
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2486331

Protocol Selection, Implementation, and Analysis for Asynchronous Circuits

Thesis · August 2002

Source: CiteSeer

CITATIONS

3
READS

55

1 author:

Eric R. Peskin

New York University

14 PUBLICATIONS 213 CITATIONS

SEE PROFILE

All content following this page was uploaded by Eric R. Peskin on 26 May 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2486331_Protocol_Selection_Implementation_and_Analysis_for_Asynchronous_Circuits?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2486331_Protocol_Selection_Implementation_and_Analysis_for_Asynchronous_Circuits?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Peskin?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Peskin?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_York_University2?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Peskin?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Peskin?enrichId=rgreq-aab32a2ee9bb18de62bfb4ac8eadae94-XXX&enrichSource=Y292ZXJQYWdlOzI0ODYzMzE7QVM6MjMzMzcyMjQwODM4NjU2QDE0MzI2NTE2ODY0MTc%3D&el=1_x_10&_esc=publicationCoverPdf

PROTOCOL SELECTION, IMPLEMENTATION, AND

ANALYSIS FOR ASYNCHRONOUS CIRCUITS

by

Eric Robert Peskin

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2002

Copyright c© Eric Robert Peskin 2002

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Eric Robert Peskin

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Chris J. Myers

Erik Brunvand

Al Davis

Ganesh Gopalakrishnan

Christian Schlegel

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Eric Robert Peskin in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Chris J. Myers
Chair, Supervisory Committee

Approved for the Major Department

Thomas C. Henderson
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

This dissertation presents new methods for handshaking expansion of asyn-

chronous circuits. Handshaking expansion includes protocol selection, reshuffling,

and state variable insertion. The starting point is a channel-level specification

of a design. The goal is a signal-level description of the given design that is

correct, synthesizable, and efficient. This dissertation studies the impact of protocol

selection and implementation on deadlock avoidance, complete state coding (CSC),

CPU time required to compile a given example, and the quality of the circuit.

This dissertation treats reshuffling and state-variable insertion as special cases

of concurrency reduction. Prior work in the field has also taken this approach.

However, this dissertation extends this approach and applies it to specifications

that contain quantitative timing assumptions.

The concurrency reduction algorithms have been implemented within a com-

puter aided design (CAD) tool. Starting from a signal-level specification that

contains the constraints of the desired protocol, these algorithms search the con-

currency reduction design space, guided by an estimate of the performance of

the final circuit. The CAD tool that this dissertation presents also contains a

front end that, given a channel-level specification, produces the starting point for

concurrency-reduction. This front end currently handles only pure synchronization

channels, using one protocol.

Finding all possible ways to reduce concurrency of a specification is a funda-

mentally exponential problem. However, this dissertation presents techniques to

dramatically prune the search space. This dissertation demonstrates that these

techniques are capable of reducing the search space by several orders of magnitude

compared to the theoretical upper bound – and by one order of magnitude beyond

existing techniques – without significantly impacting the quality of the solutions.

To Yu-Ying and Jay

CONTENTS

ABSTRACT . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACKNOWLEDGMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Related Work . 4
1.2 Contributions . 10
1.3 Overview . 16

2. BACKGROUND AND DESIGN FLOW . 19

2.1 Channel-Level Specification . 19
2.2 Signal-Level Specification . 26
2.3 Timed Event/Level Structures . 28
2.4 State Graphs . 36
2.5 Production Rules . 40
2.6 Performance Analysis . 42

3. COMPILATION OF CHANNEL-LEVEL SPECIFICATION . . 44

3.1 Semantic Issues . 44
3.1.1 Active vs. Passive . 44
3.1.2 Data Direction . 46
3.1.3 Two-phase vs. Four-phase . 47
3.1.4 Bundled Data vs. Data Encoding . 51

3.2 Channel-Level TEL . 54

4. PROTOCOL SPECIFICATION . 59

4.1 Active vs. Passive . 60
4.2 Sequencers . 61
4.3 Data Constraints . 66

4.3.1 Separate Control and Data Path . 68
4.3.2 Unified Control and Data Path . 91

4.4 Extending Constraints Across Actions . 96
4.4.1 Same Variable, Different Channels . 98

4.4.2 Same Channel, Different Variables . 98
4.5 A Library of Protocols . 99

5. CONCURRENCY REDUCTION . 102

5.1 The Search Space . 104
5.2 Pruning Redundant Possibilities . 106

5.2.1 Reflexive Loops . 107
5.2.2 Sequencing Events . 107
5.2.3 Reachability . 110
5.2.4 Conflicts . 114

5.3 Pruning Poorly-Performing Solutions . 114
5.4 State-Variable Insertion . 117

5.4.1 The Search Space . 117
5.4.2 Pruning the Search Space . 118

6. HEURISTICS . 119

6.1 Static Heuristics . 119
6.1.1 Timed Concurrency . 120
6.1.2 Preserving User-Specified Concurrency 121
6.1.3 Using Only Local Concurrency Reduction 124
6.1.4 Mandating Rules . 125

6.2 Dynamic Heuristics . 126
6.2.1 Choice . 126
6.2.2 Assuming Each Rule Adds No New States 132
6.2.3 Setting Limits . 137

7. RESULTS AND CASE STUDIES . 138

7.1 Exhaustive Results . 139
7.2 The PAR Component . 142

7.2.1 Using the Cycle-Period Cost Function . 145
7.2.2 Assuming that Each Rule Adds No New States 145
7.2.3 Timed Concurrency . 146
7.2.4 Preserving User-Specified Concurrency 146
7.2.5 Stopping After The First Solution . 146
7.2.6 Comparison to Petrify . 147

7.3 Examples Enabled by Heuristics . 150
7.3.1 Shifter . 150
7.3.2 MMU . 153
7.3.3 MPEG . 160

7.4 Comparison to Existing Approaches . 172

8. CONCLUSIONS AND FUTURE WORK 177

8.1 Future Work . 179

REFERENCES . 184

vii

LIST OF TABLES

5.1 Pruning opportunities. 113

7.1 Results for myFurber. 141

7.2 Results for PARex. 144

7.3 Results for shifter. 153

7.4 Results for MMU. 156

7.5 Results for MPEG. 172

LIST OF FIGURES

1.1 Timed circuit design in ATACS. 14

2.1 Design flow. 20

2.2 The first two iterations of the simpleHand example. 28

2.3 Example TEL structure. 33

2.4 TEL structure for a fork followed by a join (# = ∅) or a choice followed
by a merge (b±#setc±). 33

2.5 TEL structure for a timed rendezvous element and its environment [58]. 35

2.6 TEL structure derived from the simpleHand example of Section 2.2. . 36

2.7 Reduced state graph for the timed rendezvous element. 38

2.8 Reduced state graph for the simpleHand example. 39

2.9 Reduced state graph with a complete state coding violation. 41

2.10 Circuit derived for the timed rendezvous element. 42

2.11 Circuit for the simpleHand example. 42

3.1 Two-phase communication. 47

3.2 Four-phase communication. 48

3.3 Four-phase sequencing constraints. 50

3.4 Bundled data. 51

3.5 Data encoding. 52

3.6 Channel-level TEL model of the producer, consumer, and FIFO. 57

4.1 TEL structure for a four-phase expansion of a channel communication. 61

4.2 The sequencing currently targeted by the automatic tool that this
dissertation presents. 62

4.3 Constraints on two-phase sequencer. 64

4.4 Constraints on the van Berkel sequencer. 65

4.5 Constraints on the Winkel weak-broad sequencer. 65

4.6 Constraints on the Brunvand narrow sequencer. 66

4.7 Generic interfaces to the control portion of a buffer. 68

4.8 Two-phase, bundled-data, push FIFO using dual-edge-triggered flip-
flops. 71

4.9 Four-phase, bundled-data, push FIFO using normally transparent
latches. 74

4.10 Four-phase, bundled-data pull FIFO using normally transparent latches. 76

4.11 Four-phase, bundled-data push FIFO using normally opaque latches. . 77

4.12 Four-phase, bundled-data pull FIFO using normally opaque latches. . . 79

4.13 Four-phase, bundled-data, push FIFO using edge-triggered flip-flops. . 81

4.14 Four-phase, bundled-data, pull FIFO using edge-triggered flip-flops. . . 83

4.15 Data-path components from [20]. 84

4.16 Push FIFO requiring no isochronic fork between control and data path
[20]. 86

4.17 Pull FIFO requiring no isochronic fork between control and data path
[20]. 87

4.18 Push FIFO requiring an isochronic fork between control and data
path[20]. 89

4.19 Push FIFO requiring the Latch component [20]. 90

4.20 Pull FIFO requiring the Latch component [20]. 92

4.21 Four-phase, dual-rail buffer interfaces. 92

4.22 TEL structure for constraints on four-phase, push buffer. 93

4.23 TEL for the dual-rail expansion of a four-phase, push buffer. 94

4.24 TEL structure for constraints on four-phase, pull buffer. 95

4.25 TEL for the dual-rail expansion of a four-phase pull buffer. 96

4.26 Constraints on the dual-rail circuit for the pull sum process. 97

5.1 TEL structure with concurrency reduced for complete state coding. . . 103

5.2 Search space for reshuffling (two candidate rules shown). 106

5.3 TEL structure with a self-loop rule. 107

5.4 TEL structure with a sequencing event. 108

5.5 TEL structures derived from that of Figure 5.4 by adding the set of
rules (a) {$ → z−}, and (b) {x+→ z−, y+→ z−}. 109

5.6 TEL structures derived from that of Figure 5.4 by adding the set of
rules (a) {z− → $}, (b) {z− → x−, z− → y−}. 110

5.7 Adding a redundant rule. 111

5.8 Adding a rule that creates a cycle of unmarked rules, causing deadlock..111

x

5.9 Adding an initially-marked, redundant rule. 112

5.10 Adding an initially-marked rule that introduces a safety violation. . . . 112

5.11 Adding a rule that makes another rule redundant. 114

5.12 Adding a rule for which the enabling and enabled events conflict. 115

5.13 Adding an initially unconstrained state variable. 117

6.1 Adding a rule that shifts timed concurrency. 121

6.2 RSGs derived from TEL structures that differ only in e+→ f+. 122

6.3 Starting point for concurrency reduction of the PAR example. 124

6.4 Adding a rule that causes a safety violation. 126

6.5 A TEL structure illustrating cliques. 128

6.6 Adding a rule from only one branch of a choice. 130

6.7 Timed event/level structure with nested choice. 132

6.8 TEL structures that differ only in the rule (y−, z+, 0, 0, [true]). 135

6.9 Reduced state graphs demonstrating that adding a rule can introduce
a complete state coding violation. 136

7.1 TEL structure for constraints on a pull buffer meeting the CRT con-
straint and using the Latch component. 140

7.2 Block diagram of PAR and its environment. 143

7.3 TEL structures for PAR example after concurrency reduction. 148

7.4 Circuit implementations of the PAR example. 149

7.5 A four-bit shifter. 150

7.6 Block diagram for part of the MMU and its environment [62]. 154

7.7 Starting point for concurrency reduction of the MMU example. 155

7.8 TEL structures for MMU example after concurrency reduction. 158

7.9 Circuit implementations of the MMU example. 159

7.10 Block diagram for an MPEG dithering unit and its environment. 160

7.11 Starting point for concurrency reduction of the MPEG example. 173

7.12 TEL structure for the MPEG example after concurrency reduction. . . 174

7.13 Circuit found using concurrency reduction on the MPEG example. . . . 175

xi

ACKNOWLEDGMENTS

I wish to thank my committee members Chris Myers, Erik Brunvand, Al Davis,

Ganesh Gopalakrishnan, and Christian Schlegel for taking the time to read my

dissertation so thoroughly, for providing so many comments, and for giving me the

opportunity to address them. I especially want to thank my advisor, Chris Myers,

for taking me on late in my graduate career, and providing the guidance and support

necessary for me to navigate my change in dissertation topics. Finally, I wish to

thank my family for all their love and support throughout this process.

CHAPTER 1

INTRODUCTION

Asynchronous circuits are circuits that have no global clock. Instead of using

a global clock to synchronize events, asynchronous circuits use local handshaking

between modules to synchronize when and where necessary. There has been a

resurgence of interest in the design of asynchronous circuits due to their potential

advantages in performance, robustness, modularity, and reduced power consump-

tion.

One can specify or model asynchronous circuits at many levels. Typically,

higher-level specifications involve processes that communicate over channels. Each

channel connects multiple processes (usually two). This dissertation uses a zero-

slack communication model. In this model, the number of communication actions

that each process has completed on a given channel must equal the number of

communication actions that the other process has completed on that channel.

Thus, zero-slack communication provides a mechanism for synchronization between

otherwise concurrent processes. Once a process initiates a communication action

on a given channel, it must wait until all other processes that share that channel

have also initiated the corresponding communication on that channel. Only then is

the communication action completed, and all processes that share the channel are

free to proceed [35, 36, 48, 49, 50].

Channel communications can also exchange data between two processes. Con-

sider two processes, P and Q, connected by a channel c. Suppose that P has a

local variable x, and Q has a local variable y. Further suppose that P executes a

command such as send(c, x) while Q executes a matching receive(c, y). After the

communication completes, the variable y in Q has the value that variable x had in

2

P before the communication.

It is convenient for designers to specify designs at the channel level. However,

this level does not correspond directly to wires in a circuit. Thus, before circuit syn-

thesis, it is necessary to translate the specification to the signal level. A signal-level

specification does not contain high-level abstractions such as channels. Instead,

a signal-level description specifies the actual signals (or wires) that exist in the

circuit that implements the specification. Furthermore, the signal-level description

specifies the causal relationships between transitions on these signals. Circuit

synthesis can proceed from the signal-level description.

Given a channel-level specification of an asynchronous circuit, handshaking

expansion must produce a semantically equivalent signal-level description of the cir-

cuit. This means that the signal-level description must preserve the synchronization

and data-exchange patterns between processes of the channel-level specification.

Where the channel-level specification contains serial chain of actions, these actions

— including any implied synchronization and data-transfer actions — must occur

in the order specified by that sequence. The definition of channel communication

given in the above paragraphs as well as in [35, 36, 48, 49, 50] must be maintained.

Section 1.1 describes a problem called deadlock in which a system is incapable

of making further progress. Freedom from deadlock must also be preserved. If

there is no deadlock inherent in the channel-level specification, then the signal-level

specification must also not enter deadlock.

In the channel-level specification, processes communicate over channels using

operations such as send and receive. In the signal-level description, signals on

individual wires undergo transitions. The goal of this transformation is to produce

a signal-level description of the given design that is correct, synthesizable, and

efficient.

The first step of handshaking expansion is to pick a communication protocol

for each channel. This decision allocates signals to the channel and determines

the interpretation of these signals. There are many possible protocols for any

given communication action [51, 63, 58]. Data validity can be handled through

3

bundled data or data encoding (for example, with a dual-rail code). Any given

send or receive operation can be either active or passive [50]. Handshaking can

be two-phase or four-phase. Even within four-phase handshaking, there are many

possible conventions that define when data must be valid [63, 20].

There are also more exotic choices. Single-track [12] protocols use one wire for

both requests and acknowledgements, letting each process drive the wire in turn.

Pulse-mode [64, 65] protocols allow a single process to assume an acknowledgement

after a certain delay. Furthermore, complex protocols can use a single handshake to

exchange both query data and response data (for example, a memory address and

the value at that location) between two processes. Other protocols can broadcast

data from one process to multiple processes as in Akella and Gopalakrishnan’s

hopCP [1, 32, 33, 2]. Prosser et al. [63] evaluate and study tradeoffs involved in

sequencing communication actions.

Any protocol can yield a correct and synthesizable description (assuming correct

completion of the remaining steps of handshaking expansion). However, the choice

of protocol can affect the resources necessary to find a synthesizable description.

Furthermore, the choice of protocol can have a significant impact on the efficiency

of the resulting circuit. These effects are highly dependent on the given example

and even on the context of the particular channel communication.

Given a choice of protocol, one must decide on the order in which these signals

undergo transitions. Reshuffling [51, 58, 20] is the process of changing this order.

Just one protocol can have many possible reshufflings. For example, Martin et

al. [53] define a particular delay-insensitive, dual-rail protocol. The authors then

use three different reshufflings of the same protocol. They call these half-buffer,

precharged half-buffer, and precharged full-buffer. Reshuffling can affect whether

the signal-level description is correct and synthesizable. It also affects the efficiency

of the final circuit. Again, these effects are highly dependent on the context.

This dissertation presents algorithms to automatically search the solution space of

possible reshufflings, guided by an estimate of the performance of the final circuit.

In the style of circuit design used here, the first attempt at circuit synthesis

4

uses signals allocated by protocol selection (as well as any other outputs dictated

by the specification) as the only state bits of the implementation. However, it may

be that these bits are not sufficient to distinguish the different states of circuit.

Even if they are technically sufficient, relying on these state bits alone may be

suboptimal, because it may result in logic that too complex. Hence, it in some

cases, it may be necessary or desirable to insert additional state variables [51, 58].

This dissertation treats both reshuffling and state-variable insertion as special

cases of concurrency reduction. It presents algorithms for searching the concurrency

reduction design space to find efficient circuits.

These algorithms handle specifications that contain explicit, quantitative timing

assumptions. This allows optimizations at several levels of the design process.

Section 6.1.1 shows that timing information can reduce the size of the search space

for concurrency reduction itself. This is because events that would otherwise be

concurrent may be ordered under the given timing assumptions. Furthermore,

some handshaking expansions that would not be synthesizable without timing

assumptions are synthesizable under appropriate timing assumptions. Finally, prior

work by Myers et al. [60, 59, 7, 58] has shown that quantitative timing information

can speed up the synthesis process and result in better circuits.

1.1 Related Work

Hoare introduced a language called Communicating Sequential Processes (CSP)

[35, 36] that inspired the model of communication used in this dissertation. Today,

there exist several languages and dialects derived from CSP that are used for

software programming and hardware design. Martin’s Communicating Hardware

Processes (CHP) [48, 49, 50, 52] is the first to be specialized for the design of

asynchronous circuits and hardware systems. Akella and Gopalakrishnan’s hopCP

language [1, 32, 33, 2], are based in part on CSP. Brunvand and Sproull [18, 16, 17]

developed algorithms to translate programs written in Occam, a parallel program-

ming language based on CSP, into asynchronous circuits of the micropipeline [66]

style. Van Berkel et al. [13, 11] developed the VLSI programming language

5

Tangram, which is also based on CSP and Occam.

As Hoare [35] points out, a group of processes using this communication model

may enter a situation in which they are all trying to communicate, but none of the

pending communication actions correspond. At this point, no further progress can

be made. This situation is called deadlock. Several researchers studied essentially

the same deadlock issue even earlier. Friedman and Menon studied blocking con-

ditions in systems of asynchronously operating modules [27]. Bruno and Altman

studied systems composed of five basic control modules and showed the conditions

under which they would “hang up” [15]. Jump and Thiagarajan studied deadlock

in MG-control systems (MGCS) [39]. Deadlock was also studied by Genrich and

Lautenbach [29, 30, 31] who proved the presence or absence of deadlock for specific

annotated marked graphs.

Martin describes handshaking expansion in [51, 52]. Burns [19] discusses how

to automate Martin’s techniques and implemented a subset of these techniques in a

working automatic compiler. However, Burns’ method does not include any explicit

timing information. In contrast, the method in this dissertation supports explicit

timing information.

Lines [45] discusses various implementations of buffers with and without process-

ing logic. He enumerates (by hand) the possible reshufflings of a buffer without logic

under certain constraints and evaluates their various merits. Then he shows how

to add logic to these buffers. He demonstrates a systematic way to introduce data

into a given reshuffling of a data-less buffer. His techniques provided inspiration

for some of the heuristics that Chapter 6 presents. However, Lines applied these

techniques only by hand. This dissertation presents an automated approach to

searching the reshuffling solution space.

Manohar [46] describes a strategy for transforming reshuffled handshaking ex-

pansions back into higher-level CHP notation. He uses this notation to analyze

correctness and performance of the reshuffled handshaking expansions. In partic-

ular, he uses Two-Phase CHP, which is essentially the shorthand that Chapter 5

uses. The high-level analysis enabled by the CHP leads to conclusions that also

6

inspire the heuristics that Chapter 6 presents. Again, the main difference is that

this dissertation presents automatic techniques.

Several researchers have used syntax-directed translation to translate language-

based specifications into asynchronous circuits. Examples include Brunvand’s work

on translating Occam into macromodular micropipelines [18, 16, 17], and also the

Tangram work at Philips [13]. The CAD tool Balsa from Bardsley and Edwards [6]

takes a very similar approach to that of Tangram. These techniques map program

structures directly into a library of circuit structures. Similarly, Kim et al. [41] map

program structures into a library of small signal transition graphs (STGs). These

syntax-directed techniques allow the user to start from a channel-level specification

as does the CAD tool that this dissertation presents. Furthermore, syntax-directed

translation achieves a high degree of modular design, which is a goal of the work

of this dissertation. These techniques do not include an explicit handshaking-

expansion step during compilation. Instead, the creator of the library makes many

decisions — including those of handshaking expansion — in advance for each library

element separately. In contrast, this dissertation presents algorithms that search

the reshuffling and state-variable-insertion design space to tailor the solution to the

specification.

It is also worth mentioning that [41] discusses an interleaving strategy similar

to the one that Chapter 5 advocates. The main similarity is that they segregate the

working phase from the idling phase of the communication in question. Again, the

main difference is that they apply this strategy to each library element separately

before compilation.

Akella and Gopalakrishnan designed a system called SHILPA [1, 32, 33, 2],

which accepts a high-level algorithmic description written in hopCP and produces

a circuit. Like the specification language that Section 2.1 presents, hopCP allows

both channels and levels in the same language. Gopalakrishnan and Akella [32]

discuss how to transform a hopCP specification to obtain software pipelining. One

could also transform the specifications of Section 2.1 in this way. However, neither

SHILPA nor the tool that this dissertation presents automate such transformations.

7

Like the tool that this dissertation presents, SHILPA translates its language based

specification into a series of graph-based intermediate forms and analyzes these

graphs before finally deriving a circuit from these graphs. This is in contrast to

certain syntax-directed approaches (for example, Brunvand’s) that derive a circuit

directly from the language-based specification. Also, the modular, syntax-directed

translation that SHILPA employs operates on a finer grain than that in Brunvand’s

work. The initial graph that SHILPA derives has channel communications as prim-

itive operations in the graph. This is similar to the graph-based form presented

in Chapter 3. Like the tool that this dissertation presents, SHILPA then performs

handshaking expansion to derive a signal-level graph.

In several respects, SHILPA is a more complete system than the tool that this

dissertation presents. SHILPA implements both control and data path, while the

tool that this dissertation presents currently implements only control. Both hopCP

and the language of Section 2.1 allow variables to be shared between processes. In

hopCP such variables are called asynchronous ports. However, SHILPA has addi-

tional features to check whether the use of such shared variables is safe, beyond what

the tool that this dissertation presents provides. At its core, this check is based on

checking whether two events are guaranteed to be serial. Section 6.1.1 does present a

way to check whether two events are guaranteed to be serial, however it applies this

to a different purpose, namely avoiding redundant concurrency reduction attempts.

hopCP supports broadcast and multicast communication, whereas currently the

tool that this dissertation presents supports only point-to-point channels. SHILPA

can synthesize circuits that require arbiters for correct operation. The synthesis

engine to which the tool that this dissertation presents interfaces does not support

arbiters. Instead it simply identifies and rejects specifications that would require

them.

SHILPA targets two-phase communication, whereas the front end to the tool that

this dissertation presents currently targets solely four-phase communication. This

is significant, because four-phase communication brings with it a much larger search

space for the reshuffling problem. Much of the contribution of this dissertation con-

8

cerns dealing with the four-phase reshuffling problem. hopCP has no function that

allows a process to check whether a communication is pending on a channel without

committing to complete that communication before performing other actions. In

contrast, the language of Section 2.1 adopts Martin’s probe function [48] for this

purpose, and the tool that this dissertation presents supports it throughout. Finally,

hopCP and SHILPA do not support specifications that make explicit, quantitative

timing assumptions.

Bachman designed a Computer Aided Design (CAD) tool called Mercury [4, 5],

which does scheduling and resource allocation for asynchronous circuits. It gener-

ates a structural view of the data path and a behavioral view of control. Currently

the tool that this dissertation presents does not implement the data path. One

approach to a complete system would be to use the techniques that this dissertation

presents for control and Mercury for data path.

Jacobson et al. [38] present a tool for asynchronous system-level design called

ACK, which takes design from high level to layout. It produces hybrid circuits that

contain combinations of macromodules, AFSMs, and microengines. It interactively

explores various design tradeoffs with tight feedback between the user and the tools.

ACK supports both two-phase and four-phase protocols, allowing the user to choose

between them. ACK implements both control and data path. However, ACK does

not support specifications that contain explicit, quantitative timing assumptions.

Some synthesis CAD tools can take a signal-level specification with complete

state coding violations, and attempt to solve these violations as in [68, 70, 69, 43, 34,

22, 42]. However, such approaches are often prohibitively expensive [14], because

the space of solutions they must search is quite large. Without the channel-level

specification, there is little information available to guide this search.

Vanbekbergen et al. [67] and Ykman-Couvreur et al. [71] developed a method

to reduce concurrency on signal transition graphs (STGs). Thus, this method

operates at essentially the same level of abstraction as the concurrency reduction

method that Chapter 5 presents. However, the method of [67, 71] is restricted

to marked graphs. The method of Chapter 5 supports a much broader class of

9

specifications. Ykman-Couvreur et al. [72] and Lin et al. [44] also developed

a method to reduce concurrency in state graphs. The authors combined this

method with their own state-variable insertion method. The authors showed that

concurrency reduction can lead to designs that are smaller and — surprisingly —

faster than those in which all concurrency is retained. However, their method does

not handle specifications that make explicit, quantitative timing assumptions. In

contrast, this dissertation addresses concurrency reduction in the context of timed

circuit design [59, 60, 58], in which the specification can make explicit, quantitative

timing assumptions. Supporting such timing assumptions requires performing at

least part of the concurrency reduction at higher levels of abstraction than that of

the state graph. This leads to a different set of problems and solutions.

Cortadella et al. [23] present a technique that treats reshuffling as a special

case of concurrency reduction. The CAD tool Petrify implements this technique.

This technique starts from a specification that includes channel communications in

a graphical representation. At the signal-level, Petrify supports an extension to

Petri nets that allows either standard transitions or toggle transitions that toggle

the value of a signal. The Petrify tool supports both four-phase and two-phase

expansion. In contrast, the tool that this dissertation presents currently has a front

end that targets only four-phase expansion, although the concurrency reduction

engine that this dissertation presents is applicable in either case.

For four-phase communication, Cortadella et al. [23] assume that return-to-zero

actions are not significant for data-integrity, and hence may be reshuffled with-

out restriction. Therefore, the initial expansion in [23] inserts the return-to-zero

events such that they are maximally concurrent with events from other channel

communications. The technique determines the reachable state space for this

maximally concurrent specification. Then the technique searches for ways to reduce

the concurrency of the state space to produce a synthesizable solution. This

dissertation takes a very similar approach to the reshuffling problem. However,

there are important differences. The graphical representation that this dissertation

uses [8, 7, 9] can refer to the current levels of the signals in the systems and

10

not just to transitions on those signals. This is important, because it makes it

possible to partition the representation into a separate component for each process

in the specification. This is significant in the domain of channel communications,

because one of the main reasons to use a channel abstraction is to achieve modular

design. At the signal level, Petrify does support similar specifications with levels.

However, it is unclear how to use this feature at the channel level using Petrify.

Furthermore, this dissertation introduces handshaking expansion techniques that

support timed circuit design [59, 60, 58], in which the specification can make

explicit, quantitative timing assumptions. Supporting such timing assumptions

requires performing at least part of the concurrency reduction at higher levels of

abstraction than that of the state space. This leads to a different set of problems

and solutions. Like [23], the front end to the tool that this dissertation presents

currently makes the assumption that return-to-zero events are never important for

data integrity. However, this dissertation also presents a method for specifying

which relationships between events are important for data integrity that is more

general than this assumption.

1.2 Contributions

This dissertation presents new algorithms to search the handshaking expansion

design space. These algorithms achieve complete state coding (CSC) and avoid

deadlock. Both of these goals are necessary to synthesize a circuit. The usual

approaches to this problem include reshuffling and state-variable insertion. This

dissertation treats reshuffling and state-variable insertion as special cases of con-

currency reduction. This approach is similar to that taken by the CAD tool Petrify

[23], but this dissertation applies it to specifications that contain quantitative timing

assumptions.

Supporting quantitative timing assumptions allows optimizations at several

levels of the design process. Section 6.1.1 and Section 7.2.3 show that timing

information can reduce the size of the search space for concurrency reduction itself.

This is because events that would otherwise be concurrent may be ordered under the

11

given timing assumptions. Exactly determining all timed-concurrency information

requires timed-state-space exploration. This is an expensive operation. Therefore

the heuristic of Section 6.1.1 computes this information just once on the initial

most-concurrent starting point that captures the constraints of the protocol, and

uses this information as an approximation to the timed-concurrency information for

the reduced structures. This approximation allows the cost of the timed-state-space

exploration to be amortized over many pruning decisions. Section 7.2.3 shows that

this does reduce total run time, and for the examples considered, the approximation

does not impair the ability of the search to find the optimal solution. Furthermore,

some handshaking expansions that would not be synthesizable without timing

assumptions are synthesizable under appropriate timing assumptions. Finally, prior

work by Myers et al. [60, 59, 7, 58] has shown that quantitative timing information

can speed up the synthesis process and result in better circuits. By bringing

together the study of concurrency reduction and the study of timed circuits, this

dissertation allows each field to benefit from the other.

Supporting such timing assumptions requires performing at least part of the

concurrency reduction at higher levels of abstraction than that of the state graph.

Working strictly at the state-graph level alone, it is unclear whether modifications

to the state graph still meet the timing specifications stated in the higher-level

specifications. The need to perform concurrency reduction at higher levels of

abstraction leads to different problems from those faced by concurrency reduction

methods that operate at the state-graph level alone. This dissertation contributes

solutions to these different problems. It is true that Vanbekbergen et al. [67]

and Ykman-Couvreur et al. [71] developed a method to reduce concurrency on

STGs. STGs have essentially the same level of abstraction as the structures used

in this dissertation. However, the method of [67, 71] is restricted to marked

graphs. This dissertation contributes methods that support a much broader class

of specifications.

The tool that this dissertation presents operates within a framework that sup-

ports hierarchy at multiple levels of the design process. The specification that

12

Section 2.1 introduces is an extension of the Very High-Speed Integrated Circuit

(VHSIC) Hardware Description Language (VHDL), which contains ample support

for hierarchical design. Furthermore, the extensions that Section 2.1 presents sup-

port channel communications and hence the Communicating Sequential Processes

[35, 36] paradigm, which encourages modular design. This specification level, as

well as the graphical, intermediate forms that this dissertation uses (Belluomini’s

timed event/level (TEL) structures [8, 7, 9]) support specifications that depend on

signal levels. This allows the graphical intermediate forms to retain the modularity

present in the specification. Each process results in a distinct connected component

in the graphical representation. The abstraction techniques of Zheng et al. [75] and

the modular synthesis techniques of Mercer et al. [57, 56] allow the synthesis engine

to exploit this hierarchy information.

To test the utility of the concurrency-reduction algorithms that this dissertation

presents, we have implemented them as extensions to the CAD tool Automatic

Timed Asynchronous Circuit Synthesis (ATACS) [59]. Given a signal-level specifica-

tion that contains the constraints of the given protocol, these algorithms search the

concurrency-reduction design space to find solutions that are correct, synthesizable,

and efficient. These algorithms model concurrency reduction as adding rules to TEL

structures. Thus, the concurrency reduction method that this dissertation presents

is applicable to any combination of example and protocol that can be expressed as

a signal-level TEL structure.

Finding all possible ways to reduce concurrency in a specification is a funda-

mentally exponential problem. However, this dissertation presents techniques to

dramatically prune the search space. The techniques of Chapter 5 can reduce the

number of possibilities to be considered by many orders of magnitude compared

to the theoretical upper bound. Chapter 6 presents heuristics that may not find

all solutions, but reduce the size of the search space even further. For the exam-

ples considered, Chapter 7 finds that these heuristics are capable of reducing the

search space by an additional two orders of magnitude beyond the techniques of

Chapter 5 — and by one order of magnitude beyond existing techniques — without

13

significantly impacting the quality of the solutions found.

The tool that this dissertation presents also includes a front end that, given a

channel-level specification, produces the starting point for concurrency-reduction.

This front end currently handles only pure synchronization channels, using one,

fixed, four-phase protocol with narrow sequencing. However, the front end is

separate from the concurrency-reduction engine, which is more general. The user

who wants to try other protocols can bypass the front end entirely, by writing the

signal-level input to the concurrency-reduction engine. This input is signal-level,

and it must contain the constraints of the desired protocol or protocols. However,

even in this case, the concurrency-reduction engine frees the user from the concerns

of reshuffling and state-variable insertion. ATACS supports a wide variety of signal-

level specification formats, any of which can be used to write the signal-level input

to the concurrency reduction engine. These include the handshake-level VHDL that

Section 2.2 presents, which can be simulated using commercial VHDL simulators.

It also includes a CSP-like language that supports timed handshaking expansions.

One can also provide the signal-level specification directly as a TEL structure.

Chapter 4 presents extensive examples of this. Provided that one can obtain the

initial, most-concurrent, signal-level specification that contains all the constraints of

the channel-level specification and also the desired protocol, then the concurrency

reduction method and the pruning techniques that this dissertation presents are

applicable.

Figure 1.1 outlines the overall design flow for timed circuit design in ATACS.

The rectangles in this figure represent processing steps. The rounded rectangles

represent data. The arrows represent the flow of information. Except where noted,

Chapter 2 describes each step and data structure.

The user provides a specification in a hardware description language. ATACS cur-

rently accepts several languages for specification. The examples in this dissertation

use VHDL.

The compilation step [74] converts the language-based specification into an

internal, graphical representation called a timed event/level (TEL) structure [8, 7, 9]

14

state-space exploration

state graphs

logic synthesis

logic equations

technology mapping

gate net list

physical design

layout

Specification

signal-level TELs

compilation (Chapter 3)

channel-level TEL (Chapter 3)

protocol selection, implementation (Chapter 4, Chapter 5)

P
er

fo
rm

an
ce

an
d

co
st

an
al

y
si

s

V
er

ifi
ca

ti
on

Figure 1.1. Timed circuit design in ATACS.

15

(see Chapter 2). This dissertation presents extensions to the compilation step to

support channel communications. Chapter 3 introduces the channel-level TEL

structure, which models the semantics of channel communications.

Given a channel-level TEL structure, the protocol selection, and implementation

step produces corresponding signal-level TEL structures. This step is the focus of

this dissertation. It includes the steps of selecting a protocol, initial expansion

based on the protocol, reshuffling, and state-variable insertion. If the specification

contains no channel communications, this step is bypassed. In this case, the

compiler produces a signal-level TEL structure directly.

Given a signal-level TEL structure, state-space exploration applies timing anal-

ysis methods to find the set of reachable timed states of the system. The result

is a state graph in which each node represents a state, and each edge represents a

possible transition between states.

The logic synthesis step derives logic equations that implement the state graph.

This implementation is largely technology independent. There is no guarantee that

the logic gates implied by the equations are feasible.

The technology mapping step maps a set of logic equations into a given gate

library. The result is a gate net list that implements the logic equations using the

given technology. Finally, the physical design net list transforms the topology of

the gate net list into the geometry of layout for an integrated circuit.

Verification compares various intermediate forms (as well as the final imple-

mentation) to the original specification. Verification also checks that each of these

intermediate forms has certain desirable properties, such as freedom from deadlock.

For example, if the channel-level TEL structure suffers from deadlock, this indicates

a fundamental problem in the channel-level specification. The user must use this

information to modify the specification. Signal-level TEL structures that fail ver-

ification must be rejected. The protocol implementation step responds by finding

other signal-level TEL structures. Verification makes sure that the logic equations

indeed implement the behavior of the specification. Furthermore, the gate net list

must conform to the timing constraints imposed by the specification.

16

Performance analysis guides the search of protocol implementation. This is

currently based on Mercer’s stochastic cycle period analysis [55]. This method

provides an estimate of the average cycle period of the design, based on the current

TEL structure. Note that the tool that this dissertation presents is modular in this

respect as well. Any other cost function could be used instead of the average cycle

period.

1.3 Overview

Chapter 2 gives an overview of the background material necessary to understand

this dissertation. In particular, this chapter describes the design flow of the CAD

tool that this dissertation presents. The chapter defines the input to the tool, the

intermediate forms that the tool uses, the output from the tool, and methods for

analyzing the output.

Chapter 3 discusses the compilation of the specification that uses channels

into a graphical representation that models the channel communication in the

specification. This chapter first addresses the semantic issues of channel-based

specifications that the compiler must check and record. Then the chapter defines a

graphical model of channel communications and describes how to derive this model

from the specification.

Chapter 4 presents the initial, most-concurrent signal-level specification that

forms the starting point for the concurrency reduction techniques of Chapter 5 and

Chapter 6. This starting point is the most concurrent signal level specification

that still captures all of the constraints of the channel-level specification and of

the desired protocol. This chapter presents an overview of the different types

of constraints that a protocol imposes on the signal-level implementation. The

chapter presents a model for expressing such constraints. The tool that this disser-

tation presents does include a simple automatic expander that, given the graphical

channel-level specification that is the result of Chapter 3, produces the starting

point for concurrency reduction in format described in Chapter 4. This front end

currently targets pure synchronization channels, using one four-phase protocol. For

17

other protocols, the user must provide the starting point for concurrency reduction

as a signal-level specification. Section 4.3 presents an extensive overview of how do

this. It provides a survey of many protocols that have been used in the literature,

showing how the constraints of each can be expressed by the model. In particular,

it shows how a target data path imposes constraints on control. The reader who is

concerned only with what is currently automated in the tool can skip Section 4.3.

However, Section 4.3 is still useful to the user of the current tool who wants to

bypass the front end to the tool and specify the starting point for concurrency

reduction directly. It is also useful to future developers who want to extend the

front end to target more of these protocols. The chapter concludes by showing how

the could form the basis for an extendable library of protocols for CAD tools.

Chapter 5 presents techniques for reducing the concurrency in a design. It

treats the process of deciding the order in which circuit signals undergo transitions

as one special case of concurrency reduction. This is also the view taken by [23].

In particular, this chapter discusses how to search the space of all such orders that

satisfy the constraints of Chapter 4. The chapter also treats state-variable insertion

as a special case of concurrency reduction. The chapter discusses the size of the

theoretical search space. It then presents techniques to reduce the size of this search

space.

The techniques of Chapter 5 may not be sufficient to reduce the search space to

a manageable size. Therefore, Chapter 6 presents heuristics that further reduce the

search space. These heuristics are known to be inexact in the sense that sometimes

prune away solutions. In this case, exact means finding the exactly optimal solution

or finding the entire solution space. If a pruning technique is inexact it just means

that it might prune away a solution that would have been synthesizable. This issue

is distinct from correctness. A solution is correct if it still meets the constraints of

the given channel-level specification and of the target protocol. The heuristics of

Chapter 6 are useful, because in practice they tend to leave near-optimal solutions in

the search space, and the remove many possibilities that are not solutions from the

search space. This chapter presents both static heuristics that reduce the number

18

of levels in the search tree before the search even begins, and dynamic heuristics

that make pruning decisions at each interior node of the search tree.

Chapter 7 presents and analyzes the results of several case studies. This chapter

tests the effectiveness of the pruning techniques in Chapter 5 and Chapter 6 by

comparing the results for various combinations of these pruning techniques. This

chapter also compares the tool that this dissertation presents to Petrify. This

section attempts to quantify the similarities and differences by comparing the two

tools on a set of examples. This chapter emphasizes the CPU time required to

process a given example and the average cycle period of the solutions found.

Chapter 8 presents conclusions and ideas for future research.

CHAPTER 2

BACKGROUND AND DESIGN FLOW

This chapter gives an overview of the background material necessary to un-

derstand this dissertation. In particular, this chapter describes the design flow of

the CAD tool that this dissertation presents. Section 2.1 defines the channel-level

specification that is input to the tool. Section 2.2 defines a signal-level specification.

The user can use the this signal-level specification as input to bypass the channel-

level portion of the tool. Furthermore, in certain cases, the tool can translate a

signal-level representation that it has derived back into the format of Section 2.2.

Section 2.3 defines TEL structures [8, 7, 9], the graphical representation used within

the tool. Section 2.4 defines the state graphs that ATACS derives from the TEL

structures. Section 2.5 defines the production rules that ATACS derives from the

state graphs. Finally, Section 2.6 presents the methods used to analyze the results

of this dissertation. Figure 2.1 outlines the portion of the ATACS design flow that

is most relevant to this dissertation.

2.1 Channel-Level Specification

This section describes the particular form of channel-level specification that

serves as the input to the tool that this dissertation presents. We have developed

a channel package [58] for VHDL. For purposes of simulation, this operates as

a standard VHDL package, using only standard VHDL. Thus, one can simulate

designs at the channel level using commercially-available VHDL simulators. For

purposes of synthesis, ATACS recognizes the operations provided by the channel

package as if they were VHDL primitives. In this sense, ATACS recognizes an

extended subset of VHDL.

20

parser

state-space exploration

synthesis

reshuffling state-variable insertion

state graphs (Section 2.4)

production rules (Section 2.5)

channel-level TEL

initial signal-level TEL

potentially synthesizable TELs

channel-level VHDL (Section 2.1)

signal-level VHDL (Section 2.2)

initial expansion

Section 2.3

Figure 2.1. Design flow.

The channel package defines a new data type called channel. Signals and ports

of this data type can be initialized with the function init channel, which takes

several optional parameters that determine properties of the channel. The channel

package also defines send, receive, and probe operations on the channel data

type. Consider the VHDL below.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
use work.nondeterminism.all;
use work.channel.all;
entity simple is
end simple;
architecture behavior of simple is

signal x, y : std logic vector(2 downto 0) := "000";
signal C : channel := init channel(
sender => timing(rise min => 2, rise max => 4,

fall min => 1, fall max => 3),
receiver => timing(rise min => 6, rise max => 10,

fall min => 5, fall max => 7));
begin
P : process
begin
send(C, x);
--@synthesis off

x <= x + 1;
--@synthesis on

wait for delay(1, 2);

21

end process P;
Q : process
begin
receive(C, y);

end process Q;
end behavior;

Processes P and Q operate concurrently. However, they synchronize when they

communicate over channel C. If P reaches its send first, it waits for Q to reach

its receive. If Q reaches its receive first, it waits for P to reach its send. After

the communication completes, the variable y in Q has the value that variable x had

in P before the communication. The value of variable x of P is unchanged by the

communication.

This data transfer is currently implemented only in simulation. The synthesis

tool that this dissertation presents implements only the control (synchronization)

portion of channel communications and not the data path. However, these opera-

tions allow the user to write a VHDL description that mixes the two, and simulate

the whole description, but then let the tool that this dissertation presents extract

the part it can handle and synthesize that part. In theory, another tool could

extract the data path, implement that, and then the two pieces could work together.

Alternatively, the data path could be implemented by hand. Section 4.3 shows how

the tool could extended to handle data.

The above init channel command specifies the timing of send and receive

operations on the channel C. In particular, it specifies that the sender’s handshake

signals should have a rise time of at least two time units and at most four time units

and a fall time of at least one time unit and at most three time units. Similarly, the

receiver’s handshake signals should have a rise time of at least six time units and

at most ten time units and a fall time of at least five time units and at most seven

time units. Chapter 3 specifies other optional parameters that the init channel

function can take.

The delay function is also used to make quantitative timing assumptions. It

is defined in the nondeterminism package. delay(l, u) returns a randomly selected

time between l time units and u time units. Note that for purposes of simulation,

22

we pick a default time unit, which is currently set to one nanosecond. For synthesis

purposes, what matters is the ratios between the various timing assumptions in the

specification.

This example uses two ATACS compiler directives. --@synthesis_off tells the

compiler to ignore any code until the next occurrence of --@synthesis_on. The

directives simply appear as comments to commercial simulators. Thus, during

simulation, the directives themselves (but not the code between them) are ignored.

Thus, the user encloses code that is not currently synthesizable by ATACS between

these directives. Typically, this is code that specifies the data path. Currently, the

tool that this dissertation presents can implement only control and not data path.

However, these directives allow the user to write a VHDL description that mixes

the two, and simulate the whole description, but then let ATACS extract the part it

can handle and synthesize that part. In theory, another tool could extract the data

path, implement that, and then the two pieces could work together. Alternatively,

the data path could be implemented by hand. It is also worth noting that ATACS

is capable of handling certain, very small pieces of mixed control and data-path,

as described in Section 4.3.2. However, channel-level VHDL front end does not

currently target such structures. If future versions do, then --@synthesis_off

and --@synthesis_on may be needed in fewer places.

The channel package also provides a probe function [48]. The probe function

returns a boolean value that indicates whether a communication is pending on

a channel. Any boolean expression can use the probe function. Another useful

procedure found in other examples is the await procedure, which waits until the

corresponding probe is true, that is, until there is a communication pending on the

given channel. The await any procedure waits until there is a pending commu-

nication on any of the given channels. For example, await any(X, Y) waits until

the condition probe(X) ∨ probe(Y) is satisfied. The await all procedure waits

until there is a communication pending on each of the given channels. For example,

await all(X, Y) waits until the condition probe(X) ∧ probe(Y) is satisfied.

An example using the await any function is shown in the VHDL code below.

23

This example represents a bit slice (the slice process) of a very simple shift register,

and the environment (the produce and consume processes) of that bit slice. The

processes communicate over three channels. The L is used to load a new value into

the bit slice, overwriting the current value. The Sin channel is used to shift values

serially into the shift register. The Sout channel is used to shift values serially out

of the shift register. The VHDL code below divides places each process in its own

component. Each component uses the channel data type for its ports. Although

data flow in only one direction on each channel, control information must flow in

both directions on each channel. Hence, each channel port must be declared in the

inout mode.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
use work.nondeterminism.all;
use work.channel.all;
entity produce is

port(L, S in : inout channel := init channel(sender => timing(4, 7)));
end produce;
architecture behavior of produce is

signal x : std logic := ’0’;
begin
produce : process

variable z : integer;
begin
z := selection(2);
if (z = 1) then
send(L, x); -- Must complete data transfer before continuing.

else
send(S in, x); -- Must complete data transfer before continuing.

end if;
x <= not(x);
wait for delay(3, 5);

end process produce;
end behavior;

library ieee;
use ieee.std logic 1164.all;
use work.channel.all;
entity slice is

port(L : inout channel := init channel(receiver => timing(1, 2));
S in : inout channel := init channel(receiver => timing(1, 2));
S Out : inout channel := init channel(sender => timing(2, 3)));

end slice;
architecture behavior of slice is

signal y : std logic;

24

begin
slice : process
begin

await any(L, S in); --Wait for pending communication on L or S in.

-- produce ensures that L and S in are never both pending at once.

-- At this point, exactly one of L,S in has a pending communication.

if (probe(S in)) then -- It is the S in channel that is pending.

send(S out, y);
receive(S in, y);

else -- It is the L channel that is pending.

receive(L, y);
end if;

end process slice;
end behavior;

library ieee;
use ieee.std logic 1164.all;
use work.nondeterminism.all;
use work.channel.all;
entity consume is

port(S out : inout channel := init channel(receiver => timing(3, 7)));
end consume;
architecture behavior of consume is

signal z : std logic;
begin
consume : process
begin
receive(S out, z);

end process consume;
end behavior;

use work.channel.all;
entity shift is
end shift;
architecture new structure of shift is

component produce
port(L, S in : inout channel);

end component;
component slice

port(L, S in, S out : inout channel);
end component;
component consume

port(S out : inout channel);
end component;
signal L, S in, S out : channel := init channel;

begin
source : produce port map (L => L, S in => S in);
UUT : slice port map (L => L, S in => S in, S out => S out);
sink : consume port map (S out => S out);

end new structure;

25

The produce process continually sends data to either the L or Sin channel. It

chooses which channel to use for each datum at random, using the selection func-

tion from the nondeterminism package [58]. selection(n) returns a random integer

such that 1 ≤ selection(n) ≤ n. Note that once the produce process has chosen

which channel to use, it must complete the send operation, thus synchronizing and

exchanging data with the slice process, before it can make any further progress.

Thus, it is never the case that both the L and Sin channels have communications

pending at the same time. The slice process probes the L and Sin channels to

see which channel, if any, has a datum. If the L channel has a datum, the slice

process simply receives it, overwriting its local variable y. If the Sin channel has a

datum, the slice process first sends the current value of y out on the Sout channel,

and then receives the new value of y from the Sin channel, thus completing the

communication on Sin The consume process simply receives data from the Sout

channel. Finally, the structural VHDL code connects the three processes.

The slice process uses the await any function to wait until there is an incoming

datum on either channel L or channel Sin . Because of the behavior of the produce

process, there cannot be pending communications on both the L and Sin channel.

Therefore, in this case, once the await any function completes, there is a pending

communication on exactly one of the channels. The slice process then uses the

probe function to determine which channel has the datum, before it enters the

code to handle that channel. If it tried to communicate with the other channel first,

deadlock would result. Thus, the probe command is necessary for this application.

Also, when the Sin channel has a pending communication, the slice process first

sends the old value of y out on the Sout channel before it executes the receive

operation on the Sin channel. If it did not do this, the current value of the y

variable would be lost. This ability to find out that a communication is pending

on some channel, but then do other work before completing the communication on

that channel is an important feature of the probe function [48].

26

2.2 Signal-Level Specification

We have also developed a handshake package [58] for VHDL. This allows the

user to produce a signal-level specification directly in VHDL. Furthermore, if the

user instead provides a channel-level specification, ATACS can apply the methods

that this dissertation presents to derive signal-level solutions to this channel-level

specification. In some cases, ATACS can then express these solutions in VHDL using

the handshake package.

For purposes of simulation, the handshake package operates as a standard

VHDL package, using only standard VHDL. Thus, just as the channel package

of Section 2.1 enables channel-level simulation using commercially-available VHDL

simulators, the handshake package of this section supports signal-level simulation

of handshaking protocols using commercially-available VHDL simulators. For pur-

poses of synthesis, ATACS recognizes the operations provided by the handshake

package as if they were VHDL primitives. In this sense, ATACS recognizes an

extended subset of VHDL.

VHDL already supports signals, so no new data types are necessary. However,

the handshake package defines new operations on signals: guard and assign. The

guard(s, v) operation waits for signal s to reach the value v. If it is already the case

that s = v, then guard(s, v) exits immediately. In this special case, its behavior

is different from that of a simple VHDL wait statement. guard and(s1, v1, s2, v2)

waits until s1 has value v1 and s2 has value v2. Similarly, guard or(s1, v1, s2, v2)

waits until s1 has value v1 or s2 has value v2.

The assign(s, v, l, u) operation has a precondition of s 6= v. It changes s

to have value v after a delay that is at least l and at most u time units long.

Furthermore, the assign operation does not return control to its caller until s

has attained the value v. Thus, assign(s, v, l, u) has a postcondition of s =

v. The vassign operation handles possibly vacuous assignment. A vacuous as-

signment is one that has no effect, because the variable already has the desired

value. Thus, vassign does not share the precondition of the assign statement.

vassign(s, v, l, u) assigns s the value v after l to u time units no matter what

27

the previous value of s was. Like the assign statement, vassign(s, v, l, u) does

not return control to the caller unless and until signal s has the value v. Thus,

vassign(s, v, l, u) has the postcondition that s = v. The handshake package

also supports parallel assignment. assign(s1, v1, l1, u1, s2, v2, l2, u2) is equivalent

to executing assign(s1, v1, l1, u1) and assign(s2, v2, l2, u2) in parallel. Similarly,

vassign(s1, v1, l1, u1, s2, v2, l2, u2) is equivalent to executing vassign(s1, v1, l1, u1)

and vassign(s2, v2, l2, u2) in parallel. Currently, the handshake package supports

parallel assignments of up to three different signals.

For example, the following VHDL code using the handshake package represents

one possible handshaking expansion of the channel-level specification of simple from

Section 2.1.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
use work.handshake.all;
use work.nondeterminism.all;
entity simpleHand is
end simpleHand;
architecture behavior of simpleHand is

signal cReq, cAck : std logic;
signal cData, x, y : std logic vector(2 downto 0) := "000";

begin
P : process
begin
--@synthesis off

cData <= x;
x <= x + 1;
--@synthesis on

wait for delay(1, 2);
assign(cReq, ’1’, 2, 4);
guard(cAck, ’1’);
assign(cReq, ’0’, 1, 3);
guard(cAck, ’0’);

end process P;
Q : process
begin
guard(cReq, ’1’);
--@synthesis off

y <= cData;
--@synthesis on

assign(cAck, ’1’, 6, 10);
guard(cReq, ’0’);
assign(cAck, ’0’, 5, 7);

end process Q;
end behavior;

28

Process P places a new valid datum on cData. Then, it raises the corresponding

request line, cReq to indicate that cData holds a new, valid datum. When process

Q detects that cReq is high, it copies the datum from cData into the variable y.

Then, it raises cAck to indicate that it has received the datum. Then process P

lowers cReq, and then process Q lowers cAck. This completes the communication,

and control returns to the beginning of each process. Figure 2.2 illustrates the first

two iterations of this example.

2.3 Timed Event/Level Structures

The ATACS compiler accepts the textual specifications of Section 2.1 and pro-

duces a graphical representation called a timed event/level (TEL) structure [8, 7, 9].

TEL structures most closely model signal-level specifications. However, this disser-

tation shows that they can also model channel-level specifications and even protocol

specifications. The following definition is adapted from [7].

Definition 2.1 A TEL structure is a 7-tuple T = (N,S0, A,E,R, R0,#) where:

1. N is the set of signals;

2. S0 ⊆ N is the initial state;

3. A ⊆ (N × {+,−}) ∪ {$} is the set of actions;

4. E ⊆ A× (N = {0, 1, 2, . . .}) is the set of events;

5. R ⊆ E × E ×N × (N ∪ {∞})× 22N is the set of rules;

6. R0 ⊆ R is the set of initially marked rules;

Creq

Cack

Cdata 21

Figure 2.2. The first two iterations of the simpleHand example.

29

7. # ⊆ E × E is the irreflexive and symmetric conflict relation.

Each signal, x ∈ N , represents a wire in the specification. The boolean state

of the system is modeled as the set of signals, S ⊆ N , that are currently high. In

particular, the initial state, S0 ⊆ N , is the set of signals that are initially high. For

each signal x ∈ N , the action set A can contain a rising transition (x,+), denoted

x+, and a falling transition (x,−), denoted x−. The action x+ adds x to the current

boolean state: S = S ∪ {x}. The action x− removes x from the current boolean

state: S = S − {x}. The action set A can also contain the sequencing action, $,

which does not cause a transition on any signal, and hence leaves S unchanged.

Each event, (a, i) ∈ E, is an action paired with a nonnegative integer and refers

to a particular instance of that action. This dissertation treats TEL structures as

finite, cyclic structures. The instance number i is necessary to distinguish multiple

instances of a given action within one iteration of the TEL structure. A sequencing

event is any event of the form ($, i). For clarity, this dissertation often assigns a

symbolic name to a sequencing event of the form $s, where s is a string. Each rule,

r ∈ R, is of the form (e, f, l, u, B) where:

1. e ∈ E is the enabling event of r;

2. f ∈ E is the enabled event of r;

3. l ∈ N is the lower timing bound of r;

4. u ∈ (N ∪ {∞}) is the upper timing bound of r;

5. B ⊆ 2N is the set of boolean states in which the rule is level-satisfied.

Definition 2.2 A rule (e, f, l, u, B) is level-satisfied in boolean state S if and only

if S ∈ B.

This dissertation often expresses the set of boolean states in which a rule is

level-satisfied as a boolean expression, using the following operators.

30

Definition 2.3 Given a TEL structure, T = (N,S0, A,E,R, R0,#), a signal x ∈

N , and boolean expressions e, e1, and e2, let [e] be defined recursively as follows:

[true] = 2N (2.1)

[x] = {S ⊆ N | x ∈ S} (2.2)

[∼ e] = [true]− [e] (2.3)

[e1 & e2] = [e1] ∩ [e2] (2.4)

[e1 | e2] = [e1] ∪ [e2] (2.5)

A rule is enabled if its enabling event has occurred and it is level-satisfied.

There are two possible semantics to handle the situation in which a rule ceases to

be level-satisfied before its enabled event occurs. In nondisabling semantics, once a

rule becomes enabled, it cannot lose its enabling just because it is no longer level-

satisfied. However, in disabling semantics, once the rule is no longer level-satisfied,

it is no longer enabled. A single specification can include rules with both types

of semantics. This dissertation indicates a rule that uses disabling semantics by

appending a “d” to its expression. Nondisabling semantics are typically used to

specify environment behavior. Disabling semantics are typically used to specify

logic gates. During verification, the disabling of a boolean expression on a rule

using disabling semantics can be treated as one type of failure, since it corresponds

to a glitch on the input to a gate. A rule is satisfied if it has been enabled for

at least l time units and expired if it has been enabled for at least u time units.

Excluding conflicts, an event cannot occur until every rule enabling it is satisfied,

and it must occur before every rule enabling it has expired.

The conflict relation, #, is used to model disjunctive behavior and choice. If

two events conflict with each other, this means that both events cannot occur in the

same iteration of the TEL structure. Taking conflicts into account, if two rules have

the same enabled event, but conflicting enabling events, then only one of the two

enabling events needs to occur to cause the enabled event. In general, an event can

occur once and only once every rule in a maximal set of rules that enable the event

and whose enabling events do not conflict with each other is satisfied. The ability

31

of an event to occur when only a subset of its enabling rules have become satisfied

models a form of disjunctive causality. An event that is enabled by multiple rules

whose enabling events conflict with each other is similar to a merge place in a Petri

net. Choice is modeled when multiple rules share the same enabling event but have

conflicting enabled events. In this case, only one of the enabled events can occur in

any given iteration of the TEL structure. Once the common enabling event occurs,

all the rules from this event become enabled. However, as soon as any one of the

events that these rules enable occurs, all the rules that lead to conflicting enabled

events lose their enabling. An event that is the enabling event of multiple rules

that have conflicting enabled events is similar to a choice place in a Petri net. This

dissertation assumes that the conflict relation is irreflexive and symmetric.

Definition 2.4 Define the conflict relation for sets, #set as follows, such that two

sets of events are in conflict if and only if each member event of each set conflicts

with each member event of the other set:

X#setY ⇐⇒ # ⊃ X × Y

Note that because the conflict relation for events, #, is irreflexive and symmetric,

the conflict relation for sets of events, #set , is also irreflexive and symmetric.

Definition 2.5 Let x± be shorthand for the set {x+, x−}.

Suppose that r = (e, f, l, u, B) ∈ R, and r′ = (e′, f, l′, u′, B′) ∈ R. If e does not

conflict with e′, then f cannot occur until both r and r′ are satisfied. This situation

models a join. However, if e conflicts with e′, which is written e#e′, then f can

occur as soon as either r or r′ is satisfied. This situation models a merge.

A rule ceases to be enabled once its enabled event or any event that conflicts

with its enabled event occurs. For example, suppose that r = (e, f, l, u, B) ∈ R,

and r′ = (e, f ′, l′, u′, B′) ∈ R. Once f occurs, r is no longer enabled. If f does

not conflict with f ′, and r′ is enabled, then r′ remains enabled until f ′ occurs.

Similarly, once f ′ occurs, r′ is no longer enabled, but if f does not conflict with f ′,

and r is enabled, then r remains enabled until f occurs. This situation models a

32

fork. However, if f conflicts with f ′, which is written f#f ′, then as soon as either

f or f ′ occurs, neither r nor r′ is enabled. This situation models a choice.

Definition 2.6 In a one-safe TEL structure, once the enabling event of a rule

occurs, it cannot occur again until either the enabled event of the rule occurs, or

an event that conflicts with its enabled event occurs [7]. Initially marked rules

behave as if their enabling events have already occurred. Therefore, in a one-safe

TEL structure, the enabling event of an initially-marked rule cannot occur until

the first occurrence of the enabled event of that rule or of an event that conflicts

with that enabling event. This property is similar to the one-safe property of Petri

nets, which prevents places from containing multiple tokens. This dissertation calls

any violation of the one-safe property for TEL structures a safety violation.

A TEL structure can be represented graphically as an annotated, directed graph,

in which nodes represent events and edges represent rules. For each event (a, i) ∈ E,

there is a node labeled “a/i”. Recall that i is an instance number that is used

to distinguish this event from others with the same action in the same iteration

of the TEL structure. If i = 1, the “/1” may be omitted. For example, the

TEL structure of Figure 2.3 contains two instances of Lreq+ and two instances of

Lreq−. In each case, the second instance is distinguished with a “/2”. For each

rule (e, f, l, u, B) ∈ R, there is a directed arc from the node representing event e to

the node representing f . This arc is labeled with “[l, u]” and the expression for B

using the rules of Definition 2.3 on page 29. If B = [true], then the “[true]” may

be omitted. For each initially marked rule, r ∈ R0, the arc representing r is dotted.

Conflicts, if any, are explicitly listed.

Assuming no conflicts, the TEL structure of Figure 2.4 shows a fork followed by a

join. First the event a+ occurs. Then the sequence b+; b− and the sequence c+; c−

occur in parallel. Once b− and c− have both completed, then a− can happen. Once

a− has happened a+ can happen again. This whole sequence repeats forever.

Assume that a+ first occurs at time 5. This enables the rules (a+, b+, 1, 3, [true])

and (a+, c+, 2, 4, [true]). At time 6, the rule (a+, b+, 1, 3, [true]) becomes satis-

33

Rreq−

Rreq+

[∼ Rack] [Rack]
[10, 20] [10, 20]

Lack−

Lack+

[Lreq] [∼ Lreq]
[10, 20] [10, 20]

Lreq+

Lreq−

$1

$2

[Lack]
[0, 0]

[∼ Lack]
[0, 0]

Rack−

$5

Rack+

$6

[0, 0]
[∼ Rreq]

[Rreq]
[0, 0]

Lreq + /2

Lreq − /2

[Lack]
[0, 0]

[∼ Lack]
[0, 0]

$3

$4

Figure 2.3. Example TEL structure. Except where indicated, each rule has timing
bounds [1, 2].

a+

a−

b+

b−

c+

c−

[1, 2][1, 2]

[2, 4] [2, 4]

[1, 3] [2, 4]

[5, 8]

Figure 2.4. TEL structure for a fork followed by a join (# = ∅) or a choice
followed by a merge (b±#setc±).

34

fied. Thus, this is the first time at which b+ can occur. At time 7, the rule

(a+, c+, 2, 4, [true]) becomes satisfied. Thus, time 7 is the first time that c+ can

occur. At time 8, the rule (a+, b+, 1, 3, [true]) expires. This means that b+ must

occur by time 8. Taken together, the above information shows that b+ occurs some

time in the range [6, 8]. Whenever b+ occurs, it enables the rule (b+, b−, 1, 2, [true]).

One time unit later, (b+, b−, 1, 2, [true]) becomes satisfied. One time unit after that,

(b+, b−, 1, 2, [true]) expires. Thus, b− must occur some time in the range [7, 10].

Similarly, c+ must occur in the during [7, 9] and c− must occur during [8, 11].

As one possible case, suppose that b− occurs at time 8.2. This enables the rule

(b−, a−, 2, 4, [true]). Further suppose that c− occurs at time 9.7. This enables the

rule (c−, a−, 2, 4, [true]). Under these assumptions, (b−, a−, 2, 4, [true]) becomes

satisfied at time 10.2, and (c−, a−, 2, 4, [true]) becomes satisfied at time 11.7.

This would mean that the earliest time at which a− can occur is time 11.7.

Continuing with these assumptions, (b−, a−, 2, 4, [true]) expires at time 12.2, and

(c−, a−, 2, 4, [true]) expires at time 13.7. Thus, under these assumptions, a−

must occur during the range [11.7, 13.7]. Note that each end of this range is

controlled by the later arriving signal, in this case c−. Whenever a− occurs, it

enables (a−, a+, 5, 8, [true]). Five time units later, (a−, a+, 5, 8, [true]) becomes

satisfied. Three time units after that, (a−, a+, 5, 8, [true]) expires. So under these

assumptions a+ occurs for the second time, starting a new iteration, sometime in

the range [16.7, 21.7].

On the other hand, if the events on signal b conflict with the events on signal c,

the TEL structure of Figure 2.4 shows a choice followed by a merge. In this case,

in any given iteration of Figure 2.4, once a+ has happened, either b+ can happen

or c+ can happen, but not both. Furthermore, whichever one of b− or c− occurs

is sufficient to enable a−. The process repeats forever, but each iteration makes an

independent choice between the sequence b+; b− and the sequence c+; c−.

Figure 2.5 shows the TEL structure for a timed version of a rendezvous element

from [58], demonstrating the use of level expressions and timing on rules. This is

a rendezvous element in the sense of a Muller C-element used in an environment

35

x+

x-

[2,5]
[z]

[2,5]
[~z]

y+

y-

[7,10]
[2,5]
[~z]

z+

z-

[1,3]
[~x&~y]d

[1,3]
[x&y]d

Figure 2.5. TEL structure for a timed rendezvous element and its environment
[58].

that will never change an input twice without an intervening change on the output.

This dissertation calls the assumption that the environment behaves in this way

the rendezvous assumption.

Assume that in the initial state, all signals are low. In this state, the rules

(x−, x+, 2, 5, [∼ z]) and (y−, y+, 2, 5, [∼ z]) are enabled. At time 2, they become

satisfied, and at time 5 they expire. Thus, x+ and y+ must each occur in the range

[2, 5]. Once x+ occurs, it enables the rule (x+, x−, 2, 5, [z]). The level expression

[z] ensures that this rule cannot violate the rendezvous assumption. In particular,

this rule is not satisfied until two time units after z becomes high.

Once y+ occurs, it enables the rule (y+, y−, 7, 10, [true]). This rule has no level

expression. Therefore, ignoring timing, (y+, y−, 7, 10, [true]) would be satisfied at

this time. This would allow y− to occur immediately, even if z+ had not yet

occurred. This would cause the rule (z−, z+, 1, 3, [x & y] d) to become disabled.

This would violate the rendezvous assumption and require a true C-element. (Recall

that the “d” after the expression on this rule means that this rule uses disabling

semantics.) However, taking time into account, the rule (y+, y−, 7, 10, [true]) does

not become satisfied until seven time units after it becomes enabled. Suppose that

y+ occurs at time 2, and that x+ occurs at time 5. (This is the worst case.) In

this case, the rule (z−, z+, 1, 3, [x & y] d) is enabled at time 5, satisfied at time

6, and expired at time 8. Thus, z+ must occur by time 8. However, the rule

36

(y+, y−, 7, 10, [true]) is enabled at time 2, and is not satisfied until time 9, because

of the lower timing bound on the rule (y+, y−, 7, 10, [true]). Thus, y− cannot occur

until time 9, by which time z+ is guaranteed to have occurred. Thus, the given

timing constraints enforce the rendezvous assumption for y.

The user can enter TEL structures directly, or the ATACS compiler can derive

them from higher-level specifications. For example, consider the signal-level VHDL

code of Section 2.2. From this, the compiler derives the TEL structure of Figure 2.6.

2.4 State Graphs

In order to design a circuit from a TEL, it is necessary to find its reduced state

graph (RSG). An reduced state graph is essentially a graph in which each vertex

represents a state of the system. Each state is labeled with the state of each signal

wire. The edges in the graph represent possible transitions between states.

Definition 2.7 A reduced state graph is a 6-tuple RSG = (I, O, T, S, δ, λS) where:

1. I is the set of input signals;

2. O is the set of output signals;

3. T ⊆ (I ∪O)× {+,−} ×N is the set of transition events;

4. S is the set of states;

cack+/1

cack-/1

[5,7]
[~(creq)]

[6,10]
[creq]

creq+/1

creq-/1

[1,3]
[cack]

[3,6]
[~(cack)]

Figure 2.6. TEL structure derived from the simpleHand example of Section 2.2.

37

5. δ ⊆ S × T × S is the set of state transitions.

6. λS : S → (I ∪O → {0, R, 1, F}) is the state labeling function

The state labeling function λS labels each state s ∈ S with a function that maps a

signal into the value of that signal. In particular, for each u ∈ I ∪O,

λS(s)(u) =


0 if u is stable low
R if u is untimed-enabled to rise
1 if u is stable high
F if u is untimed-enabled to fall

In speed-independent design, the enablings could be inferred from the edges in

the state graph. However, in timed design, it is possible that some states (and

the associated edges) are eliminated by timing constraints. Therefore, information

about the untimed enablings cannot be inferred from the edges alone, and it must

be represented in the states themselves. Nevertheless, it is useful to define the

following function that strips the enabling information from a state.

Definition 2.8 For each u ∈ I ∪O and s ∈ S,

val(λS(s)(u)) =

{
0 if λS(s)(u) ∈ {0, R}
1 if λS(s)(u) ∈ {1, F}

Figure 2.7 shows the reduced state graph for the TEL structure of Figure 2.5.

Each node s is labeled with λS(s)(x)λS(s)(y)λS(s)(z). In the states labeled RF0

and 1FR, λS(s)(y) = F . This indicates that the signal y is untimed enabled to

fall. However, the only arc leaving RF0 is the arc for x+, and the only arc leaving

1FR is the arc for z+. That is because the timing bounds on the TEL structure

of Figure 2.5 ensure that z+ must occur before y−. Thus, timing enforces the

rendezvous assumption for y. In contrast, in states 1R0 and state 1FR, λS(s)(x) =

1. This indicates that even in the untimed sense, x is stable high in these states.

This is because the level expressions of Figure 2.5 ensure that z+ must occur before

y−. Thus, the level expressions enforce the rendezvous assumption for x.

Figure 2.8 shows the reduced state graph for the TEL structure of Figure 2.6.

Each node s is labeled with λS(s)(cack)λS(s)(creq).

38

RR0

RF0

y+

1R0

x+

1FR

x+ y+

00F

z-

FF1

z+

0F1

y-

F01

x-

x- y-

Figure 2.7. Reduced state graph for the timed rendezvous element. Each state s
is labeled with λS(s)(x)λS(s)(y)λS(s)(z).

39

0R

R1

creq+

1F

cack+

F0

creq-

cack-

Figure 2.8. Reduced state graph for the simpleHand example. Each state s is
labeled with λS(s)(cack)λS(s)(creq).

40

In order to be synthesizable, an reduced state graph must have the Complete

State Coding (CSC) property. This means that if any two states in the reduced

state graph have the same underlying binary value, they must also have identical

output enablings.

Definition 2.9 A reduced state graph RSG = (I, O, T, S, δ, λS) has the complete

state coding property if and only if for any two states s, t ∈ S, either ∃u ∈

I ∪O . val(λS(s)(u)) 6= val(λS(t)(u)), or ∀o ∈ O . λS(s)(o) = λS(t)(o). Any pair of

states that violates this property is called a complete state coding (CSC) violation.

For example, the reduced state graph in Figure 2.8 is complete state coded. How-

ever, consider the reduced state graph in Figure 2.9. The inputs are w and z. The

outputs are x and y. Each state s is labeled with λS(s)(w)λS(s)(z)λS(s)(x)λS(s)(y).

The two highlighted states, those labeled with 10RR and 1R00, have the same

underlying value for each signal: 1000. However, in state 10RR the outputs are

enabled to rise, but in state 1R00 they are not.

2.5 Production Rules

From the Reduced State Graph, ATACS attempts synthesis. If synthesis is

successful, the result is a set of production rules. Each production rule takes the

form of a guarded command. The guard is a boolean expression. The command is

an action (the raising or lowering of a signal) that should be performed whenever the

guard evaluates to true. For example, from the reduced state graph of Figure 2.7,

the method obtains the following production rules:

x & y → z+ (2.6)

∼ x & ∼ y → z− (2.7)

These production rules specify the circuit of Figure 2.10.

From the reduced state graph of Figure 2.8, synthesis derives the following

production rules:

41

R000

10RR

w+

10FR

x+

0F00

z-

10FF

y+

1R00

F100

z+

w-

100F

y-

x-

Figure 2.9. Reduced state graph with a complete state coding violation. The
inputs are w and z. The outputs are x and y. Each state s is labeled with
λS(s)(w)λS(s)(z)λS(s)(x)λS(s)(y).

42

zC

x

y

Figure 2.10. Circuit derived for the timed rendezvous element.

creq → cack+ (2.8)

∼ creq → cack− (2.9)

∼ cack → creq+ (2.10)

cack → creq− (2.11)

In this case, cack always follows creq . Hence a simple wire can implement cack .

Furthermore, creq responds to any change in the value of cack by executing the

opposite transition. Thus, an inverter can implement creq . Figure 2.11 illustrates

the circuit. In general, whenever the guard to raise a signal is the complement of

the guard to lower that signal, a combinational gate is sufficient to implement that

signal.

2.6 Performance Analysis

To help the user find an efficient solution, this dissertation presents techniques

that automatically consider many different implementations of a given specification

For this search to be effective, the evaluation of any given point in the design

space must be quick [38]. In other words, quick estimates of the metrics under

optimization are necessary. If comparing two alternatives requires full synthesis

Cack Creq

Figure 2.11. Circuit for the simpleHand example.

43

of each alternative, it is not practical to compare many alternatives. This section

discusses a strategy for rapid preliminary analysis of alternatives.

Section 5.3 presents a branch-and-bound algorithm [25] to guide the choices

made during concurrency reduction. This requires the ability to assess quickly

the quality of a given TEL structure. To estimate the performance of a given

alternative, this technique uses Mercer’s stochastic cycle period analysis [55]. This

can estimate the performance of a design, based solely on its TEL structure. It can

do so in significantly less time than synthesis would take.

CHAPTER 3

COMPILATION OF CHANNEL-LEVEL

SPECIFICATION

This chapter describes how our tool compiles the channel-level specification of

Section 2.1 into a TEL structure that models the behavior of that specification.

Section 3.1 describes how the specification can constrain the implementation of

each channel. It also defines the requirements for such constraints to be consistent.

Section 3.2 describes how to model the behavior of the channel-level specification

as a TEL structure.

3.1 Semantic Issues

This section describes the various choices that must be made before a chan-

nel communication can be implemented. It also describes how the channel-level

specification can place constraints on these decisions and the requirements for such

specifications to be consistent. Section 3.1.1 discusses the decision about which

process initiates any given channel communication. Section 3.1.2 discusses the

direction of data transmission. Section 3.1.3 discusses the number and significance

of each phase of a channel communication. Section 3.1.4 discusses how the receiver

can determine whether the incoming data are valid.

3.1.1 Active vs. Passive

If two processes communicate over a channel, one process must initiate the

communication. This process is called the active process with respect to that

channel. The other process simply waits for a communication to begin and then

responds. This second process is called the passive process with respect to that

channel [50].

45

The specification can declare any given port to be active or passive. For example,

the following VHDL entity declares the x port to be active and the y port to be

passive, but it makes no commitment about the z port.

entity declare is
port(x : inout channel := active;

y : inout channel := passive;
z : inout channel := init channel);

end declare;

The active and passive declarations are allowed only in entity declarations, since

only one port on a given channel may be active. However, the init channel

declaration is also allowed in signal declarations.

It is also possible for the usage of the channel to implicitly determine which

side of a channel is active and which is passive. By using a probe command, the

specification implicitly declares the probed channel to be passive on the side that

uses the probe. Hence, when the compiler encounters a probe command, it responds

as if the corresponding port had explicitly been declared passive. If in fact, that

port was declared active, the probe command is an error.

This dissertation assumes that exactly one side of each channel must be active,

and the other side must be passive. In other styles, it is possible to relax this

constraint. For example, Tangram supports channels on which both the sender and

receiver are considered to be active [40]. However, this requires a handshake circuit

called a passivator to be inserted on the channel between the sender and the receiver.

This dissertation treats any such circuitry as part of either the sender or receiver.

Assigning the passivator to one of the communicating processes (sender or receiver)

makes that process passive. Within this context, the assumption that exactly one

side of a channel is active, and the other side is passive, is valid. Therefore, if

the specification constrains (either explicitly or implicitly) both sides of any given

channel to be passive, or if it constrains both sides of any given channel to be active,

the compiler rejects the specification.

If, on the other hand, the specification constrains exactly one side of a given

channel, the specification is acceptable. In this case, the compiler responds by con-

straining the other side of the channel accordingly. For example, if the specification

46

constrains one side to be to be passive, the compiler constrains the other side to be

active. Similarly, if the specification constrains one side to be active the compiler

constrains the other side to be passive.

Finally, there may be cases in which the specification does not constrain either

side of any given channel. In this case, the compiler simply notes this fact. This

means that the methods presented in the later chapters are free to make either

choice as to which side of the channel in question is active and which side is passive.

Currently, these methods make channels be push-type channels by default. Hence,

if the specification does not constrain which side of a given channel is active, the

tool that this dissertation presents currently implements send operations on that

channel as active and receive operations as passive.

3.1.2 Data Direction

Using a send command implicitly declares the process that uses it to be the

producer of data for the channel in question. Using a receive command declares

the process to be the consumer of data for the channel in question.

This dissertation assumes that one side of any given channel should contain

send commands and no receive commands and that the other side should contain

receive commands and no send commands. Therefore, if the compiler detects

send commands on both sides of any given channel, or receive commands on both

sides of any given channel, it reports an error. Furthermore, if it detects both send

and receive commands on the same channel in any given process it reports an

error.

The choice of this section is independent of the choice between active and passive

of Section 3.1.1. In other words, any given channel may have active send operations

and passive receive operations, in which case it is a push channel, or it may

have passive send operations and active receive operations, in which case it is a

pull channel. The tool that this dissertation presents supports both types. The

specification can determine the type of a given channel through the declarations of

Section 3.1.1 combined with the usage of send, receive, and probe commands.

The tool that this dissertation presents does not currently support multicast,

47

broadcast, or bidirectional channels. Section 1.1 discusses other tools that do, and

Section 8.1 discusses the possibility of extending the tool that this dissertation

presents to support such channels.

3.1.3 Two-phase vs. Four-phase

The first communication on any given channel typically begins as follows. The

active process raises a request line. The passive process responds by raising an

acknowledge line. There are two possibilities for what happens next.

In two-phase communication or transition signaling the communication is con-

sidered complete at this point. The next time that the processes communicate over

the same channel, the request and acknowledge lines are already high. Therefore,

this second communication must proceed as follows. The active process lowers its

request line. The passive process responds by lowering its acknowledge line. At

this point the second communication is considered complete. Both the request

and the acknowledge line are now low, so the third communication can proceed

exactly as the first. Thus, in transition signaling, any transition on a given control

wire is treated in the same way. A rising transition and a falling transition have

exactly the same significance. Figure 3.1, adapted from [28], illustrates two-phase

communication. Note that each communication requires just two transitions on

control wires. It is not the values on the control wires that is significant but rather

the relationship between these values. If the control wires have the same value, no

communication is pending on the channel. If they have they have opposite values a

communication is pending on the channel. These two possibilities lead to the name

two phase.

Data

Acknowledge

Request

Data

Figure 3.1. Two-phase communication.

48

In four-phase communication, each communication must begin with rising tran-

sitions. Thus, once request and acknowledge are both high, the processes must

reset the control wires to the low state before the next communication on the

same channel can begin. The active process lowers its request wire and the passive

process responds by lowering its acknowledge wire. In this case, the lowering of

these wires is part of the first communication. The second communication on this

channel can then proceed in exactly the same way as the first communication.

Thus, in four-phase communication, any communication on a given channel is

just like any other communication on that channel, but a rising transition on a

control signal is different from a falling transition on that control signal. Figure 3.2,

adapted from [28], illustrates one type of four-phase communication. In this case,

each communication requires four transitions on control wires. Furthermore, each

communication contains all four possible combinations of levels for the control wires,

hence the name four phase.

As mentioned in Chapter 1 and [63, 20], even within four-phase protocols, there

are several possible conventions about when data are valid. These conventions must

result in correct operation of the target data path. These conventions also place

constraints on how two different communications may be correctly sequenced.

Consider a simple, four-phase communication protocol. For purposes of this

illustration, consider only the control portion of the communication. Thus, a single

communication action on channel A expands the following sequence of events:

Areq+; Aack+; Areq−; Aack−

Now consider the sequential composition of two independent communication

Data

Acknowledge

Request

Data

Figure 3.2. Four-phase communication.

49

actions on two separate channels A and B. Let us start with the most aggressive

(most concurrent) possibility for the control, which is narrow sequencing [63]. This

assumes that once the acknowledge signal has been raised (Aack+), the commu-

nication on B can start. Thus, the return-to-zero events (Areq−; Aack−) may be

overlapped with the events of the communication on channel B. Figure 3.3(a) illus-

trates narrow sequencing. However, in weak-broad sequencing, the communication

on channel B must not start until the request line for A has returned to zero (Areq−).

So only the return to zero of the acknowledge line (Aack−) may be overlapped with

the communication on channel B. Figure 3.3(b) illustrates weak-broad sequencing.

Finally, in broad sequencing, the communication on B must wait for Aack−. Thus,

no overlap between A and B is possible. Figure 3.3(c) illustrates broad sequencing.

In all these protocols, the req signal is controlled by the active process, and

the ack signal is the response from the passive process. However, data can flow in

either direction. On a push channel, data flow in the direction of the req signal.

On a pull channel, data flow in the direction of the ack signal. Section 3.1.1 and

Section 3.1.2 show how the specification can constrain the type of each channel.

Currently, the front end for the tool that this dissertation presents always targets

pure synchronization channels using a four-phase protocol with narrow sequencing.

However, other protocols can be handled by bypassing the front end and providing

signal-level input directly to the concurrency reduction engine. Section 4.3 demon-

strates signal-level specifications for many different types of sequencing. In case

future developers automate the generation of the most-concurrent starting point

for the other protocols described in this section, the channel package has reserved

several directives for future expansion. The remaining paragraphs of this section

describe these directives. They are currently accepted but ignored.

The initialization functions, active, passive, and init channel can accept

one of the following optional arguments. 2phase declares that the channel should

use two-phase communication. 4phase declares four-phase operation, but does

not commit to a particular type of sequencing. narrow, weak-broad, and broad

each imply four-phase operation and further restrict the type of sequencing used.

50

Areq

Aack

Breq

Back

(a)

Areq

Aack

Breq

Back

(b)

Areq

Aack

Breq

Back

(c)

Figure 3.3. Four-phase sequencing constraints. Part (a) shows narrow sequencing.
Part (b) shows weak-broad sequencing. Part (c) shows broad sequencing.

51

For example, the following signal declaration specifies that channel C must use

four-phase communication, with weak-broad data sequencing.

signal C : channel := init channel(sequencing => weak broad);

It is also possible for an entity declaration to place such constraints on its ports.

If both sides of a given channel are so constrained, the compiler must check the

declarations for consistency. For example, if the specification declares one side of

a channel to be two-phase, but the other to be four-phase, the compiler rejects the

specification. If, on the other hand, the specification constrains only one side of a

channel, the compiler simply propagates the protocol constraint to the other side of

the channel. Finally, if the specification constrains neither side of a given channel,

the compiler notes that the decision of whether to use two-phase or four-phase (and

if four-phase, what type of data constraints to use) is still an open decision.

3.1.4 Bundled Data vs. Data Encoding

When data transfer occurs during a channel communication, the sender’s asser-

tion that the data are valid must not reach the receiver before the new, valid data

themselves reach the receiver. There are many approaches to guaranteeing this.

They generally fall into two categories: bundled data and data encoding.

Figure 3.4 illustrates the bundled-data approach. In this approach, the sender’s

assertion that the data are valid is carried on a control wire separate from the data

wires. In the case of a push channel, this is the request signal. In the case of a

pull channel, this is the acknowledge signal. The data path consists of standard,

processing
logic

bundling delay
ack

inputs outputsDin Dout

req

Figure 3.4. Bundled data.

52

combinational logic blocks. The designer or the CAD tools must estimate the

worst-case delay though each logic block. The control path simply uses a delay

element to model this worst-case delay. This delay element is inserted on the wire

that carries the sender’s assertion that the data are valid. Even if a given logic

block is multiple bits wide, one delay element is associated with the entire block.

Thus, all the data bits of the block (or bus) are “bundled” together with one delay,

hence the name bundled data. The common delay element is called the bundling

delay. Each channel that carries data using the bundled-data approach relies on

the assumption that all valid data arrive at the receiving end of the channel before

the relevant control signal (that announces the arrival of the data) gets through

the bundling delay and reaches the receiver. This one-sided timing assumption is

called the bundling constraint.

Figure 3.5 illustrates the data-encoding approach. In this approach, data are

encoded in such a way that the receiver can determine whether they are valid

by directly examining the data. Hence the sender’s assertion that the data are

valid is encoded in the data themselves. Thus, no timing assumption is necessary.

This approach requires using more data wires than there are information bits in

each datum to be sent. For example, consider the problem of encoding one bit of

information. A common form of data encoding, known as dual-rail, does this in

the following way. Two physical data wires, d0 and d1 are allocated to the channel.

When d0 = d1 = 0, this means that there is no valid datum on the channel. When

d0 = 1, but d1 = 0, this means that a valid datum of “0” is present on the channel.

If d0 = 0, but d1 = 1, this means that a valid datum of “1” is present on the channel.

processing
logic

Din Dout

inputs outputs

encoded encoded

with
completion
detection

Figure 3.5. Data encoding.

53

This can be generalized to multi-bit channels in several ways. The approach can

simply be repeated for each bit, using a total of 2i wires to transmit i bits of

information. The entire data word is valid if and only if each pair of wires has one

of the wires high. For narrow data words, a unary [21] or one-hot [26] encoding

scheme is feasible. In this scheme, one wire is allocated for each possible datum

value that the channel can transmit. The data are valid when exactly one of these

wires is high. Transmitting an i-bit wide data word using this scheme requires 2i

data wires. In general, data can be encoded using an m/n code, in which the data

are considered valid when m out of n wires are high [3]. In this terminology, each

bit of a dual-rail code uses a 1/2 code. A unary or one-hot scheme uses a 1/2i code

to send i bits of information.

Currently, the tool that this dissertation presents implements only the control

portion of channel communications and not the data path. However, Section 4.3

shows how data could be implemented in the future, and how the target data path

should affect the control. These effects can be achieved by bypassing the front end

and providing the signal-level starting point directly to the concurrency reduction

engine. In case this is automated in the future, the channel package reserves

several directives to indicate how data should be handled for future expansion. The

remaining paragraphs of this section describe these directives. They are currently

accepted but ignored.

The specification can constrain these choices as well. The initialization func-

tions, active, passive, and init channel can accept one of the following optional

arguments. bundled declares that the channel should use bundled data communi-

cation. encoded(m,n) declares data encoding, using an m/n code for each field.

Thus, each field is implemented with n wires, m of which are 1 for any valid code

word.

These declarations may be combined with those of Section 3.1.3. For exam-

ple, the following signal declaration specifies that channel C must use four-phase

communication, with narrow data sequencing, and dual-rail encoding.

signal C : channel := init channel(sequencing => narrow,
data => encoded(1, 2));

54

3.2 Channel-Level TEL

The first step toward the graphical manipulations of Chapter 4 and Chapter 5 is

to produce a TEL structure that models the channel-level specification. This TEL

structure is not meant to be a signal-level specification. It is meant to be only a

channel-level model of the behavior of the specification. At such a behavioral level,

all that is important about send and receive operations is that matching send

and receive operations should synchronize. In other words, whichever operation

is executed first among a matching pair of send and receive operations must

wait until its matching partner is executed. This property is used to perform a

channel-level verification of the specification. If verification finds a deadlock in the

channel-level TEL that the technique of this section produces, this means that there

is a deadlock inherent in the channel-level specification. In this case, the user must

change the channel-level specification before any signal-level implementation can

be found.

Simple syntax-directed translation produces the desired TEL structure. For

each channel C in the channel-level specification, the ATACS parser adds two signals,

c! and c? to the TEL structure. A high value of signal c! indicates that there is

a pending send operation on channel C. A high value on signal c? indicates that

there is a pending receive operation on channel C.

When a given process executes a send operation on channel C, it must indicate

that the send is pending by raising the signal c!. Then it must wait until the

corresponding receive operation is pending before proceeding. In other words, it

must wait until the signal c? is high. Once c? is high, the process must indicate

that the send operation is no longer pending by lowering the signal c!. It then must

wait until the receive operation is no longer pending. In other words, it must wait

until c? is low. Thus, for each send operation on channel C in the specification, the

ATACS parser introduces the following rules into the channel-level TEL structure:

(c!+, c!−, 0,∞, [c?]) and (c!−, $sink, 0,∞, [∼ c?]). What rules should enable c!+

depends on what precedes the send operation in the channel-level specification.

Similarly, what rules $sink should enable depends on what follows the send operation

55

in the channel-level specification. This scheme does not commit the lower levels

of the tool to any particular protocol or implementation. It is used only for

channel-level verification. For purposes of the rest of the tool that this dissertation

presents, the events c!+ and c!− and the above rules are simply place holders for

the send command itself. The handshaking expansion phase could replace these

with any signal-level structure that still meets the semantics of the send operation.

It is the initial handshaking expansion step that occurs after the compilation de-

scribed here but before concurrency reduction that is currently limited to four-phase

communication. The channel-level TEL structure itself imposes no such limitation.

In the above discussion, $sink actually represents a distinct sequencing event for

each channel communication. In simple cases, this sequencing event can be removed

in a postprocessing step [76, 75].

When a given process executes a receive operation on channel C, it must

indicate that the receive is pending by raising the signal c?. Then it must wait

until the corresponding send operation is pending before proceeding. In other

words, it must wait until the signal c! is high. Once c! is high, the process

must indicate that the receive operation is no longer pending by lowering the

signal c?. It then must wait until the send operation is no longer pending. In

other words, it must wait until c! is low. Thus, for each receive operation on

channel C in the specification, the ATACS parser introduces the following rules into

the channel-level TEL structure: (c?+, c?−, 0,∞, [c!]) and (c?−, $sink, 0,∞, [∼ c!]).

What rules should enable c?+ depends on what precedes the receive operation in

the channel-level specification. Similarly, what rules $sink should enable depends

on what follows the receive operation in the channel-level specification. This

scheme does not commit the lower levels of the tool to any particular protocol or

implementation. It is used only for channel-level verification. For purposes of the

rest of the tool that this dissertation presents, the events c?+ and c?− and the above

rules are simply place holders for the receive command itself. The handshaking

expansion phase could replace these with any signal-level structure that still meets

the semantics of the receive operation. It is the initial handshaking expansion step

56

that occurs after the compilation described here but before concurrency reduction

that is currently limited to four-phase communication. The channel-level TEL

structure itself imposes no such limitation.

For example, consider the following channel-level specification.

architecture behavior of PAex is
signal x, y, z : std logic vector(2 downto 0) := "000";
signal L, R : channel := init channel;

begin
producer : process
begin
send(L, x);
--@synthesis off
x <= x + 1;
wait for delay(4, 5);
--@synthesis on

end process producer;
FIFO : process
begin
receive(L, y);
wait for delay(1, 2);
send(R, y);

end process FIFO;
consumer : process
begin
receive(R, z);
wait for delay(4, 6);

end process consumer;
end behavior;

From this, the parser derives the channel-level TEL structure of Figure 3.6.

Note that post processing has removed the $sink sequencing events.

If the compiler determines the specification has constrained the protocol for a

channel communication, it annotates the channel level TEL with information about

the constraints. Furthermore, the compiler also annotates each event with infor-

mation about which datum is being sent or received. This annotation is currently

implemented by appending a number containing a bit vector with flags for each of

the options to the name of each event involved in a channel communication. This

information is not shown in Figure 3.6. Furthermore, this information is ignored

during verification of the channel-level TEL. However, the expansion techniques of

Chapter 4 use this information to constrain their decisions about which process is

the active participant and which process is the passive participant in each channel

communication.

57

l!+

l!-

[0,inf]
[l?]

[0,inf]
[~l?]

r?+

r?-

[0,inf]
[r!]

[0,inf]
[~r!]

l?+

l?-

[0,inf]
[l!]

r!-

[0,inf]
[~r?]

r!+

[0,inf]
[~l!]

[0,inf]
[r?]

Figure 3.6. Channel-level TEL model of the producer, consumer, and FIFO.

58

The channel-level TEL structure represents an abstract model of the channel-

level specification. If there is deadlock inherent in the original channel-level spec-

ification, that deadlock is detectable from this TEL structure. ATACS can detect

such a deadlock before the graph transformations and searches of Chapter 4 and

Chapter 5 even begin.

CHAPTER 4

PROTOCOL SPECIFICATION

Given the channel-level model of Chapter 3, the techniques of this chapter derive

an initial signal-level model. This requires selecting a communication protocol

for each channel. Given the channel-level TEL structure, and the selection of

a protocol, the techniques of this chapter must find the most concurrent TEL

structure that still meets the constraints of both the original specification and the

given protocol.

This chapter presents an overview of the different types of constraints that a

protocol imposes on the signal-level implementation. It also presents a model for

expressing such constraints using TEL structures. In particular, Section 4.1 shows

the difference in the constraints on signal-level implementations of an active and a

passive protocol.

The techniques of this chapter have been automated for only one protocol.

The tool that this dissertation presents does include a simple automatic expander

that, given the graphical channel-level specification that is the result of Chapter 3,

produces the starting point for concurrency reduction in format described in this

chapter. This front end currently targets pure synchronization channels, using one

four-phase protocol with narrow sequencing. For other protocols, the user must

provide the starting point for concurrency reduction as a signal-level specification.

Section 4.2 and Section 4.3 present an extensive overview of how do this. They

provide a survey of many protocols that have been used in the literature, showing

how the constraints of each can be expressed by the model. In particular, Sec-

tion 4.3 shows how a target data path imposes constraints on control. It covers

the constraints necessary to ensure integrity of any data transferred during channel

60

communications. This section provides a survey of many protocols that have been

used in the literature, showing how the constraints of each can be expressed by the

model. The survey is not meant to describe every possible protocol. Rather it is

meant to cover a broad enough range of examples from the literature to demonstrate

how the choice of target data path impacts the constraints on control. This section

uses a simple one-place buffer as a running example. Section 4.4 shows how to apply

the same model to more complex examples. Section 4.5 shows how the model could

form the basis for an extendible library of protocols for CAD tools.

The reader who is concerned only with what is currently automated in the tool

can skip Section 4.2 (except for the first example), Section 4.3, and Section 4.5

However, these sections (and indeed this entire chapter) are still useful to anyone

who extends the front end in the future to implement these techniques to support

more of these protocols. Furthermore, until then, this section is also useful to the

user who bypasses the front end, directly inputting the most-concurrent, signal-level

specification that still meets the constraints of the user’s chosen protocol. For such

a user, these sections outline a systematic approach to setting up the starting point

for the concurrency reduction techniques of Chapter 5 and Chapter 6.

4.1 Active vs. Passive

As Section 3.1.1 states, when two processes (for example, a circuit and its

environment) communicate over a channel, one process is active and initiates the

communication. The other process is passive and simply responds to the actions of

the active process. For example, consider the following channel-level VHDL. There

is no data transfer in this example. The communication actions represent pure

synchronization in this example.

architecture behavior of AP is
signal C : channel := init channel(
sender => timing(rise min => 3, rise max => 4,

fall min => 1, fall max => 2),
receiver => timing(rise min => 4, rise max => 9,

fall min => 1, fall max => 2));
begin
A : process
begin
send(C);

61

end process A;
P : process
begin
receive(C);

end process P;
end behavior;

For example, for a push channel, A is the active process, and P is the pas-

sive process. In this case, following signal-level VHDL illustrates the sequence of

assignments and guards that occur using four-phase handshaking.

architecture behavior of handAP is
signal Creq, Cack : std logic;

begin
A : process
begin
assign(Creq, ’1’, 3, 4);
guard(Cack, ’1’);
assign(Creq, ’0’, 1, 2);
guard(Cack, ’0’);

end process A;
P : process
begin
guard(Creq, ’1’);
assign(Cack, ’1’, 4, 9);
guard(Creq, ’0’);
assign(Cack, ’0’, 1, 2);

end process P;
end behavior;

Figure 4.1 shows the corresponding TEL structure.

4.2 Sequencers

Given the channel-level TEL structure of Chapter 3, the initial expander that

this dissertation presents targets a particular form of pure synchronization channel,

using a four-phase, narrow protocol. For example, consider four channel communi-

cations in series. The tool that this dissertation presents currently sequences these

Creq+
[3, 4]

Creq−

[1, 2]
[∼ Cack] [Cack]

Cack+

Cack−
[∼ Creq][Creq]

[4, 9] [1, 2]

Figure 4.1. TEL structure for a four-phase expansion of a channel communication.

62

as shown in Figure 4.2. Note that for each four-phase communication, the first

two phases complete before the next communication can begin. The return-to-zero

transitions are free to be interleaved with the communications that follow them.

This is the same sequencing that Cortadella et al. [23] use.

Many other sequencers are possible. The front-end that automates the initial

expansion process currently targets only the above scheme. However, one can

handle other protocols, by bypassing this front end and providing the constraints

on reshuffling directly to the concurrency reduction engine. The remainder of this

section presents some examples of how to do this.

Prosser et al. [63] present a study of many possible sequencers. They illus-

trate each possibility using a sequencer with the following interface behavior. A

communication on a passive port L initiates the step of an algorithm for which

this sequencer is responsible. The sequencer initiates a communication on port X

to do the work of this step of the algorithm. Finally, the sequencer initiates a

communication on port R to pass control to the next step of the algorithm.

Cack−

Cack+

[∼ Creq]
[10, 20]

[Creq]
[10, 20]

Aack−

Aack+

[∼ Areq]
[10, 20]

[Areq]
[10, 20]

Breq−

Breq+

[Back]
[10, 20]

[∼ Back]
[10, 20]

Dreq−

Dreq+

[Dack]
[10, 20]

[∼ Dack]
[10, 20]

Areq+

Areq−

$1

$2

[Aack]
[0, 0]

[∼ Aack]
[0, 0]

Back−

$5

Back+

$6

[0, 0]
[∼ Breq]

[Breq]
[0, 0]

Creq + /2

Creq − /2

[Cack]
[0, 0]

[∼ Cack]
[0, 0]

$3

$4 Dack−

$7

Dack+

$8

[0, 0]
[∼ Dreq]

[Dreq]
[0, 0]

Figure 4.2. The sequencing currently targeted by the automatic tool that this
dissertation presents.

63

Let a ≺ b mean that a must occur before b. Let a−1 stand for the occurrence

of a in the previous iteration. In the following, [e] is shorthand for the step in the

protocol at which the process waits for the guard (Definition 2.3 on page 29) to

become satisfied. For the sequencer, L is passive and the other ports are active.

This gives the following constraints:

L−1
ack− ≺ [Lreq] ≺ Lack+ ≺ [∼ Lreq] ≺ Lack− (4.1)[

∼ R−1
ack

]
≺ Rreq+ ≺ [Rack] ≺ Rreq− ≺ [∼ Rack] (4.2)[

∼ X−1
ack

]
≺ Xreq+ ≺ [Xack] ≺ Xreq− ≺ [∼ Xack] (4.3)

The above constraints apply two both two-phase communication and also to

four-phase communication. In the case of two-phase communication, each equation

represents two communications. In the case of four-phase communication, each

equation represents just one communication.

The two-phase sequencer of Prosser et al. [63] enforces the following additional

constraints:

[Lreq] ≺ Xreq+ (4.4a)

[∼ Lreq] ≺ Xreq− (4.4b)

[Xack] ≺ Rreq+ (4.4c)

[∼ Xack] ≺ Rreq− (4.4d)

One can manually construct a TEL structure that represents these constraints.

Each precedence (≺) relationship leads to a rule in the TEL structure. The TEL

structure of Figure 4.3 represents the constraints of Equations (4.1), (4.2), (4.3),

and (4.4) simultaneously. In Figure 4.3, the protocol is unrolled such that each

iteration of the TEL structure covers two iterations of the protocol.

Within four-phase sequences, Prosser et al. [63] classify the possibilities as

broad, weak-broad, and narrow. For example, the sequencer of van Berkel [11] is a

broad sequencer. It uses the following constraints:

64

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.4a)

(4.4b)

(4.4c)

(4.4d)

Figure 4.3. Constraints on two-phase sequencer.

[Lreq] ≺ Xreq+ (4.5a)

[∼ Xack] ≺ Rreq+ (4.5b)

[Rack] ≺ Lack+ (4.5c)

[∼ Lreq] ≺ Rreq− (4.5d)

[∼ Rack] ≺ Lack− (4.5e)

The TEL structure of Figure 4.4, adapted from Prosser et al. [63], represents the

constraints of Equations (4.1), (4.2), (4.3), and (4.5) simultaneously.

The Winkel weak-broad sequencer uses the following constraints:

[Lreq] ≺ Xreq+ (4.6a)

[Xack] ≺ Lack+ (4.6b)

[∼ Lack] ≺ Rreq+ (4.6c)

[∼ Lreq] ≺ Xreq− (4.6d)

[∼ Xack] ≺ Lack− (4.6e)[
∼ R−1

ack

]
≺ Xreq+ (4.6f)

The TEL structure of Figure 4.5, adapted from Prosser et al. [63], represents the

constraints of Equations (4.1), (4.2), (4.3), and (4.6) simultaneously.

65

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+

(4
.5

b)

(4.5e)

(4.5a)

(4.5d)

(4.5c)

Figure 4.4. Constraints on the van Berkel sequencer.

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.6a)

(4.6b)

(4.6e)

(4.6d)
(4.6c)

(4.6f)

Figure 4.5. Constraints on the Winkel weak-broad sequencer.

66

The Brunvand narrow sequencer [16] uses the following constraints:

[Lreq] ≺ Xreq+ (4.7a)

[Xack] ≺ Lack+ (4.7b)

[Xack] ≺ Rreq+ (4.7c)

[∼ Lreq] ≺ Xreq− (4.7d)

[∼ Xack] ≺ Lack− (4.7e)

[∼ Xack] ≺ Rreq− (4.7f)[
∼ R−1

ack

]
≺ Xreq+ (4.7g)

The TEL structure of Figure 4.6, adapted from Prosser et al. [63], represents the

constraints of Equations (4.1), (4.2), (4.3), and (4.7) simultaneously.

4.3 Data Constraints

The front-end that automates the initial expansion process currently targets

pure synchronization channels, using one, fixed, four-phase protocol in which the

return-to-zero actions are assumed to be free to be interleaved with other commu-

nications. However, one can handle other protocols, by bypassing this front end

and providing the constraints on reshuffling directly to the concurrency reduction

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.7a)

(4.7d)

(4.7b)

(4.7e)

(4.7c)

(4.7f)

(4.7g)

Figure 4.6. Constraints on the Brunvand narrow sequencer.

67

engine. This section presents an extensive survey of how to do this, focusing on

how the target data path imposes constraints on control.

The TEL structures in this section were designed by hand to meet the con-

straints imposed by each target data path. The reader who is interested only in

what is currently automated in the tool can skip this section. However, this section

(and indeed this entire chapter) is still useful to anyone who extends the front

end in the future to implement these techniques. Furthermore, until then, this

section is also useful to the user who bypasses the front end, directly inputting the

most-concurrent, signal-level specification that still meets the constraints of the

user’s chosen protocol. For such a user, this section shows how the choice of target

data path impacts the constraints on control for a one-place buffer. Furthermore,

this section outlines a systematic approach to incorporating these constraints into

a signal-level TEL structure that captures the constraints of the chosen protocol

for that buffer.

If channel communication is used not merely for synchronization, but also for

data transfer, the choice of data-path style imposes constraints on the controller

and vice versa. This section considers such constraints in the context of a buffer.

Section 4.4 extends the model to include more complicated constructs. A simplified

buffer process is shown below.

buf : process
begin
receive(L, x);
send(R, x);

end process buf;

By default, the tool that this dissertation presents assumes that an otherwise

unconstrained channel is a push type channel. So, if the specification does not spec-

ify otherwise, L above is passive and R above is active. However, the specification

could use the declarations of Section 3.1.1 to declare that L should be active and

R should be passive. In this case, because of the receive on L and the send on

R, both channels would be pull type channels.

In any case, the examples in this chapter will consist of FIFO queues that are

constructed by tiling multiple, identical instances of a buffer process together. This

68

requires the buffer process to have one active port and one passive port. One could

instead alternate between two types of buffers. In one type, both ports would be

active, and in the other type, both ports would be passive. However, this chapter

does not include examples of such buffers.

The following subsections consider two main approaches for handling data.

Section 4.3.1 considers the case in which control and data path are two separate

processes. Section 4.3.2 considers the case in which control and data are unified.

Both sections use four-phase handshaking for purposes of illustration.

4.3.1 Separate Control and Data Path

The interface to the control portion of the above buffer is shown in Figure 4.7(a)

for L passive and R active and in Figure 4.7(b) for L active and R passive. This

is similar to the six-terminal sequencer model of Prosser et al. [63]. The variable

x has been replaced with an additional communication on the channel X. The X

channel connects the control and data path processes. Intuitively, Xreq tells the data

path to store the incoming value from channel L into variable x, and Xack indicates

that this has been accomplished. However, the details of what each event on the

X channel means depend on the implementation of the data path. Regardless of

the choice of data path, each of the three channels must obey its protocol.

The constraints of Equation (4.3) of Section 4.2 applies to the buffer. If L is

passive and R is active, the Equations (4.1) and (4.2) from Section 4.2 also apply

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

(a) (b)

Figure 4.7. Generic interfaces to the control portion of a buffer. In part (a), L is
passive and R is active. In part (b), L is active and R is passive.

69

to the buffer. If instead, L is active and R is passive, the constraints on L and R

become

[
∼ L−1

ack

]
≺ Lreq+ ≺ [Lack] ≺ Lreq− ≺ [∼ Lack] (4.8)

R−1
ack− ≺ [Rreq] ≺ Rack+ ≺ [∼ Rreq] ≺ Rack− (4.9)

The above constraints apply two both two-phase communication and also to

four-phase communication. In the case of two-phase communication, each equation

represents two communications. In the case of four-phase communication, each

equation represents just one communication.

The remainder of this section considers several possible implementations for

the data path and discusses the additional constraints that each implementation

imposes on the control.

Consider a two-phase, bundled-data, FIFO, using dual-edge-triggered flip-flops

as shown in Figure 4.8(a). This figure shows both control and data path for two

stages a FIFO buffer. The dual-edge-triggered flip-flops are used as two-phase,

transition-sensitive storage elements. Any transition on the clk input causes the

current value of D to overwrite the value of Q.

The delay element between Xreq and Xack must conservatively match the clk to

Q delay of the flip-flop. In this model, it must also be at least as long as the required

hold time of the flip flop. The clk to Q delay and the hold time are technically

two separate parameters of the flip-flop. An optimization would be to use separate

bundling delays to model these two parameters. However, in this simplified model,

the single bundling delay between Xreq and Xack is set to conservatively match the

maximum of the two parameters. Thus Xack indicates both that a new datum is

available at the Q output of the register and also that it is safe to change the D

input to the register.

The delay element between Rreq and Lreq must conservatively match the pro-

cessing delay of the combinational logic between stages. To consider the impact on

control assume a controller in which L is passive and R is active. To ensure that

70

the incoming data from the L channel are stable before Xreq clocks the register, the

protocol must enforce the following:

[Lreq] ≺ Xreq+ (4.10a)

[∼ Lreq] ≺ Xreq− (4.10b)

Furthermore, this datum must be available at the Q output of the register before

the buffer notifies the R channel that it is available. In this model, Xack is the

indication that a clk to Q delay has passed and the datum is available. Therefore,

the protocol must enforce the following:

[Xack] ≺ Rreq+ (4.10c)

[∼ Xack] ≺ Rreq− (4.10d)

The datum must also be safely stored before the buffer notifies the L channel that

it may overwrite the datum. In this model, Xack also indicates that a hold time

has passed, and it is safe to change the D input to the register. Thus, the protocol

must enforce the following:

[Xack] ≺ Lack+ (4.10e)

[∼ Xack] ≺ Lack− (4.10f)

This is necessary, because in this push protocol, Lack notifies the preceding stage

that it is free to change Ldata . Finally, the receiver on the other end of the R channel

must receive this datum before the buffer overwrites the contents of the data-path

register. This requires the following:

[Rack] ≺ Xreq− (4.10g)[
∼ R−1

ack

]
≺ Xreq+ (4.10h)

One can manually construct a TEL structure to represent these constraints. Each

precedence (≺) relationship becomes a rule in the TEL structure. For example,

the TEL structure of Figure 4.8(b) represents the constraints of Equations 4.1, 4.2,

and 4.3 plus the data and safety constraints listed for this protocol simultaneously.

71

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Ldata RdataLdata Rdata x
DETFF

clk

D Q
x

DETFF
clk

D Q Din

processing

[10, 19]

[4, 8]

DoutDin

processing

[10, 19]

[4, 8]

Dout

[20, 30] [20, 30]

(a)

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.10a)

(4.10b)

(4.10f)

(4.10e)

(4.10h)

(4.10d)

(4.10g)

(4.10c)

(b)

Figure 4.8. Two-phase, bundled-data, push FIFO using dual-edge-triggered
flip-flops. Part (a) shows a schematic of the control and data path. Part (b)
shows a TEL structure for the constraints on control.

72

In this TEL structure, the two-phase protocol has been unrolled such that each

iteration of the TEL structure of Figure 4.8 covers two iterations of the protocol.

Except where indicated, each rule has timing bounds [1, 2]. Alternatively, one could

also put the constraints of each four phase protocol (each of 4.1, 4.2, and 4.3) into

its own separate connected component of the TEL structure and then use level

expressions to express the data constraints. However, the format of Figure 4.8 is

more uniform in that each constraint is represented as a rule in the TEL structure.

Now consider a four-phase, bundled-data implementation, using a simple nor-

mally transparent latch, as shown in Figure 4.9(a). This figure shows both control

and data path for two stages a FIFO buffer. The latches are level-sensitive. The

value of the C input determines whether there is a combinational path from the D

input to the Q output. (Some gate libraries would call the control input G instead

of C.) When C is active, Q simply follows D. When C is inactive, Q holds its

current value. In Figure 4.9(a), there is an inverting bubble in front of the C input

to the latch. Therefore C = ¬Xreq . When Xreq is low, the latch is transparent.

When Xreq is high, the latch is opaque.

The delay element between Xreq and Xack must conservatively match the delay

from Xreq+ until the latch is completely opaque. The delay element between Rreq

and Lreq has separate delay ranges for rising and falling delay. The rising delay

must conservatively match the processing delay of the combinational logic between

stages. The falling delay must conservatively match the recovery (return-to-zero)

delay of the combinational logic. This is essentially the data path used in [28]. To

consider the impact on control, first assume a controller in which L is passive and

R is active. To ensure that there is a new, valid datum to send before the send

operation on the R channel commences, the protocol must enforce the following:

[Lreq] ≺ Rreq+ (4.11a)

This datum must also enter the data-path latch before the latch becomes opaque.

Thus, the protocol must enforce the following:

[Lreq] ≺ Xreq+ (4.11b)

73

To ensure that the latch has stored the datum before the L channel overwrites it,

the protocol must enforce the following:

[Xack] ≺ Lack+ (4.11c)

The latch must remain opaque until the recipient at the other end of the R channel

has received the data. Thus, the protocol must enforce the following:

[Rack] ≺ Xreq− (4.11d)

Finally, the latch must return to its transparent state to let new data through before

the next send operation on channel R commences. This requires the following:[
∼ X−1

ack

]
≺ Rreq+ (4.11e)

One can manually construct a TEL structure to represent these constraints. Each

precedence (≺) relationship becomes a rule in the TEL structure. The TEL struc-

ture of Figure 4.9(b) represents the constraints of Equations 4.1, 4.2, and 4.3 plus

the data and safety constraints listed for this protocol simultaneously. The corre-

spondence is straightforward, except in the case of Equation (4.11e) Conceptually,

this would indicate an initially-marked rule from $4 to Rreq+. However, for the

TEL structure that represents these constraints to be one-safe (Definition 2.6 on

page 32), this rule must be redirected to $1.

Now consider the case in which L is active and R is passive, as shown in

Figure 4.10(a). To ensure that there is a new, valid datum to send before the send

operation on the R channel commences, the protocol must enforce the following:

[Lack] ≺ Rack+ (4.12a)

This datum must also enter the data-path latch before the latch becomes opaque.

Thus, the protocol must enforce the following:

[Lack] ≺ Xreq+ (4.12b)

To ensure that the latch has stored the datum before the L channel overwrites it,

the protocol must enforce the following:

[Xack] ≺ Lreq− (4.12c)

74

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

RdataLdata
x

C

D Q
Ldata Rdata

x
C

D Q Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

processing

[10, 19]

[4, 8]

[20, 30] ↑, [4, 6] ↓

Din

recovery

[2, 3]

Dout

(a)

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.11b)

(4.11c)

(4.11e) (4.11a)

(4.11d)

(b)

Figure 4.9. Four-phase, bundled-data, push FIFO using normally transparent
latches. Part (a) shows a schematic of the control and data path. Part (b) shows
a TEL structure for the constraints on control.

75

The latch must remain opaque until the recipient at the other end of the R channel

has received the data. Thus, the protocol must enforce the following:

[∼ Rreq] ≺ Xreq− (4.12d)

Finally, the latch must become transparent again to let new data through before the

next send operation on channel R commences. Hence, the protocol must enforce

the following: [
∼ X−1

ack

]
≺ Rack+ (4.12e)

The TEL structure of Figure 4.10(b) represents all these constraints simultane-

ously.

Now consider the normally opaque latches of Figure 4.11(a). In Figure 4.11(a),

there is no inverting bubble in front of the C input to the latch. Therefore, C = Xreq .

When Xreq is low, the latch is opaque. When Xreq is high, the latch is transparent.

The delay element between Xreq and Xack must conservatively match the delay from

Xreq+ until the latch is completely transparent. To consider the impact on control,

first assume a controller in which L is passive and R is active. To ensure that

there is a new, valid datum to store in the x register, the protocol must enforce the

following:

[Lreq] ≺ Xreq+ (4.13a)

This datum must also enter the data-path latch before the buffer notifies the R

channel that it is available. Thus, the protocol must enforce the following:

[Xack] ≺ Rreq+ (4.13b)

To ensure that the latch has stored the datum before the L channel overwrites it,

the protocol must enforce the following:

[∼ Xack] ≺ Lack+ (4.13c)

Finally, the latch must remain opaque until the recipient at the other end of the R

channel has received the data. Thus, the protocol must enforce the following:[
R−1

ack

]
≺ Xreq+ (4.13d)

The TEL structure of Figure 4.11(b) represents all these constraints simultane-

76

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

RdataLdata
x

C

D Q
Ldata Rdata

x
C

D Q Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

(a)

[4, 8] [4, 8]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

Rreq−

Rreq+

[∼ Rack] [Rack]
[20, 30] [4, 6]

Lack−

Lack+

[Lreq] [∼ Lreq]
[20, 30] [4, 6]

$4

Xreq+

Xreq−

$3

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Xack+

[∼ Xreq]
Xack−

[Xreq]

(4.12d)

(4.12a)

(4.12b)

(4.12e)

(4.12c)

(b)

Figure 4.10. Four-phase, bundled-data pull FIFO using normally transparent
latches. Part (a) shows a schematic of the control and data path. Part (b) shows
a TEL structure for the constraints on control.

77

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

RdataLdata
x

C

D Q
Ldata Rdata

x
C

D Q Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

(a)

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.13a)

(4.13c)

(4.13d)

(4.13b)

(b)

Figure 4.11. Four-phase, bundled-data push FIFO using normally opaque latches.
Part (a) shows a schematic of the control and data path. Part (b) shows a TEL
structure for the constraints on control.

78

ously.

Now consider the case in which L is active and R is passive, as shown in

Figure 4.12(a). To ensure that there is a new, valid datum to store in the x latch,

the protocol must enforce the following:

[Lack] ≺ Xreq+ (4.14a)

This datum must also enter the data-path latch before the buffer notifies the R

channel that it is available. Thus, the protocol must enforce the following:

[Xack] ≺ Rack+ (4.14b)

To ensure that the latch has stored the datum before the L channel overwrites it,

the protocol must enforce the following:

[∼ Xack] ≺ Lreq− (4.14c)

Finally, the latch must remain opaque until the recipient at the other end of the R

channel has received the data. Thus, the protocol must enforce the following:

[
∼ R−1

req

]
≺ Xreq+ (4.14d)

The TEL structure of Figure 4.12(b) represents all these constraints simultane-

ously.

Now consider a data path using rising-edge-triggered flip-flops, as shown in

Figure 4.13(a). This is essentially the data path used in [54, 37], except that Fig-

ure 4.13(a) uses a bundling delay to generate Xack , instead of completion detection.

This bundling delay between Xreq and Xack must conservatively match the clk to Q

delay of the flip-flop. In this model, it must also be at least as long as the required

hold time of the flip flop. The clk to Q delay and the hold time are technically

two separate parameters of the flip-flop. An optimization would be to use separate

bundling delays to model these two parameters. However, in this simplified model,

the single bundling delay between Xreq and Xack is set to conservatively match the

maximum of the two parameters. Thus Xack indicates both that a new datum is

79

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

RdataLdata
x

C

D Q
Ldata Rdata

x
C

D Q Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

(a)

[4, 8] [4, 8]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

Rreq−

Rreq+

[∼ Rack] [Rack]
[20, 30] [4, 6]

Lack−

Lack+

[Lreq] [∼ Lreq]
[20, 30] [4, 6]

$4

Xreq+

Xreq−

$3

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Xack+

[∼ Xreq]
Xack−

[Xreq]

(4.14b)

(4.14d)(4.14a)

(4.14c)

(b)

Figure 4.12. Four-phase, bundled-data pull FIFO using normally opaque latches.
Part (a) shows a schematic of the control and data path. Part (b) shows a TEL
structure for the constraints on control.

80

available at the Q output of the register and also that it is safe to change the D

input to the register.

To consider the impact on control, first assume a controller in which L is passive

and R is active. To ensure that the incoming data from the L channel are stable

before Xreq clocks the register, the protocol must enforce the following:

[Lreq] ≺ Xreq+ (4.15a)

Furthermore, this datum must be available at the Q output of the register before

the buffer notifies the R channel that it is available. In this model, Xack is the

indication that a clk to Q delay has passed and the datum is available. Therefore,

the protocol must enforce the following:

[Xack] ≺ Rreq+ (4.15b)

The datum must also be safely stored before the buffer notifies the L channel that

it may overwrite the datum. In this model, Xack also indicates that a hold time

has passed, and it is safe to change the D input to the register. Thus, the protocol

must enforce the following:

[Xack] ≺ Lack+ (4.15c)

This is necessary, because in this push protocol, Lack+ notifies the preceding stage

that it is free to change Ldata . Finally, the receiver on the other end of the R channel

must receive this datum, before the buffer overwrites the contents of the data-path

register. This requires the following:[
R−1

ack

]
≺ Xreq+ (4.15d)

The TEL structure of Figure 4.13(b) represents all these constraints simultane-

ously.

Now consider the case in which L is active and R is passive, as shown in

Figure 4.14(a). To ensure that the incoming data from the L channel are stable

before Xreq clocks the register, the protocol must enforce the following:

[Lack] ≺ Xreq+ (4.16a)

81

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Lack Rack

Lreq Rreq

Passive/Active

Xreq Xack

Ldata RdataLdata Rdata x

clk

D Q
x

clk

D Q Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

(a)

[20, 30] [4, 6]
Rack+

[∼ Rreq]
Rack−

[Rreq]

[20, 30] [4, 6]
Lreq+

[Lack]
Lreq−

[∼ Lack]

[4, 8] [4, 8]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$4 $6

$3

Xreq−

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

Xack+

[∼ Xreq]
Xack−

[Xreq]

Xreq+
(4.15a)

(4.15c)

(4.15d)

(4.15b)

(b)

Figure 4.13. Four-phase, bundled-data, push FIFO using edge-triggered flip-flops.
Part (a) shows a schematic of the control and data path. Part (b) shows a TEL
structure for the constraints on control.

82

Furthermore, this datum must be available at the Q output of the register before

the buffer notifies the R channel that it is available. In this model, Xack is the

indication that a clk to Q delay has passed and the datum is available. Therefore,

the protocol must enforce the following:

[Xack] ≺ Rack+ (4.16b)

The datum must also be safely stored before the buffer notifies the L channel that

it may overwrite the datum. In this model, Xack also indicates that a hold time

has passed, and it is safe to change the D input to the register. Thus, the protocol

must enforce the following:

[Xack] ≺ Lreq− (4.16c)

This is necessary, because in this pull protocol, Lreq− notifies the preceding stage

that it is free to change Ldata . Finally, the receiver on the other end of the R channel

must receive this datum before the buffer overwrites the contents of the data-path

register. This requires the following:

[
∼ R−1

req

]
≺ Xreq+ (4.16d)

The TEL structure of Figure 4.14(b) represents all these constraints simultane-

ously.

Even a design that uses data encoding can partition control and data path.

For example, Burns [20] defines the data-path components shown in Figure 4.15

for encoding and decoding data. Component Output has the following interface

behavior. The environment raises req. Output responds by raising xn, where n is

the current value on the single rail input x. The environment then lowers req, and

Output responds by lowering xn. For correct operation of the Output unit, x must

not change while req is high. Component Latch has the same behavior, except that

Latch allows x to change as soon as it has raised xn. The Receive component has

the following interface behavior. When the environment raises xn, Receive latches

the value n into the variable x. It then raises ack. The environment then lowers xn,

and Receive responds by lowering ack. The Passive component has the following

83

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

Lreq Rreq

Lack Rack

Active/Passive

Xreq Xack

Ldata RdataLdata Rdata x

clk

D Q
x

clk

D Q Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

Din

recovery

processing

[10, 19]

[2, 3]

[4, 8]

Dout

[20, 30] ↑, [4, 6] ↓

(a)

[4, 8] [4, 8]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

Rreq−

Rreq+

[∼ Rack] [Rack]
[20, 30] [4, 6]

Lack−

Lack+

[Lreq] [∼ Lreq]
[20, 30] [4, 6]

$4

Xreq+

Xreq−

$3

[0, 0]
[Xack]

[0, 0]
[∼ Xack]

Xack+

[∼ Xreq]
Xack−

[Xreq]

(4.16b)

(4.16c)

(4.16a)

(4.16d)

(b)

Figure 4.14. Four-phase, bundled-data, pull FIFO using edge-triggered flip-flops.
Part (a) shows a schematic of the control and data path. Part (b) shows a TEL
structure for the constraints on control.

84

x

req

x0

x1

Output
[4, 8]

x

req

x0

x1

[4, 8]
Latch

x0

ack

[6, 12]
Receive

x

x1

Passive

x

di

do

[3, 6]

x0

x1

ack

Figure 4.15. Data-path components from [20].

interface behavior. The environment raises xn, and Passive responds by raising do.

Then, the environment raises di. Passive then latches the value n into the variable

x. Then, it raises ack. The environment then lowers xn, and Passive responds by

lowering do. The environment then lowers di, and Passive responds by lowering

ack. Burns used these components to build several buffers, such as the push buffer

in Figure 4.16(a). The control portion, the pa-no-iso process, uses a push protocol.

Figure 4.16(a) shows two stages of the FIFO.

Data transfer in this FIFO operates as follows. When the stage on the left has

a datum to send, it asserts its Rreq signal, which is connected to the Lreq input of

the stage on the right. When the stage on the right is ready to accept the datum, it

asserts its Lack signal, which instructs the Output component on the left to convert

the datum to dual-rail format. This dual-rail datum is received by the Receive

component on the right, which converts it back to a signal-rail value x. Once it has

done so, it asserts its ack signal which is connected to the Rack input of the stage

on the left. The stage on the left responds by lowering its Rreq output, which lowers

the Lreq input to the stage on the right. This is the only way that the stage on

the right can determine that the datum is available at the x output of its Receive

component. Hence, to ensure that the stage on the right has a new datum to send

before it notifies the next stage that a new datum is available, the protocol must

85

enforce the following:

[∼ Lreq] ≺ Rreq+ (4.17a)

The stage on the right responds to Lreq− by lowering its Lack output. This tells

the Output unit on the left to clear its xn outputs. The Receive unit responds by

lowering its ack output, which lowers the Rack input to the stage on the left. This is

the only way that the stage on the left can determine that it is now safe to change

the x input to the Output unit on the left. Thus, to ensure that the next stage

has successfully received the current datum before the next datum is received, the

protocol must enforce the following:

[
∼ R−1

ack

]
≺ Lack+ (4.17b)

[20]. The TEL structure of Figure 4.16(b) represents all these constraints simulta-

neously.

Burns [20] also presents the above buffer modified such that L is active and R

is passive, as shown in Figure 4.17(a). In this design, the buffer requests data from

the L channel, and it can determine that it has received a datum when it receives

an acknowledge. This means the protocol must enforce the following:

[Lack] ≺ Rack+ (4.18a)

To ensure that the next stage has successfully received the current datum before

the next datum is received, the protocol must enforce the following [20]:

[Rreq] ≺ Lreq+ (4.18b)

The TEL structure of Figure 4.17(b) represents all these constraints simultane-

ously.

Burns [20] also presents a push buffer that requires an isochronic fork between

control and the data path, as shown in Figure 4.18(a). In this design, the control

portion of the buffer cannot determine that the data path has latched the datum

86

x0

ack

[6, 12]
Receive

x

x1

x0

ack

[6, 12]
Receive

x

x1

x

req

x0

x1

Output
[4, 8]

x

req

x0

x1

Output
[4, 8]

pa-no-iso
control

Lack Rack

Lreq Rreq

pa-no-iso
control

Lack Rack

Lreq Rreq

(a)

Rack+

[∼ Rreq]
Rack−

[Rreq]
[10, 20] [10, 20]

Lreq+

[Lack]
Lreq−

[∼ Lack]
[10, 20] [10, 20]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$6

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

(4.17b)

(4.17a)

(b)

Figure 4.16. Push FIFO requiring no isochronic fork between control and data
path [20]. Part (a) shows a schematic of the control and data path. Part (b) shows
a TEL structure for the constraints on control.

87

x

req

x0

x1

Output
[4, 8]

x0

ack

[6, 12]
Receive

x

x1

x0

ack

[6, 12]
Receive

x

x1

x

req

x0

x1

Output
[4, 8]

Lack Rack

RreqLreq

Lack

Lreq

Rack

Rreq

ap-no-iso ap-no-iso
control control

(a)

Rreq−

Rreq+

[∼ Rack] [Rack]
[10, 20] [10, 20]

Lack−

Lack+

[Lreq] [∼ Lreq]
[10, 20] [10, 20]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

(4.18b)

(4.18a)

(b)

Figure 4.17. Pull FIFO requiring no isochronic fork between control and data
path [20]. Part (a) shows a schematic of the control and data path. Part (b) shows
a TEL structure for the constraints on control.

88

until the preceding buffer lowers its request and this propagates through the Output

and Passive units. This means the protocol must enforce the following:

[∼ Lreq] ≺ Rreq+ (4.19a)

Recall that the x input to the Output component must not change while the req

input to the Output component is high. The Rreq output from the control portion of

the buffer drives the req input to the Output component. The Lack output from the

control portion of the buffer drives the di input to the Passive component. Hence,

when control lowers Lack , this allows the Passive component to lower x, which in

turn lowers the x input to the Output component. Meanwhile, when control lowers

Rreq , that lowers the req input to the Output component. Therefore, to ensure

that the next stage has successfully received the current datum and that it is safe

to change the x input to the Output unit before the next datum is received, the

protocol must enforce the following [20]:

R−1
req− ≺ Lack+ (4.19b)

This is sufficient, assuming an isochronic fork between the path from Rreq to the

Output unit and the internal path within control from Rreq to the gate for Lack .

Thus, the assumption is that the constraint R−1
req− ≺ Lack+ implies that the Output

component perceives req− ≺ x−. The TEL structure of Figure 4.18(b) represents

all the constraints on control simultaneously.

Burns also presents buffers that use the Latch component in the data path, such

as the push buffer in Figure 4.19(a). In this design, the control portion of the buffer

cannot determine that the data path has latched the datum until the preceding

buffer lowers its request. This means the protocol must enforce the following:

[∼ Lreq] ≺ Rreq+ (4.20a)

To ensure that the next stage has successfully received the current datum before

the next datum is received, the protocol must enforce the following [20]:[
R−1

ack

]
≺ Lack+ (4.20b)

The TEL structure of Figure 4.19(b) represents all these constraints simultane-

89

Passive

x

di

do

[3, 6]

x0

x1

ack

Passive

x

di

do

[3, 6]

x0

x1

ack

x

req

x0

x1

Output
[4, 8]

x

req

x0

x1

Output
[4, 8]

Lack

Lreq

Rreq

Rack

control
Lack

Lreq

Rreq

Rack

control

(a)

Rack+

[∼ Rreq]
Rack−

[Rreq]
[10, 20] [10, 20]

Lreq+

[Lack]
Lreq−

[∼ Lack]
[10, 20] [10, 20]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$6

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

(4.19b)

(4.19a)

(b)

Figure 4.18. Push FIFO requiring an isochronic fork between control and data
path[20]. Part (a) shows a schematic of the control and data path. Part (b) shows
a TEL structure for the constraints on control.

90

Lreq

Lack Rack

Rreq
control
pa-latch

Lreq

Lack Rack

Rreq
control
pa-latch

x0

ack

[6, 12]
Receive

x

x1

x0

ack

[6, 12]
Receive

x

x1

x

req

x0

x1

[4, 8]
Latch

x

req

x0

x1

[4, 8]
Latch

(a)

Rack+

[∼ Rreq]
Rack−

[Rreq]
[10, 20] [10, 20]

Lreq+

[Lack]
Lreq−

[∼ Lack]
[10, 20] [10, 20]

Lack−

$1

Lack+

$2

[0, 0]
[Lreq]

$6

Rreq−

$5

Rreq+

[∼ Rack]
[0, 0]

[0, 0]
[Rack]

[0, 0]
[∼ Lreq]

(4.20b)

(4.20a)

(b)

Figure 4.19. Push FIFO requiring the Latch component [20]. Part (a) shows a
schematic of the control and data path. Part (b) shows a TEL structure for the
constraints on control.

91

ously.

Burns [20] also presents the above buffer modified such that L is active and R

is passive, as shown in Figure 4.20(a). In this design, the buffer requests data from

the L channel, and it can determine that it has received a datum when it receives

an acknowledge. This means the protocol must enforce the following:

[Lack] ≺ Rack+ (4.21a)

To ensure that the next stage has successfully received the current datum before

the next datum is received, the protocol must enforce the following [20]:[
∼ R−1

req

]
≺ Lreq+ (4.21b)

The TEL structure of Figure 4.20(b) represents all these constraints simultane-

ously.

4.3.2 Unified Control and Data Path

This section considers a design style that uses data encoding and does not

separate control and data path at all. Instead, this approach simply allocates

signals for each rail of the encoded data, and treats these signals as part of the

controller. Cummings et al. [24], Martin et al. [53], Lines [45] and Manohar and

Tierno [47] present examples of this design style. For example, consider the buffer

consisting of a passive receive operation followed by an active send operation. For

dual-rail data encoding, Figure 4.21 illustrates possible interfaces to one stage of a

buffer (both data and control). Figure 4.21(a) shows the interface with L passive

and R active. Figure 4.21(b) shows the case in which L is active and R is passive.

First consider the push case of Figure 4.21(a). On the channel L, a four-phase

protocol is as follows, assuming all signals are initially low. The environment raises

either L0 or L1. The buffer responds by raising Lack . The environment lowers

whichever of L0 or L1 it had raised, and the buffer responds by lowering Lack . This

requires the constraints [Ln] ≺ Lack+ ≺ [∼ Ln] ≺ Lack−. Similarly, on the right

side, the buffer raises either R0 or R1, and the environment responds by raising Rack .

Then the buffer lowers whichever of R0 or R1 it has raised, and the environment

92

x

req

x0

x1

[4, 8]
Latch

x

req

x0

x1

[4, 8]
Latch

x0

ack

[6, 12]
Receive

x

x1

x0

ack

[6, 12]
Receive

x

x1

Lreq

Lack Rack

control
ap-latch

Rreq Lreq

Lack Rack

control
ap-latch

Rreq

(a)

Rreq−

Rreq+

[∼ Rack] [Rack]
[10, 20] [10, 20]

Lack−

Lack+

[Lreq] [∼ Lreq]
[10, 20] [10, 20]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

(4.21a)

(4.21b)

(b)

Figure 4.20. Pull FIFO requiring the Latch component [20]. Part (a) shows a
schematic of the control and data path. Part (b) shows a TEL structure for the
constraints on control.

Passive/Active

L1

L0

Rack

R0

R1

Lack

L1

L0 R0

R1

Lreq Rreq

Active/Passive

(a) (b)

Figure 4.21. Four-phase, dual-rail buffer interfaces. Part (a) uses a push protocol.
Part (b) uses a pull protocol.

93

responds by lowering Rack . This requires the constraints Rn+ ≺ [Rack] ≺ Rn− ≺

[∼ Rack]. Now consider the relationship between the two communication actions

and how control and data impact each other. To ensure that the buffer has received

a datum from the left before it tries to send it to the right, the protocol must enforce

the following:

[Ln] ≺ Rn+ (4.22a)

Furthermore, in the absence of an extra state variable to store the value of x, the

buffer must copy x from L to R before it acknowledges L. Otherwise L could erase

the datum before it had been copied anywhere. Thus, the protocol must enforce

the following:

Rn+ ≺ Lack+ (4.22b)

The TEL structure of Figure 4.22 represents all these constraints simultaneously.

This is a general scheme that applies to any 1/n code (any m/n code for which

m = 1). For example, expanding to dual rail (the 1/2 code), Ln splits into L0 and

L1, and Rn splits into R0 and R1. This results in the TEL structure of Figure 4.23.

Now suppose that L is active and R is passive. This corresponds to the interface

of Figure 4.21(b). On channel L, the protocol is as follows, assuming all signals are

Lack−

$1

Lack+

$2

[∼ Ln]

$5

$6

Rn+

Rn−

[Rack]
[0, 0]

[∼ Rack]
[0, 0]

[Rn] [∼ Rn]
Rack−

Rack+
[10, 20] [10, 20]

Ln−

Ln+

[10, 20]
[Lack]

[10, 20]
[∼ Lack]

[0, 0]

[0, 0]
[Ln]

(4.22a)

(4.
22

b)

Figure 4.22. TEL structure for constraints on four-phase, push buffer.

94

L1+L0+

L0− L1−

[10, 20]
[Lack]

$8

$7

[∼ Lack] [Lack]
[10, 20]

[10, 20] [10, 20]
[0, 0]

[0, 0] [0, 0]

Rack+

Rack−

[10, 20] [10, 20]
[R0 | R1] [∼ R0 & ∼ R1]

Lack−

$1

Lack+

$2

[0, 0]
[∼ L0 & ∼ L1]

[0, 0]

R0+

R0−

$3

$4

$5

$6

R1+

R1−

[L0] [L1]

[Rack]
[0, 0]

[Rack]
[0, 0]

[∼ Rack]
[0, 0]

[∼ Rack]
[0, 0]

Figure 4.23. TEL for the dual-rail expansion of a four-phase, push buffer.
(L0 ±#setL1 ± ∧ {R0+, $3, R0−, $4}#set {R1+, $5, R1−, $6}).

initially low. The buffer raises Lreq . The environment responds by raising either

L0 or L1. Then, the buffer lowers Lreq , and the environment responds by lowering

whichever of L0 or L1 it had raised. This requires the constraints Lreq+ ≺ [Ln] ≺

Lreq− ≺ [∼ Ln]. Similarly, on the right side, the environment raises Rreq , and the

buffer responds by raising either R0 or R1. Then the environment lowers Rreq , and

the buffer responds by lowering whichever of R0 or R1 it has raised. This requires

the constraints [Rreq] ≺ Rn+ ≺ [∼ Rreq] ≺ Rn−. Now consider the relationship

between the two communication actions and how control and data impact each

other. To ensure that the buffer has received a datum from the left before it tries

to send it to the right, the protocol must enforce the following:

[Ln] ≺ Rn+ (4.23a)

Furthermore, in the absence of an extra state variable to store the value of x, the

buffer must copy x from L to R before it ceases to request x from L. Otherwise

L could erase the datum before it had been copied anywhere. Thus, the protocol

must enforce the following:

95

Rn+ ≺ Lreq− (4.23b)

The TEL structure of Figure 4.24 represents all these constraints simultaneously.

This is a general scheme that applies to any 1/n code (any m/n code for which

m = 1). For example, expanded to dual rail (the 1/2 code), Ln splits into L0 and

L1, and Rn splits into R0 and R1. This results in the TEL structure of Figure 4.25.

This unified scheme also works for pipeline stages that do some computation on

the data instead of just buffering the data. Lines [45] shows that a buffer such as

that of Figure 4.25 can be extended to do computation by replacing the expressions

involving L0 and L1 with more general functions. Suppose that a process is to

compute a function of three input bits, which arrive on three input channels A, B,

and C. Let f0(A,B,C) be a boolean function that is true when and only when each

of the channels A, B, and C carries a valid input datum, and the corresponding

output datum should be 0. Similarly, let f1(A,B,C) be a boolean function that

is true when and only when each input channel contains a valid datum and the

corresponding output datum should be 1. Let rtz(A,B,C) be a boolean function

that is true when and only when each of the channels A, B, and C is in the

idle state. Given these definitions, and assuming pull type channels, Figure 4.26

[10, 20]
[Rn]

Rreq−

Rreq+

[∼ Rn]
[10, 20]

Lreq+

$2

Lreq−

Ln+

[10, 20]
[∼ Lreq]

[10, 20]
[Lreq]

Rn+

Rn−

$3

$4

[∼ Rreq]
[0, 0]

[0, 0]
[Rreq]

$1

[0, 0]
[Ln]

[∼ Ln]
[0, 0]

Ln− (4.23a)

(4.23b)

Figure 4.24. TEL structure for constraints on four-phase, pull buffer.

96

L0+ L1+$7

R1+

R1−

[L1]

$3

$4

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

[∼ L0 & ∼ L1]

R0+

R0−

[0, 0]

[0, 0]

[L0]

$5

$6

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

Rreq−

Rreq+
[10, 20]
[R0 | R1][∼ R0 & ∼ R1]

[10, 20]

[∼ Lreq]
[10, 20]

L0−

[10, 20]
[∼ Lreq]

$8

[Lreq]

[10, 20] [10, 20]

[0, 0]

[0, 0] [0, 0] [L1]

Lreq+

$2

Lreq−

$1
L1−

Figure 4.25. TEL for the dual-rail expansion of a four-phase pull buffer.
(L0 ±#setL1 ± ∧ {$3, R0+, $4, R0−}#set {R1+, $5, R1−, $6}).

represents the constraints and behavior of this system. In this TEL structure, the

requests for channels A, B, and C have been merged into one signal Lreq .

For example, consider the following extension of the buffer example to compute

the sum of three bits.

sum : process
begin
receive(A, aa, B, bb, C, cc);
send(S, aa xor bb xor cc);

end process sum;

In this case, the functions are defined as follows.

f1(A,B,C) = A0B0C1 ∨ A0B1C0 ∨ A1B0C0 ∨ A1B1C1 (4.24)

f0(A,B,C) = A1B1C0 ∨ A1B0C1 ∨ A0B1C1 ∨ A0B0C0 (4.25)

rtz(A,B,C) = ¬A0 ∧ ¬A1 ∧ ¬B0 ∧ ¬B1 ∧ ¬C0 ∧ ¬C1 (4.26)

4.4 Extending Constraints Across Actions

While this chapter looks at buffers in detail, not all specifications are as simple as

a buffer. This section considers how the constraints that this chapter presents could

be generalized to more complicated examples. Section 4.4.1 discusses a possible

97

Lreq+

Lreq−

$1

$2

[rtz(A,B,C)]

R0+

R0−

[0, 0]

[0, 0]

$5

$6

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

[∼ Lreq]
[10, 20]

B0−

[10, 20]
[∼ Lreq][Lreq]

[10, 20] [10, 20]

[0, 0]

[0, 0] [0, 0]

[∼ Lreq]
[10, 20]

C0−

[10, 20]
[∼ Lreq][Lreq]

[10, 20] [10, 20]

[0, 0]

[0, 0] [0, 0]

[∼ Lreq]
[10, 20]

A0−

[10, 20]
[∼ Lreq]

$8

[Lreq]

[10, 20] [10, 20]

[0, 0]

[0, 0] [0, 0] R1+

R1−

$3

$4

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

Rreq−

Rreq+
[10, 20]
[R0 | R1][∼ R0 & ∼ R1]

[10, 20]

[f0(A,B,C)] [f1(A,B,C)]

A0+ A1+$7

B0+ B1+

C0+ C1+

A1−

B1−

C1−

$9

$10

$11

$12

Figure 4.26. Constraints on the dual-rail circuit for the pull sum process.
(A0 ±#setA1 ± ∧ B0 ±#setB1 ± ∧ C0 ±#setC1 ± ∧
{$5, R0+, $6, R0−}#set {$3, R1+, $4, R1−}).

98

improvement to the tool that this dissertation presents. In contrast, the technique

of Section 4.4.2 is fully implemented.

4.4.1 Same Variable, Different Channels

The tool that this dissertation presents applies data constants between every

consecutive pair of communication actions. This is actually more conservative than

necessary. These constraints could be relaxed in the following way.

The data constraints presented in this chapter should be applied whenever a

receive operation is followed by a send operation that uses the same data variable.

This still applies even if there are other actions between the receive operation and

the send operation, provided that such operations do not use the channels or the

data variable in question. This requires a recursive search of the channel-level

TEL structure to find relevant pairs of receive and send actions. Each such pair

essentially forms a buffer.

If there are intervening operations that use the data variable (but not the

channels in question), the datum must be received before such operations attempt

to read the variable. If there are intervening operations that write the data variable,

such operation must complete, before the send operation announces the validity of

the data.

4.4.2 Same Channel, Different Variables

A channel must be completely reset before any subsequent use of the same

channel can occur. Figure 2.3 on page 33 shows a communication on channel L,

followed by a communication on channel R, followed by another communication on

channel L. The edges from $2 to Lreq + /2, from $4 to Lreq+, and from Rack− to $5

are necessary to ensure that each channel has reset before it is used again.

In general, adding all arcs necessary to make sure that each use of a given

channel has completed before any other use of that channel requires a recursive

search of the channel-level TEL structure. From each channel communication, the

search must consider each outgoing path. On each of these paths, it finds the next

use of the given channel, and adds an arc to that use. In some cases, the next use

99

of the channel may be in the current communication.

4.5 A Library of Protocols

This section discusses how the observations of this chapter could form the basis

for a general extensible library of protocols. This has not been implemented in

the tool that this dissertation presents. The current compiler targets only a single,

fixed, four-phase protocol with narrow sequencing. Furthermore, data path is not

implemented. However, this section (and indeed this entire chapter) is still useful

to anyone who extends the compiler in the future to implement these techniques.

Furthermore, until then, this section is also useful to the user who bypasses the

channel-level compiler, directly inputting the most-concurrent, signal-level specifi-

cation that still meets the constraints of the user’s chosen protocol. For such a user,

this section outlines a systematic approach to obtain such a signal-level starting

point for an entire channel-level specification, given a signal level specification for

a buffer using the desired protocol.

Section 4.3 shows that TEL structures can model the data constraints that a

given data-path approach imposes on the control protocol. That section demon-

strates this over a wide variety of buffer implementations from the literature.

Furthermore, Section 4.4 shows how to extend this technique beyond simple buffers.

Therefore, it is possible to model a library of protocols using a library of TEL struc-

tures. In such a library, each element would be the TEL structure for constraints

on a simple buffer consisting of a receive operation followed by a send operation,

much like the examples from Section 4.3.

Each library element would need to be defined by writing a signal-level descrip-

tion of the constraints for a buffer using that protocol. Even if the techniques of this

section were automated, the signal-level description for a buffer in each protocol

would still need to be written by hand. It could be written in any of a number

of signal-level specification languages, including the VHDL handshake package of

Section 2.2. Alternatively, the TEL structures of Section 4.3 could be used directly.

However, once such a library element is in place, the techniques that this section

100

proposes could automate the process of using an element from the library, together

with a channel-level specification of the example to be synthesized (written using

the channel-level VHDL package of Section 2.1), to produce the signal-level starting

point for concurrency reduction. The channel-level VHDL specification itself would

be protocol independent (except, optionally, for directives like those in Section 3.1).

For example, in Section 4.3, the channel-level specification at the beginning of the

section does not mention any channel named X. However, many — but not all —

of the defined protocols introduce a communication with the data path on channel

X as part of the process of ensuring data integrity. This X channel would appear in

the library elements. The only way it would appear in the channel-level specification

would be as the variable x and not as a channel X.

The situation would be roughly analogous to the system of Brunvand and

Sproull [18, 16, 17], in which each library element is designed by hand, but then an

automated procedure maps a specification onto the library. It might be even closer

to the system of Kim et al. [41], in which each library element is an STG rather

than actual circuit. One difference between these methods and the method that

this section proposes is that the method that this section proposes would be used

just to set up the starting point for the concurrency reduction engine. The actual

circuit — or circuits — found would depend on the result of concurrency reduction,

which is a global process not restricted to individual library elements. However,

another important difference is that the methods of [18, 16, 17, 41] are already

automated. The library method of this section is currently just a framework and a

proposal for future automation. However, the concurrency reduction engine of the

remaining chapters of this dissertation is fully automated and independent of the

method used to set up its starting point.

Whether by hand or through future automation, the protocol constraints can

be applied to any pair of communications consisting of a receive into a variable,

followed by a send of the same datum as shown in Section 4.4.

To use a protocol from the library proposed here, a CAD tool would proceed

as follows. Whenever it encountered a pair of communication actions that meet

101

the criteria of Section 4.4, it would instantiate the library TEL structure for the

chosen protocol into the signal-level TEL structure, at the position corresponding

to that pair of communication actions. For each new communication action, this

procedure would add new events into the signal-level TEL structure. These events

would be renamed copies of the events in the TEL structure corresponding to the

chosen protocol. For each relevant pair of communication actions, this procedure

would add rules to the signal-level TEL structure. These rules would correspond to

the rules in the TEL structure corresponding to the chosen protocol. This approach

is similar to that for component instantiation in [74].

The procedure would be repeated until it had expanded all communication

actions in the channel-level TEL structure. The result would be an initial signal-

level TEL structure that was the most concurrent possible that still contained all

the constraints of the channel-level specification and the chosen protocol.

The user could select one protocol from the library, or some small set of proto-

cols. If more than one protocol is selected, the tool could include the selection of

one of these protocols as part of the search for solutions to the specification.

The creators of the tool could provide a small, initial library of protocols, and

the user could extend this library at any time by specifying the TEL structure that

corresponds to a new protocol.

CHAPTER 5

CONCURRENCY REDUCTION

The TEL structures of Chapter 4 are semantically correct expansions of a one-

place buffer that communicates on channel L and then on channel R, for their

assignments of active and passive channels. (As part of the expansion, many of the

TEL structure of Chapter 4 also introduce a data-path handshake on channel X, to

enforce data constraints of the protocol. However, this is not part of the channel-

level specification.) Unfortunately, complete state coding violations prevent these

TEL structures from being directly synthesizable. For example, consider the TEL

structure of Figure 4.20 on page 92. The problem is that the entire four-phase

handshake on L can complete before the handshake on R starts. In other words,

the sequence of events in each iteration of the complete circuit could be as follows:

Lreq+; Lack+; Lreq−; Lack−; Rreq+; Rack+; Rreq−; Rack−

Manohar [46] defines a notation called two-phase CHP which can express such

a sequence in a more compact form. This notation groups the upward going

transitions and the downward going transitions of each four-phase communication.

The two-phase CHP for the above sequence is as follows:

L ↑;L ↓;R ↑;R ↓

L ↑ represents the working phase [41] of the L communication, and L ↓ represents

the idling phase [41] of the L communication. The above expansion is semantically

correct. Unfortunately, it has complete state coding violations. Therefore, synthesis

cannot proceed from this expansion. The problem is that after L ↓ and before R ↑,

all of the control wires associated with channels L and R are all zero. This is the

same state that the control wires are in at the start of the process (before L ↑).

103

Thus, when all signals are low, the circuit does not know whether to expect L ↑ or

R ↑ next.

One solution is to interleave the two communications like this:

L ↑;R ↑;L ↓;R ↓

This is a form of narrow sequencing [63]. This expansion still meets the data

constraints from Figure 4.20 on page 92. Furthermore, the above interleaving can be

enforced by adding rules to the TEL structure of Figure 4.20 on page 92. Figure 5.1

shows the result. In effect, each communication provides state variables for the

other communication, so no new state variables are necessary.

This is one reshuffling that solves this case. However, there may be other

reshufflings of the same example that are also synthesizable. Furthermore, this

strategy is directly applicable only to series chains of communications on indepen-

dent channels using narrow sequencing. Our hypothesis is that this reshuffling is

representative of a general type of reshuffling that is effective for a broad class of

specifications. The idea is to force the working phase of the next communication in

series to complete before the idling phase of the current communication. However,

instead of simply assuming that this strategy will always be effective, a major

Rreq−

Rreq+

[∼ Rack] [Rack]
[10, 20] [10, 20]

Lack−

Lack+

[Lreq] [∼ Lreq]
[10, 20] [10, 20]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

Figure 5.1. TEL structure with concurrency reduced for complete state coding.

104

goal of this dissertation is to conduct experiments to compare different types of

reshuffling. Each reshuffling corresponds to a permutation of the events. To find

literally all reshufflings one could let each pair of events be concurrent, and then

find all possible ways to reduce the concurrency in the specification. However, any

legal reshuffling must still meet the constraints of the channel level specification

and the chosen protocol. Therefore, the starting point for concurrency reduction

should be a signal-level specification that contains exactly these constraints. From

this starting point, finding all possible ways to reduce concurrency finds all legal

reshufflings.

Another approach to achieve complete state coding is to insert state vari-

ables. Section 5.4 shows that this can be accomplished by inserting an initially

unconstrained state variable into the TEL structure, and then proceeding with

concurrency reduction.

Note that concurrency reduction involves a trade-off. If concurrency reduction

serializes operations on the critical path, it can degrade performance. Even in

this case, performance degradation is not inevitable. Ykman-Couvreur et al. [72]

and Lin et al. [44] show that for some circuits, the concurrency reduction can

streamline the implementation, speeding it up enough to more than compensate

for the serialization. Thus, some reduced circuits are smaller and faster than the

corresponding circuits before reduction. However, if the serialized operations are

slow, for example operations that must wait for slow functional units in the data

path, the impact can be severe. Therefore, the goal is to reduce concurrency enough

to make it feasible to implement the circuit, but to avoid reducing concurrency

in ways that would significantly degrade performance. Section 5.3 shows how

the concurrency reduction process can be guided by an estimate of the system

performance, rejecting solutions that would perform poorly.

5.1 The Search Space

The most general approach considers all possible reshufflings that meet the

given data and reuse constraints. These constraints are given by the initial TEL

105

structure (for example, any of the TEL structures from Chapter 4). Furthermore,

the initial TEL structure represents the most concurrent possibility that meets all

the constraints. Thus, any reshuffling that meets the constraints can be obtained

by adding some set of rules to the initial TEL structure.

Thus, one way to find all possible reshufflings is to consider every possible

combination of rules that can be added to the initial TEL structure. Unfortunately,

the set of such combinations is quite large. Consider an initial TEL structure

T = (N,S0, A,E,R, R0,#). Suppose that T is the TEL structure for just one

output process. Concurrency reduction adds some set of rules to this structure

that simply reduce the concurrency in this structure. In other words, each added

rule should simply force its enabling event to precede its enabled event. Such a

rule has the expression [true]. Choosing timing bounds for such a rule is more

problematic. Section 6.2.2 shows that under timing, there is no guarantee that

adding a rule strictly reduces the concurrency of a TEL structure. In some cases,

adding a rule between two events introduces new states no matter what timing

bounds are chosen for the rule. Furthermore, unrealistic timing bounds make it

impossible to implement the circuit.

Definition 5.1 Let min be the minimum delay of any gate in the selected technol-

ogy library. Let max be the maximum delay of any gate in the selected technology

library. Let e→ f stand for (e, f,min,max , [true]).

The techniques of this chapter attempt to reduce concurrency by adding rules from

the set of candidate rules, Rc = {e→ f | e, f ∈ E}. Note that |Rc| = |E × E|.

Given the TEL structure T , concurrency reduction finds the set of modified TEL

structures S = {(N,S0, A,E,R ∪R′, R0 ∪R′0,#) | R′0 ⊆ R′ ⊆ Rc}. For any given

T ′ ∈ S and r ∈ Rc, there are three possibilities:

1. r /∈ R′ means that r is omitted from T ′;

2. r ∈ R′ ∧ r /∈ R′0 means that r is included in T ′, but not initially marked;

3. r ∈ R′0 means that r is included in T ′ and initially marked.

106

Figure 5.2 represents the search space as a tree. In this tree, each node represents

a TEL structure. The root node represents the initial TEL structure, that is, the

most concurrent TEL structure that meets the constraints of the specification, as

well as the data constraints from Chapter 4. The tree has a level of edges for each

candidate rule in Rc. Consider the level of edges corresponding to rule r ∈ Rc. An

edge in this level labeled “omit” corresponds to the case r /∈ R′. An edge labeled

with 0 corresponds to the case r /∈ R′0 ∧ r ∈ R′. Finally, an edge labeled with 1

corresponds to the case r ∈ R′0. Each leaf node uniquely determines the values of

R′ and R′0. Thus, each leaf represents a potentially synthesizable TEL structure.

The row of leaf nodes represents the set S.

The tree of the search space has a branching factor of three and a level of edges

for each member of Rc. Therefore, |S| = 3|Rc| = 3|E×E|. Even for the small example

of Figure 4.20 on page 92, the TEL structure for the output process has eight

events. This means there are 64 candidate rules, which leads to 364 ≈ 3 × 1030

combinations to try. Clearly, it is necessary to prune the search space.

5.2 Pruning Redundant Possibilities

This section presents techniques to prune the search space. Certain candidate

rules can be removed from consideration before the algorithm even constructs a

search tree such as Figure 5.2 and begins to search. This reduces the number

of levels in the search tree. The resulting reduction in the size of the search

rule1:

rule2:

initial TEL

T1

omit

T2

0

T3

1

T4

omit

T5

0

T6

1

T7

omit

T8

0

T9

1

T10

omit

T11

0

T12

1

Figure 5.2. Search space for reshuffling (two candidate rules shown).

107

tree is exponential in the number of candidate rules removed from consideration.

Section 5.2.1 and Section 5.2.2 present criteria for removing candidate rules before

the search begins. In contrast, Section 5.2.3 shows how to prune sections of the

search tree dynamically during the search.

5.2.1 Reflexive Loops

There is no need to add a rule from an event back to itself. Figure 5.3 illustrates

a TEL structure with such a rule. If such a rule is not initially marked, it requires

a given occurrence of an event to happen before itself, which is clearly impossible.

If such a rule is initially marked, it requires an occurrence of an event to happen

before the next occurrence of the same event. This is guaranteed even without

the rule. Using timing bounds, an initially marked rule from an event back to

itself could set a minimum separation between successive occurrences of that event.

However, if the existing rules in the TEL structure already guarantee a minimum

cycle time greater than the lower timing bound on the self-loop rule, the self-loop

rule will not influence the cycle time. Suppose that the gate library determines the

timing bounds for the self loop rule e → e, as suggested in Section 5.1. If, even

without e → e, there is a loop of rules that includes event e and contains exactly

one initially marked rule and at least one rule with lower timing bound min, then

e → e will have no effect. Eliminating self-loop rules from consideration reduces

the number of possibilities to 3|E×E|−|E|.

5.2.2 Sequencing Events

It is not necessary to consider adding any rule from a sequencing event for

which all of the enabling rules have the expression [true]. Such a rule could always

w+ [0,inf]

Figure 5.3. TEL structure with a self-loop rule.

108

be replaced by other, equivalent rules. Consider a sequencing event $, such that

∀ (e, $, l, u, B) ∈ R . B = [true] ∧ l = u = 0. Note that it is reasonable for the rules

that enable a sequencing event to have their timing bounds set to zero, because

a sequencing event does not change the value of any signal. Consider a candidate

rule rnew = $ → f . Adding this rule is equivalent to adding the set of rules

Rnew = {e→ f | (e, $, l, u, B) ∈ R}. Since the two possibilities are equivalent, it

is not necessary to explore both possibilities. One way to avoid such redundant

exploration is to avoid adding any rule from a sequencing event for which all of the

enabling rules have the expression [true]. The tool can identify and remove each

such candidate rule before creating the search tree. Checking instead for a set of

rules such as Rnew would require a check at each node of the search tree.

For example, given the TEL structure shown in Figure 5.4, adding the rule

$ → z− produces the TEL structure of Figure 5.5(a). Alternatively, adding the

rules x+→ z− and y+→ z− to the TEL structure of Figure 5.4 produces the TEL

structure of Figure 5.5(b), which is equivalent to that in Figure 5.5(a). The TEL

structure of Figure 5.5(a) is simpler but easier to avoid than that in Figure 5.5(b).

$

x+

x−

y+

y−

w+

w−

z−

z+

[2, 5][1, 3]

[5, 6][3, 4]

[7, 8]

[1, 3]

[0, 0]

[1, 2]

[1, 2]

[0, 0]

[2, 4]

[5, 9]

Figure 5.4. TEL structure with a sequencing event.

109

$

x+

x−

y+

y−

w+

w−

z−

z+

[2, 5][1, 3]

[5, 6][3, 4]

[7, 8]

[1, 3]

[0, 0]

[1, 2]

[1, 2]

[0, 0]

[2, 4]

[5, 9]

$

x+

x−

y+

y−

w+

w−

z−

z+

[2, 5][1, 3]

[5, 6][3, 4]

[7, 8]

[1, 3]

[0, 0]

[1, 2]

[1, 2]

[0, 0]

[2, 4]

[5, 9]

(a) (b)

Figure 5.5. TEL structures derived from that of Figure 5.4 by adding the set of
rules (a) {$ → z−}, and (b) {x+→ z−, y+→ z−}.

Similarly, it is not necessary to consider adding any rule to a sequencing event for

which all of the enabled rules have the expression [true]. Such a rule could always

be replaced by other, equivalent rules. Consider a sequencing event $, such that

∀ ($, f, l, u, B) ∈ R . B = [true]. Adding the candidate rule rnew = (e, $, 0, 0, [true])

is equivalent to adding the set of rules Rnew = {(e, f, l, u, B) | ($, f, l, u, B) ∈ R}.

Since the two possibilities are equivalent, it is not necessary to explore both possi-

bilities. One way to avoid such redundant exploration is to avoid adding any rule to

a sequencing event for which all of the enabled rules have the expression [true]. The

tool can identify and remove each such candidate rule before creating the search

tree. Checking instead for a set of rules such as Rnew would require a check at each

node of the search tree.

For example, given the TEL structure shown in Figure 5.4, adding the rule

z− → $ produces the TEL structure of Figure 5.6(a). Alternatively, adding the

rules z− → x− and z− → y− to the TEL structure of Figure 5.4 produces the TEL

structure of Figure 5.6(b), which is equivalent to that in Figure 5.6(a). The TEL

110

$

x+

x−

y+

y−

w+

w−

z−

z+

[2, 5][1, 3]

[5, 6][3, 4]

[7, 8]

[1, 3]

[0, 0]

[1, 2]

[1, 2]

[0, 0]

[2, 4]

[5, 9]

[0, 0]
$

x+

x−

y+

y−

w+

w−

z−

z+

[2, 5][1, 3]

[5, 6][3, 4]

[7, 8]

[1, 3]

[0, 0]

[1, 2]

[1, 2]

[0, 0]

[2, 4]

[5, 9]

[1, 3]

[2, 4]

(a) (b)

Figure 5.6. TEL structures derived from that of Figure 5.4 by adding the set of
rules (a) {z− → $}, (b) {z− → x−, z− → y−}.

structure of Figure 5.6(a) is simpler but easier to avoid than that in Figure 5.6(b).

5.2.3 Reachability

While the above pruning techniques remove rules from consideration before the

search even begins, it is also possible to prune certain branches from the search tree

dynamically during the search.

It is not necessary to add a rule from event e to event f if existing rules already

ensure that e must precede f . It may be that in any given iteration of the TEL

structure, e must precede f . This is the case if there is already some path of rules

from e to f , in which none of the rules on this path are initially marked. This

guarantees that a given occurrence of e always occurs before the corresponding

occurrence of f . With e and f already ordered, adding a rule from e to f would be

redundant. For example, the TEL structures of Figure 5.7 are equivalent.

If there is a path in the other direction, from f to e, then any rule from e to

f must be initially marked. Otherwise, adding a rule from e to f would complete

111

w+

x+

w−

x−

w+

x+

w−

x−
(a) (b)

Figure 5.7. Adding a redundant rule. Part (a) shows a schematic of the control
and data path. Part (b) shows a TEL structure for the constraints on control.

a cycle of unmarked rules. This causes a deadlock. Intuitively, this is because for

any event e that is on a cycle of unmarked rules, the rules on the cycle mean that

e must occur before itself, which is clearly impossible. This sufficient condition

for deadlock in a TEL structure is analogous to that given in [39] for marked

graphs. For example, Figure 5.8 shows two TEL structures. Starting with the

TEL structure of Figure 5.8(a), adding the rule w− → w+ to R but not to R0

produces TEL structure of Figure 5.8(b). The TEL structure of Figure 5.8(a) is

deadlock-free. However, that of Figure 5.8(b) contains a cycle of unmarked rules,

and hence suffers from deadlock.

Furthermore, if there is a path from e to f that contains one initially marked

rule, adding an initially marked rule from e to f would be redundant. For example,

the TEL structures of Figure 5.9 are equivalent. In this case, the loop of rules from

w+

x+

w−

x−

w+

x+

w−

x−
(a) (b)

Figure 5.8. Adding a rule that creates a cycle of unmarked rules, causing
deadlock.. Part (a) shows the TEL structure before adding w− → w+. Part
(b) shows the TEL structure after adding w− → w+.

112

w+

x+

w−

x−

w+

x+

w−

x−
(a) (b)

Figure 5.9. Adding an initially-marked, redundant rule. Part (a) shows a
schematic of the control and data path. Part (b) shows a TEL structure for the
constraints on control.

w+ back to itself contains an initially marked rule. Therefore, deadlock is not the

problem is this case.

If there is a path from e to f that contains no initially marked rules, adding

an initially marked rule from e to f introduces a safety violation (Definition 2.6 on

page 32). For example, starting from the one-safe TEL structure of Figure 5.10(a),

adding w+ → w− produces the TEL structure of Figure 5.10(b), which has a

safety violation. In the initial state w+ can occur, because its only enabling rule,

(x−, w+, 0,∞, [true]) is initially marked. However, the rule (w+, w−, 0,∞, [true])

is also initially marked. Therefore, the occurrence of w+ is a safety violation.

The following definitions formalize these notions.

Definition 5.2 The →R relation is defined as follows:

w+

x+

w−

x−

w+

x+

w−

x−
(a) (b)

Figure 5.10. Adding an initially-marked rule that introduces a safety violation.
Part (a) shows the TEL structure before adding w+ → w−. Part (b) shows the
TEL structure after adding w+→ w−.

113

e→R f ⇐⇒ ∃ (e, f, l, u, B) ∈ R

Definition 5.3 Let →∗R be the reflexive and transitive closure of →R

Definition 5.4 The oneToken function is defined as follows

oneToken(e, f, R, R0)
m

¬
(
e→∗R−R0

f
)
∧
(
∃ (e′, f ′, l, u, B) ∈ R0 . e→∗R−R0

e′ ∧ f ′ →∗R−R0
f
)

Consider adding a candidate rule e → f to R. If e →∗R−R0
f , then adding

e→ f to R but not to R0 would be redundant. This corresponds to the situation in

Figure 5.7. If oneToken(e, f, R, R0) then adding e→ f to R0 would be redundant.

This corresponds to the situation in Figure 5.9. Therefore, instead of adding this

rule, the algorithm records the fact that it would be redundant. If e →∗R−R0
f ,

then adding e → f to R0 would introduce a safety violation. This corresponds to

the situation in Figure 5.10. If f →∗R−R0
e, then adding e → f to R but not R0

is infeasible. Adding such a rule would create a cycle of unmarked rules, which

would cause deadlock. This corresponds to the situation in Figure 5.8. Table 5.1

summarizes the pruning techniques of this section.

If adding this rule causes something else that the algorithm already decided

to add to become redundant, then this particular combination is redundant. For

example, consider the TEL structures in Figure 5.11. In the TEL structure of

Figure 5.11(a), none of the rules are redundant. However, adding the rule x+→ w−

produces the TEL structure of Figure 5.11(b), causing the existing rule w+→ w−

Table 5.1. Pruning opportunities.
Context e→ f added to Result Example
e = f R−R0 redundant Figure 5.3
e = $ R equivalent to a set Figure 5.5
f = $ R equivalent to a set Figure 5.6
e→∗R−R0

f R−R0 redundant Figure 5.7
f →∗R−R0

e R−R0 deadlock Figure 5.8
oneToken(e, f, R, R0) R0 redundant Figure 5.9
e→∗R−R0

f R0 safety violation Figure 5.10

114

w+

w−

x+

x−

w+

w−

x+

x−
(a) (b)

Figure 5.11. Adding a rule that makes another rule redundant. Part (a) shows
the TEL structure before adding x+ → w−. Part (b) shows the TEL structure
after adding x+→ w−.

to become redundant. The algorithm avoids adding this rule and prunes this branch

of the search.

As the algorithm adds new rules into a TEL structure, it also introduces new

paths. Therefore, it applies this reachability analysis recursively at each level of

search tree. Adding a rule can remove multiple other candidates from consideration.

The amount by which the pruning techniques of this section reduce the search space

is dependent on the graph.

5.2.4 Conflicts

Conflicts provide more opportunities for pruning. Given that two conflicting

events cannot both occur during the same iteration of the execution of a circuit,

adding a rule for which the enabling and enabled events conflict changes the be-

havior and can cause deadlock. For example, starting from the TEL structure

of Figure 5.12(a), adding the rule R0+ → R1+ to produce the TEL structure of

Figure 5.12(b) introduces deadlock.

5.3 Pruning Poorly-Performing Solutions

This section presents a cost metric to rate the performance of the solutions to the

concurrency reduction problem. Mercer’s stochastic cycle period analysis [55] can

estimate the performance of a given TEL structure without actually synthesizing it.

This makes use of explicit timing assumptions provided by the user in the specifica-

tion. These assumptions are propagated by the compiler to the channel-level TEL

structure, and from there, to the most-concurrent, signal-level TEL structure. As

115

L0+ L1+$7

R1+

R1−

[L1]

$3

$4

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

[∼ L0 & ∼ L1]

R0+

R0−

[0, 0]

[0, 0]

[L0]

$5

$6

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

Rreq−

Rreq+
[10, 20]
[R0 | R1][∼ R0 & ∼ R1]

[10, 20]

[∼ Lreq]
[10, 20]

L0−

[10, 20]
[∼ Lreq]

$8

[Lreq]

[10, 20] [10, 20]

[0, 0]

[0, 0] [0, 0] [L1]

Lreq+

$2

Lreq−

$1
L1−

(a)

L0+ L1+$7

R1+

R1−

[L1]

$3

$4

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

[∼ L0 & ∼ L1]

R0+

R0−

[0, 0]

[0, 0]

[L0]

$5

$6

[∼ Rreq]
[0, 0]

[Rreq]
[0, 0]

Rreq−

Rreq+
[10, 20]
[R0 | R1][∼ R0 & ∼ R1]

[10, 20]

[∼ Lreq]
[10, 20]

L0−

[10, 20]
[∼ Lreq]

$8

[Lreq]

[10, 20] [10, 20]

[0, 0]

[0, 0] [0, 0] [L1]

Lreq+

$2

Lreq−

$1
L1−

(b)

Figure 5.12. Adding a rule for which the enabling and enabled events conflict.
Part (a) shows the TEL structure before adding R0+→ R1+. Part (b) shows the
TEL structure after adding R0+→ R1+. (Conflicts: R0 +±#setR1 +±).

116

the concurrency-reduction search engine adds rules into the TEL structure, it uses

the timing bounds min and max of Definition 5.1 on page 105. These timing bounds

characterize the target gate library. Using these bounds makes sense because the

extra sequencing implied by the added rules must ultimately be implemented using

gates from the library. For any given TEL structure with explicit, finite timing

bounds on each rule, Mercer’s analysis estimates the cycle period of the design.

With cost defined in terms of the stochastic cycle period, this section presents a

branch and bound technique [25] to prune poorly performing solutions from the

search space. This requires two additional functions. The branching function

decides, at each node of the search tree, which branch to explore first. For branch

and bound to work well, this function should tend to guide the search toward the

leaf that represents the least cost solution as quickly as possible. The bounding

function should give a lower bound on the cost of any leaf reachable from a given

internal node of the search tree. If the lower bound is higher than the cost of the

best solution found so far, there is no need to explore the subtree rooted at that

interior node.

For the branching function, this dissertation uses a generalization of the tech-

nique of the beginning of this chapter. Rules that cause the idle phase of a given

communication to wait for the active phase of the next communication in series

are selected as promising candidates. For each promising candidate, the branching

function considers adding the candidate before it considers omitting the candidate.

For each candidate that is not promising, the branching function considers omitting

the candidate before it considers adding the candidate.

For the bounding function, this dissertation applies Mercer’s stochastic cycle

period analysis to the TEL structure derived from the current internal node by

omitting all of the candidate rules below that node. This yields a lower bound on

the cycle period of any solution reachable from this node, assuming that adding a

rule to a TEL structure can only further serialize that TEL structure, and therefore,

it cannot improve the cycle period of that TEL structure.

117

5.4 State-Variable Insertion

Sometimes even an optimal reshuffling cannot achieve complete state coding.

In such cases, it is necessary to insert a state variable. The reshuffling techniques

of this chapter can be extended to include state variable insertion. To add a state

variable, the tool introduces a new signal, say CSC , as shown in Figure 5.13.

For this new signal, the algorithm introduces its rising transition, CSC +, and its

falling transition CSC−. It also adds the rule CSC + → CSC− to R and the

rule CSC− → CSC + to R0. Initially, these are the only rules that involve these

new events. However, the algorithm treats these new events as part of the output

process. Starting from this initial TEL structure, the tool starts the reshuffling

techniques described in this chapter. Thus, deciding where to insert the state

variable becomes a special case of concurrency reduction.

5.4.1 The Search Space

In general, the search space for state variable insertion is infinite, because there

is no limit on the number of state variables that can be inserted. Even inserting just

one state variable can significantly increase the size of the state space compared to

reshuffling alone. Adding the two events into an existing output process with event

Rreq−

Rreq+

[∼ Rack] [Rack]
[10, 20] [10, 20]

Lack−

Lack+

[Lreq] [∼ Lreq]
[10, 20] [10, 20]

CSC +

CSC−

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

Figure 5.13. Adding an initially unconstrained state variable.

118

set E could introduce as many as 2 |E| candidate rules. Thus, it could multiply the

size of the reshuffling search space by as much as a factor of 32|E|.

5.4.2 Pruning the Search Space

The techniques of Section 5.2 apply in the presence of the new state variable as

well. Certain protocols have natural places to insert state variables. For example,

inserting a state variable change between each adjacent pair of sequential commu-

nication actions ensures complete state coding. This policy can be selected by the

user and used to construct the initial, concurrent TEL structure. Quality estimates

can guide the state variable insertion search as well. The user can place bounds on

the number of state variables to be inserted, in order to meet area requirements.

Such bounds make the search space finite.

CHAPTER 6

HEURISTICS

This chapter presents pruning techniques that are known to be inexact in that

they sometimes prune away synthesizable solutions. In contrast exact means finding

the exactly optimal solution or finding the entire solution space. If a pruning

technique is inexact it just means that it might prune away a solution that would

have been synthesizable. This issue is distinct from correctness. A solution is

correct if it still meets the constraints of the given channel-level specification and

of the target protocol. Even exact pruning techniques can greatly reduce the

size of the search space from its theoretical upper bound. However, for large

examples, exact pruning techniques are not sufficient. Even with exact pruning

techniques in place, the search space may still be too large. In such cases, it is

necessary to employ heuristic pruning techniques. These techniques may prune

away synthesizable solutions. However, they may be necessary to keep the search

space manageable.

6.1 Static Heuristics

This section introduces static heuristics. These are heuristics that change

the initial most-concurrent starting point and the list of candidate rules before

concurrency reduction begins. In particular, Section 6.1.1, Section 6.1.2, and

Section 6.1.3 force certain rules to be excluded from any solution. In contrast,

Section 6.1.4 considers adding rules to the most-concurrent starting point, thus

mandating that these rules be included in any solution. Either approach reduces

the number of candidate rules and hence the number of levels in the search tree.

120

6.1.1 Timed Concurrency

The search engine that Chapter 5 presents attempts to reduce the concurrency

in a design by adding rules to its TEL structure.

Definition 6.1 Consider two events e and f in a design. These events are timed-

concurrent, denoted e ‖t f , if and only if e and f can be simultaneously enabled

and can fire in either order, considering timing [42]. Given a reduced state graph

RSG = (I, O, T, S, δ, λS), and two events e, f ∈ I ∪O:

e ‖t f ⇐⇒ ∃s, s′, s′′ ∈ S . (s, e, s′) ∈ T ∧ (s, f, s′′) ∈ T

Consider a candidate rule e → f . If events e and f are not concurrent, then

adding e→ f would not reduce the concurrency of the design, and therefore, is not

a useful candidate rule. To determine whether two events are timed concurrent,

the algorithm must first find the timed state space derived from the current TEL

structure. Given the resulting reduced state graph, the algorithm considers only

candidate rules of the form e→ f , where e ‖t f .

Finding the timed state space is an expensive operation. Therefore, the tool

that this dissertation presents determines the timed concurrency information only

for the initially, most-concurrent TEL, and uses this information to remove entire

levels from the search tree. Unfortunately, this is not exact. For example, given the

TEL structure of Figure 6.1(a), timed state-space exploration yields the reduced

state graph of Figure 6.2(a). In this reduced state graph, e+ ‖t f+, but e+ and

f+ both precede g+. The technique of this section would consider candidate rules

e+→ f+ and f+→ e+, but would eliminate candidate rules e+→ g+, g+→ e+,

f+→ g+, and g+→ f+ from consideration. Adding e+→ f+ produces the TEL

structure of Figure 6.1(b), which yields the reduced state graph of Figure 6.2(b).

Adding e+ → f+ delays event f+ to the point that it becomes timed concurrent

with event g+, such that candidate rules f+ → g+ and g+ → f+ should be

reconsidered. Thus, the technique of this section is a heuristic. This example also

demonstrates that adding rules to a TEL structure does not always reduce the

timed concurrency of that TEL structure. However, causal orderings are preserved.

121

h+

h−

e+

e−

f+

f−

g+

g−

[1, 2]

[1, 2]

[1, 2] [3, 5]

[6, 10] [6, 10][6, 10]

[1, 2] [1, 2]

[1, 2]
h+

h−

e+

e−

f+

f−

g+

g−

[1, 2]

[1, 2]

[1, 2] [3, 5]

[6, 10] [6, 10][6, 10]

[1, 2] [1, 2]

[1, 2]

[1, 2]

(a) (b)

Figure 6.1. Adding a rule that shifts timed concurrency. Part (a) shows the TEL
structure before adding e+→ f+. Part (b) shows the TEL structure after adding
e+→ f+.

In the above example, if the initial TEL structure had contained a rule from f+ to

g+, then the rule e+→ f+ could not force f+ to become concurrent with g+.

6.1.2 Preserving User-Specified Concurrency

One possible criterion for eliminating candidate rules from consideration is to

restrict the type of concurrency that may be reduced. There are two main types

of concurrency: that which is inherent in the channel-level specification, and that

which is an aspect of the chosen protocol. For example, if the specification executes

a parallel receive operation on multiple channels, it is inherent in the specification

that the communication on these channels takes place concurrently. In contrast,

the fact that certain four-phase protocols allow certain return-to-zero events to be

overlapped with events from other communications is an artifact of the protocol.

In some contexts, reducing concurrency that is inherent in the channel-level specifi-

cation may be considered incorrect. In such contexts, eliminating rules that would

reduce such concurrency would be an exact pruning technique. Even in contexts

where such concurrency reduction is permissible, choosing to avoid it is one possible

heuristic to reduce the size of the search space.

122

00R0

RR1R

h+

RF1R

f+

FR1R

e+

FF1R

e+ f+

00F0

h-

(a)

001F

g-

0F10

f-

FF1F

g+

0F1F

f- g-

F010

e-

F01F

e-g-

e-f-

FF10

g-

e-f-

00R0

R01R

h+

FR1R

e+

FR1F

g+

FF1R

f+

00F0

h-

(b)

001F

g-

0F10

f-

0F1F

f- g-

FF1F

f+ g+

F010

e-

e-

F01F

f-

FF10

g-

e-g- e-f-

Figure 6.2. RSGs derived from TEL structures that differ only in e+→ f+. Each
state s labeled with λS(s)(e)λS(s)(f)λS(s)(h)λS(s)(g). Part (a) was derived before
adding e+→ f+, and part (b) was derived after adding e+→ f+.

123

For example, Consider Berkel’s PAR component [10]. This component has three

ports A, B and C. On each iteration, the PAR component waits until there is a

pending communication on A. Then it communicates on the B and C channels in

parallel, before finally completing the communication on A. The following channel-

level VHDL code specifies this example. Recall from Section 2.1 that each channel

port must be declared in inout mode, because control information flows in both

directions.

entity PARsource is
port(outgoing : inout channel := init channel(sender => timing(1, 2)));

end PARsource;
architecture behavior of PARsource is

signal x : std logic vector(2 downto 0) := "000";
begin
PARsource : process
begin
send(outgoing, x);
--@synthesis off

x <= x + 1;
--@synthesis on

end process PARsource;
end behavior;
--

entity PARsink is
port(incoming : inout channel :=

init channel(receiver => timing(5, 10)));
end PARsink;
architecture behavior of PARsink is

signal y : std logic vector(2 downto 0) := "000";
begin
PARsink : process
begin
receive(incoming, y);

end process PARsink;
end behavior;
--

entity PAR is
port(A : inout channel := init channel(receiver => timing(1, 2));

B, C : inout channel := init channel(sender => timing(1, 2)));
end PAR;
architecture behavior of PAR is

signal bb, cc : std logic vector(2 downto 0) := "000";
begin
doPAR : process
begin
await(A);
send(B, bb, C, cc);
receive(A);

end process doPAR;

124

end behavior;
--

From this channel-level VHDL, the compiler and the initial expander of the tool

that this dissertation presents automatically derives the starting-point for concur-

rency reduction shown in Figure 6.3 Without preserving user-specified concurrency,

there are 22 candidate rules. Preserving user-specified concurrency eliminates the

rules between b and c, cutting the number of candidate rules to 12.

6.1.3 Using Only Local Concurrency Reduction

Another possible criterion is to limit the number of sequential communication

actions that a candidate rule may span. This restricts the search to local con-

currency reduction instead of global concurrency reduction. Local concurrency

reduction is often sufficient to obtain a solution. The focus narrows the search

space. For example, consider the four communications in series of Figure 4.2 on

page 62. If one allows each candidate rule to span a series difference of just one

communication, then candidate rules between A and C and between B and D would

be not be considered.

a!−

a!+

[∼ a?] [a?]

b?−

b?+

[b!] [∼ b!]
[5, 10] [5, 10]

b!+

b!−

$1

[0, 0]
[b?]

[∼ b?]

c!+

c!−

$2

[0, 0]
[c?]

[∼ c?]

c?−

c?+

[c!] [∼ c!]
[5, 10] [5, 10]

a?+

a?−

[a!] [a!]

$3

[∼ a!]

[a! | a?] [a! | a?]

[0, 0]

[0, 0]

Figure 6.3. Starting point for concurrency reduction of the PAR example.

125

6.1.4 Mandating Rules

Adding rules to the initial concurrent TEL structure, beyond those that would

be required for correctness, reduces the number of candidate rules and hence the

number of levels in the search tree, thus dramatically reducing the size of the search

space. One way to do this is by applying templates of rules that must be included

whenever two communications occur in series.

For example, the interleaving technique of the beginning of Chapter 5 can

be enforced in this way. For every pair of adjacent communication actions in

series, this technique mandates adding rules that force the working phase of both

communications to complete before the idle phase of either communication can

commence. Mandating these rules greatly reduces the size of the search space.

The data constraints of Chapter 4 operate on pairs of communication actions

consisting of receive and send operations using the same datum. Furthermore,

those constraints are mandatory to achieve correct operation of a given data path.

In contrast, the constraints used for the heuristics of this section operate on con-

secutive communication actions no matter what datum is involved. Furthermore,

these constraints are not necessary for correct operation. In fact, they may exclude

certain solutions. However, they may be selected in order to reduce the size of the

search space.

The following VHDL code illustrates the different situations to which the dif-

ferent types of constraints apply.

P : process
begin
receive(A, x); -- communication 1

receive(C, y); -- communication 2

send(B, x); -- communication 3

receive(C, z); -- communication 4

end process P;

The sequencing constraints of this section apply to each pair of adjacent commu-

nication actions: (1, 2), (2, 3), (3, 4), and (4, 1). The data constraints of Chapter 4

apply to the receive and subsequent send that use signal x. This is the communi-

cations pair (1, 3). The reuse constraint of Chapter 4 applies to the communications

that share channel C. The relevant pairs are (2, 4) and (4, 2).

126

6.2 Dynamic Heuristics

This section describes Dynamic heuristics. These are heuristics that make

pruning decisions during exploration of the search tree.

6.2.1 Choice

Conflicts provide more opportunities for pruning. Consider a rule from event

e to event f . If f is in one branch of a choice, but e is not in any branch of the

choice, there must also be a rule from e to some event in each other branch of the

choice. Otherwise, a safety violation results. For example, starting with the TEL

structure of Figure 6.4(a), adding the rule z− → x− produces the TEL structure of

Figure 6.4(b), which has a safety violation. Assume that all signals are initially low.

Suppose that the following sequence of events fires: y+, z+, z−, y−, y+, z+, z−.

At this point, the rule z− → x− has two tokens on it. Hence, the TEL structure

of Figure 6.4(b) is not one-safe. One solution is to also add the rule z− → y−.

Definition 6.2 Given a TEL structure T = (N,S0, A,E,R, R0,#), and an event

e ∈ E, let

conflicts(#, e) = {f | e#f}

Definition 6.3 Define a clique to be a maximal set of events that have the same

conflicts. Given a TEL structure T = (N,S0, A,E,R, R0,#), E is partitioned into

cliques. Given an event e ∈ E,

clique(E,#, e) = {f ∈ E | conflicts(#, e) = conflicts(#, f)}

x+

x−

z+

z−

y+

y−

x+

x−

z+

z−

y+

y−
(a) (b)

Figure 6.4. Adding a rule that causes a safety violation. Part (a) shows a one-safe
TEL structure. Part (b) shows a version that is not one-safe. (x±#sety±).

127

Definition 6.4 Given a TEL structure T = (N,S0, A,E,R, R0,#), let the cliques

function return the collection of cliques into which E is partitioned.

cliques(E,#) = {clique(E,#, e) | e ∈ E}

Note that
⋃

cliques(E,#) = E and
⋂

cliques(E,#) = ∅. For example, for the

TEL structure of Figure 6.5, the cliques are {g+, g−, h+, h−, i+, i−}, {a+, a−},

{b+, b−}, {c+, c−}, {d+, d−, e+, e−}, and {f+, f−}.

Definition 6.5 Given a TEL structure T = (N,S0, A,E,R, R0,#), and an event

e ∈ E, let

conflicting cliques(E,#, e) = {C ∈ cliques(E,#) | C ⊆ conflicts(#, e)}

Definition 6.6 Define the choice of an event to be the set of cliques that includes

its own clique and those cliques whose events conflict with it. Given a TEL structure

T = (N,S0, A,E,R, R0,#), and an event e ∈ E, let

choice(E,#, e) = {clique(E,#, e)} ∪ conflicting cliques(E,#, e)

Note that conflicting cliques(E,#, e) ⊂ choice(E,#, e) ⊆ cliques(E,#). Each

member clique of a choice is also called a branch of the choice.

Definition 6.7 Given a TEL structure T = (N,S0, A,E,R, R0,#), and an event

e ∈ E, let the choices function return the set of choices present in the TEL structure:

choices(E,#) = {choice(E,#, e) | e ∈ E}

Note that choices(E,#) ⊆ 2cliques(E,#).

For example, the TEL structure of Figure 6.5 has two choices. One of the

choices is {{a+, a−} , {b+, b−} , {c+, c−}}. This choice has three branches. The

other choice is {{d+, d−, e+, e−} , {f+, f−}}. This choice has two branches.

These definitions and observations lead to the following condition on the rules

that the algorithm adds that conservatively preserves the one-safe property of the

final TEL structure: From any event e that is outside of any given choice C,

128

a+

a-

[2,4]

g-

[3,4]

i-

[8,9]

b+

b-

[5,8]

[4,5]

c+

c-

[5,8]

[5,6]

d+

e+

[5,8]

d-

[5,8]

e-

[7,9]

h-

[6,7]

[9,10]

f+

f-

[5,8]

[7,8]

g+

[2,4] [1,2] [2,4]

h+

[1,2] [2,3]

i+

[10,11]

[1,3] [1,2]

Figure 6.5. A TEL structure illustrating cliques.
(a±#setb± ∧ a±#setc± ∧ b±#setc± ∧ d±#setf ± ∧ e±#setf±).

129

there must either be rules to none of the branches of C or rules to each branch

of C. Thus, the heuristic of this section assumes that for a TEL structure T =

(N,S0, A,E,R, R0,#) to be one-safe, the following condition must hold:

∀C ∈ choices(E,#), e ∈ E −
⋃
C .

∃B ∈ C . ∃ (e, f, l, u, B) ∈ R . f ∈ B
⇓

∀B′ ∈ C . ∃ (e, f ′, l′, u′, B′) ∈ R . f ′ ∈ B′
(6.1)

In other words, if the algorithm adds a rule from event e to any branch of a choice,

then it must add a rule from event e to each branch of that choice. Therefore, as

the algorithm searches the decision space, it prunes any subtrees rooted at decisions

that would make it impossible to satisfy the above condition. Before deciding to

add a rule from event e into a branch of a choice, it checks that it is still possible

to add rules to each branch of that choice. The following definitions formalize this

condition.

Definition 6.8 Given a TEL structure T = (N,S0, A,E,R, R0,#), and an event

e ∈ E, let

successors(R, e) = {f | ∃ (e, f, l, u, B) ∈ R}

At a given level of the search tree (for example, Figure 5.2), let R′c ⊆ Rc be

the set candidate rules about which the algorithms has not yet made a decision. In

other words, R′c is the set of candidates corresponding to the levels of edges beneath

the current node of the search tree. Before the algorithm explores a branch of the

search tree that would add a candidate rule (e, f, l, u, B) ∈ R′c to a TEL structure

T = (N,S0, A,E,R, R0,#), the following condition must hold.

∀C ∈ conflicting cliques(E,#, f) .
C ∩ (conflicts(#, e) ∪ successors(R ∪R′c, e)) 6= ∅

If the above condition is not met, the algorithm prunes the branch of the search tree

that would add (e, f, l, u, B) to the TEL structure. Similarly, before the algorithm

explores a branch of the search tree that would decide to omit a candidate rule r =

(e, f, l, u, B) ∈ R′c, it checks that this candidate rule is not the last remaining way to

130

satisfy the condition of Equation (6.1). Thus, the following is a necessary condition

to consider omitting r from the TEL structure T = (N,S0, A,E,R, R0,#):

successors(R, e) ∩ conflicts(#, f) = ∅
∨

clique(E,#, f) ∩ successors(R ∪R′c, e) 6= ∅
If the above condition is not met, the algorithm prunes the branch of the search

tree that would omit r from the TEL structure.

Similarly, adding a rule that exits some branch of a choice without adding

a rule that exits each branch of that choice causes deadlock. For example, the

TEL structure of Figure 6.6(a) is deadlock free. However, the TEL structure of

Figure 6.6 (b) suffers from the following deadlock condition. Assume that all

signals are initially low. Then suppose that the following sequence of events occurs:

y+,z+,y−,y+,y−. At this point no rules are enabled, and hence no further progress

is possible. The system is in a state of deadlock.

These observations lead to the following condition on the rules that the algo-

rithm adds that conservatively preserves deadlock-freedom of the final TEL struc-

ture: From any event e that is outside of any given choice C, there must either be

rules to none of the branches of C or rules to each branch of C. Thus, the heuristic

of this section assumes that for a TEL structure T = (N,S0, A,E,R, R0,#) to be

deadlock-free, the following condition must hold:

x+

x−

z+

z−

y+

y−

x+

x−

z+

z−

y+

y−
(a) (b)

Figure 6.6. Adding a rule from only one branch of a choice. Part(a) shows the
TEL structure before adding x− → z−. Part(b) shows the TEL structure after
adding x− → z−. (Conflicts: x±#sety±).

131

∀C ∈ choices(E,#), f ∈ E −
⋃
C .

∃B ∈ C . ∃ (e, f, l, u, B) ∈ R . e ∈ B
⇓

∀B′ ∈ C . ∃ (e′, f, l′, u′, B′) ∈ R . e′ ∈ B′
(6.2)

In other words, if the algorithm adds a rule to event f from any branch of a choice,

then it must add a rule to event f from each branch of that choice. Therefore, as

the algorithm searches the decision space, it prunes any subtrees rooted at decisions

that would make it impossible to satisfy the above condition. Before deciding to

add a rule to event f from a branch of a choice, it checks that it is still possible to

add rules from each branch of that choice. The following definitions formalize this

condition.

Definition 6.9 Given a TEL structure T = (N,S0, A,E,R, R0,#), and an event

f ∈ E, let

predecessors(R, f) = {e | ∃ (e, f, l, u, B) ∈ R}

Before the algorithm explores a branch of the search tree that would add a

candidate rule (e, f, l, u, B) ∈ R′c to a TEL structure T = (N,S0, A,E,R, R0,#),

the following condition must hold.

∀C ∈ conflicting cliques(E,#, e) .
C ∩ (conflicts(#, f) ∪ predecessors(R ∪R′c, f)) 6= ∅

If the above condition is not met, the algorithm prunes the branch of the search tree

that would add (e, f, l, u, B) to the TEL structure. Similarly, before the algorithm

explores a branch of the search tree that would decide to omit a candidate rule r =

(e, f, l, u, B) ∈ R′c, it checks that this candidate rule is not the last remaining way to

satisfy the condition of Equation (6.2). Thus, the following is a necessary condition

to consider omitting r from the TEL structure T = (N,S0, A,E,R, R0,#):

predecessors(R, f) ∩ conflicts(#, e) = ∅
∨

clique(E,#, e) ∩ predecessors(R ∪R′c, f) 6= ∅
If the above condition is not met, the algorithm prunes the branch of the search

tree that would omit r from the TEL structure.

132

The technique of this section is a heuristic, because as stated, it does not

take in account nested choice. For example, given the TEL structure of Fig-

ure 6.7(a), the technique of this section would not consider adding the set of

rules {g+→ b+, g+→ c+} to produce the TEL structure of Figure 6.7(b). The

technique of this section would assume that the structure of Figure 6.7(b) would not

be one-safe, because there is a rule from g+ to the clique b± but no rule from g+

to the conflicting cliques d± and e±. However, the TEL structure of Figure 6.7(b)

is actually one-safe because the added rules cover both branches of the top-level

choice.

6.2.2 Assuming Each Rule Adds No New States

Consider two events e and f in a design. Ignoring timing considerations, adding

a rule e → f to a TEL structure simply has the effect of imposing the constraint

e ≺ f . Imposing the constraint e ≺ f on the design tends to produce a subset of the

states present in the state graph without the constraint. In particular, the states

d+ e+

c+b+

a+g+

f+

d− e−

c−b−

a−g−

f−

d+ e+

c+b+

a+g+

f+

d− e−

c−b−

a−g−

f−
(a) (b)

Figure 6.7. Timed event/level structure with nested choice. Part (a) shows
the TEL structure before adding the rules g+ → b+ and g+ → c+. Part
(b) shows the TEL structure after adding the rules g+ → b+ and g+ → c+.
(b±#setc± ∧ b±#setd± ∧ b±#sete± ∧ d±#sete±).

133

that violate e ≺ f are eliminated from the state graph. Other states are usually

unaffected, and it is rare for new states to be introduced. Similarly, removing a

constraint such as e ≺ f tends to add states to a state graph.

This leads us to a heuristic pruning technique. Consider two TEL structures

T = (N,S0, A,E,R, R0,#) and T ′ = (N,S0, A,E,R
′, R′0,#). If T ′ has a subset of

the rules that are either present in T or made redundant by the rules in T , then

T ′ has a subset of the constraints of T . In this case, the heuristic of this section

assumes that the state graph derived from T ′ has a superset of the states of the

state graph derived from T .

Definition 6.10 The v relation is defined on TEL structures, such that given two

TEL structures T = (N,S0, A,E,R, R0,#) and T ′ = (N ′, S ′0, A
′, E ′, R′, R′0,#

′):

T ′ v T
m

N = N ′ ∧ S0 = S ′0 ∧ A = A′ ∧ E = E ′ ∧# = #′

∧
R′ ⊆ R ∪

{
e→ f | e→∗R−R0

f
}
∧R′0 ⊆ R0 ∪ {e→ f | oneToken(e, f, R, R0)}

Essentially, this means that each rule in R′ would be redundant if added to R, and

each rule in R′0 would be redundant if added to R0. Therefore, T ′ v T (which

is read “T ′ has a subset of the constraints of T”). Let RSG = (I, O,A, S, δ, λS)

and RSG ′ = (I, O,A, S ′, δ′, λ′S) be the state graphs derived through state-space

exploration from T and T ′, respectively. The heuristic of this section assumes that:

T ′ v T ⇒ S ′ ⊇ S ∧ δ′ ⊇ δ ∧ ∀s ∈ S . λ′S(s) = λS(s)

This means that if T ′ has a subset of the constraints of T , then RSG ′ has a superset

of the states of RSG . In practice, the calls to the →R relation and the oneToken

function can be precomputed from the rules that are marked as redundant during

the redundancy checks.

The pruning technique that this section proposes is as follows. Suppose that

T and T ′ are two leaves of the search tree. Further suppose that the algorithm

encounters T before T ′. If state-space exploration on T yields the state graph

RSG, and RSG has a complete state coding violation, then the algorithm inserts

134

T into a blacklist. When the algorithm later encounters T ′, if T ′ v T , the algorithm

rejects T ′ without attempting state-space exploration on T ′. Given a blacklist set

B, the set of leaves that this technique prunes is {T ′ | ∃T ∈ B . T ′ v T}.

Searching the tree of possibilities in such a way that whenever T ′ v T , the algo-

rithm encounters T before T ′ maximizes the number of leaves that this technique

prunes. The simplest way to approximate this order is to always explore the branch

that adds a rule before the branch that does not. However, this only approximates

the ideal order because of the fact that adding a rule can make previously added

rules redundant. Figure 5.11 illustrates this possibility. This requires the following

modification to the search order. When the algorithm discovers that adding a rule

would make previously-added rules redundant, it prunes the current subtree and

then skips to the branch of the search tree that does not add the now redundant

rules, but instead adds the rule that made them redundant. Having explored the

subtree routed at that point and marked it as explored, the algorithm returns to the

place in the search tree just after that which it pruned. This strategy maximizes

the number of leaves that the technique of this section can prune.

Furthermore, this technique can be extended to prune interior nodes as well.

Let N be the current node of the search tree. Let T ′ be the leaf derived from N

by choosing to omit each rule that is uncommitted at N . If ∃T ∈ B . T ′ v T , then

the algorithm prunes the entire subtree rooted at N . This is because any other leaf

T ′′ descended from N has a superset of the rules of T ′. Therefore, T ′′ v T .

Unfortunately, the pruning technique of this section is inexact. In particular,

adding a rule to a TEL structure may introduce new states into the reduced

state graph computed by timed state-space exploration. One cause of this is the

conjunctive timing semantics of TEL structures. A given event is not forced to

occur until all the rules that enable it have expired. Even if some of the rules that

enable an event f have expired, if other rules enabling f have not yet expired, then

f may not have occurred yet.

For example, consider the TEL structure of Figure 6.8(a). Without the timing

bounds, this example would suffer from complete state coding violations. However,

135

using the timing constraints, this example achieves complete state coding. Start-

ing from the TEL structure of Figure 6.8(a), adding the rule (y−, z+, 0, 0, [true])

produces the TEL structure of Figure 6.8(b). Even considering timing, the new

rule results in a complete state coding violation. Figure 6.9 shows two reduced

state graphs computed by timed state-space exploration. The reduced state graph

of Figure 6.9(a) corresponds to the TEL structure of Figure 6.8(a). The reduced

state graph of Figure 6.9(b) corresponds to the TEL structure of Figure 6.8(b).

The reduced state graph of Figure 6.9(b) does have fewer states than that of

Figure 6.9(a). However, the set of states in Figure 6.9(b) is not a subset of the

set of states in Figure 6.9(a). The reduced state graph of Figure 6.9(b) has new

states that are not present in that of Figure 6.9(a). In particular, the highlighted

pair of states constitutes a complete state coding violation. Thus, choosing to avoid

the TEL structure of Figure 6.9(a) just because that of Figure 6.9(b) has a complete

state coding violation would overlook a solution with complete state coding. This

[1, 2]

w+

x+

x−

y+

y− z+

w−

[15, 16]

[3, 4][9, 10]
[7, 8]

z−

[5, 6]

[3, 4]

[4, 5]

[13, 14]

[4, 5]

[1, 2]

w+

x+

x−

y+

y− z+

w−

[15, 16]

[3, 4][9, 10]
[7, 8]

z−

[0, 0]
[5, 6]

[3, 4]

[4, 5]

[13, 14]

[4, 5]

(a) (b)

Figure 6.8. TEL structures that differ only in the rule (y−, z+, 0, 0, [true]). Part
(a) shows the TEL structure before adding (y−, z+, 0, 0, [true]). Part (b) shows the
TEL structure after adding (y−, z+, 0, 0, [true]).

136

R000

1RRR

w+

1RFR

x+

0F00

z-

(a)

1RFF

y+

11FR

z+

1R0F

110F

z+

F100

y-

x-

11FF

z+ y+

x-

w-

R000

10RR

w+

10FR

x+

0F00

z-

(b)

10FF

y+

1R00

F100

z+

w-

100F

y-

x-

Figure 6.9. Reduced state graphs demonstrating that adding a rule can
introduce a complete state coding violation. Each state s is labeled with
λS(s)(w)λS(s)(z)λS(s)(x)λS(s)(y). RSG (a) was derived before adding the rule
from y− to z+, and RSG (b) was derived after adding the rule from y− to z+.

137

is why the technique of this section, as it is currently implemented, is a heuristic.

The precise conditions under which adding a rule to a TEL structure can introduce

new states needs further investigation. Note that even when attempting synthesis

on a particular TEL structure leads to a complete state coding violation, the tool

that this dissertation presents can use the techniques of Section 5.4 to solve the

complete state coding violation. However, even in this case, the technique of this

section can still be a useful way to predict when TEL structures will lead to a

superset of the complete state coding violations of another TEL structure.

6.2.3 Setting Limits

Another approach to managing a large search space is to place limits on the

resources consumed during the search. In particular, one could place limits on the

number of solutions found. A very special case of this is to simply stop after the

finding the first solution. This special case has been implemented as an option to

the tool that this dissertation presents.

The remainder of this section discusses possible future extensions. For example,

one might want to limit the total number of synthesis attempts made by the

tool, because that is the most expensive operation. The user might also indicate

requirements on the nature of the solutions found. For example, the user could

place bounds on the number of rules to be added to the TEL structure. Solutions

with more rules tend to be smaller but have less concurrency.

CHAPTER 7

RESULTS AND CASE STUDIES

We have implemented the techniques that this dissertation presents within the

CAD tool ATACS [59] and used the tool to test these techniques on several example

circuits. Most of these are from the literature on asynchronous circuits. On each

member of this set of benchmark examples, there are several possible metrics with

which to evaluate the results.

For any given example, the first aspect of success is the ability to produce a

circuit that correctly implements the specification. Without this much success, the

remaining metrics discussed below are moot points.

Another metric is the computing resources necessary to find and synthesize the

solutions. Reducing the CPU time and memory required to compile the example

frees computing resources to work on other tasks. Furthermore, these figures affect

the cost of the equipment necessary to handle the example.

This chapter focuses on the run-time required to obtain each result, and on

the average cycle period of that result, as determined by Mercer’s stochastic cycle

period analysis [55]. This allows the designer to incorporate known information

about the delays of the environment (for example, the data path) and to evaluate

how the solution presented will affect overall system performance.

For any metric, the validity depends strongly on the set of the benchmark

examples chosen. The more representative these are of real designs, the more valid

the measurement of success is. This chapter attempts to present a reasonably

representative set of examples.

139

7.1 Exhaustive Results

This section presents the results of applying the techniques of Section 5.2. These

techniques find the entire solution space for each example. This section presents

various small examples. For each example, it presents the resources required to find

the entire solution space, certain statistics about the solution space, and comments

on the solutions found. This section presents the results of applying the concurrency

reduction techniques of Chapter 5 to several example buffers from Chapter 4.

Consider the push buffer requiring no isochronic fork between control and the

data path, shown in Figure 4.16(a) on page 86. Applying concurrency reduction to

the constraints of Figure 4.16(b) on page 86 finds two solutions. These solutions

correspond to two of the solutions that Burns found by hand for these constraints

[20]. The other solutions from [20] for these constraints require a vacuous event.

Vacuous events are not directly captured by the techniques of Chapter 5.

Now consider the push buffer that does require an isochronic fork between the

control and data path, shown in Figure 4.18(a) on page 89. Applying concurrency

reduction to the constraints in Figure 4.18(b) on page 89 finds the same solutions

found for the case requiring no isochronic fork between control and data path, plus

an additional two solutions. All four solutions correspond to solutions that Burns

found by hand for these constraints [20]. Burns found an additional reshuffling that

has a complete state coding violation, and hence would require a state variable.

Introducing an initially unconstrained state variable before applying concurrency

reduction yields 855 distinct solutions. Sixteen of these correspond to the 16 ways

to solve Burns’ reshuffling using one state variable. The remaining solutions do not

actually require the state variable to achieve complete state coding. The remaining

reshufflings from [20] for the push buffers would require vacuous events.

Consider the pull buffer using the Latch component shown in Figure 4.20(a) on

page 92. In addition to the data constraints of Figure 4.20(b) on page 92, Burns [20]

also applies the constant response time (CRT) constraint. An array of processes

such as a FIFO composed of buffer stages obeys the CRT constraint if the response

time at either end of the array is independent of the number of processes in the

140

array. For the pull buffer, this requires the following additional constraints [20]:

Lreq+ ≺ [Rreq] (7.1a)

Lreq− ≺ [∼ Rreq] (7.1b)

Adding rules for these constraints to the TEL structure of Figure 4.20 on page 92

produces that of Figure 7.1. Applying concurrency reduction to the TEL structure

of Figure 7.1 produces two solutions. These correspond to two of the solutions that

Burns found by hand for the pull buffer [20]. Each of the remaining solutions that

[20] presents for the pull buffer requires either a state variable or a vacuous event.

Introducing an initially unconstrained state variable before concurrency reduction

yields 790 solutions, including all of Burns’ reshufflings that need a state variable

but no vacuous events.

Consider the push buffer using a normally transparent latch of Figure 4.9(a)

on page 74. Applying concurrency reduction to the constraints in Figure 4.9(b)

on page 74 yields 5,258 solutions. These include the simple and semi-decoupled

solutions that Furber and Day present in [28]. The fully-decoupled and long-hold

solutions from [28] require a state variable. Table 7.1 presents the results for this

Rreq−

Rreq+

[∼ Rack] [Rack]
[10, 20] [10, 20]

Lack−

Lack+

[Lreq] [∼ Lreq]
[10, 20] [10, 20]

[0, 0]
[Rreq]

Lreq+

$2 Rack−

$5

Lreq−

$1 Rack+

$6

[0, 0]
[Lack]

[0, 0]
[∼ Lack]

[0, 0]
[∼ Rreq]

(7.1a)

(7.1b)

Figure 7.1. TEL structure for constraints on a pull buffer meeting the CRT
constraint and using the Latch component.

141

Table 7.1. Results for myFurber.
Filters CPU Period

N P E O S time/s levels TELs leaves PRSs max. min.
S 4108.63 39 13849 13849 10528 81 42

O S 1.91 6 16 16 3 42 42
E S 492.89 39 1369 1115 1 42 42
E O S 3.63 6 12 8 1 42 42

P S 4081.28 39 13849 13849 10528 81 42
P O S 2.07 6 16 16 3 42 42
P E S 498.13 39 1369 1115 1 42 42
P E O S 3.62 6 12 8 1 42 42

N 12.38 39 141 141 1 42 42
N S 12.57 39 141 141 1 42 42
N O 0.71 6 5 5 1 42 42
N O S 0.73 6 5 5 1 42 42

The command atacs -oi -oR -oq -oD -tp -G1-2 myFurber.tel [-Pfilter]. . .
-ys generated each row of this table.

buffer. Filter N simply stops the search after the first solution found. Filter P pre-

serves user-specified concurrency. It corresponds to the technique of Section 6.1.2.

Filter E uses a branch-and-bound technique to prune expensive solutions. That is

the filter of this Section 5.3. Filter O prunes candidate rules between events that

are timed-ordered in the most-concurrent TEL structure. That is the technique

of Section 6.1.1. Filter S prunes possibilities that have a subset of the rules of a

possibility that is known to have a complete state coding violation. That is the filter

of Section 6.2.2. The levels column displays the number of levels in the search tree.

The TELs column displays the number of distinct TEL structures considered. The

leaves column displays the number of leaves of the search tree that are encountered.

The PRSs column displays the number of solutions (circuits) found. The Period

column displays the estimate of the average cycle period. Within this column, the

max. subcolumn displays the average cycle period for the slowest circuit found

using the options for its row. Each entry in the min. subcolumn displays the

average cycle period for the fastest circuit found using the options for its row.

The footnote to the table shows the options that were given to ATACS. -oi

142

turns off the state-variable insertion method of Krieger [42]. -oR turns on the

automatic concurrency reduction techniques that this dissertation presents, even

though this example does not come from channel-level VHDL. -oq suppresses the

automatic display of graphs for cases such as deadlock. -oD allows rule disabling

with only a warning. -tp selects the Bourne-Again Poset (bap) timing analysis

method of Mercer et al. [57, 56]. -G1-2 specifies that logic gates should have a

delay range of [1, 2]. -lt loads the TEL structure. -Pfilter turns on the specified

filter. For example, the third row of Table 7.1 uses . . . -PP -PO -PS. . . . Finally,

-ys invokes synthesis using the single-cube algorithm of Myers [59].

In Table 7.1, the solutions range in average cycle period from 42 time units to 64

time units. The branch and bound algorithm (filter E) finds the optimal solution

in about one fifth of the CPU time required without this filter. The P filter, which

preserves user-specified concurrency is not useful for this example, because it has

no channel-level concurrency. The N filter, which halts the search after the first

solution found, reduces the run time by an order of magnitude. By itself, it does

not quite find the optimal solution, but it comes close. Used in conjunction with

the O filter, it does find the optimal solution. Because I do not currently have a

Petrify specification for this example, I have not performed a comparison against

Petrify on this example.

7.2 The PAR Component

Consider Berkel’s PAR component [10]. This component has three ports A,

B and C. On each iteration, the PAR component waits until there is a pending

communication on A. Then it communicates on the B and C channels in parallel,

before finally completing the communication on A. Figure 7.2 shows the context

in which the PAR component operates. The following channel-level VHDL code

specifies this example. Recall from Section 2.1 that each channel port must be

declared in inout mode, because control information flows in both directions.

entity PARsource is
port(outgoing : inout channel := init channel(sender => timing(1, 2)));

end PARsource;
architecture behavior of PARsource is

143

Caller

PAR

A

B C
coroutineB coroutineC

Figure 7.2. Block diagram of PAR and its environment.

signal x : std logic vector(2 downto 0) := "000";
begin
PARsource : process
begin
send(outgoing, x);
--@synthesis off

x <= x + 1;
--@synthesis on

end process PARsource;
end behavior;
--

entity PARsink is
port(incoming : inout channel :=

init channel(receiver => timing(5, 10)));
end PARsink;
architecture behavior of PARsink is

signal y : std logic vector(2 downto 0) := "000";
begin
PARsink : process
begin
receive(incoming, y);

end process PARsink;
end behavior;
--

entity PAR is
port(A : inout channel := init channel(receiver => timing(1, 2));

B, C : inout channel := init channel(sender => timing(1, 2)));
end PAR;
architecture behavior of PAR is

signal bb, cc : std logic vector(2 downto 0) := "000";
begin
doPAR : process
begin
await(A);
send(B, bb, C, cc);
receive(A);

end process doPAR;
end behavior;
--

144

Running directly from the VHDL code, the compiler and the initial expander

of tool that this dissertation presents produces the starting point for concurrency

reduction shown in Figure 6.3 on page 124.

Table 7.2 presents the results for synthesizing the PAR component using various

options. The note to the table specifies the options given to ATACS. -ts specifies

the posets timing-analysis method of Belluomini [7]. The argument PARex specifies

using the VHDL input file PARex.vhd, which contains the above VHDL code. The

argument PAR specifies that PAR is the component to be synthesized. Recall that

each number in the Period column is an estimate of the average cycle period for

a particular solution. The max. column presents the average cycle period of the

Table 7.2. Results for PARex.
Filters CPU Period

N P E O S time/s levels TELs leaves PRSs max. min.
167.62 24 1382 1382 263 30 20

S 94.25 24 806 597 215 30 20
O 63.56 20 546 546 100 30 20
O S 49.12 20 394 357 100 30 20

E 129.77 24 452 292 2 21 20
E S 69.45 24 251 70 2 21 20
E O 62.62 20 235 160 2 22 20
E O S 46.72 20 175 109 2 22 20

P 26.06 12 189 189 57 30 20
P S 18.53 12 142 106 49 30 20
P O 7.39 8 55 55 16 29 20
P O S 6.73 8 53 48 16 29 20
P E 22.29 12 78 39 2 21 20
P E S 19.42 12 73 18 2 21 20
P E O 10.24 8 37 20 2 28 20
P E O S 10.21 8 37 18 2 28 20

N 0.48 24 5 1 1 21 21
N S 0.49 24 5 1 1 21 21
N O 0.80 20 7 5 1 22 22
N O S 0.73 20 7 5 1 22 22

Petrify 1.26 – – – 1 21 21
The command atacs -oi -oq -ts -G1-2 PARex.vhd PAR [-Pfilter]. . . -ys
generated each row of this table.

145

slowest circuit found using the options in that row. The min. column presents the

average cycle period of the fastest circuit found using the options in that row.

7.2.1 Using the Cycle-Period Cost Function

The experiment of this section measures the impact of the branch and bound

technique of Section 5.3. Comparing the rows with and without the filter E shows

the effect of the branch and bound algorithm on this example. For example, com-

pare the first and fifth rows of the table. The solutions that the branch-and-bound

technique finds include the solution with the lowest average cycle period. The

branch-and-bound technique reduced the number of synthesis attempts by a factor

of about 4.5. However, it reduced the CPU time by only a factor of about 1.2. In

some cases, the CPU time while using the branch-and-bound algorithm is actually

greater than that without the filter. For example, comparing the P filter alone to

the combination of the P and the E filter, the E filter still reduced the number of

synthesis attempts, but the run time actually increased. The overhead is due mainly

to the cost of running the simulations to compute the bounding function. Each

simulation is very quick compared to each synthesis run. However, the technique

runs a simulation for each internal node of the tree. There can be many more

internal nodes than there are leaves of the tree, especially when the branch and

bound technique succeeds in pruning away many leaves.

7.2.2 Assuming that Each Rule Adds No New States

This section determines the impact of the technique of Section 6.2.2, which

assumes that if TEL structure T1 has a superset of the rules of TEL structure T2,

and if T1 has a complete state coding violation, then T2 also has a complete state

coding violation. Consider the S filter in Table 7.2. This filter did not affect the

quality of the solutions found for the PAR component. This filter did reduce the

CPU time required to find these results. For example, comparing the results using

the S filter to the exhaustive results, the filter cut the number of synthesis attempts

in half, and the run time by a factor of about 1.5.

146

7.2.3 Timed Concurrency

This section tests the impact of the technique of Section 6.1.1, which considers

only candidate rules between events that are timed concurrent in the initial, most-

concurrent TEL structure. Consider the O filter in Table 7.2. This filter does not

affect the searches ability to find the optimal solution for the PAR example. This

filter did reduce the run time required to find this optimum, often by a factor of

about 3.

7.2.4 Preserving User-Specified Concurrency

This section determines the impact of the technique of Section 6.1.2, which

protects user-specified concurrency. Whenever the channel-level specification con-

tains a parallel send or receive operation, this experiment forbids adding rules

between the channel communications within each parallel operation. Consider the

P filter of Table 7.2. This filter did not affect the searches ability to find the best

solution, and yet it did substantially reduce the run time. For example, relative to

the exhaustive results, the P filter reduced run time by a factor of about 6. Thus,

for an example like the PAR component, this filter provides significant pruning,

with little overhead.

7.2.5 Stopping After The First Solution

An extremely aggressive heuristic is to simply stop after the first solution found.

If the branching function of Section 5.3 succeeds in steering the search such that

the first synthesis attempt succeeds, then this method is equivalent to letting the

branching function determine the set of rules to include in the final TEL structure.

This actually combines the techniques of Section 6.1.4, Section 6.1.2, Section 6.1.3,

and Section 6.2.3. Applying this technique to the PAR example produces the last

section of Table 7.2. Using this heuristic alone, the search finds a solution that is

nearly optimal (within 5 percent of optimal) on its first attempt. Compared to the

exhaustive approach, using this heuristic improves run time by a factor of almost

400.

147

7.2.6 Comparison to Petrify

The last row of Table 7.2 shows the result for this example produced by Petrify.

The Petrify input is shown below.

.model channel

.channels a b c

.graph

a? b! c!

b! b?

c! c?

b? a!

c? a!

a! a?

.marking {<a!,a?>}

.slowenv

.end

For the purposes of concurrency reduction, the .slowenv directive serves as an

approximation to the timing constraints in the ATACS specification. Given the above

specification in the file par.g, the command petrify -er -4ph -untog par.g

-o par.out.4ph -redc -gc -eqn par.eqn produced the synthesizable Petri Net.

The result was input to ATACS and annotated with the timing assumptions of

Figure 6.3 on page 124 for computation of the average cycle period and synthesis

using ATACS. Figure 7.3 compares the result of concurrency reduction using Petrify

to that using the tool that this dissertation presents. In particular, Figure 7.3(a)

shows the TEL structure for the result from Petrify. Figure 7.3 shows the TEL

structure best result obtained using the P and O filters. Running ATACS synthesis

on the TEL structure of Figure 7.3(a) (the annotated Petrify result) produces

the circuit of Figure 7.4(a). Running ATACS synthesis on the TEL structure of

Figure 7.3(b) produces the circuit of Figure 7.4(b). The circuit derived from the

result from Petrify is simpler. However, the circuit derived using the P and

148

a!−

a!+

[∼ a?] [a?]

b?−

b?+

[b!] [∼ b!]
[5, 10] [5, 10]

b!+

b!−

$1

[0, 0]
[b?]

[∼ b?]

c!+

c!−

$2

[0, 0]
[c?]

[∼ c?]

c?−

c?+

[c!] [∼ c!]
[5, 10] [5, 10]

a?+

a?−

[a!] [a!]

$3

[∼ a!]

[a! | a?] [a! | a?]

[0, 0] [0, 0]

(a)

a!−

a!+

[∼ a?] [a?]

b?−

b?+

[b!] [∼ b!]
[5, 10] [5, 10]

b!+

b!−

$1

[0, 0]
[b?]

[∼ b?]

c!+

c!−

$2

[0, 0]
[c?]

[∼ c?]

c?−

c?+

[c!] [∼ c!]
[5, 10] [5, 10]

a?+

a?−

[a!] [a!]

$3

[a! | a?] [a! | a?]

[0, 0]

[0, 0]

[∼ a!]

(b)

Figure 7.3. TEL structures for PAR example after concurrency reduction. Part
(a) shows the result from Petrify. Part (b) shows the best result using the P and
O filters.

149

b?

a!

c?

b!

a?

c!

+

+

-

gC

+

+

-

gC

+
+
-
+
+

gC

(a)

a?

c!c?

b?

a!

b!
+

-
-
-

gC

gC
+

+
+

gC

-

+

(b)

Figure 7.4. Circuit implementations of the PAR example. Part (a) shows the
circuit derived from the Petrify result. Part (b) shows the best circuit derived
using the P and O filters.

150

O filters results in a faster average cycle period when composed with the given

environment, as shown in Table 7.2.

7.3 Examples Enabled by Heuristics

This section presents examples for which it would be infeasible to find the entire

design space but for which heuristics can find useful solutions.

7.3.1 Shifter

Consider a systolic, n-bit shifter constructed of n modules, each of which stores

one bit of the data [58]. n − 1 of the modules are identical, but there is a special

module at the end of the shifter. Each of the n − 1 identical modules has an

interface consisting of six channels named Load , Shift in , Shiftout , Done in , Doneout ,

and Dataout . The Done in and Doneout channels are pure synchronization channels.

Each other channel carries single-bit data. When a module receives a datum on

its Load channel, it stores the received bit internally. When a communication is

pending on its Shift in channel, the module sends the current value of its stored bit

out of the Shiftout channel, and receives a new datum on the on the Shift in channel.

When communication is pending on the Done in channel, the module sends its

bit on the Dataout channel, sends a communication on the Doneout channel, and

completes the communication on the Done in channel. The special module on the

end of the shifter does not have the Shiftout or Doneout channels. Figure 7.5 shows

Shift in

Done in

Shift in

Done in

Dataout

Load
Shiftout

Doneout
D2

S2

Shift in

Done in

Dataout

Load
Shiftout

Doneout

Shift in

Done in

Dataout

Load
Shiftout

Doneout

S3

D3

S1

D1

S0

D0

Load

Dataout

L3 L2 L1 L0

O3 O2 O1 O0

Figure 7.5. A four-bit shifter.

151

the interconnection of modules by channels for a four-bit shifter.

The following channel-level VHDL code specifies the behavior of each module.

The LSDOenv process specifies the environment, the normal process specifies any

module of the shifter except the special one on the end, and the special process

specifies the special module at the end of the shifter.

entity LSDOenv is
port(L3, L2, L1, L0 : inout channel :=

init channel(sender => timing(3, 5));
Shift, Done : inout channel :=
init channel(sender => timing(3, 5));
O3, O2, O1, O0 : inout channel :=
init channel(receiver => timing(3, 5)));

end LSDOenv;
architecture behavior of LSDOenv is

signal Ldata, Odata : std logic vector(3 downto 0) := "0000";
signal Sdata : std logic := ’0’;

begin
LSDOenv : process

variable z : integer;
begin
--@synthesis off

Ldata <= Ldata + 1;
--@synthesis on

wait for delay(1, 2);
send(L3, Ldata(3), L2, Ldata(2), L1, Ldata(1), L0, Ldata(0));
send(Done);
receive(O3, Odata(3), O2, Odata(2), O1, Odata(1), O0, Odata(0));
assert Ldata = Odata report "unequal data!" severity failure;
send(Shift, Sdata);
send(Done);
receive(O3, Odata(3), O2, Odata(2), O1, Odata(1), O0, Odata(0));
assert to bitvector(Odata) = to bitvector(Ldata) srl 1

report "unequal data!" severity failure;
end process LSDOenv;

end behavior;

entity normal is
port(Load : inout channel := init channel(receiver => timing(2, 4));

Shift in : inout channel := init channel(receiver => timing(2, 4));
Done In : inout channel := init channel(receiver => timing(2, 4));
Shift Out : inout channel := init channel(sender => timing(3, 4));
Done Out : inout channel := init channel(sender => timing(3, 4));
Data out : inout channel := init channel(sender => timing(3, 4)));

end normal;
architecture behavior of normal is

signal u : std logic;
begin
normal : process
begin

152

await any(Load, Shift in, Done in);
if (probe(Load)) then
receive(Load, u);

elsif (probe(Shift in)) then
send(Shift out, u);
receive(Shift in, u);

else
send(Done out);
receive(Done in);
send(Data out, u);

end if;
end process normal;

end behavior;

entity special is
port(Load : inout channel := init channel(receiver => timing(2, 4));

Shift in : inout channel := init channel(receiver => timing(2, 4));
Done In : inout channel := init channel(receiver => timing(2, 4));
Data out : inout channel := init channel(sender => timing(1, 6)));

end special;
architecture behavior of special is

signal u : std logic;
begin
special : process
begin
await any(Load, Shift in, Done in);
if (probe(Load)) then
receive(Load, u);

elsif (probe(Shift in)) then
receive(Shift in, u);

else
receive(Done in);
send(Data out, u);

end if;
end process special;

end behavior;

Table 7.3 presents results for synthesizing the special component of the shifter.

Because of the complexity of the environment (the three instances of the normal)

component, even one synthesis attempt is an expensive operation. Therefore,

Table 7.3 presents only the results that use either the N filter or the E filter.

Either filter finds the optimal solution on its first synthesis attempt. Therefore,

adding the S filter has no effect, because the S filter uses only the information from

failed synthesis attempts. The O filter succeeds in pruning away some rules that

were unnecessary due to timing. However, this is achieved only at the expense of

extra run time to compute the state space for the initial TEL structure, to find the

153

Table 7.3. Results for shifter.
Filters CPU Period

N P E O S time/s levels TELs leaves PRSs max. min.
E 141.81 7 7 1 1 206 206
E S 142.71 7 7 1 1 206 206
E O 114.36 2 3 1 1 206 206
E O S 114.03 2 3 1 1 206 206

N 72.46 7 4 1 1 206 206
N S 74.16 7 4 1 1 206 206
N O 86.43 2 2 1 1 206 206
N O S 86.98 2 2 1 1 206 206

The command atacs -oi -oq -ts -G1-2 shifter.vhd special [-Pfilter]. . .
-ys generated each row of this table.

timed-concurrency information. While the O filter does help reduce run-time for

the branch-and-bound algorithm, it only adds overhead to the run-time for the N

filter. Because I do not currently have a Petrify specification for this example, I

have not performed a comparison against Petrify on this example.

7.3.2 MMU

Consider the “MMU” from [61, 62]. The MMU converts a 16-bit memory

address to a 24-bit real address by concatenating eight bits from one of two segmen-

tation registers with the memory address. There are six possible cycles that the

MMU controller can enter, depending on data from the environment. For simplicity,

this section discusses the design of only one cycle, namely the memory data load

cycle. Figure 7.6 shows the channel-level block diagram for part of the MMU and

its environment [62].

For a memory load cycle, the MMU controller must first wait for a communica-

tion to be pending on the memory data load channel, MDl . Then it must receive

the result of a memory address comparison on channel B while it instructs the

segmentation register to put the segmentation read address on the real address bus

by communicating on channel RA. Then the controller requests the memory load

from the memory interface and waits for it to complete by communicating on the

154

MMU Control

Address Comparator

Segmentation Register

Memory InterfaceMicroprocessor

Memory Address

MDl MSl

RA

B

Figure 7.6. Block diagram for part of the MMU and its environment [62].

MSl channel. Finally, the controller completes the communication on the memory

data load port, MDl . The following behavioral VHDL specifies this sequence of

operations and the corresponding behavior of the environment.

entity environment is
port(RA : inout channel := init channel(sender => timing(4, 18));

MDl, MSl : inout channel :=
init channel(receiver => timing(rise min => 60, rise max => 100,

fall min => 10, fall max => 60));
B : inout channel := init channel(sender => timing(5, 26)));

end environment;
architecture behavior of environment is

signal bn, r : std logic := ’0’;
begin
processor : process
begin
receive(MDl);

end process processor;
segmentation : process
begin
send(RA, r);

end process segmentation;
comparator : process
begin
send(B, bn);

end process comparator;
memory : process
begin
receive(MSl);

end process memory;
end behavior;

entity control is
port(MDl, MSl : inout channel := init channel(sender => timing(0, 2));

RA, B : inout channel := active(receiver => timing(0, 2)));
end control;
architecture behavior of control is

155

signal r, bn : std logic := ’0’;
begin
control : process
begin
await(MDl);
receive(RA, r, B, bn);
send(MSl);
send(MDl);

end process control;
end behavior;

From the above VHDL code in the file MMU.vhd the tool that this dissertation

presents automatically produces the starting point for concurrency reduction show

in Figure 7.7.

Table 7.4 presents results for synthesizing the control component of the MMU.

In this case, synthesis attempts are not as expensive as for the shifter example.

Therefore, Table 7.4 includes rows that do not use the N filter to stop after the

first solution found, but do use the E filter to prune expensive solutions. Although

the cycle period seems to vary slightly, this is only because it is a stochastic estimate.

Each row in Table 7.4 actually finds the same one solution. Thus, for this example,

the branching function steers the search such that it finds an optimal solution on

ra?+

ra?−

$1

[∼ ra!]

[0, 0]
[ra!]

b?+

b?−

$2

[∼ b!]

[0, 0]
[b!]

ra!−

ra!+

[∼ ra?]
[4, 18]

[ra?]
[4, 18]

mdl?−

mdl?+

[∼ mdl!]
[10, 60]

[mdl!]
[60, 100]

msl?−

msl?+

[∼ msl!]
[10, 60][60, 100]

[msl!]
b!−

b!+

[∼ b?]
[5, 26]

[b?]
[5, 26]

mdl!−

$4

mdl!+

[0, 0]

[∼ mdl?]
msl!+

msl!−

$3

[msl?]
[0, 0]

[∼ msl?]

[mdl! | mdl?]

[m
dl

! |
m
dl

?]

[m
dl?

]

Figure 7.7. Starting point for concurrency reduction of the MMU example.
Except where indicated, each rule has the timing bounds [0, 2].

156

Table 7.4. Results for MMU.
Filters CPU Period

N P E O S time/s levels TELs leaves PRSs max. min.
E 10.58 42 26 1 1 218 218
E S 10.64 42 26 1 1 218 218
E O 3.25 14 8 1 1 217 217
E O S 3.21 14 8 1 1 217 217

N 0.67 42 7 1 1 216 216
N S 0.66 42 7 1 1 216 216
N O 0.63 14 4 1 1 215 215
N O S 0.62 14 4 1 1 215 215

Petrify 16.51 – – – 1 225 225
The command atacs -oi -oq -ts -G0-2 MMU.vhd control [-Pfilter]. . . -ys
generated each row of this table.

its first attempt. The cost function is implemented such that when two average

cycle periods are within an average deviation of each other, they are considered

equal. In such cases, the bounding function prunes the search tree. Thus, there

may actually be several solutions that have approximately the same cost as the one

solution listed in Table 7.4. However, there are no solutions that have significantly

lower cost.

The last row of Table 7.4 shows the result for this example produced by Petrify.

The Petrify input is shown below.

.name mmu

.channels mdl ra b msl

.graph

mdl? ra!

ra! ra?

ra? msl!

mdl? b!

b! b?

b? msl!

msl! msl?

157

msl? mdl!

mdl! mdl?

msl! ra!

msl! b!

mdl! msl!

.marking {<mdl!,mdl? > <msl!,ra!> <msl!,b!> <mdl!,msl!> }

.slowenv

.end

For the purposes of concurrency reduction, the .slowenv directive serves as an

approximation to the timing constraints in the ATACS specification. Given the above

specification in the file MMU.g, the command petrify -er -4ph -untog MMU.g

-o MMU.out.4ph -redc -gc -eqn MMU.eqn produced the synthesizable Petri Net.

The result was input to ATACS and annotated with the timing assumptions of

Figure 7.7 for computation of the average cycle period and synthesis using ATACS.

Figure 7.8 compares the result of concurrency reduction using Petrify to that using

the tool that this dissertation presents. In particular, Figure 7.8(a) shows the TEL

structure for the result from Petrify. Figure 7.8(b) shows the TEL structure for

the result using theN andO filters. Petrify inserted a state variable, while the tool

that this dissertation presents used only reshuffling to achieve complete state coding.

Running ATACS synthesis on the TEL structure of Figure 7.8(a) (the annotated

Petrify result) produces the circuit of Figure 7.9(a). Running ATACS synthesis on

the TEL structure of Figure 7.8(b) produces the circuit of Figure 7.9(b). In this

case, the circuit derived using the N and O filters is both smaller and faster (in

terms average cycle period when composed with the given environment, as shown

in Table 7.4).

As with the shifter example, the S filter has no effect, because there were no

failed synthesis attempts to consider. Again, the O filter pruned away candidate

rules between events that were already timed-ordered in the initial TEL structure.

For this example, this is about two-thirds of the candidate rules, and the O filter

158

$4

mdl!+

mdl!− CSC−
[∼ mdl?]

[0, 0]

ra?+

ra?−
[∼ ra!]

CSC +

[ra!]

b?+

b?−

$2

[∼ b!]

[0, 0]
[b!]

ra!−

ra!+

[∼ ra?]
[4, 18]

[ra?]
[4, 18]

mdl?−

mdl?+

[∼ mdl!]
[10, 60]

[mdl!]
[60, 100]

msl?−

msl?+

[∼ msl!]
[10, 60][60, 100]

[msl!]
b!−

b!+

[∼ b?]
[5, 26]

[b?]
[5, 26]

msl!+

msl!−

$3

[msl?]
[0, 0]

[∼ msl?]

[mdl! | mdl?]

[m
dl

! |
m
dl

?]

[m
dl?

]

(a)

ra?+

ra?−

$1

[∼ ra!]

[0, 0]
[ra!]

b?+

b?−

$2

[∼ b!]

[0, 0]
[b!]

ra!−

ra!+

[∼ ra?]
[4, 18]

[ra?]
[4, 18]

mdl?−

mdl?+

[∼ mdl!]
[10, 60]

[mdl!]
[60, 100]

msl?−

msl?+

[∼ msl!]
[10, 60][60, 100]

[msl!]
b!−

b!+

[∼ b?]
[5, 26]

[b?]
[5, 26]

mdl!−

$4

mdl!+

[0, 0]

[∼ mdl?]
msl!+

msl!−

$3

[msl?]
[0, 0]

[∼ msl?]

[mdl! | mdl?]

[m
dl

! |
m
dl

?]

[m
dl?

]

(b)

Figure 7.8. TEL structures for MMU example after concurrency reduction. Part
(a) shows the result from Petrify. Part (b) shows the best result using the N and
O filters.

159

b?

msl !b!

ra! ra?

mdl !
mdl?

msl?

CSC

+

+

-

gC

+

-

+

gC

gC
+

gC+

-

(a)

b?

mdl !

ra?

msl !

msl?

b!

ra!

mdl?

+

+

-

gC

gC
+

(b)

Figure 7.9. Circuit implementations of the MMU example. Part (a) shows the
circuit derived from the Petrify result. Part (b) shows the best circuit derived
using the N and O filters.

160

does reduce the run time.

7.3.3 MPEG

Consider a decoder for the Motion Picture Expert Group (MPEG) format. One

of the important operations within the decoder is the dithering operation. Zhao

[73] is developing a hardware/software co-design to implement the dithering unit

for an MPEG decoder. Figure 7.10 shows the channel-level block diagram for the

dithering unit design. The following VHDL code (adapted from [73]) specifies the

behavior of the dithering unit.

--
-- Title : dpCal

lum(7 : 0)

cr(7 : 0)

cb(7 : 0)

Splice

RW

MemAccess

Calculate

addr(15 : 0)

dp(3 : 0)

dp(3 : 0)

addrW (15:0)

addrR (15:0)

dpCal

MTT

mem

cntIncrement

Calculate

Splice

MemAccess

Increment

cbd(7 : 0)

crd(7 : 0)

lumd(7 : 0)

memRW

DPdatad

cb

cr

lum

cb

cr

lum

DPdata DPdata

Display

ControlSoftware

dataout (15:0)

Dout(7 : 0)Din(7 : 0)

Figure 7.10. Block diagram for an MPEG dithering unit and its environment.

161

-- Design : datapath

-- Author : yy

-- date : 6-8-2002

library IEEE;
use IEEE.STD LOGIC 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
use work.nondeterminism.all;
use work.channel.all;
entity dpCal is

generic(
fwidth : integer := 15
);

port(
reset : in std logic;
Calculate : inout channel := init channel(receiver => timing(1, 3));
dp : out std logic vector(3 downto 0)
);

end dpCal;
architecture dpCal of dpCal is

type NumType is array (0 to 15) of integer range 0 to 15;
constant dpi : NumType := (0,8,12,4,2,10,14,6,3,11,15,7,1,9,13,5);

begin
dpCalculate : process

variable cnt : integer := 0;
variable index : integer;
variable w : integer := fwidth*16;

begin
await(Calculate);
--@synthesis off

index := ((cnt/w/2) mod 2)*8 +cnt mod 8;
dp <= conv std logic vector(dpi(index), 4);
cnt := cnt+1;
--@synthesis on

wait for delay (3, 5);
receive(Calculate);

end process;
end dpCal;

--

-- Title : mtt

-- Design : datapath

-- Author : yy

-- date : 6/8/2002

library IEEE;
use IEEE.STD LOGIC 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
use work.nondeterminism.all;
use work.channel.all;
use std.textio.all;

162

entity mtt is
generic(
fheight : integer := 11;
fwidth : integer := 15;
pagesize : integer := 64
);

port(
Splice : inout channel := init channel(receiver => timing(1, 3));
cr : in std logic vector(7 downto 0);
cb : in std logic vector(7 downto 0);
lum : in std logic vector(7 downto 0);
addr : out std logic vector(15 downto 0);
dp : in std logic vector(3 downto 0)
);

end MTT;
architecture mtt of mtt is
begin
ttb cal : process

variable pos : integer := 0;
variable w : integer := fwidth*16;
variable idp : integer;
--for MAKETTable

type ntype is array (0 to 2) of integer;
constant ttb : ntype := (33, 97, 161);
variable ttx : integer := 0;
variable tty : integer := 0;
variable ix : integer := 0;
variable iy : integer := 0;

begin
await(Splice);
--@synthesis off

ix := conv integer(cb);
iy := conv integer(cr);
idp := conv integer(dp);
ttx := 3;
while ix < ttb(ttx-1)+idp*4 loop
ttx := ttx-1;

end loop;
tty := 3;
while iy < ttb(tty-1)+idp*4 loop
tty := tty-1;

end loop;
addr <= dp & conv std logic vector(ttx, 2) &

conv std logic vector(tty, 2) & lum;
wait for delay(3, 5);
--@synthesis on

receive(Splice);
end process;

end mtt;

--

-- Title : mem

-- Design : datapath

163

-- Author : YY

-- date : 6-8-2002

library IEEE;
use IEEE.STD LOGIC 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
use work.nondeterminism.all;
use work.channel.all;
entity mem is

port(
Mem Access : inout channel := init channel(receiver=>timing(1, 3));
addr r : in std logic vector(15 downto 0);
addr w : in std logic vector(15 downto 0);
Din : in std logic vector(7 downto 0);
RW : in std logic;
Dout : out std logic vector(7 downto 0)
);

end mem;
architecture mem of mem is

constant ttMemorySize : integer := 16*4*4*256;
type ttype is array (0 to ttMemorySize - 1)

of std logic vector(7 downto 0);
signal tt : ttype;

begin
memory : process
begin
await(Mem Access);
--read delay is less that write

--@synthesis off

if (RW = ’0’) then
tt(conv integer(addr w)) <= Din;
wait for delay(3, 5);

else
Dout <= tt(conv integer(addr r));
wait for delay(1, 3);

end if;
--@synthesis on

receive(Mem Access);
end process;

end mem;

--

-- Title : cnt

-- Design : datapath

-- Author : yy

-- date : 6-8-2002,

library IEEE;
use IEEE.STD LOGIC 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
use work.nondeterminism.all;

164

use work.channel.all;
entity cnt is

port(
Increment : inout channel := init channel(receiver => timing(1, 3));
DataOut : buffer std logic vector(15 downto 0) := (others => ’0’)
);

end cnt;
architecture cnt of cnt is
begin
cnt : process
begin
await(Increment);
--@synthesis off

DataOut <= DataOut + 1;
--@synthesis on

wait for delay (3, 5);
receive(Increment);

end process;
end cnt;

--

-- Title : datapath

-- Design : datapath

-- Author : yy

library IEEE;
use IEEE.std logic 1164.all;
use work.channel.all;
entity datapath is

port(
Reset : in std logic;
Increment : inout channel := init channel;
Calculate : inout channel := init channel;
mem RW : in std logic;
Mem Access : inout channel := init channel;
Splice : inout channel := init channel;
cb : in std logic vector(7 downto 0);
cr : in std logic vector(7 downto 0);
lum : in std logic vector(7 downto 0);
mem Din : in std logic vector(7 downto 0);
mem Dout : out std logic vector(7 downto 0)
);

end datapath;
architecture datapath of datapath is

component cnt
port(
Increment : inout channel := init channel(receiver => timing(1, 3));
DataOut : buffer std logic vector(15 downto 0) := (others => ’0’)
);

end component;
component dpcal

port(
reset : in std logic;

165

Calculate : inout channel := init channel(receiver => timing(1, 3));
dp : out std logic vector(3 downto 0)
);

end component;
component mem

port(
Mem Access : inout channel := init channel(receiver=>timing(1, 3));
addr r : in std logic vector(15 downto 0);
addr w : in std logic vector(15 downto 0);
Din : in std logic vector(7 downto 0);
RW : in std logic;
Dout : out std logic vector(7 downto 0)
);

end component;
component mtt

port(
Splice : inout channel := init channel(receiver => timing(1, 3));
cr : in std logic vector(7 downto 0);
cb : in std logic vector(7 downto 0);
lum : in std logic vector(7 downto 0);
addr : out std logic vector(15 downto 0);
dp : in std logic vector(3 downto 0)
);

end component;
signal cbCal : std logic vector (7 downto 0);
signal cnt addr : std logic vector (15 downto 0);
signal crCal : std logic vector (7 downto 0);
signal dpIn : std logic vector (3 downto 0);
signal lumCal : std logic vector (7 downto 0);
signal mtt addr : std logic vector (15 downto 0);

begin
addr : mtt

port map(
Splice => Splice,
addr => mtt addr,
cb => cb,
cr => cr,
dp => dpIn,
lum => lum
);

dp : dpcal
port map(
Calculate => Calculate,
dp => dpIn,
reset => reset
);

memo : mem
port map(
Din => mem Din,
Dout => mem Dout,
RW => mem RW,
Mem Access => Mem Access,
addr r => mtt addr,

166

addr w => cnt addr
);

pos : cnt
port map(
Increment => Increment,
DataOut => cnt addr
);

end datapath;

--

-- Title : ctrl

-- Design : control

-- Author : yy

-- date : 6-8-2002

library IEEE;
use IEEE.STD LOGIC 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
use std.textio.all;
use work.nondeterminism.all;
use work.channel.all;
use work.handshake.all;
entity ctrl is

port(
DPdata : inout channel := init channel(receiver => timing(1, 2));
cr : inout channel := init channel(receiver => timing(1, 2));
cb : inout channel := init channel(receiver => timing(1, 2));
lum : inout channel := init channel(receiver => timing(1, 2));
Increment : inout channel := init channel(sender => timing(1, 3));
Mem Access : inout channel := init channel(sender => timing(3, 5));
Calculate : inout channel := init channel(sender => timing(3, 5));
Splice : inout channel := init channel(sender => timing(3, 5));
cr d : buffer std logic vector(7 downto 0);
cb d : buffer std logic vector(7 downto 0);
lum d : buffer std logic vector(7 downto 0);
DPdata d : buffer std logic vector(7 downto 0);
reset : out std logic := ’0’;
mem RW : buffer std logic := ’0’
);

end ctrl;
architecture ctrl of ctrl is
begin
Decoder : process
begin
await any (DPdata, cb, cr, lum);
if (probe (DPdata))then
vassign(mem RW, ’0’, 1, 2);
receive(DPdata, DPdata d);
send(Mem Access);
send(Increment);

elsif (probe (cb)) then
receive(cb, cb d);

167

elsif (probe (cr)) then
receive(cr, cr d);

elsif (probe(lum))then
vassign(mem RW, ’1’, 1, 3);
receive(lum, lum d);
send(Calculate);
send(Splice);
send(Mem Access);

end if;
wait for delay(3, 5);

end process;
end ctrl;

--

-- Title : decoder

-- Design : datapath

-- Author : yy :p

library IEEE;
use IEEE.std logic 1164.all;
use work.channel.all;
entity decoder is

port(
sampling : out std logic;
Display : inout std logic vector(7 downto 0);
DPdata : inout channel := init channel;
cb : inout channel := init channel;
cr : inout channel := init channel;
lum : inout channel := init channel
);

end decoder;
architecture decoder of decoder is

component ctrl
port(
DPdata : inout channel := init channel(receiver => timing(1, 2));
cr : inout channel := init channel(receiver => timing(1, 2));
cb : inout channel := init channel(receiver => timing(1, 2));
lum : inout channel := init channel(receiver => timing(1, 2));
Increment : inout channel := init channel(sender => timing(1, 3));
Mem Access : inout channel := init channel(sender => timing(3, 5));
Calculate : inout channel := init channel(sender => timing(3, 5));
Splice : inout channel := init channel(sender => timing(3, 5));
cr d : buffer std logic vector(7 downto 0);
cb d : buffer std logic vector(7 downto 0);
lum d : buffer std logic vector(7 downto 0);
DPdata d : buffer std logic vector(7 downto 0);
reset : out std logic := ’0’;
mem RW : buffer std logic := ’0’
);

end component;
component datapath

port(
Reset : in std logic;

168

Increment : inout channel := init channel;
Calculate : inout channel := init channel;
mem RW : in std logic;
Mem Access : inout channel := init channel;
Splice : inout channel := init channel;
cb : in std logic vector(7 downto 0);
cr : in std logic vector(7 downto 0);
lum : in std logic vector(7 downto 0);
mem Din : in std logic vector(7 downto 0);
mem Dout : out std logic vector(7 downto 0)
);

end component;
signal Increment : channel := init channel; -- tells counter to count

signal Calculate : channel := init channel; -- tells dpCalc to do it

signal Mem Access : channel := init channel; -- tells memory to do it

signal mem RW : std logic;
signal Splice : channel := init channel; -- tells MTT to splice address

signal Reset : std logic;
signal n cb : std logic vector (7 downto 0);
signal n cr : std logic vector (7 downto 0);
signal n DPdata : std logic vector (7 downto 0);
signal n lum : std logic vector (7 downto 0);

begin
control : ctrl

port map(
DPdata => DPdata,
DPdata d => n DPdata,
cb => cb,
cb d => n cb,
Increment => Increment,
cr => cr,
cr d => n cr,
Calculate => Calculate,
lum => lum,
lum d => n lum,
mem RW => mem RW,
Mem Access => Mem Access,
Splice => Splice,
reset => Reset
);

datap : datapath
port map(
Reset => Reset,
cb => n cb,
Increment => Increment,
cr => n cr,
Calculate => Calculate,
lum => n lum,
mem Din => n DPdata,
mem Dout => Display,
mem RW => mem RW,
Mem Access => Mem Access,
Splice => Splice

169

);
--@synthesis off

sampling <= mem RW when probe(Mem Access) else ’0’;
--@synthesis on

end decoder;

--

-- Title : environment for decoder

-- Design : datapath

-- Author : yy

-- date : 6-8-2002

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use std.textio.all;
use work.nondeterminism.all;
use work.channel.all;
use work.handshake.all;
entity MPEG is

generic(
fheight : integer := 11;
fwidth : integer := 15
);

end MPEG;
architecture TB ARCHITECTURE of MPEG is

file fh cbx : text;
file fh crx : text;
file fh lum : text;
file fh dp : text;
file fh out : text;
signal s cb : std logic vector(7 downto 0);
signal s cr : std logic vector(7 downto 0);
signal s lum : std logic vector(7 downto 0);
signal s DPdata : std logic vector(7 downto 0);
signal s output : std logic vector(7 downto 0);
signal s display : std logic vector(7 downto 0);
component decoder

port(
sampling : out std logic;
Display : inout std logic vector(7 downto 0);
DPdata : inout channel;
cb : inout channel;
cr : inout channel;
lum : inout channel);

end component;
signal reset : std logic := ’1’;
signal failed : std logic := ’0’;
signal sampling : std logic;
signal DPdata : channel := init channel(sender => timing(1, 2));
signal cr, cb, lum : channel := init channel(sender => timing(1, 2));
signal Display : std logic vector(7 downto 0);

begin

170

read file : process
variable v line : line;
variable good : boolean;
variable v int : integer;

begin
wait for delay (3, 5);
--@synthesis off

reset <= ’0’;
--@synthesis on

wait for delay (3, 5);
-- open/read/send translation table to decoder

--

file open(fh dp, "dp.dat", read mode);
--@synthesis off

while not endfile(fh dp) loop
--@synthesis on

--read data from dp.dat

readline(fh dp, v line);
read(v line, v int, good);
assert good

report " dp.dat Text I/O read error!"
severity error;

s DPdata <= conv std logic vector(v int, 8);
wait for 1 ns;
send(DPdata, s DPdata);
--@synthesis off

end loop;
--@synthesis on

file close(fh dp);
report "dp file is closed successfully!";
file open(fh out, "out.dat", read mode);
file open(fh cbx, "cbx.dat", read mode);
file open(fh crx, "crx.dat", read mode);
file open(fh lum, "lum.dat", read mode);
--@synthesis off

while not endfile (fh cbx) loop
--@synthesis on

--read data from cbx.dat

readline(fh cbx, v line);
read(v line, v int, good);
assert good

report " cbx.dat Text I/O read error!"
severity error;

s cb <= conv std logic vector(v int, 8);
wait for delay (3, 5);
--read data from crx.dat

readline(fh crx, v line);
read(v line, v int, good);
assert good

report " crx.dat Text I/O read error!"
severity error;

s cr <= conv std logic vector(v int, 8);
wait for delay (3, 5);

171

send(cb, s cb);
send(cr, s cr);
--read 4 data from lum.dat

--@synthesis off

for dummy in 1 to 4 loop
--@synthesis on

readline(fh lum, v line);
read(v line, v int, good);
assert good

report " lum.dat Text I/O read error!"
severity error;

s lum <= conv std logic vector(v int, 8);
wait for delay (3, 5);
send(lum, s lum);
-- Testing

--read file from out.dat

--@synthesis off

readline(fh out, v line);
read(v line, v int, good);
assert good

report " out.dat Text I/O read error!"
severity error;

s display <= conv std logic vector(v int, 8);
wait for delay(1, 3);
guard(sampling, ’1’);
assert Display = s display

report "Miss-match! "
severity warning;

if Display/=s display then
failed <= ’1’;

end if;
wait for delay (1, 1);
guard(sampling, ’0’);
--@synthesis on

--@synthesis off

end loop;
end loop;
--@synthesis on

file close(fh out);
report "out file is closed successfully!";
file close(fh cbx);
report "cbx file is closed successfully!";
file close(fh crx);
report "crx file is closed successfully!";
file close(fh lum);
report "lum file is closed successfully!";
wait;

end process;
please : decoder

port map (
sampling => sampling,
Display => Display,
DPdata => DPdata,

172

cb => cb,
cr => cr,
lum => lum
);

end TB ARCHITECTURE;

From the above VHDL code in the file the tool that this dissertation presents

automatically produces the starting point for concurrency reduction show in Fig-

ure 7.11.

Table 7.5 presents results for synthesizing the control component of the MPEG.

In this case, synthesis attempts are not as expensive as for the shifter example.

Therefore, Table 7.5 includes a row that does not use the N filter to stop after the

first solution found, but does use the E filter to prune expensive solutions. Each

filter finds the same solution. However, the N filter does so in about one fifth of

the CPU time required for the E filter. Figure 7.12 presents the TEL structure for

this solution. Figure 7.13 shows the resulting circuit. Because I do not currently

have a Petrify specification for this example, I have not performed a comparison

against Petrify on this example.

7.4 Comparison to Existing Approaches

This section compares the effectiveness of the techniques that this dissertation

presents to that of existing approaches. This section measures effectiveness by

considering both the resources required to process a given example as well as the

quality of the solutions found. The experiments of this section take a set of several

examples, and run each example through the tool that this dissertation presents as

well as other, existing CAD tools. This section presents and compares the results.

Table 7.5. Results for MPEG.
Filters CPU Period

N P E O S time/s levels TELs leaves PRSs max. min.
E 47.14 105 39 1 1 18 18

N 9.28 105 13 1 1 18 18
The command atacs -oi -oq -oD -tp -G1-2 cnt mem MTT dpCal control
datapath decoder MPEG decoder.ctrl [-Pfilter]. . . -ys generated each row
of this table.

173

Increment?+

Increment?−
[∼ Increment !][Increment !]
[1, 3][4, 8]

Calculate?+

Calculate?−
[∼ Calculate!][Calculate!]
[1, 3][4, 8]

MemAccess?+

MemAccess?−
[∼ MemAccess !][MemAccess !]

[1, 3] [1, 3]

[Splice!]
[1, 3]

Splice?−

Splice?+
[1, 3]
[∼ Splice!]

$4 Increment !−Increment !+

[∼ Increment?]
[Increment?]

[0, 0]

MemAccess !+ $3 MemAccess !−[0, 0]
[MemAccess?]

DPdata?+ DPdata?−
[∼ DPdata!]

[memRW]

[∼ memRW]

$1

$2

cb?+ cb?−

[DPdata!]

$0

cr?+ cr?−

[DPdata! | cb! | cr ! | lum!]
[0, 0]

$10

[cr !]

[cb!] [∼ cb!]

[∼ cr !]

MemAccess ! + /2 $9
[MemAccess?]

[0, 0]

Splice!+ $8 Splice!−
[Splice?]

[0, 0]

$7 Calculate!−Calculate!+

[∼ Calculate?]
[0, 0]

[Calculate?]

memRW +

lum?+

$6

lum?−
[∼ lum!]

$5

[∼ memRW]

[memRW]

[lum!]

MemAccess !− /2

memRW−

[3, 5]

[3, 5]

[∼ Splice?]

[3, 5]

[0, 0]

[0, 0]

[1, 3]

[1, 3]

[0, 0]

[3, 5]

[0, 0]

[0, 0]

[3, 5]

[0, 0]

[3, 5]

[0, 0]
$11

[0, 0]

[0, 0]
[∼ MemAccess?]

$12

[3, 5]

[3, 5]

[3, 5]

[3, 5]

lum!−

lum!+

cr !−

cr !+

cb!−

cb!+

DPdata!−

[∼ DPdata?]
[7, 12]

[cb?]

[lum?]

[∼ cr?]
[4, 7]

[cr?]

[∼ cb?]

[7, 12]
[∼ lum?]

DPdata!+
[DPdata?]

Figure 7.11. Starting point for concurrency reduction of the MPEG exam-
ple. Except where indicated, each rule has the timing bounds [1, 2]. Con-
flicts: {$1, $2, $3, $4,memRW−}∪DPdata?±∪MemAccess±∪Increment !±#setcb?±
#set cr?±#set ({$5, $6, $7, $8, $9, $11, $12,memRW +} ∪ lum?± ∪MemAccess ± /2) ∧
{$11, $12}#setcb?± ∧ {$11, $12}#setcr?± ∧ $2#memRW − ∧ $6#memRW +.

174

Increment?+

Increment?−
[∼ Increment !][Increment !]
[1, 3][4, 8]

Calculate?+

Calculate?−
[∼ Calculate!][Calculate!]
[1, 3][4, 8]

MemAccess?+

MemAccess?−
[∼ MemAccess !][MemAccess !]

[1, 3] [1, 3]

[Splice!]
[1, 3]

Splice?−

Splice?+
[1, 3]
[∼ Splice!]

$4 Increment !−Increment !+

[∼ Increment?]
[Increment?]

[0, 0]

MemAccess !+ $3 MemAccess !−[0, 0]
[MemAccess?]

DPdata?+ DPdata?−
[∼ DPdata!]

[memRW]

[∼ memRW]

$1

$2

cb?+ cb?−

[DPdata!]

$0

cr?+ cr?−

[DPdata! | cb! | cr ! | lum!]
[0, 0]

$10

[cr !]

[cb!] [∼ cb!]

[∼ cr !]

MemAccess ! + /2 $9
[MemAccess?]

[0, 0]

Splice!+ $8 Splice!−
[Splice?]

[0, 0]

$7 Calculate!−Calculate!+

[∼ Calculate?]
[0, 0]

[Calculate?]

memRW +

lum?+

$6

lum?−
[∼ lum!]

$5

[∼ memRW]

[memRW]

[lum!]

MemAccess !− /2

memRW−

[3, 5]

[3, 5]

[∼ Splice?]

[3, 5]

[0, 0]

[0, 0]

[1, 3]

[1, 3]

[0, 0]

[3, 5]

[0, 0]

[0, 0]

[3, 5]

[0, 0]

[3, 5]

[0, 0]
$11

[0, 0]

[0, 0]
[∼ MemAccess?]

$12

[3, 5]

[3, 5]

[3, 5]

[3, 5]

lum!−

lum!+

cr !−

cr !+

cb!−

cb!+

DPdata!−

[∼ DPdata?]
[7, 12]

[cb?]

[lum?]

[∼ cr?]
[4, 7]

[cr?]

[∼ cb?]

[7, 12]
[∼ lum?]

DPdata!+
[DPdata?]

Figure 7.12. TEL structure for the MPEG example after concurrency reduc-
tion. Except where indicated, each rule has the timing bounds [1, 2]. Con-
flicts: {$1, $2, $3, $4,memRW−}∪DPdata?±∪MemAccess±∪Increment !±#setcb?±
#set cr?±#set ({$5, $6, $7, $8, $9, $11, $12,memRW +} ∪ lum?± ∪MemAccess ± /2) ∧
{$11, $12}#setcb?± ∧ {$11, $12}#setcr?± ∧ $2#memRW − ∧ $6#memRW +.

175

MemAccess !

lum!

Calculate!

memRW

Splice?

DPdata!

Calculate?

MemAccess !

DPdata!

Increment?

MemAccess?

MemAccess !

memRW

Splice!

lum?

Splice!

DPdata!

lum!

Calculate!

Calculate?

MemAccess !

MemAccess?

memRW MemAccess?

MemAccess?

+

+ gC
-

+

gC
+

- Calculate!

gC
+

-

-
-

+

-

+

gC

gC
+

-

+

gC
+

DPdata?

lum?

Splice!

cb?

cb!

Increment !

Increment?

cr ! cr?

gC
+

-

Increment !

memRW

MemAccess !

DPdata!

Splice?

Increment !

DPdata?

Splice?

DPdata?

Splice!

Figure 7.13. Circuit found using concurrency reduction on the MPEG example.

176

As Section 1.1 points out, the CAD tool Petrify uses a reshuffling approach

that is very similar to that which this dissertation presents. In particular, both

approaches treat reshuffling as a special case of concurrency reduction. However,

there are also several differences. The techniques of this dissertation support

quantitative timing assumptions and a different mechanism for specifying which

transitions are important for data integrity. This section attempts to quantify the

similarities and differences by comparing the two tools on a set of examples.

Each example of this section uses a channel-level Petri-Net specification as

the input to Petrify. The command petrify -er -4ph -untog example.g -o

example.out.4ph -redc -gc -eqn example.eqn produced the synthesizable Petri

Net. The result was input to ATACS and annotated with the same timing assump-

tions used in the ATACS specification to compute the average cycle period.

For example, consider Table 7.2. In this case, Petrify finds the same solution

as the tool that this dissertation presents does when it uses the N filter alone to

stop after it finds the first solution. However, Petrify requires about three times

the run time to find this solution.

Now consider Table 7.4. In this case, the N filter that this dissertation presents

finds the optimal solution on its first attempt. However, Petrify did not quite find

the optimal solution, even though it took nearly 40 times the run time to find its

solution. Furthermore, it took about twice the run time of the branch-and-bound

algorithm (filter E) that this dissertation presents.

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents new algorithms that accept channel-level specifica-

tions and find signal-level implementations that are correct, synthesizable, and

efficient. There are several constraints on this problem. Some of these constraints

are inherent in the channel-level specification. Other constraints are required by

a particular choice of protocol or data path. This dissertation shows that a TEL

structure can be used to represent all of these constraints.

Starting from a TEL structure that contains only these constraints, the algo-

rithms that this dissertation presents must find implementations that have com-

plete state coding. The usual approaches to this problem include reshuffling and

state-variable insertion. This dissertation shows that starting from the most con-

current TEL structure that satisfies the initial constraints, concurrency reduction

can find any possible reshuffled handshaking expansion of the original specification.

Furthermore, state variables can be inserted by introducing initially unconstrained

events into the TEL structure, and then proceeding with concurrency reduction.

Thus, this dissertation treats both reshuffling and state-variable insertion as special

cases of the general operation of concurrency reduction. This approach is similar

to that taken by the CAD tool Petrify [23], but this dissertation applies it to

specifications that contain quantitative timing assumptions.

Supporting quantitative timing assumptions allows optimizations at several

levels of the design process. Section 6.1.1 and Section 7.2.3 show that timing

information can reduce the size of the search space for concurrency reduction itself.

This is because events that would otherwise be concurrent may be ordered under the

given timing assumptions. Exactly determining all timed-concurrency information

178

requires timed-state-space exploration. This is an expensive operation. Therefore

the heuristic of Section 6.1.1 computes this information just once on the initial TEL

structure, and uses this information as an approximation to the timed-concurrency

information for the derived TEL structures. This approximation allows the cost

of the timed-state-space exploration to be amortized over many pruning decisions.

Section 7.2.3 shows that this does reduce total run time, and for the examples

considered, the approximation does not impair the ability of the search to find

the optimal solution. Furthermore, some handshaking expansions that would not

be synthesizable without timing assumptions are synthesizable under appropriate

timing assumptions. Finally, prior work by Myers et al. [60, 59, 7, 58] has shown

that quantitative timing information can speed up the synthesis process and result

in better circuits.

Finding all possible ways to reduce concurrency in a TEL structure is a fun-

damentally exponential problem. However, this dissertation presents techniques to

dramatically prune the search space. Even the pruning techniques of Chapter 5 can

reduce the number of possibilities to be considered by many orders of magnitude

compared to the theoretical upper bound. This dissertation also presents heuristics

that may not find all solutions, but reduce the size of the search space even further.

This dissertation demonstrates that these heuristics are capable of reducing the

search space by an additional two orders of magnitude beyond the techniques of

Chapter 5 — and by one order of magnitude beyond existing techniques — without

significantly impacting the quality of the solutions found.

Furthermore, this dissertation shows that reducing concurrency in a TEL struc-

ture is simply a matter of adding rules to the TEL structure. This enables the algo-

rithms to do significant work at the TEL-structure level instead of the state-graph

level. This enables significant pruning to be done before state-space exploration.

These algorithms are adjustable, so that the user can decide the level of opti-

mization required. For the most optimization, these algorithms must still search

large solution spaces, but better circuits result. With more heuristics, the solutions

are suboptimal, but require far less time to find.

179

The tool that this dissertation presents operates within a framework that sup-

ports hierarchy at multiple levels of the design process. The specification that

Section 2.1 introduces is an extension of the Very High-Speed Integrated Circuit

(VHSIC) Hardware Description Language (VHDL), which contains ample support

for hierarchical design. Furthermore, the extensions that Section 2.1 presents sup-

port channel communications and hence the Communicating Sequential Processes

[35, 36] paradigm, which encourages modular design. This specification level, as

well as the graphical, intermediate forms that this dissertation uses (Belluomini’s

timed event/level (TEL) structures [8, 7, 9]) support specifications that depend on

signal levels. This allows the graphical intermediate forms to retain the modularity

present in the specification. Each process results in a distinct connected component

in the graphical representation. The abstraction techniques of Zheng et al. [75] and

the modular synthesis techniques of Mercer et al. [57, 56] allow the synthesis engine

to exploit this hierarchy information.

8.1 Future Work

We want to extend the example set to more realistic examples. Often the

limiting factor is the synthesis engine itself. Once the specification becomes large,

synthesizing even one signal-level solution becomes prohibitively expensive. Thus,

more research is also needed on the synthesis engine, to enable it to handle larger

examples.

More theory needs to be developed to support the techniques of this disser-

tation. This dissertation conjectures that certain techniques will not prune away

any synthesizable solutions. While these conjectures are reasonable and consistent

with our experimental findings, they have not yet been proven. For each technique,

work needs to be done to either prove or disprove its exactness. In this case, exact

means finding the exactly optimal solution or finding the entire solution space. If a

pruning technique is inexact it just means that it might prune away a solution that

would have been synthesizable. This issue is distinct from correctness. A solution

is correct if it still meets the constraints of the given channel-level specification and

180

of the target protocol. Proving correctness of the concurrency reduction techniques

is another important direction for future work.

At the other end of the spectrum, more work needs to be done on implementa-

tion. Much of Section 4.5 and Section 6.2.3 are speculative, in the sense that the

techniques of these sections have not yet been implemented and tested. The current

tool deals only with a four-phase protocol with no data and narrow sequencing.

We want to generalize this to multiple, user-specifiable protocols. We also want to

support data.

There are also many communication topologies for channels beyond what is

currently implemented in the tool that this dissertation presents. For example, as

discussed in Section 1.1 SHILPA supports multicast and broadcast channel with

one sender and multiple receivers. There are also several ways to implement

bidirectional channels. The simplest way still uses separate data buses for the

two directions, but shares the handshake wires. For example, a request signal from

a processor to a memory could indicate that a new read address is available on the

address bus, and the corresponding acknowledge signal from the memory back to

the processor could indicate that the data at that address are now present on the

data bus. Burns [21] unifies this approach for small data values using a unary data

encoding scheme. In this scheme, a channel can have multiple request wires and

multiple acknowledge wires. Exactly one request wire and one acknowledge wire is

used in any given communication. Which wire gets used determines the value of the

datum being sent and received. In this scheme a unidirectional channel is just the

special case in which one of the sets (either request or acknowledge) contains just

one wire. If both sets contain just one wire, the channel is a pure synchronization

channel. It is also possible to share a signal data wire for communication in both

directions. In this case, care must be taken to ensure that multiple processes do

not drive the same wire at the same time, and the keepers are used to drive the

wire if no process is actively driving it. None of these communication topologies

for individual channels are currently implemented in the tool that this dissertation

presents. However, they are worth investigating in the future.

181

As the metric for evaluating the quality of the solutions found, the tool that

this dissertation presents, as well as the discussion in Chapter 7, uses the average

cycle period. There is more that could be done with this metric alone. Mercer’s

stochastic cycle period analysis can also provide a profile of the relative impact of

each signal transition on the performance of the whole circuit. This could help to

focus optimization efforts on the performance-critical communication actions.

There are many other possible metrics. The cycle period metric is most directly

related to the throughput of the circuit. Throughput measures the circuit’s ability

to handle a high volume of transactions. Specifically, throughput is the number of

transactions completed per unit time. However, in many applications, Latency is

important. Latency measures the time it takes the circuit to perform any given

transaction, from start to finish.

Finally, one must consider the costs of the final circuit. Area affects the cost

of producing (or buying) the circuit. For an extremely rough, first-cut estimate of

area, heuristics could count the state variables necessary for a given alternative.

Note that this estimate may be misleading. Although each state variable requires

circuitry, its presence may simplify the circuitry required for other, existing state

variables. Hence, adding a state variable can actually reduce the total area of

the final implementation. However, even this initial estimate can be useful for

bounding the searches performed by the techniques that this dissertation presents.

For example, it is not practical to consider adding so many state variables that the

area for the storage elements for these state variables alone would exceed the area

budget for the entire design.

Power consumption can also affect costs, as it affects the cost of the package and

equipment necessary to deliver enough power and dissipate enough heat. Power

consumption also affects the cost of using the circuit. For an extremely rough,

first-cut estimate of power consumption, heuristics could count the number of

transitions necessary to complete any given communication action. Again, this may

be insufficient, because it ignores the amount of capacitance that each transition

must drive. However, if driving even just minimal inverters through the required

182

number of transitions would exceed the energy budget for the communication

action, then that implementation is not worth considering.

In some applications, it is not the average power consumption, but rather the

peak power consumption that is critical. Future work could guide handshaking

expansion with the goal of minimizing or limiting peak power. The framework

developed by this dissertation could still be used. However, the branch-and-bound

algorithm of Section 5.3 would need to use an estimate of peak power instead of an

estimate of cycle time. It is significant that the framework that this dissertation

presents is modular in this sense. Different estimators could be used in place of

Mercer’s stochastic cycle period analysis in order to optimize different metrics.

Once the estimates have narrowed the alternatives down to a few good can-

didates, the tool would attempt to synthesize each such candidate and compare

synthesis results. The tool would reject any candidate that fails to synthesize. The

analysis of the remaining synthesis results could be more detailed than the initial

estimates. For example, since synthesis produces a transistor net-list, postsynthesis

analysis could use the number of transistors (instead of the number of state vari-

ables) to estimate area. Similarly, postsynthesis analysis would have access to fanin

and fanout information, which could be included in the cost function as well.

The tool could then present an annotated list of the possibilities found to the

user. If none of these met the design objectives, the user could direct the tool to

repeat the process using adjusted heuristics.

This dissertation uses TEL structures as the graphical intermediate format.

This format could also benefit from some extensions and refinements. For example,

currently TEL structures have actions that raise signals and other actions that

lower signals. It could be useful to add an action that toggles a given signal, such

as those available in Petrify. Whether this corresponds to raising or lowering

the signal would depend on the current state. Such a toggle action would make

implementing two-phase protocols more natural.

We want to add support for automatically evaluating many different protocols

on each given example to find the best fit. This shortens the design time necessary

183

to find the first protocol that works. It also helps the designer to find a protocol that

results in an efficient implementation. This would involve a new search problem

in which the techniques that this dissertation has implemented would become the

inner loop that tries a given protocol. The outer loop of the new optimization

problem would try different protocols to find the best fit. For this to be practical,

the inner loop must be efficient. That is the main significance of the results

on run-time in Chapter 7, especially Section 7.2.5 and Section 7.4. While this

dissertation implements a solution only to the subproblem of optimizing for one

protocol, the efficiency of this implementation lays the foundation for the next

challenge of optimizing over multiple protocols.

REFERENCES

[1] Akella, V., and Gopalakrishnan, G. SHILPA: A high-level synthesis
system for self-timed circuits. In Proc. International Conf. Computer-Aided
Design (ICCAD) (Nov. 1992), IEEE Computer Society Press, pp. 587–591.

[2] Akella, V., and Gopalakrishnan, G. Specification and validation of
control-intensive IC’s in hopCP. IEEE Transactions on Software Engineering
20, 6 (1994), 405–423.

[3] Armstrong, D. B., Friedman, A. D., and Menon, P. R. Design of
asynchronous circuits assuming unbounded gate delays. IEEE Transactions
on Computers C-18, 12 (Dec. 1969), 1110–1120.

[4] Bachman, B. M. Architectural-level synthesis of asynchronous systems.
Master’s thesis, The University of Utah, Dec. 1998.

[5] Bachman, B. M. Architectural synthesis of timed asynchronous systems. In
Proc. International Conf. Computer Design (ICCD) (1999), pp. 354–363.

[6] Bardsley, A., and Edwards, D. A. The Balsa asynchronous circuit
synthesis system. In Forum on Design Languages (Sept. 2000).

[7] Belluomini, W. Algorithms for Synthesis and Verification of Timed Circuits
and Systems. PhD thesis, The University of Utah, Sept. 1999.

[8] Belluomini, W., and Myers, C. J. Timed event-level structures. In Proc.
International Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems (TAU) (Austin, Texas, USA, Dec. 1997).

[9] Belluomini, W., and Myers, C. J. Timed circuit verification using tel
structures. IEEE Transactions on Computer-Aided Design 20, 1 (Jan. 2001),
129–146.

[10] Berkel, K. v. Handshake Circuits: an Asynchronous Architecture for
VLSI Programming, vol. 5 of International Series on Parallel Computation.
Cambridge University Press, 1993.

[11] Berkel, K. v. Introduction to VLSI programming. Lecture notes 2L760,
Eindhoven University of Technology, July 1997.

[12] Berkel, K. v., and Bink, A. Single-track handshaking signaling with
application to micropipelines and handshake circuits. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems
(Mar. 1996), IEEE Computer Society Press, pp. 122–133.

185

[13] Berkel, K. v., Kessels, J., Roncken, M., Saeijs, R., and Schalij, F.

The VLSI-programming language Tangram and its translation into handshake
circuits. In Proc. European Conference on Design Automation (EDAC) (1991),
pp. 384–389.

[14] Blunno, I., and Lavagno, L. Automated synthesis of micro-pipelines
from behavioral Verilog HDL. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems (Apr. 2000), IEEE Computer
Society Press, pp. 84–92.

[15] Bruno, J., and Altman, S. M. A theory of asynchronous control networks.
IEEE Transactions on Computers 20, 6 (June 1971), 629–638.

[16] Brunvand, E. Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[17] Brunvand, E. Designing self-timed systems using concurrent programs.
Journal of VLSI Signal Processing 7, 1/2 (Feb. 1994), 47–59.

[18] Brunvand, E., and Sproull, R. F. Translating concurrent programs into
delay-insensitive circuits. In Proc. International Conf. Computer-Aided Design
(ICCAD) (Nov. 1989), IEEE Computer Society Press, pp. 262–265.

[19] Burns, S. M. Automated compilation of concurrent programs into self-timed
circuits. Master’s thesis, California Institute of Technology, 1988.

[20] Burns, S. M. Performance Analysis and Optimization of Asynchronous
Circuits. PhD thesis, California Institute of Technology, 1991.

[21] Burns, S. M., and Martin, A. J. Syntax-directed translation of concurrent
programs into self-timed circuits. In Advanced Research in VLSI (1988),
J. Allen and F. Leighton, Eds., MIT Press, pp. 35–50.

[22] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.,

and Yakovlev, A. A region-based theory for state assignment in speed-
independent circuits. IEEE Transactions on Computer-Aided Design 16, 8
(Aug. 1997), 793–812.

[23] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.,

and Yakovlev, A. Automatic handshake expansion and reshuffling using
concurrency reduction. In Proc. of the Workshop Hardware Design and Petri
Nets (within the International Conference on Application and Theory of Petri
Nets) (June 1998), pp. 86–110.

[24] Cummings, U., Lines, A., and Martin, A. An asynchronous pipelined lat-
tice structure filter. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems (Nov. 1994), pp. 126–133.

[25] De Micheli, G. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, Inc., New York, New York, 1994.

186

[26] Friedman, A. D., and Menon, P. R. Synthesis of asynchronous sequential
circuits with multiple-input changes. IEEE Transactions on Computers C-17,
6 (June 1968), 559–566.

[27] Friedman, A. D., and Menon, P. R. Systems of asynchronously operating
modules. IEEE Transactions on Computers 20 (1971), 100–104.

[28] Furber, S. B., and Day, P. Four-phase micropipeline latch control circuits.
IEEE Transactions on VLSI Systems 4, 2 (June 1996), 247–253.

[29] Genrich, H. J., and Lautenbach, K. The analysis of distributed systems
by means of predicate/ transition-nets. Lecture Notes in Computer Science:
Semantics of Concurrent Computation 70 (1979), 123–146.

[30] Genrich, H. J., and Lautenbach, K. System modelling with high-level
petri nets. Theoretical Computer Science 13 (1981), 109–136.

[31] Genrich, H. J., and Lautenbach, K. S-invariance in predicate/transition
nets. In Informatik-Fachberichte 66: Application and Theory of Petri Nets —
Selected Papers from the Third European Workshop on Application and Theory
of Petri Nets, Varenna, Italy, September 27–30, 1982 (1983), Pagnoni, A. and
Rozenberg, G., Eds., Springer-Verlag, pp. 98–111.

[32] Gopalakrishnan, G., and Akella, V. A transformational approach to
asynchronous high-level synthesis. In Proceedings of VLSI 93 (Sept. 1993),
T. Yanagawa and P. A. Ivey, Eds., pp. 5.3.1–5.3.10.

[33] Gopalakrishnan, G., and Akella, V. High level optimizations in com-
piling process descriptions to asynchronous circuits. Journal of VLSI Signal
Processing 7, 1/2 (Feb. 1994), 33–45.

[34] Gu, J., and Puri, R. Asynchronous circuit synthesis with boolean satis-
fiability. IEEE Transactions on Computer-Aided Design 14, 8 (Aug. 1995),
961–973.

[35] Hoare, C. A. R. Communicating sequential processes. Communications of
the ACM 21, 8 (Aug. 1978), 666–677.

[36] Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, 1985.

[37] Jacobs, G. M., and Brodersen, R. W. A fully asynchronous digital signal
processor using self-timed circuits. IEEE Journal of Solid-State Circuits 25, 6
(Dec. 1990), 1526–1537.

[38] Jacobson, H., Brunvand, E., Gopalakrishnan, G., and Kudva, P.

High-level asynchronous system design using the ACK framework. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems (Apr. 2000), IEEE Computer Society Press, pp. 93–103.

[39] Jump, J. R., and Thiagarajan, P. S. On the interconnection of asyn-
chronous control structures. Journal of the ACM 22 (Oct. 1975), 596–612.

187

[40] Kessels, J., Peeters, A., Kramer, T., Feuser, M., and Ully, K.

Designing an asynchronous bus interface. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems (Mar. 2001),
IEEE Computer Society Press, pp. 108–117.

[41] Kim, E., Lee, J.-G., and Lee, D.-I. Automatic process-oriented control
circuit generation for asynchronous high-level synthesis. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems
(Apr. 2000), IEEE Computer Society Press, pp. 104–113.

[42] Krieger, C. Solving state coding problems in timed asynchronous circuits.
Master’s thesis, University of Utah, 1999.

[43] Lavagno, L., Moon, C. W., Brayton, R. K., and Sangiovanni-

Vincentelli, A. An efficient heuristic procedure for solving the state
assignment problem for event-based specifications. IEEE Transactions on
Computer-Aided Design 14, 1 (Jan. 1995), 45–60.

[44] Lin, B., Ykman-Couvreur, C., and Vanbekbergen, P. A general
state graph transformation framework for asynchronous synthesis. In Proc.
European Design Automation Conference (EURO-DAC) (Sept. 1994), IEEE
Computer Society Press, pp. 448–453.

[45] Lines, A. M. Pipelined asynchronous circuits. Technical Report 1998.cs-tr-
95-21, California Institute of Technology, June, 1998.

[46] Manohar, R. An analysis of reshuffled handshaking expansions. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems (Mar. 2001), IEEE Computer Society Press, pp. 96–105.

[47] Manohar, R., and Tierno, J. A. Asynchronous parallel prefix compu-
tation. IEEE Transactions on Computer-Aided Design 47, 11 (Nov. 1998),
1244–1252. An earlier version is available as Caltech technical report CS-TR-
96-20.

[48] Martin, A. J. The probe: An addition to communication primitives.
Information Processing Letters 20, 3 (1985), 125–130. Erratum: IPL 21(2):107,
1985.

[49] Martin, A. J. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing 1, 4 (1986), 226–234.

[50] Martin, A. J. Formal program transformations for VLSI circuit synthesis.
In Formal Development of Programs and Proofs (1989), E. W. Dijkstra, Ed.,
UT Year of Programming Series, Addison-Wesley, pp. 59–80.

[51] Martin, A. J. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In Developments in Concurrency and Communica-
tion (1990), C. A. R. Hoare, Ed., UT Year of Programming Series, Addison-
Wesley, pp. 1–64.

188

[52] Martin, A. J. Synthesis of asynchronous VLSI circuits. In Formal Methods
for VLSI Design, J. Straunstrup, Ed. North-Holland, 1990, ch. 6, pp. 237–283.

[53] Martin, A. J., Lines, A., Manohar, R., Nystroem, M., Penzes, P.,

Southworth, R., and Cummings, U. The design of an asynchronous
MIPS R3000 microprocessor. In Advanced Research in VLSI (Sept. 1997),
pp. 164–181.

[54] Meng, T. H.-Y., Brodersen, R. W., and Messerschmitt, D. G.

Asynchronous design for programmable digital signal processors. IEEE Trans-
actions on Signal Processing 39, 4 (Apr. 1991), 939–952.

[55] Mercer, E. G., and Myers, C. J. Stochastic cycle period analysis in timed
circuits. In Proc. International Symposium on Circuits and Systems (2000),
pp. 172–175.

[56] Mercer, E. G., Myers, C. J., and Yoneda, T. Improved POSET timing
analysis in Timed Petri Nets. In Proceedings of International Workshop on
Synthesis and System Integration of Mixed Technologies (October 2001).

[57] Mercer, E. G., Myers, C. J., and Yoneda, T. Modular synthesis of
timed circuits using partial orders on LPNs. In Electronic Notes in Theoretical
Computer Science (April 2002), U. Nestmann and B. C. Pierce, Eds., vol. 65,
Elsevier Science Publishers. Proc. Theory and Practice of Timed Systems.

[58] Myers, C. Asynchronous Circuit Design. John Wiley & Sons, 2001.

[59] Myers, C. J. Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits. PhD thesis, Dept. of Elec. Eng., Stanford University, Oct.
1995.

[60] Myers, C. J., Belluomini, W., Killpack, K., Mercer, E., Peskin,

E., and Zheng, H. Timed circuits: A new paradigm for high-speed design.
In Proc. of Asia and South Pacific Design Automation Conference (Feb. 2001),
pp. 335–340.

[61] Myers, C. J., and Martin, A. J. The design of an asynchronous memory
management unit. Tech. Rep. CS-TR-93-30, California Institute of Technology,
1993.

[62] Myers, C. J., and Meng, T. H.-Y. Synthesis of timed asynchronous
circuits. IEEE Transactions on VLSI Systems 1, 2 (June 1993), 106–119.

[63] Prosser, F., Winkel, D., and Brunvand, E. Sequencing in modular
self-timed asynchronous control. Technical Report TR-420, Indiana University
Computer Science Department, Oct. 1994.

[64] Rotem, S., Stevens, K., Ginosar, R., Beerel, P., Myers, C., Yun,

K., Kol, R., Dike, C., Roncken, M., and Agapiev, B. RAPPID: An
asynchronous instruction length decoder. In Proc. International Symposium

189

on Advanced Research in Asynchronous Circuits and Systems (Apr. 1999),
pp. 60–70.

[65] Stevens, K. S., Rotem, S., Ginosar, R., Beerel, P., Myers, C. J.,

Yun, K. Y., Koi, R., Dike, C., and Roncken, M. An asynchronous
instruction length decoder. IEEE Journal of Solid-State Circuits 36, 2 (Feb.
2001), 217–228.

[66] Sutherland, I. E. Micropipelines. Communications of the ACM 32, 6 (June
1989), 720–738.

[67] Vanbekbergen, P., Catthoor, F., Goossens, G., and Man, H. D.

Optimized synthesis of asynchronous control circuits form graph-theoretic
specifications. In Proc. International Conf. Computer-Aided Design (ICCAD)
(1990), IEEE Computer Society Press, pp. 184–187.

[68] Vanbekbergen, P., Lin, B., Goossens, G., and de Man, H. A
generalized state assignment theory for transformations on signal transition
graphs. In Proc. International Conf. Computer-Aided Design (ICCAD) (Nov.
1992), IEEE Computer Society Press, pp. 112–117.

[69] Ykman-Couvreur, C., and Lin, B. Efficient state assignment framework
for asynchronous state graphs. In Proc. International Conf. Computer Design
(ICCD) (1995), IEEE Computer Society Press, pp. 692–697.

[70] Ykman-Couvreur, C., and Lin, B. Optimised state assignment for
asynchronous circuit synthesis. In Asynchronous Design Methodologies (May
1995), IEEE Computer Society Press, pp. 118–127.

[71] Ykman-Couvreur, C., Lin, B., Goossens, G., and Man, H. D.

Synthesis and optimization of asynchronous controllers based on extended lock
graph theory. In Proc. European Conference on Design Automation (EDAC)
(Feb. 1993), IEEE Computer Society Press, pp. 512–517.

[72] Ykman-Couvreur, C., Vanbekbergen, P., and Lin, B. Concurrency
reduction transformations on state graphs for asynchronous circuit synthesis.
In Proc. International Workshop on Logic Synthesis (May 1993).

[73] Zhao, Y. Hardware/software co-design for asynchronous systems. Bachelor’s
thesis, University of Utah, to be published.

[74] Zheng, H. Modular Synthesis and Verification of Timed Circuits Using
Automatic Abstraction. PhD thesis, The University of Utah, Aug. 2001.

[75] Zheng, H., Mercer, E., and Myers, C. Automatic abstraction for
verification of timed circuits and systems. Lecture Notes in Computer Science
2102 (2001), 182–193.

[76] Zheng, H., and Myers, C. J. Automatic abstraction for synthesis and
verification of deterministic timed systems. In collection of papers from
TAU’00 available from http://www.async.ece.utah.edu.

View publication statsView publication stats

https://www.researchgate.net/publication/2486331

