
SBOLEXPLORER: DATA INFRASTRUCTURE AND DATA

MINING FOR GENETIC DESIGN REPOSITORIES

by

Michael Zhang

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

May 2019

Copyright c©Michael Zhang 2019

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Michael Zhang

has been approved by the following supervisory committee members:

Chris Myers , Chair(s) 11 Feb 2019
Date Approved

Ryan Stutsman , Member 14 Feb 2019
Date Approved

Jeffrey Phillips , Member 12 Feb 2019
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Biology is a very noisy field. Experiments are difficult to reproduce, the mechanisms

behind life are not well understood, and data that we do obtain is difficult to make sense of.

Much like traditional engineering fields where engineers draw from a library of reusable

parts for their designs, experimental and synthetic biologists have designed biological

circuits by drawing from a library of genetic constructs. However, these so-called genetic

parts are poorly understood and are therefore limited in their usefulness. Additionally,

there are hundreds of thousands of parts and sequences that have been either created or

discovered. For my thesis, I filter through this biological noise to provide genetic circuit

designers a powerful way to search for and access the genetic parts that are useful to them.

This thesis is focused on creating SBOLExplorer, a system that is used to provide intu-

itive search within the SynBioHub genetic design repository. SynBioHub integrates genetic

construct data from various sources and transforms and stores this data in a standardized

data model. By tackling the intricate data mining and data infrastructure problems as-

sociated with large-scale semi-structured and noisy data, the search, transformation, and

storage of data in genetic design repositories can be enhanced. In particular, this thesis

focuses on improving the usability of genetic part repositories’ search capabilities. By

clustering SynBioHub’s genetic parts into many derived collections, duplicate parts are

merged. From there, a graph analysis algorithm is used to rank collections of parts by

popularity and usefulness. Finally, data infrastructure challenges relating to indexing,

storing, serving, and distributed search are solved. The end goal of SBOLExplorer is

to integrate these findings into SynBioHub and other genetic design repositories’ data

representation, search functionality, and data infrastructure.

CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . vi

CHAPTERS

1. INTRODUCTION . 1

1.1 Genetic Part Selection . 1
1.2 Genetic Design Repositories . 2
1.3 Contributions . 3
1.4 Thesis Overview . 5

2. BACKGROUND . 6

2.1 Synthetic Biology . 6
2.2 Genetic Circuits . 7
2.3 The Synthetic Biology Open Language . 10
2.4 Software Tools . 14

3. GRAPH ANALYSIS . 17

3.1 Data Exploration . 17
3.2 Ranking . 19
3.3 Implementation . 20
3.4 Analysis . 24
3.5 Summary . 27

4. CLUSTERING . 28

4.1 Methods . 28
4.2 Implementations . 32

4.2.1 Hierarchical Single Link Clustering . 32
4.2.2 UCLUST . 37

4.3 Summary . 38

5. DATA INFRASTRUCTURE . 41

5.1 Inverted Index . 41
5.2 Search Implementation . 42

5.2.1 Metrics . 46
5.3 Workflow and System Design . 47

5.3.1 Distributed Search . 52
5.4 Summary . 54

6. CONCLUSION . 56

6.1 Summary . 56
6.2 Future Work . 56

6.2.1 Infrastructure . 57
6.2.2 Data Augmentation . 57
6.2.3 Data Visualization . 57
6.2.4 Better Metrics . 58

REFERENCES . 59

v

ACKNOWLEDGEMENTS

I want to thank my advisor, Professor Chris Myers. Chris accepted me into his lab

when I was a freshman undergraduate. I have learned a lot from Chris since then, and he

has been integral in challenging me and making me a better researcher. He is never afraid

of getting his hands dirty in the nitty-gritty details, and he is one of the most passionate

and motivated people I know. His idioms will continue to intrigue me.

I also want to thank Professor Ryan Stutsman and Professor Jeff Phillips for their efforts

on the supervisory committee. Ryan has been inspirational. I can always count on him

to feed my curiosity for distributed systems and infrastructure. His courses have been

a highlight of my time at the University of Utah, and I will continue to think back to

our conversations for the duration of my career. Jeff, whose mathematical intuition is

sometimes beyond my comprehension, has done a fantastic job at introducing me to all

things data and new Markovian perspectives on life.

I want to thank my lab mates, Leandro Watanabe, Tramy Nguyen, Zhen Zhang, Meher

Samineni, Zach Zundel, Jet Mante, Pedro Fontanarrosa, Oliver Flatt, Igor Durovic, and

Samuel Bridge. They have all been great friends. I will look back fondly at my time with

you all in the steadily deteriorating lab space on the 4th floor of MEB.

Finally, I want to thank my parents and little brother. They provide the foundation

upon which I can focus on learning and developing. I would not be here if it weren’t for

their boundless encouragement.

This work is funded by the National Science Foundation under grants CCF-1218095

and DBI-1356041. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

CHAPTER 1

INTRODUCTION

In synthetic biology, experimental biologists build new and novel genetic circuits, or

networks of biological logic gates, that perform a variety of applications [16]. These appli-

cations range from making cats glow green to identifying and disrupting cancer cells [20,

36]. To build these genetic circuits, experimental biologists search for well-characterized

and well-studied genetic parts. These genetic parts form the building blocks for more com-

plicated genetic circuits. Each part is unique in its function, ideal operating environment,

and ability to interface with other parts. Unlike traditional electrical engineering parts

such as the resistor or transistor, biological parts are noisy and particular. Specifically, this

means biological parts are difficult to use since each part is unique, and standardized parts

vary depending on the target organism and target function.

1.1 Genetic Part Selection
To address the issues with selecting the right parts to use in genetic circuit design,

experimental biologists have compiled massive amounts of data on a wide variety of

parts. This data is stored in genetic design repositories and is encoded in a variety of

standardized and non-standardized data models. As a result of how unstructured this

encoding and storing process is, the data is also messy and unstructured even when each

part is encoded in a standardized format. How do you find the right part? How do you

know if it is even there? While a massive amount of data exists, it is difficult to search

through and find trends in the data in a meaningful way.

Depending on how the search query or data is represented, there are many different

ways to search for and select genetic parts. One way of describing genetic parts is through

its genetic sequence. Genetic sequences are character strings of varying length, and in

the case of deoxyribonucleic acid (DNA), are composed of base pairs cytosine (C), gua-

nine (G), adenine (A), and thymine (T). Each base pair forms a character in the genetic

2

sequence string, and therefore pairs of sequences can be compared through a variety of

techniques. Commonly, fuzzy local alignments are computed between a query sequence

and a database of sequences using the Basic Local Alignment Search Tool (BLAST) [3].

However, other forms of sequence search are also useful. For example, optimizing for

global alignment or edit distance, searching for exact matches that fit a certain template

akin to regular expression matching, and searching through an annotated corpus of parts

with semantic relationships are all useful ways to search for genetic parts. Offering so-

lutions for all these kinds of searches is important for any repository hosting genetic cir-

cuit designs. Unfortunately, the best search solutions often depend on the available data

shapes, and some repositories that have parts with interesting semantic relationship data

and linkage metadata don’t utilize or mine the data to enhance search [41].

1.2 Genetic Design Repositories
Genetic design repositories are centralized data storage services for storing, sharing,

and serving genetic designs. SynBioHub is an example of a genetic design repository [37,

41]. Specifically, SynBioHub is a repository of genetic designs encoded in the Synthetic Biol-

ogy Open Language (SBOL), a standardized data exchange format for genetic circuit designs

[6, 19, 52]. SynBioHub leverages the power of linked data to connect designs and parts

with their usages in other designs and parts. By linking all part data using well-defined

ontologies such as the Sequence Ontology, a graph of characteristics, definitions, and their

relationships is formed [15]. Each edge in this graph is of the form of a triple. Each triple

encodes relationship data using a subject, a predicate, and an object. This means queries

on the data can be constructed to filter based on the relationship data, follow triples to

observe direct and transitive relationships, and show the general topology between all

stored genetic designs. This also means the data has interesting linkage metadata and

semantic relationship information. Unfortunately, having all the genetic designs stored

in the same standardized data exchange format does not mean the data is immediately

useful [1]. Making sense of semi-structured data is, therefore, one of the responsibilities of

genetic design repositories like SynBioHub.

General semi-structured information retrieval systems tackle the problem of search us-

ing a variety of techniques. A good case study is the various attempts to make sense of the

3

unstructured data on the web. Similar to biological parts, web page data is the definition

of messy and unkempt. Web pages link to one another similarly to how biological parts

are composed hierarchically and through different versions. Also, web pages host content

that is of varying quality, usefulness, and uniqueness. A common problem for non-curated

collections of genetic circuit designs is the amount of seemingly duplicate designs for the

same circuit or part. As a result, all sorts of techniques from graph analysis, clustering, and

statistical modeling are used [8, 18, 49]. Unfortunately, certain search engines for biological

parts are not as advanced, with some just performing basic substring matching arbitrarily

[37, 41].

One of the largest datasets in SynBioHub currently is the International Genetically En-

gineered Machine (iGEM) dataset. The iGEM competition is an annual competition where

university students compete against each other to design novel genetic circuits [57]. As

such, the collection of these designs, the iGEM dataset, is a great proving ground for

the algorithms and techniques discussed in this thesis. The iGEM dataset consists of

many parts which are all stored in SQL tables and hosted at the Registry of Standard

Biological Parts [30]. This registry provides a search interface, but it does not utilize the

latent structure hidden in the parts and their relationships. SynBioHub has converted the

dataset into SBOL, and all evaluations of SBOLExplorer are done using this dataset as a

benchmark.

By extending SynBioHub and other genetic design repositories with SBOLExplorer and

its improved algorithms and infrastructure, synthetic biologists will be able to more intel-

ligently search, extract, and utilize the genetic parts they require for their circuit designs.

These enhancements give users of genetic design repositories a better way to interpret

and extract meaning from the massive amounts of semi-structured data present. Experi-

mental biologists will be able to make better decisions when designing their circuits, and

researchers will be able to understand better the genetic design topology found within

these repositories.

1.3 Contributions
Data is most powerful when it is easily interpretable. Genetic design repositories exist,

but they provide difficult interfaces for their users. The data is semi-structured, noisy, not

4

normalized, and inconsistent. This makes it difficult for experimental biologists to find

parts, determine their characteristics, and view trends within the various designs. Without

a clear way to explore the data, genetic design repositories are of reduced value. The main

contributions of the proposed research attempt to address these issues.

A popular popularity ranking algorithm is PageRank, which operates on a graph where

the links to a part or page are indicative of that part or page’s popularity [49]. PageRank

was also developed with ranking the web in mind. This is useful given the similar chal-

lenges between the web and a genetic design repository hosting SBOL parts. Applying

PageRank to the SBOL graph introduces a novel way to reason about datasets like the

iGEM dataset.

The ability to naively query SBOL is powerful, but the scale of the data limits a human’s

ability to reason and understand its insights. By clustering genetic parts, duplicate and

similar entries can be grouped, merged, or removed. Because the data is user-generated

and user-submitted, there are many inconsistencies in its metadata. By clustering SBOL

parts with the goal of enhancing search, SBOLExplorer introduces and explores interesting

trade-offs between different clustering techniques.

SBOLExplorer uses data infrastructure in the form of Elasticsearch. Storing a prepro-

cessed set of SBOL designs in an inverted index allows for fast retrieval and calculation

of search results. By calculating a unique ranking based off of keyword match, PageRank,

and clustering results, SBOLExplorer determines relevancy to queries for genetic parts in

an intelligent way that leverages the uniqueness of SBOL.

The result is a service that genetic design repositories storing SBOL can integrate with

to provide better search functionality. SynBioHub is currently integrated with SBOLEx-

plorer and benefits from SBOLExplorer’s data analysis and data infrastructure. Users do

not interact with SynBioHub any differently, but they do notice that search results are

suddenly much more relevant compared to before.

This thesis focuses on SBOLExplorer and the technology it utilizes, the architecture

it’s built on, the data it helps users find and understand, how it contributes to the SBOL

workflow, and the future work and benefits it enables. The main contributions of this thesis

culminate in a service that enhances the search capabilities of genetic design repositories

by introducing new ways to better understand, reason, and interact with large collections

5

of SBOL parts.

1.4 Thesis Overview
Chapter 2 goes over the background necessary to set the context of this work. Specifi-

cally, the field of synthetic biology is introduced, genetic circuits are defined and examples

are shown, SBOL and its motivations are discussed, and software tools and workflows in

the domain of synthetic biology are explored.

Graph popularity ranking algorithms can also be designed to exploit the linked struc-

ture between parts. This is especially important for genetic design repositories since pop-

ularity can be an indicator of how to order results to user queries. The details of SBOLEx-

plorer’s graph analysis are discussed in Chapter 3.

Clustering based off of sequence and SBOL structure is a good way to simplify and

extract meaning from SBOL datasets. However, this introduces challenges in how to

represent the data, and specifically how different SBOL parts within a large collection

should be compared against each other. Genetic sequence clustering formulations and

trade-offs are discussed in Chapter 4.

The end goal is to use the aforementioned data analysis to provide better search for

genetic design repositories. As such, SBOLExplorer needs to be a service that genetic

design repositories can plug into and query. To serve these queries efficiently, data in-

frastructure is required. Chapter 5 goes over how Elasticsearch is used to provide a fast

and incremental search index, and how clustering and PageRank together contribute to the

ranking of the search results. SBOLExplorer has been integrated into the SynBioHub part

repository. This chapter also describes the resulting workflow integration, architecture,

and improvements to SynBioHub’s search. Tools that rely on SynBioHub now benefit from

improved search. SBOLDesigner is used as a case study here. Also, SBOLExplorer exposes

an API that other genetic design repositories can integrate with. This includes features like

advanced search, permissioned search, and distributed search. A metric that compares

search result relevancy shows that using SBOLExplorer more than doubles the perceived

relevance of search results.

Finally, Chapter 6 concludes this thesis by giving a summary of the work and by

presenting future research directions.

CHAPTER 2

BACKGROUND

In this chapter, Section 2.1 introduces the field of synthetic biology. Section 2.2 dives

a little bit deeper and describes the concept of a genetic circuit. To exchange designs of

genetic circuits between software tools and genetic part repositories, SBOL is used, as

described in Section 2.3. Finally, Section 2.4 goes over some of the software tools that

support SBOL. This will give context regarding how SBOLExplorer fits into the field and

within the SBOL workflow.

2.1 Synthetic Biology
Synthetic biology is a relatively new field born out of systems biology, electrical en-

gineering, and bioinformatics [16]. Specifically, synthetic biology enhances these parent

fields by taking fundamental engineering principles such as standards, abstraction, and

decoupling, and applying them to genetic circuit design. Systems biology, defined as the

study of complex biological systems and their pathways of operation and interaction, is

used to accelerate the creation of new and novel genetic circuits. Electrical engineering

concepts such as circuits and logic gates function as great models for the design process.

Finally, synthetic biology borrows from bioinformatics and makes use of massive amounts

of data and computational resources.

The direct precursor to synthetic biology was genetic engineering, which focused on

modifying organisms’ genomes in order to manipulate the characteristics of those organ-

isms. While genetic engineering has existed since the 1960s, it has never really adopted

true engineering fundamentals. Therefore, even though synthetic biology is a re-branding

of genetic engineering, the focus is to adopt standards, abstraction, and decoupling. This

effort can be seen in the adoption of the SBOL standard, the use of software tools to rapidly

iterate on the design of genetic circuits and their models, simulations, and compositions,

and the separation of different tools for different tasks.

7

SBOL also addresses the problem of reproducibility in synthetic biology. Experiments

are inherently complex, and information necessary for reproducing the results found in

groundbreaking papers is often incomplete. As a result, much of the research in this field

is of reduced value to the broader scientific community. Data models such as SBOL and

tools that utilize the data model are therefore integral in providing a means to address

the issue of reproducibility. Without these blueprints, genetic circuits lack DNA sequence

information, proper characterization data, and circuit layout details. To more thoroughly

solve the reproducibility problem, tools that utilize SBOL must also support the full range

of ways experimental biologists express their designs.

2.2 Genetic Circuits
In synthetic biology, genetic circuits are classified as sensor and actuator networks op-

erating in the biological domain. In the traditional electrical circuit, inputs such as buttons

or switches control outputs such as LEDs and motors. This is accomplished through the

physical and electrical properties of a variety of components such as resistors, capacitors,

inductors, and LEDs. In genetic circuits, much is the same. Standardized sequences

of DNA control expression of various proteins that results in external factors like cells

glowing green [20]. The most significant difference is that the mode of expression is due to

the transcription and translation of genes into protein, and not of electrons flowing through

wires. This is commonly referred to as the central dogma of molecular biology [12], and is

shown in Figure 2.1. Because of these similarities, genetic circuits with similar function to

traditional electrical circuits can be built.

For example, one such circuit is the NOR gate. A truth table and electrical circuit

schematic are shown in Figure 2.2. IPTG and TetR are the inputs, and LacI is the output.

The truth table shows that LacI is only high when both inputs are low. In every other

case, LacI is low. The Boolean NOR function can also be obtained from a genetic circuit,

as shown in Figure 2.3. The circuit schematic describes a backbone of DNA with four

glyphs of DNA sequences, defined as parts, drawn on top of it. The yellow bent arrow

is called a promoter, and facilitates transcription of DNA to RNA. The half circle ribosome

binding site and arrow coding sequence are parts that get transcribed into RNA. The T shaped

terminator is used to stop transcription. After the RNA is created, a ribosome binds to the

8

Figure 2.1. The central dogma of molecular biology. DNA is transcribed into RNA, and
RNA is translated into protein. In genetic engineering and synthetic biology, experimental
biologists change the DNA, and the resulting protein is altered. For example, by modifying
a genome’s DNA to encode for green fluorescent protein, researchers can determine if their
genetic circuit is operating correctly by shining ultraviolet light on the cells [20].

Figure 2.2. The truth table and traditional schematic drawing for a NOR gate. The inputs
are IPTG and TetR, and the output is LacI. LacI is only produced when TetR is low, and
LacI is only functional when IPTG is not present. When IPTG is present, it binds to
LacI prohibits it from acting as a repressor. Therefore, the only time when LacI is likely
functional in the cell is when both TetR and IPTG are low.

9

Figure 2.3. The biological circuit schematic of a traditional NOR gate. TetR is repressing
the promoter, and IPTG binds with LacI to form a complex that removes free LacI from the
system. When neither TetR nor IPTG is present, LacI can be produced normally and is free
to control downstream promoters in the system.

10

ribosome binding site and translates the coding sequence into a protein. In this case, the coding

sequence contains the blueprint for the LacI protein. These standard parts are analogous to

the electrical components of an electrical circuit.

With the previous understanding of these genetic parts’ behaviors, the Boolean NOR

function is realized. TetR is a protein that inhibits the function of the promoter, and IPTG is

a small molecule that binds to LacI and effectively removes its ability to act as a transcrip-

tional repressor. When TetR is present, LacI doesn’t get produced in the first place; when

IPTG is present, LacI is neutralized before it can act. The states where LacI is low coincide

with the rows in the truth table in Figure 2.2 that show a zero for LacI. When neither TetR

nor IPTG is present, LacI can be expressed, resulting in a high state. This high state is

the only possible state where LacI is high, and coincides with the row in the truth table in

Figure 2.2 that shows a one for LacI.

The NOR gate is a universal gate, meaning all other gates and Boolean systems can be

built just from NOR. For example, a multiple input AND function could be built [36]. The

inputs could be proteins associated with carcinogenic cells, and the output could be green

fluorescent protein. When all the inputs are present, all the cancer cells will glow green.

Alternatively, the function could be NAND, and cause some vital protein for the cancer

cell to stop being produced. Now that we have realized a genetic NOR circuit, all other

Boolean systems can theoretically be built using genetic circuits.

2.3 The Synthetic Biology Open Language
SBOL allows genetic parts to be composed in a machine interpretable and extensible

way. Specifically, this means each part has required fields that provide all sorts of useful

characterization data. Parts can also be composed hierarchically, allowing for designs to

be easily created in a modular and referential manner. In particular, SBOL is powerful

because it has a very rich and thorough data model for representing genetic parts and

their references. It makes software tool workflows possible through its language and tool

agnostic interoperability and provides an easy way for new tools, such as SBOLExplorer,

to tap into the existing SBOL data and ecosystem [53]. SBOLExplorer relies on the genetic

circuit data being represented in a normalized, consistent, and easily reasonable format, so

the SBOL data model is especially important for this thesis’ applications.

11

SBOL is a tightly specified standard for describing these genetic circuits [19]. SBOL

consists of two parts: the SBOL data model and the SBOL Visual standard [6, 52]. The

data model, as shown in Figure 2.4, is a specification of objects and their relationships.

Circuits such as the genetic NOR in Figure 2.3 can be encoded in SBOL and passed around

as an electronic file. Each distinct part is represented by a ComponentDefinition, with each

instantiation or usage of the part being represented by a Component. SequenceConstraints

and SequenceAnnotations define a relative and absolute order respectively of the parts on

the backbone. The actual base pairs are stored in a Sequence. Many parts and designs

are organized into Collections which also include functional information represented as

ModuleDefinitions and Interactions. This centralized file format allows software tools to

communicate with each other.

The SBOL Visual standard provides a standardized set of schematic glyphs to describe

visualizations of genetic circuits [11, 52]. For example, Figure 2.3 is a depiction of a genetic

circuit using SBOL Visual glyphs. Specifically, the genetic parts are drawn in accordance

with how their glyphs are defined. These definitions are shown in Figure 2.5. For example,

whenever a promoter must be pictorially represented, a bent arrow going to the right can

be drawn, and its meaning can be assumed.

Both the SBOL data and visual standards are necessary for reproducibility and in-

teroperability in synthetic biology and further shows how engineering principles have

influenced the field. When SBOL is not used to describe research results and genetic

circuit layouts, the information published in papers is usually incomplete. Incomplete

knowledge of the genetic system results in unreproducible results and a loss in trust for

the findings. For this reason, in 2016, ACS Synthetic Biology set a precedent by adopting

the SBOL Visual and data standards as the official method for depicting and digitally

storing genetic constructs [26]. The use of SBOL in publications and the deposition of this

data into public repositories tremendously aids reproducibility in this field. However, for

biologists to generate these designs in SBOL, they need a workflow with tools that have

features that enable a straightforward way for creating, storing, and searching through

these constructs [53].

12

Figure 2.4. The SBOL data model. Top level classes are drawn in green, and supporting
classes are drawn in yellow. Together, this data specification allows the description of a
broad range of genetic circuits. Software tools import and export this format to allow for
interoperability and decoupling from tool to tool. Figure from Beal et al. [6].

13

Figure 2.5. The SBOL Visual set of defined nucleic acid glyphs. Each glyph represents a
type of genetic part that genetic circuits are built from. The visual standard specifies rules
and best practices for how these parts should be drawn in software tools, in figures, and on
whiteboards. Glyphs that represent molecular species and interactions also exist. Figure
from Cox et al. [11].

14

2.4 Software Tools
Biologists use tools to create their designs. Part repositories, simulation tools, modeling

tools, and sequence level computer-aided design tools interact through the SBOL standard.

Software tools help experimental biologists abstract their designs and more efficiently

prototype their circuits [53]. These tools can also be decoupled by allowing SBOL to be

the common language. Because of SBOL, even a tool developed in isolation can contribute

to the workflow.

An example workflow that creates and captures genetic designs is depicted in Fig-

ure 2.6. In this workflow, SBOLDesigner is a sequence editor that integrates support

of the SBOL data standard and SBOL Visual symbols. In particular, SBOLDesigner can

obtain DNA sequences and other important metadata from the SynBioHub parts reposi-

tory [37, 41]. These components can then be composed and edited within SBOLDesigner

to create a complete structural design of a genetic circuit. These new composite designs

can then be uploaded to a genetic design repository like SynBioHub to enable sharing,

storing, and reuse. To add functional information about a genetic design, SBOLDesigner

has been integrated into the modeling and simulation genetic design automation (GDA)

tool, iBioSim [38]. The iBioSim software can be used to construct and analyze functional

models using the Systems Biology Markup Language (SBML) [29]. These functional models

once annotated using genetic designs produced by SBOLDesigner [54] can be converted

into an SBOL document including functional information about the product of these ge-

netic circuits and their interactions [44]. Once again, the complete genetic circuit with its

functional information can be archived in a part repository for sharing. Throughout this

process, researchers can collaborate and pass around files from institution to institution,

located anywhere in the world. The SBOL standard provides the means to enable a lossless

communication of data between these software tools and repositories.

This modularization of software tools reduces the need for each platform to reinvent

the wheel and allows a single tool to add valuable features by connecting to a rich library

of tools and repositories. For example, SBOLDesigner can be embedded in other tools and

platforms that support SBOL. This gives modeling and simulation tools like iBioSim the

ability to elegantly edit the structural portion of its genetic designs using SBOL Visual [32,

38]. Also, tools like SBOLExplorer can be integrated with genetic design repositories like

15

Figure 2.6. A workflow consisting of SBOLDesigner, SynBioHub, and iBioSim [38]. Ge-
netic parts from various databases are hosted in the SynBioHub repository [23, 37, 41, 43,
45]. SBOLDesigner and iBioSim can download these parts and use them to construct
complete genetic designs. Specifically, iBioSim takes care of modeling and simulation,
and SBOLDesigner takes care of sequence level design. In this workflow, SBOLExplorer is
not used. This makes searching through parts stored in SynBioHub difficult for every tool
in this workflow. Figure from Zhang et al. [62].

16

SynBioHub as long as the two communicate through the SBOL data standard. Addition-

ally, the experimentalist can select from many options and is not limited to the in-house

toolchain of a single platform.

As a result of part reuse and design sharing between different software tools, it is

essential to have a central repository of shared genetic designs. This repository acts as a

hub for storing designs, sharing designs, kick-starting designs, and searching for designs.

By improving the search capabilities of genetic circuit design repositories like SynBioHub,

the entire workflow is improved, and each tool benefits from higher utility. For biologists,

the value brought by a complete genetic design automation workflow is quickly growing,

and will only continue to become more established in the future. As such, it is important

to make the workflow frictionless by enhancing biologists’ abilities to utilize their soft-

ware tools and genetic circuit design repositories through better search and exploration

capabilities.

CHAPTER 3

GRAPH ANALYSIS

Analyzing the link structure of the graph formed by SBOL parts is a good way of

determining a part’s popularity. In this chapter, Section 3.1 describes the data within Syn-

BioHub using a graph visualization. Section 3.2 goes over why having popularity ranking

for parts is important for deciding on search results and how the PageRank algorithm

lends itself well to ranking parts encoded in SBOL. Section 3.3 describes the PageRank

implementation used in SBOLExplorer and how the probability transition matrix can be

extracted from a graph database storing SBOL as RDF triples. Specifically, the dataset is

small enough to run PageRank periodically on a single server as long as sparse matrices

are used. Section 3.4 shows the results of running PageRank on the iGEM dataset and

analyzes the distribution of rankings and how it relates to what is expected from the iGEM

dataset. Finally, Section 3.5 summarizes this chapter and its context within SBOLExplorer.

3.1 Data Exploration
Figure 3.1 shows a high-level visualization of a subset of the genetic design topology

stored in SynBioHub. In this visualization, nodes represent genetic parts, and edges rep-

resent usages within another part. Compared to a traditional line by line textual repre-

sentation of these genetic parts, the structure found within genetic parts can be seen, and

information such as degree, connectedness, and density can be reasoned about.

The visualization side of SBOLExplorer is an application that runs in the user’s web

browser. The visualization itself is created in JavaScript using D3’s force directed graph

package. The data comes from running a SPARQL Protocol and RDF Query Language (SPARQL)

query on the SynBioHub repository. SynBioHub subsequently fetches the part data by

sending the SPARQL query to its backing store, Virtuoso. Virtuoso is a specialized resource

description framework (RDF) triplestore [17]. This data is interpreted and transformed into

a graph representation. Because SynBioHub stores all its part information in the form of

18

Figure 3.1. A visualization of a subset of the parts within SynBioHub. Blue circles
represent parts, and a link between a pair of blue circles represents a usage within another
part. Most of the nodes are within a single connected component, and some of the nodes
are in isolated connected components. Some connected components, such as the ring in the
bottom left corner, are unique in that they form spokes around a central set of parts. This
is an example of a node with a high degree being surrounded by nodes with low degree.
Also, many tree-like patterns can be seen. This shows that SynBioHub stores a sparse, as
opposed to a dense, graph.

19

SBOL compliant triples, any result from any query can be visualized using SBOLExplorer.

If it were not for the power of linked data and SBOL as a standard, arbitrary queries would

not have been possible. Each query would return unstructured data, and special purpose

code would have to be written to transform the query results into a format understandable

by the graph visualization.

SynBioHub is a web frontend for its Virtuoso database. SynBioHub provides an API

that allows other services to query its contents. Virtuoso is a specialized RDF triplestore

that stores all the SBOL encoded triple data in a native graph format. SBOLExplorer’s

frontend asks the user for information they want to use to search. This form data is then

parsed into a SPARQL query and sent to SynBioHub’s API. The triples that are returned

represent the data that we want to visualize. Each row is transformed into an adjacency list

representation that the graph visualization understands. This is what the user will observe

as the result of their query.

3.2 Ranking
It would be useful to have the ability to rank parts by popularity. When determining

search result orderings, parts will be evaluated by both their importance and similarity to

other parts.

The PageRank algorithm has been used to rank websites on the internet [49]. However,

it also has many applications in social networks, information networks, road networks,

biology, chemistry, neuroscience, and physics [21]. Fundamentally, PageRank uses Markov

chain analysis to compute the relative importance of each node in the graph. Conceptually,

each node’s importance is determined by the importance of the nodes that have a directed

edge pointing towards it. The more nodes that link to a node, and the more important

those nodes are, the more important the linked node is in the network. By creating a

probability transition matrix of the network, the relative importance of each node can be

calculated using a variety of algorithms. If the graph is not ergodic (i.e., the graph is not

connected, is periodic, or has absorbing and transient states), then the importance vector is

not guaranteed to converge to a measure of the relative importance of each node. However,

many interesting networks are not ergodic, so the PageRank algorithm simulates ergod-

icity by incorporating random jumps, also known as teleportation or taxation, into the

20

probability transition matrix. Therefore, the PageRank importance vector is guaranteed to

converge.

PageRank can be applied in bioinformatics to analyze DNA sequences [21, 31]. Graphs

of SBOL parts add another level of structure to plain genetic sequence data, so the original

PageRank technique can also be applied to parts in genetic design repositories like Syn-

BioHub. Each part is encoded in SBOL, and consists of metadata linking it to the parts

it uses or references, and the characteristics it has (ex. type, role, collection, author, etc.).

PageRank can then operate on a graph where each node is a part, and each edge is a part

referencing another part through some predicate relationship. By itself, the SynBioHub

graph is not ergodic because regardless of whether it is periodic, it is not connected and

has absorbing and transient states. However, PageRank’s random jump property allows

the application of Markov analysis due to it simulating ergodicity through teleportation.

By determining the relative importance of each part, SynBioHub can intelligently decide

the relative usefulness of each part and present this order in the search results accordingly.

3.3 Implementation
Traditionally, the MapReduce programming framework has been used in a cluster

environment to compute the PageRank of large graphs [13]. MapReduce is useful for

a variety of real work tasks on large datasets, including genome analysis [40]. More

recently, Apache Spark has displaced MapReduce as the big data framework of choice

due to its ability to share data in resilient distributed datasets (RDDs) between different parts

of the pipeline without needing to materialize the data on disk [60, 61]. PageRank is an

iterative algorithm and therefore benefits from the use of RDDs. A common approach of

computing PageRank at scale is to repeatedly matrix multiply the PageRank vector with

the probability transition matrix until the PageRank vector converges. Between iterations,

while the PageRank vector has not converged, the vector state can be represented as an

RDD as opposed to being flushed onto disk. The efficiency benefits of this reduction in

disk I/O have been confirmed [50, 55].

However, this approach is not needed for the scale of the iGEM dataset since the

entire dataset can fit into the memory of one computer [42, 46]. This is possible since the

probability transition matrix can be represented as a sparse matrix. Each node in the graph

21

is a part, and each edge is a connection to another part. The definition of connection is a

RDF triple within the Virtuoso database where the subject and object values are SBOL

TopLevels (ex. ComponentDefintions, Sequences, Collections, etc.) and the predicate value

is a relationship between the subject and object. This forms a subject, predicate, object

triple that can encode a variety of SBOL relationships (ex. Component, wasDerivedFrom,

etc). The number of connections for each part in the iGEM dataset is on the order of tens to

hundreds, which is much smaller than the total number of parts. By storing the probability

transition matrix as a decomposition into multiple sparse matrices, only the actual edges

that exist, the nonzero entries of the adjacency matrix, have to be stored in memory.

The actual process of extracting these RDF triples from the Virtuoso graph databases

uses SPARQL. SPARQL provides the ability to write a query that extracts certain fields

depending on how they match template triples. The query that extracts relationships

between parts is shown in Figure 3.2. Entities that should be ranked all have a triple where

the subject and object fields correspond to a unique uniform resource identifier (URI) and the

predicate indicates that subject and object are TopLevels. That is how the uri query fetches

all relevant entities within the graph database. The link query then asks for all the links or

edges between entities, forming a sort of adjacency list of connections. As shown in the

link query, the parent and child values represent different entities that are connected via a

oneLink or transitively via a twoLinkOne→ tmp→ twoLinkTwo path. Both direct paths and

one hop transitive paths are required due to how SBOL structures its part→sub-part usage

relationships as Component→ ComponentDefinition paths in the graph.

The PageRank sparse matrix implementation is shown in Algorithm 1. To compute the

PageRank vector, the algorithm initializes a vector q of length n, the number of nodes in

the graph. Then, this vector is multiplied with the probability transition matrix P until it

converges. This way, the only mutable state that has to be maintained in memory is the

vector q. If the PageRank vector were calculated instead by taking the power of P, then P

would quickly become dense and too large to fit in memory. Therefore, storing only q is

necessary since storing a dense n ∗ n matrix would exceed the memory on a single machine.

P is stored efficiently and implicitly in the graph object by decomposing it into its relevant

parts. Specifically, P is a n ∗ n matrix where each column represents a node’s outgoing

links to other nodes. If node j links to node i, then Pij will be 1
numberO f OutgoingLinksForNodeJ .

22

Figure 3.2. The SPARQL queries for extracting entity and entity relationship information
from the Virtuoso graph database. The uri query query fetches all the unique URIs, and
the link query query fetches all the entity relationship information. These two queries can
be thought of as fetching all the vertices and all the edges of the graph. Together, the data
returned from these queries is used to construct an adjacency list which is then turned into
a probability transition matrix for use in the PageRank algorithm.

23

Algorithm 1 PageRank using a sparse matrix representation of a graph
1: procedure PAGERANK(GRAPH, TOLERANCE)
2: pageranks← { 1

graph.numberO f Nodes}graph.numberO f Nodes

3: delta← ∞
4: while delta > tolerance do
5: newPageranks← {0}graph.numberO f Nodes

6: danglingContrib← sum(pageranks[graph.danglingPages])
graph.numberO f Nodes

7: teleportationContrib← 1
graph.numberO f Nodes

8: for node in graph do
9: linkContrib← sum(pageranks[inLink]

graph.numberO f OutLinks[inLink] for inLink in graph.inLinks[node])
10: newPagerank← .85 ∗ (linkContrib + danglingContrib) + .15 ∗ teleportationContrib
11: newPageranks[node]← newPagerank
12: newPageranks← newPageranks

sum(newPageranks)
13: delta← L1Norm(pageranks− newPageranks)
14: pageranks← newPageranks
15: return pageranks

All other indices in column j are 0. Each time qt+1 = P ∗ qt is computed, P is also scaled by

Pscaled = .85 ∗ P + .15 ∗ 1
n . The full recurrence relation is shown in the equation below.

qt+1 = ((1− β)P + βQ) ∗ qt

The scaling factor is denoted as β and is usually .15. The Q matrix represents a n ∗ n matrix

consisting of only entries with the value 1
n . This scaling acts as the teleportation probability

by augmenting the probability transition matrix to leak a small probability from a node to

all other nodes in the graph. This also effectively makes the graph fully connected, which

is integral to the Markov ergodicity requirement.

The key part of the algorithm is realizing that P can be decomposed into a set of

dangling pages and linked pages [46]. By adding these decompositions up and weighting

them according to the PageRank recurrence relation, the new PageRank value for a node

in the graph can be computed. The dangling pages represent the nodes in the graph

that have no outgoing links. When this happens, there should be a uniform probability

of any page being visited next. The linked pages represent the set of possible pages the

current page links to, and are needed to determine which pages should be non-zero in the

probability transition matrix. Finally, the teleportation probabilities are represented by the

Q matrix, which can be calculated since it only consists of 1
n values. These representations

are efficient since the dangling pages take O(n) space, the linked pages take O(E) space,

24

and the teleportation probabilities take O(1) space. Since the graph is sparse, O(E) tends

to be close to O(n). As a result, this is much more efficient to store than a dense n ∗ n

matrix and enables PageRank on the iGEM dataset to be run on a single machine.

3.4 Analysis
Figure 3.3 shows the distribution of PageRank scores for all the parts in the iGEM

dataset. The x-axis shows the PageRank value, and the y-axis shows the number of parts

that have that value. Both the x-axis and y-axis are logarithmically scaled. The plot shows

that there is an exponentially large number of low popularity parts, and an exponentially

small number of high popularity parts. Many of the designs within the iGEM dataset are

novel genetic circuits created by different teams competing in the iGEM competition. Each

of these circuits uses more fundamental building block parts and isn’t used by many other

complete designs. As a result, the reuse of parts is focused on only a couple thousand

more popular and well-understood parts. Consequently, these well-characterized parts

can be found in many of the more complicated complete designs. This disparity in the

different types of part reuse is characterized well by the PageRank distribution shown and

is consistent with our intuition of the iGEM dataset.

Table 3.1 shows the top 10 most popular parts in the iGEM dataset by PageRank.

Each part is identified by its unique URI. These URIs are computed by concatenating

https://synbiohub.org/public/igem/ with the part’s displayId. Each part also has a role which

defines the type of the part and a brief highlight of some more detailed information on

what the part is. The parts are ordered by their PageRank values. Most of these parts are

simpler building block parts that are used in many of the more complicated or complete

composite genetic circuit designs. These parts are also popular due to their prolific use

in the larger synthetic biology community. One possible cause of this could be the part’s

reliability, depth of understanding and characterization, and pragmatism when designing

genetic circuits in the lab. Since these parts are reused in many other popular genetic

designs, they benefit from PageRank’s definition of popularity and easily rise to the top

in many more broad search queries. Given the prevalence of these parts in the literature

and other genetic designs, this is expected and intended behavior for a search engine and

is consistent with what is expected from the iGEM dataset.

25

Figure 3.3. The distribution of PageRank values is shown. The x-axis shows the PageRank
value, and the y-axis shows the number of parts which have that value. Note that both
the x-axis and y-axis are logarithmically scaled. This means there is an exponentially large
number of low popularity parts and an exponentially small number of high popularity
parts. This is consistent with our intuition about the iGEM dataset. There are many parts,
most of which are composite designs which are not used. However, there are a few basic
building block parts which are well understood and used in many different designs. Note
that the sum of all the PageRank values must add up to 1.

26

Table 3.1. A table of the top ten highest PageRank parts. Most of these parts are basic
building blocks that can be found in many more complete composite genetic circuit de-
signs. As such, they have high amounts of reuse and high PageRank scores. Note that the
actual PageRank scores sum up to one since they represent a probability distribution over
all the parts. The PageRank scores shown in the table are scaled for ease of comparison.

Table of top 10 most popular parts
URI Role Part information PageRank

1 BBa B0034 RBS
RBS based on Elowitz repressilator
(Elowitz 1999).

2.0444828

2 BBa B0012 Terminator
Transcription terminator for the
E.coli RNA polymerase.

1.4841141

3 BBa B0010 Terminator
Transcriptional terminator consisting
of a 64 bp stem-loop.

1.4321551

4 BBa B0015 Terminator
Double terminator consisting of
BBa B0010 and BBa B0012.

0.7491525

5 BBa R0040 Promoter
Sequence for pTet inverting regulator
driven by the TetR protein.

0.4765939

6 BBa E0040 CDS
Green fluorescent protein derived
from jellyfish Aequeora victoria
wild-type GFP (SwissProt: P42212).

0.4580074

7 BBa B0030 RBS Strong RBS based on Ron Weiss thesis. 0.3802979
8 BBa B0032 RBS Weak1 RBS based on Ron Weiss thesis. 0.3728527

9 BBa R0010 Promoter
Inverting regulatory region controlled by LacI
(lacI regulated).

0.3709392

10 BBa R0011 Promoter
Inverting regulatory region controlled by LacI
(lacI regulated, lambda pL hybrid).

0.2486734

27

3.5 Summary
Relative popularity between different parts is important knowledge to have when de-

termining how to rank search results. PageRank is a canonical algorithm for finding the

popularity of nodes in a graph and applies itself very well given the graph structure of

SBOL encoded in RDF. The more parts that link to me, the more popular I am. The more

popular the parts are that link to me are, then the even more popular I am.

After extracting an adjacency list representation of the graph from the Virtuoso graph

database using SPARQL, a probability transition matrix is created. This matrix is kept

sparse by decomposing it into simpler structures that are more memory efficient to repre-

sent. Then, the PageRank algorithm is run on the modified sparse matrix representation

to generate a vector containing each part’s global popularity. It turns out that the iGEM

dataset contains an exponentially small number of high popularity parts and an expo-

nentially large number of low popularity parts. In other words, the roughly 10 percent

of parts which are widely used are actually popular, while the rest are hardly ever used.

This makes sense given that the iGEM dataset contains both building block parts that are

used by many designs as well as more complete genetic designs that are built up of many

smaller parts. SBOLExplorer uses this popularity ranking along with clustering results as

factors for deciding how to order parts in search results to user queries.

CHAPTER 4

CLUSTERING

Clustering is a useful way to extrapolate information from a dataset in an unsupervised

manner. Genetic circuits can be thought of as a graph of interlinking parts, but the resulting

graph appears more like a hairball and is difficult to reason about. A better aspect of

data that could provide insights is each part’s genetic sequence. This sequence data is

further explored, and clustering techniques on sequence data are discussed in Section 4.1.

Different implementations and their results on the iGEM dataset are discussed in Sec-

tion 4.2. Experiments using different kinds of clustering techniques and distance metrics

are performed. The iGEM dataset and our goal of searching through it are shown to be a

unique use case compared to many other genetic sequence exploration goals. The chapter

is summarized in Section 4.3.

4.1 Methods
Similarity and clustering techniques can be applied to SynBioHub genetic part data to

make it cleaner and easier to reason about. Of the over 50k parts, many are likely to be

duplicates and similarity between parts is largely unknown. By clustering the parts, the

dataset can be tidied up (merging duplicates, adding references/usages), and similarity

between parts can be better understood [35]. Additionally, this genetic part data is unique

because of its encoding in the SBOL data model and reliance on DNA sequence informa-

tion.

Traditionally, sequence homology has been used to determine the shared ancestry in

the evolutionary history of life [7]. Two sequences which are similar are more likely to

share a common ancestor. These sequences are defined as long strings of base pairs where

each base is represented by a letter in the alphabet. Guanine (G), adenine (A), thymine (T),

and cytosine (C) are the physically present base pairs, with the other letters encoding for

variations of one or more combinations of G, A, T, and C. The various combinations are

29

formalized by the International Union of Pure and Applied Chemistry (IUPAC) in the IUPAC

nucleic acid notation. Figure 4.1 shows the base pair frequencies and Figure 4.2 shows

the base pair length frequencies of the iGEM genetic part corpus in SynBioHub. Each part

that has a specified sequence has an associated SBOL sequence object. The sequence object

contains an elements string that is an encoded genetic sequence. These sequences are used

to calculate part similarity and clusterings. By clustering similar genetic parts based off of

sequence similarity, we are utilizing research in sequence homology to merge duplicated

user submitted parts in SynBioHub.

Alignment-based methods and alignment-free methods are the two main ways for

calculating sequence similarity [2, p. 398] [28]. Traditional alignment-based methods

using Levenshtein or edit distance, which calculates distance as the number of insertions,

deletions, and substitutions needed to transform one string into another string, give a

good measure of global alignment [34]. Unfortunately, the optimal dynamic programming

algorithm isO(m ∗ n) in time complexity where m and n are the lengths of the two strings.

Due to the typically long nature of DNA sequences, this is not feasible. Other algorithms

that focus more on local alignment, such as Smith-Waterman’s local alignment score, also

exist [58]. For certain tasks, local alignment can be a better measure of how similar two

sequences are since it focuses on regions of similarity within long sequences that might

overall be quite different, but it still has performance bottlenecks similar to global align-

ment. Alignment-free approaches apply techniques from data mining to speed up the

similarity metric computation [4]. Rather than focusing on string comparison, alignment-

free methods break each sequence into a feature vector. These compressed encodings of

each sequence are then compared. Often, the feature vectors lose information relating to

the exact position of bases. However, the computational speedup can be considerable.

The basic local alignment search tool (BLAST) approximates alignments that optimize a

measure of local similarity, the maximal segment pair score [3]. By giving up precision and

adopting smart heuristics, BLAST can be many orders of magnitude faster than traditional

alignment-based similarity measures. BLAST is also very popular in the industry and

has many variations that optimize for different use cases. Its searching and clustering

performance has also been studied extensively and optimized [14]. BLAST+, a rewritten

and repackaged version of BLAST with a new command line programmatic interface, is

30

Figure 4.1. The x-axis represents the base pairs found in the genetic part sequence data,
and the y-axis represents how many instances of each base pair exists. There is no
documented difference between the uppercase and lowercase base pairs. All base pairs
other than G/g, A/a, T/t, C/c represent some combination of those base pairs. The IUPAC
standard defines the combination.

31

Figure 4.2. The x axis represents the base pair lengths found in the genetic part sequence
data, and the y axis represents how many instances of each base pair length exists.

32

especially useful for software applications that want to utilize BLAST [9].

Initial analysis of the iGEM corpus using Jaccard distance shows that many pairs of

sequences are very similar. Analysis of the distance distribution of a random subset of

the data can inform how many clusters should exist. The cumulative density plot of

the Jaccard distances is shown in Figure 4.3. Due to a large number of pairs with very

low distance scores, there seem to be many similar pairs of sequences which should get

clustered together. By analyzing this distribution, a distance cut off can be determined

which will terminate the clustering. This serves as a proxy for determining how many

clusters should exist, and makes sense given the core of the problem is to merge duplicate

parts.

4.2 Implementations
Different clustering techniques and distance metrics are explored. Section 4.2.1 high-

lights a variant of hierarchical single link clustering that is tuned to the problem at hand.

Both Jaccard distance and BLAST are experimented with as metrics. It turns out that

both of these local alignment metrics have flaws given the iGEM dataset and our goals.

Section 4.2.2 fixes these issues by using a greedy algorithm based off of global alignment.

It turns out that UCLUST is much better suited to our goal of deduplicating sequences in

the iGEM dataset.

4.2.1 Hierarchical Single Link Clustering

Hierarchical single link clustering is a natural approach to clustering genetic parts

because of its simplicity, efficiency, and parallelizability [48, 56]. In every iteration, single

link clustering always puts the two most similar parts in the same cluster. However,

this requires computing the full cross product of all distances between pairs of parts,

which becomes the bottleneck of this algorithm. Additionally, precomputing the full cross

product can be impossible given a large enough number of parts because of main memory

capacity limitations. Fortunately, hierarchical clustering gives hierarchical structure and

deterministic clustering order, but the results are the same in any other clustering order as

long as the end condition is identical. If our method determines the end condition using

a distance threshold calculated using the distance cumulative density plot, then the end

33

Figure 4.3. A cumulative density plot between all pairs of a random 1000 part subset is
shown. There are many similar pairs of sequences which should get clustered together.
This distribution can help inform a cut off for hierarchical clustering.

34

condition will be equal. By allowing an arbitrary clustering order, the hierarchy informa-

tion used for determining phylogeny is lost. Thankfully, this is irrelevant for the purpose

of merging duplicate parts. As a result, we can store the state of the clusters in a disjoint

set data structure, and perform the clustering by streaming over the distances for many

partitions of the original cross product in many parallelized threads. Each thread needs

to perform the distance computation, and either union or reject depending on whether

it exceeds the distance threshold. Naive hierarchical clustering has a time complexity

of O(n3) and a space complexity of O(n2). The time complexity of this algorithm is

O(n2 log∗ n) where log∗ n is the iterated logarithm, the space complexity is O(n), and it

has a high degree of parallelism.

For performance reasons, this algorithm was implemented in C++. Variants using Jac-

card distance and BLAST were evaluated. The execution speed using the Jaccard distance

was decent, with most runs finishing within 10 to 15 minutes. However, the produced

clusters are not desirable. Many thresholds for both Jaccard and BLAST were compared,

and all had drawbacks. Figure 4.4 shows the distribution of clusters that a run of the

hierarchical single link clustering with a Jaccard distance threshold of 0.0125 produces.

While most of the clusters are less than a couple hundred parts, and many clusters consist

of only a single part, there was also one outlier cluster that contained around 30,000 parts.

The smaller clusters are all quite meaningful, with many of them containing parts that

share very similar sequences. Different Jaccard thresholds all share similar clustering

distributions. This suggests that the Jaccard distance view of the dataset is not the best for

grouping together a small amount of very similar sequences, which is what this dataset is

assumed to be. The Jaccard distance is too sensitive to small similarities between distances

that otherwise are not very similar. As a result, most of the dataset clusters into the one

outlier cluster, which isn’t very meaningful.

Figure 4.5 shows the distribution of clusters that a run of the hierarchical single link

clustering using BLAST produces. BLAST was originally developed as a tool for searching

databases of sequences for a match with a single query sequence. As such, BLAST is also

very sensitive to whether a local alignment between the query sequence and a database

sequence is possible. Most of the sequences are also either in clusters of size one or

in a giant cluster that contained half the dataset. This is true even when varying the

35

Figure 4.4. A run of hierarchical single link clustering using a Jaccard distance threshold of
0.0125 is shown. The x-axis represents the number of clusters, and the y-axis represents the
size of each of the clusters. One outlier cluster with around 30,000 parts is omitted. While
the smaller clusters shown are meaningful, the large outlier cluster is not since it contains
a large amount of the parts that share some small amount of similarity.

36

Figure 4.5. A run of hierarchical single link clustering using a BLAST distance threshold of
0.00001 is shown. The x-axis represents the number of clusters, and the y-axis represents
the size of each of the clusters. Most of the parts are in many small clusters of a single
element. One outlier cluster with around 30,000 parts is omitted. This outlier cluster is
similar to the one found when using Jaccard distance.

37

threshold. The sequences in the large cluster have highly similar substrings with only

a couple of base pair changes between a substring of the query sequence and a substring

of the matched database sequence. As a result, any sequence that contains even a small

substring match with the large cluster is clustered with the large cluster. Given BLAST’s

purpose of identifying local alignments with high accuracy, this is not the best way to

view the dataset. Another drawback of BLAST was its relative computational inefficiency.

Clustering the entire iGEM dataset took around an hour.

Jaccard distance represents an alignment-free technique, and BLAST represents a local

alignment technique. Both of these views of the iGEM dataset are not suitable given their

sensitivities to local or small similarities between sequences.

4.2.2 UCLUST

Given the experimental hierarchical single link clustering results shown in the previous

subsection, a different clustering approach is needed. The UCLUST clustering algorithm

is a greedy algorithm that defines each cluster using a centroid sequence and assigns

new sequences to existing centroids using a greedy heuristic [14]. Specifically, UCLUST

defines a global alignment threshold that it applies to compare a new sequence to all

the existing centroids, and places the new sequence in the first centroid that falls within

the threshold. If no existing centroids fall within the threshold, then the new sequence

becomes its own centroid. As such, the input order with which the sequences get processed

in is important. For this task, the sequences are sorted by decreasing length so longer

sequences are processed first, and are therefore more likely to become centroids.

UCLUST can get much better results than hierarchical single link clustering for the

iGEM dataset. Computational performance is on the order of hierarchical single link clus-

tering using Jaccard distance and is much faster than the BLAST variant. Due to the use of

global alignment, the generated clusters are also a lot more meaningful. Each sequence in

a reported cluster has a high degree of global cohesiveness with all other sequences in the

cluster. A vital part of this is how alignment is defined. The alignment identity is computed

as the number of matching letters divided by the length of the shorter sequence. While this

is more imprecise than something like edit distance, it is also a lot more efficient to compute

while retaining some similar important characteristics. Specifically, the sequences in a

38

generated cluster all have to be globally similar, both in pairwise base pairs and overall

sequence length.

Figure 4.6 shows the output of UCLUST clustering on the entire iGEM collection, and

Figure 4.7 shows the distribution of clusters produced by UCLUST. Like the other clus-

tering approaches, most of the sequences are in clusters by themselves. However, all

sequences that are clustered together have a high degree of global alignment with the

average hit identity being 99.5025, and there is not a single outlier cluster that contains

most of the sequences.

4.3 Summary
Our goal for clustering was to have a sort of fuzzy deduplication of sequences within

the iGEM dataset. There are many parts within the iGEM dataset, but many of these

parts are slight variations of other more popular parts. Therefore, to provide a diversity of

search results for queries, it’s important we have a good understanding of which parts are

unique and which parts should be ranked highly in the search results. Having only slight

variations of the same part appear on the first page of search results does not provide a

good user experience.

To this end, different clustering techniques and distance metrics are explored. Through

this process, the best formulation and view of the dataset for SBOLExplorer is understood.

Specifically, the goal of deduplicating the iGEM dataset lends itself to global alignment

algorithms. This is in contrast with the traditional clustering formulation of determining

phylogeny and therefore requires different tools compared to more traditional clustering

approaches in this field. Since SBOLExplorer should deal with an incrementally changing

dataset, performance is also considered. The result is the use of the UCLUST algorithm.

39

Figure 4.6. A run of UCLUST clustering using an alignment threshold of 0.75 is shown.
Most of the parts are in many small clusters of a single element, and there are no outlier
clusters with most of the elements. All sequences within a cluster have a high degree of
global similarity. Out of 48548 sequences, there are 45116 unique sequences, and 44308
clusters. The average hit identity is 99.5025.

40

Figure 4.7. The distribution of cluster sizes produced by the UCLUST algorithm is shown.
The x-axis represents the number of clusters, and the y-axis represents the size of each of
the clusters. Most of the parts are in many small clusters of a single element, and there are
no outlier clusters with most of the elements.

CHAPTER 5

DATA INFRASTRUCTURE

In this chapter, SBOLExplorer’s data infrastructure is explained. SBOLExplorer relies

on a conceptually simple data structure for retrieving search results. Section 5.1 details

this data structure, the inverted index. Section 5.2 discusses how the inverted index is

concretely used, the pipeline that feeds it data, and how the results of querying the index

get transformed into the final search results. This process combines the insights from

both clustering, PageRank, and keyword score to make an informed decision on what

ordering of results the user should be presented back with. The final search results are

analyzed using a simple metric. Section 5.3 describes how SBOLExplorer fits into the

overall workflow and how it interacts with different parts of the system. SBOLExplorer’s

architecture and distributed search functionality are also described. Finally, Section 5.4

summarizes this chapter.

5.1 Inverted Index
To allow for efficient real-time queries, SBOLExplorer must leverage data infrastructure

built for the task. Specifically, an inverted index data structure can be used to speed up

the generation of search results [59]. The inverted index maps part metadata and part

keywords to a set of parts that contain the metadata or keyword. This set of parts is

called the postings list. The resulting parts are then ordered with input from the PageRank

ranking, the clustering results, and the query relevance. Upon a query from SynBioHub

or another genetic design repository, SBOLExplorer packages the search results up and

returns them to be displayed to the user or software tool.

The traditional index data structure has been used in database applications to enable

the efficient retrieval of documents given the document identifier. Some examples of pop-

ular indices include B-trees, hash tables, and skip lists [10, 33, 51]. All of these data struc-

tures map document identifiers to the contents held in the document or the documents

42

themselves. An inverted index does the opposite; it maps document contents to document

identifiers. The inverted index enables a user to submit a query based on the content

they are looking for and efficiently find all the documents that hold this content. Inverted

indices have found use in many search and general document retrieval applications [59].

This includes querying RDF data, which is what SBOL is serialized in [24].

It is useful to be able to find genetic parts by searching for their characteristics. Instead

of doing a full-text string comparison search using the names and descriptions of all parts

in the database, an inverted index refers to its postings list for each keyword in the given

query. Note that this is a different kind of search compared to what is often found in bioin-

formatics. Instead of the query being a genetic sequence that the user wants matched, the

user is searching by keyword to identify a set of relevant genetic parts in a graph of genetic

designs. Because searching a prebuilt index by keyword is a boost in efficiency compared

to searching by performing many string comparisons, additional genetic part metadata

beyond name and description can be considered in searches. Due to the limited textually

descriptive metadata found within user submitted parts in SynBioHub, it is useful to also

rely on data analysis such as PageRank and clustering in constructing the search results

for a given query.

5.2 Search Implementation
Apache Lucene is a library that provides a powerful and fast information retrieval en-

gine built on top of the inverted index data structure that developers can easily incorporate

into their projects [39]. Elasticsearch uses Apache Lucene under the hood to provide a

distributed search engine complete with sharding (horizontal partitioning of data over

many machines to spread the load) and an easy to use representational state transfer (REST)

application programming interface (API) [22]. Due to the benefits of having a clean API that

takes away the need to manage the index, Elasticsearch is used by SBOLExplorer to answer

search queries quickly. Also, if needed, Elasticsearch can be used to facilitate the painless

addition of more machines to the inverted index cluster. A separate SBOLExplorer server

provides a simple API to SynBioHub or any other genetic part repository. Whenever a

user submits a search query to SynBioHub, SynBioHub needs to query the SBOLExplorer

server’s search endpoint, and SBOLExplorer consults Elasticsearch and the PageRank and

43

clustering results to return SynBioHub a list of search results sorted by relevance.

To populate the inverted index, SBOLExplorer needs to ingest data into Elasticsearch.

SBOLExplorer gets its data from the Virtuoso graph database, clusters the sequences to

get an idea on similarities between parts, runs the PageRank algorithm to get an idea

on different part’s relative popularities, and then ingests the amalgamated results into

Elasticsearch.

The data that is indexed also includes searchable metadata about the part including

subject URI, displayId, version, name, description, type, and graph. Figure 5.1 shows the

SPARQL query used to get all this metadata. Each entity has a subject which is its URI. The

URI has a graph predicate with the graph in Virtuoso that the entity belongs in. This is used

as a form of access control list (ACL) and is used to implement permissioned search. There

is a public graph that every user can access, and each user has his or her own private graph

which contains parts that only they have access to. SynBioHub handles user authentication

and tells SBOLExplorer what graphs to search in. The from line is used to specify specific

graph URIs, and the criteria line is used to filter parts by other criteria further. Being able

to filter by other criteria such as strict field matching or collection inclusion is used to

implement advanced search. The displayId, version, name, description, and type metadata are

all fields that users’ queries search through. An entity’s displayId and name differ in that the

displayId is a part of its unique identifier, and the name is a regular human given name for

the part. Version specifies a part’s version, and type specifies the precise type of part, which

can be DNA, RNA, protein, small molecule, etc. Note that the actual genetic sequence is

not present in the index. While this could be supported, it would increase the memory

footprint of Elasticsearch by a significant amount, and other tools like BLAST exist that

provide search capabilities for genetic sequences.

Elasticsearch provides a domain specific language (DSL) for querying the inverted index.

Figure 5.2 shows how SBOLExplorer constructs a query using this DSL. The query is

serialized as a JavaScript Object Notation (JSON) payload to Elasticsearch’s RESTFUL API.

The main query block wraps a function score block that orders search results using a custom

script. The script is defined in the script score block and specifies a function to be run on all

results. This function calculates a score that depends on how relevant the result is to the

search query and what the PageRank of the result is. The score is used by Elasticsearch to

44

Figure 5.1. The SPARQL query used to fetch part metadata. This data is downloaded from
the Virtuoso graph database and ingested into the inverted index along with PageRank
results. Clustering results stay on SBOLExplorer. PageRank results are included in
Elasticsearch due to its custom script scoring feature. The subject URI, displayId, version,
name, description, and type metadata are all searchable fields. Depending on the logged in
user, different sets of graphs are substituted in to the from line, which acts as a form of
ACL.

45

Figure 5.2. The query encoded in Elasticsearch’s DSL that is sent by SBOLExplorer to
Elasticsearch’s RESTFUL API when a genetic design repository issues SBOLExplorer a
search request. The query string is broken down into keywords that have to fuzzily match
at least some of the fields in the part. All the parts that match at least one token are ored
together. A custom function is defined in the script score block that orders results by their
keyword score and PageRank value.

46

sort the results. The formula for calculating scores is shown below.

scorepart = keywordScorepart ∗ ln(pagerankpart + 1)

The overall score is effectively the keyword score scaled by the natural logarithm of the

PageRank. A value of 1 has to be added to the PageRank value since its normal values

are between 0 and 1 which would result in a negative value after taking the logarithm.

The keyword score is dependent on how similar Elasticsearch thinks the part’s metadata

fields are to the query string. Any field that matches any token in the query string gets

included since the query is using the or operator. A fuzziness of AUTO means that even

tokens similar to one of the keywords generate a match.

Having a diversity of results in the top results for a search query is useful in order

to not let the first page of results get dominated by many variants of the same part. To

accomplish this, the results from clustering are used. Before returning the ordered results

from Elasticsearch, SBOLExplorer modifies each of the scores by keeping a hash table of

cluster duplicates. Every time a part is emitted to the final results list, all the other parts in

the cluster that the emitted part belongs to get added to the cluster duplicates set. Because

many clusters only contain a single part, this hash table should not get too large. Now,

whenever another part is added, SBOLExplorer halves that part’s final score if it can be

found in the cluster duplicates. Note that this must be done outside of Elasticsearch since

Elasticsearch does not support arbitrary functions in its script score block. As a result of

this postprocessing of the search results list, the highest ranked part determined by the

keyword score and PageRank value shows up as it normally does in the list order, and

any other parts in that cluster that also get matched by the query show up much lower

down. This preserves the top spots of the list for parts which are all in different clusters.

However, since the cluster duplicate score is only halved, it is still possible for it to beat

out other parts from clusters that are not represented yet if it has a much higher keyword

score or PageRank value.

5.2.1 Metrics

The resulting search quality is measured using a simple metric. Each part has a ranking

in the search results. This ranking should ideally be ordered by how likely the user wants

the part given their query. Using SBOLExplorer, the average ranking of parts for a given

47

query should be higher than the average ranking when doing arbitrary string matching

in Virtuoso. Unfortunately, it is difficult to find an unbiased and algorithmic way for

determining which part a user is looking for. Therefore, a close approximation using

composite parts is used.

Composite parts are genetic circuits that represent a complete design and are built out

of smaller sub-parts. These parts are usually represented using two levels of hierarchy.

The root level part represents the design as a whole and includes a description of the entire

composite part. The next level down is a sequence of smaller sub-parts which represent the

actual building blocks of the design. A user search is approximated by using the root level

part’s description as the search query. Since the description describes the entire genetic

design, it makes sense for it to describe somewhat the building block sub-parts the design

is comprised of.

The metric is calculated by searching on the root level parts’ description and looking at

how far down each of the sub-parts are in the search results. A better overall ranking

should have the sub-parts showing up higher in the search results. The average and

median of the sub-part rankings are computed. Higher quality search results should result

in a smaller average and median, and lower quality search results should result in a larger

average and median. This process is done for 5,000 composite parts that include 22,972

sub-parts. Without SBOLExplorer, only 3,913 of these sub-parts even show up in the search

results. Furthermore, the average position in the search results for those found is 1,639,

while the median position is 974. With SBOLExplorer, 10,564 sub-parts are included in the

search results. Furthermore, the average position in the search results improves to 138 with

a median position of 8. These results are very encouraging since the description quality

in the iGEM dataset is very uneven. In some cases, they are very lengthy and can be of

limited relevance to the actual keywords of the sub-parts, while in others they can be very

sparse in details. If a real human user would type a more succinct and direct query, we

would expect even better results.

5.3 Workflow and System Design
It is much easier to understand genetic design repository data after SBOLExplorer

has processed it. Therefore, SBOLExplorer embeds itself nicely within the overall SBOL

48

workflow. As shown in Figure 5.3, experimental biologists use SBOLExplorer implicitly

while browsing for parts in SynBioHub. Not only does this allow for a more efficient and

thorough browsing experience through all relevant parts, experimental biologists are also

able to better understand the context of their parts and its usages by other people. Users of

SBOLDesigner, a sequence editing tool, also benefit by being able to refer to SBOLExplorer

for their part searching and part selecting [47, 62]. In both cases, the search results are

presented in an order that better represents what the user is looking for.

Figure 5.4 shows the result of searching for a ribosome binding site in SynBioHub.

Clicking on a search result takes the user to a page with more information on the part.

Figure 5.5 shows the result of performing the same search in SBOLDesigner. Clicking on a

search result here lets the user download the specified part and place it into their genetic

circuit design. In both cases, a query is sent from SynBioHub’s backend server to SBOLEx-

plorer. SBOLExplorer consults Elastisearch and computes a final ranking weighted by the

keyword score, PageRank, and clustering results.

Figure 5.6 shows how SBOLExplorer architecturally integrates into this workflow. Syn-

BioHub provides a web application for users and a programmatic API for software tools

such as SBOLDesigner, iBioSim, and Benchling. The genetic part data that SynBioHub

serves is stored in a graph database called Virtuoso. Whenever a user or software tool

issues a search, SynBioHub passes along the search query to SBOLExplorer for evaluation.

SBOLExplorer returns a list of search results after consulting Elasticsearch and its internal

data structures. Depending on the type of query, SBOLExplorer may also need to request

data from Virtuoso. In this case, the responses to these queries are memoized in a least

recently used (LRU) cache on SBOLExplorer’s side. The search results consist of a list

of URIs that uniquely identify a particular genetic part stored within Virtuoso. When

the user selects a part to download or view in more detail, SynBioHub fetches the part

from Virtuoso. Periodically, SBOLExplorer fetches newly submitted parts and performs

clustering, graph analysis, and finally data infrastructure ingestion. This batch update and

its periodicity are controlled by a cron job (a time-based job scheduler). SBOLExplorer

itself consists of two processes. One is a hypertext transfer protocol (HTTP) server that

responds to requests from SynBioHub or other genetic design repositories, and the other is

Elasticsearch. Both of these processes are deployed inside of Docker containers along with

49

Figure 5.3. A workflow consisting of SBOLExplorer, SBOLDesigner, SynBioHub, and
iBioSim [38]. Genetic parts from various databases are hosted in the SynBioHub repos-
itory [23, 37, 41, 43, 45]. SBOLDesigner and iBioSim can download these parts and use
them to construct complete genetic designs. Specifically, iBioSim takes care of modeling
and simulation, and SBOLDesigner takes care of sequence-level design. Throughout
the process, parts and their relationships are understood through SBOLExplorer’s search
service. Note that the user does not interact directly with SBOLExplorer. It is a backend
service that provides search functionality for SynBioHub. Figure modified from Zhang et
al. [62].

50

Figure 5.4. The results of searching for a ribosome binding site in SynBioHub. BBa B0034
is immediately recognizable as the first search result, and is well known as the de facto
Elowitz ribosome binding site. Users can click on a search result and view more details on
the specified part.

Figure 5.5. The results of searching for a ribosome binding site in SBOLDesigner. Again,
BBa B0034 is immediately recognizable as the first search result. Users can click on their
desired part to download it and place it into their design.

51

Figure 5.6. The architecture for SBOLExplorer and its relationship with SynBioHub is
shown. SynBioHub has a web application for users using web browsers and a program-
matic API for software tools. These interfaces allow users to interact with the data stored
in Virtuoso, a graph database. SBOLExplorer’s responsibility is to handle the search
functionality that SynBioHub provides. By consulting its inverted index, search results
that span the entire Virtuoso graph database can be returned in real time. New parts are
also periodically ingested into the data infrastructure after clustering and graph analysis.
Therefore, not only are searches quick to execute, they are also sorted by relevance and
show a diversity of parts. SynBioHub then fetches the specifically requested part directly
from Virtuoso if a user or software tool asks for it.

52

SynBioHub and Virtuoso.

SynBioHub and other genetic design repositories interact with SBOLExplorer through

its API. The default /search endpoint takes in a query string and returns the output results.

However, to make integration with SynBioHub easier, SBOLExplorer can also be passed

the SPARQL query that SynBioHub normally sends to Virtuoso. SBOLExplorer extracts

the relevant query properties and figures out how best to utilize Elasticsearch, its internal

data structures, and Virtuoso to best answer the query. For example, SBOLExplorer sup-

ports searching for similar parts, uses of a particular part, twin parts, and other advanced

searches in addition to providing the normal keyword search functionality. Endpoints also

exist for getting information on the state of SBOLExplorer, updating its index, incremen-

tally updating its index, and updating its configuration. Figure 5.7 shows SynBioHub’s ad-

ministration page for SBOLExplorer. This page has information on whether SBOLExplorer

is healthy and gives access to configurable fields for various parameters and endpoints.

For example, SBOLExplorer’s PageRank tolerance and UCLUST clustering identity can be

tuned.

5.3.1 Distributed Search

Each institution usually sets up its own instance of SynBioHub. The genetic design

data is stored in a managed genetic part repository in a standardized format, but the data

is spread out over many locations. This makes it difficult to query and search through all

SBOL parts.

A unique feature of SBOLExplorer is distributed search. Distributed search allows

SBOLExplorer to perform its batch clustering, graph analysis, and data infrastructure in-

gestion by fetching parts from all SynBioHubs that it knows of. In normal search, only

the local SynBioHub and Virtuoso instances are consulted. However, with distributed

search turned on, SBOLExplorer first queries Web-of-Registries for a list of all registered

SynBioHub instances, and then performs its update by fetching all the parts from all

the instances that Web-of-Registries knows of. Web-of-Registries manages SynBioHub

federation by indexing all known instances of SynBioHub and informing them about each

other. This federation service permits powerful federated querying and data storage of

SBOL parts. Since each SBOL part is uniquely identified by its URI, it is guaranteed that

53

Figure 5.7. The administration page for SBOLExplorer in SynBioHub. This page lets
administrators of SynBioHub configure SBOLExplorer, check its health, initiate an index
update, and toggle whether to use SBOLExplorer and its distributed search functionality.
SBOLExplorer’s PageRank tolerance, UCLUST clustering identity threshold, SynBioHub
public graph, Elasticsearch endpoint, Elasticsearch index name, and Virtuoso endpoint are
configurable. The configuration state is communicated through SBOLExplorer’s /config
endpoint.

54

each part is a unique SBOL part as long as SBOLExplorer filters the merged dataset for

duplicate URIs.

SBOLExplorer can uniquely provide efficient search over all SynBioHubs due to its

preprocessing. Clustering and PageRank are computed over all the SBOL parts stored in

all SynBioHubs, and the results are loaded into the local Elasticsearch. Now, if a user wants

to query over all SynBioHubs, a single request to the local SBOLExplorer instance is all that

is required. Before SBOLExplorer’s distributed search capabilities, the query would have

to be sent to each SynBioHub individually, and the results would have to be merged. Now,

all the necessary data for search is already efficiently stored in the local SBOLExplorer

along with PageRank and clustering results over the entire graph. The complete SBOL

data can be downloaded from the actual SynBioHub instance it belongs in by following the

part’s URI. While the update process of distributed search takes a lot longer since all parts

from every SynBioHub must be fetched, and clustering and PageRank computations are

performed over a much larger combined dataset, the efficiency benefits when searching

over all parts is substantial. However, distributed search’s index is not incrementally

updated since it is polling for the data in batches. Therefore, newly submitted parts to

non-local SynBioHubs are not reflected in the search results until the next update is run. In

this way, SBOLExplorer can be thought of as a cache of parts that gets updated in batches.

Another benefit of distributed search is its ability to bootstrap a newly initialized in-

stance of SynBioHub. New SynBioHub instances may have limited amounts of part data

and are therefore of limited utility. By activating distributed search, even an empty in-

stance of SynBioHub can have access to all the public part data of all other SynBioHubs.

For example, with distributed search, the University of Utah SynBioHub instance

(https://synbiohub.utah.edu) can search through parts from the NSF Living Comput-

ing Project SynBioHub (https://synbiohub.programmingbiology.org), Boston Univer-

sity CIDAR Lab SynBioHub (https://synbiohub.cidarlab.org), and reference instance

of SynBioHub hosted by Newcastle University (https://synbiohub.org).

5.4 Summary
The use of an inverted index through Elasticsearch allows SBOLExplorer to respond

very quickly to search query requests from genetic design repositories. SBOLExplorer first

55

preprocesses data by querying for the graph of parts, running data mining algorithms on

it such as clustering and PageRank, and then ingesting the preprocessed data along with

part metadata into Elasticsearch. Because of this, searches consist of looking up keywords

from the tokenized query string and running some efficient transformations on the list.

Specifically, the search results list is ordered by how closely the result matches the query

string, how popular the part is, and how diverse the part is compared to what other parts

are in the results list. As a result, SBOLExplorer considerably raises the average rank of

relevant parts so that they are closer to the top of the search results list.

Having high-quality search results is an important requirement for genetic design repos-

itories and benefits every other tool that uses the said genetic design repository. In this

workflow, when a tool like SBOLDesigner or a user interacting with SynBioHub through

a browser looks up a part, he or she is provided with an ordering of parts that is a lot

more useful than arbitrarily ordered results from string matching on the entire query

string. Some of these tools also rely on advanced search and permissioned search, so it is

important that SBOLExplorer supports these features. Finally, the architecture and system

design of SBOLExplorer allows for it to serve search queries efficiently and act as a cache

of parts from all SynBioHubs when distributed search is used.

CHAPTER 6

CONCLUSION

SBOLExplorer is a powerful data mining and data infrastructure service for genetic

designs stored in genetic design repositories. Using SBOLExplorer, the power of SBOL

data is made accessible, and issues regarding the extraction of knowledge from genetic

design repositories are solved. Through SBOLExplorer’s data processing, experimental

biologists are now able to more easily browse parts, search through repositories, better

understand genetic designs and their relationships, identify useful parts for their designs,

gain insights on part usage, and in general better access knowledge hidden in messy semi-

structured data.

6.1 Summary
SBOLExplorer provides better search using techniques from data mining and data

infrastructure. Specifically, PageRank is used to rank the popularity of parts, and cluster-

ing is used to down-weight duplicate parts. Both PageRank and clustering rely on part

data being represented consistently. SBOL provides this consistent representation and

makes expanding to larger datasets possible. The resulting PageRank scores, clustering

results, and part information gets ingested into SBOLExplorer’s internal data structures

and Elasticsearch. When SBOLExplorer receives a query, it consults Elasticsearch and

ranks the search results using the keyword score, PageRank score, and clustering results.

This infrastructure allows for efficient queries and functionality like distributed search.

6.2 Future Work
Further work includes fleshing out SBOLExplorer’s infrastructure support and data

analytics abilities. Specifically, leveraging the data infrastructure in more ways, data aug-

mentation, better data visualizations, and better metrics would all be promising future

directions.

57

6.2.1 Infrastructure

The data infrastructure serves the data and performs more computationally intensive

tasks on the data. This includes more extensive graph algorithms, clustering through SBOL

structure and sequence comparison, part sorting by popularity ranking, with the cumula-

tive effect of providing better search for SynBioHub. There are performance bottlenecks

in both this data pipeline and SynBioHub’s connection to Virtuoso. As a result, future

work could improve the data infrastructure and leverage it in other ways. Interesting

approaches would be both strict and fuzzy sequence search, better incremental updates,

adding to the data that is indexed, automatic part annotation, and more advanced data

mining techniques [5].

6.2.2 Data Augmentation

The usefulness of searching through genetic design repositories is bounded by how

useful the data is. While there are currently many SBOL parts stored in the SynBioHubs

around the world, there are also many untapped sources of genetic design data in other

repositories. Specifically, organizations like Addgene host many thoroughly characterized

and high-quality genetic parts. By incorporating these datasets into SBOL and combining

them with the currently available SBOL data, new insights can be made, and existing data

mining techniques can be made more powerful. More concretely, it would be useful to

have a way to efficiently and automatically annotate parts with sub-parts. By leveraging

other data sources other than SynBioHub, signals such as direct part usefulness could also

be added. Also, data augmentation could help with suggesting parts given the context

of the genetic circuit’s goal or the design problem at hand. Techniques utilizing deep

neural networks such as long short-term memory (LSTM) networks could help by learning

the sequential model for genetic circuits’ part compositions [25, 27].

6.2.3 Data Visualization

The frontend could have improved visualizations, a better user interface, and SBOL

Visual integrations. PageRank and clustering capture interesting properties of the data

and having a better way to visualize these properties would be useful. SBOLExplorer

allows for efficient queries over the entire SBOL dataset. A visualization tool would be

useful in better conveying the results of these queries.

58

6.2.4 Better Metrics

The currently used metrics are quite simple and do not explicitly reflect real use cases.

Therefore, it would be useful to research what would be a better metric, and how a better

metric can be used to tease apart how parts of the system are affecting the quality of the

search results. By better understanding the signals behind high-quality search results,

SBOLExplorer’s algorithm for ranking search results can be tuned and improved.

REFERENCES

[1] S. Abiteboul, Querying semi-structured data, in International Conference on Database
Theory, Springer, 1997, pp. 1–18.

[2] C. C. Aggarwal and C. K. Reddy, Data clustering: algorithms and applications, CRC
press, 2013.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local
alignment search tool, Journal of Molecular Biology, 215 (1990), pp. 403–410.

[4] J. Bao, R. Yuan, and Z. Bao, An improved alignment-free model for DNA sequence
similarity metric, BMC Bioinformatics, 15 (2014), p. 321.

[5] R. J. Bayardo, Y. Ma, and R. Srikant, Scaling up all pairs similarity search, in
Proceedings of the 16th International Conference on World Wide Web, ACM, 2007,
pp. 131–140.

[6] J. Beal, R. Cox, R. Grunberg, J. McLaughlin, T. Nguyen, B. Bartley, M. Bis-

sell, K. Choi, K. Clancy, C. Macklin, C. Madsen, G. Misirli, E. Oberortner,

M. Pocock, N. Roehner, M. Samineni, M. Zhang, Z. Zhang, Z. Zundel, J. Gennari,

C. Myers, H. Sauro, and A. Wipat, Synthetic biology open language (sbol) version 2.1.0,
Journal of Integrative Bioinformatics, (2016).

[7] E. Bolten, A. Schliep, S. Schneckener, D. Schomburg, and R. Schrader, Clustering
protein sequences structure prediction by transitive homology, Bioinformatics, 17 (2001),
pp. 935–941.

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, Syntactic clustering of
the web, Computer Networks and ISDN Systems, 29 (1997), pp. 1157–1166.

[9] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and

T. L. Madden, Blast+: architecture and applications, BMC Bioinformatics, 10 (2009),
p. 421.

[10] D. Comer, Ubiquitous b-tree, ACM Computing Surveys (CSUR), 11 (1979), pp. 121–137.

[11] R. S. Cox, C. Madsen, J. McLaughlin, T. Nguyen, N. Roehner, B. Bartley,

S. Bhatia, M. Bissell, K. Clancy, T. Gorochowski, et al., Synthetic biology open
language visual (sbol visual) version 2.0, Journal of Integrative Bioinformatics, 15 (2018).

[12] F. Crick, Central dogma of molecular biology, Nature, 227 (1970), pp. 561–563.

[13] J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Communications of the ACM, 51 (2008), pp. 107–113.

[14] R. C. Edgar, Search and clustering orders of magnitude faster than blast, Bioinformatics,
26 (2010), pp. 2460–2461.

60

[15] K. Eilbeck, S. Lewis, C. Mungall, M. Yandell, L. Stein, R. Durbin, and M. Ash-

burner, The sequence ontology: a tool for the unification of genome annotations, Genome
Biology, 6 (2005), p. 1.

[16] D. Endy, Foundations for engineering biology, Nature, 438 (2005), pp. 449–453.

[17] O. Erling, Virtuoso, a hybrid rdbms/graph column store., IEEE Data Engineering Bulletin,
35 (2012), pp. 3–8.

[18] N. Fiorini, R. Leaman, D. J. Lipman, and Z. Lu, How user intelligence is improving
pubmed, Nature Biotechnology, 36 (2018), p. 937.

[19] M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn, C. A.

Rodriguez, N. Roehner, M. L. Wilson, L. Adam, J. C. Anderson, B. A. Bartley,

J. Beal, D. Chandran, J. Chen, D. Densmore, D. Endy, R. Gruenberg, J. Hallinan,

N. J. Hillson, J. D. Johnson, A. Kuchinsky, M. Lux, G. Misirli, J. Peccoud,

H. A. Plahar, E. Sirin, G.-B. Stan, A. Villalobos, A. Wipat, J. H. Gennari, C. J.

Myers, and H. M. Sauro, The synthetic biology open language (sbol) provides a community
standard for communicating designs in synthetic biology, Nature Biotechnology, 32 (2014),
pp. 545–550.

[20] T. S. Gardner, C. R. Cantor, and J. J. Collins, Construction of a genetic toggle switch
in escherichia coli, Nature, 403 (2000), pp. 339–342.

[21] D. F. Gleich, Pagerank beyond the web, SIAM Review, 57 (2015), pp. 321–363.

[22] C. Gormley and Z. Tong, Elasticsearch: the definitive guide: a distributed real-time search
and analytics engine, ” O’Reilly Media, Inc.”, 2015.

[23] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D. Keasling,
Design, implementation and practice of jbei-ice: an open source biological part registry
platform and tools, Nucleic Acids Research, 40 (doi: 10.1093/nar/gks531, 2012).

[24] A. Harth and S. Decker, Optimized index structures for querying rdf from the web, in
Web Congress, 2005. LA-WEB 2005. Third Latin American, IEEE, 2005, pp. 10–pp.

[25] S. Hashemikhabir, G. Ersoy, G. Oguz, B. Yaldiz, Y. Tuncel, G. Budak,

S. Karaaslan, Y. A. Son, and T. Can, M4b: A novel method for designing and
ordering of the genetic devices, in Health Informatics and Bioinformatics (HIBIT), 2012
7th International Symposium on, IEEE, 2012, pp. 123–127.

[26] N. Hillson, H. Plahar, J. Beal, and R. Prithviraj, Improving synthetic biology
communication: recommended practices for visual depiction and digital submission of genetic
designs, ACS Synthetic Biology, 5 (2016), pp. 449–451.

[27] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, 9
(1997), pp. 1735–1780.

[28] S. Hosangadi, Distance measures for sequences, arXiv preprint arXiv:1208.5713, (2012).

[29] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, , the rest

of the SBML Forum:, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden,

A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin,

61

W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L.

Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio,

P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen,

T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,

K. Takahashi, M. Tomita, J. Wagner, and J. Wang, The systems biology markup
language (sbml): a medium for representation and exchange of biochemical network models,
Bioinformatics, 19 (2003), pp. 524–531.

[30] iGEM, Registry of standard biological parts.

[31] V. Kandiah and D. L. Shepelyansky, Google matrix analysis of DNA sequences, PLoS
One, 8 (2013), p. e61519.

[32] M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock,

S. Buxton, A. Cooper, S. Markowitz, C. Duran, et al., Geneious basic: an integrated
and extendable desktop software platform for the organization and analysis of sequence data,
Bioinformatics, 28 (2012), pp. 1647–1649.

[33] T. J. Lehman and M. J. Carey, A study of index structures for main memory database
management systems, in Proceedings VLDB, vol. 1, 1986.

[34] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, in
Soviet Physics Doklady, vol. 10, 1966, pp. 707–710.

[35] W. Li, L. Jaroszewski, and A. Godzik, Clustering of highly homologous sequences to
reduce the size of large protein databases, Bioinformatics, 17 (2001), pp. 282–283.

[36] Y. Liu, Y. Zeng, L. Liu, C. Zhuang, X. Fu, W. Huang, and Z. Cai, Synthesizing
and gate genetic circuits based on crispr-cas9 for identification of bladder cancer cells, Nature
Communications, 5 (2014), p. 5393.

[37] C. Madsen, J. A. McLaughlin, G. Mısırlı, M. Pocock, K. Flanagan, J. Hallinan,

and A. Wipat, The sbol stack: a platform for storing, publishing, and sharing synthetic
biology designs, ACS Synthetic Biology, (2016).

[38] C. Madsen, C. Myers, T. Patterson, N. Roehner, J. Stevens, and C. Winstead,
Design and test of genetic circuits using ibiosim, IEEE Design and Test of Computers, 29
(2012), pp. 32–39.

[39] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in action: covers apache
lucene 3.0, Manning Publications Co., 2010.

[40] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,

K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al., The genome analysis toolkit:
a mapreduce framework for analyzing next-generation DNA sequencing data, Genome Re-
search, 20 (2010), pp. 1297–1303.

[41] J. A. McLaughlin, C. J. Myers, Z. Zundel, G. Mısırlı, M. Zhang, I. D. Ofiteru,

A. Goni-Moreno, and A. Wipat, Synbiohub: a standards-enabled design repository for
synthetic biology, ACS Synthetic Biology, 7 (2018), pp. 682–688.

[42] F. McSherry, M. Isard, and D. G. Murray, Scalability! but at what cost?, in HotOS,
vol. 15, Citeseer, 2015, pp. 14–14.

62

[43] G. Misirli, A. Wipat, J. Mullen, K. James, M. Pocock, W. Smith, N. Allenby, and

J. S. Hallinan, Bacillondex: an integrated data resource for systems and synthetic biology,
Journal of Integrative Bioinformatics (JIB), 10 (2013), pp. 103–116.

[44] T. Nguyen, N. Roehner, Z. Zundel, and C. J. Myers, A converter from the systems
biology markup language to the synthetic biology open language, ACS Synthetic Biology, 5
(2016), pp. 479–486.

[45] A. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. Strychalski,

D. Ross, D. Densmore, and C. Voigt, Genetic circuit design automation, Science, 352
(2016), p. 7341.

[46] M. Nielsen, Using your laptop to compute pagerank for millions of webpages.

[47] C. Olsen, K. Qaadri, H. Shearman, and H. Miller, Synthetic biology open language
designer, 2014 International Workshop on Bio-Design Automation, (2014), pp. 60–61.

[48] C. F. Olson, Parallel algorithms for hierarchical clustering, Parallel Computing, 21 (1995),
pp. 1313–1325.

[49] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking:
bringing order to the web, tech. rep., Stanford InfoLab, 1999.

[50] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and

M. Stonebraker, A comparison of approaches to large-scale data analysis, in Proceedings
of the 2009 ACM SIGMOD International Conference on Management of data, ACM,
2009, pp. 165–178.

[51] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Communications of the
ACM, 33 (1990), pp. 668–677.

[52] J. Quinn, R. Cox, A. Adler, J. Beal, S. Bhatia, Y. Cai, J. Chen, K. Clancy,

M. Galdzicki, N. Hillson, N. Novre, A. Maheshwari, J. Alastair, C. Myers,

P. Umesh, M. Pocock, C. Rodriguez, L. Soldatova, G. Stan, N. Swainston,

A. Wipat, and H. Sauro, Sbol visual: a graphical language for genetic designs, PLOS
Biology, (2015).

[53] N. Roehner, J. Beal, K. Clancy, B. Bartley, G. Misirli, R. Grunberg,

E. Oberortner, M. Pocock, M. Bissell, C. Madsen, T. Nguyen, M. Zhang,

Z. Zhang, Z. Zundel, D. Densmore, J. Gennari, A. Wipat, H. Sauro, and C. Myers,
Sharing structure and function in biological design with sbol 2.0, ACS Synthetic Biology, 5
(2016), pp. 498–506.

[54] N. Roehner and C. Myers, A methodology to annotate systems biology markup language
models with the synthetic biology open language, ACS Synthetic Biology, 3 (2013), pp. 57–
66.

[55] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan, Clash
of the titans: mapreduce vs. spark for large scale data analytics, Proceedings of the VLDB
Endowment, 8 (2015), pp. 2110–2121.

[56] R. Sibson, Slink: an optimally efficient algorithm for the single-link cluster method, The
Computer Journal, 16 (1973), pp. 30–34.

63

[57] C. Vilanova and M. Porcar, igem 2.0 refoundations for engineering biology, Nature
Biotechnology, 32 (2014), p. 420.

[58] M. Waterman, Identification of common molecular subsequence, Molecular Biology, 147
(1981), pp. 195–197.

[59] K.-Y. Whang, B.-K. Park, W.-S. Han, and Y.-K. Lee, Inverted index storage structure
using subindexes and large objects for tight coupling of information retrieval with database
management systems, Feb. 19 2002. US Patent 6,349,308.

[60] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing, in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, USENIX Association, 2012, pp. 2–2.

[61] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,

J. Rosen, S. Venkataraman, M. J. Franklin, et al., Apache spark: a unified engine for
big data processing, Communications of the ACM, 59 (2016), pp. 56–65.

[62] M. Zhang, J. A. McLaughlin, A. Wipat, and C. J. Myers, Sboldesigner 2: an intuitive
tool for structural genetic design, ACS Synthetic Biology, (2017).

