3 (5.14)ta + l4 � t$2 � ta + u4 (5.15)The value of tb and t
 
omes from the range:t$1 + l1 � tb � t$1 + u1 (5.16)



78t$2 + l2 � t
 � t$2 + u2 (5.17)Substituting Equation 5.14 and 5.15 into Equation 5.16 and 5.17 yields:ta + l1 + l3 � tb � ta + u1 + u3ta + l2 + l4 � t
 � ta + u2 + u4After redu
tion, the value of t$ 
omes from the range:ta +minfl3; l4g � t$ � ta +maxfu3; u4g: (5.18)and the value of tb and t
 still 
ome from the range de�ned in Equation 5.16 and 5.17 wheret$1 and t$2 are de�ned in Equation 5.18. Substituting Equation 5.18 into Equation 5.16and 5.17 yields: ta + l1 +minfl3; l4g � t0b � ta + u1 +maxfu3; u4g (5.19)ta + l2 +minfl3; l4g � t0
 � ta + u2 +maxfu3; u4g (5.20)Sin
e ta + l1 +minfl3; l4g � ta + l1 + l3ta + u1 + u3 � ta + u1 +maxfu3; u4gand ta + l2 +minfl3; l4g � ta + l2 + l3ta + u2 + u4 � ta + u2 +maxfu3; u4gthe ranges of values for t0b and t0
 are a superset of tb and t
. This means that the abstra
tedTEL stru
ture N 0 produ
es a superset of timed tra
es in the unabstra
ted TEL stru
tureN . The same result 
an be obtained if the above analysis is applied to sequen
ing eventswhere the sizes of their presets and postsets are greater than 2. A

ording to the de�nitionof safe transformation, Redu
tion 5 is safe. 2One may ask the question: sin
e Redu
tion 1 and 2 exist, why Redu
tion 4 and 5are ne
essary to remove those sequen
ing events as illustrated in Figure 5.7 and 5.8. Toanswer the question, we need to take a look at the example shown in Figure 5.9. Forsimpli
ity, delays on all rules in this �gure are not shown. In this �gure, the sizes of thepresets and postsets of both the sequen
ing events are two. Neither Redu
tion 1 nor 2
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a b c d

e f

$1 $2
$

a b c d

e f(a) (b)Figure 5.9. An example of the appli
ation of Redu
tion 4.
an be applied to remove either one of the sequen
ing events. However, Redu
tion 4 
anbe used in this example to merge the two sequen
ing events together. Therefore, the newTEL stru
ture has one sequen
ing event and two rules less than the unabstra
ted one.The new TEL stru
ture is shown in Figure 5.9(b). Similar situations 
an be found thatonly Redu
tion 5 is appli
able.5.2 Dealing With Con
i
tsThe TEL stru
tures with the redu
tions des
ribed in the last se
tion 
an be appliedwhen there are no 
on
i
ts. However, 
on
i
t-free TEL stru
tures are not very 
apable ofmodeling real systems. It is 
ommon that most TEL stru
tures 
ontain 
on
i
ts to model
hoi
e, so it is ne
essary to extend the redu
tions to be able to handle 
on
i
ts. Given anevent in a TEL, there are two groups of 
on
i
ts involved with this event: 
on
i
ts amongthe events in its enabling set and enabled set, and those between the event itself and otherevents. The 
on
i
t relation between a pair of events must be 
arefully preserved if oneof them is abstra
ted away, otherwise, the untimed semanti
s of the system may 
hange.Consider the example shown in Figure 5.10(a). In the last se
tion, Redu
tion 1 
anbe applied, but now it has a 
on
i
t between a and b. For simpli
ity, the timing on therules is not shown. A

ording to the semanti
s of 
on
i
ts, either �ring a or b, but notboth, 
auses $ to �re. Therefore, this TEL 
an be de
omposed to two equivalent TELstru
tures as shown in Figure 5.10(b). During one exe
ution 
y
le of the TEL, either oneof the TELs in Figure 5.10(b) is a
tive. As proved in Lemma 5.1.1, the system produ
esthe same timed tra
es after Redu
tion 1 is applied to them. The abstra
ted TEL forthe one shown in Figure 5.10(a) is shown in Figure 5.10(
). Another example is shown
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a b

$

c

or

c

a

c

b

$ $

a b

c(a) (b) (
)Figure 5.10. An example of a sequen
ing event with a 
on
i
t in its preset.
a b

$

c d

[1,5]

[1,3] [4,7]

[2,6] a b

$

d

a b

$

c

or
[1,5] [2,6] [1,5] [2,6]

[1.3] [4,7]

c d#

a b

[2,8] [6,13]

[3,9][5,12]

(a) (b) (
)Figure 5.11. An example of a sequen
ing event where its postset has multiple rules butonly one 
on
i
t pla
e.in Figure 5.11(a) where there are two rules in the postset of the sequen
ing event, butthe enabled events of these two rules are in 
on
i
t. Similarly, this TEL fragment 
anbe de
omposed to two equivalent TELs as shown in Figure 5.11(b). Sin
e Redu
tion 1
an be applied to both of them safely, the sequen
ing event in the TEL in Figure 5.11(a)
an be abstra
ted away safely, and the abstra
ted TEL is shown in Figure 5.11(
). Thisredu
tion assumes that the 
hoi
es between events are timing independent. If, instead thetiming dependent 
hoi
e semanti
s is applied, the redu
tion shown in Figure 5.11 
reatesextra behavior. For example, in Figure 5.11(a), event 
 has no 
han
e to �re be
ause therule h$; 
; 1; 3i always expires before the other rule be
omes satis�ed. In the TEL shownin Figure 5.11(
), there exists a 
han
e that event 
 
an �re. However, with the timingindependent 
hoi
e semanti
s, 
hoi
e between �ring 
 and d is made �rst, then the timingis 
onsidered. Therefore, no extra behavior is 
reated. The semanti
s of 
hoi
es in the
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$

fa

c d

e

b
a # f

d

b

c e

f
a

(a) (b)Figure 5.12. An example where the sequen
ing event 
on
i
ts with another event.
$

a

b

c d

a

b

c d(a) (b)Figure 5.13. Another example where the sequen
ing event 
on
i
ts with another event.TEL stru
tures is timing independent. This dis
ussion 
an be extended to a sequen
ingevent where the postset of the sequen
ing event has a number of rules greater than 2 butall enabled events of the rules are in 
on
i
t. In other words, there is only one 
on
i
tpla
e in the postset of the sequen
ing event. Combining the analysis for the above twoexamples, if there exists only one 
on
i
t pla
e in the postset of a sequen
ing event,Redu
tion 1 in Lemma 5.1.1 
an be applied to remove the sequen
ing event without anymodi�
ation.In the example shown in Figure 5.12(a), the sequen
ing event, $, has a 
on
i
t pla
ein its postset, and meanwhile the sequen
ing event itself 
on
i
ts with another event e,



82and $ and e have a 
ommon enabling event. During one exe
ution 
y
le, either $ or e 
an�re, but not both. Firing $ 
auses either 
 or d to �re. This situation 
an be translatedto the following: after �ring a and b, or b and f , only one of 
, d, and e 
an �re. Inother words, 
, d, and e are in 
on
i
t. To keep the same semanti
s, it is ne
essary toadd two new 
on
i
ts after the sequen
ing event, $, is abstra
ted away: 
#e and d#e.The abstra
ted TEL for the example shown in Figure 5.12(a) is shown in Figure 5.12(b).Another example where the sequen
ing event $ 
on
i
ts with another event b is shownin Figure 5.13(a). In this example, $ and b enable some 
ommon events. Firing either$ or b 
auses one of 
 and d to �re. Sin
e $ is enabled by a, that means a and b mustbe in 
on
i
t. Therefore, a new 
on
i
t between a and b needs to be added to the TELafter $ is abstra
ted away. The above dis
ussion of Redu
tion 1 for TEL stru
tures with
on
i
ts is formalized and proved to be safe in the following de�nition and lemma.Redu
tion 6 (Extension of Redu
tion 1 to TELs with 
on
i
ts) If there exists asequen
ing event, $, in a TEL stru
ture N where there is only one 
on
i
t pla
e in itspostset, a new TEL stru
ture N 0 
an be derived from N as follows:� E0 = E � f$g,� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji,� if $ 
on
i
ts with e 2 E and enabling set($) \ enabling set(e) 6= ;,#0 = # [ fe#xg for all x 2 enabled set($)� if $ 
on
i
ts with e 2 E and enabled set($) \ enabled set(e) 6= ;,#0 = # [ fe#yg for all y 2 enabling set($)Lemma 5.2.1 Redu
tion 6 is a safe transformation.Proof: Sin
e only the timing of the enabled set of $ is 
hanged and preserved in thesame way as in Lemma 5.1.1, we only need to show that N and N 0 produ
e the sameuntimed tra
e to prove this lemma. First 
onsider the TEL N shown in Figure 5.11(a)where the sequen
ing event does not 
on
i
t with other events and the 
orrespond-ing abstra
ted TEL N 0 shown in Figure 5.11(
). N produ
es four possible untimedtra
es: fab$
; ba$
; ab$d; ba$dg, while N 0 also produ
es four possible untimed tra
es:
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$

c d

a b

$

c d

or
$

c d

ba

c d

a b

(a) (b) (
)Figure 5.14. An example of sequen
ing event where its preset has multiple rules butonly one 
on
i
t pla
e.fab
; ba
; abd; badg. It is obvious that these two untimed tra
e sets are the same after the$ is deleted. Then, 
onsider the TEL N shown in Figure 5.12(a) where the sequen
ingevent 
on
i
ts with e and they are enabled by b. The 
orresponding abstra
ted TELN 0 shown in Figure 5.12(b). The possible untimed tra
es produ
ed by N has six tra
es:fab$
; ab$d; ba$
; ba$d; bfe; fbeg. This maps to the possible untimed tra
es produ
ed byN 0 after $ deleted: fab
; abd; ba
; bad; bfe; fbeg, so N and N 0 produ
e the same untimedtra
es. Now 
onsider the TEL N shown in Figure 5.13(a) where the sequen
ing event
on
i
ts with b and they enable 
ommon events 
 and d. The 
orresponding abstra
tedTEL N 0 shown in Figure 5.13(b). The possible untimed tra
es produ
ed by N has sixtra
es: fa$
; a$d; b
; bdg. This maps to the possible untimed tra
es produ
ed by N 0after $ is deleted: fa
; ad; b
; bdg, so N and N 0 produ
e the same untimed tra
es. Sin
ethe timing of the events enabled by $ is preserved as proved in Lemma 5.1.1, N andN 0 produ
e the same timed tra
es. A

ording to the de�nition of safe transformations,Redu
tion 1 is safe. 2Similar to Redu
tion 1, Redu
tion 2 
an be extended to TEL stru
tures with 
on
i
tsas shown in the following de�nition and lemma.Redu
tion 7 (Extension of Redu
tion 2 to TELs with 
on
i
ts) If there exists asequen
ing event $ in a TEL stru
ture N where there is only one 
on
i
t pla
e in �$, anew TEL stru
ture N 0 
an be derived from N as follows:� E0 = E � f$g,
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a b

c d

e
b

d

a

c e(a) (b)Figure 5.15. An example of sequen
ing event 
on
i
ting with another event.
$

a b

c

e

d

b

d

a

c

e

(a) (b)Figure 5.16. An example of sequen
ing event 
on
i
ting with another event.� R0 = (R � fri; rjg) [ frg where ri = hei; $; li; uii 2 �$, rj = h$; ej ; lj ; uji 2 $�, andr = hei; ej ; li + lj ; ui + uji,� if $ 
on
i
ts with e 2 E and enabling set($) \ enabling set(e) 6= ;,#0 = # [ fe#xg for all x 2 enabled set($)� if $ 
on
i
ts with e 2 E and enabled set($) \ enabled set(e) 6= ;,#0 = # [ fe#yg for all y 2 enabling set($)Lemma 5.2.2 Redu
tion 7 is a safe transformation.Proof: Consider the TEL, N , shown in Figure 5.14(a) where the sequen
ing event has
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a b
c

d e

$ $

c

d

a

$ $

c

d

b

or or or
$ $

cb

$ $

ca

ee(a) (b)Figure 5.17. De
ompose a TEL into TELs where Redu
tion 8 
an be applied.only one 
on
i
t pla
e in its preset. This TEL fragment 
an be de
omposed into twoequivalent TELs as shown in Figure 5.14(b). Only one of them is a
tive during oneexe
ution 
y
le. It is obvious that $ in these two TELs 
an be abstra
ted away safelyusing Redu
tion 2 in Lemma 5.1.2, and the system produ
es a superset of timed tra
es ofN . N 0 is shown in Figure 5.14(
). If $ 
on
i
ts with another event, we only need to showthat N and N 0 produ
e the same untimed tra
es to prove this lemma be
ause only thetiming of the enabled set of $ is 
hanged and preserved 
onservatively. First, 
onsider theTEL N shown in Figure 5.15(a) where $ 
on
i
ts with another event e and they have thesame enabling set. N 0 is shown in Figure 5.15(b) where new 
on
i
ts 
#e and d#e are
reated. N produ
es six possible untimed tra
es: fa$
d; a$d
; ae; b$
d; b$d
; beg, whileN 0 also produ
es six possible untimed tra
es: fa
d; ad
; ae; b
d; bd
; beg. It is obviousthat these two untimed tra
e sets are the same after $ is deleted. Then, 
onsider theTEL N shown in Figure 5.16(a) where $ 
on
i
ts with e and they both enable d. N 0is shown in Figure 5.16(b) where new 
on
i
ts a#e and b#e are 
reated. The possibleuntimed tra
es produ
ed by N has �ve tra
es: fa$
d; a$d
; b$
d; b$d
; edg. This maps tothe possible untimed tra
es produ
ed by N 0 after $ deleted: fa
d; ad
; b
d; bd
; edg, so Nand N 0 produ
e the same untimed tra
es. In both TEL stru
tures shown in Figure 5.15and Figure 5.16, only the timing of the rules in $� is 
hanged and preserved 
onservativelyas proven in Lemma 5.1.2, so N 0 produ
es a superset of timed tra
es of N . A

ording tothe de�nition of safe transformations, Redu
tion 2 is safe. 2Examples shown in Figure 5.17(a) and Figure 5.7(a) have a similar stru
ture, ex
eptthat the two sequen
ing events in Figure 5.17(a) are in 
on
i
t and there are also 
on
i
t
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l4 u4[ ],l3 u3[ ],

l1 u1[ ], l2 u2[ ],
a b

c

$1 $2

l2 u2[ ],l1 u1[ ],

l3 l4min( , )
u4max( )u3,[ ,

]
c

$

ba

(a) (b)Figure 5.18. An example of Redu
tion 8.pla
es in their presets and postsets. The example shown in Figure 5.17(a) 
an bede
omposed into four equivalent TEL stru
tures, ea
h of whi
h has a stru
ture shown inFigure 5.18(a). If the redu
tion shown in Figure 5.18 is safe, merging the two sequen
ingevents in Figure 5.17(a) is also safe. The above dis
ussion is formalized and proved to besafe in the following de�nition and lemma.Redu
tion 8 (Extension of Redu
tion 4 to TELs with 
on
i
ts) If there exist twosequen
ing events $1 and $2 in a TEL stru
ture N where $1 
on
i
ts with $2, andenabled set($1) = enabled set($2). A new TEL stru
ture, N 0, 
an be derived fromN as follows:� E0 = E � f$1; $2g [ f$g,� for ea
h ri = hei; $1; li; uii 2 �$1 and rj = hej ; $2; lj ; uji 2 �$2, they are 
hanged tor0i = hei; $; li; uii and r0j = hej ; $; lj ; uji� R0 = (R�frm; rng)[frg where rm = h$1; 
; lm; umi 2 $1�, rn = h$2; 
; ln; uni 2 $2�,and r = h$; 
;min(lm; ln);max(um; un)iLemma 5.2.3 Redu
tion 8 is a safe transformation.Proof: Consider the TEL stru
ture N shown in Figure 5.18(a), it produ
es two possibleuntimed tra
es: fa$1
; b$2
g. The untimed tra
e set produ
ed by the abstra
ted TELstru
ture N 0 in Figure 5.18(b) has two tra
es: fa$
; b$
g. It is obvious that N and N 0have the same untimed tra
es after sequen
ing events are deleted, so the �rst 
ondition



87is satis�ed. Next, we must show that the timed tra
es produ
ed by N 0 
ontains all thetimed tra
es produ
ed by N with all sequen
ing events deleted. Consider a timed tra
ex = e1e2 : : : where ei = (a; ta), ej = ($1; t$1), ek = (
; t
) with i < j < k. The value of t$1falls in the following range: ta + l1 � t$1 � ta + u1 (5.21)The value of t
 
omes from the range:ta + l1 + l3 � t
 � ta + u1 + u3 (5.22)In the abstra
ted TEL stru
ture N 0, suppose a o

urs, the value of t
 
ome from theranges: ta + l1 +minfl3; l4g � t0
 � ta + u1 +maxfu3; u4gSin
e a � minfa; bg and a � maxfa; bg, the following two equations are true:ta + l1 +minfl3; l4g � ta + l1 + l3ta + u1 + u3 � ta + u1 +maxfu3; u4gThe range of values for t0
 in N 0 is the superset of t
 in N . The same result 
an be derivedif b and $2 �re in N or b �res in N 0. This means that the abstra
ted TEL stru
ture,N 0, produ
es a superset of timed tra
es of the unabstra
ted TEL stru
ture, N . Thesame result 
an be obtained if the above analysis is applied to sequen
ing events wherethe sizes of their presets and postsets are greater than 2. If there exist multiple 
on
i
tpla
es in the preset and postset of the sequen
ing events as shown in Figure 5.17(a), theTEL 
an be de
omposed into equivalent TELs as shown in Figure 5.17(b). Ea
h of themhas the stru
ture where the redu
tion in Figure 5.18 
an be applied. Therefore, aftermerging the sequen
ing events, the TEL produ
es a superset of tra
es of the one shownin Figure 5.17(a). A

ording to the de�nition of safe transformation, Redu
tion 8 is safe.2 Similarly, the TEL stru
ture shown in Figure 5.19(a) 
an also be de
omposed into fourTEL stru
tures shown in Figure 5.19(b). If the redu
tion shown in Figure 5.20 is safe,merging the two sequen
ing events in Figure 5.19(a) is also safe. The above dis
ussion isformalized and proved to be safe in the following de�nition and lemma.
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a b

$1 $2

c
d e

a

c e

or or or

a

dc

b

$1 $2

dc

b

$1 $2

c e

$1 $2 $1 $2(a) (b)Figure 5.19. De
ompose a TEL into TELs where Redu
tion 9 
an be applied.
l1 u1[ ], l2 u2[ ],

l4 u4[ , ]l3 u3[ ],

a

b

$1 $2

c

l3 l4min( , )
u4max( )u3,

[
]

,

l2 u2[ ],l1 u1[ ],

b

a

c

$

(a) (b)Figure 5.20. An example of Redu
tion 9.Redu
tion 9 (Extension of Redu
tion 5 to TELs with 
on
i
ts) If there exist twosequen
ing events $1 and $2 in a TEL stru
ture N where $1 and $2 are in 
on
i
t, andenabling set($1) = enabling set($2). A new TEL stru
ture N 0 
an be derived fromN as follows:� E0 = E � f$1; $2g [ f$g,� for ea
h rule ri = h$1; ei; li; uii 2 $1� and rj = h$2; ej ; lj ; uji 2 $2�, they are 
hangedto r0i = h$; ei; li; uii and r0j = h$; ej ; lj ; uji� R0 = (R � frm; rng) [ frg where rm = ha; $1; lm; umi 2 �$1, rn = ha; $2; ln; uni2 �$2, and r = ha; $;min(lm; ln);max(um; un)i



89Lemma 5.2.4 Redu
tion 9 is a safe transformation.Proof: Consider the TEL stru
ture, N , shown in Figure 5.20(a) and its abstra
ted
ounterpart, N 0, shown in Figure 5.20(b). There are two possible untimed tra
es produ
edby N : fa$1b; a$2
g. The untimed tra
e set produ
ed by N 0 also has two possible untimedtra
es: fa$b; a$
g. It is obvious that these two nets have the same untimed tra
es afterall sequen
ing events in the tra
es are deleted, so the �rst 
ondition is satis�ed. Next, wemust show that the timed tra
es produ
ed by N 0 
ontains all the timed tra
es produ
edby N with the sequen
ing event deleted. Consider a timed tra
e x = e1e2 : : : whereei = (a; ta), ej = ($1; t$1), and ek = (b; tb) with i < j < k. The value of t$1 falls in thefollowing range: ta + l3 � t$1 � ta + u3 (5.23)The value of tb 
omes from the range:t$1 + l1 � tb � t$1 + u1 (5.24)Substituting Equation 5.23 into Equation 5.24 yields:ta + l1 + l3 � tb � ta + u1 + u3After abstra
tion, the value of t$ 
omes from the range:ta +minfl3; l4g � t$ � ta +maxfu3; u4g: (5.25)and the value of tb still 
omes from the range de�ned in Equation 5.24 where t$1 is de�nedin Equation 5.25. Substituting Equation 5.25 into Equation 5.24 yields:ta + l1 +minfl3; l4g � t0b � ta + u1 +maxfu3; u4g (5.26)Sin
e ta + l1 +minfl3; l4g � ta + l1 + l3ta + u1 + u3 � ta + u1 +maxfu3; u4gthe range of value for t0b is a superset of tb. The same result 
an be derived if the aboveanalysis is applied to the timed tra
e that 
ontains events a, $2, and 
. This means thatthe abstra
ted TEL stru
ture, N 0, produ
es a superset of timed tra
es in the unabstra
tedTEL stru
ture, N . If there exist multiple 
on
i
t pla
es in the preset and postset of the
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)Figure 5.21. An example of Redu
tion 10.sequen
ing events as shown in Figure 5.19(a), the TEL 
an be de
omposed into equivalentTELs as shown in Figure 5.19(b). Ea
h of them has the stru
ture where the redu
tion inFigure 5.20 
an be applied. Therefore, after merging the sequen
ing events, the abstra
tedTEL produ
es a superset of tra
es of the one shown in Figure 5.19(a). A

ording to thede�nition of safe transformation, Redu
tion 9 is safe. 2Another redu
tion is similar to Redu
tion 3 where the sequen
ing event forms a loopas shown in Figure 5.21. In Figure 5.21, $1 and $2 form a loop where $2 is in both thepreset and postset of $1 and $1 is also in both the preset and postset of $2. Also, $2
on
i
ts with the events in both the enabling set and enabled set of $1. In this example,$2 
on
i
ts with a and b. The semanti
s of this TEL is as follows: after �ring a, $1
an o

ur sin
e event a and $2 are in 
on
i
t. Next, either b or $2 
an �re. Before�ring b, $2 
an �re an in�nite number of times. If the upper bound delay along the path$1 ! $2 ! $1 is greater than 0, this means that b may not �re for an in�nite amountof time. After removing $2 and 
hanging upper(r) to 1 for all r 2 $1�, the system stillprodu
es the same set of timed tra
es. This 
an be proven by the following lemma.Redu
tion 10 (Redu
tion 10) If there exist two sequen
ing event $1 and $2 in a TELstru
ture N , $2 is in both enabling set and enabled set of $1, and $2 
on
i
ts with theevent e 2 enabling set($1) and e 2 enabled set($1). A new TEL stru
ture, N 0, 
an bederived from N as follows:� R0 = R� fr1; r2g where r1 = f$2; $1; l1; u1g 2 �$1 and r2 = f$1; $2; l2 ; u2g 2 $1�,
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(a) (b)Figure 5.22. An example of Redu
tion 1 for a TEL with levels.� if u1 + u2 > 0, upper(r) =1 for all r 2 �$1.Lemma 5.2.5 Redu
tion 10 is a safe transformation.Proof: Consider the TELN shown in Figure 5.21(a) and the abstra
ted TELN 0 shown inFigure 5.21(b). There is only one untimed tra
e produ
ed by N : fa$1($2$1)�bg. ($1$2)�means that the sequen
e of $2 and $1 
an o

ur zero or in�nite number of times. Afterdeleting the sequen
ing events, the untimed tra
e be
omes ab whi
h is what is produ
edby N 0. In N , $1 
an �re on
e or an in�nite number of times before b �res. The �rst time$1 �res, ta + l1 � t$1 � ta + u1. After an in�nite number of times of �ring $1, t$1 = 1.Therefore, The value of tb 
omes from the following ranges:ta + l1 + l3 � tb � 1 (5.27)It is obvious that tb determined in Equation 5.27 is the same as that obtained from N 0.Therefore, N and N 0 produ
e the same set of timed tra
es. A

ording to the de�nitionof safe transformations, this redu
tion is safe. 25.3 Dealing With LevelsRedu
tion 1, 2, 4, and 5 
an be extended to TEL stru
tures with levels. However,extension of ea
h redu
tion to handle levels has di�erent 
onstraints. For Redu
tion 1and 2, it is required that all rules in the postset of a sequen
ing event must have a level oftrue; otherwise, the timing behavior 
hanges. Figure 5.22 shows an example of Redu
tion1 for a TEL with levels. Figure 5.23 shows an illegal appli
ation of Redu
tion 1 for a
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(a) (b)Figure 5.23. Redu
tion 1 for TEL with levels that 
auses a 
hange in timing.
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(a) (b)Figure 5.24. An example of Redu
tion 2 for a TEL with levels.
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(a) (b)Figure 5.25. An example of Redu
tion 4 for a TEL with levels.
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a
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]
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<z1> <z2>(a) (b)Figure 5.26. An example of Redu
tion 5 for a TEL with levels.TEL with levels where the rule in the postset of the sequen
ing event has a level. InFigure 5.23(a), 
 �res between l3 and u3 time units after the level z evaluates to true,while in Figure 5.23(b), 
 �res between max(l1+ l3; l2+ l3) andmax(u1+u3; u2+u3) timeunits after the level z evaluates to true. Obviously, timing 
onstraints have 
hanged afterthe redun
tion. Figure 5.24 shows Redu
tion 2 for a TEL with levels. For Redu
tion4, it is required that all rules in the postsets of sequen
ing events must have the samelevel expression be
ause it is impossible to merge two rules with di�erent levels. ForRedu
tion 5, it is required that all rules in the presets of sequen
ing events must havethe same level expression. Figure 5.25 shows an example of Redu
tion 4 for a TEL withlevels. Figure 5.26 shows an example of Redu
tion 5 for a TEL with levels.



CHAPTER 6REMOVING REDUNDANT RULESA rule puts a 
onstraint on the �ring time of an event. If the event is enabled bymultiple rules, and the �ring time of the event is independent of one of them, then thatrule is redundant. Informally, a rule is redundant in a TEL stru
ture if its omissiondoes not 
hange the behavior spe
i�ed. In other words, given a TEL stru
ture, N , anda rule, r, a new TEL stru
ture, N 0, 
onstru
ted by removing r from its rule set hasthe same timed tra
es as N . The general approa
h to determine if a rule is redundantrequires �nding the minimum and maximum separation times between any two events,however, the 
al
ulation of minimum and maximum separation times is an exponentialproblem. This approa
h is very undesirable be
ause the purpose of determining andremoving redundant rules is to redu
e the 
omputational 
ost of state spa
e exploration.Therefore, an approximate method is ne
essary. For TEL stru
tures without levels, we
an determine if a rule is redundant by analyzing the stru
ture of the net around therules of interest and the relations of their timing 
onstraints. If the rules have levels, anapproximate algorithm is ne
essary to 
al
ulate the worst-
ase minimum and maximumseparation time between every two events in a TEL stru
ture so that this information
an be used to determine the redundan
y of a rule. This 
hapter starts with the formalde�nition of redundant rules. In the se
ond se
tion, a stru
tural analysis method isdes
ribed to 
he
k if a rule is redundant for 
on
i
t-free TEL stru
tures without levels.The following se
tion des
ribes how 
on
i
ts in the TEL stru
tures a�e
t the abovemethods. In the last se
tion a method to determine redundan
y of rules with levels isdes
ribed based on the assumption that the minimum and maximum separation timebetween every two events in a TEL stru
ture is available.6.1 De�nition of Redundant RulesA redundant rule is de�ned to be a rule su
h that removing it from a TEL stru
turedoes not 
hange the timed tra
e set produ
ed, so the �rst requirement that a redundant



95rule must satisfy is that removing it does not redu
e the untimed tra
es spe
i�ed. Se
-ondly, timing must be preserved exa
tly for the system to produ
e the same timed tra
es.In Chapter 2, a rule is said to be enabled if its enabling event has �red and the booleanexpression of its level evaluates to true. A rule is satis�ed if it is enabled and the timerof the rule ex
eeds the lower bound of the timing 
onstraint. A rule is expired if it isenabled and the timer of the rule ex
eeds the upper bound of the timing 
onstraint. Ifan event is enabled by multiple rules and suppose there is no 
on
i
t among the enablingevents, the event is enabled to �re when all enabling rules are satis�ed. The event isfor
ed to �re before all enabling rules be
ome expired. Note that some may be expiredas long as at least one has not expired. Therefore, the rules in the preset of the eventdetermine a range of �ring time of the event. The lower bound of this range is de
idedby the rule whi
h is the last one to be
ome satis�ed. The upper bound of this range isde
ided by the rule whi
h is the last one to be
ome expired. If a rule in the preset of theevent is neither the last one be
oming satis�ed nor the last one be
oming expired, thatmeans it does not 
onstrain the timing behavior of the event so it is redundant. Re
allin Chapter 2, EFT(e r1; � � � ; rn) and LFT(e r1; � � � ; rn) de�ne the lower and upperbound of the range of �ring time of e de
ided by r1; � � � rn, respe
tively. Redundantrules are formally de�ned as follows:De�nition 6.1.1 (Redundant Rules) Given a TEL stru
ture, N , an event e 2 E su
hthat size(�e) � 2 and a rule r 2 �e, r is redundant if removing r does not redu
e theuntimed tra
es produ
ed by N , and the following equations are satis�ed:EFT(e r1; � � � r; � � � ; rn) = EFT(e r1; � � � ; rn)LFT(e r1; � � � r; � � � ; rn) = LFT(e r1; � � � ; rn)From the above dis
ussion, the omission of redundant rules in a TEL does not have anyimpa
t on the system behavior. However, the existen
e of redundant rules in
reases the
omputational 
ost to explore the state spa
e be
ause more rules need to be 
onsidered.Therefore, it is highly desirable and ne
essary to remove redundant rules wheneverpossible to redu
e the 
ost of state spa
e exploration. Re
all the de�nition of safe trans-formations that a transformation is safe if the transformed system produ
es a supersetof timed tra
es of the system before the transformation. A

ording to this de�nition, itis obvious that removing redundant rules is another kind of safe transformation in that
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Figure 6.1. A TEL fragment with a redundant rule.the system produ
es the same timed tra
es after the redundant rules are removed.Figure 6.1 shows a simple example of a redundant rule. The TEL fragment in theexample has three rules: r1 = ha; 
; 1; 3i, r2 = hb; 
; 2; 4i, and r3 = ha; b; 2; 4i. This TELstru
ture produ
es only one untimed tra
e fab
g. In this TEL fragment, either r1 or r2is potentially redundant be
ause the untimed tra
e set produ
ed by the TEL after r1 orr2 is removed in
ludes ab
. Suppose ta is when event a �res. We haveEFT(b r3) = ta + 2 and LFT(b r3) = ta + 4and EFT(
 r1) = ta + 1 and LFT(
 r1) = ta + 3From above equations, we 
an derive the earliest and latest �ring time of 
 determinedby r2: EFT(
 r2) = EFT(b r3) + 2 and LFT(
 r2) = LFT(b r3) + 4Sin
e EFT(b  r3) and LFT(b  r3) are available, the above two equations 
an bereformulated as follows:EFT(
 r2) = ta + 4 and LFT(
 r2) = ta + 8Sin
e 
 is enabled by r1 and r2, the range of �ring time of 
 determined by r1 and r2 isde�ned as follows: EFT(
 r1; r2) = max(EFT(
 r1); EFT(
 r2))LFT(
 r1; r2) = max(LFT(
 r1); LFT(
 r2))
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Figure 6.2. An example where removing a rule 
hanges the untimed behavior of a TEL.Obviously, in this example,EFT(
 r1; r2) = EFT(
 r2) and LFT(
 r1; r2) = LFT(
 r2)This indi
ates that the timing behavior of 
 is solely 
onstrained by rule r2, whi
h makesrule r1 redundant. A similar analysis 
an be applied to r2, and the result shows it is notredundant.An example shown in Figure 6.2 illustrates a situation where removing a rule 
hangesthe untimed semanti
s of the system even if timing is preserved exa
tly. In the example,the event d is enabled by two rules: r1 = hb; d; 2; 5i and r2 = h
; d; 2; 5i, and b 
on
i
tswith 
. If one of r1 and r2 �res, d �res sometime between 3 and 8 time units after a has�red. However, removing either one of the them 
hanges the untimed tra
es produ
edby the TEL. For example, if r1 is removed, the TEL does not produ
e untimed tra
es
ontaining events b and d. Similar result is obtained if r2 is removed. Therefore, both r1and r2 
annot be redundant.6.2 Redundan
y Che
k for Con
i
t-Free TEL Stru
turesWithout LevelsIf an event is enabled by multiple rules, a

ording to the de�nition of redundant rules,it is ne
essary to know when these rules be
ome satis�ed and expired, and the order ofwhen they be
ome satis�ed and expired to determine if one of them is redundant. Thisrequires the information of the minimum and maximum separation times between everypair of events in the system. Unfortunately, 
alaulation of the minimum and maximumseparation times has an exponential 
omplexity in the size of the system. This makes thegenaral method of removing redundant rules as hard as state spa
e exploration. Sin
e
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ra
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c(a) (b) (
)Figure 6.3. The triangle stru
ture for redundan
y 
he
k.the information of the minimum and maximum separation times between an arbitrarypair of events is not available until the exponential pro
edure is done, we have to restri
tthe general analysis approa
h to a subset of TEL stru
tures so that 
alaulation of theminimum and maximum separation times between two events is not required. Instead,su
h information is derived by a simple stru
tural analysis. This se
tion des
ribes themethod to determine redundant rules for TEL stru
tures without 
on
i
ts and levels.This method explores the topology of TEL stru
tures to �nd if there exists a 
ertainstru
ture that the separation time among the events in the enabling set of an event 
anbe obtained easily.The example shown in Figure 6.1 in the last se
tion points out one kind of stru
turethat 
an be used to determine redundant rules. This stru
ture 
an be generalized inFigure 6.3(a). In this triangle stru
ture, an event is enabled by two rules r1 and r2,and there is another rule r that 
onne
ts the enabling events of r1 and r2 so that theseparation time between enabling events of r1 and r2 
an be obtained by just 
he
kingthe timing 
onstraint of r. Sin
e the separation time between enabling events of r1 and r2is available, it 
an be determined if either r1 or r2 is redundant as shown in the followinglemma.Lemma 6.2.1 (Redundan
y Che
k for Rules not in the Initial Marking) GivenA TEL stru
ture, N , that 
ontains an event e 2 E and two rules r1 2 �e and r2 2 �e.If there exists a rule r 2 R su
h that enabling(r) = enabling(r2) and enabled(r) =enabling(r1), r2 is redundant if the following equations are satis�ed:lower(r1) + lower(r) � lower(r2) and upper(r1) + upper(r) � upper(r2)



99Rule r1 is redundant if size(�b) = 1 and the following equations are satis�ed:lower(r1) + lower(r) � lower(r2) and upper(r1) + upper(r) � upper(r2)To �re 
 in Figure 6.3(a), a needs to �re �rst resulting in a marking shown inFigure 6.3(b), then b �res resulting a marking in Figure 6.3(
). If the initial markingis as shown in Figure 6.3(b), the rule r and r2 are initially enabled. This indi
atesimpli
itly that a has �red. Firing 
 requires b to �re �rst. In this 
ase, all three rules areinvolved in �ring 
, the �ring time of 
 is the same in the �rst exe
ution 
y
le as thatin the following exe
ution 
y
les. Therefore, for the purpose of redundan
y 
he
k, theTEL shown in Figure 6.3(b) is 
onsider the same as that in Figure 6.3(a). However, ifthe TEL has the initial marking shown in Figure 6.3(
), the �ring time of 
 is di�erent inthe �rst exe
ution 
y
le where r1 and r2 are initially enabled. The reason is that r is notinvolved in the �ring of 
 in the initial marking. A rule is redundant if it does not a�e
tthe �ring time of the event enabled by the rule in every exe
ution 
y
le when it is enabledto �re, so one more step to 
he
k if r1 or r2 is redundant in the initial marking needsto performed. Besides using Lemma 6.2.1 to de
ide if either r1 or r2 is redundant, it isalso ne
essary to 
he
k that either one is also redundant in the initial marking. To makean initially enabled rule r redundant, there must exist another rule that 
onstrains thetiming behavior in su
h a way that it does not 
hange after r is removed. The followinglemma gives the 
onditions to 
he
k if a rule in the initial marking is redundant.Lemma 6.2.2 (Redundan
y Che
k for Rules in the Initial Marking) Given a TELstru
ture, N , in whi
h there is a r 2 R and also r 2 M0, if there exists another rx, andthe following equations are true:lower(rx) � lower(r) and upper(rx) � upper(r)then r is redundant in the initial marking M0.This triangle stru
ture only involves three rules. Redundan
y 
he
k on this kind ofTEL stru
ture 
an be handled very fast, but also limits the appli
ability of this method.Figure 6.4(a) shows an alternative TEL to those shown in Figure 6.3 based on the sameidea. In this kind of TEL stru
ture, there is not a single rule from a to b. Instead, area
hes b through a path. A path P from a to b is a sequen
e of rules so that a 
anrea
h b through P by traversing the graph. Lemma 6.2.1 
an still be applied to this kind
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a [2, 4]

[3, 7]
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(a) (b)Figure 6.4. Extension of the triangle stru
ture for redundan
y 
he
k.of TEL, only lower(r) and upper(r) in Lemma 5.2.5 need to be repla
ed by lower(P )and upper(P ). lower(P ) and upper(P ) of a path P = r1 ! r2 � � � ! rn are de�ned asfollows: lower(P ) = lower(r1) + lower(r2) + � � � + lower(rn)upper(P ) = upper(r1) + upper(r2) + � � � + upper(rn)And also to 
he
k if r1 is redundant, it needs to 
hange the 
ondition that size(�b) = 1in Lemma 5.2.5 to size(�enabled(r)) = 1 for all r in P . Figure 6.4(b) shows an exampleof this kind of TEL stru
ture. In the example, path P from a to b is (r3 r4), where r3 =ha; d; 2; 4i and r4 = hd; b; 3; 7i. lower(P ) = 5 and upper(P ) = 11. Sin
e r1 = hb; 
; 1; 5iand r2 = ha; 
; 5; 11i, and lower(r1)+lower(P ) > lower(r2) and upper(r1)+upper(P ) >upper(r2), a

ording to Lemma 6.2.1, r2 is redundant. However, redundan
y 
he
k forthis kind of TEL stru
ture requires 
al
ulating the transitive 
losure among all events ina TEL to de
ide if there is a path between a pair of events. Cal
ulation of the transitive
losure has 
omplexity O(n3) where n is the number of events in the TEL. If n is big,�nding the transitive 
losure is very 
omputationally expensive, therefore the algorithmhandling the more general stru
tures should be used in a limited way and preferably whenno other transformations work.6.3 Extending Redundan
y Che
k to Handle Con
i
tsThe last se
tion des
ribes a method to determine redundant rules in a TEL stru
turewithout 
on
i
ts. This se
tion extends the method to TELs with 
on
i
ts. In a TEL with
on
i
ts, a rule that is identi�ed redundant a

ording to Lemma 6.2.1 and Lemma 6.2.2
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(a) (b) (
)Figure 6.5. Redundan
y 
he
k with an enabling 
on
i
t set.is 
alled a potentially redundant rule. If a potentially redundant rule does not 
hangethe untimed semanti
s of a TEL, it be
omes a truly redundant rule. It is obvious thata potentially redundant rule is automati
ally a truly redundant rule if the TEL has no
on
i
ts. There are two groups of 
on
i
ts that need to be 
onsidered when de
iding ifa potentially redundant rule r is truly redundant: the 
on
i
ts among the events in theenabling set of the event enabled(r) and 
on
i
ts involved with enabled(r).First, 
onsider the 
on
i
ts among the events in the enabling set of an event. As shownin Figure 6.2, if all events in the enabling set of another event e 
on
i
ts with ea
h other,in other words, there is only one 
on
i
t pla
e in the preset of e, none of rules in �e 
anbe redundant be
ause removing any one of them redu
es the spe
i�ed untimed behavior.Figure 6.5(a) shows an example where the TEL, N , has a 
on
i
t between b and 
. eis enabled by r1, r2, and r3. Sin
e b 
on
i
ts with 
, either �ring of a and b or �ring ofa and 
 is required to �re e. N 
an be de
omposed to two equivalent TELs shown inFigure 6.5(b) and Figure 6.5(
). Only one of the two TEL stru
tures is a
tive during anexe
ution 
y
le. Suppose r1 is potentially redundant only due to r2, and it is removed fromboth the TELs. In the 
ase shown in Figure 6.5(b), the �ring time of e does not 
hange.However, in the 
ase shown in Figure 6.5(
), e may �re sooner than spe
i�ed be
ause itis possible that EFT(e  r1; r3) 6= EFT(e  r3) and LFT(e  r1; r3) 6= LFT(e  r3).Sin
e the �ring time of e may 
hange after r1 is removed, r1 is not truly redundant. r1is truly redundant if it is redundant due to both r2 and r3. Let an enabling 
on
i
t setof an event e be a set of rules in the preset of e whose enabling events 
on
i
t with ea
hother, and an enabled 
on
i
t set of an event e be a set of rules in the postset of e whoseenabled events 
on
i
t with ea
h other. If an enabling 
on
i
t set is used to de
ide theredundan
y of another rule, that rule is redundant if it is redundant due to all rules inthe enabling 
on
i
t set. Now suppose r2 is potentially redundant due to r1. However,



102
r1 r3

r2

b

c

a

d #Figure 6.6. Redundan
y 
he
k with an enabled 
on
i
t set.
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b # c, d # e(a) (b)Figure 6.7. Redundan
y 
he
k for rules in the same postset of an event where theirenabled events are in 
on
i
t.removing r2 
hanges the semanti
s of the TEL stru
ture. The reason is as follows: beforeremoving r2, e �res after a and b, or a and 
 have �red. After removing r2, e �res onlyafter a and 
 have �red. Sin
e b and 
 are in 
on
i
t, this may 
ause deadlo
k. If bothr2 and r3 are redundant and removed, the system produ
es the same timed tra
es.In summary, a rule 
annot make another rule in the same enabling 
on
i
t set redun-dant. If a rule in an enabling 
on
i
t set makes another rule not in this enabling 
on
i
tset redundant, then all rules in the 
on
i
t set must make that rule redundant for it to betruly redundant. On the other hand, a rule in an enabling 
on
i
t set is truly redundantif all rules in the same 
on
i
t set are redundant.Now 
onsider the situation where the enabled event of a potentially redundant rule
on
i
ts with other events. Figure 6.6 shows an example where the TEL, N , 
ontainsa 
on
i
t between 
 and d that are enabled by a. Suppose r2 is redundant due to r3.The untimed tra
e set produ
ed by N is fab
; abd; ba
; bad; adbg. After removing r2, theuntimed tra
e set produ
ed by N 0 is fab
d; abd
; ba
d; bad
; adb
; b
adg. The 
hange inthe untimed semanti
s is be
ause the 
on
i
t between 
 and d disappears after removingr2. In N , a 
hoi
e is made between 
 and d after a �res that only one of them 
an �re. In
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Figure 6.8. The enabling 
on
i
ts that a�e
t the 
onditions for redundan
y 
he
k.N 0, no 
hoi
e is made after a �res be
ause there is no 
on
i
t between 
 and d. Now both
 and d 
an �re in parallel after a does. Now suppose r3 is redundant be
ause of r2. Theuntimed tra
e set produ
ed by N is still fab
; abd; ba
; bad; adbg. After removing r3, theuntimed tra
e set produ
ed by N 0 is the same. Therefore, r3 is truly redundant in this
ase. Based on the above dis
ussion, a potentially redundant rule r is truly redundantif it is not in any enabled 
on
i
t set of any events in a TEL. However, in the situationshown in Figure 6.7(a), both r1 and r2 are in the enabled 
on
i
t set of a, and if they areredundant and removed together, the new TEL stru
ture still produ
es the same timedtra
es. This is be
ause the TELs before and after r1 and r2 are removed produ
es thesame two untimed tra
es: faeb; ae
g. And also removing r1 and r2 does not 
hange thetiming behavior of b and 
, so the new TEL produ
es the same timed tra
es. Figure 6.7(b)shows a TEL alternative to the one shown in Figure 6.7(a). In this 
ase, if both r4 andr5 are redundant and removed together, the behavior des
ribed by this TEL does not
hange. The reason is the same for the TEL shown in Figure 6.7(a). If r3 and r6 areredundant based on their own triangle redundan
y 
he
k, they 
an be removed together,and it is ne
essary to 
reate two new 
on
i
ts e#b and d#
 to keep the same untimedtra
es. Based on the above dis
ussion, it is required that removing a rule does not 
hangethe 
on
i
t relation of any pair of events.In Lemma 6.2.1 and Figure 6.3, the 
onditions using timing 
onstraints of rules r, r1,and r2 to de
ide if r2 is redundant is based on an assumption that there is no 
on
i
tamong the enabling events of the rules in the preset of b. If it is not true as shown inFigure 6.8 where a 
on
i
ts with d, then 
he
king 
onditions de�ned in Lemma 6.2.1 isno longer 
orre
t. The reason is explained as follows: sin
e a 
on
i
ts with d, the earliest�ring time of b has two values shown as follows:EFT(b ri) = ta + lower(ri)



104EFT(b rj) = td + lower(rj)where ta and td are the earliest �ring time of a and d.EFT(
 r1; r2) = max(ta + lower(r2); tb + lower(r1)) (6.1)The earliest �ring time of 
 de
ided by only r1 is de�ned as follows:EFT(
 r1) = tb + lower(r1) (6.2)If tb = EFT(b ri), thenEFT(
 r1) = ta + lower(ri) + lower(r1)EFT(
 r1; r2) = max(ta + lower(r2); ta + lower(ri) + lower(r1))A

ording to Lemma 6.2.1, EFT(
 r1) = EFT(
 r1; r2) (6.3)However, if tb = EFT(b rj), thenEFT(
 r1) = td + lower(rj) + lower(r1)EFT(
 r1; r2) = max(ta + lower(r2); td + lower(rj) + lower(r1))It is possible that EFT(
 r1) 6= EFT(
 r1; r2)Therefore, it is required that there are no 
on
i
ts among the events in the enabling setof b for the 
he
king 
onditions de�ned in Lemma 6.2.1 to be 
orre
t.6.4 General Redundan
y Che
k for TEL stru
turesThis se
tion dis
usses the general method to determine the redundan
y of a rulebased on an assumption that a 
onservative estimate of the minimum and maximumseparation time between two events is available. We �rst show two simple redundan
y
he
ks for TEL stru
tures with levels that do not require su
h information. As shownin Figure 6.9(a), rule r and r1 now have levels z and z1, respe
tively. If r2 is redundantbased on Lemma 6.2.1 ignoring levels, r2 is still redundant when the levels are taken into
onsideration. The reason is as follows: if r2 is 
he
ked to be redundant ignoring levels,that means r1 is the last one to be
ome satis�ed and expired. Adding a level into r1
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y 
he
ks for TEL stru
tures with levels.delays r1 to be
ome satis�ed and expired so it does not 
hange the redundan
y of r2.Similarly, in the example shown in Figure 6.9(b), if r1 is redundant based on Lemma 6.2.1ignoring the level on r2, r1 is still redundant when the level on r2 is 
onsidered.The above two simple 
ases are appli
able only when r2 has a level but r and r1does not, or vi
e versa. If this is not true, the information of separation time betweentwo events is required. In the �rst se
tion, if an event is enabled by multiple rules,one of them is redundant if it is neither the last one to be
ome satis�ed nor the lastone to be
ome expired. This requires knowing when a rule be
omes enabled. To makethe following dis
ussion easier, we de�ne a referen
e event eref and the minimum andmaximum separation times between eref and another event e are represented as te minand te max, respe
tively. Therefore, te min = min st(eref ; e) and te max = max st(eref ; e).A rule is enabled when the enabling event has �red and the level evaluates to true.As des
ribed in Chapter 4, if the boolean expression of a level only 
onsists of a produ
t,for example z = ab, z evaluates to true at tz min = max(ta min; tb min) and tz min =max(ta max; tb max). If the expression only 
onsists of a sum term, for example z = a+b,z evaluates to true at tz min = min(ta min; tb min) and tz max =max(ta max; tb max). Thetime when an expression with a sum-of-produ
t evaluates to true 
an be derived similarly.Given a rule r = he; f; l; u; zi, the earliest time when it is enabled is max(te min; tz min),and the latest time when it is enabled is max(te max; tz max). Therefore, the lower andupper bounds of the range that r be
omes satis�ed aremax(te min; tz min) + l and max(te max; tz max) + lSimilarly, the lower and upper bounds of the range that r be
omes expired are



106max(te min; tz min) + u and max(te max; tz max) + uSuppose an event is enabled by two rules: r1 and r2. If the lower bound of the rangewhen r2 be
omes satis�ed is larger that the upper bound of the range when r1 be
omessatis�ed and the lower bound of the range when r2 be
omes expired is larger than theupper bound of the range when r1 be
omes expired, then r1 is redundant.There is a spe
ial 
ase when the level only 
onsists of a produ
t. If the level alwaysevaluates to false, the rule with this level would never be
ome enabled, so it is automat-i
ally redundant.



CHAPTER 7EXPERIMENTAL RESULTSThe goal of the automati
 abstra
tion te
hniques des
ribed in this dissertation isto avoid state spa
e explosion in large and 
omplex designs by partitioning designsinto blo
ks with 
onstrained 
omplexity and exploring the state spa
e of ea
h blo
kindividually. To redu
e the state spa
e, it is ne
essary to remove the sequen
ing eventsand asso
iated rules in a system whenever possible under the 
onstraint that the systembehavior is preserved 
onservatively.This automati
 abstra
tion te
hnique has been in
orporated into the VHDL and THSE
ompiler [86℄ frontend of the ATACS tool. In this 
hapter, several examples are presented,and their state spa
e is explored using Bap, an enhan
ed version of the POSET timinganalysis algorithm [55℄. Next, the state spa
e of ea
h 
omponent in these examples isexplored after abstra
tion. For the purpose of easy 
omparison between the runtimes ofstate spa
e exploration of the whole designs and the runtimes of state spa
e exploration ofthe designs using abstra
tion, all examples shown in this 
hapter have a regular stru
tureso that they 
an be expanded easily. However, it does not ne
essarily mean that theabstra
tion te
hnique is limited to only 
ir
uits with a regular stru
ture. When a designsu�ers state explosion, that means that the state spa
e of the design is too large to �t inthe memory. Abstra
tion not only improves the runtime of state exploration, but also thememory usage be
ause the state spa
e of ea
h 
omponent 
an be substantially smallerthan the whole design. Besides showing the 
omparison of runtimes, the 
omparison ofthe memory usage is also shown for the whole design and ea
h 
omponent.7.1 Simple FIFOsThe �rst example is a dataless version of the pre
harge half bu�er (PCHB) from [49℄.In one experiment, we explored the state spa
e of the whole PCHBs with di�erent numberof stages without using abstra
tion, and ATACS �nishes su

essfully up to 7 stages. Inanother experiment, we explored the state spa
e of the PCHBs with di�erent number of
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(a)
3

E_3

(b)
3E_3’(
)Figure 7.1. Illustration of how modular design works on ea
h stage and how abstra
tionredu
es the 
omplexity of designing ea
h stage.stages with asbtra
tion on. In this experiment, a single stage of the PCHB is sele
ted,and the rest of the stages of the PCHB and the environment for the whole PCHB are
ombined to be the environment for the sele
ted stage. Before the state spa
e of thesele
ted stage is explored, its environment is simpli�ed using the abstra
tion approa
hdes
ribed in this dissertation. This pro
ess 
an be illustrated in the Figure 7.1. The samepro
ess is applied to the other stages of the PCHB. Then, the runtimes for the state spa
eexploration of all stages in the PCHB are added together to form the time to �nish thewhole PCHB. Note that the runtime for ea
h stage also in
ludes the time for abstra
tionon that stage. Comparative runtimes and memory usages for the state spa
e explorationof 1 through 9 stages are shown in Figure 7.2 and Figure 7.3, respe
tively. While ATACS
an only �nish PCHBs up to 7 stages on the 
at design, it easily �nishes 100 stages inabout 6.2 minutes with a maximum memory usage of 4 MB with abstra
tion on.
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BapFigure 7.3. Memory usage for PCHB example.The se
ond example is a multiple stage 
ontroller for a self-timed FIFO from SunMi
rosystems. In [58℄, a highly optimized hand designed timed 
ir
uit implementation ispresented. The purpose of this FIFO is to 
ompare the performan
e of an asyn
hronousFIFO with that of a 
lo
ked shift register using the same data path. The FIFO uses apulse-like proto
ol to advan
e data along the pipeline. Aggressive timing assumptions



110module �fo;input fin = fh180; inf ; 180; 260ig;input seinb = ftrue; h90; 110; 90; infig;output seoutb = ftrue; h90; 110ig;output fout = fh90; 110ig;output eout = ftrue; h90; 110ig;output foutb = ftrue; h90; 110ig;output eoutb = fh90; 110ig;pro
ess seoutb;�[[fin+℄; seoutb�; [eout�℄; seoutb+; [eout+℄℄endpro
esspro
ess eout;�[[seoutb�℄; eoutb+; eout�; [seoutb +&foutb+℄; eoutb�; eout+℄endpro
esspro
ess fout;�[[eoutb+℄; foutb�; fout+; [seinb�℄; foutb+; fout�; [seinb+℄℄endpro
essendmoduleFigure 7.4. The timed HSE 
ode for the SUN FIFO.are made for the FIFO to a
hieve high performan
e. In a pipeline using transparent datalat
hes, the movement of a datum from one stage of a pipeline to the next involves twoa
tions: 
apturing the data value in the lat
hes of the next stage; and unlat
hing the datalat
hes in the present stage to free them to 
apture the next datum. Tight 
ontrol of thetiming relationships between these two a
tions is important if robust and fast 
ir
uitsare to be a
hieved. Speed su�ers if the unlat
hing a
tion is too late 
ompared with thelat
hing a
tion. Robustness su�ers if the unlat
hing a
tion takes pla
e before the lat
hinga
tion is 
omplete. The delay requirements of lat
hing and unlat
hing must be satis�edregardless of the speed at whi
h the pipeline operates.The operation of the FIFO is very simple: whenever a stage that is Full is followedby a stage that is Empty, the data in the full stage is moved to the empty stage and thestates of both stages are 
hanged 
orrespondingly. Figure 7.5 shows the 
ontrol 
ir
uitfor a single stage of the FIFO. When a request 
omes in (FIN+) and the FIFO is empty(EOUT is high), the data is lat
hed (En bar+ and En�). In parallel, the insertion isa
knowledged (SEOUT�) and the next stage is requested to a

ept the data (FOUT+).When the next stage a

epts the data (SEIN�), the FIFO is set to be empty (EOUT+)and the lat
h is opened (En bar� and En+). The THSE 
ode for a single stage FIFO isshown in Figure 7.4.The 
orre
tness of this 
ir
uit is highly dependent on timing parameters. By using
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Figure 7.5. The 
ontrol 
ir
uit for a single stage FIFO.
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BapFigure 7.6. Synthesis time for FIFO example.ATACS, the same eÆ
ient 
ir
uit is derived [77℄. We run the same experiments for theFIFO as we did for the PCHB. Without using abstra
tion, ATACS 
an only �nish theFIFO up to 4 stages. For the 5-stage FIFO, we had to kill the pro
ess after it ran for overa day. With abstra
tion on, however, ATACS easily pro
eeds to 100 stages, whi
h takesapproximately 31 minutes and 13 MB memory. The dire
t method [44℄ 
an also �nish100 stages, but it takes over 300 minutes. Comparative results upto 6 stages are shownin Figure 7.6.
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Figure 7.7. The STARI interfa
e.7.2 STARI: A Communi
ation Cir
uitThe last example is a STARI 
ommuni
ation 
ir
uit des
ribed in detail in [38℄. STARIis a self-timed FIFO that is used to 
ommuni
ate between two syn
hronous systemsthat are operating at the same 
lo
k frequen
y, but are out-of-phase due to 
lo
k skew.These two systems 
ommuni
ate as though they are part of an ideal syn
hronous systems(Figure 7.7). During ea
h period of the 
lo
k, one value is inserted into the FIFO bythe transmitter and one value is removed by the re
eiver. Be
ause data is insertedand removed at the same rate, no 
ontrol signals are required to prevent under
ow andover
ow. However, due to the 
lo
k skew, there 
an be short term 
u
tuations in the
lo
k rate at the re
eiver or transmitter and it 
an appear that one of them is workingfaster than the other. STARI responds to these 
u
tuations by building up more data inthe FIFO when the transmitter is working faster, and by supplying data from the FIFOwhen the re
eiver is working faster.For 
orre
t operation of the STARI, the following two properties need to be veri�ed:1. Ea
h data value output by the transmitter must be inserted into the FIFO beforethe next one is output.2. A new data value must be output by the FIFO before ea
h a
knowledgment fromthe re
eiver.To guarantee the se
ond property, it is ne
essary to initialize the FIFO to be approxi-mately half-full [38℄. Intuitively, the longer and faster the FIFO, the more skew it 
antolerate. The 
orre
tness of the above properties depends on the length of the FIFO, the
lo
k speed, the magnitude of the skew, and the speed of operation of the FIFO stages.In the STARI 
ir
uit, ea
h signal x is represented by the dual-rail 
ode as shown inTable 7.8. The \empty" value is ne
essary to distinguish between two 
onse
utive dataitems of the same value and one data value asserted for a long time.



113x.t x.f x0 0 E(empty)0 1 F(false)1 0 T(true)1 1 illegalFigure 7.8. Dual rail 
oding.

C

C
x(k).t

x(k).t

ack_in(k)ack_out(k)

x(k−1).t

x(k−1).f Figure 7.9. Stage k of STARI.The typi
al STARI 
ir
uit 
onsists of n identi
al stages, ea
h of whi
h is 
omposed of2 C-elements and 1 NOR-gate per stage as shown in Figure 7.9. The timed HSE 
ode fora single stage STARI is shown in Figure 2.2. The TEL stru
ture of the �rst stage of theSTARI is shown in Figure 2.12 in 
hapter 2.In [75℄, the authors state that COSPAN whi
h uses a region te
hnique for timingveri�
ation [3℄ ran out of memory attempting to verify a 3 stage gate-level version ofSTARI on a ma
hine with 1 GB of memory. In [7℄, a 
at gate-level design for 10stages 
an be veri�ed in 124 MB and 20 minutes using POSET timing. Our automatedabstra
tion method veri�es a 14 stage STARI in about 5 minutes with a maximummemory usage of 23 MB of memory for a single stage . Figure 7.10 shows the 
omparativeruntimes for veri�
ation using Bap timing [55℄ with and without abstra
tion on STARI.Bap is an enhan
ed version of the POSET timing analysis algorithm. As shown in the
hart, Bap 
an verify STARI for up to 12 stages with a memory usage of 277 MB.In the �rst few stages, the runtime for veri�
ation with absta
tion is larger be
ause
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ation.abstra
tion itself takes time. When the 
omplexity of the design grows, the runtimefor 
at veri�
ation grows mu
h faster. As the designs be
ome more and more 
omplex,the time for abstra
tion dominates the total synthesis time. However, sin
e abstra
tionruntime grows polynomially in the size of the spe
i�
ation, the total synthesis time withabstra
tion grows in an approximately polynomial manner. This is substantially betterthan the exponential growth in the analysis of 
at designs.As shown in Figure 7.10, the runtime for state spa
e exploration using abstra
tion isnot as good as that for the examples in the �rst se
tion. The reason is that sequen
ingevents 
annot be totally abstra
ted away in STARI. For example, in the 8 stage STARI,there are 44 sequen
ing events for ea
h stage before the transformations. After thetransformations, 36 sequen
ing events in stage 1, 40 in stage 4, and 38 in stage 8 areremoved. Chapter 5 des
ribes several situations that the sequen
ing events 
annot beremoved. For example, if the preset and postset of a sequen
ing event 
ontain multiplerules of whi
h the enabling events or the enabled events are not in 
on
i
t, it 
annotbe removed as it often 
auses a safety violation. As designs grow, the number of su
hsequen
ing events 
an be
ome large. This in
reases the 
ost of state spa
e explorationdramati
ally. Sequen
ing events with size(�$) > 1 and size($�) > 1 are inevitable.Redundan
y 
he
k des
ribed in Chapter 6 needs to be used in su
h 
ases to redu
e thesize of preset or postset of a sequen
ing event until some redu
tion te
hniques 
an be



115applied. More general redundan
y 
he
k is needed to expose more sequen
ing events tobe redu
ed.This example, as well as the ones shown in the �rst se
tion, is parameterizable. Onemay argue the utility of 
at synthesis in that for all examples shown in this 
hapter onlyone stage needs to be built and 
opied to 
reate the other stages. However, synthesis ofa 
at design 
an lead to a simpler 
ir
uit implementation. For STARI, if ea
h stage isbuilt from the 
ir
uit shown in Figure 7.9, this design works 
orre
tly using the timingparameters shown in Figure 2.12. If a 
at design of, for example, an 8 stage STARI, issynthesized, the C-elements in the �rst 3 stages used to store the data 
an be redu
edto simple bu�ers. In the last 3 stages, a generalized C-element using one less transistor
an be used. Only the middle two stages require full C-elements. 80 literals and 160transistors are required to implement a 8 stage STARI 
onsisting of the same stages,while the 8 stage STARI synthesized from the 
at design requires 56 literals and 136transistors. Synthesis using our abstra
tion te
hniques derives the same results.



CHAPTER 8CONCLUSIONS8.1 SummaryState spa
e exploration is required for designing high-performan
e timed 
ir
uits.However, state spa
e explosion limits synthesis and veri�
ation methods to small de-signs. This dissertation des
ribed a theoreti
al framework and te
hniques to avoid statespa
e explosion en
ountered in large designs by partitioning a design into blo
ks with
onstrained 
omplexity and designing the blo
ks separately. When designing a blo
k, therest of the 
ir
uit and the system environment together are regarded as the environmentthat de�nes the operating 
ondition for the blo
k. Sin
e only the behavior on the interfa
eof the environment for the blo
k is essential, the internal signals of the environment needto be abstra
ted away. After removing the internal signals in the environment, the totalnumber of states of a blo
k and its abstra
ted environment 
an be dramati
ally redu
ed,thus signi�
antly redu
ing the runtime and memory usage for state spa
e exploration.In this dissertation, we gave an overview of the spe
i�
ation method of timed 
ir
uitsusing hardware des
ription languages su
h as THSE and a synthesizable subset of VHDLfor ATACS. These languages in
lude 
onstru
ts for spe
ifying sequen
ing, 
on
urren
y,
hoi
e, and two-sided timing 
onstraints. They also support the stru
tural spe
i�
ationof a 
ir
uit. Spe
i�
ations in these languages are 
ompiled to a graphi
al representation,TEL stru
tures, to whi
h timing analysis algorithms are applied. The behavioral seman-ti
s of TEL stru
tures are de�ned using timed tra
e theory. In this dissertation, we haveproven, by using timed tra
e theory, the 
orre
tness of a series of theorems that supportmodular synthesis and veri�
ation. We des
ribed the 
on
ept of safe abstra
tion thatdeals with abstra
ting signals away from levels in TEL stru
tures. It 
an 
reate extrabehavior not spe
i�ed originally. We also des
ribed the 
on
ept of safe transformationsand de�ned 
onditions that safe transformations must satisfy. Then, we des
ribed twogroups of te
hniques based on the de�nition of safe transformations to redu
e the number



117of events and rules in a TEL stru
ture. The �rst is safe net redu
tions that remove thesequen
ing events and rules in their presets and postsets, and 
reates new rules thatpreserve the 
ausal and timing behavior between the enabling sets and enabled sets ofthe sequen
ing events. They 
an remove most sequen
ing events in a TEL stru
ture. Safenet redu
tions 
an 
reate extra behavior not spe
i�ed originally. The se
ond is removingredundant rules. This te
hnique identi�es and removes rules in a TEL stru
ture that haveno e�e
t on the behavior. Redundan
y 
he
k preserves the behavior pre
isely. These twogroups of te
hniques are used alternatively to a
hieve the best result in terms of thenumber of sequening events left and the number of rules in the TEL stru
ture. Safe netredu
tions are applied �rst, then redundan
y 
he
k is applied to reveal more situationsthat 
an be simpli�ed by safe net redu
tions. We have applied the te
hniques des
ribedin this dissertation to several examples in
luding the 
lassi
 STARI example, and ourresults show that modular synthesis and veri�
ation with abstra
tion is not only severalorders of magnitude faster, but also 
apable of analyzing several orders of magnitudemore 
omplex systems that 
an be handled previously.8.2 Future WorkAbstra
tion is essential when analyzing systems with a huge number of states su
h asa 
ir
uit with a data path. The work presented in this dissertation is only a starting pointwhere there is mu
h work that needs to be done in order to make it pra
ti
ally useful. Thisse
tion des
ribes the areas that we believe to be the most important resear
h problemsthat must be addressed. 8.2.1 Spe
i�
ationIn Chapter 5, we dis
ussed that if there exist initially enabled rules in the postsetof a sequen
ing event, Redu
tion 1 and 2 
annot be applied without 
reating extrabehavior. Also, in Chapter 6, a di�erent redundan
y 
he
k must be applied if initiallyenabled rules appear. The reason is that semanti
s of initially enabled rules are di�erentfrom the 
orresponding non-initially enabled rules. In order to make safe redu
tions andredundan
y more appli
able, it is ne
essary to introdu
e spe
ial kinds of rules into TELstru
tures. These rules are similar to initially enabled rules. However, after �ring theenabled events in the �rst exe
ution 
y
le, they are removed during the timing analysis.



1188.2.2 Cal
ulation of Separation Time Estimates Between EventsIn the dis
ussion of safe abstra
tion in Chapter 4 and redundan
y 
he
k for TELstru
tures with levels in Chapter 6, it is assumed that the separation time betweenevents are known. As mentioned, 
al
ulating separation time is as hard as state spa
eexploration, and should be avoided. In order to make safe abstra
tion and redundan
y
he
k viable for TEL stru
tures with levels, it is ne
essary to develop an approximatealgorithm to 
al
ulate a 
onservative estimate of the separation time. This algorithmmustin
ur low 
omputational 
ost. In [63℄, Myers des
ribed su
h an approximate algorithmto 
ompute a estimate of the minimum and maximum separation time between all eventsin a 
y
li
, 
hoi
e-free graph. It has a polynomial 
omplexity. It is highly desirable toextend this algorithm to apply to TEL stru
tures with arbitrary 
hoi
e and levels whilemaintaining the polynomial 
omplexity.8.2.3 Automati
 Partitioning of DesignsThe quality of abstra
tion has several aspe
ts. One of them is that ea
h blo
kafter partitioning must have a balan
ed and 
onstrained 
omplexity. The 
omplexityof state spa
e exploration algorithms is exponential in the size of TEL stru
tures. Extratime is required if abstra
tion is applied, and time for abstra
tion for ea
h blo
k growspolynomially in the size of TEL stru
tures. Therefore, the total time for synthesis andveri�
ation of a blo
k 
onsists of two portions: time for state spa
e exploration with anexponential 
omplexity in the size of the blo
k and time for abstra
tion with a polynomial
omplexity in the size of TEL stru
tures. If the size of the blo
k is too large, the 
ostof designing a blo
k is 
lose to that of the whole 
ir
uit. If the size of ea
h blo
k istoo small, then the number of blo
ks after partitioning is too large, and the overheadfor abstra
tion 
an grow substantially. Also, the 
urrent abstra
tion te
hnique sele
tsa blo
k in a 
ir
uit based on the spe
i�ed stru
tural information. In other words, adesigner 
hooses a 
omponent from a 
ir
uit by hand. This pro
ess be
omes tedious andtime-
onsuming if the 
ir
uit 
onsists of many 
omponents and levels of hierar
hy. Toaddress the above problem, it is ne
essary to develop an algorithm that takes advantage ofthe spe
i�ed stru
tural information to partition a 
ir
uit so that ea
h blo
k has a balan
edand 
onstrained 
omplexity, so the speed of the design pro
esses using abstra
tion 
anbe improved in a maximum way.



1198.2.4 Re�nement Guided Abstra
tionSafe abstra
tions in Chapter 4 and safe net redu
tions in Chapter 5 
reate extrabehavior that may result in violating states that are unrea
hable in the original 
ir
uit.This may produ
e a false negative answer for veri�
ation. When this situation happens,abstra
tion has to go ba
kwards to eliminate the extra behavior 
ausing the fake violatingstates. One method is to run abstra
tion again without using a safe abstra
tion ornet redu
tion te
hnique that 
reates extra behavior. If this is not enough, more su
htransformations are removed and abstra
tion needs to be performed again. An alternativeis to analyze the error tra
es and �nd out if they are 
aused by removing some sequen
ingevents. If it is true, these sequen
ing events are restored and timing analysis is performedagain. 8.2.5 Stru
tural Analysis for TEL Stru
turesFor safe net redu
tions des
ribed in Chapter 5, it is required that the net afterredu
tions preserves safeness and liveness of the original net. In [31℄, Commoner des
ribedan analysis approa
h to determine the safeness and liveness of a net based on its stru
ture.However, his approa
h 
an only be applied to marked graphs that are a 
lass of Petri-netwithout 
hoi
es. In [40℄, Ha
k des
ribed and proved the suÆ
ient 
onditions for afree-
hoi
e Petri-net to be safe and live. The above approa
hes either 
annot handle
hoi
e at all or in a limited way. It is desirable to develop a method to de
ide the safenessand liveness of a net with arbitrary stru
ture, so more 
omplex safe transformations thatpreserve safeness and liveness of nets 
an be developed.8.2.6 Combining Partial Order Redu
tion with Abstra
tionAs introdu
ed in the �rst 
hapter, partial order redu
tion redu
es the state spa
e by
onsidering only a subset of all possible interleavings between two 
on
urrent events. Thiste
hnique is widely used in veri�
ation world, but not in synthesis be
ause all behaviorsof a 
ir
uit need to be 
onsidered. In timed 
ir
uit design, the internal bebehavior of anenvironment has no impa
t on how a 
ir
uit is synthesized or veri�ed, therefore, partialorder redu
tion 
an also be used to simplify the environment besides the abstra
tionte
hnique des
ribed in this dissertation. If these two te
hniques 
an be 
ombined together,better results 
an be obtained.
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