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MODELING AND VISUALIZATION OF

SYNTHETIC GENETIC CIRCUITS
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Abstract

The iBioSim tool is being developed to facilitate the construction and simulation of synthetic genetic

circuits. In this project, we have created a user interface that is similar to those used to construct

schematic diagrams which are familiar to electrical engineers. Promoters, chemical species, and biological

relationships can be placed visually on a schematic diagram. Another enhancement was the creation of a

new simulation visualization tool which allows the user to associate chemical species with color schemes,

opacity, and cell size. This tool allows the user to see the cells behavior as if through a microscope.
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I. INTRODUCTION

In 1977 a group of researchers managed to modify the DNA of theE. coli bacteria and were able to

make it to produce the human hormone somatostatin [1]. Sincethat time genetic engineers have leveraged

bacteria to help produce a wide range of useful products frompharmaceuticals to food additives to laundry

detergent [1]. Synthetic Biology is an emerging field that attempts to model the chemical reaction networks

inside a living cell in ways similar to an electrical circuit. While there are many tools that have been

created for synthetic biology [2][3][4][5][6] there is still great need for more efficient methods for their

modeling, analysis, and design [7]. iBioSim is one of the tools being developed for these purposes.

As is shown in figure 1 the iBioSim user interface initially consisted of lists of biological components.

While this interface was usable, it was believed that it could be improved by allowing the user to work

on the model at the graphical level, similar to the way programs such as Spice allow the user to build

electrical schematics. This process has several advantages.

One advantage of a graphical interface is that a visual picture of the biological model that a user

is creating can provide insight into the structure of the model that would be very difficult to gain by

clicking through menus and reading the way things are connected. Another advantage is that having a

visual representation will make iBioSim more accessible topeople who might potentially use it. This

will allow the tools strengths to be more widely used, increasing the likelihood that iBioSim will end

up helping those who are using the tool to design useful, potentially life saving biological circuits. A

final advantage is that having access to a schematic diagram opens the possibility to present simulation

data directly on the schematic as an animated movie. In this project both a graphical user interface and

a movie visualization mode have been created.

This paper will begin by describing the Genetic Circuit Model which is the data structure used by

iBioSim. Schematic Capture, the new interface created to design genetic circuits, will be described. Finally

the section on Visualization of Genetic Circuits will give an overview on the use and effectiveness of

the new visualization mode that was implemented.
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Fig. 1. iBioSim before the project was undertaken.
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II. GENETIC CIRCUIT MODEL

Researchers often use chemical reaction networks to describe genetic circuits. These networks can be

tedious because each chemical species and reaction must be explicitly defined [7]. Nguyen et al. created

the Genetic Circuit Model (GCM) to allow researchers to workat a higher level and only specify relevant

species and the relationships those species have with each other [8][9][7].

A Genetic Circuit Model (GCM) is a simplified data structure used to represent the function of a

synthetic biological circuit. It contains lists of promoters, species, components, influences, and parameters.

A promoter is a region on a strand of DNA that enables a particular gene tobe transcribed. The

transcription of a gene ultimately results in the creation of proteins orspecies. These species can have

influenceson each other in that they bind to other promoters, activating or repressing the production

of their respective genes.Componentsare a construct enabling the use of hierarchy by allowing GCMs

to import other GCMs and make connections to them through ports. Parametersin the GCM file and

on individual promoters, species, and influences are used totrack production and degradation rates,

equilibrium constants, and other values relevant to the genetic circuit.

More formally [8][9][7], a GCM is a tuple〈S,Pr,M,N,O, T,G, I, C, Vg , Ag〉 where:

• S is a finite set of species (i.e., proteins);

• Pr is a finite set of promoters;

• N ⊆ S is a finite set of inputs;

• O ⊆ S is a finite set of outputs;

• M = (M0, . . . ,Mn) is a finite set of other instantiated GCMs;

• T ⊆ S ×
⋃n

i=0
(NMi

∪ OMi
) is a port mapping of species to ports on instantiated GCMs;

• G : Pr 7→ 2S maps promoters to sets of species;

• I ⊆ S × Pr × {a, r} is a finite set of influences;

• C ⊆ S × N × S is a finite set of complex formations;

• Vg is a finite set of variables;

• Ag ⊆ (Vg × R) is the assignment of the variables with defaults;

A simple GCM is shown in figure 2 in which two promoters inP activate the production of two

species inS by facilitating the binding of RNA Polymerase (RNAP) to the strand of DNA. This allows

the DNA sequence to be translated into mRNA which will then betranscribed into the respective protein

species. figure 3 shows how the GCM simplifies the design of genetic circuits by hiding some of the low

level details.
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Fig. 2. A simple Genetic Circuit in which two promoters (PRFP and PGFP) activate the production of two respective species

(RFP and GFP).

Fig. 3. A GCM representing the genetic circuit. Not shown areparameters dictating the production rates, initial species counts,

species degradation rates, etc.
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III. SCHEMATIC CAPTURE OFGENETIC CIRCUIT MODELS

Selecting the add species button allows the user to add new species toS by dropping them onto the

schematic at a desired location as in figure 4. A species will be created where the user clicked with a

default name such as “S1” or “S2” where the number automatically increments with each species created.

Similarly to add a promoter toP the user should make sure the promoter button is selected andthen

click an empty space on the schematic. Adding a component toM is again similar, except that a menu

will be displayed allowing the user to select the GCM file thatthe component should represent.

Fig. 4. The user interface for the schematic capture mode of iBioSim. The first set of five buttons are mutually exclusive and

are from left to right, selection, drop species, drop component, drop promoter, and create self-influence. The next set of four

buttons represent the type of influence to be created. The next button provides an interface to automatically lay out the graph

using a number of layouts such as tree, circle, and organic. Below the toggle buttons is the schematic of the GCM being created

or modified by the user.

Anything in the schematic view can be selected by clicking onit. Once a species, promoter, or

component is selected it can be moved around on the schematicby clicking on it near the edge and

dragging it to a new location. Right-clicking on a species, component, or promoter causes a drop-down

menu to appear in which the user has the option to delete the object.

Clicking and dragging from the center of the species, promoter, or component will cause an arc to be

drawn, and if the mouse is released over a valid promoter, species, or component, a new influence or

connection will be created. This is the way that influences are created. The user can choose from several

toggle buttons to determine the type of influence that will becreated such as activation or repression.

Influences are created when the user drags an arc from a species to another species, or from a species

to a promoter. Self-influences can be drawn on species by selecting the self-influence toggle button.
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Arcs can be drawn from promoters to species, and when this is done a “production” arc is created.

Biologically this means that the production of the species is facilitated by the promoter. Arcs drawn

between species will have a default promoter created. This promoter will not be shown explicitly on

the schematic, except as a label on the influence. Arcs drawn to or from components create connections

to ports in the component. A connection between a species anda component means that the species

both in the component and the species that is connected to thecomponent will always have the same

concentrations or counts.

Once created, any promoter, species, component, or influence object can be selected and modified by

double clicking on it. Upon being double clicked a window will appear with all the object’s relevant

parameters. The window used to modify influences connected between species allows the user to change

the influence’s promoter. The choosing of the promoter is limited to those promoters which are not

explicitly drawn.

The example in figure 4 demonstrates many of the features of the schematic capture utility. The figure

shows a genetic toggle switch in which either the concentration of TetR or LocI is high at any given time.

The system is toggled by increasing the concentration of IPTG or aTc which bind with LacI and TetR

respectively through complex formations, shown by dashed lines. This binding lowers the concentrations

of IPTG or aTc by sequestering them away in the C1 and C2 complexes, thus preventing them from

taking part in repression.
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IV. V ISUALIZATION OF SIMULATED GENETIC CIRCUIT MODELS

A GCM can be translated to SBML as described in [8][9] allowing the genetic circuit to be analyzed

using ordinary differential equation(ODE) or stochastic simulation. The output of these simulators in

iBioSim is a table of time series data (TSD) that has columns of species and rows that are values of these

species at increasing time steps. The iBioSim tool providesa useful graphing interface to visualize the

TSD output of these simulation runs by displaying the data asa series of lines plotted with time along

the independent axis and concentrations or counts of molecules on the dependent axis. This method of

visualizing data is effective when looking at small numbersof signals, but does not work as well when

looking at large numbers of signals simultaneously.

We wanted to provide effective visualization of many circuits running simultaneously, each inside it’s

own bacteria cell. We wanted to display the results of the simulation by changing the colors of species

and components directly on the schematic. This would allow the user to see “at a glance” the state of

the simulation. It also allows the user to see a visualization similar to what a researcher would see when

looking at living cells through a microscope.

To facilitate this addition a “movie” mode was added to the schematic where “movie” is the term we

use to describe the playing back of a simulation run directlyon the schematic. In this mode all controls

to modify a schematic are disabled or removed and are replaced with movie player controls such as

“Play/Pause” and “Stop”, as well as controls to adjust the visual presentation of the movie.

Figure 5 demonstrates an example of a movie being played. There are movie playback controls to

play and pause, rewind, single step, and a slider to take the move to any time-slice in the simulation

data. As the movie plays at every time-slice the colors, sizes, or opacities of each component are updated

to reflect the move data at that moment. Figure 6 shows the interface designed to choose mappings

between simulation values and the appearance of components. Up to three species or subspecies inside

a component can be chosen, each mapping to a different color gradient. The color gradients are then

combined during movie playback. The size of the component can also be in place of a color gradient,

allowing the growth of components to be visualized if the components’ volume is changing. Opacity can

also be mapped allowing species or components to disappear and reappear based on data in the TSD file.

Figure 7 shows a photograph of e-coli cells that were programmed with a genetic circuit similar to the

one being simulated [10] in figure 5.

There are “min” and “max” values associated with every mapping (see figure 6). These values are

used to define how the simulation data is mapped to the color gradient, size, or opacity. Allowing the
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Fig. 5. The visualization mode that was added to iBioSim. In this simulation many identical cells were tiled then simulated.

Each cell contains the GCM defined in figure 3 in which promoters code for both red and green fluorescent proteins. Although

genetically identical, due to randomness in the biologicalprocesses each cell exhibits a different final color as thesefluorescent

proteins combine.

Fig. 6. The menu panel built to choose how colors, sizes, and opacity is mapped to components. Up to three different species

in a component or sub-component can be mapped to color gradients, transparency, or sizes.
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Fig. 7. An experiment in which e-coli bacteria were genetically altered to produce both red and green fluorescent proteins

[10]. Note the similarities in colors between the simulation and the experiment.

user to specify min and max is a solution to the problem of mapping a nearly unbounded range of

simulation values to the limited range of possible color, size, and opacity values. Simulation values such

as concentrations or numbers of species can vary widely and with no upper limit, especially since the

units of these values are user-definable in iBioSim.

At one point we considered having the software automatically scan the TSD file when it was loaded

and set the min and max values for each column of data. We decided against this because it would have

made species having different scale ranges appear similarly in the animation. For instance, one species

that had a max of 10 would have appeared just as bright or largeas a species that had a max of 100.

This could have been misleading to a user of our software thatdidn’t realize what had happened. By

making the user set the min and max explicitly he or she can still make these species appear the way

described, but because the user has made the mapping himselfor herself the user should be aware of the

differing scales. The equation used to map simulation values to appearance parameters is as follows:

Crgb = clamp

(

s − min

max − min

)

Cs = clamp

(

s − min

max − min

)
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Co = clamp

(

s − min

max − min

)

whereCrgb is the output color for each of the red, green and blue color channels.Cs is the component

size as a ratio of the size the user set it to where 0 has 0 width and height and 1 is the full size of the

component.Co is the opacity where 0 is fully transparent and 1 is fully opaque. s is the value of the

sample in the simulation file for the given time-step andmin and max are the values the user chose

from the user interface. For any color channel, size, or opacity that doesn’t have a mapping, that channel

will be ignored. Theclamp() function ensures keeps values within the range of [0, 1]:

clamp(x) =



















0 : x < 0

x : 0 ≤ x ≤ 1

1 : x > 1

A “Copy to Similar Components” button was added as a convenience to apply the current settings to

all components inM where the elements in the component’s tuple match those of the component being

edited. This is useful when the user has many of the same component and does not want to have to click

on every one to set its properties individually. This feature was to apply appearance settings to all the

components in figure 5.
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V. D ISCUSSION

A new schematic capture facility was added to iBioSim that allows a researcher to create biological

circuits graphically using a point and click interface. This makes it possible to build models much faster

then was previously possible. The schematic capture functionality supports promoters, chemical species

such as proteins, biological influences, and hierarchical design through the use of components. A new

visualization system was also created that allows simulations to be animated like a movie directly on

the schematic by modifying the colors and sizes of species and components according to iBioSim’s

simulation data.

Much of the work we have been doing has been paving the way toward the creation and simulation

of large populations of cells. For instance, the visualizerthat was created allows for the visualization

of components which could model subsections of a biologicalprocess like individual inverters in a

ring oscillator, but which could also model entire cells. Weimplemented a tiling feature that will

automatically tile a grid of components onto the schematic as a step toward creating a petri dish full

of cells. This automatic tiling allows the researcher to seethe simulation results of many independent

cells simultaneously, but provides no easy way to simulate cells that are interacting through chemical

signals passed through the common medium. Much work can alsobe done to simulate biological circuits

running in cells that are undergoing life processes such as cell division, movement through a medium,

and death.

The tool spoken of here (iBioSim [5]) is freely available at

http : //www.async.ece.utah.edu/iBioSim/.
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APPENDIX I

Construction of the Schematic Capture Module

The user interface to build GCM was built on top of the JGraphXlibrary [11]. This is a general Java library

for manipulating graphs consisting of nodes and edges. All nodes and edges are objects of JGraphX’s

mxCell class. mxCells that are edges can be connected to nodes via references to other mxCells. All

mxCells support Cascading Style Sheet (CSS) type styling attributes that control the color, shape, and

other visual aspects of the nodes and edges. All mxCells alsosupport a reference to any arbitrary data.

This was helpful and allowed the mxCells to directly track the GCM objects (species, promoters, etc)

that they represented.

The JGraphX objects emit numerous events based on user interaction (such as mouse click and release),

as well as higher level events such as when an mxCell is created, moved, or deleted. The JGraphX library

implements many useful features such as node and edge selection, dragging, and deletion. These events

were used to mimic these changes in the GCM. Mouse click events were used to pull up relevant options

menus when the user clicks on a node or edge representing a species, influence, etc.

One design decision that was made involved keeping the JGraphX objects synchronized with the

GCM that they represent. Initially code was written so that any time the modified the GCM or the graph,

analogous changes would be carefully made in the other structure. For example, if the user clicked a

button to change an influence from activation to repression,the influence would be changed in the GCM,

then the correct edge would be found in the graph and modified accordingly. It was found however, that

keeping these structures in sync was tedious and error proneas all modifications had to be mirrored in

two places, although the data structures (GCM and JGraphX) were very different.

In addressing this problem it was noted that there was already code to parse a GCM object and build an

JGraphX object out of it. This code was leveraged and the new policy is that every change is made directly

to the GCM object, and then the JGraphX is rebuilt from scratch. This made it very straightforward to

keep the GCM and JGraphX objects in sync, and simplified the code greatly. The downside is a decrease

in UI responsiveness because the expensive operation of rebuilding the graph has to be done more often.

This downside has minimal however, as even with the most complex GCMs the author has manipulated

the JGraphX regeneration seems to happen instantly.

Another design decision that had to be made was the implementation of an undo-redo interface. It

was decided that snapshots would be taken of the GCM object whenever a change was made. Since

the GCM implementation was already capable of serializing itself for saving to a file, the snapshots are
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simply in-memory strings of the serialized GCM. These snapshots are then stored on two stacks, one

for undo and one for redo. When the user presses the undo or redo button a string is popped off the

respective stack, the GCM object is reconstructed from it’sserialized string representation, and the graph

is instructed to refresh itself.

Construction of the Appearance Modules

One significant design task encountered in this project was the creation of a system to capture and store the

user’s mappings of values to colors, sizes, and opacity (termed appearances, or appearance parameters).

It was desired that during playback of a simulation the species in a GCM could change color and size

depending on their values, and that the colors and sizes of components could change based on the values

of some number of user defined internal species. More specifically, the requirements were as follows:

1) For every species inS an interface must be provided allowing the user to choose whether to map

the species’ value to a color gradient, size, or opacity. A way must also be provided to set the min

and max parameters.

2) For every component inM it should be possible for the user to choose several species in MS , and

for each species inMS chosen the same options should be available as are for species (item 1).

3) All the user’s appearance preferences must be serializable and deserializable so that they can be

written to and read from a file.

Several different data structures were considered to satisfy these constraints. One such structure was

Java’s Properties object, which is a dictionary mapping string keys to string values. This structure is

used by iBioSim to keep track of the mappings for each of the values in the GCM tuple, and because

it is already used in the iBioSim it seemed at first to be a good choice. On closer inspection however

this structure was not a good fit because it is inherently flat,while the data structure being represented

was recursive in nature. A dictionary could still have been used if it’s keys had been constructed out of

many concatenated string values, but this would have complicated the code and made it less sustainable

as maintenance and additional features were needed in the future. Instead of using dictionaries another

data structure was designed as shown in figure 8.

The data structure is used to track the way simulation data maps to appearance (size, color, and

opacity) attributes. A dictionary mapping species inS to SpeciesScheme objects, and components inM

to ComponentScheme objects is kept. SpeciesScheme defines amapping from one species’ simulation

data to one appearance attribute. ComponentScheme contains zero or more ComponentSchemePart objects

which also map one species’ simulation data to one visual attribute. Since several ComponentSchemePart
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objects can belong to one component, these appearance attributes are combined at playback time.

The TSDKey attribute in ComponentSchemePart is a referenceto a column in a simulation file. This

can reference a species directly inM , or a species inside a component inM , up to any arbitrary depth.

Each TSDKey is a string of the formA B C... N whereA is the name of a component inM , B

is a component inA, andC is a component inB. The final entry is a species inS in the final component

listed. Double underscores are a convention used to distinguish items in the string. To ensure that double

underscores are reliable delimiters between species, no species or component name may include double

underscores or leading or trailing underscores.

Fig. 8. The data structure used to map simulation data to visual attributes such as color, size, and opacity.

This structure was found to track all the data needed for the movie appearance mappings. In order to

serialize and deserialize the data for storage and retrieval the java library GSON was used [12]. To use

this library an instance of a Gson object is created, then thejava object to be serialized is passed to the

gson.toJson() function which returns a string containing JSON formatted data. This data is then written

to a file. To reconstruct the original object the contents of the file in String form, along with the class of

the object to be created are passed into gson.fromJson() which returns the deserialized object. The Gson

library was found to be very effective and easy to use for thisdata structure.
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The final portion of the appearance modules was the user interface. The interface to choose a compo-

nent’s movie apperances is shown in figure 6. The internal structure of the user interface is very similar

to that of the data structure, and has separate classes allowing the user to modify the SpeciesScheme,

ColorScheme, Appearance, TSDKey, and ComponentScheme objects. Composition (one class containing

another class as a member variable) is used to enhance the maintainability of the project by preventing

the duplication of code.
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