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Abstract

The iBioSim tool is being developed to facilitate the constion and simulation of synthetic genetic
circuits. In this project, we have created a user interfdwd ts similar to those used to construct
schematic diagrams which are familiar to electrical enginePromoters, chemical species, and biological
relationships can be placed visually on a schematic diagfamother enhancement was the creation of a
new simulation visualization tool which allows the user $s@ciate chemical species with color schemes,

opacity, and cell size. This tool allows the user to see this behavior as if through a microscope.



. INTRODUCTION

In 1977 a group of researchers managed to modify the DNA oftheoli bacteria and were able to
make it to produce the human hormone somatostatin [1]. Sirateime genetic engineers have leveraged
bacteria to help produce a wide range of useful products fstbarmaceuticals to food additives to laundry
detergent [1]. Synthetic Biology is an emerging field thégmipts to model the chemical reaction networks
inside a living cell in ways similar to an electrical circuitvhile there are many tools that have been
created for synthetic biology [2][3][4][5][6] there is Btgreat need for more efficient methods for their
modeling, analysis, and design [7]. iBioSim is one of thelddmeing developed for these purposes.

As is shown in figure 1 the iBioSim user interface initiallynsisted of lists of biological components.
While this interface was usable, it was believed that it ddug improved by allowing the user to work
on the model at the graphical level, similar to the way proggauch as Spice allow the user to build
electrical schematics. This process has several advantage

One advantage of a graphical interface is that a visual y@ctii the biological model that a user
is creating can provide insight into the structure of the eidtiat would be very difficult to gain by
clicking through menus and reading the way things are caede@nother advantage is that having a
visual representation will make iBioSim more accessiblgéople who might potentially use it. This
will allow the tools strengths to be more widely used, insieg the likelihood that iBioSim will end
up helping those who are using the tool to design useful,npiaiéy life saving biological circuits. A
final advantage is that having access to a schematic diagp@msahe possibility to present simulation
data directly on the schematic as an animated movie. In tioiggt both a graphical user interface and
a movie visualization mode have been created.

This paper will begin by describing the Genetic Circuit Mb#éich is the data structure used by
iBioSim. Schematic Capture, the new interface created sigdegenetic circuits, will be described. Finally
the section on Visualization of Genetic Circuits will giva averview on the use and effectiveness of

the new visualization mode that was implemented.
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iBioSim before the project was undertaken.



Il. GENETIC CIRCUIT MODEL

Researchers often use chemical reaction networks to Besgenetic circuits. These networks can be
tedious because each chemical species and reaction musplistly defined [7]. Nguyen et al. created
the Genetic Circuit Model (GCM) to allow researchers to watla higher level and only specify relevant
species and the relationships those species have with ¢laeh[8][9][7].

A Genetic Circuit Model (GCM) is a simplified data structursed to represent the function of a
synthetic biological circuit. It contains lists of promeagespecies, components, influences, and parameters.
A promoteris a region on a strand of DNA that enables a particular genbetdranscribed. The
transcription of a gene ultimately results in the creatiémpimteins orspecies These species can have
influenceson each other in that they bind to other promoters, actigatin repressing the production
of their respective geneS€omponentare a construct enabling the use of hierarchy by allowing GCM
to import other GCMs and make connections to them througltspBarametersn the GCM file and
on individual promoters, species, and influences are usddatk production and degradation rates,
equilibrium constants, and other values relevant to theetiemircuit.

More formally [8][9][7], a GCM is a tuple(S, Pr,M,N,O,T,G,I,C,V,, A,) where:

« S is a finite set of species (i.e., proteins);

o Pris a finite set of promoters;

« N C Sis a finite set of inputs;

« O C S is a finite set of outputs;

M = (My,...,M,) is a finite set of other instantiated GCMs;

T C S xU(Nu, UOy,) is a port mapping of species to ports on instantiated GCMs;
e G : Pr— 2% maps promoters to sets of species;

e I CSx Prx{a,r}is a finite set of influences;

« C CSxNxSis a finite set of complex formations;

V, is a finite set of variables;

o A, C (V; x R) is the assignment of the variables with defaults;

A simple GCM is shown in figure 2 in which two promoters in activate the production of two
species inS by facilitating the binding of RNA Polymerase (RNAP) to thieasid of DNA. This allows
the DNA sequence to be translated into mRNA which will thertrbascribed into the respective protein
species. figure 3 shows how the GCM simplifies the design oétirenircuits by hiding some of the low

level details.
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Fig. 2. A simple Genetic Circuit in which two promoters @P and PGFP) activate the production of two respective species
(RFP and GFP).
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Fig. 3. A GCM representing the genetic circuit. Not shown peeameters dictating the production rates, initial spgec@munts,

species degradation rates, etc.



I1l. SCHEMATIC CAPTURE OFGENETIC CIRCUIT MODELS

Selecting the add species button allows the user to add newiesptoS by dropping them onto the
schematic at a desired location as in figure 4. A species wilcteated where the user clicked with a
default name such as “S1” or “S2” where the number automticeerements with each species created.
Similarly to add a promoter td the user should make sure the promoter button is selectedhand
click an empty space on the schematic. Adding a componef tig again similar, except that a menu

will be displayed allowing the user to select the GCM file ttiee component should represent.
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Fig. 4. The user interface for the schematic capture mod&ioSim. The first set of five buttons are mutually exclusivel an
are from left to right, selection, drop species, drop congmbndrop promoter, and create self-influence. The next fs&iup
buttons represent the type of influence to be created. Thehbutton provides an interface to automatically lay out thapd
using a number of layouts such as tree, circle, and orgamilmvBthe toggle buttons is the schematic of the GCM beingtedcea

or modified by the user.

Anything in the schematic view can be selected by clickingibnOnce a species, promoter, or
component is selected it can be moved around on the schematiticking on it near the edge and
dragging it to a new location. Right-clicking on a speciemnponent, or promoter causes a drop-down
menu to appear in which the user has the option to delete tjeetob

Clicking and dragging from the center of the species, prematr component will cause an arc to be
drawn, and if the mouse is released over a valid promotegiapeor component, a new influence or
connection will be created. This is the way that influencescaeated. The user can choose from several
toggle buttons to determine the type of influence that willdoeated such as activation or repression.
Influences are created when the user drags an arc from a sgecamother species, or from a species

to a promoter. Self-influences can be drawn on species bygtsglehe self-influence toggle button.



Arcs can be drawn from promoters to species, and when thisng @ “production” arc is created.
Biologically this means that the production of the specidakilitated by the promoter. Arcs drawn
between species will have a default promoter created. Tidsgter will not be shown explicitly on
the schematic, except as a label on the influence. Arcs drawn from components create connections
to ports in the component. A connection between a speciesaataimponent means that the species
both in the component and the species that is connected tootmgonent will always have the same
concentrations or counts.

Once created, any promoter, species, component, or inBueject can be selected and modified by
double clicking on it. Upon being double clicked a window Ivdbpear with all the object’s relevant
parameters. The window used to modify influences conneaegden species allows the user to change
the influence’s promoter. The choosing of the promoter idtdichto those promoters which are not
explicitly drawn.

The example in figure 4 demonstrates many of the featuresea§¢hematic capture utility. The figure
shows a genetic toggle switch in which either the concentraif TetR or Locl is high at any given time.
The system is toggled by increasing the concentration ofGIRT aTc which bind with Lacl and TetR
respectively through complex formations, shown by dashexs| This binding lowers the concentrations
of IPTG or aTc by sequestering them away in the C1 and C2 compleghus preventing them from

taking part in repression.



IV. VISUALIZATION OF SIMULATED GENETIC CIRCUIT MODELS

A GCM can be translated to SBML as described in [8][9] allogvithe genetic circuit to be analyzed
using ordinary differential equation(ODE) or stochastic simulation. The output of these sinmutain
iBioSim is a table of time series data (TSD) that has colunirgpecies and rows that are values of these
species at increasing time steps. The iBioSim tool provaleseful graphing interface to visualize the
TSD output of these simulation runs by displaying the data asries of lines plotted with time along
the independent axis and concentrations or counts of melean the dependent axis. This method of
visualizing data is effective when looking at small numbefsignals, but does not work as well when
looking at large numbers of signals simultaneously.

We wanted to provide effective visualization of many citsuunning simultaneously, each inside it's
own bacteria cell. We wanted to display the results of theukition by changing the colors of species
and components directly on the schematic. This would allogvuser to see “at a glance” the state of
the simulation. It also allows the user to see a visualipasimilar to what a researcher would see when
looking at living cells through a microscope.

To facilitate this addition a “movie” mode was added to theesoatic where “movie” is the term we
use to describe the playing back of a simulation run direatiythe schematic. In this mode all controls
to modify a schematic are disabled or removed and are replaith movie player controls such as
“Play/Pause” and “Stop”, as well as controls to adjust theual presentation of the movie.

Figure 5 demonstrates an example of a movie being playedeTdre movie playback controls to
play and pause, rewind, single step, and a slider to take e rto any time-slice in the simulation
data. As the movie plays at every time-slice the colors ssiae opacities of each component are updated
to reflect the move data at that moment. Figure 6 shows thefante designed to choose mappings
between simulation values and the appearance of compordmt® three species or subspecies inside
a component can be chosen, each mapping to a different coddiegt. The color gradients are then
combined during movie playback. The size of the componentatso be in place of a color gradient,
allowing the growth of components to be visualized if the poments’ volume is changing. Opacity can
also be mapped allowing species or components to disappdaeappear based on data in the TSD file.
Figure 7 shows a photograph of e-coli cells that were prograthwith a genetic circuit similar to the
one being simulated [10] in figure 5.

There are “min” and “max” values associated with every magpisee figure 6). These values are

used to define how the simulation data is mapped to the coltignt, size, or opacity. Allowing the
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Fig. 5. The visualization mode that was added to iBioSim.his simulation many identical cells were tiled then simedat
Each cell contains the GCM defined in figure 3 in which pron®tmrde for both red and green fluorescent proteins. Although

genetically identical, due to randomness in the biologprakcesses each cell exhibits a different final color as tfieseescent

proteins combine.
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Fig. 7. An experiment in which e-coli bacteria were gendijcaltered to produce both red and green fluorescent pretein

[10]. Note the similarities in colors between the simulatend the experiment.

user to specify min and max is a solution to the problem of nmap@ nearly unbounded range of
simulation values to the limited range of possible colaresiand opacity values. Simulation values such
as concentrations or numbers of species can vary widely atdne upper limit, especially since the
units of these values are user-definable in iBioSim.

At one point we considered having the software automagicsdhn the TSD file when it was loaded
and set the min and max values for each column of data. We elbeidainst this because it would have
made species having different scale ranges appear sinitathe animation. For instance, one species
that had a max of 10 would have appeared just as bright or &sge species that had a max of 100.
This could have been misleading to a user of our software ditat’'t realize what had happened. By
making the user set the min and max explicitly he or she cdinnssike these species appear the way
described, but because the user has made the mapping honselfself the user should be aware of the

differing scales. The equation used to map simulation wataeappearance parameters is as follows:

maxr — min

o damp<w>

maxr — min

Crp = damp<ﬂ>
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s —min
C, = clamp| ————
max — min

whereC,.4, is the output color for each of the red, green and blue colanakls.C; is the component
size as a ratio of the size the user set it to where 0 has 0 widthhaight and 1 is the full size of the
component(, is the opacity where 0 is fully transparent and 1 is fully apac is the value of the
sample in the simulation file for the given time-step and:. and max are the values the user chose
from the user interface. For any color channel, size, or ibpétat doesn’'t have a mapping, that channel

will be ignored. Theclamp() function ensures keeps values within the range of [0, 1]:

0: z <0
clamp(z) =¢ z: 0<z<1
1: z>1

A “Copy to Similar Components” button was added as a conveido apply the current settings to
all components in\/ where the elements in the component’s tuple match thoseeofdimponent being
edited. This is useful when the user has many of the same amnpand does not want to have to click
on every one to set its properties individually. This featwas to apply appearance settings to all the

components in figure 5.
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V. DISCUSSION

A new schematic capture facility was added to iBioSim th&ived a researcher to create biological
circuits graphically using a point and click interface. §nakes it possible to build models much faster
then was previously possible. The schematic capture fomality supports promoters, chemical species
such as proteins, biological influences, and hierarchieaigh through the use of components. A new
visualization system was also created that allows sinariatito be animated like a movie directly on
the schematic by modifying the colors and sizes of speciesamponents according to iBioSim’s
simulation data.

Much of the work we have been doing has been paving the wayrtbth& creation and simulation
of large populations of cells. For instance, the visualittext was created allows for the visualization
of components which could model subsections of a biologpracess like individual inverters in a
ring oscillator, but which could also model entire cells. \iieplemented a tiling feature that will
automatically tile a grid of components onto the schemati@astep toward creating a petri dish full
of cells. This automatic tiling allows the researcher to gee simulation results of many independent
cells simultaneously, but provides no easy way to simulalts ¢hat are interacting through chemical
signals passed through the common medium. Much work carbalsione to simulate biological circuits
running in cells that are undergoing life processes sucheldigdivision, movement through a medium,
and death.

The tool spoken of hereiBioSim [5]) is freely available at

http : //www.async.ece.utah.edu/iBioSim/.
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APPENDIX |

Construction of the Schematic Capture Module

The user interface to build GCM was built on top of the JGrafibhbary [11]. This is a general Java library
for manipulating graphs consisting of nodes and edges. édles and edges are objects of JGraphX'’s
mxCell class. mxCells that are edges can be connected tosnadeeferences to other mxCells. All
mxCells support Cascading Style Sheet (CSS) type stylitrdpates that control the color, shape, and
other visual aspects of the nodes and edges. All mxCellssalpport a reference to any arbitrary data.
This was helpful and allowed the mxCells to directly track B8CM objects (species, promoters, etc)
that they represented.

The JGraphX objects emit numerous events based on useadtiter (such as mouse click and release),
as well as higher level events such as when an mxCell is ctge@ved, or deleted. The JGraphX library
implements many useful features such as node and edgei@e|alragging, and deletion. These events
were used to mimic these changes in the GCM. Mouse click sweate used to pull up relevant options
menus when the user clicks on a node or edge representingcespiafluence, etc.

One design decision that was made involved keeping the bQ&rajects synchronized with the
GCM that they represent. Initially code was written so that ime the modified the GCM or the graph,
analogous changes would be carefully made in the othertsteucFor example, if the user clicked a
button to change an influence from activation to repressfaijnfluence would be changed in the GCM,
then the correct edge would be found in the graph and modifiedrdingly. It was found however, that
keeping these structures in sync was tedious and error @eradl modifications had to be mirrored in
two places, although the data structures (GCM and JGraplexg wery different.

In addressing this problem it was noted that there was ajreade to parse a GCM object and build an
JGraphX object out of it. This code was leveraged and the ratisypis that every change is made directly
to the GCM object, and then the JGraphX is rebuilt from sé¢ralthis made it very straightforward to
keep the GCM and JGraphX objects in sync, and simplified tlie goeatly. The downside is a decrease
in Ul responsiveness because the expensive operation wifdiely the graph has to be done more often.
This downside has minimal however, as even with the most tsmpPCMs the author has manipulated
the JGraphX regeneration seems to happen instantly.

Another design decision that had to be made was the impletiemtof an undo-redo interface. It
was decided that snapshots would be taken of the GCM objeenewer a change was made. Since

the GCM implementation was already capable of serializiaglfi for saving to a file, the snapshots are
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simply in-memory strings of the serialized GCM. These shafs are then stored on two stacks, one
for undo and one for redo. When the user presses the undo orbwgtbn a string is popped off the
respective stack, the GCM object is reconstructed fronmsiisalized string representation, and the graph

is instructed to refresh itself.
Construction of the Appearance Modules

One significant design task encountered in this project hvasiteation of a system to capture and store the
user’s mappings of values to colors, sizes, and opacitynédrappearances, or appearance parameters).
It was desired that during playback of a simulation the sgg@i a GCM could change color and size
depending on their values, and that the colors and sizesmpanents could change based on the values
of some number of user defined internal species. More spaltyfithe requirements were as follows:

1) For every species iy an interface must be provided allowing the user to choosehehe¢o map
the species’ value to a color gradient, size, or opacity. A waist also be provided to set the min
and max parameters.

2) For every component i it should be possible for the user to choose several spetiks;j and
for each species /s chosen the same options should be available as are for spé@eim 1).

3) All the user's appearance preferences must be seritdizatl deserializable so that they can be
written to and read from a file.

Several different data structures were considered tofgdtiese constraints. One such structure was
Java’s Properties object, which is a dictionary mappiningtkeys to string values. This structure is
used by iBioSim to keep track of the mappings for each of tHeesin the GCM tuple, and because
it is already used in the iBioSim it seemed at first to be a gduoaice. On closer inspection however
this structure was not a good fit because it is inherently While the data structure being represented
was recursive in nature. A dictionary could still have besediif it's keys had been constructed out of
many concatenated string values, but this would have coatpli the code and made it less sustainable
as maintenance and additional features were needed in time funstead of using dictionaries another
data structure was designed as shown in figure 8.

The data structure is used to track the way simulation datpsni@ appearance (size, color, and
opacity) attributes. A dictionary mapping speciessSirto SpeciesScheme objects, and componenfd in
to ComponentScheme objects is kept. SpeciesScheme defmeping from one species’ simulation
data to one appearance attribute. ComponentScheme conémor more ComponentSchemePart objects

which also map one species’ simulation data to one visudbate. Since several ComponentSchemePart
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objects can belong to one component, these appearandeiteitriare combined at playback time.

The TSDKey attribute in ComponentSchemePart is a referemeecolumn in a simulation file. This
can reference a species directly M, or a species inside a componentlifi up to any arbitrary depth.
Each TSDKey is a string of the for__B_ _C..._ _N where A is the name of a component i, B
is a component iM, andC' is a component irB. The final entry is a species i in the final component
listed. Double underscores are a convention used to disshdtems in the string. To ensure that double
underscores are reliable delimiters between species, exespor component name may include double

underscores or leading or trailing underscores.

SpeciesScheme 1 ComponentScheme
-min
-max
1
1
0..*
1
1 ComponentSchemePart
Appearance
- -TSDKey
-size
-opacity
1
0.1

ColorGradient

-start_color
-end_color

Fig. 8. The data structure used to map simulation data tavisttributes such as color, size, and opacity.

This structure was found to track all the data needed for theienappearance mappings. In order to
serialize and deserialize the data for storage and retribegava library GSON was used [12]. To use
this library an instance of a Gson object is created, therjavee object to be serialized is passed to the
gson.toJson() function which returns a string containi8@N formatted data. This data is then written
to a file. To reconstruct the original object the contentsheffile in String form, along with the class of
the object to be created are passed into gson.fromJsonghwéiurns the deserialized object. The Gson

library was found to be very effective and easy to use for dlasiga structure.
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The final portion of the appearance modules was the usefdnterThe interface to choose a compo-
nent’s movie apperances is shown in figure 6. The internatstre of the user interface is very similar
to that of the data structure, and has separate classesrajltlne user to modify the SpeciesScheme,
ColorScheme, Appearance, TSDKey, and ComponentScheraetebomposition (one class containing
another class as a member variable) is used to enhance théamability of the project by preventing

the duplication of code.
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