
TECHNOLOGY MAPPING OF GENETIC CIRCUIT

DESIGNS

by

Nicholas Roehner

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Bioengineering

The University of Utah

December 2014

Copyright c© Nicholas Roehner 2014

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Nicholas Roehner

has been approved by the following supervisory committee members:

Chris J. Myers , Chair July 31, 2014
Date Approved

Orly Alter , Member July 30, 2014
Date Approved

Frederick R. Adler , Member August 4, 2014
Date Approved

Chuck Alan Dorval , Member August 4, 2014
Date Approved

Tara L. Deans , Member July 30, 2014
Date Approved

and by Patrick A. Tresco , Chair of

the Department of Bioengineering

and by David Kieda, Dean of The Graduate School.

ABSTRACT

Synthetic biology is a new field in which engineers, biologists, and chemists are working

together to transform genetic engineering into an advanced engineering discipline, one in

which the design and construction of novel genetic circuits are made possible through the

application of engineering principles. This dissertation explores two engineering strategies

to address the challenges of working with genetic technology, namely the development of

standards for describing genetic components and circuits at separate yet connected levels

of detail and the use of Genetic Design Automation (GDA) software tools to simplify and

speed up the process of optimally designing genetic circuits. Its contributions to the field of

synthetic biology include (1) a proposal for the next version of the Synthetic Biology Open

Language (SBOL), an existing standard for specifying and exchanging genetic designs

electronically, and (2) a GDA workflow that enables users of the software tool iBioSim

to create an abstract functional specification, automatically select genetic components

that satisfy the specification from a design library, and compose the selected components

into a standardized genetic circuit design for subsequent analysis and physical construc-

tion. Ultimately, this dissertation demonstrates how existing techniques and concepts

from electrical and computer engineering can be adapted to overcome the challenges of

genetic design and is an example of what is possible when working with publicly available

standards for genetic design.

For Katherine.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

LIST OF ALGORITHMS . x

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Standards . 2
1.2 GDA Software Tools . 2

1.2.1 Sequence Editing Tools . 3
1.2.2 Biochemical Modeling Tools . 5
1.2.3 Design Composition Tools . 5
1.2.4 Genetic Technology Mapping Tools . 7

1.3 Contributions . 9
1.4 Dissertation Outline . 10

2. BACKGROUND . 12

2.1 Genetic Circuits . 12
2.2 Genetic Logic . 14
2.3 iBioSim . 17

3. STANDARDS . 20

3.1 SBML Level 3 Version 1 . 20
3.1.1 SBML Core . 21
3.1.2 Hierarchical Model Composition Package . 23

3.2 SBML for Genetic Circuit Models . 25
3.3 SBOL Version 1.1 . 26
3.4 Proposed Data Model for SBOL Version 2.0 . 31

3.4.1 Minor Improvements . 32
3.4.2 Structural Representation . 34
3.4.3 Functional Representation . 38
3.4.4 Composition of Structure and Function . 41
3.4.5 Examples . 47
3.4.6 Summary . 50

4. MODEL ANNOTATION AND GENERATION 52

4.1 Model Annotation . 52
4.2 Model Generation . 57
4.3 Summary . 65

5. GENETIC TECHNOLOGY MAPPING . 67

5.1 Assumptions . 69
5.2 Graph Construction . 69
5.3 Partitioning and Decomposition . 72
5.4 Matching . 73
5.5 Covering . 77
5.6 Case Studies . 81

5.6.1 Genetic AOI . 83
5.6.2 Genetic NAND-NOR Cascade . 83
5.6.3 Genetic OAI Cascade . 84

5.7 Summary . 85

6. SEQUENCE GENERATION . 87

6.1 Graph Construction . 87
6.2 Graph Traversal . 90
6.3 Summary . 99

7. CONCLUSIONS . 101

7.1 Summary . 101
7.2 Future Research . 102

7.2.1 SBOL . 102
7.2.2 Model Generation . 102
7.2.3 Genetic Technology Mapping . 103
7.2.4 Sequence Generation . 104
7.2.5 Workflow Validation . 104

REFERENCES . 106

vi

LIST OF FIGURES

1.1 A workflow diagram capturing the use of standards, model generation, ge-
netic technology mapping, and sequence generation to automate the design
of genetic circuits. 10

2.1 A genetic toggle switch. 14

2.2 Transfer curves for the TetR inverter, LacI inverter, and their composition
into a TetR buffer under two different parameter sets. 15

2.3 A screenshot of genetic technology mapping in iBioSim. 17

2.4 A control flow diagram on the use of genetic technology mapping, simulation,
and model checking in iBioSim to automate the design of genetic circuits. . . 19

3.1 A SBML model of eukaryotic gene expression. 22

3.2 A hierarchical, modular SBML model of eukaryotic gene expression. 24

3.3 Two versions of a SBML model for a genetic circuit in iBioSim 25

3.4 Hierarchical composition of the DNA component for a genetic toggle switch
in SBOL Version 1.1. 27

3.5 The UML class diagram for SBOL Version 1.1, consisting of the Collection,
DNA Component, DNA Sequence, and Sequence Annotation classes. 28

3.6 SBOL Version 1.1 UML for a LacI-repressible gene that encodes the TF
protein TetR. 30

3.7 A design for the genetic toggle switch that captures its qualitative structure
and function. 33

3.8 UML diagram for the Identified, Documented, and Collection classes of the
proposed data model. 34

3.9 UML diagram for the proposed generalized Component classes. 35

3.10 UML diagram for the proposed Component Instantiation class. 37

3.11 UML example of components under the proposed data model, including
components referenced by the LacI Inverter module. 37

3.12 UML diagram for the proposed Module class. 39

3.13 UML diagram for the proposed Module Instantiation class. 39

3.14 UML diagram for the proposed Interaction classes. 40

3.15 UML diagram for the proposed Model class. 40

3.16 UML example displaying the interactions between the component instantia-
tions in the LacI inverter module. 42

3.17 UML diagram for the proposed Port class. 43

3.18 UML diagram for the proposed Port Map class. 43

3.19 UML example of instantiating the LacI-repressible gene within the LacI
inverter module. 45

3.20 UML example of composing the LacI and TetR inverter modules into a toggle
switch module. 46

3.21 A mixed replicon expression module that instantiates three different replicon
expression submodules, which in turn instantiate copies of a generic replicon
expression module. 48

3.22 A CRISPR regulatory cascade module that instantiates four submodules and
several components. 49

3.23 UML diagram that summarizes the proposed data model. 51

4.1 Format for SBML-to-SBOL annotation written in RDF/XML. 53

4.2 An iBioSim representation of the SBML models for the LacI inverter and
the genetic toggle switch. 55

4.3 UML diagram of the LacI inverter under the proposed data model for the
next version of SBOL. 62

4.4 UML diagram of the LacI inverter and genetic toggle switch under the
proposed data model for the next version of SBOL. 63

4.5 UML diagram of the LacI inverter under Level 3, Version 1 of the SBML
data model. 64

4.6 UML diagram of the genetic toggle switch under Level 3, Version 1 of the
SBML data model. 65

5.1 Overview of DAG-based genetic technology mapping as applied to automate
the design of a genetic multiplexer. 68

5.2 Example of graph construction. 70

5.3 Examples of partitioning and decomposing regulatory DAGs. 72

5.4 Partitioned, decomposed specification and library DAGs from Figure 5.2. . . . 74

5.5 Covering with the specification and library DAGs from Figure 5.2. 78

5.6 Case study specification DAGs. 81

5.7 Best solution cost in base pairs versus time in seconds when applying branch-
and-bound to the genetic OAI cascade and four libraries of different sizes. . . 85

6.1 Graph constructed from the LacI inverter model generated and annotated
in Chapter 4 (see Figure 4.2). 88

6.2 Graph constructed from the hierarchical toggle switch model. 89

6.3 DFA DC translated from iBioSim’s default regular expression for a complete
genetic construct. 93

viii

LIST OF TABLES

1.1 GDA Software Tools . 4

3.1 Addition of SBO Terms to SBML in iBioSim . 26

4.1 Default parameters for generated kinetic laws . 60

5.1 Solution times and sizes for the genetic AOI. 82

5.2 Solution times and sizes for the genetic NAND-NOR cascade. 82

5.3 Solution times and sizes for the genetic OAI cascade. 82

LIST OF ALGORITHMS

5.1 Matching . 75

5.2 Covering . 80

6.1 Construct Graph . 91

6.2 Construct Graph From Submodels . 91

6.3 Traverse Graph . 95

6.4 Determine Next Nodes . 96

6.5 Traverse Branches . 97

6.6 Order Local Nodes . 98

6.7 Traverse Cycles . 99

ACKNOWLEDGMENTS

There are many without whom this dissertation would not be possible and to whom

I am forever grateful. First and foremost, I would like to thank my advisor, Prof. Chris

Myers, who gave me the opportunity to pursue my research interests in synthetic biology

at a graduate level. I honestly do not think that I could have had a better advisor. I

will never forget the lessons that I have learned as a researcher under Prof. Myers’s

guidance, nor will I fail to follow his example of mentorship should I one day serve as a

professor. I feel that the latter career had been made all the more possible by Prof. Myers’s

encouragement to involve myself with community standards, through which I have gotten

to know many outstanding individuals in my field of study.

In this regard, I would also like to thank the members of the Synthetic Biology Open

Language (SBOL) Developers Group, in particular Jacob Beal, Douglas Densmore, Kevin

Clancy, Michal Galdzicki, Goksel Misirli, Ernst Oberortner, Matthew Pocock, Jacqueline

Quinn, Herbert Sauro, and Anil Wipat. The development of standards is a critical yet

often undersupported aspect of every engineering discipline. As the SBOL standard forms

no small part of this dissertation, I am greatly indebted to the research that has been

volunteered by members of the SBOL Developers Group and forms a foundation for this

dissertation to build upon.

Next, I would like to thank the past and present members of the Myers lab, particularly

Andrew Fisher, Curtis Madsen, Leandro Watanabe, and Zhen Zhang, and my fellow bio-

engineering students, Christopher Conlin, Jennifer Gibson, and Nicholas Nolta. Whether

discussing research, swapping stories, or playing board games, it has been my privilege to

work and make merry with the finest of friends.

Most of all, I would like to thank my love and partner in life, Katherine Hashimoto, to

whom this dissertation is dedicated. With her love and companionship, I have been able

to overcome my greatest trials as a graduate student. I cannot imagine our lives without

each other.

Last but not least, I would like to thank my parents, Richard and Kathleen Roehner,

and my sister, Kelsey Roehner. Without their love and encouragement, I would not

have developed the passion for learning and drive to succeed that are necessary to earn

a graduate degree. I would also like to thank my grandfather, Paul Roehner, who

supported my pursuit of an undergraduate degree at the University of Washington, and my

grandparents, Gary and Carol Ann Clark, who fostered my interest in higher education.

The material in this dissertation is based upon work supported by the National Science

Foundation under Grant Numbers 0331270, CCF-07377655, CCF-0916042, and CCF-

1218095. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

xii

CHAPTER 1

INTRODUCTION

Synthetic biology is a new field in which engineers, biologists, and chemists are working

together to transform genetic engineering into an advanced engineering discipline, one in

which the design and construction of novel genetic circuits are made possible through

the application of engineering principles. The Presidential Commission for the Study of

Bioethical Issues recently concluded that synthetic biology has the potential to improve or

revolutionize a variety of economic sectors, including energy production, pollution control,

medicine, and chemical manufacturing [1]. So far, this promise has been realized to a

limited extent in bacteria and yeast that have been genetically engineered to perform

novel and potentially useful functions, including manufacturing drug precursors [2], pro-

ducing biofuels [3, 4, 5], consuming toxic waste [6, 7], and even invading tumor cells [8].

The successes of these individual projects, however, have often failed in translation and

application to new projects, a problem that is partly due to the challenges of working with

genetic components in the absence of an engineering framework built upon standards and

abstraction [9, 10, 11].

These challenges include the great diversity of structure and function of genetic compo-

nents, the complex nature of their interactions and the networks that they can form, and

the strong dependence of their function on environmental and physical context. Because of

their context dependence, it can be difficult to reuse genetic components across different

designs and recombine them into novel genetic circuits that behave as the sum of their

parts. Because of their diversity and complexity, it is difficult to optimally compose

genetic components as part of designs for larger genetic circuits. This dissertation explores

two engineering strategies to address these challenges, including (1) the development of

standards for describing genetic components and circuits at separate yet connected levels

of detail and (2) the use of Genetic Design Automation (GDA) software tools to simplify

and speed up the process of optimally designing genetic circuits.

2

1.1 Standards

Currently, there exist standards for describing genetic sequences, such as the Gen-

Bank [12] and FASTA [13] formats, and standards for describing biochemical models, such

as the Systems Biology Markup Language (SBML) [14] and CellML [15], but there is

no one standard that represents both the structure and function of genetic circuits in a

hierarchical, modular fashion that is useful for engineering design. Even the most widely

used public database for synthetic biology, the iGEM Registry of Standard Biological

Parts [16], does not provide a standardized means of connecting the sequences of genetic

components with mathematical models for their behavior and qualitative descriptions of

their interactions. Without standards that combine genetic structure and function into

contextualized modules, there can be no exchangeable basis for design automation in

synthetic biology [17], a paradigm that has otherwise been applied to great success in

electrical and computer engineering.

1.2 GDA Software Tools

Ideally, a synthetic biologist could design genetic circuits at a fairly high level of

abstraction, focusing on a desired function rather than the exact genetic components

used to implement this function. Such a synthetic biologist would use GDA software to

construct an abstract functional specification, automatically select genetic components that

satisfy the specification from a design library (genetic technology mapping), and compose

the selected components into a standardized genetic circuit design for subsequent analysis

and physical construction. By encoding knowledge in tools and standardized data, GDA

can lower the barrier to entry for new designers and promote the reuse of experimentally

proven genetic components. Through intelligent automation, GDA can make the design of

more complex genetic circuits tractable and decrease the length of design and test cycles.

While a host of GDA tools exist for applications such as biochemical modeling and

simulation, sequence editing and optimization, design composition, and more recently

genetic technology mapping, not all of these tools use publicly available standards to

represent data and none of them use standards to tightly couple genetic structure with

function. In order for GDA tools to facilitate interdisciplinary collaboration and the

exchange of genetic circuit designs, they must use standards that represent both genetic

structure and function, even if individual tools only focus on one aspect of designing genetic

circuits. Furthermore, because it is difficult for any one standard to directly represent

all aspects of design in synthetic biology, there must be GDA tools that enable users

3

to compose genetic circuit designs from data that belong to complementary standards,

ideally through mechanisms that are represented within the standards themselves.

1.2.1 Sequence Editing Tools

Sequence editing tools typically enable users to construct, modify, or annotate the

sequences of genetic components. Sequence editing tools listed in Table 1.1 include

GeneDesign [18], GeneDesigner [19], Kera [20], Synthetic Gene Designer [21], and Vec-

torEditor [22]. Unpublished sequence editing tools not listed in this table include the

commercial tools Benchling, Genome Compiler, and Vector NTI. Nearly all of the above

tools make use of the GenBank [12] and FASTA formats [13] to store genetic sequences

and their annotated features, though some of the web applications, such as GeneDesign

and Synthetic Gene Designer, read and write plain text sequences that conform to the

International Union of Pure and Applied Chemistry (IUPAC) codes for nucleotides [23]

and amino acids. While simpler to use in some respects, these web applications do not

preserve or update any features that may have been annotated in the source files for their

input sequences. Lossless transmission of data is necessary for different GDA tools to

effectively operate on the same design.

It is a testament to the maturity of bioinformatics that well-developed standards exist

for encoding genetic sequences and that the vast majority of sequence editing tools use at

least one of these standards. For the purpose of synthetic biology, however, these standards

lack the means to fully represent two key concepts of engineering design: hierarchy and

modularity. Modularity allows engineers to group elements of a design into reusable

structural or functional units, while hierarchy allows them to build larger designs out

of subdesigns. Of the sequence editing tools listed above, only Benchling, GeneDesigner,

VectorEditor, and Vector NTI support the Synthetic Biology Open Language (SBOL) [44],

a new standard that has been developed to address the shortcomings of the GenBank

and FASTA formats for engineering design. In particular, SBOL currently enables the

specification of modular Deoxyribonucleic Acid (DNA) components and the hierarchical

annotation of their sequences with other DNA components. These tools’ implementations

of SBOL, however, are still fairly limited in that they do not take full advantage of

modularity and hierarchy when creating new genetic components. Rather, they convert

genetic components represented in their own nonhierarchical, internal data model to

SBOL. New GDA tools are needed to create truly hierarchical, modular descriptions of

genetic structure that are better suited to the exchange and reuse of designs.

4

Table 1.1: GDA Software Tools

Tool Description Citation

Asmparts Composition of genetic circuit models from
SBML models of genetic components

[24]

BioJADE Composition, mapping, and TABASCO [25] sim-
ulation of genetic circuit designs

[26]

CellDesigner Composition and COPASI [27] simulation of
SBML models

[28]

DeviceEditor Composition of genetic constructs and their ver-
ification with Eugene [29] design rules

[30]

GEC Mapping of genetic programs to genetic circuit
designs plus export of SBML

[31]

GeneDesign Sequence editing and optimization of genetic con-
structs

[18]

GeneDesigner Sequence editing, optimization, and curation of
genetic constructs

[19]

GenoCAD Composition, syntactic verification, and COPASI
simulation of genetic circuit designs

[32]

iBioSim Composition, simulation, and model checking of
SBML models, esp. for genetic circuits

[33]

Kera Composition, rule-based verification, and simula-
tion of genetic circuit designs

[20]

MatchMaker Mapping of abstract genetic circuit designs from
Proto Compiler to genetic constructs

[34]

MoSeC Generation of DNA sequences from SVP [35]
models annotated with genetic components

[36]

Parts&Pools Mapping of Karnaugh maps to abstract genetic
circuit designs

[37]

ProMoT Composition of biochemical models plus im-
port/export of SBML

[38]

Proto Compiler Mapping of genetic programs to abstract genetic
circuit designs and MATLAB [39]

[40]

SBROME Mapping of abstract genetic circuit designs to
concrete genetic circuit designs

[41]

SynBioSS Composition and simulation of biochemical mod-
els plus import/export of SBML

[42]

Synthetic Gene Designer Sequence editing with emphasis on codon opti-
mization for synthetic genetic codes

[21]

TinkerCell Composition and COPASI simulation of genetic
circuit designs with plug-in support

[43]

VectorEditor Sequence editing of genetic constructs (JBEI tool
packaged with DeviceEditor)

[22]

5

1.2.2 Biochemical Modeling Tools

Biochemical modeling tools allow users to construct mathematical models and often

also provide users with the ability to simulate and analyze these models. Biochemical

modeling tools listed in Table 1.1 include Asmparts [24], BioJADE [26], CellDesigner [28],

GEC [31], GenoCAD [32], iBioSim [33], Kera [20], ProMoT [38], Proto Compiler [40],

SynBioSS [42], and TinkerCell [43]. Of these tools, all but BioJADE and the Proto

Compiler support SBML, a well-developed standard for modeling biological systems that

is supported by more than 250 software tools across multiple fields of study. While the

Proto Compiler is capable of exporting models written in MATLAB [39], one disadvantage

of this representation is that it only captures the mathematical aspects of a biochemical

model and none of its biological meaning. More domain-specific languages are required

to enable tools to compute over a model and quickly determine which of its elements

represent the components of the modeled genetic circuit.

Among the SBML-compliant tools listed above, there are different degrees of support

for import/export of SBML and the various packages that extend its capabilities. In

particular, Kera only supports import of SBML, while GEC and GenoCAD only support

export of SBML, thereby limiting these tools’ ability to facilitate the exchange of data

on genetic function. Furthermore, while many of these tools are capable of representing

genetic function in terms of hierarchical and/or modular models, iBioSim is the only

one that fully represents hierarchy and modularity in a standardized manner, that is

by means of the SBML hierarchical modeling composition package [45]. Without such

standardization, different modeling tools cannot exchange information on the higher-order

organization of a model. Consequently, the higher-order function represented by the

model is not nearly as communicable, especially in the case of larger designs with many

interacting elements. Although support of standardized hierarchy and modularity can be

difficult to implement, especially for existing tools with their own custom data model,

the benefits of improved exchange and reuse of models generally outweigh the cost of

implementation.

1.2.3 Design Composition Tools

Design composition tools enable their users to construct or connect descriptions of

both genetic structure and function. Tools from Table 1.1 that fall under this definition

include SBOL Designer, DeviceEditor [30], GenoCAD, Kera, TinkerCell, BioJADE, GEC,

Parts&Pools [37], Proto Compiler, MatchMaker [34], MoSeC [36], and the Synthetic

6

Biology Reusable Optimization Methodology (SBROME) [41]. While all of these tools,

except SBROME, use at least one of the previously mentioned standards, it is only clear

that GenoCAD, TinkerCell, Proto Compiler, and MoSeC use two or more standards to

describe both genetic structure and function. Moreover, only TinkerCell and MoSeC

explicitly couple genetic function and structure through the annotation of biochemical

models with DNA sequences.

From a performance standpoint, the design composition tools in the first half of the

above list (up to BioJADE) typically require users to manually compose designs, but

automatically generate detailed file representations that would be tedious to write by

hand. The tools in the second half of this list, however, are more fully automated and

can take over a greater portion of design composition tasks from users. These tools

include the sequence generation tool MoSeC, which is described in this section, and the

genetic technology mapping tools BioJADE, GEC, MatchMaker, and SBROME, which

are described in Section 1.2.4.

The primary purpose of MoSeC [36] is to infer and generate the DNA sequences for one

or more genetic constructs (in this case, genes) from a SBML or CellML model composed

of Standard Virtual Parts (SVPs) [35]. A SVP is a standardized model fragment that

represents the function of a genetic component. Under the MoSeC approach, a SVP is

further annotated with a DNA sequence to directly couple the structure and function of

the modeled genetic component. MoSeC accomplishes the inference of genetic structure

from function in two steps. In the first step, the input SBML or CellML model is converted

to a graph representation in which the nodes represent model elements and the edges or

paths between nodes represent the cause-and-effect relationships between model elements.

In the second step, this graph is traversed in accordance with a set of design rules to

compose one or more genetic constructs from the DNA sequences stored at each node.

After manually composing a collection of SVPs into a complete model, a MoSeC user can

automatically generate the corresponding composite DNA sequence, thereby completing

a genetic circuit design that contains both structural and functional data.

While MoSeC uses standards that are well-suited to the representation of genetic func-

tion for engineering, the same is not true of its representation of genetic structure. Unlike

SBML and CellML, the GenBank format used by MoSeC to describe its output DNA

sequences lacks modularity and hierarchy, concepts that help simplify the composition of

designs and promote their reuse. Consequently, MoSeC cannot be used to create genetic

7

circuit designs in which a hierarchy of functional data objects is mirrored by a hierarchy of

structural data objects. Without connected structural and functional hierarchies in genetic

circuit designs, it becomes more difficult for function-oriented GDA tools to agree with

structure-oriented tools on the overall organization of a design. Hence, in order to more

fully support meaningful exchange of designs between GDA tools, it becomes necessary

for design composition tools to use standards that not only represent genetic structure

and function, but do so in a modular, hierarchical fashion that is useful for engineering

design.

Finally, while MoSeC’s use of SVPs enables the application of a simple rule-based

approach to inferring genetic structure from function, it is also limiting in the sense that

MoSeC-compliant models can only model a limited set of genetic components and must

do so using specific modeling elements from the SBML and CellML standards. If a user

wants to model a nonstandard genetic component, then the designers of MoSeC must

create a new type of SVP and add design rules to handle its composition with other SVPs

and infer their composite structure from their composite function. In the future, design

composition tools may benefit from grammar -based approaches [46] that allow more input

from the user to define and determine what constitutes a valid genetic construct.

1.2.4 Genetic Technology Mapping Tools

Genetic technology mapping is the process of automatically selecting genetic compo-

nents from a library to meet the abstract functional specification for a genetic circuit. Most

existing genetic technology mapping tools adapt techniques originally used in Electronic

Design Automation (EDA) and software engineering. In doing so, these tools must

address one of the major differences between GDA and EDA. Namely, unlike electronic

components, genetic components can produce signals with a variety of molecular identities.

When composing genetic components to form a genetic circuit design, the molecular

identities of their signals must be accounted for to ensure proper connections between

components and avoid undesirable cross-talk. The implication of this restriction is that

each choice of a genetic component for a genetic circuit design precludes the choice of other

components that would introduce cross-talk. Hence, optimally mapping from a functional

specification to a genetic circuit design can be a very computationally intensive problem,

one in which every valid combination of genetic components that can possibly produce

the specified function may have to be explored in order to ensure that the optimal circuit

design is found.

8

The original genetic technology mapping tools, BioJADE and GEC, use exact methods

that guarantee the optimal solution is found, but can be very inefficient when applied

to large specifications. Both MatchMaker and SBROME, on other hand, use heuristic

methods to find nonoptimal solutions quickly and rank them by quality afterwards. Still,

there is a need for efficient exact methods to find the most optimal solution in a reasonable

amount of time and new heuristic methods to bias towards finding higher quality solutions

first.

MatchMaker seeks to map an Abstract Genetic Regulatory Network (AGRN) against

a feature database that contains genetic components and data on qualitative regulatory

interactions, such as activation and repression, that exist between these components. In

order to accomplish this task, MatchMaker uses a timed heuristic search to select genetic

components from the feature database that match and cover (form a solution to) the

AGRN specification. The search is timed in that it continues for a predetermined amount

of time before quitting. It is heuristic in that it employs strategies to find solutions

quickly, but does not guarantee that the optimal solution is found. These strategies

include covering the AGRN nodes with the fewest matches to the feature database first

and covering them with genetic components that match the most nodes in the AGRN.

In this way, MatchMaker deals with most stringent portions of the AGRN specification

first and makes covering decisions that remove the most choices from later consideration.

Solutions are obtained, however, without a means to bias towards finding higher quality

solutions first. Rather, those solutions found are ranked with regards to the degree that

their combinations of genetic components are compatible in terms of their input and output

signal ranges.

SBROME, on the other hand, takes a different approach to database organization. In

the SBROME database, genetic components belong to modules that only assert qualitative

regulatory interactions between their own components. The advantage of this approach

is that modules can be used to cover an AGRN specification in fewer matches than

covering feature by feature, but at the cost of potential redundancy between modules.

For the purposes of matching and covering, SBROME uses greedy methods that prefer

larger, experimentally characterized modules and find a fixed number of solutions while

using look-ahead information to prune solutions that would result in undesired cross-talk.

Consequently, SBROME is able to quickly find solutions that are qualitatively promising,

but not necessarily quantitatively optimal.

9

While both SBROME and Matchmaker are effective tools for genetic technology map-

ping, their respective approaches to matching and covering can still benefit from being

augmented with a mathematical framework for evaluating the quality of a solution in terms

of quantitative parameters. In particular, such a framework can enable these tools to rank

matches to an AGRN by their inclusion in a theoretically optimal solution that ignores

cross-talk. During covering, this information can leveraged to bias towards finding higher

quality solutions first and to avoid looking for suboptimal solutions.

1.3 Contributions

The contributions of this dissertation to the field of synthetic biology are as follows:

• A proposed data model for Version 2.0 of SBOL, a computational standard for the

exchange of data on genetic designs [47].

• Methodologies for annotating SBML models with SBOL and automatically generat-

ing SBOL-annotated SBML models from SBOL modules to compose descriptions of

genetic structure and function into genetic circuit designs.

• An exact algorithm to find optimal solutions to the genetic technology mapping

problem in a reasonable amount of time and a heuristic algorithm to find high

quality solutions in less time when an exact approach is inefficient [48].

• A methodology for automatically inferring the structure of one or more genetic

constructs from genetic circuit designs written in SBOL-annotated SBML [49].

Figure 1.1 is a workflow diagram that demonstrates how these contributions can be

used to automate the design of genetic circuits. At the beginning of this workflow, a

design library is constructed via model generation, a process in which SBOL-annotated

SBML models are automatically generated from a collection of SBOL modules that assert

qualitative regulatory interactions between a collection of genetic components. Next, a

SBML model is constructed and serves as an abstract functional specification for input to

genetic technology mapping along with the design library. This process produces a genetic

circuit design that conforms to the specification and is composed of subcircuit designs

from the libary. Following genetic technology mapping, the SBOL DNA components of

the genetic circuit design are linearized to one or more genetic constructs in accordance

with the organization of the design’s composite SBML model, a process known as sequence

10

Figure 1.1: A workflow diagram capturing the use of standards, model generation, genetic
technology mapping, and sequence generation to automate the design of genetic circuits.
Elliptical nodes represent data and rectangular nodes represent processes.

generation. Finally, the genetic circuit design can be curated as part of the design library

and become available for solutions to future genetic technology mapping problems.

The results of this research have been implemented in a GDA software tool, iBioSim.

This tool is freely available to the public for download at http://www.async.ece.utah.edu

/iBioSim/.

1.4 Dissertation Outline

Chapter 2 provides background on both genetic circuits and the current workflow of

iBioSim. Next, Chapter 3 describes standards for representing genetic circuit designs,

including Version 1.1 of the SBOL standard, which captures the hierarchical composition

11

of DNA components, and a proposed data model for Version 2.0 of SBOL, which captures

a more diverse range of genetic components and enables functional composition of these

components into modules. This chapter also describes Level 3 Version 1 of the SBML

standard, which captures a wide range of concepts from biochemical modeling, and a

stylized form of SBML used in iBioSim, which is especially suited to modeling genetic

circuits. Chapter 4 then presents a methodology for the composition of genetic circuit

designs from SBOL and SBML, including the annotation of SBML models with SBOL and

generation of SBOL-annotated SBML models from SBOL modules. This methodology can

be used to create a library of genetic circuit designs for genetic technology mapping, which

is explained in Chapter 5 and involves the automated selection and composition of library

designs to satisfy the abstract functional specification for a genetic circuit. Chapter 5 also

presents the results of applying genetic technology mapping to the functional specifications

for a variety of abstract genetic circuits. Finally, Chapter 6 presents a methodology for

generating one or more linear genetic constructs from a mapped genetic circuit design,

while Chapter 7 concludes this dissertation with a summary of research accomplishments

and potential avenues for future research.

CHAPTER 2

BACKGROUND

In this chapter, Section 2.1 describes the fundamental biological processes by which ge-

netic circuits function and presents an example of one of the first synthetic genetic circuits.

Next, Section 2.2 discusses the basic assumptions under which genetic circuits are treated

as having digital logic function, an abstraction that enables the application of existing,

well-developed mathematics to the design and analysis of these circuits. Lastly, Section 2.3

describes a GDA software tool, iBioSim [33], and discusses how the contributions of this

dissertation have been implemented as part of the iBioSim workflow.

2.1 Genetic Circuits

A genetic circuit is a network of genes that relay and manipulate signals by regulating

each other’s expression. Each gene is a region of DNA that encodes the primary structure

of one or more Ribonucleic Acids (RNA) and/or proteins and is expressed through the

transcription of DNA to RNA and the translation of RNA to proteins. This section briefly

describes transcription and translation, then reviews the common modes of transcriptional

and translational regulation that have been used in synthetic genetic circuits before pre-

senting an example of a seminal synthetic genetic circuit, the genetic toggle switch [50].

During the first half of gene expression, transcription of DNA to RNA is carried out

by protein enzymes known as RNA polymerases. To initiate the transcription of a gene,

RNA polymerase binds to a region of DNA within the gene known as a promoter. RNA

polymerase then moves along the gene’s Coding Sequence (CDS) and facilitates the bio-

chemical reactions required to assemble a complementary strand of RNA. Transcription of

a gene ends at a region of DNA known as a terminator, while the initiation of transcription

can be activated or repressed by Transcription Factor (TF) proteins that bind to operator

sites within or adjacent to a gene’s promoter. In turn, transcriptional regulation can be

enhanced or diminished through the binding of small molecules to TF proteins.

During the second half of gene expression, translation of RNA to proteins is carried

13

out by complexes of RNA and protein known as ribosomes. To initiate the translation

of a messenger RNA (mRNA), a ribosome binds to a region within the mRNA known

as a Ribosome Binding Site (RBS). The ribosome then moves along the mRNA and

recruits complementary transfer RNA (tRNA) to assemble the amino acids that they

carry into proteins. In bacteria, translation can be repressed by antisense mRNA, which

bind to complementary mRNA to form untranslatable double-stranded RNA. In plants

and animals, translation can be repressed by small interfering RNA (siRNA) [51], which

bind to specific mRNA and target them for degradation by enzymes.

Figure 2.1 presents an example of a simple genetic circuit, a genetic toggle switch that

sets and maintains its state through transcriptional regulation. This regulation involves

the interaction of the TF proteins LacI and TetR with the toggle switch genes and the

small molecules IPTG and aTc. The first toggle switch gene is repressed by LacI and codes

for both TetR and Green Fluorescent Protein (GFP), while the second gene is repressed

by TetR and codes for just LacI. Due to their mutual repression of each other’s expression,

these genes can form a bistable circuit in which the expression of one gene or the other

tends to dominate after enough time has passed. Ultimately, the bistability of the genetic

toggle switch also depends upon the maximum rates at which its repressor TF proteins

are expressed, their rates of degradation, and their degree of cooperativity (the number of

protein subunits they contain or the number of operator sites they bind within the same

promoter).

In order to change the state of the genetic toggle switch, the small molecules IPTG

and aTc serve to bind and sequester LacI and TetR, respectively. For example, in the

LacI-dominant state, IPTG can be added to bind LacI and prevent it from repressing

the expression of TetR, such that enough TetR accumulates to effectively repress the

expression of LacI and reach a stable, TetR-dominant state. The role of GFP in this

genetic toggle switch is to report whether the expression of LacI or TetR is dominant.

GFP accomplishes this task by producing a fluorescence signal that can be measured using

microscopy or flow cytometry. Since GFP is co-expressed with TetR, high steady-state

fluorescence indicates that the expression of TetR is dominant, while low or no steady-state

fluorescence indicates that the expression of LacI is dominant. When a genetic toggle

switch is incorporated into larger biological systems, its GFP CDS can be replaced with a

CDS for a specific biological application, such as inducible apoptosis (cell death) or gene

knockout [54].

14

Figure 2.1: A genetic toggle switch. This genetic circuit is composed of two genes running
from left to right along the same strand of DNA. Within these genes, each bent arrow is a
promoter, each semicircle is a RBS, each box arrow is a CDS, and each T-shaped symbol is
a terminator. These symbols were generated using a tool called Pigeon [52] and conform to
the SBOL Visual standard [53]. The first gene is polycistronic gene in that it codes for both
the TF protein TetR and the reporter protein GFP. The second is a monocistronic gene
and hence only codes for the TF protein LacI. The mRNA and TF proteins produced by
these genes are represented using rectangles and large circles, respectively, while the small
molecules IPTG and aTc are represented using small yellow and orange circles. Finally, the
interactions between these genetic circuit components are represented using various arcs,
with normal arrows representing transcription or translation, dashed arrows representing
complex formation, and T-shaped arrows representing transcriptional repression.

2.2 Genetic Logic

The genetic toggle switch is only one member of a larger class of genetic circuits that

typically have their function described in terms of digital logic, an abstraction adapted

from electrical and computer engineering to synthetic biology. Other genetic circuits that

belong to this class include genetic logic gates [55, 56, 57], multiplexers [58, 59], and some

oscillators [60]. For the purpose of design, these genetic circuits can be treated as having a

finite number of states in which each of their signals is either high or low. This treatment

greatly simplifies their analysis by enabling the application of a powerful mathematical

framework known as Boolean algebra [61], one of the foundations for electronic circuit

design.

While it is difficult to estimate the percentage of known genetic circuits that actually

function in a manner resembling digital logic, it is worth noting that such function has

been observed even among randomly constructed genetic circuits [62]. One common

visualization for assessing whether the function of a combinational genetic circuit (that

is, a genetic circuit with no feedback) adheres to digital logic is a graph depicting the

15

relationship between its steady-state input and output signals, also known as a transfer

curve. Figure 2.2 displays the transfer curves for a TetR-repressed gene encoding LacI

(a TetR inverter), a LacI-repressed gene encoding GFP (a LacI inverter), and their

composition into a genetic logic gate known as a buffer.

Mechanistically, it is known that the shape of the transfer curve for a combinational

genetic circuit depends on circuit parameters, such as rates of transcription [63] and

translation [64], TF binding affinities [65], rates of TF degradation [66], and degrees

of TF cooperativity [67]. In the case of the LacI inverter and TetR inverter, their transfer

curves can be mathematically defined in terms of these parameters using a sigmoidal

equation. Equations of this form are commonly known as Hill equations in biochemical

modeling because of their resemblance to Hill’s quantitative formulation of oxygen binding

to hemoglobin [68]. The derivation of a genetic transfer curve, however, has its roots in

the many Ordinary Differential Equation (ODE) treatments [69, 70, 71, 72, 73, 74, 75] of

Jacob and Monod’s qualitative model of transcriptional regulation [76] (Equation 2.1).

Figure 2.2: Transfer curves for the TetR inverter, LacI inverter, and their composition
into a TetR buffer under two different parameter sets. (a) When the TetR inverter and
LacI inverter have the same parameters, the high and low outputs of the TetR inverter are
above and below the thresholds for high and low inputs to the LacI inverter, respectively.
Hence, their composition results in a TetR buffer with digital logic function. (b) When
the TetR inverter has lower max gene expression and input binding affinity, however, its
high output falls below the threshold for a high input to the LacI inverter. The result is a
TetR buffer that is insensitive to low TetR inputs and has a constantly high GFP output.

16

[Output] =
ko/kd

1 + Ka[Input]n
(2.1)

In this equation, ko is the combined rate of output transcription and translation, kd is

the rate of output degradation, Ka is the input binding affinity, and n is the degree of input

cooperativity. Of these parameters, n has the greatest effect on the sigmoidal shape of

the transfer curve, with a large n leading to a strongly S-shaped curve that is amenable to

abstraction as digital logic. The other parameters effectively scale the transfer curve, with

ko and kd scaling the range of outputs and Ka scaling the range of inputs. This scaling

can have significant consequences for a combinational genetic circuit’s composition with

other genetic circuits. As seen in Figure 2.2, the TetR inverter is given two parameter sets

with equal cooperativity but different rates of gene expression and TF binding affinities.

Under the first parameter set, composing the TetR inverter with the LacI inverter results

in a buffer that has digital logic function, while doing so under the second parameter set

results in a buffer that is insensitive to low input signals. This difference in composite

function is due to the fact that the second parameter set shifts the high output of the

TetR inverter so that it falls below the threshold for a high input to the LacI inverter.

Other considerations for the proper function of genetic circuits that adhere to digital

logic include the inherent stochasticity or randomness of gene expression [77, 78], which

can have implications for distinguishing between high and low signals, and the different

time delays of processes associated with gene expression [79], which can have effects on

the succession of different states of a genetic circuit. As an example of the former, signal

magnitudes must be accompanied by a measure of stochastic noise in order to assess

whether they are truly different. As for the latter, different time delays can lead to

different possible sets and orderings of states that a genetic circuit can occupy, especially

in the case of sequential genetic circuits, for which intermediate and/or output signals are

fed back to influence previous signals.

Currently, the approach to genetic technology mapping described in Chapter 5 does

not directly account for any of the above considerations. Instead, this approach produces

a composite genetic circuit model that the user must simulate and otherwise analyze to

determine whether its detailed behavior satisfies the logical interpretation of the original

specification model. In order to bias towards finding solutions that adhere to digital

logic, one potential avenue for future research is to incorporate checks on the previous

considerations for logical validity into the process of genetic technology mapping itself.

17

2.3 iBioSim

iBioSim is the principal GDA tool in which the contributions of this dissertation have

been implemented (see Figure 2.3). Besides these contributions, the current capabilities

of iBioSim include the composition and analysis of biochemical models, especially models

of genetic circuits. Since iBioSim provides full support for Level 3 of SBML [80] and the

SBML hierarchical model composition package [45], it can be used to compose SBML

models that contain molecular species, chemical reactions, discrete events, behavioral

constraints, submodels, and annotations, among other modeling data. Other methods to

obtain SBML models in iBioSim include importing biochemical models from the BioMod-

els database [81] and generating genetic circuit models from time series data on gene

expression (model learning [82]).

Figure 2.3: A screenshot of genetic technology mapping in iBioSim. (a) Includes a view
of a specification model in iBioSim’s graphical model editor. Of the symbols shown in this
view, blue ellipses represent molecular species and red diamonds represent promoters. As
for the arcs between these symbols, red arcs represent repression, dark green arcs represent
activation, light green arcs represent production, and dashed arcs represent complex
formation. (b) Also includes a view of the composite genetic circuit model produced
when genetic technology mapping is applied to the specification model. Of the symbols
and arcs show in this view, green boxes represent submodels and black arcs represent port
mapping (connecting species in top-level models to species within submodels).

18

For the purpose of analysis, iBioSim has multiple ODE and stochastic simulators.

When simulation of a reaction-based genetic circuit model is too time consuming, iBioSim

can be used to transform the model via automated abstraction methods to a simplified

reaction-based model [83] or a quantitative logical model [84] for more efficient simulation

and stochastic model checking. In the case of ODE simulation, a single deterministic

simulation trace is produced that exhibits the average behavior of a genetic circuit, a

reasonable approximation when molecule counts are large. In the case of stochastic

simulation, on the other hand, many probabilistic simulation traces are produced and can

be analyzed in iBioSim for user-specified properties. This process is known as statistical

model checking and involves calculating the probability of each property as a statistic

over the whole population of simulation traces. Lastly, these probabilities can also be

determined in iBioSim through numerical model checking, which involves the application

of transient Markov chain analysis to a Continuous-Time Markov Chain (CTMC) that is

derived from the aforementioned quantitative logical model.

Figure 2.4 is a control flow diagram that presents how genetic circuit model composition

and analysis have been integrated with the primary contribution of this dissertation,

genetic technology mapping. After a specification genetic circuit model has been composed

and refined in iBioSim, it can undergo genetic technology mapping. If one or more

solutions are found, the genetic circuit models for these solutions can undergo simulation

and stochastic model checking to determine whether or not their more detailed behaviors

satisfy the genetic logic of the specification model. Finally, the DNA sequences for any

satisfactory solutions can be exported for physical construction and testing in a lab. When

no solutions are found via genetic technology mapping or when subsequent analysis yields

no satisfactory solutions, the specification model must be refined in order to find one or

more solutions that are worth testing in the real world. This is a rational design strategy

that uses mathematical models of reality to identify the most promising routes to practical

solutions and updates these models when they fail to be predictive of success in the lab.

19

Figure 2.4: A control flow diagram on the use of genetic technology mapping, simulation,
and model checking in iBioSim to automate the design of genetic circuits. Rectangular
nodes represent processes while diamond nodes represent decisions.

CHAPTER 3

STANDARDS

In this chapter, Sections 3.3 and 3.4 describe SBOL [44], a standard for the exchange

of data on genetic designs, while Sections 3.1 and 3.2 cover SBML [14], a standard for

the exchange of mathematical models of biological systems. In particular, Section 3.3

describes Version 1.1 of SBOL [85], which represents genetic designs in terms of their

DNA components. Section 3.4 then describes a proposal for Version 2.0 of SBOL [47],

which we developed to represent genetic designs with more general classes of components

and modules to compose these components on the basis of cooperative function. Lastly,

Section 3.1 covers the core of SBML [80] and one of its extending packages [45], while

Section 3.2 describes a stylized form of SBML that includes terms from a controlled

vocabulary and is especially suited to modeling genetic circuits.

3.1 SBML Level 3 Version 1

SBML is a biological modeling standard that has been developed by the systems

biology community and is currently supported by over 250 different software tools. The

primary goal of SBML is to enable inter-software exchange of most essential features of

models for biological systems, especially mathematical models for describing cell signaling,

metabolism, and genetic regulation, among other biochemical phenomena. Accordingly,

SBML is a machine-readable Extensible Markup Language (XML) [86] that is independent

of any proprietary software language or particular analytical framework (for example, ODE

or stochastic analysis). To the extent that SBML succeeds at facilitating the exchange

of models, researchers may apply new analysis techniques across different software tools

without having to recreate their models and risk losing data in the translation between

different languages. There also exists a public database for storing and accessing SBML

models known as the BioModels database [81].

The latest edition of SBML is Level 3, Version 1, which includes the self-sufficient core

of SBML and any number of packages that extend it. Fully SBML-compliant software tools

21

are expected to support the entire core of SBML, but each tool is free to support only those

packages that are useful for its purpose. For example, SBML-compliant software tools

that graphically represent their models may support the layout package, which extends

the core by enabling the specification of coordinates for the location of each element in

a model. At present, the list of completed SBML packages includes layout, hierarchical

model composition, qualitative models, and flux balance constraints. This section only

covers the core of SBML and the hierarchical model composition package, as these parts

of SBML are most relevant to the contributions of this dissertation.

3.1.1 SBML Core

Figure 3.1 presents a simple SBML model of eukaryotic gene expression (gene ex-

pression in cells with nuclei) that captures many of the basic elements of SBML Core,

including spatial compartments, molecular species, chemical reactions, mathematical rules,

and discrete events. Species can optionally specify their initial amount or concentration

and units of measure, but must specify a compartment to which they belong and assert

whether they are a constant, a boundary condition, or both. Under the guidelines of SBML,

a species that is a constant should never change in quantity during a simulation, while a

species that is a boundary condition should not change in quantity except by the effect

of a rule or event. For the purpose of determining species’ concentrations and informing

similar calculations, a compartment may contain data on the number of dimensions it

occupies, its size, and the units of its size.

Elements that can change the quantity of a species include reactions, rules, and events.

A reaction contains lists of species references that specify which species act as reactants,

products, or modifiers of the reaction. For each reactant and product species, these

species references can contain a stoichiometry number that indicates the relative amount

of reactant or product that is consumed or produced by the reaction. Modifier species

references, on the other hand, do not include stochiometry since modifiers influence the

rate of the reaction without being consumed. To define its rate, a reaction can possess a

kinetic law that contains a list of local parameters and a MathML expression that operates

over these parameters and other data referenced by their elements’ IDs, including species

quantities, compartment sizes, global parameters, and other reaction rates. Lastly, a

reaction must specify whether it is reversible and/or fast.

In addition to changing the quantity of a species, a rule or event can update a global

parameter, compartment size, or even the stoichiometry number of a species reference

22

Figure 3.1: A SBML model of eukaryotic gene expression. Compartments are represented
with white boxes, species with blue ellipses, reactions with purple circles, rules with yellow
squares, and events with green rectangles. This model contains two compartments: the
nucleus and cytoplasm of a eukaryotic cell. Within the nucleus, a transcription reaction
produces a mRNA species, which is in turn a reactant for a reaction that captures the
export of mRNA from the nucleus. This export reaction produces a mRNA species that is
contained by the cytoplasm compartment, where it serves as a modifier for a translation
reaction that produces protein A. Next, protein A is used by a rule to directly calculate
the quantity of protein A dimers (two noncovalently bound protein A molecules). In this
case, a rule is used to model dimerization instead of a reaction under the assumption
that dimerization occurs on a faster time scale than transcription, nuclear export, or
translation and is effectively at chemical equilibrium relative to these processes. Finally,
a cell division event triggers periodically and cuts the quantity of each species in half,
except for the protein A dimer since its quantity is calculated from that of protein A.

in a reaction. An assignment rule or rate rule contains MathML that enables direct

calculation of the value or rate of change for any of the aforementioned element data.

An event, however, can contain multiple event assignments, each with its own MathML

for instantaneously updating the value of a separate piece of data when the event oc-

curs. Furthermore, an event must contain a trigger element, which contains MathML for

calculating when the event should occur, and may optionally contain priority and delay

elements, which contain MathML for calculating whether the event occurs before or after

another that has triggered simultaneously and how long it takes for the event to occur

after it has triggered, respectively.

23

3.1.2 Hierarchical Model Composition Package

The hierarchical model composition package introduces the concepts of hierarchy and

modularity to SBML by means of several new modeling elements, including external model

definitions, submodels, ports, deletions, replacements. Figure 3.2 presents a hierarchical,

modular model of eukaryotic gene expression that captures most of these elements ex-

plicitly through its visual representation or implicitly through its underlying SBML. The

first two elements, external model definitions and submodels, are used to establish basic

hierarchical relationships between models. In particular, an external model definition

enables a model to reference the source file for another model, while a submodel enables a

model to effectively instantiate one of its external model definitions. This design pattern

of model definition followed by instantiation is important because it allows a model to be

hierarchically composed from multiple copies of another model under different use cases.

For example, a population model of two different cell types that contain the same genetic

circuit would instantiate two copies of the appropriate genetic circuit model, but these

copies would be composed differently with the population model depending on the cell

types that they represent.

Of the remaining hierarchical modeling elements, ports are used to designate an inter-

face for a model and help to enforce its modularity, while replacements and deletions are

used to indicate how to compose and modify submodels as part of a parent model. More

specifically, a port on a model refers to an element inside the model by its ID and serves as

a controlled point of exposure for reference by replacements and deletions in other models.

While replacements and deletions are technically allowed to refer to any modeling element,

in engineering design it is typical to treat a model as a modular entity and refer only to its

ports for the purpose of composition, since these refer to a designer’s intended inputs and

outputs of the model. Both deletions and replacements refer to elements in a submodel

by referencing their IDs or the IDs of their corresponding ports.

As its name suggests, a deletion indicates which element in a submodel (technically

the externally defined model referenced by the submodel element) should be deleted if the

parent model is flattened, a process in which the elements of each submodel are integrated

with the elements of the parent model and all hierarchy is removed. While deletions

are listed directly on a submodel element, replacements appear on the elements of the

parent model that replace or are replaced by elements in a submodel. In particular, a

replaced element indicates that a parent element should replace an element in a submodel

24

Figure 3.2: A hierarchical, modular SBML model of eukaryotic gene expression. (a)
The top-level model contains contains mRNA and protein species, a cell division event
that periodically modifies their quantities, and two submodels (light green rectangles)
that capture biochemical processes occurring between these species within the nucleus
and cytoplasm of a eukaryotic cell. In this model, an arc pointing from a species to
submodel indicates that the species should replace a submodel species referenced by an
input port, while an arc pointing from a submodel to a species indicates that the species
should be replaced by a submodel species referenced by an output port. There are two
external models referenced by these submodels. (b) The first captures transcription and
export of mRNA from the nucleus. (c) The second captures translation and dimerization
of protein in the cytoplasm. As indicated by their input/output labels, species in these
external models are referenced by ports that expose them to replace or be replaced by
species in the top-level model. Similarly, each compartment is also referenced by a port
for replacement, though these replacements are not visualized here.

25

during flattening, while a replaced-by element indicates that the parent element should

be replaced by an element in the submodel.

3.2 SBML for Genetic Circuit Models

While SBML provides fairly general chemical and mathematical elements for encoding

models, such as species, reactions, and parameters, it lacks elements that explicitly capture

biological and genetic meaning, such as TF proteins, promoters, and gene expression

processes. To enable GDA software tools to supply such meaning, SBML allows the

addition of Systems Biology Ontology (SBO) terms to each of its modeling elements [49].

SBO is a controlled vocabulary of terms that are commonly used in systems biology and

cover a wide range of biological, genetic, and modeling concepts. Figure 3.3 presents two

versions of a genetic circuit model constructed in iBioSim [33], one labeled with SBO

terms and one not labeled.

Figure 3.3: Two versions of a SBML model for a genetic circuit in iBioSim. (a) In the
version without SBO terms, three chemical reactions are displayed. The bottom reaction
has two reactant species and a single product species, which serves as a modifier species for
the other two reactions. In turn, each of these reactions has an additional modifier species
and single product species. Without SBO terms, this is the most meaningful description
that can be made of the first version of the model from machine-readable data. (b) With
SBO terms, however, the second version can be described as having complex formation
between the LuxR and AHL species. Next, the resulting complex can be described as
activating the pLux promoter and repressing a mutant pLux promoter, which control the
genetic production of the GFP and Yellow Fluorescent Protein (YFP) species, respectively.
Note that promoters can be displayed in iBioSim either implicitly as a label on a regulatory
arc or explicitly as a separate diamond node.

26

In order to capture several common aspects of genetic circuit models, iBioSim uses

terms from the process type, participant role, and metadata subvocabularies of SBO.

Table 3.1 provides a complete enumeration of these SBO terms, their accession IDs, and

the SBML elements to which they are applied. Ultimately, these terms enable iBioSim

to preserve genetic meaning when generating SBML models from SBOL modules (see

Chapter 4) and facilitate the tool’s assignment of logical meaning to these models during

genetic technology mapping (see Chapter 5).

3.3 SBOL Version 1.1

SBOL [44] is an emerging data exchange standard for synthetic biology with growing

support among GDA software tools, including sequence editing tools [19, 22], biochemical

modeling tools [43, 40, 33], and design composition tools [43, 32, 40, 36, 30]. SBOL

has been developed by members of the synthetic biology community to document DNA

components for the primary purpose of engineering design. Unlike existing standards

that were originally conceived for documenting naturally occurring genetic sequences,

such as the FASTA [13] and GenBank [12] formats, SBOL can be used to document

partial genetic designs and recursively annotate the sequences of DNA components with

other DNA components in a hierarchical fashion. These capabilities of SBOL address

the iterative, modular character of engineering design in a way that current standards

for genetic sequences neglect. Furthermore, SBOL is an extensible standard that can be

adapted to meet the evolving needs of the synthetic biology community, such as the need

to combine structural, sequence-oriented descriptions of genetic circuits with descriptions

of their function.

The current capabilities of SBOL Version 1.1 are illustrated using symbols taken from

Table 3.1: Addition of SBO Terms to SBML in iBioSim

SBO Term Accession ID SBML Element

Genetic Production SBO:0000589
Reaction

Noncovalent Binding SBO:0000177

Inhibitor SBO:0000020
Modifier Species ReferenceStimulator SBO:0000459

Promoter SBO:0000598

Input Port SBO:0000600
Port

Output Port SBO:0000601

27

the SBOL Visual standard [53] in Figure 3.4. In this example, the DNA component for

a genetic toggle switch [50] is hierarchically composed from a TetR-repressible gene and

a LacI-repressible gene, which are in turn composed from the pTet promoter, the cLacI

CDS, RBSs, terminators, the pLac promoter, and the cTetR CDS. In the case of the toggle

switch component, one of its subcomponents (the TetR-repressible gene) is located on its

negative/reverse complement strand.

In SBOL Version 1.1, a collection is a group of DNA components that have something

in common, such as the result of a database query to find all transcriptional promoters.

DNA components, on the other hand, are at the core of SBOL Version 1.1 and represent

the abstraction of a particular DNA sequence for engineering design. Finally, a sequence

annotation is strictly tied to a parent DNA component and indicates the absolute or

relative positions of other DNA components on its parent component’s DNA sequence. A

Figure 3.4: Hierarchical composition of the DNA component for a genetic toggle switch in
SBOL Version 1.1. Each grouping of subcomponent symbols along a solid line represents
a single composite DNA component. Of these symbols, each bent arrow represents a
promoter, each semicircle represents a RBS, each box arrow represents a CDS, and each
T-shape represents a terminator (see the SBOL Visual standard). This figure was partly
constructed using Pigeon [52], a SBOL Visual-compliant tool.

28

detailed representation of the capabilities of SBOL Version 1.1 can be found in Figure 3.5,

which is a Unified Modeling Language (UML) [87] class diagram.

As documented in this figure, any data object that belongs to these classes must have a

Uniform Resource Identifier (URI) [88] such that it can be uniquely identified by software

and databases across the World Wide Web. As a consequence of this requirement, if a

user modifies a data object that is published on the Web, then as a best practice they

should also change the URI of said object. When this requirement is met, different users

can determine whether they have the same SBOL data object by simply checking whether

the URIs of their objects are identical, rather than by exhaustively comparing the data

fields of their objects. In addition, if the URI of a SBOL data object is also a Uniform

Resource Locator (URL), then a user can refer to the object’s location on the Web or

elsewhere in their file system if they do not wish to store a local copy. A typical form for a

URI is a scheme name and authority followed by a path and/or fragment containing an ID

Figure 3.5: The UML class diagram for SBOL Version 1.1, consisting of the Collection,
DNA Component, DNA Sequence, and Sequence Annotation classes. Each data object
that belongs to these classes contains a variety of data fields, including strings of characters
that identify, name, and describe the object and URIs that type and uniquely identify
the object. A white diamond arrow indicates that objects of one class refer to and
aggregate objects of other classes, while a black diamond arrow indicates both aggregation
and ownership. For example, if a DNA component is deleted, then all of its sequence
annotations are deleted, since they are owned by that DNA component. The same is not
true of a DNA component and its DNA sequence, since another DNA component may
share the same sequence.

29

that is unique under the preceding authority. An example of a URI following this form is

“http://parts.igem.org/Part:BBa R0040,” which is a possible URI for the TetR-repressible

promoter from the iGEM Registry of Standard Biological Parts [16]. The different portions

of this URI include its scheme name, “http,” its authority “parts.igem.org,” and its path,

“/Part:BBa R0040,” which contains an ID that is unique to the registry.

In addition to a URI, each DNA component must have a display ID and can have at

most one name, description, and DNA sequence. Like a URI, the purpose of a display

ID is to uniquely identify a DNA component, but the display ID does not have to be

unique across the World Wide Web and is intended to be short and easy to read. A name

and description, on the other hand, identify and describe a DNA component using plain,

unstructured text that is not necessarily unique within an SBOL file or easily reasoned

over by machines. Examples of each of these data fields can found in Figure 3.6, which

contains a UML example of a composite SBOL DNA component. Finally, each DNA

component may also have any number of type URIs and sequence annotations. If a DNA

component has any type URIs, then at least one of these URIs must refer to a term from

the Sequence Ontology (SO) [89]. An ontology is a controlled vocabulary that captures

terms and relationships between terms from a specific knowledge domain, thereby enabling

machine reasoning over the domain. In the case of the SO, the captured knowledge domain

is the annotation of biological sequences with sequence features.

Each sequence annotation of a DNA component can have a single pair of bioStart and

bioEnd integers or a precedes reference to another sequence annotation. When present,

the bioStart and bioEnd integers bound the position of a subcomponent on the DNA

sequence of the parent DNA component. When one or more subcomponents do not have

a DNA sequence, however, a complete DNA sequence cannot be assigned to the parent

DNA component and the positions of its subcomponents cannot be exactly specified by

its sequence annotations. In this case, a partial genetic design can be specified using

precedes references between sequence annotations to indicate the relative positions of their

subcomponents. This capability is necessary to satisfy the iterative nature of engineering,

in which some of the details of a design cannot be specified immediately and must be

revisited later in the design cycle. Lastly, each sequence annotation can have either a ‘+’

or ‘−’ character to indicate whether its subcomponent is located on the positive strand or

negative strand of its parent DNA component.

Finally, the DNA sequence of a DNA component has a single non-URI data field, a

30

Figure 3.6: SBOL Version 1.1 UML for a LacI-repressible gene that encodes the TF
protein TetR. Sequence annotations are placed inside the DNA component UU 002 to
show that they are owned by the component. These sequence annotations indicate
that four DNA subcomponents are located side by side on UU 002’s DNA sequence,
including the promoter BBa R0010, the RBS BBa 0034, the CDS BBa C0040, and the
terminator BBa 0015. Accordingly, the DNA sequence of UU 002 is the concatenation of
the sequences of its subcomponents.

31

string of characters that code for the sequence’s nucleotides. Note that these characters

must conform to the International Union of Pure and Applied Chemistry (IUPAC) codes

for completely and incompletely specified bases in nucleic acid sequences [23].

3.4 Proposed Data Model for SBOL Version 2.0

This section describes the proposed data model for Version 2.0 of SBOL, which was

presented at the SBOL 10 workshop held at the University of California, Berkeley and

voted on as a starting point for the next version of SBOL. It is important to emphasize

that this data model does not represent the final, community-approved specification for the

next version of SBOL. Rather, this data model is a proposal that draws from discussions

within the SBOL community. It is an intermediate result in a larger development process,

one in which feedback is being gathered from the synthetic biology community at large in

order to reflect, fulfill, and standardize its data exchange requirements.

The primary goal of the proposed data model is to make SBOL a more comprehensive

standard for genetic design. Since synthetic biology encompasses research into a broad

range of entities and materials, SBOL must grow to represent a similarly broad range

of structural components for genetic design. In order to more fully support the repre-

sentation of genetic structure, the proposed data model generalizes the DNA component

class of SBOL Version 1.1 to represent components with and without sequences. As a

consequence, this data model can be used to represent RNA components, such as mRNA,

tRNA, and small interfering RNA (siRNA) [51], as well as protein components, such

as TF proteins and enzymes. Furthermore, the proposed data model can be used to

represent potentially nongenetic components of a design, such as environmental factors,

small molecules, molecular complexes, nonbiological polymers, and even light.

Since synthetic biology is increasingly concerned with the intended function of genetic

designs, SBOL must also be extended to support minimalistic, qualitative representations

of genetic function and refer to more detailed, quantitative representations written in

specialized, external standards. To meet these needs, the proposed data model introduces

classes for functional modules, molecular interactions, and mathematical models. Exam-

ples of functional modules include genetic logic gates, oscillators, sensors, and signaling

cascades, while examples of molecular interactions include transcription, translation, ac-

tivation/repression, noncovalent binding, and phosphorylation.

Finally, in order to be more useful for the purpose of engineering design, the proposed

data model enables the hierarchical composition of separate yet connected descriptions

32

of genetic structure and function. In particular, the data model introduces classes for

instantiation and port mapping, two abstract, well-established concepts borrowed from the

domain of electrical and computer engineering. As explained later on, instantiation allows

the creation of a modular hierarchy by incorporating one or more copies of a subdesign in

a composite design, while port mapping allows the specification of connections between

designs by asserting the correspondence of elements within these designs. These concepts

simplify the process of creating a large, complex design by facilitating the reuse of previous

designs in its construction, factoring out recurring design patterns that would otherwise

be redundant, and splitting a design into multiple distinct layers that warrant separate

consideration.

As an example, consider the design for a genetic toggle switch, as shown in Figure 3.7.

The proposed data model captures not only this design’s structure, but also its basic

function. First, generalized components allow the representation of RNA components

(such as the mRNA coding for TetR), protein components (such as the TFs TetR and

LacI), and small molecules (such as IPTG). Next, interactions can be specified between

these components, such as the transcription of the cTetR CDS to TetR mRNA and the

latter’s translation to TetR protein. Other examples include the repression of the pLac

promoter by LacI and the binding of LacI by IPTG to form a complex. In turn, these

components and their interactions can be grouped into functional modules, such as a LacI

inverter. Finally, these modules can be instantiated as part of larger modules, such as

the instantiation of the TetR inverter and LacI inverter to form the genetic toggle switch.

The points of connection between modules are specified using ports, while the connections

between modules are established using port maps. The rest of this section describes each

of these new features in greater detail.

3.4.1 Minor Improvements

One minor improvement made by the proposed data model is the creation of two

abstract classes, the Identified and Documented classes. These classes enable more efficient

representation and implementation of SBOL by separating out data fields that are common

to many classes and placing them into super classes that other classes may extend. The

Identified class contains two data fields. The first is a URI that serves to identify the

objects of any class that implements the Identified class, in the same way that data objects

are identified with URIs in SBOL Version 1.1. The second is an annotation string that

may contain a user’s custom data that is not explicitly captured by SBOL. This string

33

Figure 3.7: A design for the genetic toggle switch that captures its qualitative structure
and function. The design consists of three functional modules in the form of a composite
toggle switch module that contains connected copies of a TetR inverter module and a
LacI inverter module. The LacI inverter module contains copies of a composite DNA
component for the LacI-repressible gene, a TF protein component for LacI (red circle),
a TF protein component for TetR (orange circle), a mRNA component for TetR (orange
rectangle), a small molecule component for IPTG (pink circle), and a molecular complex
component for LacI bound to IPTG. This module asserts a variety of molecular interactions
between its contained components (solid arrows), including the repression of pLac by LacI,
transcription of cTetR to TetR mRNA, translation of TetR mRNA to the TetR TF, and
noncovalent binding of LacI to IPTG. While these modules allow different parts of the
design to be treated as “black boxes” that have most of their contents ignored (see the
TetR inverter), the ports on these modules allow connections between them (dashed lines).
For example, the toggle switch is connected to the LacI inverter through mapping of the
latter’s input port to copies of LacI contained by both modules. In turn, the TetR inverter
is connected to both the toggle switch and LacI inverter through mapping of its output
port to the copy of LacI in the toggle switch.

must take the form of one or more predicate-object pairs that adhere to the guidelines for

the Resource Description Framework/XML (RDF/XML) [90] language in which SBOL is

written.

The Documented class contains three data fields: a display ID, a name, and a de-

scription. The contents of these data fields are identical to those of the same name in

SBOL Version 1.1. Note that the Documented class inherits from the Identified class

since, while all classes in SBOL are Identified classes, not all of them are Documented

classes, such as the Sequence class. Rather, sequences are effectively documented by the

sequence components that abstract them for the purpose of engineering design.

Finally, Figure 3.8 contains an example of a class from SBOL Version 1.1 that is now

identified and documented: the Collection class. Under the proposed data model, objects

34

Figure 3.8: UML diagram for the Identified, Documented, and Collection classes of
the proposed data model. White triangular arrows indicate the one class inherits the
data fields and aggregation/ownership relations of another class. Note that classes with
italicized names are abstract classes that are meant to be extended by other classes and
not used directly. In this class, the Collection class extends both the Identified and
Documented classes, therefore it must have an identity and display ID. Optionally, it may
have an annotation, name, or description.

of this class can contain one or more objects that inherit from the Identified class. In

other words, a collection may now contain one or more SBOL objects of any class from

the proposed data model.

3.4.2 Structural Representation

To support an increased range of structural representation, the proposed data model

generalizes DNA components to components with a sequence, or sequence components.

The Sequence Component class captures previously unrepresented genetic components,

such as RNA and protein components, and is sufficiently general to represent nongenetic

components with a sequence, such as nonbiological polymers. In order to capture com-

ponents without a sequence, such as small molecules, molecular complexes, and light,

a Generic Component class is also introduced. As shown in Figure 3.9, both classes

inherit from an abstract Component class that may aggregate one or more subordinate

component instantiations and must have a type URI that refers to a term from an

appropriate ontology, such as Chemical Entities of Biological Interest (ChEBI) [91]. This

URI documents the basic sort of biochemical or physical entity (for example, DNA) that

a component abstracts for the purpose of engineering design. The sequence type URIs

35

Figure 3.9: UML diagram for the proposed generalized Component classes. Since Generic
Component and Sequence Component inherit from the abstract Component class, objects
belonging to these classes can aggregate one or more objects that belong to the Port and
Component Instantiation classes. Sequence components may additionally aggregate one
or more objects of the Sequence Annotation class and up to one object of the Sequence
class. In turn, a sequence annotation can refer to a component instantiation to effectively
position it on the sequence of its parent sequence component.

of a sequence component, on the other hand, are analogous to the type URIs of a DNA

component in SBOL Version 1.1 (see Figure 3.5). When possible, the sequence type URIs

are expected to refer to SO terms to clarify the role or nature of the sequence that is

abstracted by the component. For example, a sequence component of type DNA may

have a sequence type of “promoter” or “terminator,” while a sequence component of type

protein may have a sequence type of “binding site” or “protease site.”

Similar to a DNA component in the SBOL Version 1.1 data model, a sequence com-

ponent can refer to sequence annotations to document the absolute or relative positions

of subcomponent instantiations along its sequence. Unlike in SBOL Version 1.1, sequence

annotations do not directly refer to subcomponents, but rather to instantiations or usages

of these subcomponents that may be exposed via ports and mapped to other component

instantiations for the purpose of design composition. Finally, a sequence component can

refer to an object of the Sequence class that contains a string of characters encoding its

elements. A sequence’s string encoding must adhere to the IUPAC codes for the type

of sequence component that refers to it. For example, a sequence that is referred to by

36

DNA components should contain a string of IUPAC-approved characters that represent

different nucleotides.

While this data model can be further extended by subclassing sequence components

into DNA, RNA, and protein components and adding classes for small molecules and

environmental factors, care must be taken to avoid creating a data model that is overly

refined. Such a data model would have many classes, but no data-specific reason to

distinguish between them. In the case of DNA, RNA, and protein components, however,

there may be near-term reasons to distinguish among them, such as the different elements

that make up their sequences and the single-strandedness of protein components. These

are reasons that restrict the contents of the proposed Sequence and Sequence Annotation

classes.

The alternative approach is to supplement the proposed data model with validation

rules. For example, these rules could include that sequence components of type “protein”

are only annotated with other sequence components of type “protein,” that the orientation

of their sequence annotations is always set to “inline,” and that their sequences only

contain characters taken from the IUPAC amino acid code. As the proposed data model

continues to be implemented for testing, the SBOL community intends to explore both

approaches.

Next, the structural composition of components is enabled through component in-

stantiations. Under the SBOL Version 1.1 data model, composite DNA components

are composed by annotating their sequences with other DNA components. As shown

in Figure 3.9 and Figure 3.10, this composition pattern is also true under the proposed

data model, but the Sequence Annotation class now refers to an object of the Component

Instantiation class, thereby explicitly documenting that a sequence annotation positions

a particular instance or usage of a component, rather than the component itself. This

distinction is necessary to allow different copies of a component to be referred to and

treated differently on the basis of their physical location or other environmental context.

In addition, by generalizing the concept of component instantiation, the proposed data

model allows generic components without a sequence to be composed from instances of

other components.

As an example of structural representation under the proposed data model, Figure 3.11

presents a UML object diagram for the components of one half of the genetic toggle switch,

including sequence components that are engineering abstractions of DNA, RNA, and

37

Figure 3.10: UML diagram for the proposed Component Instantiation class. As an
Instantiation class object, a component instantiation is allowed to aggregate port maps to
connect any ports on the component that it instantiates.

Figure 3.11: UML example of components under the proposed data model, including
components referenced by the LacI Inverter module. In this figure, “comp” is short for
“component.”

38

protein, and generic components that represent small molecules and molecular complexes.

Of these components, only the LacI-repressible gene and IPTG-LacI complex have any

substructure. In particular, the gene’s sequence is annotated with the instantiations of

four other sequence components of type “DNA,” while the complex is composed from the

instantiations of a generic component of type “small molecule” and a sequence component

of type “protein.”

3.4.3 Functional Representation

To address the need for functional descriptions in SBOL, the proposed data model

adds the Module, Interaction, and Model classes. These classes provide a firm basis for

functional representation in SBOL without going so far as to create a new standard for

mathematically modeling biology. This is because there already exist several established

languages for modeling biology, such as SBML, CellML [15], and even MatLab [39].

Rather, these classes enable users of SBOL to group components that function together,

describe the basic qualitative interactions between these components, and document refer-

ences to standard mathematical models that are external to SBOL and that provide more

detailed descriptions of component function.

As displayed in Figure 3.12, the Module class forms the hub for functional description

of genetic designs. A module aggregates zero or more component instantiations, module

instantiations, interactions, models, and ports. A component instantiation owned by a

module refers to a component as a functional entity for the purpose of playing a role

in an interaction (described in more detail below). In this way, a module instantiates

components that work together to perform an intended function. Module instantiations

(see Figure 3.13), on the other hand, enable the composition of a module from other

modules. As described in Section 3.4.4, the connection of the module instantiations within

a module is accomplished via ports and port mapping.

Next, interactions provide a qualitative basis for asserting the intended function of a

given module. The proposed data model supports regulatory interactions, such as activa-

tion or repression, and processes from the central dogma of biology, such as transcription

and translation. Other supported interaction types include noncovalent binding between

a small molecule and TF or phosphorylation of a TF by an enzyme. Each interaction

must document its type by referencing a term from the SBO, a controlled vocabulary of

terms commonly used in systems biology. Furthermore, each interaction must document

its participating component instantiations by referring to one or more objects of the Par-

39

Figure 3.12: UML diagram for the proposed Module class. Note that data objects
belonging to the Component Instantiation, Module Instantiation, Interaction, and Port
classes are owned by a given module and no other object. Data objects belonging to the
Model class, however, may be aggregated by more than one module.

Figure 3.13: UML diagram for the proposed Module Instantiation class. A module
instantiation is allowed to aggregate port maps to connect any ports on the module that
it instantiates.

40

ticipation class, each of which specifies the role of its particular component instantiation

with a SBO term (see Figure 3.14).

While interactions provide a qualitative description of genetic function, quantitative

descriptions are also needed for genetic design. Instead of introducing a new language for

the specification of mathematical models of biology, the proposed data model leverages

existing standards and refers to them via the Model class. As shown in Figure 3.15, each

object that belongs to the Model class is required to refer by means of URIs to a source

model and ontology terms that document the source model’s language, framework, and

role. In this way, there is minimal duplication of standardization efforts and users of

SBOL can specify the quantitative function of their modules in a well-developed language

of their choice. A module can refer to more than one model since each model can encode

different levels of functional detail and play different roles in engineering design.

Figure 3.14: UML diagram for the proposed Interaction classes. Objects belonging to
the Interaction class aggregate one or more objects of the Participation class, each of which
refers to an object of the Component Instantiation class.

Figure 3.15: UML diagram for the proposed Model class. A SBOL model class object
documents and refers to an external mathematical model.

41

Examples of languages for mathematically modeling for biology include SBML and

CellML. Modeling frameworks include ODEs, stochastic processes, and Boolean networks.

Examples of modeling roles include simulation, verification, and synthesis (building com-

posite models from simpler models). One possible source of terms for modeling frameworks

and roles is the Mathematical Modeling Ontology (MAMO) [92], though it is currently in

the early stages of its development.

Finally, this section presents a UML example of the LacI inverter module of the genetic

toggle switch, its regulatory interactions, and its referenced model. As seen in Figure 3.16,

the binding of LacI to IPTG is represented using a noncovalent binding interaction that has

three participants, including LacI and IPTG participating as reactants and the IPTG-LacI

complex participating as a product. The repression of transcription at the pLac promoter

is represented using a repression interaction, with LacI serving as the repressor participant

and pLac serving as the repressed participant. Lastly, the transcription and translation

of TetR are represented in this module using a single genetic production interaction

that abstracts away the presence of the intermediate TetR mRNA. If this additional

detail becomes necessary, then a new module could be created that instantiates the

same components alongside a TetR mRNA component instantiation and includes both

transcription and translation interactions. In the current example, the genetic production

interaction has three participants: pLac as a modifier, cTetR as a transcribed participant,

and TetR as a product. Finally, the LacI inverter module references a Model object that

links to an external model. In this example, the model source file is “LacI Inverter.xml,” it

is written in the SBML language, it is an ODE model, and it is to be used for simulation.

3.4.4 Composition of Structure and Function

To enable the hierarchical, modular composition of genetic structure and function in

SBOL, the proposed data model introduces classes for instantiation and port mapping. An

instantiation is a documented reference to a specific component or module that effectively

serves as a distinct copy and can be composed with other instantiations into a composite

component or module. Currently, the proposed data model includes component instan-

tiations and module instantiations. While a module can only be instantiated by another

module, a component can be instantiated by either a module or another component,

depending on its intended use. When a component is instantiated by another component,

it is effectively referred to as a structural entity for the purpose of physical composition.

42

Figure 3.16: UML example displaying the interactions between the component instanti-
ations in the LacI inverter module. In particular, there is an interaction representing the
noncovalent binding of IPTG with the LacI protein, an interaction representing repression
of the pLac promoter by LacI, and an interaction representing the production of TetR, in
which the cTetR CDS is transcribed and the pLac promoter participates as a modifier.
This module also references an external mathematical ODE model written in SBML for
detailed simulation.

43

When a component is instantiated by a module, on the other hand, it is referred to as a

functional entity for the purpose of playing a role in an interaction.

In turn, ports and port maps enable connections between composite components and

modules. As depicted in Figure 3.17, a port refers to a component instantiation, thereby

exposing it for port mapping. In addition, a port is allowed to have a URI that references a

SBO term indicating whether the port is an input port or an output port. However, owing

to the reversibility of many biochemical reactions and the tight integration of genetic

components with their environment, it is important to note that the directionality of a

port is only expected to document a designer’s intent and does not necessarily reflect

biological reality.

A port map, on the other hand, refers to a component instantiation and a port

(see Figure 3.18), thereby asserting that its component instantiation corresponds to that

referred to by the port. When the components referred to by component instantiations

Figure 3.17: UML diagram for the proposed Port class. Note that a port is documented
to better describe a designer’s intent in exposing a given component instantiation.

Figure 3.18: UML diagram for the proposed Port Map class. Unlike a port, a port
map is identified rather than documented, as it simply represents a connection between a
component instantiation and a port.

44

that are mapped in this way have different identities, their respective data fields are to

be interpreted in combination. While this interpretation may be ambiguous in the case

of two sequence components with different sequences, it is useful when one of the two

sequence components lacks a sequence, in which case a port mapping effectively supplies

a sequence to fill in a partial design.

Currently, port mapping serves two specific use cases related to the composition of ge-

netic designs. The first use case is to indicate with greater fidelity how a module describes

the function of a composite component, namely by asserting that particular component

instantiations within the module correspond to particular component instantiations within

the component.

As an example of this use case, one might compose the structure and function of the

LacI-repressible gene of the genetic toggle switch. In this example, the LacI-repressible

gene and two of its subcomponents, the pLac promoter and cTetR CDS, are to be composed

with the LacI inverter module. In order to compose these components with the LacI in-

verter module and indicate that it describes their behavior, they are instantiated inside the

module. In addition, port maps are placed on the instantiation of the LacI-repressible gene

to connect between its pLac plus cTetR subcomponent instantiations and the correspond-

ing component instantiations in the module. Doing so makes it clear which subcomponent

instantiations in the gene are being described by which component instantiations in the

module. In this way, GDA tools for sequence editing and biochemical modeling can

guarantee that their users are handling corresponding elements of a given genetic design,

while GDA tools for genetic technology mapping can make explicit connections between

the structural and functional elements of a design.

This use case (see Figure 3.19) is most relevant when there is reason to believe that

two structural instantiations of the same component should function differently based on

physical location or other environmental context. For example, a polycistronic gene could

contain two copies of a CDS, with one copy experiencing transcriptional repression due to

its position downstream of the first copy. To capture such a scenario, there would need

to be two component instantiations in a module that participate in different interactions

and are separately mapped to the gene’s two subcomponent instantiations.

The second use case of port mapping is to connect modules by asserting the correspon-

dence of their component instantiations, effectively unifying these instantiations between

modules. For example, the LacI and TetR inverter modules can be composed into a

45

Figure 3.19: UML example of instantiating the LacI-repressible gene within the LacI
inverter module. Port maps are used to indicate that the component instantiations of the
pLac promoter in the LacI-repressible gene and in the LacI inverter module correspond to
each other. Similarly, port maps are used to indicate that the component instantiations
of the cTetR CDS within the gene and module correspond. In this figure, “comp” is short
for “component.”

toggle switch module using instantiation and connected using port mapping, as shown

in Figure 3.20. In this example, the output of the LacI inverter is an input of the TetR

inverter and vice versa. Also, both inverters accept the instantiation of a small molecule

component as input, IPTG in the case of the LacI inverter and aTc in the case of the

TetR inverter.

The primary reason for distinguishing between components and modules and port

mapping between their instantiations is to promote the reuse of components. When the

structural and functional layers of genetic design are kept separate, different researchers

46

Figure 3.20: UML example of composing the LacI and TetR inverter modules into a
toggle switch module. The LacI, IPTG, and TetR component instantiations of the LacI
inverter module are mapped to the corresponding component instantiations in the toggle
switch module, as are the TetR, aTc, and LacI component instantiations of the TetR
inverter module. The end result is a composite toggle switch module that, if flattened
into a noncomposite module, would include a single copy of each of these component
instantiations and their accompanying interactions (see Figure 3.16). In this figure, “cI”
stands for “componentInstantiation.”

can use the same component in different modules to document its intended function for

different engineering tasks and under different environmental conditions.

Ultimately, the concepts of instantiation and port mapping are not intended to directly

represent biological reality. Rather, they are computational artifacts that engineers use

to organize their designs and enable reasoning over these designs by software. Without

these concepts, it is very difficult to introduce the simplifying notions of hierarchy and

modularity to genetic design in a manner that is conducive to the application of GDA

47

software tools and the exchange of data between them. As progress in synthetic biology

continues and the scale of genetic design becomes more ambitious, GDA tools that sup-

port hierarchical, modular standards will be useful, if not necessary, for managing the

complexity of synthetic biological systems.

3.4.5 Examples

As a further demonstration of the utility of the proposed SBOL data model, this

section presents examples of designs for real-world synthetic biological systems that it

can represent. These include an expression system based on RNA replicons [93] and a

regulatory cascade based on Clustered Regularly Interspaced Short Palindromic Repeats

(CRISPR) [94, 95].

In the first system, three different RNA replicons based on the Sindbis virus [96] are

transfected into the same host. Consequently, the expression of these replicons is modu-

lated via their relative initial dosages and subsequent competition for the same translation

resources. The expression of the payload of each individual replicon is accomplished in

two phases. In the first phase, the nonstructural Proteins (nsPs) at the 5’ end of the

replicon are translated by the host to form a replicase. In the second phase, the replicase

transcribes copies of the replicon, including shortened copies that only contain the payload

and are produced when the replicase binds to the Subgenomic Promoter (SGP) at the end

of the nsP block. Lastly, the third phase concerns the translation of the shortened copies,

thereby expressing the payload (in this case, a fluorescent protein) in the place of structural

proteins that would form the shell or capsid of the virus.

As shown in Figure 3.21, the basic genetic structure and function of the replicon

expression system can be represented using the proposed data model. In this design, an

RNA component with an unspecified payload sequence serves as a structural template for

the three RNA replicons. In turn, this RNA component is instantiated within a module

that serves as a functional template for the replicons and asserts the key interaction of the

host translation resources with the payload CDS. Finally, the mixed replicon expression

system as a whole is composed by instantiating three submodules, each of which maps its

fluorescent protein payload and CDS to the appropriate ports on an instantiation of the

generic replicon expression module. This effectively documents that the mixed replicon

expression module contains three separate copies of the generic replicon expression module,

each with a different fluorescent protein payload. While the initial dosages for each replicon

are outside the scope of the proposed data model, they can still be captured as custom

48

Figure 3.21: A mixed replicon expression module that instantiates three different replicon
expression submodules, which in turn instantiate copies of a generic replicon expression
module. Port mapping is used to customize each copy of the generic expression module
so that it has a different payload CDS and produces a different fluorescent protein. Port
mapping is also used to indicate that these submodule instantiations share translation
resources.

annotations on the mixed expression module or within a mathematical model that is

referenced by the module via the Model class.

The second example is a CRISPR-based regulatory cascade (see Figure 3.22), in

which transcriptional repression is accomplished using catalytically inactive Cas9 protein

(Cas9m). Like many other TFs, Cas9m sterically blocks transcription initiation, but

unlike other TFs it is targeted to specific promoters via guide RNA (gRNA) molecules

that allow for easier generation of orthogonal regulators. In the present example, there

are two promoters that are serially repressed in this manner but are targeted via different

gRNA molecules. More specifically, promoter CRP-a is targeted by gRNA-a and initiates

transcription of gRNA-b, which is coexpressed with the fluroescent protein mKate as

intronic gRNA (igRNA). In turn, promoter CRP-b is targeted by gRNA-b and initiates

the transcription of the reporter protein EYFP. Since gRNA-a is constitutively transcribed

49

Figure 3.22: A CRISPR regulatory cascade module that instantiates four submodules
and several components. In this example, port mapping is used to specify the precise
downstream components that are the outputs of each module.

in this system, the expression of gRNA-b and mKate are repressed and EYFP is produced

in relatively larger quantities.

Figure 3.22 demonstrates one possible way in which the CRISPR cascade can be speci-

fied using the proposed data model. In this design, there are four submodule instantiations,

three of which encompass a DNA component with an unspecified CDS and an RNA or

protein product. These submodules are connected in series via port mapping so that

the unspecified CDS and product of one submodule correspond to the specified CDS and

product of the next submodule and the overall parent CRISPR cascade module. The

latter module also instantiates DNA components that produce Cas9m and the activator

TF Gal4VP16, which are then mapped as inputs to the two modules that represent

CRISPR-based repression at CRP-a and CRP-b. In this way, the CRISPR cascade module

50

serves a common source of regulators for any and all CRISPR-based modules that it

instantiates.

3.4.6 Summary

As summarized in the UML class diagram shown in Figure 3.23, the proposed data

model expands the total number of classes in SBOL from four to seventeen (four of

these classes, the Identified, Documented, Collection, and Generic Component classes,

are omitted from the figure for clarity). Central to this data model are the Component

and Module classes, which are the basic exchangeable units for composing descriptions

of genetic structure and function. A module composes components and other modules

by means of the Component Instantiation and Module Instantiation classes and describes

their function by aggregating objects belonging to the Interaction and Model classes. A

component that belongs to the Sequence Component class refers to an object of the Se-

quence class and composes its subcomponent instantiations along its sequence via objects

of the Sequence Annotation class. Once components and modules have been composed

using the various Instantiation classes, their component instantiations can be connected

using the Port and Port Map classes.

If adopted by the community, this set of extensions to the SBOL Version 1.1 data

model should provide a means of expressing and composing genetic designs exhibiting a

wide range of structure and function (see Section 3.4.5). This data model represents a

conservative extension of the current model, striking a balance between expressiveness and

minimization of complexity. To the extent possible, this proposal avoids either making

representational commitments where there is not yet scientific consensus or duplicating

other modeling and standardization efforts.

In order to test the utility of this new data model, a new version of the Java library,

libSBOLj, has been implemented and is being utilized to construct the above described

use cases and other genetic designs from the literature. In conjunction with further

discussions in the community, this experimentation will hopefully allow for the resolution

of any remaining details so that a formal BioBricks Foundation Request for Comments

(BBF RFC) [97] specification can be written and ratified by the SBOL Developers Group.

Once ratified, the specification becomes official when at least two software tools have

implemented the standard and demonstrated the exchange of data.

Even once this proposal is accepted, there are still important aspects of genetic de-

signs not yet captured by SBOL. In particular, the proposed extensions to SBOL do

51

Figure 3.23: UML diagram that summarizes the proposed data model. In this figure, “cI”
stands for “componentInstantiation,” “subCI” stands for “subComponentInstantiation,”
and “subMI” stands for “subModuleInstantiation.”

not explicitly address the complex relationship between environmental context and its

influence on the intended function of a design. Such specifications can become quite

important when composing modules, as not all of them may function correctly when

deployed in the same environment or host organism, nor may they be amenable to the

same experimental techniques. Furthermore, the proposed data model does not capture

protocols for experiments or physical assembly of designs. More research is necessary

to identify the types of data related to context, assembly, and experiments that can be

incorporated into SBOL and reasoned over by software. With these additions, SBOL will

be able to better facilitate the specification of genetic designs and their deployment and

testing in the lab.

CHAPTER 4

MODEL ANNOTATION AND

GENERATION

In this chapter, Section 4.1 describes a methodology for annotating SBML [14] models

with SBOL [44]. This section also describes the most common use cases for model annota-

tion, particularly with regards to model generation [49], genetic technology mapping [48],

and sequence generation. Section 4.2, on the other hand, describes a methodology for

generating SBOL-annotated SBML models from one or more SBOL modules. These

SBOL-annotated SBML models can then serve as inputs to genetic technology mapping

(see Chapter 5) and other analysis techniques implemented in iBioSim, such as stochastic

chemical kinetic simulation and model checking [84]. Finally, Section 4.3 briefly sum-

marizes the usefulness of model annotation and generation and discusses their future

application.

4.1 Model Annotation

While Chapter 3 partly describes linking SBOL modules to SBML models via the

SBOL Model class, this section describes how to link SBML models back to SBOL modules

using annotations on SBML models. As recommended by the developers of SBML, these

SBML-to-SBOL annotations are written in RDF/XML and adhere to the format outlined

in Figure 4.1, which can be seen as an extension of the format originally used by the

sequence generation tool MoSeC [36]. Each annotation refers to a SBML element, such

as a species or reaction, as its subject and can refer to the following as its objects: up

to one unordered set of SBOL elements per SBOL class, up to one ordered list of DNA

components, and up to one strand sign.

Depending on their objects, SBML-to-SBOL annotations can serve up to three use

cases for the composition of genetic designs. The first two use cases pertain to when a

SBML-to-SBOL annotation has an unordered set of SBOL elements as its object. When

the annotation’s SBOL elements belong to the functional layer of design, such as a set

53

<SBML ELEMENT + + + metaid=”SBML META ID” + + + >
<annotation>
<ModelToSBOL xmlns=“http://sbolstandard.org/modeltosbol/1.0#”>

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:mts=“http://sbolstandard.org/modeltosbol/1.0#”>

<rdf:Description rdf:about=“#SBML META ID”>
<mts:SBOL ELEMENTS>

<rdf:Bag>
<rdf:li rdf:resource=“SBOL ELEMENT URI”/>
. . .

</rdf:Bag>
</mts:SBOL ELEMENTS>
<mts:DNAComponents>

<rdf:Seq>
<rdf:li rdf:resource=“DNA COMPONENT URI”/>
. . .

</rdf:Seq>
</mts:DNAComponents>
<mts:Strand>STRAND SIGN</mts:Strand>

</rdf:Description>
</rdf:RDF>

</ModelToSBOL>
</annotation>

</SBML ELEMENT>

Figure 4.1: Format for SBML-to-SBOL annotation written in RDF/XML. The first line
of XML is that of the SBML element, which contains a meta-ID among other information
as indicated by +. Next is the SBML-to-SBOL annotation, with its first two lines
containing namespaces that distinguish it from other types of annotations and indicate
how it should be processed. The actual content of the annotation is highlighted in red,
green, and blue. The red line is the subject of the annotation, which is a SBML element
identified using its meta-ID. The green lines are the predicates of the annotation, which
indicate that the subject is associated with a set of SBOL elements, a list of SBOL DNA
components, or a strand sign. The blue lines are the objects of the annotation, which can
be a set of URIs identifying one or more SBOL elements, a list of URIs identifying one or
more DNA components, or a character (’+’ or ’−’) representing a strand sign.

of component instantiations or interactions, the purpose of the annotation is to indicate

the provenance or origin of the SBML elements produced during model generation. In

particular, the species and reactions of a SBML model that is generated from a SBOL

module can be annotated with the component instantiations and interactions from which

they are derived. In this way, a record is kept of which elements in a SBML model

correspond to which elements in the source SBOL module.

54

When an annotation’s SBOL elements belong to the structural layer of design, such as

a set of sequence components or generic components, the purpose of the annotation is to

avoid cross-talk during genetic technology mapping. For example, species within a SBML

model can be annotated with components to effectively assign them molecular identities.

As explained in Chapter 5, these molecular identities are compared when composing sub-

designs into a solution to the genetic technology mapping problem. When the molecular

identity of an output for one subdesign does not match the appropriate input for the next

subdesign, all solutions that would contain this connection are disqualified from future

consideration. Consequently, the average runtime of genetic technology mapping can be

significantly improved without cutting out valid solutions.

The third use case pertains to when a SBML-to-SBOL annotation has a list of DNA

components and a strand sign as its objects. In this case, the purpose of the annotation is

to directly couple descriptions of genetic function and structure for sequence generation.

Sequence generation uses the organization of a model to infer the structure of one or more

genetic constructs from the DNA components that annotate the model. For the purpose

of sequence generation (see Chapter 6), it does not matter which individual element of a

model is annotated by which DNA component. Rather, it only matters that the ordering

of the DNA components, as inferred by the cause-and-effect relationships between the

elements of the model, matches a pattern corresponding to a valid genetic construct. As

described in Section 4.2, the model generation methodology used in this dissertation has

been designed to produce SBOL-annotated SBML models that adhere to this requirement

for sequence generation.

Each list groups one or more DNA components that are physically adjacent on a strand

of DNA. These DNA components are grouped nonhierarchically, that is, without having

to include them as subcomponents of a single composite component. This capability is

useful for ordering DNA components that may not have their function explicitly modeled

but must be present for a design to function correctly. For example, even if the function of

a spacer in a gene is not modeled, the spacer may still be necessary to prevent undesirable

interaction of adjacent DNA components. Hence, a SBML element may be annotated

with a list of DNA components interspersed by spacer components. While it is true that

the SBML element could instead be annotated with a single composite component that is

composed from this list of DNA components, some designers may not want to group the

listed components into a superfluous functional unit.

55

A strand sign, on the other hand, indicates whether the listed DNA components should

be composed on the positive or negative strand of the DNA sequence for a composite DNA

component. If a strand sign is not present in a given annotation, then it is assumed that

any DNA components listed by the annotation should be composed on the positive strand.

Alternatively, if a strand sign is present and there is no list of DNA components, then the

strand sign is assumed to apply to any DNA components annotating an external SBML

element that is referenced by the strand sign’s SBML element. For example, if a model

contains a submodel element that is annotated with only a strand sign, then the strand

sign applies to any DNA components annotating the external model that is referenced

by the submodel element. This rule promotes the reuse of a given annotated model by

allowing its parent composite models to orient its annotating DNA components differently

without requiring the creation of separate annotated models for each desired orientation.

As an example of all three use cases for SBML-to-SBOL annotations, this section

concludes with a description of annotating several SBML models. These models are

derived from the SBOL modules for the LacI inverter and genetic toggle switch [50]

presented in Chapter 3 (see Figure 3.16 and Figure 3.20) and are shown in Figure 4.2.

Figure 4.2: An iBioSim representation of the SBML models for the LacI inverter and
the genetic toggle switch. Blue ellipses are species and green rectangles are submodels.
(a) The red arrow in the LacI inverter model signifies repression of the promoter pLac
and production of TetR by the species LacI, while the dashed arrows signify noncovalent
binding to form a complex between IPTG and LacI. (b) Lastly, the labeled black arrows
in the toggle switch model are replacements that specify that its LacI, TetR, IPTG, and
aTc species are intended to replace or be replaced by species in the LacI and TetR inverter
submodels.

56

To indicate the provenance of the LacI inverter model, it can be directly annotated with

the LacI inverter module from which it is derived, while its pLac, LacI, IPTG, IPTG-LacI,

and TetR species can be annotated with the similarly named component instantiations

from the LacI inverter module. In addition, the model’s genetic production reaction

can be annotated with the module’s genetic production and repression interactions, its

noncovalent binding reaction can be annotated with the module’s noncovalent binding

interaction, and its ports that refer to its species can be annotated with the module

ports that refer to the corresponding component instantiations. Next, for the purpose of

directly documenting molecular identities, each species in the LacI inverter model can be

annotated with the DNA, RNA, protein, or complex component that is instantiated by

the component instantiation annotating the species. Finally, to facilitate the generation of

a DNA sequence from the LacI inverter model, its elements can be annotated with DNA

components instantiated by the LacI-repressible gene (see Figure 3.11) and positive strand

signs. In particular, its promoter species pLac can be annotated with the LacI-regulated

promoter BBa I14032, while its TetR species (the product of its genetic production re-

action) can be annotated with a gene composed of the RBS B0034 and the TetR CDS

BBa C0040, followed by the terminator BBa B0015.

In the case of the toggle switch model and its submodels, their provenance can similarly

be established by annotating them with the toggle switch module and LacI/TetR inverter

module instantiations from which they are derived. Furthermore, the model’s species

and replacements between its species can be annotated with the equivalent component

instantiations and port maps from the toggle switch module. In this sense, a replacement

is equivalent to a port map when the parent species, submodel, and port referred to by the

replacement correspond to the component instantiation, module instantiation, and port

referred to by the port map. Finally, documentation of the molecular identities for species

in the toggle switch model is handled as before, while sequence generation for the toggle

switch is facilitated by annotating the LacI and TetR inverter submodels with positive

and negative strand signs, respectively. In this way, the DNA components that make up

the sequence for the toggle switch are obtained from the external LacI and TetR inverter

models and oriented in accordance with the strand signs annotating the submodels.

57

4.2 Model Generation

In order to facilitate interdisciplinary collaboration and tighter connections between

qualitative and quantitative descriptions of genetic function, model generation tools are

needed to help automate the process of creating quantitative models based on qualitative

designs. With the existence of such tools, synthetic biologists who lack expertise in applied

mathematics can have a larger audience for their qualitative genetic designs, namely

engineers who have expertise in mathematical analysis but who lack experience in modeling

biology. Furthermore, the mathematical models generated with these tools are by design

based on formal descriptions of genetic function. This connection can itself be formalized

via model annotation so that the metadata associated with the process of model generation

is not lost and the mappings to different models from the same genetic design can be more

readily compared. In light of these considerations, this section presents a methodology for

generating SBOL-annotated SBML models from SBOL designs that conform to the data

model for SBOL Version 2.0 [47] proposed in Chapter 3.

The procedure for automatically generating SBML from SBOL and annotating the

former with the latter follows the steps outlined below.

1. For each SBOL module in a SBOL document:

(a) Add a SBML model to a new SBML document.

(b) Annotate the SBML model with the SBOL module.

(c) Follow steps 2 through 6.

2. For each protein component instantiation, small molecule component instantiation,

and complex component instantiation i:

(a) Add a species s to the list of species for the SBML model.

(b) Annotate s with i and the component instantiated by i.

(c) If i is the sole, degraded participant in a single degradation interaction n:

i. Add a degradation reaction rs to the list of reactions for the SBML model.

ii. Annotate rs with n.

iii. Add a species reference for s to the list of reactants for rs.

iv. Add a mass-action kinetic law of the form below to rs.

rate(rs) = kds (4.2)

58

3. For each promoter DNA component instantiation i:

(a) Add a promoter species p to the list of species for the SBML model.

(b) Annotate p with i and the component instantiated by i.

(c) Add genetic production reaction rp to the list of reactions for SBML model.

(d) Add a promoter species reference for p to the list of modifiers for rp.

(e) For each genetic production interaction n in which i participates as a modifier,

a protein component instantiation j participates as a product, and a gene DNA

component instantiation k is a transcribed participant:

i. Add n to the set of interactions annotating rp.

ii. Add a species reference for the species s that corresponds with j to the list

of products for rp.

iii. Annotate s with the component instantiated by k.

(f) For each activation or repression interaction n′ in which i is a repressed or

activated participant and a TF protein component instantiation x participates

as an activator or repressor:

i. Add an activator or repressor species reference for the species y that cor-

responds with x to the list of modifiers for rp.

ii. Add y to the set of activators Act(p) or set of repressors Rep(p).

iii. Add n′ to the set of interactions annotating rp.

(g) Add a Hill function kinetic law of the form below to rp.

rate(rp) =



npkongKonr

1 +Konr +
∑

sr∈Rep(p)

(Krsr)nc
|Act(p)| = 0

npkbngKonr + npkangKoanr

∑
sa∈Act(p)

(Kasa)
nc

1 +Konr +
∑

sr∈Rep(p)

(Krsr)nc +Koanr

∑
sa∈Act(p)

(Kasa)nc
otherwise

(4.3)

4. For each noncovalent binding interaction n in which a protein component instanti-

ation i participates as a product and a set of protein or small molecule component

instantiations React(i) participate as reactants:

(a) Add a reversible noncovalent binding reaction rs to the list of reactions for the

SBML model, where s is the species that corresponds with i.

(b) Annotate rs with n.

59

(c) Add a species reference for s to the list of products for rs.

(d) Add species references for the set of species React(s) that corresponds with

React(i) to the list of reactants for rs.

(e) Add a mass-action kinetic law of the form below to rs.

rate(rs) = kcfKc
|React(s)|−2

∏
s′∈React(s)

s′ − kcrs (4.4)

5. For each SBOL port t that refers to a component instantiation i:

(a) Add a SBML port t′ that refers to the species that corresponds with i to the

list of ports for the SBML model.

(b) Annotate t′ with t.

6. For each module instantiation i:

(a) Add a submodel m to the SBML model.

(b) Annotate m with i.

(c) Add an external model definition that refers to the SBML model corresponding

with the module instantiated by i to the list of external model definitions for

the SBML model.

(d) For each port map a that is referred to by i and refers to a SBOL port t and a

component instantiation j:

i. Add a replacement e that refers to the SBML port corresponding with t to

the list of replacements for the species corresponding with j.

ii. Annotate e with a.

Because the proposed SBOL data model is not capable of encoding quantitative param-

eters, the SBML kinetic laws generated by this methodology are populated with default

parameters that must be customized using iBioSim or another SBML-compatible modeling

tool. Table 4.1 lists these default parameters and their current values. In the future,

the SBOL data model can be extended with the capacity to store data on quantitative

parameters and measurements, thereby providing a firmer foundation for GDA tools to

generate different mathematical models for different design tasks that nevertheless conform

to the same basic data set.

60

Table 4.1: Default parameters for generated kinetic laws

Parameter Symbol Value Units

Rate of degradation kd 0.0075 1
sec

Stoichiometry of production np 10 unitless

Open complex production rate ko 0.05 1
sec

Basal production rate kb 0.0001 1
sec

Activated production rate ka 0.25 1
sec

Promoter count ng 2 molecule

RNA polymerase binding equilibrium Ko 0.033 1
molecule

Activated RNA pol. binding equilibrium Koa 1 1
molecule

RNA polymerase count nr 30 molecule

Repression binding equilibrium Kr 0.5 1
molecule

Activation binding equilibrium Ka 0.0033 1
molecule

Stoichiometry of binding nc 2 unitless

Forward non-covalent binding rate kcf 0.05 1
molecule∗sec

Non-covalent binding equilibrium Kc 0.05 1
molecule

Reverse non-covalent binding rate kcr 1 1
sec

As for the kinetic laws themselves, their derivation is partly based on model ab-

straction techniques, such as operator site reduction [72] and quasisteady-state approxi-

mation [98, 99]. While a more detailed description of this type of derivation can be found

in [100], a short summary is included here. Briefly, this derivation assumes that most

reversible noncovalent binding reactions occur much more rapidly than the reactions for

genetic production and degradation, such that the species produced by these reactions are

assumed to be at or near their equilibrium levels at all times. While the model generation

methodology presented in this chapter does not explicitly check whether the conditions for

model abstraction are satisfied, iBioSim implements a range of techniques for automated

model reduction [83] and expansion that may be applied to the generated model to either

increase or decrease its level of abstraction.

As a consequence of the above assumptions, the generated model does not include

61

reactions for TFs binding to DNA and the formation of intermediate complexes between

TFs and/or small molecules. In addition, the model does not include the species produced

by these reactions and these species are replaced in the kinetic laws for other reactions

with algebraic expressions over their constitutive species. This can be seen in the non-

covalent binding kinetic law of Equation 4.4, in which all intermediate complexes that

could appear in the kinetic law have been replaced with a multiplication over the TFs and

small molecules that make up these complexes and their equilibrium binding constants.

The replacement of complexes between TFs and DNA, on the other hand, is accompanied

by an application of the law of mass conservation to each promoter species. As a result,

the kinetic laws for each genetic production reaction are written as fractions in which

each term of the numerator and denominator accounts for a different species that may

bind the reaction’s promoter. As seen in Equation 4.3, when the amount of a repressor

species increases, the denominator increases and the rate of genetic production from the

promoter is minimized. When the amount of an activator species increases, however,

both the numerator and denominator increase and the rate of genetic production from the

promoter is maximized.

This section concludes with an example of generating SBML models for the LacI

inverter and genetic toggle switch from their respective SBOL modules. As shown in the

UML diagram in Figure 4.3, the qualitative function of the LacI inverter can be represented

using a SBOL module that instantiates the inverter’s DNA, protein, small molecule, and

complex components and asserts the regulatory, gene expression, and noncovalent binding

interactions that occur between the instantiated components. As presented before in

Chapter 3, each interaction in the LacI inverter module has a type derived from the

SBO [101], a controlled vocabulary for systems biology terms, and refers to participating

component instantiations indirectly via participations. Each participation has a role that

is also derived from a SBO term and indicates what a component instantiation does or

has done to it in an interaction. For instance, in the repression interaction that takes

place between the LacI and pLac component instantiations, LacI acts as a repressor

while pLac is repressed. The LacI inverter module in this example builds upon the

previous representation of the LacI inverter by adding additional interactions to capture

degradation of the TetR, LacI, IPTG, and IPTG-LacI complex component instantiations.

Furthermore, the UML diagram for the module has been color coded to indicate which

SBOL elements inform which steps in the model generation process.

62

Figure 4.3: UML diagram of the LacI inverter under the proposed data model for the
next version of SBOL. Yellow objects are referred to during step 1 of model generation,
blue during step 2, green during step 3, red during step 3(g), and orange during step 4.

Similarly, the UML diagram in Figure 4.4 demonstrates how the genetic toggle switch

can be composed through a module that instantiates the modules for the LacI and

TetR inverters and the components shared by these modules. The inverter modules are

then connected through port maps that assert the correspondence between component

instantiations in the toggle switch module and port-exposed component instantiations in

the inverter modules. In the present example, the TetR inverter module is omitted in order

63

Figure 4.4: UML diagram of the LacI inverter and genetic toggle switch under the
proposed data model for the next version of SBOL. Emerald objects are referred to during
step 5 of model generation, magenta during step 6, and turquoise during step 6(d).

to focus on the composition of the LacI inverter module with the toggle switch module.

Again, the SBOL elements in the UML diagram have been colored to tie them to specific

steps during the model generation process, as well as facilitate comparison between the

SBOL modules and SBML models that serve as inputs and outputs to this process.

Figure 4.5 is a UML diagram that represents the SBML model generated for the LacI

inverter. Central to this model are reactions for degradation, genetic production, and

complex formation, which have kinetic laws of the forms found in Equations 4.2–4.4. In

addition, each reaction has one or more lists of species references that identify which

species are its reactants, products, and modifiers, and each reaction and species reference

64

Figure 4.5: UML diagram of the LacI inverter under Level 3, Version 1 of the SBML
data model. Yellow objects are created in step 1 of model generation, blue in step 2, green
during step 3, red in step 3(g), orange in step 4, and emerald in step 5.

has a SBO term to more concretely specify its type or role in a genetic context. For

example, the green reaction is labeled with the SBO term “genetic production” and refers

to the species LacI and pLac as its modifiers, while these species references are labeled

with the SBO terms “repressor” and “promoter.” As expected, the SBO labeling of the

green/red SBML reaction and species references in Figure 4.5 is consistent with the types

and roles of the green/red SBOL interactions and participations in Figure 4.3, since the

creation of the former is based on the structure of the latter in step 3 of model generation.

Similar comparisons can be made between the input SBOL modules and Figure 4.6,

which is a UML diagram that represents the SBML model generated for the genetic toggle

switch. In this model, each species has a turquoise list of elements that it replaces in the

external models for the LacI inverter and/or TetR inverter. As seen in Figure 4.4, these

65

Figure 4.6: UML diagram of the genetic toggle switch under Level 3, Version 1 of the
SBML data model. Yellow objects are created during step 1 of model generation, blue
during step 2, magenta during step 6, and turquoise during step 6(d).

lists are based on the turquoise port maps that link between the component instantiations

of the toggle switch module and ports on the LacI and TetR inverter modules.

While SBML is capable of encoding replacement of lower elements by higher elements

and higher elements by lower elements in the modeling hierarchy, the model generation

methodology presented in this chapter only uses the first type of replacement to compose

and connect generated SBML models. This is done because one of the use cases for port

mapping in SBOL is to supply information that is missing at a lower level of the design

hierarchy. If SBOL is ever extended to explicitly encode the notion of replacement, then

model generation can be similarly extended to produce both directions of replacement in

SBML (high by low and low by high).

4.3 Summary

In conclusion, the model generation methodology presented in this chapter enables

users of iBioSim to generate quantitative SBML models from qualitative SBOL modules.

66

By means of the model annotation methodology presented earlier in the chapter, the

generated SBML models are also annotated with the SBOL from which they are generated

to tightly couple these quantitative and qualitative descriptions of genetic function and

structure. In this way, model generation and annotation facilitate the application of ge-

netic technology mapping and sequence generation, which are described next in Chapter 5

and Chapter 6. While the mapping used during model generation is only one of many

possible mappings from SBOL to SBML, or from SBOL to another modeling standard, in

the future other mappings will be developed for different design tasks and can be readily

accommodated by model annotation as needed.

CHAPTER 5

GENETIC TECHNOLOGY MAPPING

Genetic technology mapping is the process of automatically selecting genetic compo-

nents from a library to meet the abstract functional specification for a genetic circuit.

This chapter presents a Directed Acyclic Graph (DAG) based approach to genetic technol-

ogy mapping that builds off DAG-based techniques from Electronic Design Automation

(EDA) [102, 48]. To start, Section 5.1 outlines the major assumptions that are inherent

in this approach. Next, Section 5.2 describes graph construction, a processing stage in

which regulatory DAGs are constructed from a model specification written in SBML

and a library of SBOL-annotated SBML models. This is followed by Section 5.3 on

partitioning and decomposition, which are postprocessing heuristics that involve splitting

the specification DAG into a set of rooted DAGs (also known as trees) and transforming

both the specification and library DAGs to a logically equivalent canonical form.

Next, Section 5.4 and Section 5.5 present the terminal stages of DAG-based genetic

technology mapping that are responsible for finding a solution: matching and covering.

During matching, the library DAGs are matched to each node in the specification DAG

and lower bounds on the costs of solutions starting at each node are calculated via dynamic

programming. During covering, matches are selected using a branch-and-bound approach

to obtain a solution set of library DAGs that may be composed to satisfy the original

specification for a minimal cost. Figure 5.1 provides a brief overview of DAG-based genetic

technology mapping as applied to automate the design of a genetic multiplexer [59], a

genetic circuit that can be used to share multiple incoming signals with another genetic

circuit and thereby reduce resource requirements.

Following these sections’ description of the DAG-based approach to genetic technology

mapping, Section 5.6 presents the results of applying this approach in iBioSim to several

test specifications and four randomly generated libraries of various sizes. More specifically,

the test specifications are for three combinational genetic circuits: a genetic AND-OR-

invert (AOI) gate, a genetic NAND-NOR cascade, and a genetic OR-AND-invert (OAI)

68

Figure 5.1: Overview of DAG-based genetic technology mapping as applied to automate
the design of a genetic multiplexer. (a) The software tool iBioSim is used to construct a
SBML model of an abstract genetic multiplexer and generate a library of SBOL-annotated
SBML models of genetic logic gates. The model of the genetic multiplexer contains
species (blue ellipses) that are modifiers (lines) or reactants/products (arrows) of genetic
production and complex formation reactions (purple circles). (b) A regulatory DAG
specification and library of SBOL-labeled DAGs are constructed from the SBML model
specification and library. See Figure 5.2 for a key describing the nodes and edges of a
regulatory DAG. (c) The DAG specification is partitioned and decomposed alongside
the library DAGs to faciliate matching and covering. (d) The DAG specification is
matched and covered to obtain an optimal solution set of library DAGs. In addition, the
SBOL-annotated SBML models underlying these DAGs are composed to form a composite
SBML model for subsequent analysis. (E) Composite SBOL DNA components are inferred
from the structure of the cause-and-effect relationships between DNA components as
encoded by the solution [49] (see Chapter 6.3).

69

cascade. Finally, the chapter concludes with Section 5.7, a brief summary of the advantages

and disadvantages of DAG-based genetic technology mapping and a comparison of this

approach to others.

5.1 Assumptions

There are two major assumptions that are inherent in this dissertation’s DAG-based

approach to genetic technology mapping. First, this approach assumes that the genetic

circuits in the target library have no feedback and possess a sigmoidal relationship between

their steady-state inputs and output, such that it is possible to distinguish between high

and low inputs/outputs to a circuit and assign a logical semantics to their relationship

such as OR or AND. This is not an entirely unfounded assumption given previous research

into the design and construction (even random construction [62]) of genetic components

[55, 56, 57] and circuits [103, 58, 59] with steady-state phenotypic behaviors resembling

digital logic.

Second, this approach assumes that it is possible to connect genetic circuits on the

basis of whether the molecular identities of their input and output signals are the same.

In doing so, this approach neglects other considerations for connecting circuits, such as

determining whether the high and low output signals for one circuit constitute high and

low input signals for its connected circuit, or whether two connected components are

compatible in the context of their intended host. In the future, if this approach is

extended to explicitly address these other considerations for circuit compatibility, then

it can also leverage the cost function framework described in this chapter to guide the

search for a solution that maximizes circuit compatibility, rather than just ensure that

circuit compatibility is satisfied.

5.2 Graph Construction

Figure 5.2 displays the regulatory DAGs constructed from the SBML models for a

simple, abstract genetic circuit and a library of genetic logic gates. Later on, Section 5.4

and Section 5.5 return to the DAGs for this genetic circuit and library as part of a basic

example of matching and covering. The procedure for constructing a regulatory DAG

from a SBML model follows the steps outlined below:

1. For each nonpromoter species s in the SBML model:

(a) Add a species node n to the DAG.

70

Figure 5.2: Example of graph construction. (a) In this example, regulatory DAGs are
constructed from the SBML models for a simple, abstract genetic circuit and a library of
genetic logic gates. (b) The specification DAG contains nodes and edges of the types listed
in the legend. (c) The library DAGs also include colored arrows that belong to the SBOL
Visual standard [53] and represent the promoter or CDS DNA components labeling each
node. In addition, although it is not shown in the diagrams for this chapter, each node
labeled with a CDS DNA component is also labeled with the protein component that is
encoded by the CDS. The number on each library DAGs indicates the cost associated with
choosing that DAG to cover part of the specification DAG. Normally, each library DAG
has a cost equal to the combined length in base pairs of its DNA components, but this
example uses smaller, simpler costs to make it easier to follow along later during matching
and covering.

(b) Label n with DNA, TF protein, and small molecule components annotating s.

2. For each promoter species p in the SBML model that modifies a genetic production

reaction r, if the DAG being constructed is a specification DAG or if p is annotated

with a promoter DNA component that has a DNA sequence:

(a) Add a promoter node m to the DAG.

(b) Label m with any promoter DNA component that annotates p.

(c) For each species that r references as an activator or repressor, draw an activa-

tion or repression edge from the corresponding species node to m.

71

(d) For each species that r references as a product, draw a product edge from m

to the corresponding species node.

3. For each noncovalent binding reaction v in the SBML model that references a species

s as its product and a species s′ as its reactant, draw a complex edge from the species

node that corresponds with s′ to the species node that corresponds with s.

At the terminus of graph construction, the DNA components labeling the nodes of

the constructed DAG are used to calculate the cost associated with selecting the DAG

during matching and covering. The TF protein and small molecule components labeling

each node, on the other hand, are used to determine whether selecting a DAG during

covering would introduce cross-talk to a solution. For calculating the cost of a DAG, a

very simple cost function is applied: cost equals the combined length in base pairs of

the DNA components labeling the DAG. At the very least, the length in base pairs of a

genetic circuit can be partially correlated with other design parameters of interest, such

as delay in transcription/translation and cost for de novo synthesis. In the future, this

cost function can be extended with other relevant genetic circuit parameters, such as the

high and low levels of circuit inputs and outputs, the noise associated with these levels,

and the degree of input/output compatibility when two circuits are connected.

Finally, to distinguish between regulatory DAGs and make them amenable to logical

decomposition, one possible logical semantics is assigned to the genetic regulatory motifs

present in these DAGs. Under this semantics, a promoter node with a single repressor

is an inverter motif, while a promoter with two repressors is a NOR motif. Inverter and

NOR motifs produce output only when no inputs are present. Similarly, a promoter with

one activator is a buffer motif, while a promoter with two activators is an OR motif. Buffer

and OR motifs produce output when one or more inputs are present. Lastly, a promoter

with a complex activator is an AND motif, while a promoter with a complex repressor is

a NAND motif. An AND motif produces output only when both inputs are present, while

a NAND motif produces output so long as at least one input is not present.

Note that this particular logical interpretation enables regulatory DAGs to capture

the abstract behavior if not the exact mechanism of genetic circuits that implement

combinational logic. For example, in Figure 5.1, part of the solution for the genetic

multiplexer is an AND motif that includes complex formation between LuxR and LuxI.

Strictly speaking, it is the enzymatic product of LuxI, AHL, that forms a complex with

LuxR and then activates the promoter pLux, but this additional mechanistic detail is not

72

absolutely necessary to express the abstract logical relationship between the inputs and

output of the genetic circuit.

5.3 Partitioning and Decomposition

During partitioning (see Figure 5.3), the specification DAG is split at nodes with more

than one outgoing edge into n rooted DAGs, where n is the total number of outgoing edges

at these nodes. Partitioning enables the use of dynamic programming during matching

to calculate lower bounds on the costs of solutions starting from each node. These lower

bounds can then be used during covering to terminate the search for suboptimal solutions

and thereby speed up the process of finding optimal solutions for each partition. The

tradeoff is that there is no guarantee of global optimality when the covered partitions

are composed to form a final solution. As with many heuristics, the hope is that the

nonglobally optimal solution is found more quickly and that it is still of fairly high quality.

Decomposition, on the other hand, increases the number of matches that can be made

between the library DAGs and each node in the specification DAG, thereby increasing

the number of possible solutions during covering and potentially improving the quality of

the final solution. During decomposition (see Figure 5.3), the specification and library

DAGs are transformed to a logically equivalent canonical form. In this canonical form,

the DAGs only contain inverter and NOR motifs. Consequently, if the library contains

at least as many inverter and NOR motifs as the decomposed specification DAG, then

Figure 5.3: Examples of partitioning and decomposing regulatory DAGs. (a) Partitioning
results in DAGs with no nodes that have more than one outgoing edge. (b) Decomposing
a buffer motif results in two inverter motifs in series. (c) Decomposing an OR motif results
in a NOR motif followed by an inverter motif. (d) Decomposing an AND motif results in
two inverter motifs in parallel followed by a NOR motif.

73

it is guaranteed that there is a complete solution that satisfies the specification DAG.

This is particularly useful when a genetic regulatory motif is not shared by the library

and specification DAGs prior to decomposition. For example, if the specification DAG

contains a complex activator and the library DAGs do not, then this AND motif must be

decomposed to logically equivalent motifs that are shared by the library DAGs in order

to facilitate a complete solution. While there are other possible canonical forms based

on different pairings of logical motifs (such as inverter and NAND motifs), the present

approach decomposes to inverter and NOR motifs based in part on their prevalence in

online repositories such as the iGEM Registry of Standard Biological Parts [16].

5.4 Matching

The present DAG-based approach to matching a library to a specification builds

upon that taken in Keutzer’s foundational technology mapping system for electronic

circuits, DAGON [102]. Like DAGON, this approach uses the Aho-Corasick algorithm

[104] with minor modifications to match strings of characters encoding paths through

the library DAGs to strings encoding paths through the specification DAG. Through

string representation and the construction of a discrete finite automaton (DFA), the

Aho-Corasick algorithm achieves a worst-case runtime that scales linearly with the size of

the specification and independently of the size of the library.

During matching, the nodes of the specification DAG are traversed in a topological

order. At each node, the Aho-Corasick algorithm is used to match the subtree rooted

at that node to the library DAGs. The library DAGs that match at a node are then

ordered so that the resulting sequence begins with the DAG that is part of the minimal

cost solution starting at that node. Note that the minimal cost solution is determined

without giving consideration to the possibility of genetic cross-talk, as the cost of this

solution is meant to serve as a lower bound on the cost of any solution starting at that

node

For example, consider node O of the specification DAG in Figure 5.4. There are four

library DAGs that match the subtree rooted at this node, namely the four inverter motifs

at the bottom of the library and the OR motif (decomposed to a NOR motif followed by

an inverter motif) in the upper right corner. Of the inverter motifs, the motif on the far

left has the lowest cost of 5. If this motif is selected to cover node O, then it also covers

down to node C. Since the previously determined lower bound at node C is 50, the lower

bound at node O resulting from choosing this inverter motif would equal 55. It is possible,

74

Figure 5.4: Partitioned, decomposed specification and library DAGs from Figure 5.2.
Includes the results of calculating lower bounds on the costs of solutions starting at each
node in the specification DAG and covering down to its leaves. For example, after iterating
through each possible match to the subtree rooted at node O, it is determined that the
minimal lower bound for a solution starting at this node that ignores cross-talk is obtained
by selecting the OR motif in the upper right corner. This motif has a cost of 30 and
covers down to nodes M and N, which each have a previously determined lower bound of
5 (matching proceeds in topological order). These lower bounds are added to the cost of
the OR motif to obtain a lower bound of 40 at node O.

however, to obtain a better lower bound than this by selecting the OR motif, which has

a cost of 30 and covers down to nodes M and N. These nodes both have lower bounds of

5, so the lower bound at node O resulting from choosing the OR motif would equal 40.

Hence, the OR motif is positioned first in the list of matching library DAGs at node O

and its corresponding lower bound is entered into the table in Figure 5.4.

Algorithm 5.1 handles the process of matching library DAGs to the subtrees rooted at

each node in the specification DAG and calculating lower bounds on the costs of solutions

that start with each match. Unlike its EDA implementation, Algorithm 5.1 also sorts

the matches at each node in accordance with their lower bounds. Sorting in this manner

is necessary to enable effective bounding while covering. During the execution of this

75

Algorithm 5.1: Matching

Input: Specification DAG G = 〈V,E〉 where V is a set of nodes and E is a set of
edges, DFA D constructed from DAG library L using the Aho-Corasick
string matching algorithm

Output: Specification DAG G where each node in V contains a sequence of library
DAGs Li that match the subtree rooted at that node and a sequence of
lower bounds on the costs of solutions beginning with each match

/* || is a composition operator that joins two sequences */

/* 〈〉 are opening/closing sequence brackets */

1 C ← leaves(G)
2 while |C| > 0 do
3 for Li ∈Determine-Matches(D, paths(G,C0)) do
4 matches(C0)← matches(C0)||〈Li〉
5 b←Calculate-Cost(Li)
6 for v ∈Walk-Paths(paths(Li), G,C0) do
7 b← b + lowerBounds(v)0

8 lowerBounds(C0)← lowerBounds(C0)||〈b〉
9 Quicksort-Matches(matches(C0), lowerBounds(C0))

10 N ← successors(C0)
11 C ← sub(C, 1, |C| − 1)
12 if |C| = 0 ∧ |N | > 0 then
13 C ← C||N

algorithm, nodes are matched and bound in a topological order, that is, starting from the

specification DAG’s leaf nodes that have no incoming edges and ending at its root node

that has no outgoing edges. In this way, previously calculated lower bounds can be reused

to calculate later lower bounds, a dynamic programming approach that enables bounding

to be performed with a worst-case runtime that scales as |G||L|, where |G| is the size of

the specification and |L| is the size of the library. As for matching, a DFA constructed

via the Aho-Corasick string matching algorithm is used to match the subtrees rooted at

each node in the specification simultaneously against all library DAGs, thereby achieving

a worst-case runtime that scales independently of the size of the library.

Functions called by Algorithm 5.1 include Determine-Matches, Calculate-Cost,

Walk-Paths, and Quicksort-Matches. The Determine-Matches function takes as

input the Aho-Corasick DFA D and a sequence of strings representing paths through the

specification DAG G that begin at the current node C0 and proceed back to the leaves of

G. This string representation of the subtree rooted at C0 is provided as input to D, which

outputs the sequence of library DAGs matching the subtree.

76

The Calculate-Cost function, as its name suggests, calculates the cost for a match-

ing library DAG Li in accordance with the cost function, which in this dissertation sums

the nucleotide counts for DNA components labeling the DAG. The Walk-Paths function

then uses a sequence of strings representing paths through Li to walk back through G

from C0 and identify the nodes in G that are at the boundary of the subtree covered by

Li. Together, Calculate-Cost and Walk-Paths work to determine the lower bounds

on the costs of solutions that start with each match and cover all the way back to the

leaves of G.

Finally, the function Quicksort-Matches uses the Quicksort algorithm [105] to sort

the sequence of matching library DAGs at each node in accordance with the corresponding

sequence of lower bounds on the costs of solutions starting with these matches. Note that

ordering the matches at each node in this manner makes the overall worst-case runtime

for matching scale as |G||L| log(|L|). The reason ordering is performed is to enhance the

efficiency of covering, which has a worse worst-case runtime that scales as |L||G|. By

biasing towards the discovery of better solutions earlier, ordering is expected to increase

the efficacy with which these solutions’ costs are used to bound the search for suboptimal

solutions.

Primitive routines called by Algorithm 5.1 include the graph routines leaves and paths,

the node routines successors, matches, and lowerBounds, and the sequence routine sub.

The graph routine leaves returns the leaf nodes for the given graph, while paths returns

strings encoding each possible path from the given node (or root node if none is given)

back to the leaves of the given graph. These strings consist of alternating letters and

numbers that represent the types and cardinality of the nodes and edges.

Next, the node routine successors returns all nodes with incoming edges that point

from the given node. The routines matches and lowerBounds, on the other hand, return

sequences of library DAGs found to match the given node and sequences of the lower

bounds on costs of solutions beginning with these matches, respectively. Lastly, sub returns

a subsequence of the given sequence that starts at the indicated index and has the indicated

length. This routine is used during Algorithm 5.1 to effectively delete the first node in a

sequence by replacing the sequence with a subsequence that starts at index one and has

a length equal to that of the sequence minus one.

77

5.5 Covering

Once matches and lower bounds have been determined, the process of selecting matches

to form a valid, optimal cover begins at the root of the specification and proceeds in

a depth-first fashion. The covering algorithm, however, must take into account the

possibility of genetic cross-talk resulting from shared regulatory species. Due to this

possibility, a particular matching library DAG may be selected only once during a cover.

Furthermore, each covering decision has implications that may affect future covering

decisions and prevent an optimal solution from being found after a single traversal of

the specification. To address this problem, the approach to covering presented in this

section incorporates recursive backtracking and effectively becomes a branch-and-bound

approach.

In this branch-and-bound approach, whenever a dead-end (that is a state in which

selecting any available match introduces cross-talk) or a solution is encountered, the

traversal of the specification backtracks to the last node at which a match was selected.

The next best match at this node is then selected, provided that the best-case estimate for

the cost of a solution starting at the node does not exceed the cost of the best solution found

so far. The best-case estimate is calculated by summing the costs of previously selected

matches and the lower bounds on uncovered nodes at the partial solution’s boundary.

While branch-and-bound guarantees that the optimal solution is eventually found, it also

has a worst-case runtime that scales exponentially with the size of the input specification.

In practice, however, the bounding aspect of branch-and-bound can improve the average

runtime by pruning the search for suboptimal solutions. Figure 5.5 demonstrates the

application of branch-and-bound covering to the specification and library DAGs from

Figure 5.2.

Despite the use of bounding to terminate the search for suboptimal solutions, the

worst-case runtime for covering still scales as |L||G|, since in the absolute worst-case there

is no solution at all due to the constraints of genetic cross-talk. In this case, every possible

combination of library DAGs that nearly covers the specification must be tested without

the aid of bounding. It is also possible that the best solution exists but has a cost

that differs dramatically from the theoretically optimal cost for a solution that does not

account for cross-talk, in which case bounding by comparing the two does not discriminate

suboptimal solutions until many choices have been made and fewer branches are pruned

from the decision tree as a result.

78

Figure 5.5: Covering with the specification and library DAGs from Figure 5.2. (a)
During the first traversal, a dead-end is encountered. Selecting any of the remaining
inverter motifs to cover the rest of the specification would result in unintended cross-talk.
(b) After backtracking and encountering several other dead-ends, the next best match at
node X is selected and the resulting traversal yields a complete solution with a cost of
125. (c) Backtracking to look for better solutions yields a solution with a cost of 115
when the next best match at node X is selected, which becomes the current best solution.
(d) Finally, when backtracking to node O and selecting the next best match, the search
for better solutions is halted since the best-case estimate for solutions starting from the
next node C is 120, which is greater than the cost for the best solution found so far. The
best-case estimate for a partial solution is calculated by summing its current cost and the
combined lower bounds on the uncovered nodes at the partial solution’s boundary.

79

Algorithm 5.2 handles the process of selecting matches to form the best solution to

the entire specification, starting with matches at the root node of the specification and

covering back through the specification to its leaves in a depth-first fashion. Functions

called by Algorithm 5.2 include Cross-Talk, Solution-In-Bound, and Walk-Paths.

The first two functions serve to verify whether the current matching library DAG Li

under consideration can be part of a valid, potentially optimal solution. Specifically,

the Cross-Talk function checks whether or not Li shares any small molecule or TF

protein components with the current solution S as a whole, while the Solution-In-

Bound function determines whether the sum of the cost of S and the lower bounds for

the currently selected matches at each node in C is less than the cost of the best solution

B0 found so far. The Walk-Paths function works as previously described, but is used in

Algorithm 5.2 to determine which nodes should be considered next after a match at the

current node C0 has been selected to be part of S.

Previously undescribed primitive routines called by Algorithm 5.2 include the graph

routine root, the solution routine cost, and the node routines currentMatch, branch,

resetBranch, and uncovered. The graph routine root returns the root node of the given

graph. Next, the solution routine cost returns the total cost for the given solution. Finally,

the first three node routines keep track of and modify which match is currently selected at

the given node. In particular, currentMatch returns the currently selected match, while

branch increments the index that indicates which match is selected and resetBranch sets

this index to its starting value. The uncovered routine, on the other hand, keeps track

of which nodes were in C alongside the given node when it was the current node under

consideration (C0). This routine enables Algorithm 5.2 to recover the state of C when

backtracking to a previously considered node.

Finally, at the terminus of matching and covering, the SBOL-annotated SBML models

corresponding to the DAG matches that make up the best solution found are composed

to form a composite SBOL-annotated SBML model (see Figure 2.3). The composite

SBML model encodes the quantitative function for the designed genetic circuit as a whole,

while the annotating SBOL encodes structural information on the DNA components which

make up the designed genetic circuit, including their DNA sequence and sequence annota-

tions. This composite genetic circuit design that contains both structural and functional

information can then serve to inform subsequent stages of computational verification,

optimization, and physical construction.

80

Algorithm 5.2: Covering

Input: Specification DAG G = 〈V,E〉
Output: Sequence of solutions B where the best solution is located at index 0 and

each solution is a sequence of library DAGs Li Sequence of solutions B
where the best solution is located at index 0 and each solution is a
sequence of library DAGs Li

/* Repeat-until loop executes as long as its condition is not met */

1 S ← 〈〉
2 P ← 〈〉
3 C ← 〈root(G)〉
4 B ← 〈〉
5 repeat
6 if |matches(C0)| = 0 then
7 C ← sub(C, 1, |C| − 1)
8 if |C| = 0 ∧ |P | > 0 then
9 if |B| = 0 ∨ cost(S) < cost(B0) then

10 B ← 〈S〉||B
11 S ← sub(S, 0, |S| − 1)
12 resetBranch(P0)
13 P ← sub(P, 1, |P | − 1)

14 else if branch(C0) then
15 if ¬Cross-Talk(currentMatch(C0), S) then
16 if Solution-In-Bound(S,C,B0) then
17 uncovered(C0)← sub(C, 1, |C| − 1)
18 N ←Walk-Paths(paths(Li), G,C0)
19 S ← S||〈currentMatch(C0)〉
20 P ← 〈C0〉||P
21 C ← sub(C, 1, |C| − 1)
22 C ← N ||C
23 else
24 resetBranch(C0)
25 C ← 〈〉

26 else
27 C ← 〈〉
28 if |C| = 0 ∧ |P | > 0 then
29 S ← sub(S, 0, |S| − 1)
30 C ← C||uncovered(P0)
31 C ← 〈P0〉||C
32 P ← sub(P, 1, |P | − 1)

33 until |C| = 0
34 return B

81

5.6 Case Studies

To evaluate the branch-and-bound, DAG-based approach to genetic technology map-

ping, this section examines its use in mapping three genetic circuit specifications (see

Figure 5.6) against four randomly generated libraries of increasing size. The performance

of this approach is then compared with the results of a naive exhaustive search that tries

all possible solutions and a greedy variant of branch-and-bound that returns the first

solution found. The greedy variant still orders matches based on the lower bounds of

costs for solutions that start with them, but quits when the first solution is found and

does not use these lower bounds to inform the search for better solutions. Each algorithm

was run up to one hour before timing out.

Note that the specifications mapped in this section are not meant to describe genetic

circuits that have a particular real-world application. Rather, they are meant to serve as

Figure 5.6: Case study specification DAGs. (a) First is the regulatory DAG for a genetic
AOI. (b) Second is the regulatory DAG for a genetic NAND-NOR cascade. (c) Third is
the regulatory DAG for a genetic OAI cascade. The sizes of these DAGs following their
decomposition are 11, 16, and 24 nodes, respectively.

82

general examples that vary in size and incorporate a range of regulatory motifs for the

purpose of benchmarking.

As for the test libraries, they are randomly generated such that they contain a roughly

uniform distribution of inverter, buffer, OR, NOR, AND, and NAND motifs. Furthermore,

the DNA components annotating each model in the library have random, Gaussian-

distributed lengths, while their encoded protein components are shared with four percent of

all models in the library. Annotating the test libraries in this manner simulates the likely

reuse of DNA components across library circuits and the resulting cross-talk relationships

between them. Tables 5.1, 5.2, and 5.3 present the results of each case study.

Table 5.1: Solution times and sizes for the genetic AOI.

Algorithm
Library Size Library Size

25 50 100 200 25 50 100 200
Solution Time (s) Solution Size (bp)

Exhaustive Search 0.2 1 60 >1 h 3662 2871 2946 n/a
Branch-and-Bound 0.01 0.01 0.02 0.02 3662 2871 2946 2913
Greedy Variant 0.01 0.01 0.02 0.02 3662 2871 2946 2913

Table 5.2: Solution times and sizes for the genetic NAND-NOR cascade.

Algorithm
Library Size Library Size

25 50 100 200 25 50 100 200
Solution Time (s) Solution Size (bp)

Exhaustive Search 1 >1 h >1 h >1 h 11178 n/a n/a n/a
Branch-and-Bound 0.2 1 0.7 1 11178 10931 10592 8270
Greedy Variant 0.02 0.03 0.04 0.06 13219 10933 11107 8482

Table 5.3: Solution times and sizes for the genetic OAI cascade.

Algorithm
Library Size Library Size

25 50 100 200 25 50 100 200
Solution Time (s) Solution Size (bp)

Exhaustive Search >1 h >1 h >1 h >1 h n/a n/a n/a n/a
Branch-and-Bound 5 100 10 40 13836 12518 11377 9335
Greedy Variant 2 0.03 0.06 0.02 14774 15357 11603 9592

83

5.6.1 Genetic AOI

Table 5.1 displays the results of mapping the specification for a genetic AOI against

libraries containing 25, 50, 100, and 200 circuits. The AOI is shown in Figure 5.6 and has

an effective size of 11 nodes that must be matched after its decomposition.

When mapping the genetic AOI, it appears that the solution times for branch-and-

bound scale very well relative to the size of the library, unlike the solution times for

exhaustive search. As expected, the sizes of the solutions found with both approaches

are the same, which indicates that branch-and-bound does find the best possible solution

in much less time. As for the greedy variant, its overall performance when mapping the

AOI is nearly identical to that of branch-and-bound. Normally, it is expected that the

greedy variant produces a lower quality solution in less time than branch-and-bound, but

in this case the best possible solution is found first and branch-and-bound terminates

almost immediately after finding it. These rapid terminations are likely facilitated by the

fact that smaller specifications require fewer circuits to cover, which means that there

are fewer opportunities for their best possible solutions to diverge from their theoretically

optimal solutions that ignore cross-talk. When covering yields a solution that has a cost

equal to that of the theoretically optimal solution, bounding the search for suboptimal

solutions becomes most effective. Lastly, the quality of the best possible solution increases

with library size, likely owing to the greater absolute number and therefore diversity of

motifs that are left to select from larger libraries after a percentage are ruled out due to

considerations of cross-talk.

5.6.2 Genetic NAND-NOR Cascade

Table 5.2 displays the results of mapping the specification for a genetic NAND-NOR

cascade against the same libraries used to generate results in Table 5.1. The NAND-NOR

cascade can be seen in Figure 5.6 and has a decomposed size of 16 nodes.

When mapping the genetic NAND-NOR cascade, it appears that the solution times for

branch-and-bound increase by one to two orders of magnitude compared with the solution

times for the AOI, but it also appears that these times still scale fairly well as library

size increases. Exhaustive search, on the other hand, times out when applied against all

but the smallest of libraries. As for the greedy variant, it is now consistently faster than

branch-and-bound, but produces lower quality solutions. In the case of the library with

size 50, however, the solution produced by the greedy variant is only two base pairs worse

than that produced by branch-and-bound, suggesting that there are still conditions under

84

which the greedy variant can produce a nearly optimal solution for larger specifications.

Also, once again the quality of the best possible solution increases with library size.

5.6.3 Genetic OAI Cascade

Table 5.3 displays the results of mapping the specification for a genetic OAI cascade

against the same libraries as before. The OAI cascade is depicted in Figure 5.6 and has a

size of 24 nodes following decomposition.

When mapping the genetic OAI cascade, it appears once again that the solution times

for branch-and-bound increase by one to two orders of magnitude when compared with

the previous smaller specification, yet scale tolerably for larger library sizes. Interestingly,

the longest solution time occurs when mapping against a library of size 50 and is an order

of magnitude larger than when mapping against the larger libraries. One likely cause for

this result is an increase in the cost gap between the first and best solutions found for this

size of library, which can make bounding less effective at halting the search for suboptimal

solutions and pruning the decision tree. The cause of this cost gap may be that there are

fewer alternative low cost motifs when one is ruled out due to considerations of cross-talk.

This condition is made more likely by the decreased diversity of smaller library sizes. For

the smallest library sizes, however, it may be that enough solutions are ruled out due to

cross-talk, such that pruning of the overall decision tree is achieved regardless of bounding.

For library sizes other than 50, branch-and-bound converges to the best possible

solution cost within two to three solutions and the majority of its run time is spent

determining that there are no better solutions. For the size 50 library, on the other

hand, 11 solutions are found before the best possible solution. While finding the first

nine solutions takes less than four seconds of run time and represents a 15 percent gain in

solution quality, the last three solutions require an additional minute and a half to discover

and represent a less than five percent gain in solution quality. Had branch-and-bound

started with second to the last solution, its runtime for the size 50 library would have

been more comparable to its runtimes for the smaller and larger libraries. Figure 5.7

visualizes the dynamics of branch-and-bound as applied to the genetic OAI cascade.

These results, taken together with preliminary observations that branch-and-bound

begins to time out when mapping specifications larger than the OAI cascade, suggest that

the greedy variant should be used to find a fixed number of near-optimal solutions much

more quickly for larger specifications. While a fixed number of solutions may suffice when

mapping large specifications against small or large libraries, additional heuristics may be

85

Figure 5.7: Best solution cost in base pairs versus time in seconds when applying branch-
and-bound to the genetic OAI cascade and four libraries of different sizes. Each dotted
line represents the cost for the best possible solution when mapping against a particular
library.

required when mapping large specifications against midsized libraries. These heuristics

could include a dynamic cap on the number of solutions found that takes effect when the

average increase in solution quality bottoms out over time, or perhaps a less conservative

approach to bounding that only explores a potential solution if its best-case estimate cost

is less than the best solution cost plus an extra factor that depends on previous changes

in solution quality.

5.7 Summary

This chapter presents an algorithmic approach to DAG-based genetic technology map-

ping that has been implemented in the GDA tool iBioSim. It is among the first approaches

to genetic technology mapping to adapt techniques from electronic circuit design, in

particular the use of a cost function to guide the search for an optimal solution. Compared

with other approaches, it makes the greatest use of open standards, such as SBML [14]

and SBOL [44], to represent design specifications and libraries. Unlike early heuristic

technology mapping tools, MatchMaker and SBROME, iBioSim can guarantee that the

86

optimal solution is found and can do so more quickly for larger specification sizes than

the first exact technology mapping tools, BioJade [26] and GEC [31].

In light of the results presented in the previous section, there is a case to be made

for using a cost function to relate circuit parameters to solution quality, rank matches

between the specification and library based on their inclusion in a theoretically optimal

solution, bias towards the discovery of near-optimal solutions first, and prune the search for

suboptimal solutions. The average run time for exact branch-and-bound scales very well

with increasing library size for specification sizes less than 25 nodes, while preliminary

results suggest that greedily branching and bounding can find a fixed number of near-

optimal solutions to larger specifications, especially when mapping against larger, more

diverse libraries that help mitigate the effects of cross-talk. Midsized libraries, on the

other hand, may require additional heuristics when mapping larger specifications against

them to more quickly determine that a near-optimal solution has been found.

In the future, it should prove interesting to try different cost functions that make

use of circuit parameters other than length in base pairs alone. In addition, calculating

solution cost using more than one circuit parameter should enable formal comparison of

how important is one desired trait for a design when compared to another. The length

metric is appealing because it is easily determined and is at least partly related to delay

in transcription/translation and the fiscal cost associated with physical construction of a

genetic circuit. In the future, however, it would be ideal to calculate cost based on metrics

that are more directly related to a genetic circuit’s correct function, such as the degree

to which the high and low levels of inputs and outputs for two connected circuits are

compatible when noise is taken into account. Such metrics are already used to a certain

extent by the other tools mentioned above, but these tools do not use them to actively

guide the search for optimal solutions to the genetic technology mapping problem.

CHAPTER 6

SEQUENCE GENERATION

In general, sequence generation is the process of inferring a description of genetic

structure from an annotated description of genetic function. In the context of this chapter,

sequence generation is an automated methodology for inferring a composite SBOL DNA

component from a SBOL-annotated SBML model and annotating the top level of this

model with the composite component [49]. In this way, sequence generation effectively

linearizes the DNA components annotating a given SBML model and enables users of

iBioSim to automatically compose a hierarchy of genetic structure at the same time that

they compose a hierarchy of genetic function (either manually via a graphical user interface

or automatically via technology mapping).

The first two sections of this chapter describe the primary stages of sequence gen-

eration. In particular, Section 6.1 describes graph construction, the stage in which a

SBOL-annotated SBML model is abstracted to a graph representation that captures the

flow of information through the model. Section 6.2 then describes graph traversal, the

stage in which a Depth-First Search (DFS) is performed on the graph with the assistance

of a DFA to recognize and compose patterns of DNA components into valid genetic

constructs. Lastly, Section 6.3 provides a brief summary of the theory behind sequence

generation and compares the approach presented here with that taken in MoSeC [36], the

first and only other sequence generation tool that we are aware of besides iBioSim.

6.1 Graph Construction

During graph construction, nodes are created for each SBML element in a model

and any DNA components or strand sign annotating a given element are stored at its

corresponding node. Next, edges directed from one node to another are created to capture

the cause-and-effect relationships between elements of the model. This step results in

edges pointing from the nodes for elements that represent quantities (such as species or

parameters) to the nodes for elements that represent processes (such as reactions or rules)

88

and vice versa. The direction of an edge between a node for a quantity element and a

node for a process element is determined by whether the quantity element is an input

or output of the process element. Figure 6.1 displays the graph constructed from a LacI

inverter model.

In the case of a hierarchical SBML model, graph construction must be modified to

account for the presence of submodel elements. Whenever a node is created for a submodel

element, if there are no DNA components directly annotating the submodel element, then

any DNA components annotating the external model that is referenced by the submodel

element are stored at the node instead. In this way, DNA components that annotate

models lower in the modeling hierarchy are propagated upwards to become subcomponents

of DNA components that annotate models higher in the modeling hierarchy.

Next, edge creation must be modified in order to connect the nodes for submodel

elements to the nodes for other SBML elements. If a SBML element is marked to replace

or be replaced by another element in the external model referenced by a submodel element,

then a pair of edges is added to connect the node for the marked element to the node for

the submodel element and vice versa. Edges are added in both directions between these

nodes because the cause-and-effect relationships between elements at different levels of

the modeling hierarchy cannot be known without combining the models and replacing or

deleting their elements as marked. Flattening the hierarchy of models and associated DNA

Figure 6.1: Graph constructed from the LacI inverter model generated and annotated
in Chapter 4 (see Figure 4.2). Each node of the graph has been labeled with the type of
SBML element to which it corresponds, while each edge has been labeled with the type
of input/output relationship that exists between the edge’s origin and destination nodes.
The DNA components stored at these nodes are shown using symbols taken from the
SBOL Visual standard [53]. As before, the bent arrow is a promoter, each half circle is a
RBS, each box arrow is a CDS, and the “T” is a terminator.

89

components in this manner, however, may not always be necessary or desirable. Figure 6.2

displays the graph constructed from the hierarchical toggle switch model following the

generation of composite DNA components for the LacI inverter and TetR inverter models.

Flattening of a hierarchical model prior to graph construction is necessary when

doing so would change the set of genetic constructs resulting from graph traversal. For

example, the set of generated genetic constructs would change when an unannotated

element in one model is marked to replace an annotated element in another model that

is lower in the modeling hierarchy. Hence, the overarching strategy when generating a

composite DNA component for a hierarchical model is to construct two graphs, one for

the model as it stands and one for its flattened version, then traverse both graphs and

compare the partial and complete genetic constructs composed thereof. If the constructs

match with respect to the URIs of their noncomposite subcomponents, then sequence

generation annotates the hierarchical model using the DNA component composed from

the unflattened model. Otherwise, it annotates using the DNA component composed from

the flattened model. In this way, sequence generation seeks to preserve the hierarchy of

composed DNA components whenever possible, though not at the expense of the set of

Figure 6.2: Graph constructed from the hierarchical toggle switch model. The composite
DNA components for the LacI inverter (top right) and the TetR inverter (bottom left) are
stored at the nodes corresponding to the submodel elements of the toggle switch model.
These composite components are depicted here using the SBOL Visual symbols for their
subcomponents placed along a solid line. The composite component for the TetR inverter
is reversed and flipped to indicate that a negative strand sign is stored at the same node.
Finally, each pair of edges in the graph has been labeled with the model composition
relationship between a species element in the toggle switch model and a species element
in the external LacI inverter or TetR inverter model.

90

genetic constructs implied by the cause-and-effect relationships at the lowest level of the

modeling hierarchy.

For example, two separate graph traversals need to be performed on the graphs

constructed from the hierarchical and flattened versions of the toggle switch model. Since

the toggle switch components generated by traversing these graphs are identical, the

component chosen to annotate the toggle switch model is that which possesses the greatest

degree of hierarchy, that is, the component composed from the hierarchical version of

the model. This composite toggle switch component contains subcomponents for the

LacI-repressible and TetR-repressible genes, which in turn contain noncomposite subcom-

ponents such as promoters and terminators. By comparison, the other (also composite)

toggle switch component contains these noncomposite subcomponents, but not the inter-

mediate subcomponents for the LacI-repressible and TetR-repressible genes.

Algorithms 6.1 and 6.2 handle the process of graph construction. Algorithm 6.1

initiates graph construction from the nonhierarchical elements of the input SBML model

and creates a mapping from these elements to their corresponding graph nodes to assist in

edge creation. Algorithm 6.2, on the other hand, finishes graph construction from any sub-

model elements if they are present. Functions called by Algorithm 6.1 and Algorithm 6.2

include Parse-Annotation, Parse-Identifiers, and Load-External-Model. The

Parse-Annotation function takes as input a RDF/XML annotation and determines if

it is a SBML-to-SBOL annotation. If so, then the function resolves the annotation into

a list of DNA components and a strand sign. Next, the Parse-Identifiers function

takes as input a MathML object and returns the SBML elements corresponding to the

identifiers (not mathematical operators or numbers) found in the MathML. Lastly, the

Load-External-Model function takes as input a submodel, determines its correspond-

ing external model definition, and returns the external model defined. Primitive routines

called by Algorithm 6.1 and Algorithm 6.2 are indicated with italicized text and belong to

graph nodes as well as SBML elements. The routines belonging to SBML elements return

a variety of data on these elements as described in the SBML specification [80], while the

node routine dnaComponents returns the list of DNA components currently stored at the

given node.

6.2 Graph Traversal

During graph traversal, a DFS is performed to order the nodes of the graph such that

their stored DNA components may be concatenated to form a valid partial or complete

91

Algorithm 6.1: Construct Graph
Input: SBML model M = 〈S,R,L, P,N,C〉 where S is a set of species, R is a set of reactions, L is a set of

rules, P is a set of global parameters, N is a set of events, and C is a set of submodels
Output: Graph G = 〈V,E〉 where V is a set of nodes and E is a set of edges, and mapping µ : X → V

where X = S ∪R ∪ L ∪ P ∪N is the set of all elements other than submodels in the input SBML
model

/* {} are opening/closing set brackets */

/* ∪ is a composition operator that unions the contents of two sets */

/* 〈〉 are opening/closing sequence brackets */

1 for x ∈ X do
2 dnaComponents(v)← Parse-Annotation(annotation(x))
3 V ← V ∪ {v}
4 µ(x)← v

5 for r ∈ R do
6 for s ∈ reactants(r) ∪modifiers(r) do
7 E ← E ∪ {〈µ(s), µ(r)〉}

8 for x ∈ Parse-Identifiers(kineticLawMath(r)) do
9 E ← E ∪ {〈µ(x), µ(r)〉}

10 for s ∈ products(r) do
11 E ← E ∪ {〈µ(r), µ(s)〉}

12 for l ∈ L do
13 if isAssignmentRule(l) ∨ isRateRule(l) then
14 for x ∈ Parse-Identifiers(math(l)) do
15 E ← E ∪ {〈µ(x), µ(l)〉}

16 E ← E ∪ {〈µ(l), µ(variable(l))〉}

17 for n ∈ N do
18 for x ∈

Parse-Identifiers(triggerMath(n))∪Parse-Identifiers(delayMath(n))∪Parse-
Identifiers(priorityMath(n))∪Parse-Identifiers(eventAssignmentMaths(n))
do

19 E ← E ∪ {〈µ(x), µ(n)〉}

20 for x ∈ eventAssignments(n) do
21 E ← E ∪ {〈µ(n), µ(x)〉}

22 return 〈G,µ〉

Algorithm 6.2: Construct Graph From Submodels
Input: Graph G = 〈V,E〉, mapping µ : X → V , and SBML model M = 〈S,R,L, P,N,C〉
Output: Graph G = 〈V,E〉
/* µ(x) returns the element mapped to x in µ */

1 for c ∈ C do
2 dnaComponents(v)← Parse-Annotation(annotation(c))
3 if |dnaComponents(v)| = 0 then
4 W ← Load-External-Model(c)
5 dnaComponents(v)← Parse-Annotation(annotation(W))

6 V ← V ∪ {v}
7 µ(c)← v

8 for x ∈ X do
9 for c ∈ submodels(replacements(x)) ∪ submodel(replacedBy(x)) do

10 E ← E ∪ {〈µ(x), µ(c)〉}
11 E ← E ∪ {〈µ(c), µ(x)〉}

12 return G

92

genetic construct. A basic DFS starts at a node with no incoming edges and follows

outgoing edges until a node with no outgoing edges is encountered. The DFS then

backtracks until it can follow an edge not previously taken. This process repeats until

all nodes in the graph have been encountered and ordered accordingly. However, because

it is desirable for the ordering of nodes to correspond to a valid ordering of their stored

DNA components, graph traversal cannot rely on a DFS alone, since the choices made

by the DFS at branches in the graph are uninformed. For example, there are multiple

possible node orderings that a DFS could produce when applied to the LacI inverter graph

in Figure 6.1, only some of which correspond to a valid genetic construct.

Consequently, graph traveral requires an arbiter to determine when the DFS has chosen

a path leading to an invalid genetic construct. For this purpose, graph traversal uses

DFAs constructed from regular expressions. In computer science, a regular expression is

a common means of specifying a regular language, or collection of patterns, while a DFA

is a class of state machine used to match inputs against the regular language underlying

its construction.

The default regular expression of iBioSim is promoter, (RBS,CDS)+terminator+,

which specifies that DNA components are to be composed into genetic constructs contain-

ing a promoter followed by one or more RBS-CDS pairs and one or more terminators. At

the start of graph traversal, either this default expression or a custom expression created

by the user is translated into four DFAs: DC, DT , DS, and DP . During graph traversal,

these DFAs process the SO types of the noncomposite DNA components stored at each

node encountered. Whenever the DFAs determine that an invalid genetic construct would

be composed, backtracking is initiated to find a valid solution if possible.

In particular, the DFA DC recognizes patterns of SO types corresponding to complete

genetic constructs. The purpose of this DFA is to distinguish between complete and partial

genetic constructs so that the user can be warned of incomplete constructs in accordance

with their preferences. DC is constructed by first quantifying the user’s regular expression

for a complete genetic construct with the + (one or more) operator and then converting

the quantified regular expression to a DFA using a method similar to that of McNaughton

and Yamada [106]. For example, the regular expression p(r, c)+t+ would be quantified as

(p(r, c)+t+)+ and then converted to the DFA shown in Figure 6.3. This DFA can recognize

patterns such as p, r, c, r, c, t, t and p, r, c, t, p, r, c, t.

The DFAs DT and DS, on the other hand, recognize patterns for genetic constructs

93

Figure 6.3: DFA DC translated from iBioSim’s default regular expression for a complete
genetic construct. State S0 is the start state. If an input matches the label of an outgoing
edge of the current state, then a transition is made from this state to the edge destination.
If there is no match for an input, then the DFA rejects the entire input sequence. The
DFA only accepts an input sequence if it ends in the accept state S4.

that end or start as complete genetic constructs, respectively. The main purpose of

these DFAs is to determine if the genetic constructs inferred during graph traversal can

be concatenated into a single strand of DNA. Because some genetic constructs may

not be complete, care must be taken in connecting them to avoid introducing unin-

tended cis interactions, such as a promoter regulating the transcription of a RBS-CDS

pair that it should not regulate according to the graph structure. DT is constructed

by first expanding the user’s quantified expression to one that specifies all subpatterns

of the quantified expression and then converting this expanded expression to a DFA

as before. For example, the quantified expression (p(r, c)+t+)+ would be expanded to

(p(r, c)+t+|(r, c|c)(r, c)∗t+|t, t∗)(p(r, c)+t+)∗ and then converted to a DFA that can recog-

nize patterns such as r, c, r, c, t, t and r, c, t, p, r, c, t. Note that the | operator separates

alternatives, while the ∗ operator indicates that there is zero or more of the preceding

symbol. DS is constructed in the same manner as DT , with the exception that the

ordering of the user’s quantified expression is reversed prior to its expansion. Hence, the

resulting DFA can recognize patterns such as c, r, c, r, p and c, r, p, t, c, r, p. When DS is

used during graph traversal, its input SO types are reversed to ensure proper construct

recognition.

Lastly, the DFA DP recognizes patterns for partial genetic constructs with no restric-

tions on how they end or start. The primary purpose of this DFA is to determine if it is

possible to order the nodes in a given portion of the graph such that their stored DNA

components make up a valid partial or complete genetic construct. This DFA is also used

in conjunction with DT to determine when the boundary of a partial or complete genetic

94

construct has been reached during graph traversal. DP is constructed by making a copy

of DT and marking every one of its states as accepting. The resulting DFA can recognize

patterns such as r, c, t, t, p and r, c, t, p, r, c, t, p.

Through the use of the above DFAs, several algorithms handle the process of graph

traversal. Of these algorithms, Algorithm 6.3 composes the others to find a list of nodes

V O with a particular property. Namely, when the DNA components stored at each node

in V O are concatenated to form a composite DNA component, the result is one or more

valid genetic constructs that have cis interactions consistent with the cause-and-effect

graph structure. Algorithm 6.3 finds V O using three lists of nodes (V S, V C, and V L)

and one set (V G) to manage a series of DFSs.

In particular, each node in the list V S is the starting point for a DFS that potentially

results in a valid genetic construct. V S is initially populated with nodes that have no

incoming edges, but is later expanded with nodes that follow the boundary of a genetic

construct. Next, sequence V C stores the nodes that are currently under consideration

during a DFS from a given starting node. Though only the first node in the list, V C0,

is considered at a time, V C may contain more than one node when the graph branches

and it becomes necessary to keep track of the root nodes for the branches that are not

immediately traversed in a depth-first fashion. When consideration of V C0 is finished, it

is replaced with its successors in the graph G. When V C becomes empty, it is repopulated

using the next node from V S, which signifies the start of a new DFS. The list V L stores

off each node removed from V C, thereby keeping a record of the order in which the nodes

that are local to the current DFS have been visited. At the conclusion of a given DFS,

V L is composed with the list of ordered nodes V O. V L is also added to the set of globally

visited nodes V G, which keeps track of the nodes that have been visited by previous DFSs.

V G is used at the end of Algorithm 6.3 to determine whether any nodes have yet to be

visited. Finally, V L and V G are also used to prune previously visited nodes from V C and

V S, respectively.

Primitive routines called by Algorithm 6.3 include the DFA routines runDFA and reset,

as well as the node routine types and sequence routine sub. The routine runDFA takes a

sequence of strings as input, transitions the given DFA to a new state accordingly, and

returns a Boolean indicating whether the new state is accepting. When called with the

partial construct DFA DP , this routine determines if an invalid genetic construct would

be formed, in which case Algorithm 6.3 terminates and returns nothing.

95

Algorithm 6.3: Traverse Graph
Input: Graph G = 〈V,E〉, sequence of starting nodes V S, sequence of current nodes V C, sequence

of local nodes V L, sequence of ordered nodes V O, set of global nodes V G, and sequence of
DFAs D = 〈DC,DP,DS,DT 〉

Output: Sequence of ordered nodes V O
1 while |V S| > 0 do
2 if |V C| = 0 then
3 V C ← V C||V S0

4 while |V C| > 0 do
5 if runDFA(DP, types(V C0)) then
6 runDFA(DT, types(V C0))
7 V L← V L||V C0

8 V N ←Determine-Next-Nodes(V S, V C, V L, V G,DP,DT)
9 V C ← sub(V C, 1, |V C| − 1)

10 if |V N | = 0 then
11 while |V C| > 0 ∧ V C0 ∈ V L do
12 V C ← sub(V C, 1, |V C| − 1)

13 else if |V N | = 1 then
14 V C ← V N0||V C

15 else if |V N | > 1 then
16 return Traverse-Branches(G,V S, V C, V N, V L, V O, V G,D)

17 else
18 return 〈〉

19 reset(DP)
20 reset(DT)
21 if ¬Order-Local-Nodes(V L, V O,DS,DT) then
22 return 〈〉
23 V G← V L
24 V L← 〈〉
25 while |V S| > 0 ∧ V S0 ∈ V G do
26 V S ← sub(V S, 1, |V S| − 1)

27 if |V G| < |V | then
28 return Traverse-Cycles(G,V O, V G,D)

29 else
30 return V O

The input for runDFA is supplied by types, which returns the SO types and strand

signs for the noncomposite DNA components stored at a given node. The routine reset,

on the other hand, returns the given DFA to its start state and is called at the end of

each DFS or when the strand signs consumed by the DFA change polarity. Lastly, sub

returns a subsequence of the given sequence that starts at the indicated index and has the

indicated length. This routine is used during Algorithm 6.3 to effectively delete the first

element in a sequence by replacing the sequence with a subsequence that starts at index

one and has a length equal to that of the sequence minus one.

96

When called by Algorithm 6.3, Algorithm 6.4 determines which nodes succeeding the

current node V C0 are added to V C or V S for future consideration. The algorithm

accomplishes this task by testing two sets of conditions for each successor node vn,

provided that vn has not been visited during the current DFS (line 3). The first set

of conditions checks for whether a successor node vn can and should be visited by another

DFS, while the second set checks for whether vn should be the starting point for a new

DFS.

In the first set of conditions, one of two conditions must be true for the current DFS

to continue. Either the current DFS must be in the middle of a genetic construct (line

5) or, if vn has predecessors other than V C0 and has never been visited, then all other

predecessors of vn must have already been visited during the current DFS or other DFSs

(line 6). The latter condition guarantees that vn is visited at least once, while the former

prevents vn from being visited more than once unless it and its successors potentially store

DNA components that appear in more than one genetic construct.

For example, two different promoters could promote the transcription of the same

RBS-CDS-terminator combination. Even though this combination should appear in two

different locations on DNA, it could annotate a single element of the model, such as

a species that results from genetic production at both promoters. Hence, the node

Algorithm 6.4: Determine Next Nodes
Input: Sequence of starting nodes V S, sequence of current nodes V C, sequence of local nodes V L,

set of global nodes V G, partial construct DFA DP , and terminal construct DFA DT
Output: Sequence of next nodes V N

1 V N ← 〈〉
2 for vn ∈ successors(V C0) do
3 if vn /∈ V L then
4 V P ← predecessors(vn) \ V C0

5 if
(
¬inStartState(DP) ∧ ¬inAcceptState(DT)

)
∨

6

(
vn /∈ V G ∧

(
|V P | = 0 ∨ V P ⊆ V L ∨ V P ⊆ V G

))
then

7 if |types(vn)| > 0 ∧
8

(
¬checkDFA(DP, firstType(vn)) ∨

9 inStartState(DP) ∨
10

(
inAcceptState(DT) ∧ ¬checkDFA(DT, firstType(vn))

))
then

11 V S ← V S||vn
12 else
13 V N ← V N ||vn

14 return V N

97

corresponding to this modeling element would have to be visited twice in order to obtain

two separate instances of the RBS-CDS-terminator combination on DNA.

In the second set of conditions, if vn stores any DNA components, then there is a

chance that it marks the beginning of a new genetic construct and should be added to

V S instead of V C. For instance, if the first component at vn would lead to an invalid

construct, then it is at least possible that vn starts a new genetic construct (line 8). This

is the definitely true, however, if the current DFS is at the end of a genetic construct

and the first DNA component stored at vn has a SO type other than that of a DNA

component found at the end of a complete genetic construct (line 10). When neither of

these conditions are true, vn is added to V C instead of V S.

Primitive routines called by Algorithm 6.4 that have not been described elsewhere

include the DFA routines inAcceptState, inStartState, and checkDFA, and the node routine

firstType. Routines inAcceptState and inStartState return Booleans indicating whether

the given DFA is in its accept state or start state, respectively. The routine checkDFA

functions similarly to runDFA, but only returns a Boolean indicating whether the given

DFA would be in an accept state after processing a list of input strings and does not

actually transition the DFA to a post-input state. Finally, firstType returns the SO type

of the first DNA component in a list stored at the given node.

If Algorithm 6.4 determines that multiple nodes are to be added to V C, then Algo-

rithm 6.5 handles the process of finding the order in which these next nodes should be

added to V C so that a valid genetic construct is obtained. The algorithm achieves this

task by permuting the sequence of next nodes V N and recursively calling Algorithm 6.3

Algorithm 6.5: Traverse Branches
Input: Graph G = 〈V,E〉, sequence of starting nodes V S, sequence of current nodes V C, sequence

of next nodes V N , sequence of local nodes V L, sequence of ordered nodes V O, set of
global nodes V G, and sequence of DFAs D = 〈DC,DP,DS,DT 〉

Output: Sequence of ordered nodes V BO
1 for i← 0...|V N | − 1 do
2 for j ← i...|V N | − 1 do
3 V N ← V N ||V Ni

4 V N ← sub(V N, 0, i)||sub(V N, i+ 1, |V N | − i)
5 V BO ←Traverse-Graph(G, copy V S, V N || copy V C, copy V L, copy V O,
6 copy V G, copy D)
7 if |V BO| > 0 then
8 return V BO

9 return 〈〉

98

with copies of relevant data structures (in case the call fails and the next permutation

must be tried).

When the current DFS terminates, Algorithm 6.6 handles the process of composing

the sequence of nodes ordered by the DFS (V L) with the sequence of nodes ordered by

previous DFSs (V O). The algorithm solves this problem using the starting and terminal

construct DFAs DS and DT to determine whether V L should be concatenated at the

beginning or end of V O. While complete genetic constructs can generally be concatenated

in any order without introducing cis-interactions between DNA components within these

constructs, care must be taken when composing partial genetic constructs. For instance,

when composing a single promoter with a RBS-CDS-terminator combination that it should

not cis-regulate, the promoter must be placed immediately after the RBS-CDS-terminator

combination.

The final algorithm of sequence generation is responsible for traversing any nodes

that are unvisited by the primary graph traversal, that is, nodes that belong to isolated,

strongly connected subgraphs. These are cyclic portions of the graph that lack nodes with

zero incoming edges to serve as natural starting points for a traversal and that are not

reachable from other portions of the graph. The algorithm solves the problem of visiting

these cycles by first identifying within them potential starting nodes for which the first

stored DNA component shares a SO type with the first component in a complete genetic

construct. Next, the algorithm tries these starting nodes one at a time by recursively

calling Algorithm 6.3 with copies of relevant data structures in case a given starting node

does not produce a valid solution. These copies include those of the graph, DFAs, and

node collections. If no valid solutions can be produced in this way, then all remaining

Algorithm 6.6: Order Local Nodes
Input: Sequence of local nodes V L, sequence of ordered nodes V O, starting construct DFA DS,

and terminal construct DFA DT
Output: Sequence of ordered nodes V O

1 if |types(V L)| = 0 ∨ |types(V O)| = 0 ∨
2
(
checkDFA(DS, types(V L)) ∧ checkDFA(DT, types(V O))

)
then

3 V O ← V O||V L

4 else if checkDFA(DS, types(V O)) ∧ checkDFA(DT, types(V L)) then
5 V O ← V L||V O

6 else
7 return False

8 return True

99

nodes within the cycles are tried as starting nodes in the aforementioned manner. The

pseudocode for this procedure can be found in Algorithm 6.7.

6.3 Summary

This chapter describes a methodology for sequence generation that is implemented

in the GDA software tool iBioSim. This methodology builds on the results of the first

sequence generation tool, MoSeC, by extending the processes of graph construction and

graph traversal which form the basis for sequence generation. In particular, sequence

generation in iBioSim enhances graph construction to handle a greater variety of core

SBML elements, such as events and parameters, and hierarchical SBML models built via

the hierarchical model composition package. This methodology also supplements graph

traversal with an arbiter in the form of a DFA that is constructed from a regular expression

and recognizes patterns of SO types, thereby providing users of iBioSim with a means of

programming sequence generation to recognize a greater variety of genetic constructs.

By allowing the user to customize the source of arbitration for graph traversal, sequence

generation in iBioSim is more flexible than rule-based sequence generation in MoSeC when

it comes to generating composite DNA components that represent different types of genetic

construct.

Nevertheless, there is one major assumption that dictates the class of genetic constructs

that it is possible to generate via sequence generation in iBioSim. Namely, sequence

generation assumes that the partial ordering of the modeling elements that describe the

Algorithm 6.7: Traverse Cycles
Input: Graph G = 〈V,E〉, sequence of ordered nodes V O, set of global nodes V G, and sequence of

DFAs D = 〈DC,DP,DS,DT 〉
Output: Sequence of ordered nodes V CO

1 V C ← V \ V G
2 V S ← ∅
3 for vc ∈ V C do
4 if firstType(vc) ⊆ startingTypes(DC) then
5 V S ← V S ∪ vc

6 for i← 0...1 do
7 for vs ∈ V S do
8 V CO ←Traverse-Graph(G, 〈vs〉, 〈〉, 〈〉, copy V O, copy V G, copy D)
9 if |V CO| > 0 then

10 return V CO

11 V S ← V C \ V S

12 return 〈〉

100

behavior of a genetic construct, as inferred from the cause-and-effect relationships between

these elements, is equivalent to the partial ordering of the DNA components that annotate

these elements, from which a total ordering or sequence of these DNA components that

is a valid genetic construct may be determined. By means of this assumption, however,

sequence generation can be used to efficiently infer composite DNA components from

the SBOL-annotated SBML models produced by genetic technology mapping. These

composite components can then serve to inform subsequent planning steps for physical

construction.

Lastly, this approach takes advantage of regular expressions for pattern recognition.

This decision was made based on previous research showing that context-free languages

comprised of types for DNA components can be used to verify synthetic genetic con-

structs [46]. In the same paper, it was speculated that simpler regular languages specified

by regular expressions would be sufficient for this task as well. The iBioSim approach

to sequence generation has shown that this is entirely possible. In the future, however,

it could prove interesting to perform sequence generation with the aid of languages and

associated automata that are more expressive than regular and context-free languages.

CHAPTER 7

CONCLUSIONS

This chapter concludes the dissertation with a summary of its contents and potential

areas for future research. In particular, Section 7.1 discusses the contributions of this

dissertation and their significance, while Section 7.2 outlines possible extensions to SBOL

and iBioSim’s GDA workflow and discusses future validation of this workflow in the lab.

7.1 Summary

The primary subject of this dissertation is a workflow for genetic technology map-

ping and the techniques and standards that make it possible. This workflow is imple-

mented in the software tool iBioSim and provides a fully automated means to generate a

SBOL/SBML design library from a collection of SBOL modules, map a SBML specification

against the design library, and generate a linearized SBOL/SBML design from the result

of the mapping. In this way, the workflow demonstrates how existing techniques and

concepts from electrical and computer engineering can be adapted to a biological context

and facilitate genetic design.

Perhaps most significantly, this workflow is wholly built on a framework of actively

developed standards for describing genetic structure and function, unlike all other such

workflows of which we are aware. Furthermore, the SBOL standard (in particular the

proposed data model for its next version) forms no small part of the contributions of

this dissertation. If nothing else, this dissertation should serve as an example of what is

possible in terms of GDA research and software development while working within the

constraints of standards, as well as the benefits to be gained from working with them,

such as the exchange of data between different software tools.

Ultimately, it is hoped that this dissertation and its contributions can aid in the even-

tual formation of an ecosystem for standard-compliant GDA tools. In such an ecosystem,

sequence editing tools and modeling tools can be used to create and edit standardized

descriptions of genetic structure and function, while design composition tools and genetic

102

technology mapping can be used to connect, compose, and map between these standardized

descriptions. With such an ecosystem in place, synthetic biologists could use GDA software

tools to more efficiently design genetic systems and leverage the efforts of collaborators

and/or publicly available data sets without the loss of a designer’s intent in the move

between different tools.

7.2 Future Research

This section discusses areas of future research related to SBOL, model generation,

genetic technology mapping, and sequence generation as presented in this dissertation.

7.2.1 SBOL

Chapter 3 describes a proposal for the next version of SBOL. Even once this proposal is

accepted, there remains research to standardize the representation of information required

for the physical construction and successful deployment of a genetic design, such as liquid

handling robot instructions and environmental/host context. The former is necessary to

enable efficient, automated construction of genetic designs across different platforms, while

the latter is necessary to ensure that all components and modules of a genetic design are

compatible with the intended host.

Furthermore, while the proposed data model is capable of encoding qualitative de-

scriptions of genetic function, it could be extended to provide a firmer basis for generating

quantitative models that conform to the same basic data set. Since one of the goals of

SBOL is to avoid reproducing existing standards for quantitative models, perhaps the most

that can be done in this area is to enable interactions to refer to quantitative parameters.

These parameters can then inform the generation of a variety of different models.

7.2.2 Model Generation

As noted at the end of Chapter 4, the approach to model generation presented in

this dissertation captures only one of many possible mappings between SBOL and various

formalisms for quantitative modeling of biology. In particular, this dissertation specifies

a single mapping between SBOL and a specific type of genetic circuit model written in

SBML, one that is especially suited to genetic technology mapping and sequence generation

in iBioSim. SBML, however, is capable of specifying other types of models. In addition,

there exist other modeling standards besides SBML, including those expressly developed

103

for modeling biology, such as CellML [15], and programming languages commonly applied

to modeling biology, such as MATLAB [39] and Python.

One of the goals of SBOL is to serve as a common means of qualitatively describing

genetic function, such that many different quantitative models that conform to a given

SBOL design can be developed for different design tasks. For example, a SBOL design may

include qualitative descriptions of both metabolic and genetic regulatory networks, which

are typically modeled using algebraic and differential equations, respectively. Accordingly,

model generation must grow to accommodate other possible mappings between descrip-

tions of qualitative genetic function written in SBOL and descriptions of quantitative

genetic function written in other languages.

In order to enable this growth, however, further research is required to formalize the

process of model generation in relation to SBOL. Potential by-products of this research

could include methods for automatically comparing quantitative models across different

standards and GDA tools that enable users to create and store new mappings from

SBOL to more quantitative modeling standards. Such tools and methods would help

to democratize model generation and involve larger segments of the synthetic biology

community in its long-term growth.

7.2.3 Genetic Technology Mapping

Chapter 5 presents one the primary results of this dissertation, a DAG-based approach

to genetic technology mapping that uses the mathematical framework of a cost function

to guide the search for optimal and near-optimal solutions. Currently, this approach is

only applicable to specifications for combinational genetic circuits, in which the steady-

state outputs of a circuit are dependent on the steady-state inputs alone. It cannot be

applied to the specifications for sequential genetic circuits, in which the output and/or

intermediate signals are fed back to influence previous signals. To handle these cyclic

specifications would be a very important step for GDA, as it would enable GDA to move

beyond the automated design of combinational logic and into the realm of asynchronous

state machines capable of full-fledged computation.

In the near future, specifications for sequential genetic circuits could be handled

by DAG-based technology mapping if its partitioning step is extended with existing

algorithms for efficiently cutting cyclic graphs into DAGs. Still, this extended approach

would also require that genetic circuit parameters other than length in base pairs, such

as signal magnitudes and time delays, are taken into account to guide the search for

104

solutions that have both the desired steady states and transient behavior between these

states. In light of these considerations, further research is necessary to determine the

most effective strategies for efficiently solving specifications for both combinational and

sequential genetic circuits.

7.2.4 Sequence Generation

As mentioned in Chapter 6, it could prove interesting to further generalize sequence

generation with the aid of languages and their associated automata that are more expres-

sive than regular languages and DFAs. These could include, for example, context-free

languages and Deterministic Pushdown Automata (DPA). Such a framework would in

theory allow the generation of genetic constructs that match more sophisticated patterns

than those encoded by regular expressions.

Another potential avenue of future research is in regards to sequence generation’s use

of SBOL. Currently, the approach described in this dissertation may only be applied

to DNA components with completely specified sequences. In the future, it could prove

useful to make full use of SBOL’s capabilities for partial design and generate composite

DNA components that lack DNA sequences, but assert the relative ordering of their

subcomponents via precedes relationships. Lastly, once the data model for the next version

of SBOL proposed in Chapter 3 is implemented, sequence generation could be extended

to handle RNA components in addition to DNA components.

7.2.5 Workflow Validation

As the GDA workflow of this dissertation is extended to handle data that characterize

genetic circuits (data such as input and output signal magnitudes) this workflow should be

applied to design libraries backed by real-world genetic circuits. In this way, the genetic cir-

cuit designs produced by the workflow can be physically implemented and experimentally

characterized over a range of inputs to validate iBioSim’s approach to genetic technology

mapping. Other approaches, such as SBROME [41] and Matchmaker [34], have already

built up and leveraged realistic design libraries during genetic technology mapping, but

so far only Matchmaker, as part of the Tool-Chain to Accelerate Biological Engineering

(TASBE) [107], has published experimental validation of its output genetic circuit designs.

The lack of validation of other GDA workflows is partly due to the absence of char-

acterization methods that use normalized measures of genetic signals, thereby hindering

the comparison of experimental results for different genetic circuits. Recently, however,

105

there has been research to address this problem that takes advantage of calibrated flow

cytometry to construct input/output transfer curves [108]. Consequently, the time is ripe

to validate the results of genetic technology mapping tools and their associated workflows.

Finally, in the course of such workflow validation, researchers will undoubtedly discover

needs for other GDA tools to help bridge the gap between abstract design and physical

implementation of genetic circuits. For instance, it could prove interesting to develop

GDA tools for identifying gaps in design libraries, then suggesting genetic components or

subcircuits that could be developed to fill these gaps.

REFERENCES

[1] A. Gutmann et al., “New directions: the ethics of synthetic biology and emerging
technologies,” Presidential Commission for the Study of Bioethical Issues, Washing-
ton, D.C., Rep. 1, Dec. 2010.

[2] D.-K. Ro et al., “Production of the antimalarial drug percursor artemisinic acid in
engineered yeast,” Nature, vol. 440, pp. 940–943, 2006.

[3] S. Atsumi et al., “Metabolic engineering of Escherichia coli for 1-butanol produc-
tion,” Metab. Eng., vol. 10, pp. 305–311, 2008.

[4] E. J. Steen et al., “Metabolic engineering of Saccharomyces cerevisiae for the pro-
duction of n-butanol,” Microb. Cell Fact., vol. 7, no. 36, doi:10.1186/1475-2859-7-36,
2008.

[5] F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a dynamic sensor-regulator
system for production of chemicals and fuels derived from fatty acids,” Nat. Biotech-
nol., vol. 30, pp. 354–359, 2012.

[6] G. M. Brazil et al., “Construction of a rhizosphere pseudomonad with potential
to degrade polychlorinated biphenyls and detection of bph gene expression in the
rhizosphere,” Appl. Environ. Microb., vol. 61, no. 5, pp. 1946–1952, 1995.

[7] I. Cases and V. de Lorenzo, “Genetically modified organisms for the environment:
stories of success and failure and what we have learned from them,” Int. Microbiol.,
vol. 8, pp. 213–222, 2005.

[8] J. C. Anderson, E. J. Clarke, and A. P. Arkin, “Environmentally controlled invasion
of cancer cells by engineering bacteria,” J. Mol. Biol., vol. 355, pp. 619–627, 2006.

[9] D. Endy, “Foundations for engineering biology,” Nature, vol. 438, pp. 449–453, 2005.

[10] A. Arkin, “Setting the standard in synthetic biology,” Nat. Biotechnol., vol. 26,
pp. 771–774, 2008.

[11] J. Peccoud et al., “Essential information for synthetic DNA sequences,” Nat.
Biotechnol., vol. 29, p. 22, 2011.

[12] H. S. Bilofsky and B. Christian, “The GenBank genetic sequence data bank,” Nucleic
Acids Res., vol. 16, no. 5, pp. 1861–1863, 1988.

[13] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence compari-
son,” P. Natl. Acad. Sci. USA, vol. 85, pp. 2444–2448, 1988.

[14] M. Hucka et al., “The Systems Biology Markup Language (SBML): a medium
for representation and exchange of biochemical network models,” Bioinformatics,
vol. 19, no. 4, pp. 524–531, 2003.

107

[15] W. J. Hedley, M. R. Nelson, D. P. Bellivant, and P. F. Nielsen, “A short introduction
to CellML,” Philos. T. Roy. Soc. A, vol. 359, no. 1783, pp. 1073–1089, 2001.

[16] iGEM Registry, 2003; http://parts.igem.org.

[17] D. Densmore and S. Hassoun, “Design automation for synthetic biological systems,”
IEEE Des. Test Comput., vol. 29, no. 3, pp. 7–20, 2012.

[18] S. M. Richardson, S. J. Wheelan, R. M. Yarrington, and J. D. Boeke, “GeneDesign:
rapid, automated design of multikilobase synthetic genes,” Genome Res., vol. 16,
pp. 550–556, 2006.

[19] A. Villalobos, J. Ness, C. Gustafsson, J. Minshull, and S. Govindarajan, “Gene
Designer: a synthetic biology tool for constructing artificial DNA segments,” BMC
Bioinformatics, vol. 7, p. 285, 2006.

[20] P. Umesh, F. Naveen, C. Rao, and A. Nair, “Programming languages for synthetic
biology,” Syst. Synth. Biol., vol. 4, pp. 265–269, 2010.

[21] G. Wu, N. Bashir-Bello, and S. J. Freeland, “The Synthetic Gene Designer: a flexible
web platform to explore sequence manipulation for heterologous expression,” Protein
Expres. Purif., vol. 47, pp. 441–445, 2006.

[22] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D. Keasling,
“Design, implementation and practice of JBEI-ICE: an open source biological part
registry platform and tools,” Nucleic Acids Res., vol. 40, doi: 10.1093/nar/gks531,
2012.

[23] A. Cornish-Bowden, “Nomenclature for incompletely specified bases in nucleic acid
sequences: recommendations 1984,” Nucleic Acids Res., vol. 13, pp. 3021–3030,
1985.

[24] G. Rodrigo, J. Carrera, and A. Jaramillo, “Asmparts: assembly of biological model
parts,” Syst. Synth. Biol., vol. 1, pp. 167–170, 2007.

[25] S. Kosuri, J. R. Kelly, and D. Endy, “TABASCO: a single molecule, base-pair
resolved gene expression simulator,” BMC Bioinformatics, vol. 8, p. 480, 2007.

[26] J. Goler, “BioJADE: a design and simulation tool for synthetic biological systems,”
M.S. thesis, Dept. Elect. Comput. Eng., MIT, Cambridge, MA, 2004.

[27] S. Hoops et al., “COPASI: a COmplex PAthway SImulator,” Bioinformatics, vol. 22,
pp. 3067–3074, 2006.

[28] A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, and H. Kitano,
“CellDesigner 3.5: a versatile modeling tool for biochemical networks,” Proc. IEEE,
vol. 96, no. 8, pp. 1254–1265, 2008.

[29] L. Bilitchenko et al., “Eugene - a domain specific language for specifying and
constraining synthetic biological parts, devices, and systems,” PLoS ONE, vol. 6,
no. 4, doi: 10.1371/journal.pone.0018882, 2011.

[30] J. Chen, D. Densmore, T. S. Ham, J. D. Keasling, and N. J. Hillson, “DeviceEditor
visual biological CAD canvas,” J. Biol. Eng., vol. 6, no. 1, p. 1, 2012.

108

[31] M. Pedersen and A. Phillips, “Towards programming languages for genetic engi-
neering of living cells,” J. Roy. Soc. Interface, vol. 6, no. Suppl 4, pp. S437–S450,
2009.

[32] Y. Cai, M. L. Wilson, and J. Peccoud, “GenoCAD for iGEM: a grammatical
approach to the design of standard-compliant constructs,” Nucleic Acids Res.,
vol. 38, pp. 2637–2644, 2010.

[33] C. Madsen, C. Myers, T. Patterson, N. Roehner, J. Stevens, and C. Winstead,
“Design and test of genetic circuits using iBioSim,” IEEE Des. Test Comput., vol. 29,
pp. 32–39, 2012.

[34] F. Yaman, S. Bhatia, A. Adler, D. Densmore, and J. Beal, “Automated selection of
synthetic biology parts for genetic regulatory networks,” ACS Synth. Biol., vol. 1,
no. 8, pp. 332–344, 2012.

[35] M. T. Cooling et al., “Standard Virtual Biological Parts: a repository of modular
modeling components for synthetic biology,” Bioinformatics, vol. 26, no. 7, pp. 925–
931, 2010.

[36] G. Misirli et al., “Model annotation for synthetic biology: automating model to
nucleotide sequence conversion,” Bioinformatics, vol. 27, no. 7, pp. 973–979, 2011.

[37] M. A. Marchisio and J. Stelling, “Automatic design of digital synthetic gene ciruits,”
PLoS Comput. Biol., vol. 7, doi: 10.1371/journal.pcbi.1001083, 2011.

[38] S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, and E. D. Gilles, “ProMoT:
modular modeling for systems biology,” Bioinformatics, vol. 25, no. 5, pp. 687–689,
2009.

[39] MATLAB, version 8.3 (R2014a). Natick, MA: The MathWorks Inc., 2014.

[40] J. Beal, T. Lu, and R. Weiss, “Automatic compilation from high-level biologically-
oriented programming language to genetic regulatory networks,” PLoS ONE, vol. 6,
doi: 10.1371/journal.pone.0022490, 2011.

[41] L. Huynh, A. Tsoukalas, M. Koppe, and I. Tagkopoulos, “SBROME: a scalable
optimization and module matching framework for automated biosystems design,”
ACS Synth. Biol., vol. 2, no. 5, pp. 1073–1089, 2013.

[42] A. D. Hill, J. R. Tomshine, E. M. Weeding, V. Sotirpoulos, and Y. N. Kaznessis,
“SynBioSS: the synthetic biology modeling suite,” Bioinformatics, vol. 24, pp. 2551–
2553, 2008.

[43] D. Chandran, F. T. Bergmann, and H. M. Sauro, “TinkerCell: modular CAD tool
for synthetic biology,” J. Biol. Eng., vol. 3, no. 1, p. 19, 2009.

[44] M. Galdzicki et al., “The synthetic biology open language (sbol) provides a com-
munity standard for communicating designs in synthetic biology,” Nat. Biotechnol.,
vol. 32, pp. 545–550, 2014.

[45] L. P. Smith et al., “Hierarchical model composition,” SBML, SBML Level 3 Comp
Package Specification, Nov. 2013.

109

[46] Y. Cai, B. Hartnett, C. Gustafsson, and J. Peccoud, “A syntactic model to design
and verify synthetic genetic constructs derived from standard biological parts,”
Bioinformatics, vol. 23, no. 20, pp. 2760–2767, 2007.

[47] N. Roehner et al., “Proposed data model for the next version of the Synthetic Biology
Open Language,” ACS Synth. Bio., doi:10.1021/sb500176h, 2014.

[48] N. Roehner and C. J. Myers, “Directed acyclic graph-based technology mapping of
genetic circuit models,” ACS Synth. Biol., doi:10.1021/sb400135t, 2014.

[49] N. Roehner and C. J. Myers, “A methodology to annotate Systems Biology Markup
Language Models with the Synthetic Biology Open Language,” ACS Synth. Biol.,
vol. 3, pp. 57–66, 2014.

[50] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle
switch in escherichia coli,” Nature, vol. 403, pp. 339–342, 2000.

[51] A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello,
“Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans,” Nature, vol. 391, pp. 806–811, 1998.

[52] S. Bhatia and D. Densmore, “Pigeon: a design visualizer for synthetic biology,” ACS
Synth. Biol., vol. 2, no. 6, pp. 348–350, 2013.

[53] J. Quinn et al., “Synthetic Biology Open Language Visual (SBOL Visual), Version
1.0.0,” SBOL, BBF RFC 93, Mar. 2013, doi: 1721.1/78249.

[54] T. L. Deans, C. R. Cantor, and J. J. Collins, “A tunable genetic switch based on
rnai and repressor proteins for regulating gene expression in mammalian cells,” Cell,
vol. 130, pp. 363–372, 2007.

[55] J. C. Anderson, C. A. Voigt, and A. P. Arkin, “Environmental signal integration by
a modular and gate,” Mol. Syst. Biol., doi: 10.1038/msb4100173, 2007.

[56] B. Wang, R. I. Kitney, N. Joly, and M. Buck, “Engineering modular and orthogonal
genetic logic gates for robust digital-like synthetic biology,” Nat. Commun., vol. 2,
p. 508, 2013.

[57] A. Tamsir, J. J. Tabor, and C. A. Voigt, “Robust multicellular computing using
genetically encoded nor gates and chemical wires,” Nature, vol. 469, pp. 212–215,
2011.

[58] T. S. Moon et al., “Construction of a genetic multiplexer to toggle between
chemosensory pathways in escherichia coli,” J. Mol. Biol., vol. 406, pp. 215–227,
2011.

[59] L. Pasotti, M. Quattrocelli, D. Galli, M. G. D. Angelis, and P. Magni, “Multiplexing
and demultiplexing logic functions for computing signal processing tasks in synthetic
biology,” Biotechnol. J., vol. 6, pp. 784–795, 2011.

[60] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional
regulators,” Nature, vol. 403, pp. 335–338, 2000.

[61] G. Boole, The Laws of Thought. Buffalo, New York: Prometheus Books, 1854/2003.

110

[62] C. C. Guet, M. B. Elowitz, W. Hsing, and S. Leibler, “Combinatorial synthesis of
genetic networks,” Science, vol. 296, pp. 1466–1470, 2002.

[63] T. Ellis, X. Wang, and J. J. Collins, “Diversity-based, model-guided construction of
synthetic gene networks with predicted functions,” Nat. Biotechnol., vol. 27, no. 5,
pp. 465–471, 2009.

[64] H. M. Salis, E. A. Mirsky, and C. A. Voigt, “Automated design of synthetic ribosome
binding sites to control protein expression,” Nat. Biotechnol., vol. 27, no. 10, pp. 946–
950, 2009.

[65] X.-J. Feng, S. Hooshangi, D. Chen, G. Li, R. Weiss, and H. Rabitz, “Optimizing
genetic circuits by global sensitivity analysis,” Nature, vol. 87, pp. 2195–2202, 2004.

[66] S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, “A synthetic
multicellular system for programmed pattern formation,” Nature, vol. 434, pp. 1130–
1134, 2005.

[67] Y. Yokobayashi, R. Weiss, and F. H. Arnold, “Directed evolution of a genetic
circuit,” P. Natl. Acad. Sci. USA, vol. 99, no. 26, pp. 16587–16591, 2002.

[68] A. Hill, “The possible effect of the aggregation of the molecules of haemoglobin,” J.
Physiol., vol. 40, pp. 4–7, 1910.

[69] B. C. Goodwin, “Oscillatory behavior of enzymatic control processes,” Adv. Enzyme.
Reg., vol. 3, pp. 425–439, 1965.

[70] J. S. Griffith, “Mathematics of cellular control processes. I. negative feedback to one
gene,” J. Theor. Biol., vol. 20, pp. 202–208, 1968.

[71] G. Yagil and E. Yagil, “On the relation between effector concentration and the rate
of induced enzyme synthesis,” Biophys. J., vol. 11, pp. 11–27, 1971.

[72] J. Tyson and H. G. Othmer, “The dynamics of feedback control circuits in biochem-
ical pathways,” Prog. Theor. Biol., vol. 5, pp. 2–62, 1978.

[73] R. D. Bliss, P. R. Painter, and A. G. Marr, “Role of feedback inhibition in stabilizing
the classical operon,” J. Theor. Biol., vol. 97, pp. 177–193, 1982.

[74] H. Smith, “Oscillations and multiple steady states in a cyclic gene model with
repression,” J. Math. Biol., vol. 25, pp. 169–190, 1987.

[75] E. Plahte, T. Mestl, and S. W. Omholt, “A methodological basis for description and
analysis of systems with complex switch-like interactions,” J. Math Biol., vol. 36,
pp. 321–348, 1998.

[76] F. Jacob and J. Monod, “On the regulation of gene activity,” Cold Spring Harb.
Sym., vol. 26, pp. 193–211, 1961.

[77] C. Rao, D. Wolf, and A. Arkin, “Control, exploitation and tolerance of intracellular
noise,” Nature, vol. 420, pp. 231–237, 2002.

[78] M. Elowitz, A. Levine, F. Siggia, and P. Swain, “Stochastic gene expression in a
single cell,” Science, vol. 297, p. 1183, 2002.

111

[79] J. Stricker et al., “A fast, robust and tunable synthetic gene oscillator,” Nature,
vol. 456, pp. 516–519, 2008.

[80] M. Hucka et al., “The Systems Biology Markup Language (SBML): language speci-
fication for Level 3 Version 1 Core,” SBML, SBML Level 3 Core Specification, Oct.
2010.

[81] V. Chelliah, C. Laibe, and N. L. Novere, “BioModels Database: a repository of
mathematical models of biological processes,” Methods Mol. Biol., vol. 1021, pp. 189–
199, 2013.

[82] N. Barker, C. Myers, and H. Kuwahara, “Learning genetic regulatory network con-
nectivity from time series data,” IEEE/ACM Trans. Comput. Biol. Bioinformatics,
vol. 8, no. 1, pp. 152–165, 2011.

[83] H. Kuwahara, C. Myers, N. Barker, M. Samoilov, and A. Arkin, “Automated
abstraction methodology for genetic regulatory networks,” in Transactions on Com-
putational Systems Biology VI, C. Priami and G. Plotkin, Eds., Berlin: Springer,
2006, pp. 150-175.

[84] C. Madsen, C. J. Myers, N. Roehner, C. Winstead, and Z. Zhang, “Utilizing
stochastic model checking to analyze genetic circuits,” in 2012 IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),
San Diego, CA, 2012, pp. 379-386.

[85] M. Galdzicki et al., “Synthetic Biology Open Language (SBOL) Version 1.1.0,”
SBOL, BBF RFC 87, Oct. 2012, doi: 1721.1/73909.

[86] T. Bray, J. Paoli, C. M. Sperber-McQueen, E. Maler, and F. Yergeau, “Extensible
Markup Language (XML) 1.0 (Fifth Edition),” W3C, W3C Recommendation 26
November 2008, Nov. 2008.

[87] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, 2nd Edition. Boston, MA: Addison-Wesley, 2005.

[88] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
generic syntax,” The Internet Society, IETF RFC 3986, Jan. 2005.

[89] K. Eilbeck et al., “The Sequence Ontology: a tool for the unification of genome
annotations,” Genome Biol., vol. 6, no. 5, p. R44, 2005.

[90] F. Gandon and G. Schreiber, “RDF 1.1 XML syntax,” W3C, W3C Recommendation
25 February 2014, Feb. 2014.

[91] J. Hastings et al., “The ChEBI reference database and ontology for biologically
relevant chemistry: enhancements for 2013,” Nucleic Acids Res., vol. 41, pp. D456–
D463, 2013.

[92] D. Waltemath, A. Zhukova, M. Swat, Y. Lefranc, J.-O. Vik, and N. L.
Novere, (2014, April 1). Mathematical Modelling Ontology [Online]. Available:
http://sourceforge.net/projects/mamo-ontology/.

[93] J. Beal et al., “Model-driven engineering of gene expression from RNA replicons,”
ACS Synth. Biol., doi: 10.1021/sb500173f, 2014.

112

[94] S. Kiani et al., “CRISPR transcriptional repression devices and layered circuits in
mammalian cells,” Nat. Methods, doi:10.1038/NMETH.2969, 2014.

[95] P. Horvath and R. Barrangou, “CRISPR/Cas, the immune system of bacteria and
archaea,” Science, vol. 327, no. 5962, pp. 167–170, 2010.

[96] I. Frolov, R. Hardy, and C. M. Rice, “Cis-acting rna elements at the 5’ end of
Sindbis virus genome rna regulate minus- and plus-strand RNA synthesis,” RNA,
vol. 7, pp. 1638–1651, 2001.

[97] T. B. Foundation, (2014, June 20). The BioBricks Foundation: RFC [Online].
Available: http://openwetware.org/wiki/The BioBricks Foundation:RFC.

[98] G. E. Briggs and J. B. S. Haldane, “A note on the kinetics of enzyme action,”
Biochem. J., vol. 19, pp. 338–339, 1925.

[99] C. V. Rao and A. P. Arkin, “Stochastic chemical kinetics and the quasi-steady-state
assumption: application to the Gillespie algorithm,” J. Phys. Chem.-US, vol. 118,
no. 11, pp. 4999–5010, 2003.

[100] C. J. Myers, Engineering Genetic Circuits. Boca Raton, FL: Chapman and
Hall/CRC, 2009.

[101] M. Courtot et al., “Controlled vocabularies and semantics in systems biology,” Mol.
Syst. Biol., vol. 7, p. 543, 2011.

[102] K. Keutzer, “DAGON: technology binding and local optimization by DAG match-
ing,” in DAC ’87 Proceedings of the 24th ACM/IEEE Design Automation Confer-
ence, ACM: New York, 1987, pp. 341-347.

[103] J. J. Tabor et al., “A synthetic genetic edge detection program,” Cell, vol. 137, no. 7,
pp. 1272–1281, 2009.

[104] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Commun. ACM, vol. 18, pp. 333–340, 1975.

[105] C. Hoare, “Quicksort,” Comput. J., vol. 5, no. 1, pp. 10–16, 1962.

[106] R. McNaughton and H. Yamada, “Regular expression and state graphs for au-
tomata,” IEEE Trans. Comput., vol. EC-9, no. 1, pp. 39–47, 1960.

[107] J. Beal et al., “An end-to-end workflow for engineering of biological networks from
high-level specifications,” ACS Synth. Biol., vol. 1, no. 8, pp. 317–331, 2012.

[108] J. Beal, R. Weiss, F. Yaman, N. Davidsohn, and A. Adler, “A method for fast, high-
precision characterization of synthetic biology devices,” MIT CSAIL, MIT CSAIL
Tech. Rep. 2012-008, 2012, doi: 1721.1/69973.

