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ABSTRACT

To increase performance, circuit designers are experimenting with timed cir-

cuits—a class of circuits that rely on a complex set of timing constraints for correct

functionality. This is evidenced in published experimental designs from industry.

Timing constraints are key to the success of these designs, and algorithms to verify

timing constraints are required to make them practical in commercial applications.

Due to the complexity of the constraints, however, traditional static timing analysis

is not adequate. Timed state space analysis is required; thus, improved timed state

space analysis is paramount to producing efficient timed circuits.

This dissertation discusses two facets of work in timed state space analysis:

correctness and reduction. For correctness, this dissertation presents the level-

ruled Petri net as a model for timed circuits. This model is based on the Petri

net language. It includes, however, timing information and level expressions that

are key to the specification and verification of timed circuits. This dissertation

formalizes the intent of correctness in the verification of a timed circuit by defining

a set of failure conditions that can be analyzed in the circuit’s respective model.

The circuit is said to be correct if its model is failure free. For reduction, this

dissertation presents a timed state space analysis algorithm that verifies correctness

in the timed circuit model. The algorithm, when compared to existing algorithms,

reduces on average the running time and memory footprint of analysis. A partial

order reduction is implemented for the algorithm to further reduce its resource

usage. This reduction is not supported by the existing algorithms; thus, the new

analysis algorithm can be applied to systems that are beyond their capacity. This

is demonstrated in verifying industrial designs from IBM and Sun Microsystems.
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CHAPTER 1

INTRODUCTION

The tools and methodologies used in current design flows have evolved over

many years. They have proven themselves in bringing to market many successful

products. Although these tools often undergo incremental changes and modifica-

tions, for the most part, they remain intact from one development cycle to another.

The important issue, however, is that the tools support a single type of design

methodology. If the methodology changes, then the tool support is severed. This

can be the first step to a failed product cycle for the engineering team. The biggest

challenge in any design cycle is managing the complexity of the design. This task

cannot be managed by hand, nor can it be understood by any one person.

The reality of current process technology is driving designers to experiment with

alternative circuit architectures. The primary impetus for this change of style is

power and noise. The current of change, however, is met with fierce opposition.

The opposition is rooted in money. There is a large amount of money involved in

any design project. The risk involved in bringing a commercial product to market

is not taken lightly. For this reason, many product managers are reluctant to try

new technology despite growing issues in current design practices; thus, change is

only found in a development cycle when forced by the needs of the application.

If profit drives the design cycle, then verification is a real threat to profit. It is

not uncommon to expend fifty percent of the development resources on verification

alone. The cost of a product reaching the market with a critical defect is staggering.

Intel demonstrated this reality with their floating point debacle. Not only was the

Intel name marred, but the company stock had to weather a rather unpleasant

downturn. This type of cost is staggering; thus, it is imperative that designs are
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thoroughly and completely verified before they reach the market. They must be

free of critical design defects—defects that can be observed by the end consumer.

Functional validation is not sufficient to verify a design. It is not possible to

run all possible test vectors through a design. This is not the only issue. It is

not possible to check a circuit in all possible timing configurations either. The

new circuits being forced into designs are often highly timed. Timing tools are

common in any design methodology. These tools check that there are no errors in

the fast and slow paths of the circuits. The new circuits, however, may have errors

that result from the interaction of the fast and slow paths. This is not checked

by common timing tools. These circuits do not lend themselves to traditional

validation approaches.

Timed circuits are a class of circuits that rely on a complex set of timing

constraints for correct functionality. A timed circuit can effectively address power

and noise issues in modern design. This is evidenced in published industrial scale

experimental designs [1, 2, 3, 4]. These designs, however, lack formal design

methodology and tool support because they are experimental. Satisfying timing

constraints is key to the success of these designs; thus, algorithms to check timing

constraints are required to make them practical in commercial applications. Due to

the complexity of the timing constraints, however, traditional static timing analysis

is not adequate. Timing failures are a dynamical property of timed circuits. Timed

state space exploration is required; thus, improved timed state space exploration is

paramount to bringing this technology into mainstream design.

Academia has developed several solutions to the verification challenge. These

solutions, however, have proven impractical in real design. The goal of this dis-

sertation is to apply correctness and reduction to the analysis of industrial scale

circuits in an effort to show that timed circuit analysis can be pragmatic. The

presented circuits have appeared in various publications and evidence the forced

hand of industry to address new process issues. Although industry has, for the

most part, put in place tool support for these design styles, the tool path can be

improved. The approach presented in this work is not a solution to the verification
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and synthesis problem in new architectures—there is much left to be done—but it

is a step forward from previous technology, and it demonstrates the potential of

timed circuit analysis.

This dissertation presents a timed state space exploration algorithm for timed

circuit analysis. The goal is to develop the necessary algorithms to support new

timed circuit styles that address growing process needs. It first presents the level-

ruled Petri net as a timed circuit model. The level-ruled Petri net combines the

event structure of the Petri net with the logic structure of a state machine. The

end result is a model the lends itself to timed circuit analysis. This dissertation

then discusses correctness in the model. It formally defines failure conditions, and

it defines the meaning of correctness in a model of a circuit to help designers better

understand the results of analysis. The dissertation next presents a new timed state

space exploration algorithm to validate correctness in a level-ruled Petri net. The

algorithm supports arbitrary expressions in the model, and reduces running time

and the representation size of the timed state space on average.

The timed state space is too large in real world designs. Although the new

algorithm improves the situation, it does not solve the issue. Timed circuit tech-

nology cannot be brought into the mainstream until it can address larger designs.

This dissertation presents a reduction method for the timed state space exploration

algorithm based on partial order reduction. The reduction enables modular analysis

of large systems. The result is exact modular synthesis using partial order reduction.

The effectiveness of the reduction is demonstrated in the analysis, synthesis, and

verification of several industrial scale designs. Although the explosion of the timed

state space is not contained by this work, it is better managed; thus, it takes timed

circuits one step closer to mainstream design.

1.1 Contributions

This dissertation makes four specific contributions to the analysis of timed

circuits: a new timed circuit model, a formal definition of correctness in the model, a

timed state space exploration algorithm that supports arbitrary Boolean functions,



4

and a partial order reduction on this model for verification and exact modular

synthesis.

The first contribution is the level-ruled Petri net. It combines the event structure

of the Petri net with the logic structure of a state machine. A transition is now

governed by the marking, the Boolean state, and time. This is suited to timed

circuit specification because the Boolean functions in the model create a form of

syntactic abstraction that simplifies the drawn model structure. Standard and

nonstandard gates can be compactly modeled by the level-ruled Petri net using

their logic structure. The model, however, preserves the event behavior of a Petri

net; thus, distinct signal transitions can be validated as the model moves through

states. Circuit level effects can be adequately modeled too. The level-ruled Petri

net is a modular language. Timed circuits can be specified modularly in higher

level languages and then modeled at the low level by the level-ruled Petri nets with

well-defined interfaces. The compact specification facilitates efficient analysis.

The second contribution is a formal definition of correctness in a level-ruled

Petri net model of a timed circuit. Timing analysis has no meaning without an

understanding of correctness. The designer must know exactly the behaviors being

considered in the analysis. The designer must also know what a correct result

means. The model of a timed circuit is correct if it is safe, consistent state assigned,

output semimodular, and constraint satisfied in this work. These properties are

defined in the level-ruled Petri net semantics.

The third contribution is a new timing analysis algorithm to validate correctness

in the level-ruled Petri net model of a timed circuit. The algorithm supports

arbitrary Boolean functions in the model and implements a partial order reduction

on the timing information. The algorithm has better running time and builds a

smaller representation of the timed state space on average when compared to prior

work. It is the first published timing analysis algorithm that supports arbitrary

Boolean functions; thus, simplifying model specification.

The fourth, and final, contribution is a partial order reduction for the level-ruled

Petri net that supports syntactic abstraction. The reduction can also preserve the
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exact state space of a module in a larger system. This facilitates exact modular

synthesis of a component in a larger system. The reduction does not require the

designer to modify the system model, but uses a partial order reduction to avoid

exploring the firing orders of independent signals. This significantly improves

the running time of the timing analysis. It extends timing analysis and state

based synthesis methods to systems that are larger than previously possible. This

is demonstrated in the analysis, verification, and synthesis of several industrial

designs.

1.2 Overview

The dissertation is organized to follow its contribution list. Each chapter

addresses a contribution. Detailed related work specific to each contribution is

given in its corresponding chapter for a clear perspective of this work. As such,

Chapter 2 is devoted to the level-ruled Petri net as a timed circuit model with

its structure and semantics. Chapter 3 is correctness. Each correctness property

is defined and given context to a circuit level perspective. Chapter 4 is the new

timing analysis algorithm for the level-ruled Petri net. Chapter 5 is the partial

order reduction in the level-ruled Petri net. The reduction preserves the state

space of the component module; thus, state based synthesis techniques can be used

to modularly synthesize complete systems. Chapter 6 is a set of results and case

studies. It applies the new modular analysis to several academic and industrial

designs. The goal of the chapter is to expose both the strengths and weaknesses of

the modular analysis. Chapter 7, finally, concludes the dissertation by summarizing

the impact of the contributions and presenting future work in this area.
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A TIMED CIRCUIT MODEL

The timed circuit model defines the capabilities of a CAD application. This

follows from the realization that an algorithm can only operate on behaviors repre-

sented in the model. If a model does not capture a certain behavior of the system,

then that behavior cannot be analyzed or discovered. If the model represents too

many behaviors, however, then the cost of analysis becomes prohibitive; thus, a

model must be carefully designed to meet the needs of the particular application.

A timed circuit model must represent all possible transition times of signals in

the system, and it must be approachable by a designer. The first requirement stems

from the goal of timed circuit analysis to establish correctness in the circuit. To

this end, it is necessary to know when transitions can happen in the system, and

an analysis algorithm verifies that transitions not only occur, but that they do not

occur at bad times. The second requirement is more pragmatic. If the model for

a circuit cannot be intuitively composed directly, or derived from, a higher level

language, then it becomes too difficult to specify complex systems. A timed circuit

model must therefore capture all transition times of important signals in the system

using a simple intuitive structure.

The level-ruled Petri net addresses the needs of a timed circuit model. It is

based on the widely accepted Petri net, but it augments the Petri net with a

notion of time and logic. The need for time in the Petri net model is self-evident

in a timed circuit application. The need for logic, however, is best understood

through illustration. Fig. 2.1(a) is a Petri net model of the function c = a ∧

b. Although the semantics of the Petri net model have yet to be presented, the

complexity of Fig. 2.1(a) evidences that Petri nets do not readily lend themselves
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to simple logic functions. The level-ruled Petri net model in Fig. 2.1(b) of the same

function is a stark contrast to its Petri net compatriot. The ability to specify logic

functions decreases the structural complexity of the net and makes the model more

approachable by designers. Although this reduction increases the complexity of

analysis, it is not enough to nullify the decrease in structural complexity.

The goal of this chapter is to present a comprehensive semantic model of the

level-ruled Petri net and to give an intuitive appreciation for its expressive power,

as well as its limits. To this end, Section 2.1 presents the Petri net as the theoretical

basis for defining concurrent systems. The level-ruled Petri net augments the

expressiveness of the Petri net, so it is useful to understand the Petri net semantics.

Section 2.2 is the formal presentation of the level-ruled Petri net as a model for timed

circuits with its underlying structure and semantics. An intuitive appreciation of

this new model is gained in Section 2.3; it demonstrates the use of the level-ruled

Petri net in the specification of several timed systems. Section 2.4 is a retrospective

look at other methods of modeling circuits. It tries to bring perspective to the

level-ruled Petri net with regard to other approaches. This chapter is concluded

in Section 2.5 with a brief summary of the presented material as it relates to

correctness and reduction in timed circuit analysis.

a+?

a−?

b−?

b+?

b+?

a+?

[35, 45]
a−?

b−?

a+?

c−

[35, 45]

b+?

c+

a−?

b−?

[35, 45]
a ∧ b

¬a ∨ ¬b
[35, 45]
c− c+

(a) (b)

Fig. 2.1. Two contrasting representations of the function c = a∧ b. (a) The Petri
net representation. (b) The level-ruled Petri net representation.
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2.1 The Petri Net

The Petri net is a studied, understood, and formalized language to model

systems with concurrency [5]. It has been successfully employed to model and

then analyze a myriad of systems. Although it does not include a notion of time

in its ordinary form, it does provide infrastructure to model a timed circuit as a

grouping of discrete parallel systems. In this sense, each component of the circuit

is an independent agent that communicates with other agents in the circuit. The

interface at each agent is precisely defined by a set of allowed traces. A trace is

an ordered vector of transitions, and the Petri net is a graphical representation

of a trace set; thus, the allowed trace set for each component can be defined by

an appropriate Petri net. This section briefly describes the safe Petri net that is

a restricted form of the ordinary Petri net. A more complete discussion of the

Petri net is given in [6, 7, 8]. This section is divided into two parts: the first part

deals with the structure and graphical representation of the safe Petri net; and the

second part presents the formal semantics of the structure and illustrates how it

defines the interface of a component. The employed notation is largely based on

that presented in [8].

2.1.1 Structure

The Petri net is a directed bipartite digraph on transitions and places. Its

mathematical model is the four-tuple presented in Definition 2.1.

Definition 2.1 (Petri net Structure). A Petri net is represented by the four-

tuple N = (T, P, F, µo) that defines its transitions, places, flow relation, and initial

marking.

The first node set of the digraph is T , the finite set of transitions. The second

node set is P , the finite set of places. The connectivity between the transitions

and places is defined by the flow relation, F ⊆ (T × P ) ∪ (P × T ) . It is a subset

of all possible connections between members of the transition and place sets. The

bipartite property of the digraph forces connectivity to only exist between the

two node sets; transitions are always separated by places, and places are always
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separated by transitions. Because the graph is directed, these connections are in

one direction only. The final member of the Petri net four-tuple in Definition 2.1

is the initial marking µo. A marking is any subset of places, µ ⊆ P , and it defines

the complete state of the Petri net. The initial marking µo is the initial state of

the Petri net.

A graphical illustration of a simple Petri net is shown in Fig. 2.2. The interface

behavior defined by this net is presented in Section 2.1.2. The figure is presented

here to elucidate the structure of the Petri net. The thick lines in the graph

represent transitions from the transition set T = {t1, t2, t3, t4, t5, t6}. The open

circles denote places from the place set P = {p1, p2, p3, p4, p5, p6, p7, p8}. The arcs

that connect the places and transitions belong to the flow relation. The flow relation

for this graph is

F =


(t1, p1), (t1, p2), (p1, t2), (p2, t3),
(t2, p3), (t3, p4), (p3, t4), (p4, t4),
(t4, p6), (t4, p5), (p5, t5), (p6, t6),
(t5, p7), (t6, p8), (p8, t1), (p7, t1)

 , (2.1)

where each member of the flow relation is an ordered place-transition or transition-

place pair. The filled circles in the figure are tokens. They indicate members of

the marking set µo = {p1, p2}. This is the initial state of the net. From this state,

all possible future states of the net can be computed. This is the topic of the next

section.

p2

p1

p4

p3t2

t4

t5

t6t3

t1

p6

p5

p8

p7

Fig. 2.2. A graphical representation of a simple Petri net.
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2.1.2 Semantics

The state of the Petri net is defined by its marking. This state can change

by firing a satisfied transition from the marking. The preset of a transition is

the set of places that feed into it. For a transition t ∈ T , this is defined as

•t = {p ∈ P | (p, t) ∈ F}. Note that a similar set is defined for a place: •p =

{t ∈ T | (t, p) ∈ F}. A transition is marking satisfied if the members of its preset

form a subset of the places in the marking. This is shown in Definition 2.2.

Definition 2.2 (Marking Satisfied Transition). The transition t is marking

satisfied by µ if •t ⊆ µ.

For the Petri net in Fig. 2.2, the marking is µ = {p1, p2}; the presets for transitions

t2 and t3 are •t2 = {p1} and •t3 = {p2}. The two transitions t2 and t3 are marking

satisfied in µ because •t1 ⊆ µ and •t2 ⊆ µ.

Firing a marking satisfied transition updates the marking to reflect the new state

of the system. The postset of a transition is the set of places that the transition

feeds into. For a transition t ∈ T , this is defined as t• = {p ∈ P | (t, p) ∈ F}.

Note that a similar set is defined for a place: p• = {t ∈ T | (p, t) ∈ F}. Firing a

transition in a marking removes from the marking any places in the preset of the

transition, and it adds to the marking any places in the postset of the transition.

This process is formalized in Definition 2.3.

Definition 2.3 (Marking Update). The marking created from firing a transition

t that is marking satisfied in µ is computed as µ′ = µ− •t+ t•.

The notation µ [t〉µ′ indicates that the firing of t from µ leads to µ′, where µ′ is the

marking given by Definition 2.3 as applied to µ and t. For the Petri net in Fig. 2.2,

the transitions t2 and t3 are marking satisfied in µ = {p1, p2}. If t2 is fired from µ

as indicated by µ [t2〉µ′, then by Definition 2.3, µ′ is given as

µ′ = µ− •t2 + t2•

= {p1, p2} − {p1}+ {p3}

= {p2, p3} .
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If, however, the transition µ [t3〉µ′ is taken instead, then Definition 2.3 computes

µ′ as {p1, p4}.

A firing sequence is a vector of transitions where each transition leads to a

marking where the next one can fire. This is expressed in Definition 2.4.

Definition 2.4 (Firing Sequence). The vector (t1, t2, . . . , tn−1, tn) is a firing

sequence for a Petri net if there exists a vector of markings (µ0, µ1, µ2, . . . , µn−1, µn)

such that the following holds: ti is marking satisfied in µi−1 and µi−1 [ti〉µi for

1 ≤ i ≤ n.

The vector (t2, t3, t4) is a firing sequence for the net in Fig. 2.2 because the vector

of markings ({p1, p2} , {p2, p3} , {p3, p4} , {p5, p6}) satisfies Definition 2.4. Transition

t2 is marking satisfied in {p1, p2} and firing it leads to {p2, p3} where t3 is marking

satisfied. Firing t3 leads to {p3, p4} enabling t4. Firing t4 ends the firing sequence

in {p5, p6}. The vector (t2, t4, t3), however, is not a firing sequence because there

does not exist an vector of markings that satisfies Definition 2.4.

One marking is reachable from another marking if there exists a firing sequence

that takes the net from the one marking to the other. This is expressed in Defini-

tion 2.5.

Definition 2.5 (Reachable). The marking µ′ is reachable from µ if there exists

a firing sequence that starts in µ and ends in µ′.

Similar to the notation for Definition 2.3, µo [t〉µn indicates that µn is reachable

from µ on the firing sequence t, where t indicates a vector of transitions. The

marking µ = {p5, p6} is reachable from the marking µo = {p1, p2} shown in Fig. 2.2

because of the firing sequence t = (t2, t3, t4) from the previous example; thus,

µo [t〉µ. The marking µ = {p1, p5} is not reachable from µo because no firing

sequence starting at µo exists to create µ.

The set of reachable markings defines the behavior of the Petri net. This set is

denoted by [µo〉 and is a subset of the power set of places P from the Petri net.
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Definition 2.6 (Reachable Markings). The reachable markings from µ is the

set of markings [µ〉 ⊆ 2P where µ′ ∈ [µ〉 if either µ′ = µ or there exists a firing

sequence t such that µ [t〉µ′.

This set is finite as shown above because the marking is a subset of places in the

net.

Definition 2.7 (Safe). A Petri net is safe if for each µ, µ′ ∈ [µo〉 and for each

transition t that is marking satisfied in each µ the following holds: µ [t〉µ′ =⇒

(µ− •t) ∩ t• = ∅.

A set of marking satisfied transitions can be created for a reachable marking of

the net. In firing any of these transitions from the marking, the marking update

in Definition 2.3 must never add a place to the marking that already exists in the

marking. The net is safe if this property holds for every reachable marking. The

Petri net in Fig. 2.2 is a safe Petri net. The set of reachable markings from the

initial marking µo = {p1, p2} is

[µo〉 =

{
{p1, p2} , {p1, p4} , {p2, p3} , {p3, p4} ,
{p5, p6} , {p5, p8} , {p6, p7} , {p7, p8}

}
.

This net has eight reachable markings. The reachable marking set can be created

from a depth-first search of all marking satisfied transitions starting from the initial

marking. The depth-first search algorithm forms the basis of Petri net analysis.

2.2 The Level-ruled Petri Net

The level-ruled Petri net is an extension of the Petri net. The goal of the

extension is three fold: first, to create a mapping between the Petri net and the

physical circuit; second, to add a notion of time to the Petri net; and third, to

simplify the specification process and resulting model structure through syntactic

abstraction. The level-ruled Petri net is not meant to replace the Petri net, but to

amend the Petri net to the analysis of timed circuits.
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A function of the level-ruled extension is to map the Petri net to a physical

model. Various members of the extension define the inputs and outputs to a circuit

and provide the initial values for all output wires in the specification. The level-

ruled Petri net is designed to allow the timed circuit to be divided into small

manageable components. Large complex designs are composed of small easy to

understand components. The collective behavior of the components is analyzed to

see if errors exist in the system.

Time is added to the Petri net with the creation of the rule. A rule is a timing

and level annotation on an edge between a place and a transition. The rule affects

the firing semantics of the transition. A marking satisfied transition can no longer

fire immediately from a marking. The transition must be marking satisfied and

have its level information satisfied. Once these two conditions are met, it then

waits for its timing information to be satisfied after which it can fire. A transition

must fire before all of its timing information expires. The rule is a means to model

an arbitrary delay on a transition. It is also a means to simplify the structure of

the net.

The level information contained in the rules is a syntactic simplification of

the Petri net. It simplifies the net’s structure. Another benefit of the syntactic

abstraction in levels is the ease of specification. The structure of the level-ruled

Petri net using functions is approachable by hand—even for sizable specifications.

More importantly, however, is that it can be compiled to from higher level languages

such as timed handshaking expansions and VHDL [9, 10]. This can be a tremendous

asset to ameliorating the design flow.

This section is organized like Section 2.1. The structure of the level-ruled Petri

net is presented with a simple example. This is followed by the semantic definition.

The presentation does not redefine any of the Petri net semantics from Section 2.1;

rather, it augments the definitions from that section to shape the semantic behavior

of the level-ruled Petri net. The goal of this new model is to build on the Petri net

and its terminology.

The notion of a rule is first defined before the structure and semantic definition
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of the level-ruled Petri net is presented. A rule is a place-transition pair in the

flow relation F for which timing bounds and Boolean functions can be defined;

the set of all rules is given as R = F ∩ (P × T ). The rules essentially modify the

semantic behavior of transitions in the Petri net from Definition 2.9. To simplify

the presentation, a function to return the rules for a transition is defined.

Definition 2.8 (Rule Set). For any transition t ∈ T , the rule set of t is given as

R(t) = {(p, t) ∈ R | p ∈ •t}.

The rule set of transition t is now given by R(t). It is the set of rules defined by

the places in its preset.

2.2.1 Structure

A level-ruled Petri net is a Petri net coupled with a level-ruled extension as

shown in Definition 2.9.

Definition 2.9 (Level-ruled Petri net). A level-ruled Petri net is the pair M =

(N,E) consisting of a Petri net N = (T, P, F, µo) and its level-ruled extension

E; the Petri net is such that for all pairs of transitions (t, t′) ∈ T where t 6= t′,

|t• ∩ •t′| ≤ 1.

The connectivity in the Petri net is restricted to not allow more than a single

rule between two transitions. This restriction simplifies analysis. A level-ruled

extension of a Petri net defines the physical interface of the system modeled by the

Petri net. This is its input and output signals with the initial state of the outputs.

The extension also includes the timing information and semantic abstraction im-

plemented by the Boolean functions. The structure of the level-ruled extension is

given in Definition 2.10.

Definition 2.10 (Level-ruled Extension). A level-ruled extension of a Petri net

is represented by the six-tuple E = (W,L, νo,Eft, Lft, Lsat) that defines its signal set,

mapping, initial state, firing bounds, and level information.

The level-ruled extension can be divided into two distinct groupings affecting differ-
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ent aspects of the Petri net: the first three members of the tuple correspond to the

physical interface of the Petri net and provide a link to actual wires in the timed

circuit; and the second three members of the tuple correspond to the rules that

define the timing behavior and simplify the structure of the Petri net. Although

the level-ruled extension appears large and cumbersome, its ability to amend the

Petri net to timed circuit specification is elegant and simple.

The first three members W , νo, and L of the six-tuple in Definition 2.10 make

the physical connection between the Petri net and the wires or signals in the timed

circuit. W is a finite set of signals in the timed circuit including those used in the

Boolean functions for the syntactic abstraction. It defines the physical interface

for the level-ruled Petri net model of the timed circuit. Recall that a Petri net

is the four-tuple N = (T, P, F, µo) in Definition 2.1; thus, the labeling function

L : T → (W × {+,−} ∪ T ) is a mapping from transitions in N to real actions on

members of the signal set W . Transitions that are mapped into W × {+,−} are

either rising or falling. A signal w that moves from a low to a high state is rising

as indicated by w+, and a signal that moves from a high to low state is falling as

indicated by w−. If a transition from T does not affect the state of a signal, then L

returns the transition itself rather than a member of the W ×{+,−} set. Although

firing this transition has no affect on the Boolean state of the signal set, it does

affect the state of the Petri net by moving it to a new marking. The output signal

set is computed from the structure of the level-ruled Petri net.

Definition 2.11 (Output Signals). A signal w ∈ W is an output signal if there

exists a transition t ∈ T such that R(t) 6= ∅ and either L(t) = w+ or L(t) = w−;

the set all output signals is O.

A signal is an output if it has rules and transitions defined to control its behavior.If a

signal only has a defined transition, but not defined rules, then it is a input because

it effectively cannot be controlled; thus, a level-ruled Petri net cannot affect the

behavior of any of its inputs. The set of input signals is given as W −O. Note that

a transition that is not defined on a signal is neither an input or an output. The
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initial Boolean state of the output signal set is given by νo ⊆ O. For all output

signals w ∈ νo, w is high in the initial Boolean state. For all outputs w /∈ νo, w

is low in the initial Boolean state. Because νo is defined over the output set, a

level-ruled Petri net is a representation of a module. A module implements the

behavior of members in its output set. The behavior of the input set must be

defined by some other module in the system; thus, a timed circuit is a network of

modules where each module defines a portion of the system behavior.

The second three members Eft, Lft, and Lsat of the eight-tuple in Definition 2.10

relate to the rules that define the timing behavior and implement the syntactic

abstraction in the Petri net. A rule can have three different properties: an earliest

firing timing, a latest firing time, and a Boolean function defined over the signals

in the timed circuit. The symbol Q+ represents the set of nonnegative rational

numbers. The earliest firing time Eft : R → Q
+ is a function mapping rules to

nonnegative rational numbers. For a rule r = (p, t), Eft(r) is a minimum separation

that must exist between the firing of t and the satisfaction of the enabling conditions

for r. The latest firing time Lft : R → Q
+ ∪ {∞} is defined similarly, except that

the symbol∞ is included to represent an infinite latest firing time. All members of

Q
+ are by definition less than∞. Lft(r) is a possible maximum separation between

the firing of t and the satisfaction of the enabling conditions for r. If a transition

has several rules that affect its behavior, then it is possible for some rules to exceed

their latest firing time before the transition fires. Note that the earliest and latest

firing times are multiplied by their greatest common denominator to convert them

to integers for analysis. The Lsat member of the level-ruled extension implements

the syntactic abstraction. It is the function Lsat : R → (2W → {true, false}). The

function takes a rule and a Boolean state defined over the signals in the level-ruled

Petri net, and it returns either true or false. The true value indicates that the level

information is satisfied by the state; the false value indicates the opposite. Like

the definition for νo, a Boolean state, ν ⊆ W , is a subset of the signal set. The

inclusion of a signal indicates a high Boolean state and the exclusion the opposite.

Consider the Petri net in Fig. 2.2. A level-ruled extension of this net can link it



17

to a Muller C-element whose inputs are the inversion of its output [11]. The Muller

C-element gate symbol is given in Fig. 2.3(a) with its truth table in Fig. 2.3(b).

From the truth table, if the initial Boolean states of a, b, and c are low, then when

both a and b transition high, c transitions high. Similarly, if a, b, and c are high,

then when both a and b transition low, c transitions low. When the states of a

and b are different, c holds its value. The output set for the level-ruled extension

of Fig. 2.2 is O = {a, b, c} because the Petri net defines all transition behaviors.

There is an entry for each signal shown in Fig. 2.3(a). The initial Boolean state is

given as νo = ∅ because all signals are low. The set for the labeling function is

L =

{
(t1, c−), (t2, a+), (t3, b+),
(t4, c+), (t5, a−), (t6, b−)

}

The labeling function is the link between transitions in the Petri net and actions

on signals in the output set of the level-ruled extension; there is a rising and falling

transition for each signal. Notice that with this labeling function, the behavior of

c defined by the net resembles that of the Muller C-element, and the behaviors of

a and b are just the inversion of c. The rule set is

R =

{
(p1, t2), (p2, t3), (p3, t4), (p4, t4),
(p5, t5), (p6, t6), (p8, t1), (p7, t1)

}

This is each place-transition pair, (p, t), that is found in the flow relation in (2.1).

To continue with the example, assume that the signals a and b are untimed, but

C c

a

b

a b c
0 0 0
0 1 c
1 0 c
1 1 1

(a) (b)

Fig. 2.3. The Muller C-element and its defined behavior. (a) The drawn gate
symbol with a simple environment. (b) The truth table describing the gate’s
behavior.
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the signal c has a rising delay of [30, 50] and a falling delay of [25, 45]. From this,

the earliest firing time relation is

Eft =

{
((p1, t2), 0), ((p2, t3), 0), ((p3, t4), 30), ((p4, t4), 30),
((p5, t5), 0), ((p6, t6), 0), ((p8, t1), 25), ((p7, t1), 25)

}
;

and the latest firing time relation is

Lft =

{
((p1, t2),∞), ((p2, t3),∞), ((p3, t4), 50), ((p4, t4), 50),
((p5, t5),∞), ((p6, t6),∞), ((p8, t1), 45), ((p7, t1), 45)

}
.

The last member of the level-ruled extension is Lsat. It is defined such that for all

rules r ∈ R and all states ν ∈ 2W , Lsat(r)(ν) = true; thus, it always returns true

regardless of the rule or state. This is because there is no syntactic abstraction in

Fig. 2.2—there are no Boolean functions.

Consider now the network of level-ruled Petri nets in Fig. 2.4. This network uses

syntactic abstraction to capture the same behavior of a Muller C-element whose

inputs are the inversion of its output as that of the Petri net in Fig. 2.2. Fig. 2.4(a)

and Fig. 2.4(b) define the behavior of a and b, which are the inversion of c. These

two nets are the environment definition for the Muller C-element. Fig. 2.4(c) defines

the behavior of c, which is the Muller C-element. The level-ruled extension for each

of these nets is depicted in their graphical representations. Consider Fig. 2.4(c) that

defines the behavior of c. Its transitions are labeled c+ and c− due to the labeling

function in the level-ruled extension. Similarly, its rules are annotated with timing

bounds and Boolean functions. For example, the rule for c+ includes the bound

[0,∞]

c p2

[0,∞]
a+

p1 ¬c

a−
r1

r2

[0,∞]

c p4

[0,∞]
b− b+

p3 ¬c
r3

r4

[30, 50]
a ∧ b

¬a ∧ ¬b p6

[25, 45]
c− c+

p5

r6

r5

(a) (b) (c)

Fig. 2.4. A Muller C-element level-ruled Petri net model. (a) The specification
for input a. (b) The specification for input b. (c) The specification for output c.
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[30, 50] for the earliest and latest firing times and the Boolean function a ∧ b. The

Boolean function a ∧ b is represented as

Lsat(r5) =

{
({} , false), ({c} , false), ({b} , true), ({b, c} , true),
({a} , true), ({a, c} , true), ({a, b} , true), ({a, b, c} , true)

}
.

Similar sets represent the Boolean functions in the other rules too. In this model

of the Muller C-element and its environment, the syntactic abstraction facilitates

breaking the system into modules and reduces the total number of places in the

system. The number of reachable markings for the two systems, however, is

identical.

A timed circuit is the parallel composition of a network of level-ruled Petri

nets like that shown in Fig. 2.4. The composition results in a single net representing

the behavior of the entire system. Recall that E = (W,L, νo,Eft, Lft, Lsat); this is

used in the following definition.

Definition 2.12 (Parallel Composition). The parallel composition of a network

of level-ruled Petri nets M1 ‖ M2 ‖ · · · ‖ Mn is the single net M = (N,E) where

for 1 ≤ i ≤ n and Mi = (Ni, Ei), N is the union over the constituent members of

each Ni; and E is the union over the constituent members of each Ei except Lsat,

which is a new function such that for all rules ri ∈ Ri and Boolean states ν ∈ 2W ,

Lsati(ri)(ν
′) = true ⇐⇒ Lsat(ri)(ν) = true,

where ν ′ = ν∩Wi is the Boolean state ν with all of the signals not in the component

signal set Wi removed.

Syntactic abstraction must be specially treated in the parallel composition because

the composition changes the signal set W over which the Boolean functions are

defined.

A Boolean function in a given level-ruled Petri net is defined over signals on

the interface of that net. When that net is moved into a parallel composition of a

system, its signal set is absorbed into the system. The system has a new interface

defined over every signal on the interface of all nets in the system. Any Boolean
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function belonging to a net that is part of the parallel composition must expand, if

necessary, to accommodate the new interface for the system. The definition creates

a new function for each Boolean function in every module such that any signal not

on the interface of the module is treated as a don’t care. Any Boolean function from

any of the modules in the composition is Boolean equivalent to its counterpart in

the parallel composition, only its counterpart is now defined over the larger signal

set.

A parallel composition is not always correct because initial markings, Boolean

states, as well as firing times and Boolean functions, for places, signals, or rules

may be defined differently in different modules. A network creates a valid parallel

composition if member modules consistently define shared objects.

Definition 2.13 (Consistent). A pair of level-ruled Petri nets (M,M ′) is consis-

tent if the following three conditions hold:

1. for all places p ∈ (P ∩ P ′), p ∈ µo ⇐⇒ p ∈ µ′o;

2. for all signals w ∈ (O ∩O′), w ∈ νo ⇐⇒ w ∈ ν ′o; and

3. for all rules r ∈ (R∩R′), L(r) = L′(r), Eft(r) = Eft′(r), Lft(r) = Lft′(r), and

Lsat(r) = Lsat′(r).

Two nets are consistent if they agree on the marking of shared places, the Boolean

state of shared outputs, and identically define properties of shared rules.

Definition 2.14 (Valid Composition). The parallel composition of a network of

level-ruled Petri nets M1 ‖ M2 ‖ · · · ‖ Mn is valid if for all pairs (i, j) such that

1 ≤ i, j ≤ n, (Mi,Mj) is consistent.

The parallel composition of the network in Fig. 2.4 is valid. The initial marking,

Boolean state, and rule set is consistently defined across all three nets as they do

not share any transitions or places. An example of a network that shares transitions

is presented in Section 2.3.3.
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Definition 2.15 (Closed). A parallel composition is closed if its output set O is

equal to its signal set W .

A closed composition completely defines the behavior of the network. The parallel

composition of the network in Fig. 2.4 is closed. It completely defines all signals in

its output set. Although the signals a and b are considered to be the environment for

the circuit implementing c, their behavior is defined. This is because the behavior

of c depends on a and b; thus, their behavior is required for any analysis of c. The

rest of this presentation considers only closed systems for simplicity.

2.2.2 Semantics

The state of a level-ruled Petri net is defined by the three-tuple (µ, ν, C): µ is

the current marking of the net; ν is the current Boolean state of the signals in the

net; and C : R→ R
+ ∪ {∞} is a clock assignment function. The symbol R+ is the

set of positive real numbers. The marking supports the Petri net, the Boolean state

supports the syntactic abstraction, and the clock assignment supports time. Every

rule in the level-ruled Petri net is associated with a clock. For a given rule r, C(r)

returns the value of the clock on r. There are two operations on clocks: advance

and reset. For some positive real number d ∈ R+ ∪ {∞}, C + d advances the clock

for every r ∈ R to the value C(r) + d. For an unbounded delay d = ∞, however,

C+ d sets the clock for every r ∈ R to C(r) =∞. For some subset of rules R̂ ⊆ R ,[
R̂ 7→ 0

]
C resets the clock for every rule in R̂ to zero and agrees with C for every

rule in R− R̂. The initial clock assignment for the system is defined such that the

clock for every rule is zero and is denoted by Co.
The state of a level-ruled Petri net can change by firing a transition or by

advancing time. To fire a transition t from the state (µ, ν, C), it must be marking

satisfied in µ. In addition to this, it must satisfy conditions in the Boolean state ν

and the clock assignment C too.

Definition 2.16 (Marking Satisfied Rule Set). A set of rules R′ is satisfied by

the marking µ if P ′ ⊆ µ where P ′ = {p ∈ P | (p, t) ∈ R′} is the set of places for the

rules in R′; the operator ` denotes this property; µ ` R′ indicates that the property
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holds and µ 0 R′ the opposite.

Definition 2.17 (Marking Satisfied Transition). A transition t is marking

satisfied by µ if µ ` R(t).

Definition 2.2 on Petri net semantics is identical to Definition 2.17. It is expressed

in terms of rules to make the notation consistent with level-ruled Petri nets.

A set of rules is level satisfied by a Boolean state if the Boolean function for

each rule in its rule set returns true on this state.

Definition 2.18 (Level Satisfied Rule Set). The rule set R′ is level satisfied by

the Boolean state ν if for all r ∈ R′, Lsat(r)(ν) = true; ν ` R′ indicates that the

property holds and ν 0 R′ the opposite.

Definition 2.19 (Level Satisfied Transition). A transition t is level satisfied

by ν if ν ` R(t).

For the network in Fig. 2.4, the transitions a+ and b+ are level satisfied by the

initial state νo = ∅ because Lsat(r1)(∅) = true and Lsat(r3)(∅) = true. Con-

sider the fragment shown in Fig. 2.5. If the current Boolean state is ν = {a, b},

then the transition t1 is not level satisfied because Lsat(r1)({a, b}) = true while

Lsat(r2)({a, b}) = false. If the current Boolean state is ν = {a, b, c}, however, then

t1 is level satisfied because Lsat(r2)({a, b, c}) is now true.

The time semantics define the earliest time at which it is possible to perceive

a change in the Boolean state of a wire after it is enabled to transition. It also

defines a latest possible time where the state is ensured to have changed. This

maps the analogue phenomenon of a signal moving between its bistable states into

a ∧ b
[3, 5]

c ∨ d
[10, 15]

p1 p2

t1

r2r1

Fig. 2.5. A net fragment showing a transition with two rules.
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the level-ruled Petri net model. The time spent between the bistable states is

undefined; thus, until an enabled transition on a signal fires, the state of the signal

is unknown.

A set of rules is time satisfied by a clock assignment function if two conditions

are met: first, the clock for each rule in its rule set is above its earliest firing time;

and second, if its rule set is not empty, then there exists a clock for a rule in its

rule set, that is below its latest firing time. These two conditions are formalized in

Definition 2.20.

Definition 2.20 (Time Satisfied Rule Set). The rule set R′ is time satisfied

by the clock assignment function C if for all r ∈ R′, C(r) ≥ Eft(r); and if R′ 6= ∅,

then there exists a rule r′ ∈ R′ such that C(r′) ≤ Lft(r′); C ` R′ indicates that the

property holds and C 0 R′ the opposite.

Definition 2.21 (Time Satisfied Transition). A transition t is time satisfied

by C if C ` R(t).

Consider again the fragment shown in Fig. 2.5. The transition t1 is time satisfied in

the shown marking and Boolean state, {a, c}, if C(r1) = 8 and C(r2) = 14 as each is

above its earliest firing time and C(r2) is below its latest firing time. If C(r1) = 10

and C(r2) = 16, however, then t1 is not time satisfied because the clocks for r1 and

r2 have exceeded the latest firing time of their respective rules.

Only enabled transitions can fire in a state of the level-ruled Petri net. For a

transition to be enabled, it must meet properties in all members of the state tuple.

Definition 2.22 (Enabled Transition). The transition t is enabled in the state

(µ, ν, C) if µ ` R(t), ν ` R(t), and C ` R(t); (µ, ν, C) ` R(t) indicates that the

property holds and (µ, ν, C) 0 R(t) the opposite.

Consider a state (µ, ν, C) of the network of level-ruled Petri nets in Fig. 2.4. Suppose

that µ is the one shown, ν = ∅ as all signals are currently in a low Boolean state,

and the clock assignment function is defined such that C(r1) = 5 and C(r3) = 5.

The transitions a+ and b+ are enabled in this state. Each is marking satisfied as
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µ ` R(a+) and µ ` R(b+); each is level satisfied as ¬c is true in ν; and each is

time satisfied by C as 5 is greater than the earliest firing time defined on r1 and r3.

The transition c+, however, is not enabled in this state. Although it is marking

satisfied by µ, it is not level satisfied by the state as a ∧ b is currently false.

Firing an enabled transition updates each member of the state tuple to reflect

the new state of the system. The new marking is given by Definition 2.3. The

Boolean state is updated by adding to or removing from the current Boolean state

the output associated with the transition if one exists.

Definition 2.23 (Boolean State Update). The Boolean state created from firing

an enabled transition t in (µ, ν, C) is computed as

ν ′ =


ν ∪ {u} if L(t) = u+,
ν − {u} if L(t) = u−, and
ν otherwise.

The first two cases on the update handle the low to high and high to low transitions

of an output signal. The last case is for transitions that are not mapped to actions

on outputs. These transitions affect only the marking and do not affect the Boolean

state of the system. If the enabled transition a+ is fired in Fig. 2.4(a) from the

shown marking with ν = ∅, then from Definition 2.23, ν ′ = {a}.

The update on the clock function defines the rules for which clocks are to be

reset and then resets those clocks.

Definition 2.24 (Reset Rules). The set of reset rules R̂ in (µ, ν, C) when firing

the enabled transition t is computed as r ∈ R̂ if Lsat(r)(ν ′) = true in the updated

Boolean state ν ′; and either r ∈ {(p′, t′) ∈ R | p′ ∈ t•}, or r ∈ {(p′, t′) ∈ R | p′ ∈ µ}

and Lsat(r)(ν) = false.

The first requirement on members of the reset rule set is that each rule in the set

be level satisfied by the new Boolean state created by firing the enabled transition.

The next requirement on the rules in the set can be satisfied in two different ways:

first, the firing of the transition adds the rule’s place to the marking; or second, the

rule’s place is already in the marking but firing the transition causes it to become
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level satisfied where it is currently not level satisfied. Consider the net fragment in

Fig. 2.4(a). Firing a+ from the shown marking in the initial Boolean state creates

an empty set of reset rules. This is because the rules on a− and c+ are not level

satisfied by ν = {a} even though p2 is newly added to the marking. The rule for b+

is not reset either as its place is not newly added to the marking and it is already

level satisfied by the initial state. Firing b+ next, however, creates a set of reset

rules R̂ = {r4} as the new Boolean state ν = {a, b} causes the rule r4 on c+ to

become level satisfied.

Definition 2.25 (Clock Assignment Update). The clock assignment created

from firing an enabled transition t in (µ, ν, C) is computed as C ′ =
[
R̂ 7→ 0

]
C where

R̂ is the set of reset rules.

The clock assignment updates the final member of the state tuple by resetting clocks

on rules in the reset set; thus, the final state of the network in Fig. 2.4 after firing

a+ from (µ, ν, C) where µ is the one shown, ν = ∅, and C is such that C(r1) = 5

and C(r3) = 5, is (µ′, ν ′, C ′) where µ′ = {p2, p3, p5}, ν ′ = {a}, and C ′ = C. If the

enabled transition b+ is now fired from the new state, then the updated marking is

{p2, p4, p5}, the updated Boolean state is {a, b}, and the updated clock assignment

agrees with the new clock assignment except that now the clock value for r5 is zero

as it is reset when the rule became level satisfied due to the firing of b+.

The state of the level ruled Petri net can change not only by firing an enabled

transition, but also by advancing time, which is to fire a delay. Unlike firing a

transition, firing a delay only affects the clock assignment function in the state

tuple.

Definition 2.26 (Delay Firing). The new state created from firing the delay

d ∈ R+ ∪ {∞} in (µ, ν, C) is given as (µ, ν, C ′) where C ′ = C + d.

As shown, firing a delay is an advancement of time in the clock assignment function.

There is, however, a restriction on the size of the delay that can be fired. This is

described as an enabling condition; thus, only enabled delays can fire from a state.
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Definition 2.27 (Maximum Delay). The maximum delay d ∈ R+ ∪ {∞} that

can fire in the state (µ, ν, C) given the set X = {t ∈ T | R(t) 6= ∅ ∧ (µ, ν) ` R(t)}

of marking and level satisfied transitions in the state with nonempty rule sets is

d =

{
∞ if X = ∅ and

mint∈X
(
maxr∈R(t) (Lft(r)− C(r))

)
otherwise;

The calculation only considers transitions that are marking and level satisfied in the

state because these are the transitions that are either currently time satisfied and

thus, enabled, or will become such by advancing time. If none of these transitions,

have defined rule sets as indicated by X = ∅, then the maximum delay is infinite.

Any enabled transition in the state can fire at any time in this scenario. If X is

nonempty, however, then the maximum delay is computed by looking at the rule

sets for each of the transitions in X. Consider the inner part of the computation

in Definition 2.27 that is given as maxr∈R(t) (Lft(r)− C(r)). For each rule in a

transition’s rule set, it finds the maximum amount of time that can advance while

preserving a single rule in the set that is time satisfied after the advancement. The

maximum delay transition is the minimum of these delays over all of the transitions

that are marking and level satisfied by the state. This means that a transition

either remains nonenabled, becomes enabled, or is enabled already and remains

enabled after the delay transition. Consider the state (µ, ν, C) of the net in Fig. 2.4

where µ = {p2, p4, p5}, ν = {a, b}, and C is such that C(r5) = 0. Transition c+ is

the only transition that is marking satisfied by µ and level satisfied by ν; thus, the

maximum delay computation is d = 50. Now consider the net fragments in Fig. 2.6.

The marking is µ = {p1, p2, p3}; the Boolean state is ν = {a, b, c}; and the clock

assignment function is such that C(r1) = C(r2) = C(r3) = 5. Transitions t1 and t2

a ∧ b
[3, 5]

c ∨ d
[10, 15]

p1 p2

t1

r2r1 [8, 12] r3

t2

p3

Fig. 2.6. Net fragments illustrating the maximum delay definition.
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are marking satisfied by µ and are level satisfied by ν, but they are not enabled in

the state (µ, ν, C) because they are not time satisfied by C. The maximum delay

in this state is d = 7. Although transition t1 can accept d = 10, a delay of this

size would cause transition t2 to never be time satisfied. To illustrate this, suppose

that the delay of 10 is fired in this state. The clock assignment in the new state for

r3 is now C ′(r3) = 15. Transition t2 can never be time satisfied from this state by

Definition 2.21 as C ′(r3) > Lft(r3), and r3 is its only rule; thus, t2 never becomes

enabled and fires after the time advancement. The outer part of the maximum

delay computation is a minimum over all transitions that are marking and level

satisfied by the state to not miss behaviors by allowing time to advance beyond the

point where transitions can fire.

Definition 2.28 (Enabled Delay). The delay d ∈ R+ ∪ {∞} is enabled in a

state if d is equal to or less than the maximum delay allowed by that state; this is

indicated for some state s and delay d by s ` d; s 0 d indicates the property does

not hold.

Any rule that is less than or equal to the maximum delay in a given state is an

enabled delay transition by Definition 2.28. This prevents a transition from loosing

its enabling or not becoming enabled at all through the advancement of time; thus,

behaviors in the model are not lost through the advancement of time.

It is convenient to define actions on delay-transition pairs as a level-ruled Petri

net is often first updated by firing a delay, and then updated by firing a transition.

The following definitions are presented to support this notion.

Definition 2.29 (Enabled Delay-transition Pair). The delay-transition pair

(d, t) is enabled in the state (µ, ν, C) if the delay d is enabled in (µ, ν, C) and firing

it from (µ, ν, C) leads to the state (µ, ν, C ′) where the transition t is enabled; this

is indicated by (µ, ν, C) ` (d,R(t)); (µ, ν, C) 0 (d,R(t)) indicates that the property

does not hold.

For the state (µ, ν, C) of the network in Fig. 2.4 where µ = {p2, p4, p5}, ν = {a, b},
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and C is such that C(r5) = 0, the delay-transition pair (35, c+) is enabled. This is

because the delay 35 is enabled in the state and firing the delay 35 leads to a new

state where c+ is enabled to fire. It is important to note that a delay does not

always have to be nonzero. Consider now the state of the same network where the

µ is the one shown, ν = ∅, and C is such that the clocks for all rules are at zero. The

set of enabled transitions in this state is {a+, b+}; thus, the delay-transition pair

(0, a+) is enabled as is the pair (0, b+). In reality, there are an infinite number

of enabled delay-transition pairs in this state as the transitions a+ and b+ are

untimed.

Definition 2.30 (State Update). The state created by firing the enabled delay-

transition pair (d, t) in (µ, ν, C) is given as (µ′, ν ′, C ′) where µ′ and ν ′ are the marking

and Boolean state updated with the firing of t, and C ′ is the clock assignment that

is first updated with the firing of d followed by t.

Suppose that s is the state (µ, ν, C) and that s′ is the state (µ′, ν ′, C ′) . The notation

s [(d, t)〉 s′ is used to indicate that firing the enabled delay-transition pair (d, t) in

s leads the system to s′. Forcing the delay to fire before the transition lets time

advance so that transitions can become time satisfied and enabled to fire.

A firing sequence in a level-ruled Petri net is a pair of delay and transition

vectors (d, t) of equal length such that firing each delay-transition pair (di, ti) leads

to a state tuple where the next one can fire. This is expressed in Definition 2.31.

Definition 2.31 (Firing Sequence). A pair of delay and transition vectors (d, t)

where d = (d1, d2, . . . , dn−1, dn) and t = (t1, t2, . . . , tn−1, tn) is a firing sequence if

there exists a vector of states s = (s0, s1, s2, . . . , sn−1, sn) such that for each si =

(µi, νi, Ci), the following holds: (di, ti) is enabled in si−1 and si−1 [(di, ti)〉 si for

1 ≤ i ≤ n; the function P(s) returns the set of all possible firing sequences that

start from the state s = (µ, ν, C).

The pair (5, 150, 30) and (b+, a+, c+) is a firing sequence for the network in Fig. 2.4

that satisfies Definition 2.31. Delay-transition pairs (5, b+) and (150, a+) are
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enabled in the shown initial state of the network regardless of the clock assignment.

States exist such that firing them in any order enables (30, c+). The pair (5, 150, 20)

and (b+, a+, c+), however, is not a firing sequence because there does not exist an

s that satisfies Definition 2.4; there is no state vector that enables (20, c+) on this

firing sequence.

A firing sequence is prefix-closed if any prefix of the firing sequence is a firing

sequence too. A firing sequence is prefix-closed by definition. A firing sequence is

monotonic if time can only advance in the forward direction. A firing sequence is

also monotonic by definition. The empty firing sequence is represented by the pair

(ε, ε). It is a firing sequence with no delay-transition pairs.

The notion of reachable states in a level-ruled Petri net can now be approached.

One state is reachable from another state if there exists a firing sequence that takes

the net from the one state to the other. This is expressed in Definition 2.32.

Definition 2.32 (Reachable). The state sn is reachable from so if there exists a

firing sequence that starts in so and ends in sn.

The notation so [(d, t)〉 sn indicates that sn is reachable from so on the firing

sequence (d, t).

The set of reachable states defines the behavior of the level-ruled Petri net. This

set is denoted by [s〉. Definition 2.6 formalizes this set.

Definition 2.33 (Reachable State Set). The reachable states from an initial

state s is the set of states [s〉 ⊆ 2P × 2W × {C | C : R→ R
+ ∪ {∞}} where s′ ∈ [s〉

if either s′ = s or there exists a firing sequence (d, t) such that s [(d, t)〉 s′.

The reachable state space of a level-ruled Petri net is its reachable state set [so〉

derived from its initial state so = (µo, νo, Co), where Co is the clock assignment

function such that all clocks are zero for all rules. The function P(so) returns the

set of all possible firing sequences that start from the initial state.
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2.3 Examples

The level-ruled Petri net can be used to specify a variety of timed systems.

The goal of this section is to present select examples that demonstrate various

properties of the level-ruled Petri net. Section 2.3.1 presents a model of the IBM

elastic synchronous pipeline. This is a purely synchronous design and shows how

the level-ruled Petri net can be applied in a synchronous domain. Section 2.3.2 is

another synchronous design from IBM, but this design uses delayed-reset domino

gates instead of static gates as seen in Section 2.3.1. This example is unique in

that the level-ruled Petri net is used to model a system with many different clock

domains. The aggressive nature of these circuits yields two-sided timing constraints

that are critical for functionality.

The final example in this section, the STARI FIFO, is different from the previous

two in that it does not include any type of syntactic abstraction. The examples in

Section 2.3.1 and Section 2.3.2 both use Boolean functions to simplify the structure

of the composed system. Section 2.3.3 describes the STARI FIFO at the module

level without using any type of syntactic abstraction. The STARI FIFO is an

asynchronous FIFO. It is included here to demonstrate how a network of level-ruled

Petri nets not using syntactic abstraction is composed to create a single net model

of the system.

2.3.1 Elastic Synchronous Pipelines

This is an example of the level-ruled Petri net applied to the design shown in

Fig. 2.7. This is the IBM elastic pipeline from [12]. The pipeline is completely

analyzed in Section 6.3.1. The goal of the design is to reduce power by fine grain

clock gating. The presentation here is to showcase the ability of the level-ruled

Petri net to specify real designs. There are four unique gates in this pipeline:

an inverter that is represented by a small bubble on an input, an AND gate, a

latch, and the environments for clk and stall . The level-ruled Petri net model

for the inverter is given in Fig. 2.4(a) with the model for the AND gate given in

Fig. 2.1(b). The latch and environment entities are shown in Fig. 2.8. The latch in

Fig. 2.8(a) is transparent on the positive phase of the clock input and opaque on
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latch latch latch latch

clk1 clk2 clk3 clk4

clk
stall

stall1 stall2 stall3

Fig. 2.7. A gate schematic of the IBM elastic synchronous pipeline.

[40, 50]
clk ∧ d

clk ∧ ¬d
[40, 50]
q− q+

[400, 400]

[400, 400]
clk− clk+

[20, 80]

t2

¬clk
[0, 0]

[20, 80]
clk ∧ stall

clk
[20, 80]
clk ∧ ¬stall

t1
stall− stall+

(a) (b) (c)

Fig. 2.8. The latch and environment models for the elastic pipeline. (a) The
level-ruled Petri net model of an edge-triggered latch. (b) The level-ruled Petri
net model for the clock input. (c) The level-ruled Petri net model of a random
environment that captures all behaviors of the stall signal.

the negative phase. The environment in Fig. 2.8(b) is the global clock input. This

model simply toggles the clk signal with a regular period. The final environment

model in Fig. 2.8(c) produces firing sequences that represent the system being

infinitely stalled, never stalled, and every stall behavior between the two extremes.

The structure of this net forces a random choice based on the state of the stall

signal in the marking shown. If stall is high, the net can either fire the stall−

transition, or it can do nothing by firing t1. Similarly, if stall is low, then the

net can either fire it high, or do nothing too. The random stall input enables an

analysis algorithm to check correctness under all possible input conditions. The
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effect of this is that a correct implementation is correct under all input scenarios

and timing conditions allowed by the environment and circuit model. This result is

more important than one obtained through the simulation of inputs on corner cases.

Another important property of the stall environment in Fig. 2.8(c) is that it does not

generate multiple stall transitions in a given clock cycle. It either transitions stall

high or low; or it does nothing. This type of environment is optimistic and assumes

an input that is free of hazards, although it is possible to model an environment

with hazards if needed.

Using the models for the four basic gates, a complete model of the elastic pipeline

in Fig. 2.7 can be constructed. This is done by first assigning unique names to the

outputs of each gate in Fig. 2.7. The level-ruled Petri net model for each gate

is then replicated, and the output names are mapped into each level-ruled Petri

net according to the circuit connectivity. This completes the specification. The

result of the replication and mapping for the second stage is shown in Fig. 2.9.

There are four models in this figure. Fig. 2.9(a) is the latch to generate stall2 based

on its input stall3 . Fig. 2.9(b) is the invert of the stall2 input. It generates nstall2 .

Fig. 2.9(c) creates the actual clock input to the data latches. It is an AND gate.

Its output is clk2 . Finally, Fig. 2.9(d) is a data latch to model a single bit of the

data path.

This elastic synchronous pipeline shows the level-ruled Petri net modeling a

completely synchronous system at the gate level. In this application, the model can

be analyzed to check for hazard freedom in the clock gating circuits. Without the

syntactic abstraction, the structural complexity of this model is greatly increased.

2.3.2 Delayed-reset Domino Gates

The next example is a delayed-reset domino gate from the IBM gigahertz unit

test site [4]. The test site is an experiment to build a gigahertz processor using a

600 nanometer fabrication process—an extremely high frequency for this process

technology. To obtain this type of frequency, the processor is implemented using

delayed-reset domino gates like that shown in Fig. 2.10. Belluomini describes this

gate and presents a similar model in [13, 10]. The gate computes the function
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[40, 50]
clk ∧ stall3

clk ∧ ¬stall3
[40, 50]

stall2− stall2 +
[0,∞]

stall2
[0,∞]

nstall2− nstall2 +

¬stall2

(a) (b)

[35, 45]
clk ∧ nstall2

¬clk ∨ ¬nstall2
[35, 45]

clk2− clk2 +
[40, 50]
clk2 ∧ d1

clk2 ∧ ¬d1

[40, 50]
d2− d2 +

(c) (d)

Fig. 2.9. The replication and mapping for the specification of the second stage.
(a) The latch to generate the stall2 signal. (b) The invert gate that takes the stall2
signal and generates its inversion nstall2 . (c) The AND gate to generate the clk2

input to the data latch. (d) A data latch to model a single bit of the data path.

clk2

a b

c

clk1

f2

f1

Fig. 2.10. A two-stage delayed-reset domino gate to compute (a ∨ b) ∧ c.

(a∨ b)∧ c using two distinct stages. The first stage computes f1 = a∨ b. The result

is forwarded to the second stage that computes f2 = f1∧c. Each stage of the gate is

controlled by its own unique clock: clk1 for stage one and clk2 for stage two. Each

stage precharges in the low phase of its clock. This drives its output to a low state.

Each stage evaluates on the high phase of its clock. The delayed-reset domino gate

is rather aggressive in design because it lacks a transistor at the bottom of each
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n-stack to turn off the ground path when the stage enters its precharge phase; thus,

the timing of clk1 and clk2 , as well as other clocks in the system, must be such that

inputs to any stage of the design are low before the stage enters its precharge phase.

This prevents a stage from ever having a conducting path from power directly to

ground that could potentially destroy it, or at a minimum, waste power.

The level-ruled Petri net model of the gate in Fig. 2.10 is given in Fig. 2.11.

Fig. 2.11(a) is stage one of the gate. It computes f1 = a ∨ b when clk1 is high.

If clk1 is low, however, it simply sets f1 to a low state. Fig. 2.11(b) is stage two

of the gate. It computes f2 = f1 ∧ c using the result of f1 from stage one when

clk2 is high. Like stage one, it sets the function to a low state when clk2 is low. A

portion of a potential environment for the gate is shown is in Fig. 2.12. Fig. 2.12(a)

is a global clock used to synchronize various local clocks. Fig. 2.12(b) is the local

clock clk1 . It operates the first stage that computes f1 = a ∨ b. Fig. 2.12(c) is an

environment to generate input a. Like the environment shown in Fig. 2.8(c), this

environment randomly selects to raise the a input or to leave it in its low state.

The environments for inputs b and c are similar, only the input c has a larger delay

so that it does not arrive at stage two until stage two is in its evaluate phase of

clk2 .

The delayed-reset domino gates shows the application of the level-ruled Petri

nets to nonstandard designs. These gates are aggressive, and require special analysis

to not only synthesize, but to demonstrate correctness. The level-ruled Petri

net retains enough behaviors from the actual system to make it suitable for this

type of analysis.

[50, 70]
(a ∨ b) ∧ clk1

¬clk1

[10, 20]
f1− f1 +

[10, 30]
(f1 ∧ c) ∧ clk2

¬clk2

[20, 50]
f2− f2 +

(a) (b)

Fig. 2.11. The net models for the delayed-reset domino gate. (a) The net to
compute f1 = a ∨ b. (b) The net to compute f2 = f1 ∧ c.
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[500, 500]

[500, 500]
clk1− clk1 +

[10, 30]
clk

¬clk
[30, 30]

clk2− clk2 +
a− t2

t1a+

[0, 0][10, 20]
¬clk¬clk

[40, 50]
clk clk

[20, 80]

(a) (b) (c)

Fig. 2.12. Three environment models for the delayed-reset domino gate. (a) The
model for the global clock. (b) The model for the first offset clock clk1 . (c) The
model for the input a.

2.3.3 STARI FIFO

The next example is the STARI FIFO, a version of which is used by Sun

Microsystems in a commercial application [14, 15]. Consider the block diagram

of a STARI FIFO with two stages in Fig. 2.13. The STARI FIFO enables com-

munication between two circuits that are operating at the same clock frequency

but are out-of-phase due to clock skew [16, 17]. Clock skew can cause it to appear

that one of the circuits operates faster than the other. The STARI protocol puts

more data in the FIFO when the transmitter works faster than the receiver and

supplies data from the FIFO to the receiver when the receiver works faster. The

STARI FIFO is a common timed circuit benchmark, since its correctness depends

on timing assumptions.

x0.f x1.f x2.f

ack1 ack2 ack3

x0.t x1.t x2.t

clk clk

1 2 RX

Global Clock

TX

Fig. 2.13. The block diagram of a dual-rail STARI FIFO with two stages.
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The functionality of the STARI FIFO can be described as follows. At the

beginning of each clock period, one data item is inserted into the FIFO by the

transmitter (TX) by setting either x0.t or x0.f high. At the same time, one data

item is removed by the receiver (RX) by setting ack3 low. Data is then allowed

to propagate asynchronously down the FIFO queue. When clk goes low, the TX

removes the input data item by resetting x0.t or x0.f and the RX removes the

acknowledgment by setting ack3 high.

The simplest level-ruled Petri net is the one shown in Fig. 2.14(a) that models

the global clock. This model toggles the clock with a fixed period of 12 time

units. Note that the majority of the places are not drawn to simplify the figures

in this example. The transitions are replaced with their labels from the labeling

function too. The level-ruled Petri net for the TX transmitter module is shown

in Fig. 2.14(b). The drawn places in this figure represent conflict places. The clk

signal is an input, and the x0.t and x0.f signals are outputs. When the net for the

TX block sees the transition clk+, it randomly produces either x0 .t+ or x0 .f + in

the specified timing bound. This is the dual-rail encoded data item that is sent

to the first stage. The 0 to 1 time delay is used to model the clock skew. After

transmitting the data item, the TX module waits for the clk+ transition. It then

resets either x0 .t+ or x0 .f + depending on what it transmitted. The level-ruled

Petri net for the RX receiver module in shown in Fig. 2.14(c). The clk signal is an

input and the ack3 signal is an output. This module waits for clk+ to transition

and then lowers ack3 to indicate that it has received the data item. After the clk+

transition, it raises its ack3 line to request a new data item. Again, the 0 to 1 time

delay is used to model clock skew.

The level-ruled Petri net for the first stage of the STARI FIFO is presented in

Fig. 2.15(a). This stage does not currently hold a data item, and its ack1 output

is high. The model for the stage is divided into two nets. The lower net waits for

either the x0 .t+ or x0 .f + transition to indicate it has a valid data item. It also

waits for ack2 to go high to indicate that the next stage is empty and ready to

receive a data item. It then fires its x1 .t+ or x1 .f + transition to pass the data
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[12, 12]

[12, 12]

clk+ clk−

x0 .t− x0 .f−

clk+

clk−
x0 .t+ x0 .f +

[0, 1][0, 1]

[0, 1] [0, 1]

[0, 1] [0, 1] [0, 1] [0, 1]

ack3− ack3 +

clk+ clk−

(a) (b) (c)

Fig. 2.14. The environment specification for the STARI FIFO. (a) The level-ruled
Petri net for the global clock module. (b) The level-ruled Petri net for the TX
transmitter module. (c) The level-ruled Petri net for the RX receiver module.

item to the next stage. After firing one of these two transitions, it fires ack1−

to indicate to the TX module that it has successfully received the data item. At

this point, it waits for either x0 .t− or x0 .f− and ack2− from the next stage to

indicate that it has accepted the data item. It then resets by firing either x1 .t−

or x1 .f− depending on the data item it transmitted. After firing one of these

transitions, it fires its ack1 + transition to request a new data item. The level-ruled

Petri net model for the second stage is shown in Fig. 2.15(b) is similar to the first

stage, only it starts in a different state because it is initialized with a data item.

If each component is examined separately, then some contain unconstrained

input behaviors. Consider again the net shown in Fig. 2.14(a). In the initial

marking, only the delay-transition pair (12,clk+) is enabled. Firing it leads to a

state where the delay-transition pair (12,clk−) is enabled. Firing this leads again

to the enabling of the first delay-transition pair (12,clk+). The behavior of the clk

signal is completely defined in this module and is the only output signal. Consider

now the level-ruled Petri net shown in Fig. 2.14(b). The transitions clk+ and clk−

are the only marking and level satisfied transitions in this net. They can fire with

any delay. They are unconstrained inputs to this module. Suppose that clk+ fires

on some delay. After it fires, either x0 .t+ or x0 .f + can fire with any delay up to 1

time unit. The level-ruled Petri nets in this figure describe only part of the behavior
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x1 .t+ x1 .f +

[1, 2] [1, 2]

x0 .t+ x0 .f +ack2+

ack1−

[1, 2] [1, 2]

x1 .t− x1 .f−

[1, 2] [1, 2]

x0 .t− x0 .f−ack2−

ack1+

[1, 2] [1, 2]

[1, 2]

[1, 2]

[1, 2][1, 2]

[1, 2]

x1 .t− x1 .f−ack3−

ack2+

x2 .t− x2 .f−

[1, 2]

x1 .t+ x1 .f +ack3+

ack2−

x2 .t+ x2 .f +

[1, 2] [1, 2]
[1, 2] [1, 2]

[1, 2] [1, 2]

(a) (b)

Fig. 2.15. The empty and full stage model for a STARI FIFO. (a) The level-ruled
Petri net for the empty first stage. (b) The level-ruled Petri net for full second
stage.

of the STARI FIFO. The complete behavior is defined in the parallel composition

of the network of modules describing the system.

The parallel composition of the network of modules for two stages of the STARI

FIFO is shown in shown in Fig. 2.16. This composition includes the nets in Fig. 2.14

and Fig. 2.15 that completely describe the environment and FIFO stages of the

system. In the initial marking, (12,clk+) is the only enabled delay-transition pair

to fire. The parallel composition restricts the behavior of the clk signal in the first

and second stage models. The clk input is no longer unconstrained and must fire

within the specified timing bounds. The firing of (12,clk+) results in a state where

clk− can fire with a delay of 12, x0 .t+ or x0 .f + can fire with a delay up to 1,

and ack3− can fire with a delay between 1 and 2. The maximum allowed delay

in this state is 1, so clk− can never fire before the other transitions. Assume that

(0,x0 .t+) fires first. This firing causes x0 .f + to no longer be marking satisfied as

it consumes the token in the place they share in their preset.
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[1, 2][1, 2][1, 2] [1, 2]

[12, 12]

[12, 12]

clk−clk+

[1, 2]

ack3+

ack2−

x2 .t+ x2 .f +

[1, 2] [1, 2]

[1, 2]

x1 .t+ x1 .f +

[1, 2] [1, 2]
[1, 2] [1, 2]

x0 .t+ x0 .f +

ack1−

[1, 2]

ack1+

x1 .t− x1 .f−

[1, 2] [1, 2]
[1, 2] [1, 2]

x0 .t− x0 .f−

[1, 2]

ack3−

ack2+

x2 .t− x2 .f−

[1, 2] [1, 2]

[0, 1] [0, 1] [0, 1] [0, 1]

[0, 1] [0, 1]

Fig. 2.16. The level-ruled Petri net for the composed STARI FIFO.

The STARI FIFO demonstrates the use of the level-ruled Petri net to describe

systems with modules without using syntactic abstraction. It shows how the

modules are composed to produce the parallel composition of the system. The

final composed system can be analyzed, or it can be used in conjunction with one

of its constituent modules to reduce the complexity of the analysis.

2.4 Related Work

The system model affects not only the ease of specification, but the cost of anal-

ysis too. The goal of analysis depends on its application. A model for verification

may have different needs than one for synthesis. It is not uncommon to find several

different ways to model a timed system; each one has its strengths and weaknesses
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according to the goal it is trying to achieve. The myriad of existing models makes

selecting an appropriate model challenging.

Alur introduces timed automata as a signal model for timed systems in [18]. A

timed automaton is a state based specification language where transitions between

states are governed not only by Boolean functions defined over inputs, but clock

valuations too. An example of a timed automaton model of the function c = a ∧ b

is shown in Fig. 2.17(a). Each node of the automaton is a state. This example has

two states. Each node may be given an optional invariant label. This label can

include not only Boolean logic values on the signal wires, but also allowed ranges

of the clock variables. The example has an invariant label in each state. The first

label forces the two functions to be equivalent. The second label allows the system

to stay in the state as long as the clock C is under 45. Transitions are governed by

the state of the inputs and the values of the clocks in the system. In this example, a

transition from the left to right state is governed by X and F not being equivalent.

There are two transitions from the right back to the left state. If the X and F

become equivalent, or if they are not equivalent and the clock is between 35 and 45

time units. When a transition is taken, the system executes actions on clocks and

signals in the system. In this example, either clock C is reset to 0, or the output X

is inverted to match its function F . A system is the parallel composition of several

timed automaton.

A timed automaton is a suitable model for verification as shown in [19, 20, 21,

22, 23]. Work by Bengtsson et al. in [24] and Minea in [25] develop partial order

techniques to reduce the cost of verification in timed automata. Work by Bozga

uses symbolic methods to help contain the verification cost [20, 26, 27, 28]. It is

important to note that timed automata support both time and Boolean functions.

They are very similar to level-ruled Petri nets. In a timed automaton, however, the

designer must declare each of the clocks as part of the specification. The designer

then has the ability to use the clocks where desired. This is not the case for the

level-ruled Petri net. A designer does not have the ability to selectively choose

where and how clocks are used. The timed automaton is thus more expressive
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than the level-ruled Petri net in this sense. The expressiveness, however, is not

always required; thus, it can needlessly complicate the analysis problem. Forcing

the designer to manage the clocks can be tedious too.

A Petri net is an alternative model to the timed automata. The Petri net is

first introduced in [5] with surveys presented in [6, 7]. A common form of Petri

net is the signal transition graph introduced by Chu in [29, 30] and independently

by Rosenblum in [31]. The signal transition graph is a labeled safe Petri net. The

labeling function maps transitions in the net to transitions on signals in the system.

The M-net in [32] and I-net in [33] are variants of the Petri net that resemble the

signal transition graph. Varshavsky introduced change diagrams in [34]. A change

diagram is similar to a signal transition graph only it includes new types of arcs to

implement starting behavior and disjunctive causality. Note that the disjunctive

causality is not through Boolean functions, but through special types of edges in

the net. Moon adds a notion of don’t care and conditional behavior to the signal

transition graph in [35]. The nets can ignore random switching on certain signals

and resolve choice through Boolean functions. Ramchandani adds timing to the

Petri net in [36] by breaking each transition into two transitions separated by a

single place. When the first transition is enabled, it removes the tokens from its

preset and places a token in its single postset place. The token then remains in

that postset for some amount of time. The second piece of the transition then

fires and puts places in its postset. The fixed amount of time can be random

based on some distribution. Merlin adds delays to transitions in [37]. The work

by Vanbekbergen in [38] is of particular interest. Vanbekbergen extends the signal

transition graph to include minimum and maximum time intervals on places, four

types of transitions, and Boolean guards on places with multiple transitions in their

postset. The four types of transitions are: first, normal up and down transitions

like those in the level-ruled Petri net ; second, a don’t care transition that allows a

signal to randomly toggle between high and low states; third, level transitions that

indicate the Boolean state of the signal after the transition regardless of the state

before the transition; and fourth, toggle transitions that complement the current
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state of the signal. Although this extension is expressive and similar in many ways

to the level-ruled Petri net, Vanbekbergen does not present any type of analysis

algorithms for it.

The event structure introduced by Winskel is a signal model that is similar to

the Petri net and its many variants [39]. Burns adds fixed delays to the event

structure and develops algorithms to compute the average-case performance of

control implementations in [40, 41]. Myers added minimum and maximum bounds

to the event rule structure in [42]. Belluomini extends the event rule structure

to timed event/level structures in [10, 43]. An example of a timed event/level

structure for the function c = a ∧ b is shown in Fig. 2.17(b). This model strikes

a keen resemblance to the level-ruled Petri net. Like the Petri net it includes a

minimum and maximum delay bound coupled with a Boolean function on the edges.

An important difference, however, is the absence of places. The timed event/level

structure has no notion of a place; thus, all conflict must be resolve through a

relation in the model. A simple Petri net conflict structure is shown in Fig. 2.18(a).

The transition t1 and t2 share a common place in their preset; thus, only one of the

two transitions can fire. The identical structure for the timed event/level structure

is shown in Fig. 2.18(b). In this example, there are two rules (t1, t2) and (t1, t3).

Each is marked as indicated by the tokens on the rules. The structure does not

indicate that t2 and t3 conflict. This information is in the conflict relation and

X ⇐⇒ F C < 45

F ≡ a ∧ bX ≡ c

X ⇐⇒ F

¬(X ⇐⇒ F ) / C := 0

¬(X ⇐⇒ F ) ∧ C ≥ 35 / X := ¬X

c+

[35, 45]

¬a ∨ ¬b

a ∧ b

[35, 45]

c−

(a) (b)

Fig. 2.17. Two representations of the function c = a∧ b. (a) The timed automata
representation. (b) The timed event/level representation.
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denoted in the figure by the t2#t3 indication. Any arbitrary pair of events can

be included in the conflict relation as shown in Fig. 2.18(c). Although transitions

t2 and t4 are structurally independent, the timed event/level structure can make

them conflicting through the relation. This generality makes the timed event/level

structure so that it is not an equivalent model to the level-ruled Petri net. There

are things that can be modeled in each system that cannot be modeled by the other

system. The level-ruled Petri net, however, enjoys the formalism, semantics, and

algorithmic support of the Petri net world.

There is another important difference between the level-ruled Petri net and the

timed event/level structure: disabling and nondisabling semantic support for rules.

Consider a rule that is currently marked and level satisfied. Its clock is increasing

monotonically. Now suppose that a transition on a signal fires to move the system

to a new Boolean state, and the rule is no longer level satisfied. It is, however, still

marked. Now another signal transition fires to move the system back into a state

where the rule is once again level satisfied. Disabling semantic support resets the

clock for the rule back to zero at this point; and during the period where the rule

is not level satisfied, it cannot contribute to the enabling condition of a transition.

This is the defined semantics for the level-ruled Petri net . The clock on the rule

behaves differently, however, in nondisabling semantics. When the rule is no longer

level satisfied by the Boolean state, nondisabling semantic support still considers

t3t2

t1

t3t2

t1

#

t3t1

#t2 t4

(a) (b) (c)

Fig. 2.18. Conflict structures in the Petri net and timed event/level models. (a)
A Petri net conflict structure for two related transitions. (b) A timed event/level
structure for two related conflicting transitions. (c) A timed event/level structure
for two nonrelated conflicting transitions.
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the rule active and contributing to the enabling condition of transitions. The rule

is active until it is no longer marking satisfied. This implies that when the system

moves to the new Boolean state where the rule is once again level satisfied, its

clock is not reset because the rule is never deactivated. In brief, once a rule is

marking and level satisfied, it becomes enabled and does not lose its enabling due

to a change in Boolean state, only a change in marking. Nondisabling semantics

are not currently supported in the level-ruled Petri net model.

2.5 Summary

This chapter presents the level-ruled Petri net as a model for timed circuit

specification. The level-ruled Petri net supports minimum and maximum timing

annotations on arcs between places and transitions, as well as Boolean functions.

The Boolean functions are not restricted to only conflict places, but can be used

to annotate any arc between a place and transition. The basis in the Petri net

formalism allows it to model arbitrary concurrency. This chapter formally defines

its structure and semantics. It presents definitions to compose a complete timed

circuit system from a network of timed level-ruled Petri nets, including a definition

of a valid composition for the final system.

This chapter presents unique examples of the level-ruled Petri net modeling var-

ious synchronous and asynchronous systems. The first is a pipeline from IBM that

is optimized to reduce power and wire delay in traditional synchronous pipelines.

The other example is another industrial design from IBM. It is a high performance

pipeline that obtained unprecedented throughput and frequency. The final is a

STARI asynchronous buffer to communicate between two synchronous domains.

The examples strive to demonstrate the modeling power of the level-ruled Petri

net and its flexibility. The level-ruled Petri net can be used to specify both standard

and nonstandard gate design. It can be applied directly to the structural implemen-

tation of the system or a more behavioral description if desired. In addition, it has

the ability to specify very broad environments to drive the circuit models. These

environments can be deterministic or random. The random environments produce
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all possible input behaviors of the circuit. An analysis algorithm can thus determine

correctness of a design under all possible input conditions using the randomness in

the environment.

This chapter presents a brief overview of related work. Although it is not

comprehensive, it serves to give perspective to the level-ruled Petri net relative

to other models. Although the level-ruled Petri net can be used as the primary

specification language, it is supported by higher level languages too. A system can

thus be described at a higher level and then be compiled to the level-ruled Petri

net in a manner similar to that in [9].



CHAPTER 3

CORRECTNESS

Analysis has no meaning without a definition of correctness. This is true in

timed circuit applications. An analysis algorithm can be applied to a timed circuit

model, and it can report information from the analysis. The question is, however,

what do the results imply? The implication is readily clarified through a formal

definition of correctness in the model. The correctness definition enables an analysis

algorithm to state the condition of the model. If correct, then the designer exactly

understands what the circuit does in the model to make it correct. If incorrect,

then the designer exactly understands what the circuit does in the model to make

it incorrect.

The formal correctness definition is required to legitimate the timed circuit

model. Remember that an analysis algorithm can only operate on behaviors present

in the timed circuit model—the level-ruled Petri net in this work. Without the

correctness definition, it is not clear that the level-ruled Petri net is the appropriate

model for the analysis. If a designer is looking to explore a property that is outside

the scope of the level-ruled Petri net, then the analysis results are of no import

to the designer. More importantly, however, is that the designer may believe a

circuit to have certain properties that are never considered. The precise definition

of correctness in the level-ruled Petri net removes any confusion in the meaning

of the results; thus, the designer can select the appropriate model and analysis

algorithm to validate properties of interest to the timed circuit application.

The cost of analysis is an important consideration in addition to the modeled

properties. A rich set of properties and behaviors in the model adds to the cost

of analysis. A model must carefully balance the present behaviors and the cost of
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analysis. This cost is reflected in the correctness properties in the model.

The correctness definition is given in terms of a component operating in a

system environment. A complete system is often composed of several modules,

each modeled by an appropriate level-ruled Petri net. Correctness considers the

behaviors of a component in the parallel composition of the system. The level-ruled

Petri net model of a component in the parallel composition of the system is correct

if it is safe, consistent state assigned, output semimodular, and constraint satisfied.

The safe property does not allow transitions to add existing places in the mark-

ing, and it simplifies timing semantics. The consistent state assignment property

forces a single transition to fire between states toggling the Boolean state if the

transition is on a signal, and it simplifies the semantics of the model. The output

semimodular property prevents signals from disabling outputs or outputs disabling

any transitions visible to the component. The constraint satisfied property, finally,

checks user specified timing and ordering requirements in the model.

The safe, output semimodular, and consistent state assignment properties are

directly supported in the level-ruled Petri net. These are common correctness

properties in Petri net based models. The constraint satisfied property is not

directly supported, and it is a less common approach to correctness. Section 3.1

presents an extension to the level-ruled Petri net to support the constraint satisfied

property. All of the correctness properties are then formalized in the level-ruled

Petri net semantics in Section 3.2.

The goal of this chapter is to make a definitive statement on correctness in the

timed circuit model. Section 3.3 formalizes this statement and presents algorithmic

requirements necessary to show correctness in level-ruled Petri net analysis. A

survey of related work is presented in Section 3.4. This chapter is concluded with

a brief summary of salient points in Section 3.5.

3.1 The Constraint Rule

The constraint rule is a mechanism to refine the level-ruled Petri net structure

and semantics. The refinement enables the user to specify bounded timing response
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and required transition orders in the level-ruled Petri net. These specifications

can be made between any two transitions in the system regardless of their causal

relation. Consider again the STARI FIFO from Section 2.3.3 in Chapter 2 and for

convenience, shown here again in Fig. 3.1. The STARI FIFO enables communica-

tion between two circuits that are operating at the same clock frequency but are

out-of-phase due to clock skew [16, 17]. There are two properties that need to hold

in a correct STARI FIFO: first, each data value output by the transmitter must

be inserted into the FIFO before the transmitter sends another data value; and

second, a new data value must be output by the FIFO before each acknowledgment

from the receiver [44]. These two properties are modeled using constraint rules.

A constraint rule defines a requirement on the order and time separation between

transitions. Consider the level-ruled Petri net model with constraint rules for the

first stage of the STARI FIFO in Fig. 3.2(a). The constraint rules are shown

as dashed edge connections between places and transitions. A constraint rule is

different from an ordinary rule because it does not affect the behavior of a transition.

The enabling condition of a transition is determined completely by ordinary rules.

Once a transition is selected to fire, however, constraint rules are checked to see if

the firing violates user defined timing and ordering requirements. The constraint

rules in Fig. 3.2(a) check the first property of the STARI FIFO. The x0 .t+ or x0 .f +

inputs from the transmitter TX must always come after the ack1 + transition from

the first stage of the FIFO. Furthermore, these inputs must not arrive earlier than

3 time units after the ack1 + transition. This checks the first property of the

x0.f x1.f x2.f

ack1 ack2 ack3

x0.t x1.t x2.t

clk clk

1 2 RX

Global Clock

TX

Fig. 3.1. The block diagram of a dual-rail STARI FIFO with two stages.
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STARI FIFO because the ack1 + transition indicates that the first stage is ready

for another data item; thereby, it implies that the previous data item has been

inserted into the FIFO. The second property is checked on the second stage of

the FIFO in a similar fashion as shown with the constraint rules in its model in

Fig. 3.2(b). The x2 .t+ or x2 .f + transition must precede the ack3− input transition

from the receiver RX within 9 to 13 time units as expressed by the constraint rule.

This satisfies the second property because the ack3− transition indicates that the

receiver has captured the data; thus, x2 .t+ or x2 .f + must fire before ack3− to

make the captured data valid. In order to satisfy this property, however, the STARI

FIFO must be initialized to be half-full [17]. This is why the second stage of the

FIFO initially contains a single data item. The receiver captures this data item on

the first clock cycle.

The model of the STARI FIFO with two stages does not use syntactic abstrac-

tion. A constraint rule in an example with syntactic abstraction can have a unique

x1 .t+ x1 .f +

[1, 2] [1, 2]

x0 .t+ x0 .f +ack2+

ack1−

[1, 2] [1, 2]

x1 .t− x1 .f−

[1, 2] [1, 2]

x0 .t− x0 .f−ack2−

ack1+

[1, 2] [1, 2]

[3,∞][3,∞]

[1, 2]

[1, 2]

[1, 2][1, 2]

[1, 2]

x1 .t− x1 .f−ack3−

ack2+

x2 .t− x2 .f−

[1, 2]

x1 .t+ x1 .f +ack3+

ack2−

x2 .t+ x2 .f +

[1, 2] [1, 2]
[1, 2] [1, 2]

[1, 2] [1, 2]

[9, 13]

(a) (b)

Fig. 3.2. The empty and full stage model for a STARI FIFO with constraints. (a)
The level-ruled Petri net with constraint rules for the empty first stage. (b) The
level-ruled Petri net with constraint rules for full second stage.
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form. Consider the delayed-reset domino gate for the function (a ∨ b) ∧ c from

Section 2.3.2 as shown in Fig. 3.3(a). An important property in this circuit is that

the gates do not begin to precharge before their inputs have gone low. Consider

the second stage of the gate in Fig. 3.3(a) that computes f2 = f1 ∧ c. The inputs

f1 and c must be low before the clk2− transition to prevent a short circuit in the

gate. This property can be checked using constraint rules. The model for the clk2

input is shown in Fig. 3.3(b). It now includes a new constraint rule. This is the

dashed rule. The rule is initially marked, and it is newly marked each time clk2−

fires. The constraint rule checks a minimum separation between the time when

f1− or c− fire and the firing of clk2− ensuring that the inputs to stage two are

low a suitable time before the clk2− transition. Constraint rules in models using

syntactic abstraction often take this self-loop form.

Recall that a level-ruled Petri net is the tuple M = (N,E), where N =

(T, P, F, µo) is an ordinary Petri net, and E = (W,L, νo,Eft, Lft, Lsat) is a level-ruled

extension for the net N (Definition 2.10). The set of rules in M is given as

R = F ∩ (P × T ). The set of constraint rules is defined as C ⊆ R; thus, it is

a subset of the rules in R. Definition 2.8 defines a function that takes a transition

and returns the set of rules connected to that transition. This definition is refined

to reduce the number of structure and semantic definitions that must be revisited

clk2

a b

c

clk1

f2

f1

[10, 30]

clk

clk2− clk2 +
[30, 30]

¬f1 ∨ ¬c
[5,∞]

¬clk

(a) (b)

Fig. 3.3. A two-stage delayed-reset domino gate and its clk2 model. (a) A
two-stage delayed-reset domino gate that computes (a ∨ b) ∧ c. (b) The level-ruled
Petri net model of the clk2 input with a setup constraint.
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to support constraint rules.

Definition 3.1 (Ordinary Rule Set). For any transition t ∈ T , the rule set of t

is given as R(t) = {(p, t) ∈ R | p ∈ •t ∧ (p, t) ∈ (R− C)}.

This definition is different from Definition 2.8 in that it only includes rules that are

not found in the constraint set C. A new function to return constraint rules in a

set of places follows next.

Definition 3.2 (Constraint Rule Set). For any transition t ∈ T , the constraint

rule set of t is given as C(t) = {(p, t) ∈ C | p ∈ •t ∧ (p, t) ∈ C}.

This function returns all rules defined in the flow relation as connected to a transi-

tion that are constraint rules. With this refinement and new definition, the notion

of constraint rules can be approached in the structure and semantic definition of

the level-ruled Petri net.

The goal of this section is to present the structure and semantic changes to

the level-ruled Petri net to support the constraint rules. This is done by refining

existing definitions; Section 3.1.1 parallels Section 2.2.1, and Section 3.1.2 parallels

Section 2.2.2. In each section, only affected definitions are refined. All other

definitions remain unchanged.

3.1.1 Structure

The structure of the level-ruled Petri net in Definition 2.9 is augmented to

include the set of constraint rules C.

Definition 3.3 (Structure). A level-ruled Petri net with constraints is the three-

tuple M = (N,E,C) consisting of a Petri net N , its level-ruled extension E, and

a set of constraint rules C.

The Petri net N in Definition 2.1 and its level-ruled extension E in Definition 2.10

remain unchanged, as well as the output set O in Definition 2.11.

The parallel composition of a network of level-ruled Petri nets must now include

the set of constraint rules in the composition.
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Definition 3.4 (Parallel Composition). The parallel composition of a network

of level-ruled Petri nets M1 ‖ M2 ‖ · · · ‖ Mn creates the single net M = (N,E,C)

where for 1 ≤ i ≤ n and Mi = (Ni, Ei, Ci), N is the union over the constituent

members of each Ni; C is the union over each constraint set Ci; and E is the union

over the constituent members of each Ei excepting Lsat, which is the new function

such that for all indices j ∈ N, rules rj ∈ Rj, and Boolean states ν ∈ 2W , 1 ≤ j ≤ n

and

Lsatj(rj)(ν
′) = true ⇐⇒ Lsat(rj)(ν) = true,

where ν ′ = ν∩Wj is the Boolean state ν with all of the signals not in the component

signal set Wj removed and N is the set of natural numbers.

For the parallel composition to be valid, however, the network must be consistent

in the definition of the constraint rules in their intersection.

Definition 3.5 (Consistent Composition). A given pair of level-ruled Petri

nets (M,M ′) is consistent if they satisfy Definition 2.13 and for all rules r ∈

(R ∩R′), r ∈ C ⇐⇒ r ∈ C ′.

Two nets are consistent if, from Definition 2.13, they agree on the marking of

shared places, the Boolean state of shared outputs, and identically define shared

rules. Added to this definition is that the two nets must be consistent in their

definition of constraint rules. Given these refinements, Definition 2.14 correctly

formalizes a valid composition in the presence of constraint rules.

3.1.2 Semantics

A constraint rule is different than an ordinary rule because it does not affect

the behavior of a transition. In firing a transition, only rules in (R − C) affect

the transition firing. Once a transition is selected to fire, however, the rules in C

can be checked to see that the transition does not violate user defined timing and

ordering requirements from the specification. This is formalized in Section 3.2.4.

This section, however, performs the necessary refinement in the level-ruled Petri
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net semantics to support constraint rules as described.

The semantic definition of the level-ruled Petri net requires one refinement to

support constraint rules because constraints rules are passive participants in the

model. Their role, as mentioned earlier, is to observe, not to affect transitions.

As such, they are by default ignored in all existing definitions with the refinement

given in Definition 3.1. This works correctly in all instances but Definition 2.20.

Definition 2.20 formalizes the notion of a set of rules being time satisfied by

a clock assignment function. The definition allows clocks on rules to exceed their

upper bounds as long as a single rule exists in the rule set whose clock is below

its upper bound in the clock assignment function. Although these semantics are

appropriate for rules that affect the behavior of transitions, they are not correct

for constraint rules that operate as observers. The timing on constraint rules in

the model indicates bounded response by the model. The value of the clocks for

all constraint rules on a transition must be below their latest firing time when the

transition fires for this to be true. Definition 2.20 is refined to reflect this notion.

Definition 3.6 (Time Satisfied with Constraints). The rule set R′ is time

satisfied by the clock assignment function C if for all rules r ∈ R′, C(r) ≥ Eft(r);

and either of the two following conditions hold:

1. R′ 6= ∅, R′ ⊆ (R−C), and there exists a rule r ∈ R′ such that C(r) ≤ Lft(r′);

or

2. R′ ⊆ C and for all rules r ∈ R′, C(r) ≤ Lft(r)

C ` R′ indicates that the property holds and C 0 R′ the opposite.

Definition 3.6 now implements semantic support for constraint rules. A rule set that

contains rules only from R−C is time satisfied if its clocks are above their earliest

firing time in the clock assignment C and there exists a single rule in the set whose

clock assignment in C is below its latest firing time. This follows Definition 2.20.

A rule set that contains only rules from C, however, is time satisfied if its clocks

satisfy both their earliest and latest firing times. Note that any mix of constraint
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and ordinary rules in the rule set makes it not time satisfied regardless of the clock

valuations in C.

3.2 Correctness Properties

Correctness properties define the set of accepted behaviors in a level-ruled Petri

net of a component in a network. The term accepted as used here refers specifically

to behaviors that are deemed correct in the actual timed circuit application and

its environment. The goal of the level-ruled Petri net model of the timed circuit

is to explore the behaviors of the circuit and confirm the absence of inappropriate

behavior in the defined environment; thus, the correctness properties do not force

the model to be correct. They simply serve to identify situations where it is

incorrect, meaning, it violates a correctness property.

This section formally defines the safe, consistent state assigned, output semi-

modular, and constraint satisfied correctness properties in the level-ruled Petri

net model. Each property is presented in its own section along with a simple

example for illustrative purposes.

Notation must be presented before the correctness properties are defined. First,

the [ ] operator denotes the length of a vector in this presentation. Consider the

vector of transitions t = (t1, t2, . . . , tn), [t] is equal to n, where n is a natural

number of any size. The length of the empty vector ε is zero. Second, recall from

Section 2.2.2 that a state of a level-ruled Petri net is the state tuple s = (µ, ν, C).

The symbol s or (µ, ν, C) can be interchanged; both represent the same thing. Given

a state s, the symbols µ, ν, and C refer to the members of the state tuple s. If

the given state appears primed (s′) or subscripted (si) then members of the state

tuple also appear appropriately primed (µ′,ν ′,C ′) or subscripted (µi,νi,Ci). Third,

the left-hand argument of the ` and 0 operator can be a tuple. This is seen in

Definition 2.22 where µ ` R′, ν ` R′, and C ` R′ is indicated by (µ, ν, C) ` R′.

(µ, ν, C) ` R′ holds if ` holds when applied to each member of the tuple using the

same right-hand argument—a conjunctive relation. The 0 operation extends to a

left-hand tuple argument, only it holds if any members of the tuple when paired
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with the right-hand argument do not hold—a disjunctive relation. For example,

(µ, ν, C) 0 R′, if either µ 0 R′, ν 0 R′, or C 0 R′. Fourth and final, all the

correctness properties are presented in terms of a component in a larger system

of level-ruled Petri nets. As such, it is assumed that the global net, which is the

valid parallel composition of all the nets in the system, is visible. The global net is

given as M = (N,E,C) from Definition 3.3 where N = (T, P, F, µo) is the Petri net

from Definition 2.1, E = (W,L, νo,Eft, Lft, Lsat) is the net’s level-ruled extension

from Definition 2.10, and C is the set of constraint rules. Anytime these symbols

appear without a subscript or prime, they refer to the corresponding members of

M . Similarly, all states s, with or without subscripts or primes, are defined over

the system level model M unless otherwise noted in the text.

3.2.1 Safety

The level-ruled Petri net model of a component in a system of nets is safe if it

never tries to add more than one instance of any of its places to the marking. A

violation of the safe property often indicates a problem in the specification. The

safe property also simplifies analysis because the marking no longer needs to track

the number of times a place appears. Finally, it simplifies the semantics of the

level-ruled Petri net because it is not necessary to define which instance of a place

needs to be used first.

The safe property increases the probability that a circuit to implement the model

exists. Imagine that the actual circuit for a component has yet to be created. The

designer does, however, have a specification for the component. A level-ruled Petri

net model of the component is thus created according to the specification. An

analysis algorithm can then try to synthesize a circuit from the reachable state

space of the component model in the system. The likelihood of a circuit existing

to implement the model is increased if the model is safe in the environment.

An example of the safe property is seen in the STARI FIFO. Fig. 3.4 is the

level-ruled Petri net model of the STARI FIFO in Fig. 3.1. This is the same

model presented in Section 2.3.3. This figure does not include the constraint rules

introduced in Fig. 3.2(a) and Fig. 3.2(b) to simplify the presentation of the safe
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[12, 12]

[12, 12]

clk−clk+
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ack3+

ack2−

x2 .t+ x2 .f +

[1, 2] [1, 2]

[1, 2]

x1 .t+ x1 .f +

[1, 2] [1, 2]
[1, 2] [1, 2]

x0 .t+ x0 .f +

ack1−

[1, 2]

ack1+

x1 .t− x1 .f−

[1, 2] [1, 2]
[1, 2] [1, 2]

x0 .t− x0 .f−

[1, 2]

ack3−

ack2+

x2 .t− x2 .f−

[1, 2] [1, 2]

[0, 1] [0, 1] [0, 1] [0, 1]

[0, 1] [0, 1]

Fig. 3.4. The level-ruled Petri net for the composed STARI FIFO.

property. The clk signal cycles every 24 time units in this model. The TX module

sets and then resets either x0.t or x0.f every 24 time units too. Consider the

scenario where the TX module inserts into the FIFO two consecutive x0.t data

items. At the first x0 .t+ transition, the first stage of the FIFO needs to fire its

x1 .t+ transition in response to its newly arrived input. This transition can fire

once it is marking and time satisfied, which happens after its other input transition

ack2 + fires followed by at least 1 time unit of delay. The ack2 + transition cannot

fire until the RX module fires ack3− followed by the second stage firing x2 .t−.

If the delay to fire ack3− followed by x2 .t− and then ack2 + plus 1 time unit

for the x1 .t+ transition to become time satisfied is greater than the clock period,

then the second x0 .t+ transition can fire before the first stage responds to its prior
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firing. The first stage of the STARI FIFO is not safe in the environment if this

situation can occur because nothing responds to the marked place of x0 .t+ before a

transition tries to mark it again. A safety violation implies that the circuit receives

an input pulse on a signal, but before it responds to that input pulse, it receives

another input pulse on the same signal. The circuit is not able to remember that

it has received two input pulses because it never responded to the first input pulse;

thus, it only produces a single output pulse.

A safety failure in a model using syntactic abstraction is identical to the failure

shown in the STARI FIFO. The model with the abstraction does not require a

unique or different form to violate the safe property. If the component models of a

system all have a structure similar to the one shown in Fig. 3.3(b), however, then

they can never fail the safe property. This type of structure can never try to add a

multiple instance of a place to the marking because all of the models have a loop

structure. This is a very common form in specifications using syntactic abstraction.

To have a failure of the safe property, structures similar to those in the STARI FIFO

are required.

The safe property is a dynamic characteristic of the level-ruled Petri net. Al-

though it is a structural property of the ordinary Petri net, the addition of time

changes this in a level-ruled Petri net. If the STARI FIFO model ignores time, then

the first stage model is clearly not safe because the delay just to fire ack2 + can be

of an arbitrary size; thus, there surely exists a firing sequence where either of the

x1.t or x1.f transitions do not respond to their marked place before the place is

marked again. The time requirements in the model, however, can make it safe.

The safe property is a function of the timed circuit model in the reachable states

of the system model.

Definition 3.7 (Safe Transition). A transition t ∈ T is safe in the marking µ

for a given set of places P ′ ⊆ P if ((µ ∩ P ′)− •t) ∩ (t• ∩ P ′) = ∅

Note that Definition 3.7 is restricted to only consider places in P ′ ⊆ P as the safe

property only applies to a component in a larger system. Recall from Definition 2.31
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that a firing sequence is a pair consisting of a delay vector and a transition vector

(d, t) of equal length; and a state s is the tuple (µ, ν, C)

Definition 3.8 (Safe Firing Sequence). A firing sequence (d, t) is safe for a

given set of places P ′ ⊆ P if in its corresponding state vector s, ti is a safe transition

in µi−1 given P ′ for all indices i such that 1 ≤ i ≤ [t].

A firing sequence is safe if all of its transitions are safe in its corresponding state

vector when restricted to consider only places in P ′. Recall that P(so) is the set of

all possible firing sequences starting from the initial state so = (µo, νo, Co).

Definition 3.9 (Safe Component). A component Mi in a network of level-ruled

Petri nets M = M1 ‖M2 ‖ · · · ‖Mn is safe if for all firing sequences (d, t) ∈ P(so)

of M , (d, t) is safe when given the place set Pi from the component Mi.

Definition 3.9 is verified by an exploration of the reachable states. Definition 2.7

is the safe property for Petri nets. It is verified through structural analysis of the

net. The addition of time prevents the use of structural analysis to verify the safe

property in level-ruled Petri nets. Time may make a net safe as it precludes some

transition orders. Note that Definition 3.9 includes constraint rules in the safe

property as the property is defined using the preset and postset of the transitions.

Places are included in the preset and postset sets regardless of their rule status.

Consider again the STARI FIFO network in Fig. 3.4. If the delay from ack3−

to ack2 + is longer than the clock period through any path, then there exists a

firing sequence where either x0 .t+ or x0 .f + fires to insert into the marking a place

that already exists from the previous firing. If this sequence exists, then the first

stage model is not safe.

3.2.2 Consistent State Assignment

A component of a system has a consistent state assignment, if all of its signals

strictly toggle state, and any adjacent states in a firing sequence do not differ in

more than one signal value. Consider the first stage model of the STARI FIFO in

Fig. 3.2(a). The x0 .t− transition is an unconstrained input in this model. Any
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firing sequence that includes two x0 .t− transitions without an intervening x0 .t+

transition is not consistent state assigned. This property simplifies the semantics

of the level-ruled Petri net because it is not necessary to define model behavior

for firing transitions on signals that are already at the correct final state. The

simplified semantics in the level-ruled Petri net reduce the cost of analysis.

A violation of the consistent state assigned property is often the result of a

mistake in the model. The is most often true when using syntactic abstraction.

Consider again the level-ruled Petri net model of the clk2 signal in Fig. 3.3(b)

for the delayed-reset domino gate in Fig. 3.3(a). If the initial state, νo, for the

system shows the clk2 signal to be high, then the model is not consistent state

assigned. The clk2 + transition can fire once it is level and time satisfied in the

shown marking causing a consistent state violation. This violation only exists

because of the incorrect initial Boolean state.

The consistent state assigned property is first defined in terms of a transition

firing from a state.

Definition 3.10 (Consistent Transition). A transition t ∈ T is consistent in

the marking and Boolean state (µ, ν) if (L(t) = w+ =⇒ w 6∈ ν)∧(L(t) = w− =⇒

w ∈ ν).

A marking and level satisfied transition is consistent if it does not affect the state

of any signal, or if it strictly toggles the state of a signal.

The consistent state assigned property applies to a component in a larger system,

like the safe property. This is not reflected in Definition 3.10. The scope of the

consistent property is restricted when looking at a firing sequence.

Definition 3.11 (Consistent Firing Sequence). A firing sequence (d, t) is

consistent for a given set of transitions T ′ ⊆ T if in its corresponding state vector

s the following implication holds for 1 ≤ i ≤ [t]:

ti ∈ T ′ =⇒ ti is a consistent transition in (µi, νi).

The set T ′ ⊆ T restricts the scope of the consistent definition to members of
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T ′. A firing sequence is consistent if every transition from T ′ is consistent in the

corresponding state vector. A required property in a consistent firing sequence

is that adjacent state codes differ in at most one place. This is checked in the

definition because the implication forces si−1 [(di, ti)〉 si to hold. If it does hold and

the transition ti is consistent from νi−1, then by Definition 2.23, the Boolean state

code in the two states (si−1, si) can differ only in at most one signal value if the

transition is on a signal in the system. If the transition is not defined on a signal,

then the state codes are identical.

Definition 3.12 (Consistent State Assignment). A component Mi in a net-

work of level-ruled Petri nets M = M1 ‖ M2 ‖ · · · ‖ Mn has consistent state

assignment if for all firing sequences (d, t) ∈ P(so) of M , (d, t) is consistent when

given the set of transitions Ti from the component Mi.

A level-ruled Petri net is consistent state assigned if every transition in the module

is consistent in every appearance in all firing sequences.

3.2.3 Output Semimodular

Output semimodular is a property of a circuit in an environment. A level-ruled

Petri net model of a timed circuit component is output semimodular if in its defined

environment, an output, once enabled, remains enabled until it fires, and firing an

enabled output does not disable any transitions visible to the component. This

ensures that a component’s output in the defined environment does not generate

runt pulses and does not require any arbiters in its implementation.

Consider the delayed-reset domino gate for the function (a ∨ b) ∧ c from Sec-

tion 2.3.2 as shown in Fig. 3.3(a). If the input c and the function f1 = a∨b are high,

then the output f2 can transition high after an appropriate delay. Consider this

same scenario in the level-ruled Petri net model of the f2 function in Fig. 3.5. The

transition f2 + is marking and level satisfied. The transition must fire before the

expression on its rule, f1∧ c, becomes false. If it does not fire before the expression

becomes false, then its output is undefined because the signal f2 is not in a discrete

state; thus, the output may show a glitch. If the models for f1− or c− allow these
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[10, 30]
(f1 ∧ c) ∧ clk2

¬clk2

[20, 50]
f2− f2 +

Fig. 3.5. The second stage level-ruled Petri net model to compute f2.

transitions to fire too early, or if f2 + is too slow, then the component computing

f2 is not output semimodular in its environment.

Outputs can be disabled through a change in marking or Boolean state. In

the previous example, the f2 output is disabled through a change in the Boolean

state. Consider the level-ruled Petri net fragment in Fig. 3.6(a). This fragment is

derived from the parallel composition of a network of level-ruled Petri nets. The

interface for a component of this network is shown in Fig. 3.6(b). It has inputs

a and b and a single output c. Suppose that the state of Fig. 3.6(a) is such that

transitions b+ and t are marking, level, and time satisfied and that transition t

fires to move the state of the net into a new marking. The transition c+ is now

marking and level-satisfied. If c+ can become time satisfied and fire before b+,

then the component in Fig. 3.6(b) is not output semimodular in this environment

definition. The output c+ disabled the input b+, which is a transition visible to

the component.

[lb, ub] [0, 0]

t

c+

a+

b+

[lt, ut]

[lc, uc]
Arbitrary
Function

a

b
c

(a) (b)

Fig. 3.6. A net fragment of a composition with a member component interface.
(a) The level-ruled Petri net fragment from the parallel composition of a network
of models. (b) The interface of a member component with inputs a and b and an
output c
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A component in a network of level-ruled Petri nets is shown to be output semi-

modular in the parallel composition of the network by analyzing the reachable states

allowed by the system. Recall that (µ, ν) ` R(t) denotes that transition t is marking

and level satisfied by µ and ν from Section 2.2.2 and Definition 2.21, respectively.

The semimodular property is first formalized in terms of a delay-transition pair

leading the system from one state to another.

Definition 3.13 (Semimodular Transition). A transition t is semimodular in

the state pair (si, sj) for a given set of visible transitions TV ⊆ T and a set of

transitions on outputs TO ⊆ TV if the following implication holds: (µi, νi) ` R(t)

and (µi, νi) [t〉 (µj, νj) =⇒

1. t ∈ TO ∧ ((mls(µi, νi)− {t}) ∩ TV ⊆ mls(µj, νj) ∩ TV ); or

2. t /∈ TO ∧ ((mls(µi, νi)− {t}) ∩ TO ⊆ mls(µj, νj) ∩ TO);

where for a given s = (µ, ν, C), mls(µ, ν) = {t ∈ T | (µ, ν) ` R(t)}.

Definition 3.13 considers two special sets TV and TO to determine if a transition

is semimodular. The first set TV is the set of transitions that are visible to a

component. The second set TO is the set of transitions associated with output

signals for the component. The second set is a subset of the first set. The definition

considers a pair of states and a single transition. Two conditions must hold for a

marking and level satisfied transition to be semimodular. The first condition is for

transitions in the output set. The function mls(s) returns the set of transitions

that are marking and level satisfied in the state s. If the transition is for an output

signal, then the marking and level satisfied transitions in the first state si must be

included in those in the second state sj excepting the fired transition; thus, the

firing of an output transition cannot disable any transitions that are visible to the

component. The second condition is for transitions that are not on output signals.

In this case, the set of output transitions that are marking and level satisfied in

the first state si must be included in those of the second state sj excepting the

fired transition; thus, output transitions can never be disabled after they become
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enabled until they fire. If a transition meets the right hand side of the implication,

then it is semimodular for the pair of states. Note that a pure environment module

generating random inputs, such as the TX module from the STARI FIFO, is not

output semimodular. Outputs are always disabled due to the random choice; thus,

the output semimodular property is not required in pure environment modules.

Consider again the f2 function for the delayed-reset domino gate in Fig. 3.5 and

the following state pair. The first state is such that f2 + and c− are enabled with f1

currently low in the Boolean state. The second state is the one created from firing

c− with some enabled delay. In this case, the transition leads the system from one

state to the other. The right hand side of the implication, however, is not satisfied.

The first condition is false because c− is not an output. The second condition is

false because the firing of c− disables f2 +, which is an output. Consider now the

level-ruled Petri net fragment in Fig. 3.6(a) and the following state pair. The first

state is one such that b+ and c+ are enabled. The second state is the one after

c+ fires on some enabled delay. In this example, the firing of the transition from

the first state leads to the second state in the pair. The first condition, however,

fails because the firing of the output transition b+ disables the visible transition

c+; the second condition is false because c+ is an output.

Not all output semimodular violations can be detected in the dynamic behavior

of the system as the above examples suggest. Consider the level-ruled Petri net frag-

ment in Fig. 3.7(a). The transitions t1 and t2 can both fire in the current state.

The firing of either transition disables the other. Suppose that in the component,

transition t3 is on a visible input signal and transition t4 is on a visible output signal.

Transitions t1 and t2 belong to other components and are not visible. The graph

in Fig. 3.7(b) represents two possible vectors that the system can move through

depending on the firing sequence. The edges represent transitions and the nodes

represent states; s0 of the graph relates to the current state of the net. The firing

of transition t1 leads to the state s1 where t3 fires. The firing of t2 leads to the

state s2 where t4 fires. Remember that transitions t1 and t2 are invisible to the

component. Now consider a circuit’s perspective for the component in this system.
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It can only see the Boolean state of the signals on its interface. The associated

markings and clock functions have no meaning. Fig. 3.7(c) shows the Boolean

states that are perceived by the circuit. States s0, s1, and s2 all look like the same

state, and either t3 or t4 can fire in the state. The firing of output t4 disables the

input t3; thus, the component is not output semimodular. This violation cannot

be dynamically detected because it is not trace based. There does not exist a state

in the reachable state space where both t3 and t4 are marking and level satisfied.

This failure can only be detected after enumerating the timed states of the system.

The interested reader in directed to Appendix A for complete details.

The set of transitions on signals visible to a target component is defined to

support the output semimodular property.

Definition 3.14 (Transitions on Signals). The set of transitions defined on

signals in the set W ′ ⊆ W is given as: T (W ′) =
⋃
w∈W ′ T (w), where T (w) = {t ∈

T | L(t) = w+ ∨ L(t) = w−}

The set T (W ′) returns all transitions defined on signals in W ′ according to the

labeling function. The visible transitions in module i in a network of modules are

now given by T (Wi), and its visible output transitions are given by T (Oi). The

t3 t4

t2t1
s0

s3

s1

s4

s2

t1 t2

t4t3

s3 s4

t3 t4

s0, s1, s2

(a) (b) (c)

Fig. 3.7. A net fragment with its full and reduced state space. (a) A level-ruled
Petri net fragment that enables two invisible transitions t1 and t2 on a choice place
eventually followed by the visible transitions t3 and t4. (b) The state graph for the
net fragment. (c) A reduced state graph for the visible transitions t3 and t4 showing
the output semimodular violation.
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output semimodular property is now formalized.

Definition 3.15 (Output Semimodular). A component Mi in a network of

level-ruled Petri nets M = M1 ‖ M2 ‖ · · · ‖ Mn is output semimodular if all

transitions t ∈ T : for all state pairs (s, s′) ∈ [so〉, there exists a delay d ∈ R+∪{∞}

such that si ` (d,R(t)) and si [(d, t)〉 sj =⇒ t is a semimodular transition on (s, s′)

given TV and TO, where TV = T (Wi) and TO = T (Oi).

If there does not exist a delay such that the delay-transition pair is enabled in the

first state, and firing it leads to the second state, then the transition is semimodular

because it cannot fire from the first state. If there does exist a delay such that the

delay-transition pair is enabled and firing it from the first state results in the second

state, then the transition must be semimodular for correctness to hold. This can

be dynamically validated as a firing sequence is evolved. This alone is not sufficient

to validate the output semimodular property, the reachable state space must be

examined in the end to check for other output semimodular failures; thus, both the

reachable state set and allowed firing sequences are required to validate it. This

check alone, however, does detect most, if not all, output semimodular failures.

3.2.4 Constraint Satisfied

The level-ruled Petri net model of a component in a system of nets is constraint

satisfied if it does not violate its timing and ordering specification. If a designer

needs to check a bounded response property in the component, then the component

must satisfy the bounded response property to be correct. Similarly, if the designer

needs to check that signal transitions in the component are ordered with other

transitions, then the component must satisfy the orders to be correct.

The constraint satisfied property is checked through constraint rules. These

must be satisfied at the firing of delay-transition pairs.

Definition 3.16 (Constraint Satisfied Delay-transition pair). A given delay-

transition pair (d, t) is constraint satisfied in the state s if s ` (d, C(t)); recall that

` is conjunctive for a left-hand tuple argument such as s = (µ, ν, C), and 0 is
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disjunctive for the same argument.

Definition 3.16 requires all constraint rules for a transition to be marking, level, and

time satisfied. Recall that from Definition 2.29 that (µ, ν, C) ` (d,R(t)) implies that

the delay d is enabled in (µ, ν, C) and the rule set R(t) is satisfied by the new state

(µ, ν, C+d) where time has advanced by d. The rule set may not be satisfied in the

current state without time first advancing. This is the same for a constraint rule set.

All clocks on constraint rules for the transition must be below their upper bound in

the clock assignment function after time is advanced by the delay d for the transition

to be time satisfied by Definition 3.6. A delay-transition pair that is not enabled

in the state may or may not be constraint satisfied. If it is possible for a clock on

a constraint rule to exceed its upper bound while waiting for the delay-transition

pair to become enabled, then the delay-transition pair is not satisfied.

Definition 3.17 (Constraint Satisfied Firing Sequence). A firing sequence

(d, t) is constraint satisfied for a given set of transitions T ′ ⊆ T if in its corre-

sponding state vector s the following holds for 1 ≤ i ≤ [t]:

1. ti ∈ T ′ =⇒ (di, ti) is a constraint satisfied delay-transition pair given si−1;

and

2. for all transitions t′ ∈ T ′ and for all rules r ∈ C(t′), (µi, νi) ` {r} =⇒

Ci(r) ≤ Lft(r).

The constraint satisfied property is checked in a firing sequence of the network

considering only transitions related to a component by Definition 3.17. The set T ′

identifies transitions of interest. In firing a transition from T ′ on the sequence, the

first condition in Definition 3.17 requires the constraint rules for the transition to

be satisfied by the associated state from which it fires with its associated delay.

The second condition, however, applies to every step of the firing sequence. At any

point in the firing sequence, all constraint rules associated with transitions in T ′

that are marking and level satisfied in the current state must have clock valuations

in the same state under their defined latest firing times.
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Condition two in Definition 3.17 ensures that constraint rules never violate

their latest firing time regardless of the enabling condition of their associated

transition. Consider the level-ruled Petri net fragment in Fig. 3.8 with a current

state s = (µ, ν, C) such that µ ` R(t2), ν ` (R(t1), R(t2)), C(r1) = 3, and C(r2) = 4.

Transition t1 never fires in this example since its place is not marked. If the

delay-transition pair (2, t2) fires in the given state with condition two omitted from

Definition 3.17, then the clock valuation of r1 in the new state is not a violation of

the constraint satisfied property even though its new clock valuation is 5. Every

constraint rule pertinent to a component must be checked at every step of a firing

sequence because its associated transition may never fire to force the check. The

latest firing time must always hold in all marking and level satisfied constraints

of interest in every state of the firing sequence for the sequence to be constraint

satisfied.

The definition of constraint satisfied firing sequences leads naturally to the

constraint satisfied property for a component in a larger system.

Definition 3.18 (Constraint Satisfied). A component Mi in a network of level-

ruled Petri nets M = M1 ‖ M2 ‖ · · · ‖ Mn is constraint satisfied if for all firing

sequences (d, t) ∈ P(so) of M , (d, t) is constraint satisfied when given the set of

transitions Ti from the component Mi.

Section 3.1 presents two examples that use constraint rules to check time separations

and firing orders. Consider the first example, the STARI FIFO, shown in Fig. 3.1.

The first stage model for the STARI FIFO now contains a constraint rule as shown

in Fig. 3.2(a). The constraint rules check that ack1 + fires before new data is

t1

r1[3, 4] [5, 6] r2

t2

Fig. 3.8. A net fragment that is not constraint satisfied.
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inserted into the FIFO; thus, each data value output by the transmitter is inserted

into the FIFO before the transmitter sends another data value. Consider now the

level-ruled Petri net model for the entire two-stage STARI FIFO with constraint

rules in Fig. 3.9. The constraint rules for x0 .t+ and x0 .f + have infinite latest

firing times; thus, the second condition of Definition 3.17 is of no importance for

this example. If the earliest firing times are raised to be 14 rather than 3, then

the first stage model is not constraint satisfied because clk+ fires at time 12 and

either x0 .t+ or x0 .f + fire at a time in the 12 to 13 range. The earliest firing time

of either of the constraint rules is not time satisfied with a latest firing time of 14

instead of 3.

[1, 2][1, 2][1, 2] [1, 2]

[12, 12]

[12, 12]

clk−clk+

[1, 2]

ack3+

ack2−

x2 .t+ x2 .f +

[1, 2] [1, 2]

[1, 2]

x1 .t+ x1 .f +

[1, 2] [1, 2]
[1, 2] [1, 2]

x0 .t+ x0 .f +

ack1−

[1, 2]

ack1+

x1 .t− x1 .f−

[1, 2] [1, 2]
[1, 2] [1, 2]

x0 .t− x0 .f−

[1, 2]

ack3−

ack2+

x2 .t− x2 .f−

[1, 2] [1, 2]

[0, 1] [0, 1] [0, 1] [0, 1]

[0, 1] [0, 1]

[3,∞] [3,∞]

[9, 13]

Fig. 3.9. The level-ruled Petri net for the STARI FIFO with constraints.
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Consider now the constraint rule in Fig. 3.2(b) for the second stage of the FIFO.

The timing requirement on the constraint rule for ack3− sets an earliest and latest

bound on the time difference between x2 .t+ or x2 .f + and ack3−; thus, a new

data value is output by the FIFO before each acknowledgment from the receiver.

Consider the complete level-ruled Petri net with the constraints for the two-stage

STARI FIFO in Fig. 3.9. If the earliest firing time for the constraint rule on ack3−

is set higher than 9, then the first stage model is not constraint satisfied. To see

this failure, consider the case where clk− just fired and the state is such that the

constraint rule for ack3− is not marking satisfied. The ack3 + transition fires as

late as 1 time unit after the clk− transition. Either x2 .t+ or x2 .f + can fire as late

as 2 units after ack3 +. The constraint rule for ack3− cannot be marking satisfied

any earlier than 3 time units after clk−. There is a 12 time unit separation between

clk− and clk+, and there is a minimum 0 unit delay between clk+ and ack3−. If

the earliest firing time of the constraint rule for ack3− is raised to 10, then stage

one is not constraint satisfied because ack1− can fire when the clock valuation on

its constraint rule is only 9. If the latest firing time is set lower than 13, then the

component is not constraint satisfied either. In this case, from the shown initial

marking, clk+ fires at time 12 and ack3− can fire 1 time unit later. The result is

that the timer on the constraint rule can have a value as large as 13 when ack3−

fires.

Section 3.1 demonstrates the use of constraint rules in a model with syntactic

abstraction. The constraint is added in the second stage model of a delayed-reset

domino gate computing f2 = f1∧ c. The delayed-reset domino gate with the model

and its constraint rule is shown in Fig. 3.3. In this example, the timer for the

constraint rule is not started as soon as it is marking satisfied, but when it is

level satisfied too. Consider the situation where clk2, f1, and c are high. If the

transition c− fires 26 time units after clk2 +, then the clk2 model is not constraint

satisfied because clk2− violates the earliest firing time of its constraint rule. Its

clock valuation is only 4 when clk2− fires.
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3.3 Correctness Statement

This section formalizes the correctness statement and completes the definition

of the reachable states and firing sequences for a level-ruled Petri net. The current

definitions are incomplete because they do not include any notion of failure. As

noted previously, the behavior of a level-ruled Petri net in the presence of some

failures—unsafe or inconsistent state assignment—is not defined.

Definition 3.19 (Module Correctness). A component Mi in a network of level-

ruled Petri nets M = M1 ‖ M2 ‖ · · · ‖ Mn is correct if it is safe, consistent state

assigned, output semimodular, and constraint satisfied in the parallel composition

of the network M ; the violation of the correctness property is a failure.

The correctness condition of a component is validated by exploring all allowed firing

sequences and states in the parallel composition of the network.

Definition 3.20 (Unbounded Failure Behavior). The behavior of a component

Mi in a network of level-ruled Petri nets M = M1 ‖ M2 ‖ · · · ‖ Mn is not defined

from the point of a failure; if a firing sequence of the parallel composition of the

network contains a failure for the component, then any transition is possible after

that point.

Definition 3.20 allows a firing sequence containing a failure to always be a failure

from the failure point on. Its behavior is completely unbounded after the failure.

The next definition in this chapter covers a complete valid network of level-ruled

Petri nets. A notion of pure environment model must be presented for the definition.

In a network of level-ruled Petri nets, not all nets refer to a physical component.

Some nets exist solely to generate random input or mimic an interface. These

components are pure environment modules and are represented by E in the parallel

composition. The environment E is a level-ruled Petri net but is not intended to

be implemented in the system.

Definition 3.21 (System Correctness). A network of level-ruled Petri nets M =

E ‖ M1 ‖ M2 ‖ · · · ‖ Mn is correct if all of its modules Mi for 1 ≤ i ≤ n are correct
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in the parallel composition of the network M , and its environment module E is safe,

consistent state assigned, and constraint satisfied in the same parallel composition

M ; the violation of the correctness property is a failure.

Every module is correct in a correct system where correctness is given by Defini-

tion 3.19. The environment module, however, does not fall under Definition 3.19.

As mentioned previously, a pure environment module is usually not output semi-

modular because it often generates random outputs; thus, this property is not

required. All of the other correctness properties, however, must hold.

The final definition for this chapter is useful to timing analysis. It defines a

function to return failures as transitions are fired in state space exploration. The

function, however, only addresses untimed failures, or failures that do not involve

time.

Definition 3.22 (Untimed Failure). The function untimed failure(µ, ν, t, µ′, ν ′)

returns a failure if there exists a module Mi in M = E ‖ M1 ‖ M2 ‖ · · · ‖ Mn such

that any of the following hold:

1. Safety Failure: t is not a safe transition in µ given P by Definition 3.7;

2. Consistent State Assignment Failure: t is not a consistent transition

in (µ, ν) by Definition 3.10;

3. Output Semimodular Failure: t ∈ Ti, and it is not a semimodular transi-

tion in (µ, ν) and (µ′, ν ′) for TV = T (Wi) and TO = T (Oi) by Definition 3.13;

or

4. Constraint Failure: t ∈ Ti and (µ, ν) 0 C(t) by Definition 3.16.

Notice that there is an untimed portion to the constraint satisfied property. This

is validated in the untimed failure function. Another important point is that the

scope of the check is not limited in the safe and consistent state assignment failures.

These failures are always reported regardless of the module they occur in. The

reduction method in Chapter 5 may find failures outside of the target module, but

it guarantees to find failures in the submodule only if they exist.
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3.4 Related Work

In formal methods, model checking is appealing because is allows the verification

of general properties. A model is often specified in a temporal logic such as LTL

in [45] or CTL in [46, 47, 48], and it models behaviors that the circuit should

uphold. To specify timed behaviors, it is necessary to use a more complex and

expressive timed temporal logic such as those presented in [49, 50, 51, 18, 52].

With any temporal logic, the circuit is framed in an underlying representation that

captures essential behaviors in the circuit. A circuit is then shown to satisfy a

model by exploring all behaviors allowed in the underlying representation. If a

behavior is allowed in the circuit but not captured by the internal representation,

or the desired behavior is not specified in the model, then it is not checked in the

verification process; thus, correctness in model checking is a statement that the

representation of the circuit satisfies behaviors specified in the model.

Trace theory is less expressive than general model checking, but it does formalize

conformance of a circuit to its specification. Showing conformance in trace theory

is easier than showing that an arbitrary model is satisfied by a circuit. In Dill’s

canonical trace structures [53], a failure occurs when an output is generated by

the circuit, and the mirror of its specification cannot accept it as an input; or

conversely, when the mirror of the specification produces an output, the circuit is

not in a state to accept it as an input. The use of the mirroring theorem allows for

efficient verification of safety properties. General liveness properties can be checked

with complete trace structures in [53], but the complexity of the verification problem

is extremely prohibitive.

Various extensions have been made to trace theoretic verification. In [54], the

idea of strong conformance is introduced to verify some notion of liveness, as well

as safety properties in asynchronous circuits. A notion of time is introduced in

[55] by extending the trace alphabet with time symbols. A time symbol denotes

a discrete time step; and it is shown in a large class of circuits that conformance

in discrete time implies conformance in continuous time. Work in [55] includes

discrete time bounded response in the correctness definition. In [56], continuous
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time is integrated into trace theory and applied to time Petri nets. A time Petri

net has delay bounds associated with each transition in the net. Trace theory is

extended to Orbital nets in [57]. Orbital nets are similar to timed Petri nets and

differ from time Petri nets in [56] in that places, not transitions, are annotated

with delay information. Work in [57] extends correctness in trace theory to include

continuous time bounded response in the environment. Recent work in [58] relaxes

requirements in [57] on the environment. Its correctness definition shows timed

conformance of an implementation to a specification. Timed conformance can be

verified using constraint rules in a manner similar to [58]. The specification rules

become constraint rules on the implementation.

The work that most closely resembles this definition of correctness is that done

by Belluomini in [43]. She introduces the constraint rule in timed event/level

structures and a property similar to the constraint satisfied property defined here.

She does not define, however, the safe, consistent state assignment, and output

semimodular properties. She also uses trace theory as the theoretical basis for the

correctness properties.

3.5 Summary

This chapter presents a formal definition of the correctness of a component

in a larger system. To support the correctness definition, this chapter presents

the constraint rule. Timing and ordering properties are specified using constraints

rules. This chapter refines the level-ruled Petri net semantics to deal with constraint

rules. A constraint rule is essentially an observer in the net whose clock is reset

when appropriate, but never used to affect the firing of any transition.

This chapter defines four correctness properties for a component in a network of

level-ruled Petri nets. The first three properties, safe, consistent state assigned, and

output semimodular are common correctness requirements in verification models.

The last property, constraint satisfied, is less common. The constraint rules in a

component are checked in each transition firing to ensure than none of the timers on

the rules exceed their latest firing time. Whenever a transition in the component
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fires, however, the transition’s constraint rules are checked to see that they are

satisfied in the current state of the system. This enables a designer to specify

bounded response and ordering properties in noncausally related transitions.

The chapter formally presents a correctness statement and defines an untimed

failure function that returns an untimed failure. An untimed failure relates to

safety, consistent state assignment, and output semimodular violations. It also

covers the case where a transitions fires with a constraint rule that is not satisfied

by the current marking. The function can be used by timing analysis to check the

untimed portion of correctness in a level-ruled Petri net model of a timed circuit.

A function to check for timed failures is given in Section 4.7. It is important to

be able to check that timers on constraint rules do not exceed their upper bounds.

The operations required for this are best presented in Chapter 4 with the formal

definition presented here.



CHAPTER 4

TIMING ANALYSIS

A circuit is verified correct by searching for failures in its allowed firing sequences

and reachable states for a given environment. The allowed firing sequences and set

of reachable states is typically infinite for the level-ruled Petri net. To perform the

analysis, a finite representation of the infinite space must be realized.

A finite representation of the firing sequences and reachable states exists. The

two sets can be represented by a finite graph. Each node of the graph is an

equivalence class, representing a set of timed states. The edges are transitions

between equivalence classes. The paths through the graph are the allowed firing

sequences. Each reachable timed state in the system maps into an equivalence class

in the graph. Each allowed firing sequence of the system maps into a path of the

graph. This creates a finite graph representation.

The size of the graph representation depends on the size of the equivalence

classes at each node. If the equivalence classes are small, then many are required to

represent the complete reachable state space. If the classes are too large, however,

then extra behaviors may be represented that are not part of the reachable state

space. Care must be taken in building equivalence classes.

This chapter presents an algorithm to construct a finite representation of the

reachable states and firing sequences in a level-ruled Petri net. The algorithm

implements a partial order in the timing information to reduce the size of the

finite representation. The chapter is structured to mitigate the complexity of the

algorithm. Section 4.1 presents the finite representation of the infinite system. It

presents the timed state class, and a detailed discussion of the zone, which is a key

component in the timed state class.
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Section 4.2 presents the causal group. This is an important contribution of this

research. It facilitates the analysis of arbitrary Boolean expressions on rules. It

also enables the analysis algorithm to directly compute causality. This improves

running time performance because it does not need to explore redundant firing

orders on rules.

The timing analysis algorithm is divided into 4 distinct parts: computing fireable

transitions, creating successor states, building the finite state space, and pruning

transitions from the timing representation. Section 4.3 presents the algorithm to

compute fireable transitions in a state. It is equivalent to the enabled property in the

level-ruled Petri net. Section 4.4 is the algorithm to create successor states after

firing a transition. This is equivalent to the update definitions for the marking,

Boolean state, and clock assignment function. This is where the partial order

in the timing information is implemented. It does not order transitions to fire

after other already fired transitions. This effectively reduces the size of the finite

representation. Section 4.5 is the algorithm that builds the finite representation

of the state space. The algorithm is a depth first search using the fireable and

successor algorithms. Section 4.6, finally, is an algorithm to remove redundant

transitions from the timing information. It is key in reducing the size of the final

timed state representation.

Section 4.7 adds to the algorithm support to validate timing correctness. The

earliest and latest firing time failures are presented along with an algorithm to

validate them. Section 4.8 discusses issues in removing transitions in constraint

rules from the time state class representation. Section 4.9 addresses the issue of

exactness in the finite representation. The timing analysis algorithm approximates

timed dependent choice behavior. This makes the resulting finite representation

conservative in that it can include states that are not reachable in the level-ruled

Petri net. This chapter is concluded in two more sections. Section 4.10 is a

discussion of related timing analysis algorithms. Section 4.11, finally, concludes

this chapter with a brief summary of its contributions.

The presentation in this chapter assumes the level-ruled Petri net that is being
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analyzed is global. Any reference to the set of transitions T , rules R, etc. refer to

the globally known level-ruled Petri net. The reader is encouraged to be patient

in this section. Although measures are taken to present the material in a concise

and logical pattern, it is a complex algorithm that requires several definitions to

present. The end goal of this chapter is to completely define the analysis algorithm

to a point where it can be recreated from this text.

4.1 Equivalence Classes

There are two critical points of understanding formalized in this section. The

first is the zone as the cornerstone of the equivalence class. Although the zone

presentation is detailed, the salient point is that the zone sets bounds on the

minimum and maximum separation between transitions. These bounds are not

just for transitions that are directly related by causality, but all transitions in

the zone. The second critical point of understanding in this section is the timed

state class. It replaces the clock assignment function in the timed state with the

zone. The salient point is that the timed state class is a replacement of the timed

state. Although not defined in this section, a timed state replacement must have

a notion of enabled delays, enabled transitions, and how to fire these things to

move the system to a new timed state class. The goal in this section, however,

is not to define these terms, but to present the timed state class as a timed state

replacement and build the foundation for how the timed state class is to be used to

construct a finite representation of the infinite state space of the level-ruled Petri

net. The foundation is the idea that the rules for a transition implicitly define

separations between the transition and other transitions involved in causing the

rule to be marking and level satisfied. This is the driving idea behind the zone and

the timed state class. The idea is formalized in the next section.

This section begins with a detailed presentation of the zone, including its inter-

pretation, structure, and a set of defined operations. These operations provide an

interface to algorithms. The timed state class is defined after the zone presentation.

The presentation is largely algorithmic. The definitions that are presented in this
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section are constructive, meaning that algorithms to implement the definitions are

readily available or presented in the text.

4.1.1 Zones

The zone is key to creating a finite representation for the infinite state space of

the level-ruled Petri net. A state of the level-ruled Petri net consists of a marking,

Boolean state, and a clock assignment function. The clock assignment function

maps rules in the level-ruled Petri net to real values representing clocks. The clock

assignment function makes the state space of the level-ruled Petri net infinite. The

clock assignment functions must be gathered into equivalence classes to create a

finite representation. The is the role of the zone.

The zone is a convex polygon in n-dimensional space, where n can be any natural

number. The polygon is captured in a square matrix.

Definition 4.1 (Square Matrix). A square matrix A of size n is the array

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 ;

where each element is either an integer number or the symbol ∞, representing

infinity; the function [A] returns the dimension of the matrix A.

Each aij entry in the matrix is the inequality: τ(ti) − τ(tj) ≤ aij. The function

τ(t) returns the firing time transition t. A matrix entry thus defines a range on the

difference between the firing time of ti and tj. In a similar fashion, the entry aji

is the inequality: τ(tj) − τ(ti) ≤ aji. Recall that τ(tj) − τ(ti) ≤ aji is equivalent

to τ(ti) − τ(tj) ≥ −aji. Combining the two inequalities now creates a minimum

and maximum difference that can exist on the firing times of ti and tj: −aji ≤

τ(ti) − τ(tj) ≤ aij. For the remainder of this presentation, the call to the time

function τ is implied; thus, ti − tj ≤ aij is equivalent to τ(ti)− τ(tj) ≤ aij.

Recall from Chapter 2 that a vector is an ordered sequence of elements x =

(x1, x2, . . . , xn). Its length is denoted by [x]. The index function is an operation on

vectors of any type and a necessary function for the zone presentation.
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Definition 4.2 (Index Function). The function ind(x)(x) = {i ∈ N | xi = x}

returns the set of indices to the vector x where x appears.

The index function is used to find indices for entries in the zone and to track the

number of instances of a given element in the zone.

Definition 4.3 (Zone). A zone is the tuple z = (t, A) consisting of a vector of

transitions t and a square matrix A where [t] = [A] and for all t ∈ T , |ind(t)(t)| ≤ 2;

for any pair of natural numbers (i, j) ∈ N such that 1 ≤ (i, j) ≤ [t], the entry aij

in the matrix A is the maximum amount of time that can elapse from the firing of

tj to the firing of ti in the vector t.

The square matrix is a polygon that defines the allowed time separations between

transitions in the transition vector. A transition entry in a zone is an instance of

the transition. The zone does not allow more than two instances of any transition.

For a transition t with two instances in the zone, min(ind(t)(t)) is the index to the

first or oldest instance of the transitions, and max(ind(t)(t)) is the index to the last

or most recent instance of the transition in the zone. A zone must always have at

least one entry in its transition vector.

The maximum amount of time that can elapse from the firing of tj till the

firing of ti from the vector t is less than or equal to aij. Similarly, the maximum

amount of time that can elapse from the firing of ti till the firing of tj is less than or

equal to aji. Note that either value can be negative indicating an order on the two

transitions. This relation creates a range on the separation of the two transitions.

An understanding of the meaning of this inequality is key to the algorithm. Consider

the zone in Fig. 4.1(a). The transition vector map is the first row of the zone, and

it is shown again in the first column for convenience. The zone states that the

maximum amount of time that can elapse from the firing t2 till the firing of t1 is

−3; thus, the firing or t1 always precedes the firing of t2 by at least 3 time units.

To state it differently, the firing time of t2 always follows the firing time of t1 by

at least 3 time units. Similarly, the zone states that the maximum amount of time

that can elapse from the firing of t1 till the firing of t2 is 7 time units; thus, the
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firing time of t2 always follows the firing time of t1 by at most 7 time units. The

two inequalities combined are given as: 3 ≤ t2 − t1 ≤ 7. This inequality can be

a useful perspective. An aij entry can be thought of as the time at which ti fires

minus the time at which tj fires. That separation must be less than or equal to

aij; thus, the time of the firing of t2 minus the time of the firing of t1 must be less

than or equal to 7, and the time of the firing of t1 minus the time of the firing of

t2 must be less than or equal to -3. The zone in Fig. 4.1(a) also defines the range

2 ≤ t3 − t1 ≤ 5 for transitions t3 and t1. Notice that the separations for t2 and t3

are unconstrained in this zone as indicated by ∞.

There are many zones that represent the same polygon. Zones cannot be used

to build a finite representation of the state space unless they have a canonical form.

The canonical form enables the comparison of any two arbitrary zones. Every zone

has a canonical form, and identical zones have identical canonical forms.

Definition 4.4 (Canonical Form). A zone z = (t, A) is canonical if it is maxi-

mally constrained; ž is the canonical form of the zone z.

All inequalities in the zone are maximally tight in the canonical form. A zone is put

in its canonical form by applying Floyd’s all pairs shortest path algorithm to the

matrix A treated as a dense graph where for all (i, j) ∈ N such that 1 ≤ (i, j) ≤ [t],

the entry aij is the weight of the edge between nodes i and j. Consider now the zone

in Fig. 4.1(b). This is the canonical form of the zone in Fig. 4.1(a). The separation

of 2 between t3 and t2 is from the fact that t3 goes to t1 with a weight of 5 and

t1 goes to t2 with a weight of -3; thus, the edge between t1 and t3 is constrained

to 2. The entry for t2 and t3 is found in a similar fashion. The canonical form of

the zone indicates that t2 can fire no later than 5 time units after t3; and similarly,

t3 can fire no later than 2 time units after t2. From this, the two transitions are

concurrent in that they can fire in any order.

Not all zones have a logical meaning. An entry in the zone is a maximum time

separation between the firing of one transitions to the firing of another transition.

A separation between a transition and itself must be zero or the zone does not make
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sense.

Definition 4.5 (Consistent Zone). A zone z = (t, A) is consistent if for all

i ∈ N such that 1 ≤ i ≤ [t], aii = 0.

In the case of a rule where a transition can mark its own place, then two instances of

the transition are entered into the zone; thus, a nonzero separation exists between

the two different instances of the transition, and a zero separation exists between

the same instance of the transition in the zone. Only zones that are consistent with

there meaning are used to build a finite representation of the state space.

The order in which transitions appear in the zone reflect an implicit firing order.

This is an important property to building a finite representation because it helps

detect invalid firing orders. Moving from the first index to the last index in the

transition vector in the zone, the transition at the current index must not be ordered

to strictly fire before transitions at earlier indices. It must be allowed to fire either

after or concurrently with transitions at earlier indices.

Definition 4.6 (Valid Zone). A zone z = (t, A) is valid if it is consistent and

for all (i, j) ∈ N such that 1 ≤ i ≤ [t] and j < i, aij ≥ 0.

For an index i and an index j < i, the maximum time that can elapse from the

time of the firing of tj and the time of the firing of ti must be positive as denoted by

aij ≥ 0. If aij < 0, then tj fires at a time later than ti; thus, ti is out of order with

respect to tj in the zone because it must always fire before earlier entries in the

zone. The upper triangle of the matrix is not considered because the zone reflects

maximum separations. A valid zone allows ti to fire after tj in the maximum for

i < j. That is not to say that tj cannot fire after ti in the maximum too. This

is shown in Fig. 4.1(b). This zone is valid because it preserves the implicit order

on transition entries. The maximum amount of time that can elapse between the

firing of t2 to the firing of t3 is 2; thus, t3 can fire after t2 in the maximum. Now

consider the maximum amount of time that can elapse between the firing of t3 and

the firing of t2. This separation is 5. Transition t2 can fire after t3 in the maximum
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and appears before t3 in the zone, but the zone is still valid because the other order

is allowed by the zone too.

Relational operators between zones are necessary to construct the finite repre-

sentation of the infinite state space. The relations help exclude duplicate zones and

zones that are smaller than other zones in the state space. All of the necessary

relations are constructed from an equality and superset relation.

Definition 4.7 (Equality Relation). The zone z = (t, A) is equal to the zone

z′ = (t′, A′) if [t] = [t′] and for all (i, j) ∈ N such that 1 ≤ (i, j) ≤ [t], there exists

(k, l) ∈ N such that, 1 ≤ (k, l) ≤ [t′] where ti = t′k in t and t′, tj = t′l in t and t′,

aij = a′kl in A and A′; and for all (k, l) ∈ N such that 1 ≤ (k, l) ≤ [t], there exists

(i, j) ∈ N such that, 1 ≤ (i, j) ≤ [t′] where ti = t′k in t and t′, tj = t′l in t and t′,

aij = a′kl in A and A′; the relation is indicated by z = z′.

Equal zones are equal in every sense of the word but order in the transition vectors.

Although two zones may show a different order on transitions in their vector

mappings, if the separations are identical for all transition pairs, then the two

zones are equal. This implies that different transition firing orders lead to identical

zones, since the order of entry in the zone implies the order of firing by the valid

property. This is an important characteristic to be exploited in timing analysis.

Definition 4.8 (Superset Relation). The zone z = (t, A) is a superset of the

zone z′ = (t′, A′) if z 6= z′, [t] ≤ [t′], and for all (i, j) ∈ N such that i 6= j and

1 ≤ (i, j) ≤ [t], there exists (k, l) ∈ N such that k 6= l, 1 ≤ (k, l) ≤ [t′] where ti = t′k

in t and t′, tj = t′l in t and t′, aij ≥ a′kl in A and A′, and if i = min(ind(t)(ti))

then k = min(ind(t′)(tk)); the relation is indicated by z ⊃ z′; the other relational

operators (⊂, ⊆, ⊇, etc.) are defined appropriately using the superset and equality

relations.

Like the equality relation, the superset relation does not need to match on the order

of transitions in the two zones. The superset relation, unlike the equality relation,

however, makes use of missing entries in the zone. Consider the zone in Fig. 4.1(c).
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t1 t2 t3
t1 0 -3 -2
t2 7 0 ∞
t3 5 ∞ 0

t1 t2 t3
t1 0 -3 -2
t2 7 0 5
t3 5 2 0

t2 t3
t2 0 5
t3 2 0

(a) (b) (c)

Fig. 4.1. A zone, its canonical form, and a superset relation. (a) A zone with
three dimensions. (b) The canonical form of the zone. (c) A zone that is a superset
of the zone in (b).

This zone is a superset of the zone in Fig. 4.1(b). Although it has a different

dimensionality, it agrees on each separation for transitions common to the two

zones. The missing dimension is considered unconstrained in the superset relation.

A zone of smaller dimension can be a superset of a zone of larger dimension because

the missing dimensions are completely unconstrained relative to entries in the zone.

The zone in Fig. 4.1(c) is not a superset of the zone in Fig. 4.1(a), however, because

the defined separations for common transitions in the zone of Fig. 4.1(a) are larger

than those in zone Fig. 4.1(c).

A zone is constructed one transition at a time. The ability to add new transitions

into the zone is a basic operation in building zones.

Definition 4.9 (Adding Transitions). The addition of a transition t ∈ T to the

zone z = (t, A) creates a new zone z′ = (t′, A′) if |ind(t)(t)| < 2, where t′ is the

result of the concatenation of t to the end of t, [A′] = [t′], and for all (i, j) ∈ N

where 1 ≤ (i, j) ≤ [t′],

a′ij =


0 if i = j = [t′],
∞ if (i = [t′] ∨ j = [t′]) ∧ i 6= j, and
aij otherwise.

An added transition is always placed at the end of the transition vector in the zone.

As mentioned previously, the order of transitions in the zone reflects a relative firing

order. Adding the transition to the zone denotes the firing of the added transition.

The separations in the matrix relating the new transition and the old transitions

are left unbounded. Although they must be set to reflect firing separations allowed
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by the level-ruled Petri net, the discussion on how these separations are created is

a topic for Section 4.2. This section simply provides a necessary interface.

Transitions can be deleted, as well as added, to a zone. Unlike adding a

transition, where the new transition is added to the end of the map and matrix,

any transition can be deleted from anywhere in the map and matrix.

Definition 4.10 (Vector Delete). The delete function del (x) (i) returns the

vector of elements in x, but not including, the element at index i ∈ N and is

defined as

del (x) (i) =

{
x if i > [x] and
(x1, . . . , xi−1).(xi+1, . . . , xn) otherwise;

where the ’.’ operation is the concatenation of the two vectors.

Vector delete returns a new vector that includes everything but the entry at tran-

sition i.

It is harder to delete a transition from the zone than it is to add a transition

to the zone. This is due to the fact that transitions are ordered in the zone, and

deletion is not restricted to the first or last entry of the zone.

Definition 4.11 (Deleting Transitions). The deletion of a transition t ∈ T

from the zone z = (t, A) creates a new zone z′ = (t′, A′) if |ind(t)(t)| ≥ 1 where

i = min(ind(t)(t)), t′ = del (t) (i), [A′] = [t′], and for all (j, k, l,m) ∈ N:

a′jk =


ajk if j < i ∧ k < i,
ajm if j < i ∧ k ≥ i,
alk if j ≥ i ∧ k < i, and
alm if j ≥ i ∧ k ≥ i.

where 1 ≤ (j, k) ≤ [t′], l = j + 1, and m = k + 1.

Notice that in this definition, it is always the first instance of the transition that is

deleted. This transition relates to the oldest instance of a transition that appears

multiple times. At an intuitive level, deleting a transition removes its corresponding

row and column from the zone matrix. The four cases in the definition simply detect
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when one of the current indices refers to the index of the deleted transition and

then jumps over the entries for the deleted transition.

The timing analysis algorithm needs to look at transition separations existing

in the zone. A transition, however, can appear as many as two times in the zone.

A transition in the zone is an instance of the firing of that transition. In building a

zone, it is important to distinguish which instance of a transition is being referenced.

The next two definitions clarify this point for setting and observing separations in

the zone.

Definition 4.12 (Min-max Entry). A min-max entry in a zone z = (t, A) for

a transition pair (ti, tj) is aij where i = min(ind(t)(ti)) and j = max(ind(t)(tj)) if

|ind(t)(ti)| > 0 and |ind(t)(tj)| > 0; otherwise it does exist.

The min-max entry gives the separation on the oldest instance of the first transition

and the newest instance of the second transition. If a transition does appear twice

in the zone, then its min-max entry is the maximum amount of time that its first

instance can fire after its second instance.

Definition 4.13 (Max-min Entry). A max-min entry in a zone z = (t, A) for

a transition pair (ti, tj) is aij where i = max(ind(t)(ti)) and j = min(ind(t)(tj)) if

|ind(t)(ti)| > 0 and |ind(t)(tj)| > 0; otherwise it does exist.

The max-min entry in a zone returns the separation on the newest instance of the

first transition and the oldest instance of the second transition. If a transition

does appear twice in the zone, then its max-min entry is the maximum amount of

time that its second instance can fire after its first instance Although not formally

presented, the min-min and max-max entries are similarly defined.

The idea of concurrent transitions is critical to building a finite representation.

Concurrency is related to a set of transitions being enabled. This relation is

exploited in the next section. A set of transitions is concurrent in a zone if the

zone allows the transitions to fire in any order. The following definition computes

this set given a zone and set of transitions in the zone.
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Definition 4.14 (Fire First Transitions). The set of fire first transitions in

the set T ′ given the zone z = (t, A) is the set of transitions ti ∈ T ′ such that

|ind(t)(ti)| > 0 and for all tj ∈ T ′ such that |ind(t)(tj)| > 0, aji ≥ 0 where j =

max(ind(t)(tj)) and i = max(ind(t)(ti)).

The definition only considers transitions in the set T ′. This is a restricted scope

as reflected by the use of the definition in the algorithm presentation. Consider

the zone in Fig. 4.2 with the set T ′ = {t3, t4, t5, t6}. The definition considers the

submatrix formed by the transitions in the set. This is the bottom right division

of the zone in Fig. 4.2. A transition is concurrent if its corresponding column in

the submatrix is positive in every entry. Consider the column for t3. Transition t4,

t5, and t6 can all fire after t3 in the zone; thus, t3 is added to the set of concurrent

transitions. Now consider the column for t6. Although t5 can fire after it by at

most 10 time units, transitions t1 and t2 must always precede it by at least 1 time

unit; thus, t6 is not added to the concurrent set. In this case, t3 and t4 are the

only concurrent transitions. Notice that in this definition, the last instance of each

transition in the T ′ set is always used. In this way, the newest instance of a duplicate

transition is considered for concurrency.

4.1.2 Timed State Class

The zone is the basic building block in constructing a finite representation of

the infinite state space of the level-ruled Petri net. This section uses the zone to

create an equivalence class of timed states—the timed state class. Recall that a

t1 t2 t3 t4 t5 t6
t1 0 -1 0 0 -12 -2
t2 3 0 3 3 -9 -1
t3 1 0 0 1 -11 -1
t4 1 0 1 0 -11 -1
t5 12 11 12 12 0 10
t6 5 2 5 5 -7 0

Fig. 4.2. A zone showing two concurrent transitions from a set of transitions.
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level-ruled Petri net is the tuple M = (N,E,C), where N = (T, P, F, µo) is an

ordinary Petri net, E = (W,L, νo,Eft, Lft, Lsat) is a level-ruled extension for the net

N (Definition 2.10), and C is the set of constraint rules for the model. A timed

state class is a finite representation of an infinite number of timed states.

Definition 4.15 (Timed State Class). A timed state class for a level-ruled Petri

net M is the three-tuple s = (µ, ν, z) where µ and ν are a marking and Boolean

state of M ; and z = ž is a zone in its canonical form defined over transitions in M

and is a set of clock assignments.

The timed state class is similar to the timed state from Chapter 2. The only

difference is that the clock assignment function is replaced by the zone.

The initial timed state class is given by so = (µo, νo, zo), where µo and νo are the

initial marking and Boolean state from M . The initial zone zo is derived from µo

and νo. It includes all transitions that must have fired to create the initial marking

and Boolean state.

Definition 4.16 (Initial Zone). The initial zone for a level-ruled Petri net M is

the zone with all separations set to zero defined over the set of transition t ∈ T for

which one of the following conditions hold:

1. there exists a place p ∈ µ such that t ∈ •p; or

2. there exists a signal w ∈ W such that L(t) = w+ and w ∈ νo or L(t) = w−

and w 6∈ νo;

the initial zone is given as zo.

The first condition includes any transitions that fired to create the marking, and

the second condition includes any transitions that fired to create the Boolean state.

Consider the fragment of a level-ruled Petri net in Fig. 4.3(a). Suppose that signals

a and b are low in the initial Boolean state, L(t4) = L(t5) = a−, and that L(t6) =

b−. The initial zone zo required by this fragment is given in Fig. 4.3(b). Transitions

t1 and t2 are included because either transition may have fired to create the initial
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t1 t2

t3

[3, 5]
a ∨ b

r1

t1 t2 t3 t4 t5 t6
t1 0 0 0 0 0 0
t2 0 0 0 0 0 0
t3 0 0 0 0 0 0
t4 0 0 0 0 0 0
t5 0 0 0 0 0 0
t6 0 0 0 0 0 0

(a) (b)

Fig. 4.3. A fragment of a closed system with a portion of its initial zone. (a) The
level-ruled Petri net fragment. (b) The initial zone.

marking. Transitions t4 and t5 are included because they map to a−. Transition

t6 is included because it maps to b−.

The level-ruled Petri net semantics are defined relative to a timed state of the

system. This works in a timed state class for everything but the zone. The clock

assignment function must be approached from a new perspective—time separations

on transitions. Recall that a transition is enabled in a timed state if it is marking,

level, and time satisfied. The new perspective does not affect marking and level

satisfied. Time satisfied, however, cannot be directly checked in a timed state class.

A rule forces a minimum and possibly maximum separation between transitions.

Consider again the fragment in Fig. 4.3(a). The r1 rule implies that the separation

between t3 and either t1 or t2 is at least Eft(r1) = 3 time units. It also implies

that this separation must hold for either transition a+ or b+. The separation is

not required on both transitions a+ and b+ because only one of the two signals

must change to level satisfy the expression. Similarly, only t1 or t2 fires in a safe

level-ruled Petri net, so the Eft(r1) is a minimum separation for one of these two

transitions. The possible maximum separation is a result of the fact that many

different transitions can cause a rule to become either marking or level satisfied;

thus, only one of the transitions define the absolute maximum separation Lft(r1) = 5

between itself and t3. This can be either the a+, b+, t1, or t2 transition. A causal

transition is the last transition to fire to create a state where a rule for a transition

is marking or level satisfied. The set of causal transitions can be divided into causal



89

groups. A causal group is a necessary and sufficient set of transitions to marking

and level satisfy another transition. Computing causal groups from the set of causal

transitions is the topic of the next section.

4.2 Causal Group Set

A causal group for a transition is a sufficient set of fired transitions that marking

and level satisfy a transition’s rule set. The firing time of a transition t must be

separated from transitions in one of its causal groups according to the bounds on

the rules in R(t). Consider the transition t4 in the level-ruled Petri net fragment

shown in Fig. 4.4. Transition t4 must not fire earlier than 2 time units after t3. This

is a required separation from the rule r2. Similar separations exist for the other

transitions that mark and level satisfy rules in R(t4).

Definition 4.17 (Marking Required Set). The marking required set for a

transition t ∈ T is mrs(t) =
⋃
p∈•t {•p}.

The marking required set is a set of sets. The marking required set for t4 is

{{t1, t2} , {t3}}. This falls straight from the structure of the net and is easily

computed. The rules in R(t4) are marking satisfied when a transition from each of

these two sets fires: {t1, t2} and {t3}. Note that the definition allows for transitions

with a places that contains empty presets. In these cases, the marking required set

contains member sets that contain only the empty set.

A similar set of transition sets to level satisfy transition t4 is less obvious.

Syntactic abstraction does not come for free. Boolean functions implicitly create

t1 t2

[3, 5]
ab ∨ ¬c

[2, 6]r1

r2

t3

t4

L(t5) = a+
L(t6) = b+
L(t7) = c−

Fig. 4.4. A fragment with a merge place and a rule with a Boolean function.
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structure in the level-ruled Petri net. The rule r1 ∈ R(t4) uses syntactic abstraction

to simplify the connectivity between transitions on a, b, and c. A combination

of these transitions must fire for r1 to be level satisfied. Suppose the following

transitions exist for the level-ruled Petri net in Fig. 4.4: t5, t6, and t7 such that

L(t5) = a+, L(t6) = b+, and L(t7) = c−. Note that these transitions are not

shown in the drawn portion of the net in the figure. The rule r1 is level satisfied if a

transition from each of the following sets fire: {t5, t7} and {t6, t7}. The set of these

sets is a level required set. The level required set for r2 is the empty set because its

Boolean function is always true regardless of the Boolean state of the level-ruled

Petri net.

The function lrs(t) returns the level required set for a transition t. The level

required set is a minimal maxterm cover containing only prime implicants for the

conjunction of the Boolean functions in the rule set of transition t. A maxterm

prime implicant cover for t4 is (a ∨ ¬c) ∧ (b ∨ ¬c). The level required set for t4 is

{{t5, t7} , {t6, t7}}. Suppose there exists another transition t8 such that L(t8) = a+.

The lrs(t4) is now {{t5, t7, t8} , {t6, t7}}. Appendix B is a more detailed discussion

on the level required set. It is not presented here because it is not new research.

Prime implicants are computed using standard algorithms and are then mapped to

corresponding transitions. The challenge is to combine the marking required set

with the level required set to create a set of causal groups for t4.

A causal group only contains fired transitions. The fired marking set, Tµ,

represents the fired transitions that created the current marking. The fired Boolean

state set, Tν , represents the fired transitions that created the current Boolean state.

The construction of these two sets is different than that used to build the initial

zone. It is presented in Section 4.3, but it is not needed for this part of the

presentation. A causal group for a transition Tc ⊆ Tµ ∪ Tν is a sufficient set of

fired transitions to marking and level satisfy the transition.

Definition 4.18 (Causal Group). A causal group given the fired marking set Tµ

and fired Boolean state set Tν for a given transition t ∈ T is the set of transitions

Tc ⊆ Tµ ∪ Tν that satisfies the following:
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1. for all transitions tc ∈ Tc there exists a Tn ∈ lrs(t)∪mrs(t) such that tc ∈ Tn;

2. for all required sets Tn ∈ lrs(t) ∪mrs(t), Tc ∩ Tn 6= ∅; and

3. Tc is irredundant, meaning that nothing can be removed and still satisfy

properties 1 and 2.

A causal group for a transition t must satisfy three conditions. First, every transi-

tion in the causal group must belong to some member of either the level or marking

required set; these contribute to marking and level satisfying transition t. Second,

every marking and level necessary set must be satisfied by some transition in the

causal group. A causal group for t4 in Fig. 4.4 is {t1, t3, t7} for Tµ = {t1, t3},

Tν = {t5, t6, t7}, L(t5) = a+, L(t6) = b+, and L(t7) = c−. Another causal group

for transition t4 using the same Tµ and Tν is {t1, t3, t5, t6}. Third, and finally, Tc is

irredundant. It is not possible to remove any transition from Tc and still have the

first and second properties hold. This makes Tc a minimal set.

Generating causal groups for a transition is a unate covering problem. The

covering problem is readily formulated from the marking required and level required

sets after removing nonfired transitions. The marking required set for transition t4

with only transitions from the fired marking set Tµ in the example is {{t1} , {t3}}.

The level required set on the same set with only transitions from Tµ or the fired

Boolean state set Tν is {{t5, t7} , {t6, t7}}. Suppose that each transition ti is now a

binary variable. The marking required set can now be interpreted by the Boolean

function (t1)∧ (t3) because both t1 and t3 are required by the rule set of transition

t4. The level required set can now be interpreted by the Boolean function (t5∨ t7)∧

(t6 ∨ t7). The two function must be true to level satisfy the rule set for t4. The

marking and level satisfied functions are combined to create the following Boolean

function:

(t1) ∧ (t3) ∧ (t5 ∨ t7) ∧ (t6 ∨ t7).
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This is the classical form of a unate covering problem. Any irredundant solution is

a causal group for transition t4.

Only irredundant solutions to the unate covering problem are included in the

causal group set. The solution set for the above unate covering problem is

{{t1, t3, t5, t6} , {t1, t3, t5, t7} , {t1, t3, t7}}

Consider the {t1, t3, t5, t7} causal group. The presence of t5 is not important in this

causal group because {t1, t3, t7} is a solution to the covering problem too; thus, the

{t1, t3, t5, t7} solution is redundant and not included as a causal group according to

Definition 4.18. The reason for this is best understood through example.

If the set {t1, t3, t5, t7} is considered a causal group, then the time separation

between the transitions in it and t4 must fall within the bounds set by the rules

in R(t4). This information is used to construct the equivalence classes. Although

this is a topic of Section 4.3, it is briefly discussed here. Any transition is assumed

to be able to fire last in this causal group to cause t4 to be marking and level

satisfied. Consider the t5 member of this group. Assuming that t5 fires after the

other transitions in the causal group to marking and level satisfy t4 is inconsistent.

Transition t4 is level satisfied when t7 fires. Firing transition t5 in this group is

of no use. The optimal causal group set for a transition is the set of solutions to

the unate covering problem with all of the solutions that form supersets of other

solutions removed. Only two causal groups need to be considered in this example:

{t1, t3, t5, t6} and {t1, t3, t7}.

The function required set(t, Tµ, Tν) creates the required set for the covering

problem. It takes three parameters: a transition t, the fired marking transitions

Tµ, and the fired Boolean state transitions Tν . The return value is the required set

for t. The keep function must be defined before explaining required set(t, Tµ, Tν).

Definition 4.19 (Keep Function). The keep function keeps in the member sets

of T any transitions not in T ′ and is keep(T ′)(T ) = (
⋃
T ′′∈T {T ′′ ∩ T ′}).
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The return value from required set(t, Tµ, Tν) is keep(Tµ)(mrs(t)) ∪ keep(Tν)(lrs(t)).

This is the union of the marking required set containing only fired marking transi-

tions with the level required set containing only fired Boolean state transitions.

The function to create a causal group set is unate solver(Tn, T
′). It takes two

parameters: a required set Tn and a set of transitions T ′. The required set, Tn,

is the return value from required set(t, Tµ, Tν) for some transition t ∈ T . The

transition set T ′ is a set of transitions that are of interest in any solution to the

unate covering problem in Tn. The unate solver(Tn, T
′) function returns the solutions

to the unate covering problem in Tn. The function first computes the solutions, Tc,

to the covering problem. Tc is a set of transition sets with each set representing a

solution that forms a causal group. The function then removes from each causal

group transitions not in T ′ with the function keep(T ′)(Tc). Finally, the function

removes all redundant causal groups and returns. A redundant causal group is

any group that is a superset of another group. Each causal group in the set now

contains transitions found only in T ′.

Any transition in a causal group of t can be the causal transition. The causal

transition is the last transition to fire to reset the timer on a rule in the rule set

of t. Each causal transition thus defines a maximum separation between itself and

t. Causal groups and assignments are used to compute fireable transitions from a

given timed state class. The term fireable is the timed state class counterpart to

the timed state’s enabled term. A fireable transition is an enabled transition in a

timed state class. Computing the set of fireable transitions from a timed state class

using causal group sets is the topic of Section 4.3.

4.3 Fireable Transitions

The set of fireable transitions in a timed state class relates to the set of enabled

transitions in the timed state from Chapter 2. As a timed state can only fire

enabled delay-transition pairs, only fireable transitions can fire from a timed state

class to move the system to a new timed state class. Consider the level-ruled Petri

net fragment in Fig. 4.5(a) and a corresponding timed state class s = (µ, ν, z)
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such that the marking µ is the one shown in the figure, a and b are high in the

Boolean state ν, and the zone z is the one shown in Fig. 4.5(b). The zone shows

that transitions t1 and t2 on signals a and b fire between 60 and 75 time units after

transition t7. The zone also shows that transitions t1 and t2 fire within 15 time units

of each other in either order. The rule sets for transitions t4, t6, and t8 are marking

and level satisfied in this timed state class. Which of the three transitions, however,

can actually fire from this timed state class? This is an important question because

it affects the correctness of the state space. If in all allowed firing sequences of the

system, transitions t4 and t8 are the only transitions to fire from this marking and

Boolean state, then these must be the only two transitions that can fire from this

timed state class for the resulting finite state space representation to be correct.

If transition t6 is allowed to incorrectly fire from this timed state class, then the

timing analysis introduces a behavior that does not exist in the model and the finite

representation is less exact.

The earliest and latest firing times in the rules imply time separation bounds

between transitions in the zone and the transitions that have marking and level

satisfied rule sets. Transitions t4, t6, and t8 have marking and level satisfied rule

sets in Fig. 4.5(a). Transition t4 has a single causal group {t2, t3}; transition t6 has

two causal groups {{t1, t5} , {t2, t5}}; and transition t8 has a single causal group

{t4}. The rule r1 for transition t4 requires that t4 be separated from t2 and t3

[15, 20]
t4

b
r1

t3

[95, 100]
t8

r3

t7

[35, 45]
t6

a ∨ b
r2

t5
t7 t1 t2

t7 0 -60 -60
t1 75 0 15
t2 75 15 0

L(t1) = a+
L(t2) = b+

(a) (b)

Fig. 4.5. A level-ruled Petri net fragment with four potential fireable transitions
with its zone. (a) The level-ruled Petri net fragment. (b) A zone with separations
between t7, t1, and t2.
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by at least its earliest firing time of 15; and it requires that t4 fire no more than

20 time units after either t2 or t3. The rules r2 and r3 create similar separations

for t6 and t8 and their causal groups. A causality assignment is the selection of

a causal group and causal transition within the group for each marking and level

satisfied transition. The causality assignment for t4 is t2 in its only causal group;

the assignment for t6 is t2 with its {t2, t5} group; and the assignment for t8 is t7 in its

only causal group. The causal assigned zone is the zone from the timed state class

with all of the marking and level satisfied transitions added to it with separation

bounds for their assignments. Fig. 4.6(a) is a causal assigned zone for transitions

t4, t6, and t8. The zone only defines separations between transitions in the zone

and the causal assignment. The zone shows that transition t4 fires between 15 and

20 time units after transition t2; transition t6 fires between 35 and 45 time units

after t2; and transition t8 fires between 95 and 100 time units after t7. Note that

the zone also sets the separation between t2 and t1 to be 0. This implies that t2

always fires before t1 in this zone.

The set of fireable transitions is derived from a set of causal assigned zones

because each transition with a marking and level satisfied rule set may have several

causal assignments. The number of causal assignments to consider depends on the

size and number of causal groups in the set of transitions with marking and level

satisfied rule sets.

Definition 4.20 (Fireable). A transition t ∈ T is fireable in a given timed state

class if it is first, in the set T ′ ⊆ T of transitions with rule sets that are marking

and level satisfied by the state; and second, using the zone in the state, there exists a

causal assigned zone for transitions in T ′ such that its canonical form is consistent

and allows t to fire before the other transitions in T ′.

The time satisfied portion of the enabled property in the timed state is replaced by

the fire first property in the timed state class in this definition. The set of fireable

transitions is the set of transitions that can fire concurrently from the timed state

class considering all causal assigned zones. Consider again the causal assigned zone
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in Fig. 4.6(a). Its canonical form is shown in Fig. 4.6(b). The zone is consistent

by Definition 4.5 and the set of concurrent transitions in the set of marking and

level satisfied transitions {t4, t6, t8} is {t4, t8} by Definition 4.14 as the zone shows

that t6 fires at least 15 time units after t4 on this causal assignment. Although

this causal assigned zone does not allow t6 to fire concurrently, another one does

exist on a different causal assignment to make it fireable too. The final fireable

transition set for Fig. 4.5(a) given the zone in Fig. 4.5(b) is {t4, t6, t8}. The goal

of this section is to present an algorithm to compute the set of fireable events such

that each transition in the set satisfies Definition 4.20.

4.3.1 Causal Assigned Zone

A causal assigned zone contains time separations between the newly added

transition and its causal assignment. It also contains relations in the zone to make

the causal assignment valid with respect to other possible causal assignments to

the transition. The earliest and latest firing times must be defined in terms of a

transition and its causal assignment to create the causal assigned zone. Recall that

the earliest firing time Eft : R → Q
+ is a function mapping rules to nonnegative

rational numbers. For a rule r = (p, t), Eft(r) is a minimum separation that must

exist between the firing of t and the satisfaction of two conditions for r. The

two conditions are marking and level satisfied. These conditions come about from

firing transitions in the causal assignment for t. Transitions are connected to a rule

t7 t1 t2 t4 t6 t8
t7 0 -60 -60 ∞ ∞ -95
t1 75 0 15 ∞ ∞ ∞
t2 75 0 0 -15 -35 ∞
t4 ∞ ∞ 20 0 ∞ ∞
t6 ∞ ∞ 45 ∞ 0 ∞
t8 100 ∞ ∞ ∞ ∞ 0

t7 t1 t2 t4 t6 t8
t7 0 -60 -60 75 -95 -95
t1 75 0 15 0 -20 -20
t2 75 0 0 -15 -35 -20
t4 95 20 20 0 -15 0
t6 120 45 45 30 0 25
t8 100 40 40 25 5 0

(a) (b)

Fig. 4.6. A causal assigned zone and its canonical form. (a) A causal assigned
zone for transitions t4, t6, and t8. (b) The canonical form of the causal assigned
zone in (a).
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through a place or through a Boolean function on the rule. The place connectivity

comes from the flow relation in the level-ruled Petri net. The connection to the

Boolean function stems from the dependence of the Boolean function on the signal

associated with the transition. The function lts(r) returns the level transitions set

that affects the truth value of the Boolean function associated with the rule r ∈ R.

This is computed using positive and negative cofactors on the Boolean function for

r. If a function is positive unate for a given signal, then it depends on that signal in

its positive phase. The set lts(r) includes all rising transitions on a signal if a signal

is positive unate in the function Lsat(r). Similar relations hold for negative unate

and mixed unate. Complete details on the function lts(r) are found in Appendix B.

Definition 4.21 (Needs Set). The needs set for a given rule (p, t) ∈ R is

needs((p, t)) = {t′ ∈ T | t ∈ lts((p, t)) ∨ t ∈ •p}; it is extended to transitions

as needs(t) =
⋃
r∈R(t) needs(r).

This is the set of transitions that contribute to marking or level satisfying the rule.

Definition 4.22 (Earliest Firing Time). The earliest time that transition tf can

fire after a transition tc fires in its causal group is Eft(tc, tf ) = max({q ∈ Q+ | ∃r ∈

R(tf ) : tc ∈ needs(r) ∧ Eft(r) = q}).

The rules for transition tf define the earliest time that tf can fire after transition

tc. Transition tc may be required by several rules in the rule set of transition tf ;

thus, the earliest firing time of tf after tc is the maximum earliest firing time over

the rules in the rule set of transition tf that require transition tc. Transition tc

is required by a rule r if it is in the set needs(r). Consider the level-ruled Petri

net fragment in Fig. 4.4. The earliest firing time for the (t3, t4) transition pair is

2. For the level-ruled Petri net example in Fig. 4.5(a), the earliest firing time for

the pairs (t1, t6), (t2, t6), and (t5, t6) is 35. Although Definition 4.22 uses the max

function to resolve the case where a transition pair has multiple defined bounds,

the timing analysis algorithm is only correct if the set has a single member (i.e.,

for a given tc and tf , |{q ∈ Q+ | ∃r ∈ R(tf ) : tc ∈ needs(r) ∧ Eft(r) = q}| = 1). If
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a transition pair is involved in multiple rules, then those rules must share identical

timing bounds for correctness.

The latest firing time for a transition pair is defined similarly to the earliest

firing time. Recall that the latest firing time is defined as Lft : R → Q
+ ∪ {∞}.

The symbol ∞ represents an infinite latest firing time.

Definition 4.23 (Latest Firing Time). The latest time that transition tf can

fire after a transition tc fires in its causal group is Lft(tc, tf ) = max({q ∈ Q+ | ∃r ∈

R(tf ) : tc ∈ needs(r) ∧ Lft(r) = q}).

This definition is identical to the earliest firing time, excepting the use of Lft(r)

instead of Eft(r). The value is again a maximum because transition tc may be

required by several rules in the rule set of tf . Note that Definition 4.23 falls under

the same restriction as Definition 4.22. If a transition pair is involved in multiple

rules, then those rules must have identical timing bounds.

It is important to understand the relation between the earliest firing time on

a rule and the earliest firing time on a transition pair. A rule requires transitions

to fire to make it marking and level satisfied in a state. Consider the rule r1 in

Fig. 4.5(a). Suppose that the current state of the system, unlike the shown state,

is such that rule r1 is not marking satisfied, but the signal b is high in the Boolean

state. The timer for rule r1 is reset when transition t3 fires in the level-ruled Petri

net semantics because firing t3 creates the state where rule r1 becomes marking and

level satisfied. The earliest firing time of transition t4 after the firing of transition

t3 is 15 because firing t3 resets the clock for r1 and time must advance by at least 15

time units before the rule is time satisfied. If instead the timed state is such that

firing transition t2 on the signal b resets the clock for r1 in the clock assignment

function, then tf cannot fire before 15 time units after t2. The rule sets a lower

bound for transitions required by the rule since each can be the last transition to

fire to reset the clock on the rule in the timed state. A causal assigned zone sets

the firing times of newly added transitions to not violate the earliest firing times

for it and transitions in its causal group. It also sets the firing time of the newly
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added transition to fall within the latest firing time of its causal transition.

A causal assigned zone sets firing times to make the casual transition the last

transition to fire with respect to transitions in the causal group that belong to rules

that rely on the casual transition. Return to the two causal groups for transition

t4 in the level-ruled Petri net fragment in Fig. 4.4 assuming all transitions have

fired except t2. The causal groups are {t1, t3, t5, t6} and {t1, t3, t7}. If the causal

group and assignment are {t1, t3, t7} and t7, then a causal assigned zone sets t7 to

fire after transition t1; thus, t7 is the last transition to fire to reset the clock on the

rule r1. The latest time that t4 can fire after t7 is 5 time units. Making t7 causal

implies that it must be ordered with respect to transitions in rules that rely on it

to become marking or level satisfied. The rule r2 does not rely on t7 to become

marking or level satisfied; it only relies on t3. In this sense, r2 and thus, t3, are

independent of t7 and need no ordering in this causal assignment.

A causal transition is tied to specific rules. Consider the level-ruled Petri net in

Fig. 4.7(a). The zone in Fig. 4.7(b) orders transition t2 to always fire after t1 and

t4. This does not, however, prevent t1 or t4 from being causal transitions because

causality only implies the transition is the last transition to fire to reset the rule

on a clock. The function order set(tf , tc, Tc) returns a set of transitions from the

causal group Tc that belong to rules that rely on tc to become either marking or

level satisfied.

Definition 4.24 (Order Set). The order set given a transition to fire tf ∈ T ,

a causal group Tc ⊆ T , and a causal transition tc ∈ Tc is order set(tf , tc, Tc) =

{t ∈ Tc | ∃r ∈ R(tf ) : t ∈ TS(r) ∧ tc ∈ TS(r)}; where r is the pair (p, t) and

TS(r) = lts(r) ∪ •p.

Note that the expression does not matter in computing the order set because it is

considering only transitions in a given causal group. It only affects orders within this

single conjunctive group. Orders between disjunctive groups are handled separately.

The causal group for Fig. 4.7(a) including only transitions in the zone shown in

Fig. 4.7(b) is Tc = {t1, t4, t2}. If t4 is chosen to be the causal transition in this group,
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then the zone must be changed to fire t4 after all transitions in order set(t3, t4, Tc),

which is equal to {t1, t4}. This is the set of transitions from the causal group in rules

that rely on t4 to be marking or level satisfied. Transition t1 must not be allowed to

fire after t4 in this example. This is done by setting the min-max entry on (t1, t4)

to 0. Transition t1 must now fire before or at the same time as t4 ensuring that the

firing of t4 resets the clock on rule r1. If t2 is also forced to fire before t4 in this

zone, then it is no longer consistent in its canonical form, and t4 is prevented from

being causal. This is incorrect as t4 can certainly define the separation between r1

and t3. If the causal transition, however, is t2, then no orders in the zone need to

be changed. Transition t2 is always the transition to reset the clock on r2 since a

transition for b is not in the zone.

A causal assigned zone sets firing times to make transitions in the causal group

actually be causal relative to the other causal groups. Consider again the causal

group {t1, t3, t7} on the t7 causal assignment to t4 in the Fig. 4.4(a). The other

possible causal group in this example is {t1, t3, t5, t6}. The causal zone must fire

transitions in other causal groups such that t7 is causal in the {t1, t3, t7} grouping.

The transitions t1 and t3 are not important to making this group with t7 causal

because they are common to all causal groups. Transitions t5, t6, and t7 are

important because they are not common to every causal group. Firing t7 before

transitions t5 or t6 makes {t1, t3, t7} causal on t7. Now consider the required set

for t4. This set is {{t1} , {t3} , {t5, t7} , {t6, t7}}. Although the members from

t3

t2t1

r1
[5, 15][5, 35]

r2a b

t1 t4 t2
t1 0 5 -10
t4 5 0 -5
t2 15 20 0

L(t4) = a+
(a) (b)

Fig. 4.7. A level-ruled Petri net fragment with three potential fireable transitions
with its zone. (a) The level-ruled Petri net fragment. (b) A zone with separations
between t1, t4, and t2.
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the marking required set are singletons in this examples, this is not always the

case. If the initial marking contains a merge place, then the fired marking set

includes all transitions that can mark the merge place when fired. Recall that the

set {t5, t7} corresponds to the sum term (t5 ∨ t7) in the unate covering problem.

Transition t7 must fire before t5 if it is the transition to satisfy this sum term. This

corresponds exactly to one of the two orders on t5, t6, and t7 necessary to make

{t1, t3, t7} the causal group on transition t7. A causal assignment can require several

causal zones depending on the causal transition. There are two possible ways to

make the {t1, t3, t7} group on t7 valid in the example, but these orders are only

important if t7 is selected as the causal assignment. Consider again the required

set {{t1} , {t3} , {t5, t7} , {t6, t7}} for t4. There are two causal assigned zones that

must be created—a zone for each member of the required set where transition t7

appears. The firing orders in each zone are set such that the causal transition t7 fires

before the other members in the sum term. Consider now the causal assignment

of {t1, t3, t7} on transition t1. This assignment creates one causal assigned zone

because t1 only appears in one member of the required set as a singleton.

The algorithm to create a causal assigned zone is shown in Fig. 4.8. There are

five inputs to it: fired transition tf , causal transition tc, causal group Tc, required

set Tn, and zone z. Transition tf is the transition to fire. The causal transition for

tf is transition tc, and its required set is Tn. Zone z is the zone from which the

causal assigned zone is created. The return value is a set of causal assigned zones

that includes the new transition tf with appropriate orders and separations given

tc, Tc, and Tn.

There are four distinct operations performed by the algorithm in Fig. 4.8 on

the zone after adding transition tf to it. The operations correspond to the four

requirements on the causal assigned zone: the fired transition must not violate

the earliest firing time on members in Tc; it must satisfy the latest firing time on

tc, tc must be the last transition to fire with respect to transitions in the causal

group Tc that belong to rules that rely on the casual transition; and Tc must fire

before transitions in other sum terms in Tn that include Tc. The four operations
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Algorithm: causal assigned zones(tf , tc, Tc, Tn, z)
1: create zone z′ by adding tf to z
2: /∗ set earliest firing times for tf ∗/
3: for all transitions t in causal group Tc do
4: set min-max entry for (t, tf ) in z′ to negative Eft(t, tf )
5: /∗ set latest firing time of tf ∗/
6: set max-min entry for (tf , tc) in z′ to Lft(t, tf )
7: /∗ make tc fire last to mark or level satisfy rules that rely on it ∗/
8: for all transitions t in order set(tf , tc, Tc) do
9: set min-min entry for (t, tc) in z′ to 0 if positive in z′

10: /∗ make Tc the causal group ∗/
11: create empty zone set Z
12: for all transition sets T ′ in required set Tn where tc is in T ′ do
13: create zone z′′ and set it equal to z′

14: for all transitions t in T ′ do
15: set min-min entry for (tc, t) in z′′ to 0 if positive in z′′

16: add z′′ to Z
17: return Z

Fig. 4.8. An algorithm to create causal assigned zones.

are demonstrated on the creation of a causal assigned zone for t4 in the example

in Fig. 4.4(a). The algorithm is called with tc = t5, tf = t4, Tc = {t5, t6}, Tn =

{{t5, t7} , {t6, t7}}, and z is the one shown in Fig. 4.9(a). The causal group and

required set for t4 only contain transitions in the zone since these are the only

transitions that can be part of a causal assignment.

Line 4 sets the earliest firing times for transitions in Tc and the fired transition

tf . Transition tf fires at least 3 time units after transitions t5 and t6. If transition

t3 is in the zone too, then line 4 makes t4 fire at least 2 time units after t3. Line 6

sets the latest firing time. Transition t4 cannot fire later than 5 time units after t5.

This completes the earliest and latest firing time operation on the zone.

Line 9 orders the causal transition to fire after other members of the order set

order set(tf , tc, Tc). Note that a once a causal assignment is made, it becomes a

causal assignment for all rules that rely on it. The order set for this example is

{t5, t6}. The min-min entry for (t5, t5) in the zone is already at 0. The min-min

entry in the zone for (t6, t5) is 9; thus, t6 can fire 9 time units after t5 in this
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zone. This entry is set to 0. Transition t6 can now only fire before or at the same

time as t5 making t5 causal in this group. This completes the operation to make

transition t5 the reset transition for rules that rely on it. The zone after the first

two operations is shown in Fig. 4.9(b). It contains the earliest and latest firing

times and the new order on t6 and t5. The bounds for t4 and the other members of

the zone are infinite.

Line 15 orders the causal transition to fire before transitions in the other sum

terms in the required set that include the causal transition. The required set

contains a single sum term that includes t5; the term is {t5, t7}. The min-min

entry for (t5, t7) is 11 in the zone; thus, t5 can fire 11 time units after t7. This entry

is set to 0. Transition t5 must now fire before or at the same time as t7. This is

the only causal assigned zone for {t5, t6} on t5. The zone is shown in Fig. 4.9(c)

with the new ordering on t5 and t7. If the causal assignment is {t7} on t7, however,

then two causal assigned zones exist—one zone for each member of Tn containing

t7. These are shown in Fig. 4.10. The zone in Fig. 4.10(a) is where t7 fires before

t5; and the zone in Fig. 4.10(b) is where t7 fires before t6.

4.3.2 Algorithm

The presentation thus far has defined the three necessary components to com-

pute a set of fireable transitions. The first component is the timed state class. The

second component is the causal group set. The third, and final, component is the

t5 t6 t7
t5 0 15 11
t6 9 0 7
t7 2 5 0

t5 t6 t7 t4
t5 0 15 11 -3
t6 0 0 7 -3
t7 2 5 0 ∞
t4 5 ∞ ∞ 0

t5 t6 t7 t4
t5 0 15 0 -3
t6 0 0 7 -3
t7 2 5 0 ∞
t4 5 ∞ ∞ 0

(a) (b) (c)

Fig. 4.9. A series of three zones that show creation of a causal assigned zone.
(a) The initial zone containing only transitions t5, t6, and t7. (b) The zone with
transition t4 added and orders to make transition t5 causal. (c) The final zone with
transition t5 ordered to be causal, earliest firing times for transitions t5 and t6, and
a latest firing time for transition t7.



104

t5 t6 t7 t4
t5 0 15 11 ∞
t6 9 0 7 ∞
t7 0 5 0 -3
t4 ∞ ∞ 5 0

t5 t6 t7 t4
t5 0 15 11 ∞
t6 9 0 7 ∞
t7 2 0 0 -3
t4 ∞ ∞ 5 0

(a) (b)

Fig. 4.10. The two causal zones for the t7 causal assignment. (a) Transition t7
fires before t5. (b) Transition t7 fires before t6.

causal assigned zone. The stage is set to present the algorithm to compute fireable

transitions in a timed state class.

The set of fireable transitions is equivalent to the set of enabled transitions for

a timed state. The algorithm to compute this set is shown in Fig. 4.11. This is

a recursive algorithm that generates all possible causal assigned zones for a set

of marking and level satisfied transitions. The set of marking and level satisfied

fire first transitions are computed in each causal assigned zone and added to a set

of fireable transitions. The algorithm takes five parameters. The first parameter,

Algorithm: fireable(Ts , Tmls , Tf , z,FT)
1: /∗ FT is the three-tuple (Tµ, Tν , Tz) ∗/
2: if transition set Ts is empty then
3: if zone ž is consistent then
4: add to Tf fire first transitions from Tmls in ž
5: return Tf

6: /∗ generate all causal assigned zones for this tf ∗/
7: remove a transition tf from Ts

8: Tn = required set(tf , Tµ, Tν)
9: create T ′n to be Tn with transitions not in Tz removed

10: for all transition sets Tc in unate solver(Tn, Tz) do
11: for all transitions tc in Tc do
12: for all zones zc in causal assigned zones(tf , tc, Tc, T ′n , z) do
13: Tf = fireable(Ts , Tmls , Tf , zc,FT)
14: if Tf = Tmls then
15: return Tf

16: return Tf

Fig. 4.11. An algorithm that computes fireable transitions.
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Ts , is the set of transitions that have yet to be causal assigned and added to the

zone. The second parameter, Tmls , is the complete set of marking and level satisfied

transitions. This set is necessary in computing fire first transitions in the causal

assigned zone. The third parameter, Tf , is the set of fireable transitions as computed

thus far by the algorithm. The fourth parameter, z, is the starting zone containing

various causal transitions for members of the marking and level satisfied set Tmls .

The fifth and final parameter, FT, is the fired three-tuple.

Definition 4.25 (Fired Three-tuple). The fired three-tuple is FT = (Tµ, Tν , Tz)

where Tµ, is the set of transitions that fired to create the current marking, Tν is the

set of transitions that fired to create the current Boolean state, and Tz is the set of

transitions in the current zone.

The fired three-tuple is used to create the required set and remove from causal

groups those transitions that are not in the zone.

The algorithm is explained using the level-ruled Petri net fragment in Fig. 4.5(a).

The current timed state class for the level-ruled Petri net in Fig. 4.5(a) is the

marking shown, the Boolean state is such that both a and b are high, and the

zone is shown in Fig. 4.5(b). The zone shows that both t1 and t2 for a+ and b+

fired between 60 and 75 time units after t7. It also shows that transitions t1 and

t2 fire within 15 time units of each other. The set of marking and level satisfied

transitions in the timed state class is Tmls = {t4, t6, t8}. Function fireable is called

with the set of unassigned transitions, Ts , set to Tmls . The fireable set, Tf is initially

empty. The zone is the zone shown in Fig. 4.5(b). The fired three tuple is such

that Tµ = {t3, t5, t7}, the Tν = {t1, t2}, and Tz = {t1, t2, t7}.

The first part of the algorithm checks to see if all marking and level satisfied

transitions have been causal assigned. If they have, then it computes the set of

those transitions that can fire first from the causal assigned zone. The Ts set is

not empty on the first call because not all transitions have been causal assigned.

Control moves to line 7. Line 7 removes a transition from Ts . Line 8 computes the

required set for the transitions. Transition t4 is selected, and its required set Tn is
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{{t2} , {t3}}. Line 9 creates T ′n . This is a copy of Tn but transitions not in Tz are

removed from each member; T ′n is {t2} in this example. The loop on line 10 iterates

through all causal groups for t4. There is a single causal group; it is {t2}. Recall

that unate solver(Tn, Tz) removes from the causal groups any transitions not in Tz.

The loop on line 11 iterates on every causal transition in a causal group. Line 12

loops through each possible causal assigned zone given the causal assignment and

required set T ′n . The causal assigned zone for t4 is shown in Fig. 4.12(a). Line 13

makes the recursive call. This time Ts is {t6, t8} and the zone is the causal assigned

zone for t4 in Fig. 4.12(a).

The set of transitions yet to be causal assigned, Ts , is still not empty so control

moves to Line 7. Line 7 removes t6. Line 8 computes its required set Tn; it has two

members {t5} and {t1, t2}. The reduced version T ′n is {{t1, t2}}. Line 10 iterates

on the two possible causal groups {t1} and {t2}. Line 11 picks the only transition

in the second causal group {t2}, and line 12 creates the causal assigned zone shown

in Fig. 4.12(b). Notice that t2 is ordered to fire before t1 to make it causal (i.e.,

min-min first entry for (t2, t1) is 0). Line 13 makes the recursive call, only this time

Ts is {t8}, and the zone is the one shown in Fig. 4.12(b).

The set of transitions yet to be causal assigned, Ts , is still not empty so control

moves directly to line 7. The last transition, t8 is removed from Ts . Its required

set from line 8 has a single member {t7}. This results in a single causal assignment

for t8. The causal assigned zone for t8 is shown in Fig. 4.12(c). This is sent to the

recursive call on line 13 with the now empty set Ts .

The set of transitions yet to be causal assigned is empty and control moves

to line 3 on this call. The canonical form of the zone in Fig. 4.12(c) is shown in

Fig. 4.12(d). The zone is consistent because its diagonal is zero. Line 4 adds to

the set Tf all fire first transitions in the zone given the marking and level satisfied

transitions Tmls . The set of fire first transitions from {t4, t6, t8} is {t4, t8} from

Definition 4.14. Although it is not explicitly checked, the causal assigned zone must

be consistent with respect to the fire first transitions and existing transitions in the

zone according to Definition 4.5. Transition t4 is not included in this set because
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t7 t1 t2 t4
t7 0 -60 -60 ∞
t1 75 0 15 ∞
t2 75 15 0 -15
t4 ∞ ∞ 20 0

t7 t1 t2 t4 t6
t7 0 -60 -60 ∞ ∞
t1 75 0 15 ∞ ∞
t2 75 0 0 -15 -35
t4 ∞ ∞ 20 0 ∞
t6 ∞ ∞ 45 ∞ 0

(a) (b)

t7 t1 t2 t4 t6 t8
t7 0 -60 -60 ∞ ∞ -95
t1 75 0 15 ∞ ∞ ∞
t2 75 0 0 -15 -35 ∞
t4 ∞ ∞ 20 0 ∞ ∞
t6 ∞ ∞ 45 ∞ 0 ∞
t8 100 ∞ ∞ ∞ ∞ 0

t7 t1 t2 t4 t6 t8
t7 0 -60 -60 -75 -95 -95
t1 75 0 15 0 -20 -20
t2 75 0 0 -15 -35 -20
t4 95 20 20 0 -15 0
t6 120 45 45 30 0 25
t8 100 40 40 25 5 0

(c) (d)

Fig. 4.12. The evolution of a zone in the fireable algorithm as transitions are
added. (a) The zone after t4 is added with t2 as its causal assignment. (b) The
zone after t6 is added with t2 as its causal assignment. (c) The zone after t8 is added
with t7 as its causal assignment. (d) The causal assigned zone in its canonical form.

the min-max entry for (t4, t6) in the zone is -15. This means that transition t6 must

always fire at least 15 time units after t4. The new set of fireable transitions Tf is

returned from this call.

Control returns to line 13 on the previous stack frame after the new fireable set

is computed. There are no more causal assigned zones or causal assignments to

consider for t8. The new fireable set is again returned and control moves to line 13

on the previous stack frame. There is another causal assignment to consider to t6.

This is {t1}. The zone created for this causal assignment is shown in Fig. 4.13(a).

Compare this zone to the one shown in Fig. 4.12(b). Transition t6 is now causal on

t1, and t1 is ordered to fire before t2 (i.e., the min-max entry for (t1, t2) in the zone

is 0).

The recursive call is made to add transition t8 into the zone on its only causal

assignment. The recursive call is then made with the now empty set Ts and control

moves to line 3. The canonical form of this new causal assigned zone is shown in
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Fig. 4.13(b). It is consistent. The fireable transitions in this zone are t4, t6, and t8.

These are added to the fireable set, and it is returned.

The final set of fireable transitions is {t4, t6, t8}. This is why all causal assign-

ments must be explored for all transitions. A transition may be excluded by one

causal assignment, but included by another. It is necessary to be able to compute

all possible fireable transitions from a given timed state class; thus, all assignments

must be explored. Although this number seems to be large, in practice, there are

often not many causal assignments to explore because the number of transitions in

the zone is small. In addition, it is often the case that all transitions are added on

the first few causal assignments, or the assignment shows that certain transitions

can never fire first. Now that a set of fireable transitions is known, however, it is

necessary to compute successor timed state classes that result from firing one of

these transitions. This is the topic of the next section.

4.4 Successor Transitions

Creating successor timed state classes by firing a transition from the fireable set

is similar to computing the fireable set. The necessary components are the causal

group and the causal assigned zone. Any transition may have several causal groups

depending on its connectivity, implied or direct, in the level-ruled Petri net. Any

causal group may produce several causal assigned zones depending on its required

set. Each of these zones is a successor to the timed state class . This section presents

t7 t1 t2 t4 t6
t7 0 -60 -60 ∞ ∞
t1 75 0 0 ∞ -35
t2 75 15 0 -15 ∞
t4 ∞ ∞ 20 0 ∞
t6 ∞ 45 ∞ ∞ 0

t7 t1 t2 t4 t6 t8
t7 0 -60 -60 -75 -95 -95
t1 75 0 0 -15 -35 -20
t2 75 15 0 -15 -20 -20
t4 95 35 20 0 0 0
t6 120 45 45 30 0 25
t8 100 40 40 25 5 0

(a) (b)

Fig. 4.13. A causal assigned zone and its canonical form. (a) The zone using
transition t2 as the causal assignment for transition t6. (b) The canonical form of
the causal assigned zone.
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the algorithm to compute successor timed state classes by firing transitions from

the fireable set.

The successor timed state classes are the result of firing a transition on every

causal assignment given a starting timed state class.

Definition 4.26 (Successor). Firing a marking and level satisfied transition t ∈ T

from a timed state class (µ, ν, z) with a given fired three-tuple FT results in a set

of timed state classes S; each member (µ′, ν ′, z′) ∈ S is such that µ′ and ν ′ are the

updated marking and Boolean state after firing t, and z′ is a canonical, valid, and

consistent causal assigned zone for t; the set S contains a member for each causal

assigned zone for a given fired three-tuple FT.

The successor set is readily computed using previously defined algorithms.

The algorithm to compute successor timed state classes from a given timed

state class is shown in Fig. 4.14. The algorithm takes three parameters. The first

parameter, tf , is the transition to fire. The second parameter, s is the current timed

state class. This is the three-tuple (µ, ν, z). The third, and final, parameter, FT,

Algorithm: successor(tf , s,FT)
1: /∗ s and FT are the three-tuples (µ, ν, z) and (Tµ, Tν , Tz) ∗/
2: create µ′ and ν ′ by firing tf from µ and ν
3: if untimed failure(µ, ν, tf , µ

′, ν ′) then
4: report failure and exit
5: create empty timed state class set S
6: /∗ create all causal assigned zones for tf ∗/
7: Tn = required set(tf , Tµ, Tν)
8: set T ′n to Tn with transitions not in Tz removed
9: for all transition sets Tc in unate solver(Tn, Tz) do

10: for all transitions tc in Tc do
11: for all zones zc in causal assigned zones(tf , tc, Tc, T ′n , z) do
12: if žc is consistent and valid then
13: if timed failure(tf , (µ, ν, žc),FT) then
14: report timing failure and exit
15: add timed state class (µ′, ν ′, žc) to S
16: return S

Fig. 4.14. An algorithm that computes successor timed state classes.
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is the fired three-tuple given as (Tµ, Tν , Tz). The first two members represent the

transitions that fired to create the current marking and Boolean state, respectively.

The third member is the set of transitions currently in the zone.

The algorithm is explained using the level-ruled Petri net fragment in Fig. 4.5(a).

The current timed state class for the level-ruled Petri net in Fig. 4.5(a) is the

marking shown, the Boolean state is such that both a and b are high, and the zone

is shown in Fig. 4.5(b). The zone shows that both t1 and t2 for a+ and b+ fired

between 60 and 75 time units after t7. It also shows that transitions t1 and t2 fire

within 15 time units of each other. The set of fireable transitions in this timed state

class is Tmls = {t4, t6, t8}. The successor function is called with tf set to t6. The

fired three tuple is such that Tµ = {t3, t5, t7}, the Tν = {t1, t2}, and Tz = {t1, t2, t7}.

The algorithm is iterative. Line 2 creates the new marking and Boolean state

that results from firing transition tf by Definition 2.3 and Definition 2.23. Line 3

checks for any untimed failures that are caused by firing tf . The failure function

is formalized in Definition 3.22. It checks that the transition is safe, consistent

state assigned, output semimodular, and constraint satisfied in the untimed sense.

If the firing of tf violates any of these properties, then it returns a failure. The

failure is reported on line 4. Line 5 of the algorithm creates an empty set of timed

state classes for the successors of this timed state class. Line 7 gets the required

set for the transition tf . Recall that transitions in member sets that are not in

the Tµ and Tν members of the fired three-tuple are removed from the required

set. The required set for transition t6 in this example is {t1, t2}. Line 9 iterates

through the causal groups created by the required set. There are two causal groups

for this example: {t1} and {t2}. Line 10 iterates on all causal assignments. This

example starts with the first causal assignment of {t1} on t1. Line 11 iterates on the

only causal assigned zone for this assignment. This is shown in Fig. 4.15(a). The

canonical form of this causal assigned zone is shown in Fig. 4.15(b). Line 12 checks

that the zone is consistent and valid. A zone is not consistent or valid if the causal

assignment orders the transition to where it cannot fire, or it fires before other fired

transitions. This zone is both consistent, because its diagonal is zero, and valid,
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t7 t1 t2 t6
t7 0 -60 -60 ∞
t1 75 0 15 ∞
t2 75 0 0 -35
t6 ∞ ∞ 45 0

t7 t1 t2 t6
t7 0 -60 -60 -95
t1 75 0 15 -20
t2 75 0 0 -35
t6 120 45 45 0

(a) (b)

Fig. 4.15. A causal assigned zone for transition t6 on t2 and its canonical form.
(a) The zone using transition t2 as the causal assignment for transition t6. (b) The
canonical form of the causal assigned zone.

because transition t6 fires after transitions already in the zone, by Definition 4.6.

Line 13 checks for timing failures in constraint rules. This check is discussed in

detail in Section 4.7. A failure occurs in a constraint rule for tf if it is visible to the

target module, and it is outside of its timing bounds at the firing of tf , or if any

marking and level satisfied constraint rule is beyond its upper timing bound. These

properties are given in Definition 3.16 and Definition 3.17. If there is no timing

failure, then line 15 combines the zone with the new marking and Boolean state to

form a timed state class and adds it to S.

This algorithm implements a partial order in the timing information. In tradi-

tional timing analysis algorithms, the transitions in the zone need to be ordered to

always fire before t6. Transitions t7, t1, and t2 are already ordered before t6 in this

example. This is shown in the t6 column of the zone. It is all negative. Although

it is ordered in this zone, a total order method modifies the t6 column as necessary

to change any positive entries to zero. This forces t6 to always fire after transitions

already in the zone. This order is not enforced by this algorithm. It allows members

of the zone to fire after t6 if possible (i.e., the t6 column can have positive nonzero

entries). This partial order in the timing information is the basis of the POSET

method in [43, 57].

The next iteration in the algorithm creates the causal assigned zone shown in

Fig. 4.16(a). Its canonical form is shown in Fig. 4.16(b). This zone too is combined

with the new marking and Boolean state to form a timed state class and added to

S making the final set returned from the successor algorithm after firing transition
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t7 t1 t2 t6
t7 0 -60 -60 ∞
t1 75 0 0 -35
t2 75 15 0 ∞
t6 ∞ 45 ∞ 0

t7 t1 t2 t6
t7 0 -60 -60 -95
t1 75 0 0 -35
t2 75 15 0 -20
t6 120 45 45 0

(a) (b)

Fig. 4.16. A causal assigned zone for transition t6 on t1 and its canonical form.
(a) The zone using transition t1 as the causal assignment for transition t6. (b) The
canonical form of the causal assigned zone.

t6. Comparing the two zones in Fig. 4.15(b) and Fig. 4.16(b) is of interest. The

ordering necessary to create the two causal assignment splits zones so that they do

not form a subset or superset relation with each other.

It is possible to add a timed state class that leads to a timed state classes in the

future with no successors. Recall from the previous section on computing fireable

events that one of the two causality assignments for the marking and level satisfied

set of {t4, t6, t8} in Fig. 4.7(a) only allowed transitions t4 and t8 to fire. The successor

algorithm adds the two timed state classes in Fig. 4.15(b) and Fig. 4.16(b) after

firing transition t6. Consider the zone in Fig. 4.16(b) on the t2 causality assignment

for t6. Suppose that after firing t6 it is determined that transition t1 is no longer

needed in the zone; thus, it is deleted. The resulting zone is used to form the timed

state class after t6 fires. The two fireable transitions from this state are t4 and t8.

Suppose that t8 fires to generate one successor zone. After firing t8, transition t7

is no longer needed in the zone, so it is deleted. At this point, transition t4 is the

only marking and level satisfied transition. It is fired by the successor function to

create the zone in Fig. 4.17. This zone, however, is not valid because the min-max

t2 t6 t8 t4
t2 0 -35 -20 -15
t6 45 0 25 30
t8 40 5 0 25
t4 20 -15 0 0

Fig. 4.17. A causal assigned zone that is not valid.
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entry for (t4, t6) is -15. This zone has ordered the newly added transition t4 to fire

before transition t6. This violates the implied order in the zone, and the zone is

discarded; thus, there are no successors from this timed state class if t4 is the only

marking and level satisfied transition.

The intuition behind this issue is that the set of fireable transitions is computed

from all possible causal assignments to a group of marking and level satisfied tran-

sitions. Each causal assignment can generate a different set of fireable transitions.

The fireable function, however, creates the set of fireable transitions as the union

over the sets generated in each causal assignment. This implies that it is possible

to fire a transition first from a causal assignment that does not actually allow

that transition to fire first. This leads to states with no successors. This cannot

be avoided without fundamentally changing the approach of the algorithm. It

would need push onto the search stack each zone created in fireable on causal

assignment. The search then only fires true fire first transitions according to each

causal assignment across the set of marking and enabled transitions.

4.5 Finite Representation

The stage is set to build a finite representation of the infinite state space for a

level-ruled Petri net. The timed state class is a suitable replacement for the timed

state. Its zone can capture many different clock assignment functions in the timed

state. The causal group allows both fireable and successor states to be computed

from a given timed state class. All that is missing is a representation and algorithm

to capture the reachable states and firing sequences of the system using the timed

state class.

The first section presents the timed state class graph. The infinite state space is

captured in a graph representation. The graph, however, is unique in that the edge

relation only considers the marking and Boolean state while the node set consists

of timed state classes. The concluding section presents an algorithm to build the

timed state class graph. It uses, as mentioned previously, the fireable and successor

algorithms.
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4.5.1 Timed State Class Graph

The timed state class graph is a finite representation of an infinite set of timed

states and firing sequences.

Definition 4.27 (Timed State Class Graph). A timed state class graph is the

tuple SG = (S,E) where S is a set of timed state classes and E ⊆ 2P × 2W × T ×

2P × 2W is the edge relation.

The nodes of the graph are timed state classes. The edges of the graph are

represented by a relation. The relation, however, only links the marking and

Boolean state to other markings and Boolean states by fired transitions. The zone

is excluded in the relation because it can be derived from the set of reachable timed

state classes S in the system. For any given edge in E, there exists a corresponding

timed state class pair in S that satisfies the transition—meaning the transition is

fireable in the first member of the pair, and there is a causal assignment that leads

it to the second member of the pair.

A timed state class is not new in the node set unless it has a marking or Boolean

state that has yet to be seen, or its zone is not a subset of an existing zone for the

same marking and Boolean state in the node set.

Definition 4.28 (New Timed State Class). A timed state class (µ, ν, z) is new

in a timed state class set S if for all states (µ′, ν ′, z′) ∈ S, µ 6= µ′ ∨ ν 6= ν ′; and for

all states (µ′, ν ′, z′) ∈ S, µ = µ′ ∧ ν = ν ′ ∧ z 6⊆ z′.

The new timed state class definition does not allow the node set to be larger than

it needs to be. In only keeps zones that cover clock assignment functions that have

yet to be seen.

Definition 4.29 (Adding A State). Adding a new timed state class (µ, ν, z) to a

timed state class set S results in the new timed state class set S ′ = (S−{(µ′, ν ′, z′) ∈

S | µ = µ′ ∧ ν = ν ′ ∧ z ⊃ z′}) ∪ {(µ, ν, z)}.

Adding a new timed state class can actually shrink the size of the finite representa-
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tion. This is because any timed state classes with identical markings and Boolean

states but containing subset zones are removed from the node set. The relation E

for the edge set becomes more clear at this point. It never needs to be updated

when the node set is reduced by the superset relation because it does not include

the zone.

The update on the edge relation E is straight forward. The new edge is added

to the relation.

Definition 4.30 (Adding An Edge). Adding a new edge (µ, ν, t, µ′, ν ′) to an edge

set E results in the new edge set E ′ = E ∪ {(µ, ν, t, µ′, ν ′)}.

4.5.2 Algorithm

The algorithm cannot be presented without a brief discussion of the fired three-

tuple. The fired three-tuple is given in Definition 4.25. The three members of

the tuple represent sets of fired transitions. The first is the set of transitions that

created the current marking. The second is the set of transitions that created the

current Boolean state. The third, and final, is the set of transitions in the current

zone. The three sets are important to computing the causal group set and causal

assigned zones. The first two members reduce the size of the covering problem that

needs to be solved. They remove from the required set any transitions that have

not fired. A solution containing these transitions does not make sense since the

transitions have not fired. The third member is used to remove transitions that

are not in the zone. The separations between these transitions and those in the

zone are unconstrained; they are not considered in computing fireable and successor

transitions.

The fired marking transition set is updated with the firing of a new transition

by looking at the fired transition and the previous fired marking set. It cannot be

determined by the marking alone. This is due to merge places. The marking does

not contain information on the transition that fired to add a merge place to the

marking.

Definition 4.31 (Initial Fired Marking Transition Set). The initial fired
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marking set of a level-ruled Petri net with the initial marking µo is Tµ = {t ∈ T |

∃p ∈ µo : t ∈ •p}.

Consider the level-ruled Petri net fragment in Fig. 4.4. If the initial marking

is such that the rules r1 and r2 are marking satisfied, then it is not known if t1 or

t2 fired to create the marking; thus, both of these transitions are included in the

initial fired marking set.

Definition 4.32 (Update on Fired Marking Transitions). Adding a fired

transition tf ∈ T to the set of fired marking transitions Tµ given the new marking µ

after tf fires creates the new set T ′µ = {t ∈ T | t = tf ∨ (t ∈ Tµ ∧ ∃p ∈ µ : t ∈ •p)}.

The new fired marking set only includes transitions connected to places in the

new marking, and it does not include any transitions that share a place with tf ;

thus, aside from the initial set, no more than one transition involved in a merge

place is ever included.

The fired Boolean state set must deal with multiple transitions on the same

signal. This affects the initial fired Boolean state set as well as the update operation.

Definition 4.33 (Initial Fired Boolean State Transition Set). The initial

fired Boolean state set of a level-ruled Petri net given its initial Boolean state ν is

Tν = {t ∈ T | (L(t) = w+ ∧ w ∈ νo) ∨ (L(t) = w− ∧ w 6∈ νo)}.

The initial fired Boolean state transition set includes all transitions that contributed

to creating the initial Boolean state. If multiple transitions exist for a given signal

that move that signal to the same Boolean state that matches the state in νo, then

all of those transitions are included in the initial set. The system cannot know

which of those transitions fired to create the initial Boolean state νo.

Definition 4.34 (Update on Fired Boolean State Transitions). Adding a

fired transition tf ∈ T to the set of fired Boolean state transitions Tν given the new

Boolean state from firing tf creates the new set T ′ν = {t ∈ T | ((L(t) = w+∨L(t) =

w−)∧ t = tf )∨(L(tf ) = w+∧L(t) 6= w−∧ t ∈ Tν)∨(L(tf ) = w−∧L(t) 6= w+∧ t ∈
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Tν)}.

The update on the fired Boolean state set is similar to the update on the fired

marking transition set. It removes from the set transitions on the same signal

as tf but in the opposite direction. There are three conditions that a transition

can satisfy to be added to the updated set. The first case is for the actual fired

transition. If the fired transition tf is on a signal, then add it to the updated set.

The second and third conditions relate to transitions already in the set. If the fired

transition tf is rising (falling), transition t is not a falling (rising) transition on the

same signal, and t is in the old Boolean state fired set, then add it to the updated

set.

The zone transition set is simpler to compute than the fired marking and

Boolean state transitions sets.

Definition 4.35 (Zone Transitions). The set of transitions in a given zone z =

(t, A) is the set of transitions Tz = {t ∈ T | ∃i : ti = t}.

The initial set is computed using the same definition. A transition is in the set if

it exists in the zone. Multiple instances are not an issue.

The algorithm to build the finite representation of the state space given a level-

ruled Petri net is shown in Fig. 4.18. This is a depth first search algorithm. The

Algorithm: find(s, SG,FT)
1: /∗ Recall that s is the three-tuple (µ, ν, z) ∗/
2: create the set Tmls of all (µ, ν) satisfied transitions
3: for all transitions tf in fireable(Tmls , Tmls , ∅, z,FT) do
4: for all timed state classes s′ in successor(tf , s,FT) do
5: add edge (s, tf , s

′) to timed state class graph SG
6: s′ = prune(s′,FT)
7: if s′ is new in SG then
8: update the fired tuple FT with tf and z′

9: add s′ to SG
10: SG = find(s′, SG,FT)
11: return SG

Fig. 4.18. An algorithm to find a timed state class graph.
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algorithm takes three parameters. The first parameter, s, is the current timed state

class of the level-ruled Petri net. The second parameter, SG, is the timed state

class graph. The third, and final, parameter is the fired three-tuple. The return

type for the algorithm is a timed state class graph that represents the reachable

state space of the level-ruled Petri net. The first call to the algorithm is with the

initial timed state class s = (µo, νo, zo), where µo and νo come directly from the

level-ruled Petri net, and zo is derived from µo and νo according to Definition 4.16.

The initial timed state class graph SG contains only the initial timed state class in

its node set. The initial fired three-tuple is derived from µo, νo, and zo, according

to the above definitions.

There are two operations in the algorithm that have not been defined thus

far. The first operation is on line 2. The Tmls set is the set of marking and

level satisfied transitions in the timed state class (µ, ν, z). This set is given as

{t ∈ T | (µ, ν) ` R(t)}. The other undefined operation is on line 6. The function

prune(s′,FT) deletes from a zone in a timed state class any transitions that are

no longer important in computing fireable and successor states. A transition is

not important if it is no longer part of the fired marking or Boolean state sets. A

transition is also not important if it is determined that it no longer can be causal to a

transition that requires it to be marking or level satisfied. The number of transitions

in the zone affects the performance of the algorithm. The algorithm generally has

better performance in both its running time and the size of the final timed state

class graph if the zones contain the fewest number of transitions as possible; thus,

the function prune(s′,FT) is important to the success of the algorithm.

4.6 Pruning

Pruning reduces the number of transitions in the zone to improve the timing

analysis algorithm in Fig. 4.18. Zones containing fewer transitions reduce the

running time of the algorithm because fewer relations need to be considered in

the fireable and successor algorithms. Pruning reduces the size of the timed state

class graph because the zones are larger and more apt to form superset relations.
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The next three sections present the pruning method used in timing analysis to build

the finite state space representation.

4.6.1 Type I Redundant Transitions

Pruning removes transitions that no longer contribute information in the zone

useful to creating successor states. The intuition is best understood through ex-

ample. Consider the level-ruled Petri net in Fig. 4.19(a). Suppose the zone in the

current timed state class is the one shown in Fig. 4.19(b). Do both of the transitions

need to remain in the zone? The question is addressed by the graph in Fig. 4.19(c).

The graph shows the placement of transition t3 in time. Transition t1 serves as a

reference point in the graph. Transition t2 is redundant in this zone if the earliest

and latest firing times of t3 are completely determined by t1.

The maximum amount of time that can elapse from the firing of t1 to t2 is the

min-max entry (t2, t1) in the zone. Transition t2 can fire as much as 1 time unit

after t1. This is the δL separation in the graph. It represents firing transition t1

as early as the zone allows and then firing transition t2 as late as the zone allows;

t3

t2t1

r1
[4, 9][5, 10]

r2

t1 t2
t1 0 2
t2 1 0

t3

t1
Eft(r1)

Lft(r1)

t2
Lft(r2)

δL

t2
Eft(r2)

(a) (b) (c)

Fig. 4.19. A level-ruled Petri net, zone, and graph to illustrate pruning. (a) The
level-ruled Petri net fragment. (b) A zone with separations between t1 and t2. (c)
A graph showing the placement of t3 in time depending on its causal assignment.
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hence, the δL indicates that t2 fires as late as possible relative to the reference point

t1. Transition t1 completely determines the latest firing time of t3 if δL + Lft(r2) ≤

Lft(r1). Transition t2 cannot fire any later than δL after t1; thus, if the latest firing

time for t3 set by r1 is after that set by r2 at its latest firing time, then surely t1

completely determines the latest firing time of t3. This is shown in the graph by

making t2 fire earlier than where it is shown. This effectively moves it to the left in

the graph. Notice that the latest firing time of t3 is not changed as t2 fires earlier

in time relative to t1.

The earliest firing time is checked in a similar fashion. Transition t1 completely

determines the earliest firing time of t3 if δL + Eft(r2) ≤ Eft(r1). Transition t2

cannot fire any later than δL time units after t1; thus, if the earliest firing time set

by r1 is after that set by r2 with t2 at its firing as late as possible, then surely t1

completely determines the earliest firing time of t3. This is shown in the graph by

making t2 fire earlier than where it is shown. This effectively moves it to the left in

the graph. Notice that the earliest firing time of t3 is not changed as t2 fires earlier

in time relative to t1. Transition t1 completely determines the earliest and latest

firing time of t3 in this example. This is correct because both the earliest and the

latest firing times are set by a max relation over the rules.

The intuition in the graph is supported by the causal assigned zones. The

remaining transition in the zone is sufficient to capture all the allowed behaviors in

the successor states of the level-ruled Petri net. Consider the two causal assigned

zones created from the t1 and t2 causal assignments in this example. Fig. 4.20(a)

is the zone from the t1 causal assignment and Fig. 4.20(b) is the zone from the t2

causal assignment. Both zones are in their canonical forms. The zone in Fig. 4.20(a)

is a superset of the zone in Fig. 4.20(b); thus, computing causality using only t1

captures the earliest and latest possible firing time of t3. The reduced zone with t2

deleted is shown in Fig. 4.20(c). The reduced zone correctly sets the earliest and

latest firing times of t3.

The required set is part of the redundant calculation. The required set in the

above example is very simple because it only has two size one members. Consider
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t1 t2 t3
t1 0 2 -5
t2 1 0 -4
t3 10 12 0

t1 t2 t3
t1 0 2 -5
t2 1 0 -4
t3 10 9 0

t1 t3
t1 0 -5
t3 10 0

(a) (b) (c)

Fig. 4.20. Two causal assigned and a reduced zone for Fig. 4.19. (a) The
causal assigned zone for the t1 assignment. (b) The causal assigned zone for the t2
assignment. (c) The reduced causal assigned zone for t3.

the required set for t4 in Fig. 4.4: {{t1, t2} , {t3} , {t5, t7} , {t6, t7}}. This is more

complex in that several members contain more than one transition. How does this

impact the redundant calculation? The answer is found in the causal assigned zone.

Definition 4.36 (Type I Redundant Transition). A transition, tp ∈ Tz, is

redundant to a transition yet to fire, tf ∈ T , in the zone z defined over Tz ⊆ T if

one of the following holds:

1. for all T ′ ∈ required set(tf , Tz, Tz), tp 6∈ T ′;

2. for all T ′ ∈ required set(tf , Tz, Tz) such that tp ∈ T ′, tp is not a fire first

transition in T ′ given z; or

3. there exists T ′ ∈ required set(tf , Tz, Tz) such that tp 6∈ T ′ and for all transitions

t ∈ T ′, δL + Lft(tp, tf ) ≤ Lft(t, tf ) ∧ δL + Eft(tp, tf ) ≤ Eft(t, tf ); where δL is

the min-max entry for (tp, t) in z.

The first case simply checks that tp is connected to tf through a marking or Boolean

function. The second case is a result of the causal assigned zone. If tp is a member

of a required set that contains more than one transition, then it must be able to fire

before the transitions in that group for it to be causal. If it is strictly ordered after

any of those transitions in the zone, then it cannot fire first to satisfy that set; thus,

it can never be used in a causal group to set the firing bounds on tf . The final case

is the one presented in Fig. 4.19 extended to members of the required set T ′ with

more than one transition. Transition tp must be redundant to all transitions in T ′

to be excluded from the zone; and this only needs to hold for one member of the
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required set. The intuition follows exactly with the graph in Fig. 4.19(c). If another

transition exists that completely determines the firing time of tf regardless of the

presence of tp, then tp must be redundant. Every transition in T ′ must exclude it

because an excluding transition must appear in every possible causal group of tf to

make tp redundant.

The redundant transition definition is demonstrated on an example. Consider

the level-ruled Petri net in Fig. 4.4. The zone in the current state is Fig. 4.21(a).

The required set for transition t4 containing only transitions that are found in the

zone is {{t1} , {t3} , {t5, t7} , {t6, t7}}. Is transition t1 a redundant transition for

determining when t4 fires? The first and second cases do not apply. Consider the

set {t3} for the third case. The reference point is set to be t3. The latest time that

t1 can fire after t3 is the min-max entry (t1, t3) in the zone. This is given as -1. The

latest firing time of t4 on t1 is Lft(t1, t4) = 5 and on t3 is Lft(t3, t4) = 6. The first

half of the third case in Definition 4.36 is satisfied as −1+5 ≤ 6 holds. The earliest

firing time of t4 on t1 is Eft(t1, t4) = 3 and on t3 is Eft(t3, t4) = 2. The second half

of the third case is satisfied as −1 + 3 ≤ 2 holds; thus, transition t1 is redundant in

this zone. The new zone with t1 removed is shown in Fig. 4.21(b).

Now consider transition t3 in the new zone. Is it redundant in setting the firing

time of t4? Again the first two cases do not apply. Consider the set {t6, t7} for the

third case. Transition t6 is the reference: δL = −2 so −2 + 6 ≤ 5 and −2 + 2 ≤ 3.

Now set t7 as the reference point: δL = −1 so −1+6 ≤ 5 and −1+2 ≤ 3. Transition

t3 is redundant in both members of the set, so it can be deleted. The new zone

with t3 removed in shown in Fig. 4.21(c).

Now consider transition t5 in the new zone. Is it redundant in setting the firing

time of t4? Although the first case in Definition 4.36 does not apply, the second

case does. Consider the {t5, t7} member of the required set for t4. Transition t5

cannot fire first with t7 in this zone—see Definition 4.14 on fire first transitions in

z. Transition t7 always fires before t5; thus, t5 can never be used to set the firing

bounds on t4 and can be deleted from z. The final zone with t5 removed is shown in

Fig. 4.21(d). This smaller dimension zone reduces the number of causal assignments
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t1 t3 t6 t7 t5
t1 0 -1 -3 -2 -5
t3 1 0 -2 -1 -4
t6 7 6 0 3 -2
t7 6 5 1 0 -1
t5 11 10 4 7 0

t3 t6 t7 t5
t3 0 -2 -1 -4
t6 6 0 3 -2
t7 5 1 0 -1
t5 10 4 7 0

(a) (b)

t6 t7 t5
t6 0 3 -2
t7 1 0 -1
t5 4 7 0

t6 t7
t6 0 3
t7 1 0

(c) (d)

Fig. 4.21. A series of zones to demonstrate pruning on marking and level satisfied
transitions. (a) The initial zone. (b) The zone after t1 is deleted. (c) The zone
after t3 is deleted. (d) The final zone after t5 is deleted.

that must be considered by the algorithm to build the finite state space.

4.6.2 Necessary Transitions

In order to prune transitions with rule sets that are only partially marking or

level satisfied, the notion of a necessary transition must be introduced. A necessary

transition is like a required transition only it does not directly affect marking or

level satisfied. Consider the net in Fig. 4.22(a). It does not include any syntactic

abstraction so the Boolean state is ignored in the following discussion. Transition

t5 is not satisfied by the shown marking. The required set for t5 consists of the

two sets {t3} and {t4}. A transition from each of these sets must fire for t5 to be

marking satisfied. The first set, {t3}, is already satisfied because t3 fired to create

the current marking. The second set {t4} is not satisfied because t4 has yet to

fire. A necessary set for t5 is a set of transition-delay pairs. The transition in any

pair in the set is satisfied by the current marking, and it must fire if t5 is to be

marking satisfied and fire. The delay in any pair in the set is a lower bound on the

delay between the transition in the pair and t5. A necessary set for t5 is {(t2, 5)}.

The transition is found by searching backward from t4 through places that do not
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appear in the current marking until a transition is found that is satisfied by the

current marking. Transition t2 must fire if t5 is to be marking satisfied. Transition

t5 cannot fire earlier than 5 time units after t2.

The necessary set extends to level-ruled Petri nets with syntactic abstraction too

because it searches backward on members of the required set that are not satisfied.

Definition 4.37 (Nonsatisfied Set). The nonsatisfied set for a transition t ∈ T

and a set of fired marking and level transitions Tµ, Tν ⊆ T is any member of the

marking and level required set for t that does not contain any transitions from Tµ or

Tν; it is defined as nonsatisfied(t, Tµ, Tν) = {T ′ ∈ mrs(t) | ∀t′ ∈ Tµ, t′ 6∈ T ′} ∪ {T ′ ∈

lrs(t) | ∀t′ ∈ Tν , t′ 6∈ T ′}

The nonsatisfied set for t5 in the current example is {t4}. Consider the net

in Fig. 4.22(b). The nonsatisfied set for t8 depends on the Boolean state of the

system. Assume that the current Boolean state is such that both a and c are low.

The required set for t8 is {{t5} , {t7}}.The nonsatisfied set for t8 is {t7}, since it

must fire for a to level satisfy the rule set for t8 and t5 has already fired. The

necessary set is found by searching backward through members of nonsatisfied sets

[3, 6]

[2, 4]
t2

[2, 4]
t4t3

t5
[4, 6]

t1

r4r3

L(t7) = a+
L(t6) = c+

c

a

t1 t2

t3 t5

t6 t7 t8

[1, 5]
t4

[1, 5] [1, 7][1, 5]

[1, 5]

(a) (b)

Fig. 4.22. Two nets with transitions that are not enabled. (a) A level-ruled Petri
net with no syntactic abstraction where t5 is not marking satisfied. (b) A level-ruled
Petri net with syntactic abstraction where t8 is not level satisfied.



125

until t3 is found. The resulting necessary set is {(t3, 4)}. Transition t8 cannot fire

any earlier than 4 time units after t3.

The necessary set does not always contain a single transition-delay pair. If

the nonsatisfied set contains multimember sets, then the necessary set can contain

multimember sets too. Consider the level-ruled Petri net in Fig. 4.23(a). It does

not use syntactic abstraction, but its required set includes {t1, t2}; thus, there are

two backward paths that must be considered in computing the necessary set. The

results of both paths are combined at t3 since it is not known which transition fires

in the future to actually create a marking where the rule set for t3 is satisfied. In

either case, however, only the firing of one of the two is needed. Consider now the

level-ruled Petri net in Fig. 4.23(b) that uses syntactic abstraction. The required

set for t2 is {{t1} , {t3, t4}}. This has a member of its required set with more than

one transition, and it has more than one member in its required set. The necessary

set now must choose between two results. It can find a result searching backward

on {t1}, and it can find a result searching backward on {t3, t4}. The two results

are not merged because both are required to fire t2. The result with the smallest

cardinality and largest delay is saved at t2

The algorithm to compute the necessary set is shown in Fig. 4.24. The algorithm

has four inputs. The first input, s, is the current timed state class of the level-ruled

Petri net. The second parameter, t, is the transition that the necessary set is being

t1 t2

t3

L(t4) = b+
L(t3) = a+

a ∨ b

t2

t1

(a) (b)

Fig. 4.23. Two level-ruled Petri nets that can generate multimember necessary
sets. (a) A level-ruled Petri net with no syntactic abstraction with {t1, t2} in its
marking required set. (b) A level-ruled Petri net with syntactic abstraction with
the set {t3, t4} in its level required set.
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Algorithm: necessary(s, t, TV ,FT, level)
1: /∗ s and FT are the three-tuples (µ, ν, z) and (Tµ, Tν , Tz) ∗/
2: if transition t is in the visited transition set TV then
3: return ∅/∗ found cycle ∗/
4: if the rule set of t is satisfied by (µ, ν) then
5: return {(t, 0)}
6: add t to TV
7: if level is true then
8: add all t′ in T such that L(t) = L(t′) to TV
9: create an empty set of solutions X

10: for all transition sets T ′ in nonsatisfied(t, Tµ, Tν) do
11: create empty set TD of transition-delay pairs
12: for all transitions t′ in T ′ do
13: set level to true if t′• ∩ •t = ∅ otherwise set it to false
14: create set TD′ and set it equal to necessary(s, t′, TV ,FT, level)
15: add Eft(t′, t) to the delay in each member of TD′

16: union TD′ into TD
17: add TD to the solution set X
18: get TD with smallest cardinality and largest delay in solutions X
19: return TD

Fig. 4.24. An algorithm to compute a set of necessary transitions.

computed for. The third parameter, TV , is a set of transitions already visited in the

search. It is used to terminate the recursion in the algorithm on cycles. The fourth

parameter, FT, is the fired three-tuple. It is used to compute the nonsatisfied

set. The fifth and final parameter is the Boolean flag level. The flag is used to

help terminate the backward search as soon as possible. The return type from the

algorithm is a set of transition-delay pairs.

The algorithm is demonstrated on the example in Fig. 4.22. The current state

of the system is such that the marking is the one shown and signals a and c are

low. The fired three-tuple agrees with the marking and Boolean state in its fired

sets. The algorithm is called to compute necessary on t8.

The algorithm is called as necessary(s, t8, ∅,FT, false). It is left empty in this

example. Line 2 of the algorithm checks to see if t8 has already been visited. It has

not, so control moves to line 4. It checks to see if t8 is marking and level satisfied by

the current timed state class s. It is not so control moves to line 6. Line 6 updates
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the visited set with t8. If t8 is a transition on a signal and level is set to true, then

line 8 adds to TV all transitions on the same signal in the same direction; thus, the

visited set includes knowledge about the signals and uses it to help terminate the

backward search as soon as possible.

Line 10 iterates on members of the nonsatisfied set for t8 given the fired marking

and Boolean state set from the fired three-tuple. The nonsatisfied set has a single

member {t7} in this example. Line 12 iterates on each transition in the current

member of the nonsatisfied set. For each member, line 14 makes the recursive

call with the new transition and visited set. The results of the recursive call are

stored into TD′. This is where the results from each path on a merge place or

disjunctive Boolean function are combined. The recursive call is made with t′ = t7

and TV = {t8} in this example.

The recursion continues until the algorithm is called with t = t3 and TV =

{t5, t7, t4, t6}. Transition t3 is yet to be visited and control moves to line 4. Tran-

sition t3 is marking and level satisfied in the current timed state class s; thus, line

5 returns {(t3, 0)}. The previous recursive frame gets the new necessary set. It is

added to the solution set TD′ to give {{(t3, 0)}} by line 14. Line 15 adds to the

delay in each pair in TD′ the earliest firing time between t′ and t. The expands the

minimum amount of time to elapse from the firing of the enabled transition to the

current level of recursion. Line 18 picks the solution with the smallest cardinality.

If all of the solutions are empty, then the empty solution is returned. Transition

t′ is t3 and t is t6. The necessary set TD = {(t3, 1)} is returned to the previous

recursive call frame. This continues until recursion is completely unrolled. The

final necessary set if {(t3, 4)} for the example.

The necessary set is an important piece to pruning. The goal of pruning is

to remove transitions from the zone that no longer contribute useful information.

Consider the level-ruled Petri net in Fig. 4.25(a). If it can be shown that t3 does

not contribute useful information to the firing of t5, then it can be removed from

the zone. The necessary set for t4 is used to determine the usefulness of t3.
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4.6.3 Type II Redundant Transitions

A transition does not have to be marking and level satisfied before pruning

on members of its required set begins. Consider again the level-ruled Petri net in

Fig. 4.25(a). Transition t5 is not satisfied by the current marking. Now consider the

zone in Fig. 4.25(b). It may be possible to prune t3 from this zone using knowledge

about the structure of the net in Fig. 4.25(a). The first transition that is marking

satisfied walking backward from t4 is t2. This is a necessary transition for t5. The

earliest that t4 can fire after t2 is 2 time units. This is the sum of the lower bounds

from t2 to t4. Consider the graph in Fig. 4.25(c) showing the earliest and latest

firing times of t5 after t3 and t4. The perspective in the graph is relative to t1. The

value δN is the earliest time after the necessary transition t2 that t5 can fire. This is

4 because the delay from the necessary transition is 2 and the earliest firing time for

(t1, t2) is 2. The value δL is the latest time after t2 that t3 can fire as allowed by the

zone (i.e., t1 fires as early as possible in the zone and t3 fires as late as possible in

[3, 6]

[2, 4]
t2

[2, 4]
t4t3

t5
[4, 6]

t1

r4r3

t1 t3
t1 0 1
t3 3 0

Eft(r4)

Lft(r4)

t3
Eft(r3)

t3

t5

t1
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δN

t4

Lft(r3)

(a) (b) (c)

Fig. 4.25. A level-ruled Petri net, zone, and graph to illustrate pruning require-
ments. (a) The level-ruled Petri net fragment. (b) A zone with separations between
t1 and t3. (c) A graph showing the earliest placement of t5 in time depending on
its causal assignment.
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the zone). Transition t3 is redundant in the zone to t5 if δL + Lft(r3) ≤ δN + Lft(r4)

and δL + Eft(r3) ≤ δN + Eft(r4); thus, it is guaranteed that the latest firing time is

after Lft(r3), and the earliest firing time of t5 is not set by Eft(r3). Transition t3 is

redundant in this example because 3 + 6 ≤ 4 + 6 and 3 + 4 ≤ 4 + 3. The graph

gives intuition to this relation. The δN value is a conservative earliest firing time

of t4 after t1. The actual firing time of t4 after t1 can only be later than δN . The

δL value is the latest time that t3 can fire after t1; thus, t3 can fire only earlier in

time in the zone, and t4 can fire only later in time. This is equivalent to moving t3

to the left and t4 to the right in the graph. The earliest and latest firing times are

set by some other transition that has yet to fire if the relation holds.

Definition 4.38 (Type II Redundant Transition). A fired transition tp ∈ Tz
is redundant to a transition yet to fire tf ∈ T in the state s = (µ, ν, z), given the

fired three-tuple FT = (Tµ, Tν , Tz), and an initial visited set of visited transitions TV

if the following holds:

1. for all t′ ∈ required set(Tf , Tz, Tz), tp 6∈ T ′;

2. there exists Tn ∈ nonsatisfied(tf , Tµ, Tν) such that for all transitions tn ∈ Tn
and for all transition-delay pairs (t, d) ∈ necessary(s, tn, TV ,FT, level) and for

all t′ ∈ needs(t) ∩ Tz, δL + Lft(tp, tf ) ≤ δN + Lft(tn, tf ) and δL + Eft(tp, tf ) ≤

δN + Eft(tn, tf ); where level is true if tp is connected to tf through a Boolean

function, δL is the min-max entry (tp, t
′) in z, and δN is d+ Eft(t′, t).

Although the definition looks more complex, it is very similar to Definition 4.36

for type I redundant transitions. Transition tp is made redundant if there exists

a member of the nonsatisfied set, Tn, to completely exclude it. This is tested by

looking at the necessary set for each member of Tn. If the relation holds for each

member, then Tn makes tp redundant.

A necessary set is a set of transition-delay pairs. The rule set for the transition

in a pair in the set is marking and level satisfied, but the transition is not yet fired;

thus, it is not yet in the zone. The δL value is not known for a transition in a pair

in the necessary set. It is, however, known for any transition in the zone needed by
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a transition in a pair in the set. This is the set needs(t)∩Tz. It is any transition in

the zone that is connected to t by a place or is included in a Boolean function for a

rule on t. The bound must be satisfied for each of these transitions. Note that the

δN value is not known either. The delay d in a pair in the set is the earliest firing

time separation between the transition t in the pair and tf . Recall that t is not yet

fired and in the zone; thus, for each transition t′ in its needs(t) ∩ Tz set, the value

of Eft(t′, t) is added to the delay d. This creates the correct value of δN to use in

the relation. Everything must satisfy the relation because the actual earliest firing

time of tf is not known and any member of TD may set that time.

4.6.4 Algorithm

The algorithm to prune transitions is shown in Fig. 4.26. The inputs to the

algorithm are the current timed state class, s, and the fired three-tuple, FT. The

algorithm returns the timed state class with a possibly reduced zone. The algorithm

iterates over each transition in the zone. Line 4 iterates over all of the transitions

that need tp. A transition tf needs transition tp if tp is connected to tf by a place in

the level-ruled Petri net, or if tp is in the level transition set of tf . Every transition

that needs tp must show it to be redundant to be able to delete tp from the zone.

Algorithm: prune(s, FT)
1: /∗ s and FT are the three-tuples (µ, ν, z) and (Tµ, Tν , Tz) ∗/
2: for all transitions tp in the transition set Tz do
3: set prune to true
4: for all transitions tf that need tp do
5: if tp is not type I redundant for tf , z, and Tz then
6: if the rule set of tf is satisfied by (µ, ν) then
7: set prune to false and break out of loop
8: create initial visited set TV given tp
9: if tp is not type II redundant for tf , s, FT, and TV then

10: set prune to false and break out of loop
11: if prune is true and tp is not needed in a constraint rule then
12: delete tp from the zone z and the zone transition set Tz
13: return s

Fig. 4.26. An algorithm to prune transitions from the timed state class.
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The algorithm first tries to show tp to be type I redundant. A transition tf

that is not marking or level satisfied in its rule set may be excluded as a type I

redundant transition. If transitions exist for marking and level satisfied rules in

R(tf ) that make tp type I redundant, then tp can be removed from the zone. The

remaining transitions cover the firing times that may have been set by tp. If tp is

not type I redundant, then line 6 checks to see if the rule set for tf is marking and

level satisfied. If it is, then tp cannot be removed from the zone. Line 7 sets the

prune flag to false and breaks out of the for loop iterating over transitions that need

tp. If the rule set for tf is not marking or level satisfied, then tp may still be type I

redundant.

The algorithm to compute the necessary set can affect running time performance

of pruning. The initial TV set is created to terminate the backward search as soon

as possible to mitigate its impact.

Definition 4.39 (Initial Visited Set). The initial visited set given a transition

tp ∈ T and the current marking and Boolean state (µ, ν) is TV = Tw ∪ Tr; where

Tw = {t ∈ T | (L(tp) = w+ ∨ L(tp) = w−) ∧ (L(t) = w+ ∨ L(t) = w−)}, and

Tr = {t ∈ T | tp ∈ needs(t) ∧ (µ, ν) 0 R(t)}.

The first set Tw relies on the correctness definition. A consistent state assignment

failure occurs if firing a transition on a signal does not toggle the signal to a new

state. The necessary set is used to determine if transition tp and t can both be

causal to some transition tf . For this to happen, assuming the delays on all rules

for tf are equal, tp and t must be able to fire first. Transition tp is already fired

and in the zone. Transition t is not marking or level satisfied. If transition tp is

defined on a signal w and in searching for a transition necessary to marking or level

satisfying t, the necessary set algorithm encounters another transition on w, then

if it is possible to arrive at a state where tp and t can both be causal, there must

be a consistent state assignment failure. This is because tp and the other transition

on w must be concurrent for this to happen, in which case one of the two firing

orders leads to a consistent state assignment violation. If the delays on all rules for
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tf are not equal, however, then the delay must be considered before the algorithm

can terminate. This is also the case for the second set Tr. If t relies on tp to fire,

then there is a circular dependency. If all delays for rules on tf are equal, then

the necessary set algorithm can terminate because t always arrive after tp; thus,

tp cannot be causal. If the delays are not equal, however, then the algorithm can

terminate if the delay is such that tp can no longer be causal at that point.

Line 8 creates the initial visited set used to compute the necessary transitions

for tf . Line 9 checks if tp is type II redundant. If it is not so, then line 10 sets

the prune flag to false and breaks out of the loop. If all transitions that require tp

show it to be redundant, then the constraint rules are checked in line 11 before it is

pruned. This check is discussed in Section 4.8. If tp is not needed by a constraint

rule, then it is removed from the zone and the set of transitions in the zone by line

12.

4.7 Timing Failures

Two types of timing failures on constraint rules can occur in a level-ruled Petri

net. The first failure is an earliest firing time failure. This occurs when a transition

fires and it has a constraint rule whose timer is below its earliest firing time. The

second failure is a latest firing time failure. It relates to any constraint rule of the

system. A failure occurs if the timer for any constraint rule that is marking and

level satisfied is beyond its latest firing time. These two failures must be checked

during the traversal of the reachable state space.

An earliest firing time violation can be detected by looking at the minimum

separation between a clock on a constraint rule being reset and the firing of its

transition. If the minimum separation is below its earliest firing time, then there is

a failure.

Definition 4.40 (Earliest Firing Time Constraint Failure). The zone z con-

tains an earliest firing time failure for a constraint rule r ∈ C given the set of tran-

sitions in the zone Tz ⊆ T and a reference transition tf ∈ T if r is a constraint rule

for tf and φmin(r, z) < Eft(r); where φmin(r, z) = min(
⋃
Tr∈T φmax(Tr, z)) is the min-
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imum separation between the firing of tf and each member of the required set T =

required set(r, Tz, Tz) being satisfied; φmax(Tr, z) = max(
⋃
tr∈Tr −1 ·zmin(t, tf )) is the

maximum separation between the firing of tf and Tr being satisfied; and zmin(t, tf )

is the min-max entry for (t, tf ) in the zone z; the function Eft failure(r, tf , z, Tz)

returns the failure if it exists.

The definition is best understood through example. Consider the level-ruled Petri

net in Fig. 4.27(a). The marking is the one shown. The Boolean state is such that

both a and b are high. The current zone is given in Fig. 4.27(b). The rule r1 is

a constraint rule, while r2 is an ordinary rule. The zone shows that t3 is the last

transition to fire. The goal is to see if there is an earliest firing time violation on

any firing time of t3 allowed by the zone. Consider the graph in Fig. 4.27(c). The

firing time of t3 is the fixed reference point in the graph. The graph shows the

times at which transitions t1, t4, and t5 fire relative to the reference point of t3,

and it is drawn to match the separations in the zone in Fig. 4.27(b). The minimum

separation between t5 and t3 is the min-max entry on (t5, t3) in the zone, which is

-3; it means that t5 fires as little as 3 time units before t3 as shown in the graph.

The maximum separation between t5 and t3 is the max-min entry on (t3, t5) in the

zone, which is 7. It means that t3 can fire as much as 7 time units after t5 as drawn

L(t4) = a+
L(t5) = b+

t2t1

r2r1

[3, 6]
t3

[4, 6]
a ∨ b t1 t2 t4 t5 t3

t1 0 -1 0 -1 -6
t2 3 0 2 1 -3
t4 2 0 0 0 -4
t5 3 1 2 0 -3
t3 9 6 8 7 0

t4

t5

t1

t3

(a) (b) (c)

Fig. 4.27. A level-ruled Petri net, graph, and zone to illustrate a timing failure.
(a) A level-ruled Petri net with a constraint rule on t3. (b) The zone in the current
state. (c) A graph showing the possible firing times of t1, t2, t4, and t5 relative to
t3.
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in the graph. The other graph separations are derived similarly.

Definition 4.40 computes the minimum allowed separation between the con-

straint rule on r1 being reset and the firing of t3. It looks at each member of the

required set individually to compute this. The required set for r1, containing only

transitions in the zone, is {{t1} , {t4, t5}}. The minimum separation between the

set {t1} being satisfied and the firing if t1 is φmax({t1} , z) = 6 as shown in the

graph. The minimum separation for the set {t4, t5} being satisfied and the firing

of t3 depends on which transition in the set fires first. Although t5 fires 3 time

units before t3, it can never be causal at that point because t4 cannot fire any later

than 4 time units before t3; thus, the separation between this set being satisfied

and t3 firing is φmax({t4, t5} , z) = 4. This is latest time at which either one of the

two transitions can fire first before t3. The clock for the constraint rule cannot

reset before t1 fires and either t4 or t5 fires. The reset point defines the minimum

separation that can exist between r1 resetting and t3 firing. Although the set {t1}

is satisfied 6 time units before t3, the resetting of the r1 clock can be delayed by

the set {t4, t5} until 4 time units before t3; thus, the minimum separation between

the resetting of the r1 clock and the firing of t3 is φmin(r1, z) = 4. If this minimum

separation is below the earliest firing time for the rule, then there is a failure. This

is not the case in this example as 4 ≥ Eft(r1).

A latest firing time violation can be detected by looking at the maximum sep-

aration between a clock on a constraint rule being reset and a reference transition.

If the maximum separation is above the latest firing time of the rule, then there

is a failure. Note that the reference transition does not need to be the transition

checked by the constraint rule. A failure can occur if any marking and level satisfied

constraint rule has a timer outside of the latest firing time on the rule; thus, the

most recently fired transition in the zone is always used as a reference point.

Definition 4.41 (Latest Firing Time Constraint Failure). The zone z con-

tains a latest firing time failure for a constraint rule r ∈ C given the set of

transitions in the zone Tz and a reference transition tf if θmin(r, z) > Lft(r); where

θmin(r, z) = min(
⋃
Tr∈T θmax(Tr, z)) is the minimum separation between the firing of
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tf and each member of the required set T = required set(r, Tz, Tz) being satisfied;

θmax(Tr, z) = max(
⋃
tr∈Tr zmax(tf , t)) is the maximum separation between the firing

of tf and Tr being satisfied; and zmax(tf , t) is the max-min entry for (tf , t) in the z;

Lft failure(r, tf , z, Tz) returns the failure if it exists.

Definition 4.41 computes the maximum allowed separation between the timer

on the constraint rule for r1 being reset and the firing of t3. It looks at each member

of the required set individually to compute this like Definition 4.40. The maximum

separation between the set {t1} being satisfied and the firing if t1 is θmax({t1} , z) = 9

as shown in the graph. The maximum separation for the set {t4, t5} being satisfied

and the firing of t3 depends on which transition in the set fires first. Although t5

fires 7 time units before t3, t4 can be causal even earlier because it fires 8 time

units before t3; thus, the maximum separation between this set being satisfied

and t3 firing is θmax({t4, t5} , z) = 8. This is the earliest time that one of the two

transitions can fire before t3. The clock for the constraint rule cannot reset before

t1 fires and either t4 or t5 fires. This point defines the maximum separation that can

exist between the r1 clock resetting and t3 firing. Although the set {t1} is satisfied

9 time units before t3, the resetting of the r1 clock can be delayed by the set {t4, t5}

until 8 time units before t4; thus, the maximum separation between the resetting

of the r1 clock and the firing of t3 is θmin(r1, z) = 8. If this maximum separation is

above the latest firing time for the rule, then there is a failure. This is the case in

this example as 8 ≥ Lft(r1).

The algorithm to check timing failures is shown in Fig. 4.28. Line 2 of the

algorithm checks for earliest firing time violations in constraint rules associated

with the fired transitions. Line 4 reports an earliest firing time failure if any occur.

Line 5 checks for latest firing time failures. Line 6 restricts the check to constraint

rules that are marking and level satisfied. Line 8 reports a latest firing time failure

if one exists. Line 9 returns no failure if no timing violations exist in the current

state.
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Algorithm: timed failure(tf , s,FT)
1: /∗ s and FT are the three-tuples (µ, ν, z) and (Tµ, Tν , Tz) ∗/
2: for all rules r in C(tf ) do
3: if Eft failure(r, tf , z, Tz) then
4: return earliest firing time violation on r
5: for all rules r in C do
6: if r is satisfied by (µ, ν) then
7: if Lft failure(r, tf , z, Tz) then
8: return latest firing time violation on r
9: return no timing failure

Fig. 4.28. An algorithm to check timing failures on constraint rules.

4.8 Constraint Redundant

Pruning must pay special attention to transitions required by constraint rules.

These cannot be pruned using the type I and type II redundant properties.

Definition 4.42. Transition tp ∈ T is redundant to the constraint rule r ∈ C in

the zone z from the current state s = (µ, ν, z) given the set of transitions in the

zone Tz if

1. for all members Tr ∈ required set(r, Tz, Tz) such that tp ∈ Tr, θmax(Tr, z) 6=

zmax(tf , tp), and φmax(Tr, z) 6= zmin(tp, tf ); and

2. there exists a member Tr ∈ required set(r, Tz, Tz) such that tp 6∈ Tr, θmin(r, z) 6=

zmax(tf , tp), and φmin(r, z) 6= zmin(tp, tf ).

where tf is the last transition in the zone (i.e., the last transition that fired to create

the zone); tp is redundant if for all constraint rules r ∈ C such that tp ∈ needs(r),

(µ, ν) ` r and tp is redundant to r.

A transition is redundant if it is not the transition that defines the minimum and

maximum separation between the resetting of the constraint rule clock and the firing

of tf . This falls directly from the earliest and latest firing time failure definitions.

Consider the level-ruled Petri net in Fig. 4.27(a) with its zone in Fig. 4.27(b).

Suppose that there exists another constraint rule r3 that is identical to r1, only
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it is defined for a different transition (i.e., t1 feeds its place, but its place is not

connected to t3. Transition t3 is the last transition to fire in the zone; thus, it is

the reference point. Transition t1 is redundant because it is not used to set the

minimum and maximum separation between the resetting of the r3 clock and t3. It

can be removed from the zone.

4.9 Exactness

Unfortunately, the timing analysis algorithm is not exact in building a finite

representation of the reachable timed state space. It is, however, conservative. It

is possible to include behaviors that do not actually exist in the net. There are two

factors that contribute to the analysis algorithm being conservative. The first is

not ordering transitions involved in choice constructs. The second is not adding all

marking and level satisfied transitions to the zone. This section illustrates the two

scenarios. Their impact is evaluated in Chapter 6.

A choice construct can introduce extra behaviors into the finite representation.

Consider the level-ruled Petri net fragment in Fig. 4.29(a). The transitions t2 and t3

are both fireable in the current marking regardless of the Boolean state. The timers

for the rules r2 and r3 are reset at the firing of t1. The semantics of the level-ruled

Petri net never allow t2 to fire at the latest firing time of r2. This is because the

latest firing time r3 is below the latest firing time of r2. Transition t3 must fire

when its timer reaches 5 according to the level-ruled Petri net semantics; thus, t2

must also fire before its timer reaches 5; otherwise it cannot fire at all because the

firing of t3 disables it. The timing analysis algorithm lets transition t2 fire at the

latest firing time for r2; thus, transition t2 can fire as much as 8 time units after t1

in the finite representation. This is because t2 and t3 only exist in the zone together

long enough to see if they are concurrently fireable. After the fireable set is known,

then each transition is fired individually from the fired set without considering the

other enabled transitions. This over approximation can lead to false negatives in

the verification process and may create nonexact circuits in a state based synthesis

algorithm. This has only been seen in contrived examples designed to exploit the
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weakness in the algorithm.

Ignoring other marking and level satisfied transitions in computing successors

timed state classes can add extra behaviors into the finite representation. This

is again seen in computing fireable transitions from the current timed state class.

Consider again the level-ruled Petri net in Fig. 4.29(b) with the current zone in

Fig. 4.29(c). There is a single causal assignment for t4 and a single causal assignment

for t8. There are two causal assignments, however, for t6. The two causal assigned

zones that are considered by the fireable algorithm are shown in Fig. 4.30. The

zone in Fig. 4.30(a) for the t1 causal assignment to t6 only allows t4 and t8 to

be fireable. The zone in Fig. 4.30(b) for the t2 causal assignment to t6, however,

allows t4, t6, and t8 to be fireable. Transition t6 is only fireable on one of its

two causal assignments when all the marking and level satisfied transitions with

their causal assignments are considered. The successor function, however, does

not use this information. At the firing of t6 in the depth-first search from this

state, the algorithm to compute successor states creates a successor for both causal

assignments to t6 and adds both assignments to the state space. There are no future

states from the t1 causal assignment because it does not allow t6 to fire before t4

and t8; thus, the causal assignment to all marking and level satisfied transitions

affects the allowed separations for the transition being fired in the depth-first search.

Ignoring this information allows extra behavior into the finite representation of
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Fig. 4.29. Two level-ruled Petri nets with a zone that create conservative zones
in the reachable state space. (a) A simple choice construct with different delay
bounds for t2 and t3. (b) A causal assignment that leads to no fireable transitions.
(c) The zone for the current state of the net in (b).
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t7 t1 t2 t4 t6 t8
t7 0 -60 -60 -75 -95 -95
t1 75 0 15 0 -20 -20
t2 75 0 0 -15 -35 -20
t4 95 20 20 0 -15 0
t6 120 45 45 30 0 25
t8 100 40 40 25 5 0

t7 t1 t2 t4 t6 t8
t7 0 -60 -60 -75 -95 -95
t1 75 0 0 -15 -35 -20
t2 75 15 0 -15 -20 -20
t4 95 35 20 0 0 0
t6 120 45 45 30 0 25
t8 100 40 40 25 5 0

(a) (b)

Fig. 4.30. Two causal assigned zones in their canonical form showing fireable
transitions. (a) The causal assignment of t1 to t6 showing only t4 and t8 as fireable.
(b) The causal assignment of t2 to t6 showing only t4, t6, and t8 as fireable.

the state space. This case has been seen in real examples, but it occurs very

infrequently.

4.10 Related Work

The addition of time to any method of state space exploration, in general,

exacerbates state explosion. This is because any approach must define a timed

state that not only describes the untimed state of the system (i.e., the value of all

signals in the circuit) but information indicating the occurrence of that untimed

state in time. A set of timed states may have a common untimed state but be

unique in their occurrence in time; thus, the time representation in the timed state

now affects the size of the timed state space. A discrete model of time divides time

into a minimum discrete quantum. This bounds the size of the timed state space

because time is no longer a continuous quantity [59]. This approach lends itself to

symbolic methods to compactly represent the timed state space [20, 60]. Practical

results using discrete methods are promising as recently shown by [26, 21]. Recently,

these techniques are applied to timed circuit analysis in [28]. Choosing an adequate

time quantum, however, is critical to discrete timing analysis. If the quantum is

too large, then behaviors of the system are masked and lost. If the quantum is too

small, then the timed state space is too large to manage [19]. Recent work addresses

some of these issues by combining dense and discrete time semantics in [27]. The

dependence on the size of the time quantum in discrete models erodes confidence
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in the analysis of complex timing constraints. A masked timing behavior due to

the size of the time quantum can lead to an actual timing failure in an aggressively

timed circuit. A more precise time model is required for circuit analysis.

A continuous time model does not restrict when things occur. In a continu-

ous time model, timing information is often represented by time separations—the

amount of time that elapses between any two transitions in the circuit. A set of

seemingly concurrent transitions in a circuit may actually be ordered in time due to

various combinations of delays. A timed state space can be derived by ordering these

seemingly concurrent transitions according to their time separations. The minimum

and maximum time separations of transitions in the circuit can be calculated from

the structure of the circuit model. These minimum and maximum separations

are used to approximate the actual timed state space [42, 61]. Algorithms to

calculate the minimum and maximum time separations do not adequately address

nondeterminism in environment models, as well as classes of circuits that include

arbiters.

Non-determinism can be analyzed in a continuous time model by deriving time

separations from execution traces in the circuit. Each explored trace can potentially

generate a unique set of time separations at each untimed state of the trace. A set

of time separations at a given untimed state can be grouped into equivalence classes

called regions [52, 62]. A timed state is created for each unique region generated

at an untimed state during the trace evolution. A region naturally addresses the

continuous nature of the timed state space but is too small to significantly reduce

the number timed states. Zones extend regions by representing larger equivalence

classes using convex hulls [63]. These can be represented in difference bound

matrices (DBMs) since they represent allowed separations in a system [63], and

many efficient algorithms have been developed to manipulate DBMs. DBMs can

also be implicitly represented [27]. There have been several published algorithms

using zones for timing analysis. A tool for timed automata is presented in [23].

A tool for time Petri nets is presented in [51]. These tools provide a total order

analysis of both system models, as well as a partial order reduction in transitions
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firing which is discussed in the next chapter. Other interesting work in the analysis

of timed automata is in [64].

A zone represents allowed execution traces in the circuit. A different ordering on

a set of concurrent transitions, however, can lead to a different zone. This creates

an exponential branching in the timed state space. As the zone is a partially

ordered set relating various transition times, it is possible to reduce branching in

the timed state space by adding fewer relations to the set. Local time semantics and

partially ordered sets (POSETs) remove orderings in the zone on sets of independent

concurrent signal transitions reducing the representation size of the timed state

space [10, 24, 25, 57, 65, 66].

POSET reduction in the timing analysis of Timed Petri nets (TPN)—Petri nets

with timers on the places—yields a significant reduction in the number of zones

associated with each marking [66]. The algorithm in [66] implements the POSET

reduction on concurrent independent signal transitions. It explicitly models, how-

ever, timers on the places; thus, it needlessly considers many redundant orderings of

firings of these timers [25]. More importantly, it cannot address arbitrary Boolean

functions in the syntactic abstraction.

4.11 Summary

This chapter details a timing analysis algorithm for level-ruled Petri nets. The

algorithm supports arbitrary Boolean expressions in the syntactic abstraction, and

it implements a partial order reduction in the timing information. This chapter

also presents a method to conservatively prune information from the timed state

class representation to further reduce the cost of timing analysis. This method uses

a recursive algorithm to search backward in the level-ruled Petri net for necessary

transitions that must fire to enable transitions that are partially marking satisfied

or not yet level satisfied.

The timing analysis algorithm includes methods to validate the correctness

properties. The validation occurs in two separate steps. The first step checked

untimed properties such as safety, consistent state assignment, output semimodular,
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and untimed properties of constraint rules. The second step checks timed properties

in constraint rules. The correctness validation has minimal impact on the cost of

timing analysis.

The timing analysis algorithm as presented is not exact in building a finite

representation of the reachable state space. It has two sources of inexactness. The

first is a result of allowing conflicting transitions to fire later than allowed by the

level-ruled Petri net semantics. A false negative resulting from this inexactness

has only been seen in contrived examples. The second source of inexactness is in

how the fireable set is constructed. Although this has been observed in practical

examples, it occurs very infrequently and rarely leads to a false negative result.



CHAPTER 5

REDUCTION

The timed state space of a level-ruled Petri net is often too large to be managed.

This is the case even in seemingly trivial designs. As a result, timing analysis can

only be applied to a constrained set of circuits. The analysis is often not direct

because the circuits are simplified to again manage the explosion in the number of

reachable timed states. This is a significant impediment to methods that rely on

timed state space traversal for analysis.

The goal of modular analysis is to examine a single module in a larger system.

This is accomplished by only exploring the portion of the actual reachable state

space that is of interest to the module being analyzed; thus, complete analysis of

the system requires the separate examination of every module in the system. The

assumption is that the analysis cost of each subcircuit is very small. The cumulative

cost of analyzing each module in the system is then small compared to a complete

flat analysis.

Consider the network of level-ruled Petri nets M = E ‖ M1 ‖ M2 ‖ · · · ‖ Mn

of modules describing a timed circuit. The parallel composition of the network,

M , is closed, and E is a pure environment model for the circuit. Recall that

a level-ruled Petri net is the tuple from Definition 3.3 that is M = (N,E,C),

where N = (T, P, F, µo) is an ordinary Petri net, E = (W,L, νo,Eft, Lft, Lsat) is

a level-ruled extension for the net N , and C is a set of constraint rules. The

module Mi is the level-ruled Petri net specification of the i-th subcircuit; thus,

Mi = (Ni, Ei, Ci). The goal of modular analysis is to consider only module Mi

in the system M ; thus, all modules in the parallel composition of the network,

excluding Mi, become environment models to Mi. Any analysis results of Mi apply
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only to the given system M . If a circuit is synthesized from the timed state space

of Mi in the system M and shown to be correct, then it may work incorrectly in

a different module set. The modular analysis procedure depends on the behavior

of the other modules E , M1, . . ., Mn to define the input behavior to Mi. Analysis

results for the subcircuit in this system do not apply to the same subcircuit in other

systems.

This chapter first presents a partial order reduction for the level-ruled Petri

net. The partial order reduction explores only firing orders during state space

traversal that are relevant to showing correctness in a module. The chapter then

extends the partial order reduction to not only verify correctness in a module, but

to generate the complete reachable state space of the module as allowed by the

larger system in which it is found. The end goal of this analysis is synthesis. A

timed circuit synthesis algorithm is presented in [42]. The algorithm requires the

complete state space of the timed circuit. Modular synthesis generates this state

space in the environment in which the circuit is found. The approach expands the

set of examples for which timed circuit synthesis can be applied because the analysis

no longer needs to enumerate the entire state space in which a module is found. It

only needs to enumerate the states in the entire state space that are visible to the

module proper.

5.1 Partial Order Reduction

The idea of partial order reduction is to avoid exploring all successor timed

state classes during state space exploration. This is accomplished by omitting

possible firing orders on fireable transitions. The omitted firing orders must be

carefully chosen to not hide key behaviors in the target submodule. This section

defines the basis of the partial order reduction algorithm and its various support

sets. The presentation in this section closely follows the presentation by Minea in

[25]. Although Minea did not originate the theory of partial order reduction, he

did unify much of the research in partial order reduction into a general framework.

More importantly, Minea proposes a partial order reduction for timed event/level
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structures in [25]. Timed event/level structures are very similar to the level-ruled

Petri net. The presentation by Minea draws heavily on work by Valmari in [67]

and Godefroid in [68] for the untimed theory in the partial order reduction. Minea

follows Yoneda’s work in [56] for the theory relating to timing information in the

partial order reduction for timed event/level structures. The same notation and

names are used in this presentation as are used by Minea and Yoneda to help the

reader relate to the other works.

5.1.1 Basic Notions

There are two basic notions that are important to this presentation of partial

order reduction: an execution sequence and enabled transitions. These are not new

notions in the level-ruled Petri net semantics, but they are cast to follow published

literature relating to partial order reduction.

Definition 5.1 (Execution Sequence). An execution sequence is a pair of vectors

(s, t) where s = (s0, s1, s2, . . . , sn), t = (t1, t2, . . . , tn), and si = (µi, νi, zi) with the

following properties: for all i ∈ N such that 1 ≤ i ≤ n, (µi−1, νi−1) ` ti, and

there exists a casual assignment to ti such that firing ti in si−1 leads to si; the

set of timed state class sequences reachable from an initial timed state class of a

level-ruled Petri net M is F(M) (i.e., s0 is the initial state of the system); the

notation (s, t, s′) ∈ (s, t) indicates that there exists an i ∈ N such that 1 ≤ i ≤ n,

si−1 = s, ti = t, and si = s′; the notation (s, t, s′) ∈ F(M) indicates that there

exists a sequence (s, t) in the set F(M) such that (s, t, s′) ∈ (s, t) holds.

An execution sequence in a level-ruled Petri net relates to a firing sequence. The set

of reachable execution sequences from the initial timed state class of the level-ruled

Petri net M is constructed during timing analysis.

The set of all reachable timed state classes of a level-ruled Petri net is given by

the set S(M). This too is constructed during state space exploration.

Definition 5.2 (Enabled Transitions). A transition t ∈ T is enabled in a timed

state class s ∈ S(M) if there exists a timed state class s′ such that (s, t, s′) ∈ F(M);
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the set of all enabled transitions in s is enabled(s) = {t ∈ T | t is enabled in s}.

An enabled transition in a timed state class s is fireable from s. A transition that

is not enabled in s is said to be disabled.

5.1.2 Basic Principles

There are two basic principles in partial order reduction: independence and

visible. The traditional definition of independence only considers two properties.

Enabledness and commutativity. This definition introduces a new property, correct-

ness, to deal with the correctness properties in the level-ruled Petri net semantics.

Definition 5.3 (Independent Transitions). Two transitions t, t′ ∈ T are inde-

pendent in the timed state class s ∈ S if they satisfy the following conditions:

1. Enabledness: t ∈ enabled(s) =⇒ (t′ ∈ enabled(s) ⇐⇒ ∀s′ ∈ S :

(s, t, s′) ∈ F(M), t′ ∈ enabled(s′)), and symmetrically, t′ ∈ enabled(s) =⇒

(t ∈ enabled(s) ⇐⇒ ∀s′ ∈ S : (s, t′, s′) ∈ F(M), t ∈ enabled(s′)),

2. Commutativity: t, t′ ∈ enabled(s) =⇒ ∀si, sj, sx, sy ∈ S : (s, t, si, t
′, sj) ∈

F(M) ∧ (s, t′, sx, t, sy) ∈ F(M), sj = sy, where the notation (s, t, si, t
′, sj) ∈

F(M) is equivalent to (s, t, si) ∈ F(M) and (si, t
′, sj) ∈ F(M);

3. Correctness: t, t′ ∈ enabled(s) =⇒ ∀si, sj, sx, sy ∈ S : (s, t, si, t
′, sj) ∈

F(M) ∧ (s, t′, sx, t, sy) ∈ F(M), (s, t) and (s′, t′) are safe, consistent, output

semimodular, and constraint satisfied execution sequences for a specified mod-

ule Mi in the system M or both are failures of the same, where s = (s, si, sj),

t = (t, t′), s′ = (s, sx, sy), and t = (t′, t)

The definition of independence relies on three conditions. The first two conditions

are common to partial order work. The first condition relates to Enabledness. Two

independent transitions cannot contribute to the enabledness of each other. This

means that the firing of the one does not disable the other; it also means that the

firing of one does not enable the other.
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The second condition relates to commutativity. If the two transitions are

enabled in the current timed state class, then there exists from that state execution

sequences where the transitions fire in either order. Commutativity states that in

any future state of the execution sequence where the two transitions fire adjacent

to each other, firing them in any order leads to the same future state. The POSET

method makes commutativity possible. It unorders transitions in the zone creating

the same zone regardless of the firing order. In this sense, there exists an order of

transition firings that creates a zone that is a superset of all other zones.

The third condition relates to correctness. The correctness properties in the

level-ruled Petri net semantics are best addressed through independence in the

partial order reduction because it is not based on a temporal specification. This is

a similar approach taken by Yoneda in [56] for a related set of correctness properties

in the time Petri net. The correctness condition requires that both firing orders

of the two enabled transitions result in a correct execution sequence. A correct

execution sequence is one that is safe, consistent state assigned, output semimodular

in all modules but the environment, and constraint satisfied with respect to a

target submodule that is being verified; thus, the two enabled transitions cannot

enable or disable one another, and firing them in either order does not lead to

a failure condition in the level-ruled Petri net semantics too. The definition of a

safe, consistent state assigned, output semimodular in all but the environment, and

constraint satisfied execution sequence is the natural extension of Definition 3.8,

Definition 3.11, Definition 3.15, and Definition 3.17 on firing sequences to execution

sequences respectively.

The next basic notion of partial order reduction is visible. Visible traditionally

relates to transitions in a formula consisting of atomic propositions. The formula

represents a specification of properties for a module in the system, and the timed

state space of the module is checked to see if it violates the properties in the

specification. The atomic propositions in this application are signal values and

time differences between transitions. Note, that the notion of visible can be used to

verify next-time free linear temporal logic. A transition t is invisible with respect
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to a set of atomic propositions appearing in any formula in the specification of a

module if in any two states s,s′ ∈ S connected by t, the labeling of the two states is

identical with respect to the set of atomic propositions in the formula. A signal that

is not invisible is visible. Although this is beyond the scope of verification in this

work, there is nothing that precludes the use of next-time free linear temporal logic

to validate properties in the level-ruled Petri net model of a system. The visible set

is used, however, in this application to implement modular synthesis using partial

order reduction.

5.1.3 Conditions

Partial order reduction traverses a subset of the total reachable state space to

validate correctness. It does this by selecting a reduced set of enabled transitions

to explore at a given state. This reduced set of transitions is the ample set

ample(s). The smallest ample set at any given state yields the largest reduction.

The algorithm is always safe when ample(s) = enabled(s). This section describes

conditions of the ample set for the partial order reduction to be safe—meaning that

if any failure condition for a module Mi exists in the execution sequence set F(M)

of the system M , than a failure condition for Mi also exists in the reduced set of

the execution sequences FMi
(M) ⊆ F(M) explored by the partial order reduction

using ample sets.

The ample set conditions are presented as if the complete reachable set of

execution sequences in known. They are properties that the set must have for

the reduction to be safe. An algorithm to construct the ample set during state

space exploration is presented in the next section.

Property 5.1 (Emptiness). ample(s) = ∅ ⇐⇒ enabled(s) = ∅

An ample set contains no transitions at a given state if and only if there are

no successor transitions from that state in any reachable execution sequence of the

system.

Property 5.2 (Faithful Decomposition). For any portion, (s, t), of an execu-
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tion sequence in F(M) and for any index k ∈ N such that k ≤ [t], if tj 6∈ ample(s0)

for 0 < j ≤ k, then tj is independent of any transition t ∈ ample(s0) for 0 < j ≤ k.

Faithful Decomposition means that any transition not in ample(s) is independent

of the transitions in ample(s); thus, the firing of any independent transition cannot

affect the execution of any transition in ample(s). The ample set effectively divides

the enabled transitions at a state into a dependent set, which is the ample set, and

an independent set, which is the enabled set minus the ample set. Note that the

definition of independence in transitions is critical to the verification of correctness

properties in the level-ruled Petri net semantics. Transitions cannot disable or

enable each other. Moreover, they must satisfy the correctness requirement in that

firing them in any order always leads to the same failure or no failure at all.

Property 5.3 (Visibility). If the set ample(s) contains a visible transition, then

ample(s) = enabled(s).

The visibility condition relates to the construction of the ample set. The initial

ample set begins with some invisible transition in enabled(s). Transitions that are

dependent with the initial invisible transition are then added until a fixed point is

reached on the ample set. There are two scenarios that can occur: first, there are

no invisible transitions in enabled(s); thus, ample(s) = enabled(s), since all visible

transitions affect the correctness of the target submodule and their various firing

orders are important. Second, every invisible transition in enabled(s) depends on a

visible transition in enabled(s); thus, ample(s) = enabled(s) by transitivity.

Property 5.4 (Cycle Closing). A transition that is enabled in every state of a

cycle in the reduced set FMi
(M) belongs to the ample set of some state on the cycle.

A cycle is a sequence of states that is repeated in the system. Cycle closing

is the final property of the ample set for the reduction to be safe. This condition

prevents transitions from being ignored in cycles and guarantees that all behaviors

important to the correctness of the module are explored. The condition must

dynamically detected in the state space traversal.
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These four conditions are sufficient to guarantee that the partial order reduction

does not miss a failure in a target submodule during state space exploration if one

exists. The conditions also provide a general framework for designing algorithms

to dynamically construct the ample set at each stage of the state space traversal.

This is the topic of the next subsection.

5.1.4 Ample Set Construction

The construction of the ample set at a given timed state class of the state space

traversal relies on the definition of dependence and visibility in transitions. These

must be defined before the algorithm to construct the ample sets is presented. If

the firing of one transition disables the other transition, then the two transitions are

dependent. There are two ways in the level-ruled Petri net semantics to disable an

enabled transition: through a change in marking and through a change in Boolean

state.

A transition is disabled through a change in the marking if a token in its preset

is removed by the firing of another transition. Consider the level-ruled Petri net in

Fig. 5.1(a). The firing of t1 disables t2 because it removes from the marking the

place in the shared preset. This is a disabling through a change in marking. Both

firing orders of t1 and t2 must be explored in the partial order reduction if they

exist in the full state space of the system or again failures can be missed.

A transition is disabled through a change in Boolean state if the firing of another

transition causes a rule in its rule set to no longer be level satisfied by the new

Boolean state. Consider the level-ruled Petri net in Fig. 5.1(b). The rule for t2

requires the signal a to be high to be level satisfied in the Boolean state. The

transition t1 is mapped to a− moving this signal into a low state. The firing of t1

can disable t2. This is a disabling through a change in Boolean state. Both firing

orders of t1 and t2 must be explored in the partial order reduction if they exist in

the full state space of the system or failures can be missed.

Definition 5.4 (Disable Set). The set of transitions that can disable a marking

and level satisfied transition t ∈ T given the set of transitions Tν ⊆ T that fired to
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create the current Boolean state of the system is the union over the following sets:

1. Marking Disabling: {t′ ∈ T | •t ∩ •t′ 6= ∅}; and

2. Level Disabling: min set(
⋃
T ′∈unate solver(Tn,Tν) opposite(T ′)) ∪{t′ ∈ T | ∃T ′ ∈

lrs(t′) : t ∈ opposite(T ′)}, where the function min set(T ) returns T ′ ∈ T such

that for all T ′′ ∈ T , |T ′| ≤ |T ′′|, Tn = keep(Tν)(lrs(t)) and opposite(T ′) =

{t′′ ∈ T | ∃t′ ∈ T ′ : (L(t′) = w+∧L(t′′) = w−)∨ (L(t′) = w−∧L(t′′) = w+)}

the function disable(t, Tν) returns the resulting set from the union.

The intuitive understanding of the disable set follows the two examples in

Fig. 5.1. The marking disabling relates to Fig. 5.1(a); the level disabling relates

to Fig. 5.1(b). The marking disabling is symmetric due to the structure of the

net. The relation includes what t can disable, as well as what it disables. The

level disabling is made symmetric in a similar fashion. The first set includes any

transition that can disable t. This is the smallest set of transitions that can disable

a product term in the Boolean function for t. It is computed from the causal group

sets using only transitions that have fired to create the current Boolean state. The

smallest set of these disabling transitions gives the best performance in the partial

order reduction. The second set, however, is any transition that can be disabled by

the firing of t. This gives symmetry similar to the marking disabling set. Unlike the

first direction, however, this direction is not state dependent. All transitions that

can potentially be disabled by the firing of t must be included in the level disabling

set. Consider the example in Fig. 5.1(b). If t is equal to t1, then the second part

of the level disabling set includes t2 since firing t1 disables t2. If t is equal to t2,

however, then the first part of level disabling includes t1 since again the firing of

t2 disables it. This symmetric relation is critical to the correctness of the partial

order reduction.

This definition of dependence is not sufficient to divide a set of fireable transi-

tions into dependent and independent sets because it does not consider all of the

independence conditions from Definition 5.3. There are additional transitions for

which firing orders must be explored to be able to validate the level-ruled Petri
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L(t1) = a−

(a) (b)

Fig. 5.1. Two level-ruled Petri nets that contain transitions that can be disabled.
(a) A level-ruled Petri net that shows a disabling through a change of marking. (b)
A level-ruled Petri net that shows a disabling through a change in Boolean state.

net correctness properties in the target submodule through a reduced state space.

There are three additional ways that a failure can occur in a module that are not

covered by the disable set: safe, consistent state assigned, and missed causality. The

output semimodular and constraint properties are not included in this list because

they are covered by either the disable set or the failure check as described next.

The partial order reduction explores marking and level disabling by default

if they exist in the flat state space of the system. This covers the output semi-

modular property. A constraint violation occurs when a transition fires and it

has a constraint rule that is not marking, level, or time satisfied at its firing.

The violation must be found by the partial order if the constraint rule belongs

to the target module. This failure directly relates to the notion of hide-fail in

[56]. Consider the level-ruled Petri net in Fig. 5.2(a). Transition t3 is in the target

submodule. If transitions t1 and t4 fire, then the constraint rule r1 is marking

and level satisfied. The constraint rule may or may not violate its timing bounds

depending on the amount of time that can elapse before t3 fires. If transition t3

fires before t1 or t4, however, then there is a constraint failure. Yoneda explores

the firing orders of {t1, t3} and {t4, t3} if they exist in the full state space of the

system [56]. These orders do not need to be explored in this implementation due

to the way in which timing failures are detected. Timing failures are checked by

looking at the separation between when a constraint rule is activated and a recently

fired transition. If this separation is beyond the latest firing time of the constraint
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rule, then there is a latest firing time failure. Although a single firing sequence is

explored in the reduction, the zone implicitly represents all possible firing sequences

of its transitions; thus, the failure is detected regardless of the explored firing order.

Checking timing failures in this manner does have a drawbacks. If a system

never fires any transitions, then timing failures cannot be checked because a fired

reference transition is required for the check. Also note that the latest firing time

failure check is conservative in that it can produce a false negative result. This is

due to the partial order in the timing information method itself, as it represents

multiple firing sequences in the same zone. The timing failure check can be made

exact by individually looking at each firing sequence allowed by the zone. Orders

are added to the zone to reflect the current sequence being checked. This correctly

adjusts the separations according to the actual firing order and false negatives

are thus avoided. This check, however, is complex and costly; thus, the check is

performed on the partially ordered zone that contains the largest separations found

in any firing order of its transitions.

A safety violation occurs whenever a place that already exists in the marking

is added again by the firing of a transition. This violation must be found by the

reduction if the place belongs to the target submodule, and if the violation exists in

the complete state space of the system. Note that all violations are failures, only it

is acceptable for the partial order reduction to not find failures that do not belong

to the target submodule as they will be found in a later verification. Consider the

level-ruled Petri net for a module shown in Fig. 5.2(b). The firing of t1 can add

p1 to the marking for a second time. If t2 fires first, however, then there is no

violation. If p1 belongs to the target submodule, then the partial order reduction

must explore both firing orders of t1 and t2 if both orders exist in the full state

space; otherwise, safety failures in the target submodule are missed. Although t1 is

not enabled in the drawn marking, it can become enabled by firing t0. The partial

order reduction must consider this.

A consistent state assignment violation occurs whenever a transition on a signal

fires and does not toggle the state of the signal because the signal is already in the
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Fig. 5.2. Level-ruled Petri nets that show order dependent failures. (a) A level-
ruled Petri net that may have a constraint rule failure. (b) A level-ruled Petri
net that may have a safety failure for p1. (c) A level-ruled Petri net that may have
a consistent state assignment failure on signal a.

correct final state. This failure must be found by the reduction if the fired transition

belongs to the target submodule. Consider the level-ruled Petri net in Fig. 5.2(c).

The signal a is an output in the target module. Transition t1 is labeled as a+ while

t2 is labeled as a−. Assume that the signal a is currently low. If transition t1 fires

followed by t2, then there is no failure. If the other order is explored, however, then

the module fails. Although t1 is not enabled in the drawn marking, both orders of t1

and t2 must be explored in the partial order reduction if they exist in the full state

space of the system; otherwise, consistent state assignment failures in the target

module are missed. This means that the reduction may need to consider firing t5

to see if t1 can ever become enabled concurrently with t2. The partial order must,

in fact, explore all allowed firing orders of transitions defined on output signals of

the target submodule for modular synthesis.

A missed causality can occur in a transition with a disjunctive Boolean function.

Consider a transition t with a single rule that has the expression a∨ b. The signal a

is high in the current Boolean state while by b is low. The rule is marked. There are

only two causal assignment in this state: the transition that marked the rule and
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the transition that fired to make the signal a high. The partial order reduction must

consider the possibility of being causal on the signal b too. If it is possible to fire a

b+ transition before t is forced to fire on any of its other two causal assignments,

then the reduction must consider this causality. If it does not, then it can miss a

timing behavior on t that can lead to a failure because t may be able to fire earlier

or later in time on the b causality.

The fail set represents additional transitions to the disable set whose firing

orders must be explored by the partial order reduction if the orders exist in the flat

state space of the system.

Definition 5.5 (Fail Set). The fail set for a transition t ∈ T given a module Mi

in a larger system M = E ‖ M1 ‖ M2 ‖ · · · ‖ Mn is the union over the following

sets:

1. Safe: {t′ ∈ T | ∃p ∈ Pi : pi ∈ (t′• ∩ •t)};

2. Consistent State Assigned: {t′ ∈ T | ∃w ∈ Oi : (L(t) = w+ ∨ L(t) =

w−) ∧ (L(t′) = w+ ∨ L(t′) = w−)}; and

3. Missed Causality: min set(required set(t, T−Tµ, T−Tν)), where min set(T )

returns T ′ ∈ T such that for all T ′′ ∈ T , |T ′| ≤ |T ′′|, and Tµ and Tν are the

fired marking and Boolean state transition sets;

the function fail(t) returns the resulting set from the union.

The fail set completes the conditions of independence in Definition 5.3 that are

not covered by the disable set. It contains a contribution for each of the failure

conditions that are not covered by disable in Definition 5.4 as shown by the level-

ruled Petri nets in Fig. 5.2.

The visible set for a next-time free linear temporal logic is given by Minea in

[25]. A transition is visible if it appears in any formula describing properties of the

system. This includes time constraints and signal valuations. The partial order

reduction must explore all firing orders of visible transitions that exist in the flat

state space of the system.
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Partial order reduction traverses a portion of the reachable state space by not

exploring all firing orders of independent and invisible transitions. It must explore,

however, all orders of dependent and visible transitions that exist in the flat state

space of the system.

Definition 5.6 (Relevant Set). The relevant transitions to a fireable transition

t ∈ T is relevant(t) = {t} ∪ disable(t) ∪ fail(t) ∪X, where X is the empty set if t is

invisible; otherwise it is the set of visible transitions.

The partial order reduction must explore all firing orders of transitions in relevant(t)

if they exist in the reachable state space of the system.

The partial order reduction must determine which orders of relevant transitions

exist in the complete state space. Consider the level-ruled Petri net in Fig. 5.1(a).

Transitions t1 and t2 are fireable from the drawn marking regardless of the Boolean

state or the valuation of timers on their rules. The relevant set for t1 includes

t2 and both firing orders must be explored. Consider now the level-ruled Petri

net Fig. 5.2(c). If the current timed state class s of the system is such that the

fireable set is Tf (s) = {t5, t2}, then the partial order reduction must choose the

ample set ample(s) ⊆ Tf (s) such that every transition not in ample(s) is not relevant

to transitions in ample(s). The relevant set for t2 is the set {t1, t2}. Transition t1,

however, is not in the fireable set Tf (s). The partial order reduction must determine

if there exists in the complete state space a state where t1 is fireable with t2; thus,

it must determine in this example if the firing of t5 can lead to a state s′ such that

Tf (s′) ⊇ {t1, t2}.

The backward search of the level-ruled Petri net to find fireable transitions that

can enable relevant transitions is exactly the necessary set algorithm presented in

Section 4.6.2 of Chapter 4. The initial visited set is computed by Definition 4.39,

only tp is now t where t′ ∈ relevant(t) and the necessary set for t′ is being computed.

Recall that the return type from the algorithm is a set of transition-delay pairs.

Consider the level-ruled Petri net in Fig. 5.3(a). Transitions t0 and t1 are fireable

in the current timed state class s. The relevant set for t1 is {t1, t3}. Although t1
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is fireable, t3 is not. The necessary set for t3 is {(t2, 3)}. A possible ample set

for this state is ample(s) = {t1, t2}, because the latest time after t5 that t0 fires is

under 4, its takes at least 4 time units before t4 fires. Transition t1 does not have

to fire for 8 time units; thus, there may exist a state after firing t2 where t1 and t3

are concurrently fireable. A slightly more complex example is shown in Fig. 5.3(b).

The state s is such that Tf (s) = {t3, t8} and the signal a is high and the signal

c is low. The relevant set for t8 is the set {t7, t8} because t7 can level disable t8.

Although t8 is fireable, t7 is not. The necessary set of t7 in this example is {(t3, 3)};

thus, a possible ample set for the state is {t3, t8} because again, assuming a suitably

small separation exists in the zone of the state, there may be enough time to fire t3,

t6, and then t4 such that t7 and t8 can be concurrently enabled before t8 is forced

to fire.

Partial order reduction only needs to consider firing orders on relevant transi-

tions if they are actually allowed by the level-ruled Petri net model in the reachable

state space. Consider again the example from Fig. 5.3(a). A possible ample set for

this example is ample(s) = {t1, t2} because t3 is relevant to t1; it is not fireable;

t2

t0

[2, 5]
[2, 5]

[1, 3]

[1, 5]
t4

[1, 8]

t1 t3

t5

L(t7) = a−
L(t6) = c+

c

a

t1 t2

t3 t5

t6 t7 t8

[1, 5]
t4

[1, 5] [1, 7][1, 5]

[1, 5]

(a) (b)

Fig. 5.3. Two level-ruled Petri nets with conflicting transitions that are not fireable
together. (a) A level-ruled Petri net fragment with conflicting transitions t1 and t3.
(b) A level-ruled Petri net fragment with conflicting transitions t and t1.
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and the necessary set for t3 is {(t2, 3)}. The delay from the necessary set can be

used to determine if firing t2 from this state actually leads to a new state s′ where

Tf (s′) = {t1, t3}.

Definition 5.7 (Active Transitions). A transition-delay pair (tn , d) is active for

a transition td ∈ T given the zone z containing transitions Tz ⊆ T if there exists

td
′ ∈ needs(td)∩Tz and tn

′ ∈ needs(tn)∩Tz such that δL+Lft(td
′, td) ≥ d+Lft(tn

′, tn);

where δL is the min-max entry (td
′, tn

′) in z; active(td , tn , d, z, Tz) is true if (tn , d)

is active for td given z and Tz, and it is false otherwise.

The pair (tn , d) is active for td if td cannot fire later than tn plus the delay d

in the zone. The function active(t1, t2, 3, z, Tz) returns true if the min-max entry

on (t5, t0) is greater than -3. If it is less than -3, however, then the function

returns false because t1 always fires before t3 can become fireable; thus a possible

ample set for this example is now ample(s) = {t1}, which yields a reduction since

ample(s) ⊂ Tf (s).

The discussion this far has not considered the effect of replacing nonfireable

transitions in the relevant set with active fireable transitions from the necessary

set. Property 5.2 requires that transitions not in ample(s) be independent of any

transitions in ample(s) for the reduction to be safe. If a necessary set transition

replaces a relevant set transition, then any transition relevant to the newly added

transition must be included also.

Definition 5.8 (Dependent Set). The dependent set of a transition t ∈ T that

is marking and level satisfied by the current timed state class s = (µ, ν, z) given

the fired three-tuple FT = (Tµ, Tν , Tz) is the fixed point dependent(Td , s,FT) = Td

created from the initial seed Td = {t}, where dependent(Td , s,FT) is the set of

transitions t′ ∈ T such that there exists td ∈ Td where t′ ∈ relevant(td) and (µ, ν) `

R(t′); or t′′ ∈ relevant(td), (µ, ν) 0 R(t′′) and there exists a delay d ∈ Q+ such that

(t′, d) ∈ necessary(s, t′′, TV ,FT, false) and active(td , t
′, d, z, Tz) is true, where TV is

set by Definition 4.39 for tp = t′′; dependent({t} , s,FT) returns the fixed point for

the initial seed {t}.



159

The dependent set is a fixed point calculation on an initial seed t. Any transition

t′ that is relevant and fireable to t is added to the set, or any transition t′ that

is necessary for some transition t′′ and is active to t is added to the set too. The

transitions in the dependent set of the added transitions must also be incorporated

into the dependent set of t too. The final fixed point of the dependent set is the

set of transitions for which all firing orders must be explored by the reduction.

The best ample set is the smallest dependent set containing only fireable tran-

sitions at the current state.

Definition 5.9 (Ample Set). An ample set for the timed state class s given the

set of fireable transitions Tf from s and the fired three-tuple FT is ample(Tf , s,FT) =

min set({T ′ ∈ 2T | T ′ = Tf ∨ (∃t ∈ Tf : T ′ = dependent({t} , s,FT) ∧ T ′ ⊆ Tf )});

where the function min set(T ) returns Ta ∈ T such that for all T ′′ ∈ T , |Ta | ≤ |T ′′|.

The algorithm in Section 4.5 from Chapter 4 to traverse the timed state space of

the level-ruled Petri net implements the partial order reduction by only computing

successor states from the ample set instead of the fireable set. Verification in the

reduced state space is correct if the computation of the ample set satisfies the

properties in Section 5.1.3 as proven in [25]. Property 5.1 is satisfied because the

ample set is empty only if the fireable set is empty. Property 5.2 is satisfied by

virtue of the dependent set. Property 5.3 is satisfied because visible transitions are

always included in the relevant set of a transition if it is visible too. Property 5.4,

finally, is satisfied by a simple restriction in the nets: no zero loops and no infinite

delays on transitions are allowed in any loops. This forces time to always advance;

thus, transitions with bounded latest firing times must eventually fire and cannot

be infinitely ignored.

5.2 Modular Synthesis

The parallel composition of the network of modules, M , can generate a large

reachable timed state space. Modular synthesis requires knowledge of the timed

states of this larger timed state space that relate to module Mi. These states are

represented in a reduced state graph for the module in the larger state space.
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The reduced state graph for a target subcircuit is derived from the reachable

timed state class sequences of the larger system. The reduced state graph does not

include timing information, and it only keeps information related to signals and

transitions that are visible to the target subcircuit.

Definition 5.10 (Module Transitions). The set of transitions that are visible

to the module Mi in a larger system M = E ‖ M1 ‖ M2 ‖ · · · ‖ Mn is V(Mi) =

{t ∈ T | t ∈ Ti ∨ ∃w ∈ Wi : L(t) = w+ ∨ L(t) = w−}, where Ti and Wi are the

transition and signal set for the module Mi.

The module transition are all transitions observable to the target submodule. These

are transitions that affect its marking or the state of signals on its interface. The

set is used to build the reduced state graph. All transitions in the set are visible in

the partial order reduction.

Definition 5.11 (Reduced State Graph). The reduced state graph rsg(Mi)(F)

for a module Mi in a network of modules M = E ‖ M1 ‖ M2 ‖ · · · ‖ Mn given a

set of sequences F for M is rsg(Mi)(F) = {(proj(s,Mi), t, proj(s′,Mi)) | (s, t, s′) ∈

F ∧ t ∈ V(Mi)}, where a timed state class is s = (µ, ν, z), Wi is the signal set in

Mi, and proj(s,Mi) = (ν ∩Wi).

Consider the system in Fig. 5.4(a). This is a standard OR gate with its output

passed through invert gates and used as input. The level-ruled Petri net modules

for each of the components in the system are shown in Fig. 5.4(b), Fig. 5.4(c), and

Fig. 5.4(d). The graphical representation of F(M) for the system in Fig. 5.4(a) is

shown in Fig. 5.5(a). It does not include any timing information. If Mi is selected to

be the level-ruled Petri net for the gate implementing signal a shown in Fig. 5.4(b),

then the graphical representation of rsg(Mi)(F(M)) is shown in Fig. 5.5(b). The

reduced state graph only contains information that is visible to a gate implementing

the signal a and does not include any timing information. This is the input to the

synthesis algorithm.

The reduced state space for a module in a system is created by Definition 5.11.



161

c

a

b

[4, 6]

c p2

[4, 6]
a+

p1 ¬c

a−
[4, 6]

c p4

[4, 6]
b− b+

p3 ¬c
[6, 9]
a ∨ b

¬a ∧ ¬b
[6, 9]

c− c+

p6

p5

(a) (b) (c) (d)

Fig. 5.4. A simple timed circuit with its level-ruled Petri net model (a) The
gate schematics for the timed system. (b) The level-ruled Petri net of the OR gate
producing the signal c. (c) The level-ruled Petri net of the invert gate producing
the signal a. (d) The level-ruled Petri net of the invert gate producing the signal b.
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Fig. 5.5. The graph of the edge set and its reduced form. (a) The complete graph.
(b) The reduced form of the graph.

The definition, however, requires the entire set, F(M), of reachable timed state

class sequences for the larger system to first be generated since the reduced state

space is built from this set. A modular approach using this method has no advantage

because it must traverse the entire reachable timed state space of the system. It then

discards many of the states found in the traversal to create the reduced state graph

for the target submodule. The goal of this research is to avoid enumerating the full

timed state space representation; thus, fewer states are discarded in generating the

reduced state graph of the target submodule. This work defines a set FMi
(M) that

is a subset of F(M) but contains all information necessary to show correctness in the

target subcircuit and to construct a reduced state graph for it. The assumption is
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that the cost of generating the reduced set of timed state class sequences, FMi
(M),

is small enough that it is more efficient to analyze each subcircuit individually than

to consider the entire system at once.

The correctness of the proposed reduction is shown by looking at explored firing

orders in FMi
(M). This set must be related to F(M), and it must be shown to

contain the same firing orders of transitions and signals visible to Mi as does F(M).

If this does not hold, the reduced state graphs from the two sets are not equal; thus,

synthesis could produce an incorrect circuit from the reduced set.

Definition 5.12 (Untimed Project). The untimed project function removes from

a timed state class sequence (s, t) entries that are not visible to a target module Mi

in a larger system M = E ‖ M1 ‖ M2 ‖ · · · ‖ Mn:

project(Mi)(s, t) =


(ε, ε) if s = ε ∨ t = ε;
((proj(s0), X), (t1, Y )) if t ∈ V(Mi);
(X, Y ) otherwise;

where (X, Y ) = project(Mi)((s1, . . . , sn), (t2, . . . , tn)), s = (s0, s1, . . . , sn), and t =

(t1, t2, . . . , tn); the function project(Mi)(F) =
⋃

(s,t)∈F project(Mi)(s, t) is the set of

untimed projected sequences in F .

The untimed project function relates the two sets FMi
(M) and F(M). It removes

from a set of timed state class sequences any transitions that are not visible to

the target submodule. The primary difference between Definition 5.12 for untimed

project and Definition 5.11 for the reduced state graph is that Definition 5.12 pre-

serves the firing sequences of the target submodule where Definition 5.11 does not.

Definition 5.12 returns a set of timed state class sequences whereas Definition 5.11

returns a relation showing connectivity between timed state classes. A sequence

and a connectivity relation are different in that sequences can be derived from the

connectivity relation that do not exist in the set of sequences from Definition 5.12.

This is an important subtlety in the proof of modular analysis.

The reduced set of timed state class sequences, FMi
(M), must be defined to

capture all of the behaviors of the target module Mi. Modular analysis of a target
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submodule, Mi, in a system of modules, M , is exact if FMi
(M) is constructed such

that the following property holds.

Property 5.5. project(Mi)(FMi
(M)) = project(Mi)(F(M))

The property assumes that F(M) is exact. If Property 5.5 holds, then the following

theorem is proven to show that the proposed reduction yields an exact reduced state

space for the synthesis algorithm.

Theorem 5.1. rsg(Mi)(FMi
(M)) = rsg(Mi)(F(M))

Proof. The proof shows that the existence of an edge in the reduced state graph

derived from the complete reachable set forces the existence of the same edge

in the reduced state graph derived from the reduced reachable set. The other

direction is proven similarly but not shown. Suppose that there exists a timed

state class sequence (s, t) in F(M) and an index j ∈ N such that 1 ≤ j ≤ [t], ti

is a visible transition in V(Mi), and (proj(sj−1,Mi), tj, proj(sj,Mi)) is found in the

reduced state graph rsg(Mi)(F(M)). If Property 5.5 holds, then there must also

exist a timed state class sequence (s′, t′) in FMi
(M) such that project(Mi)(F) =

project(Mi)(F ′); thus, there exists in index k ∈ N such that 1 ≤ k ≤ [t′], tk = tj,

and (proj(sk−1,Mi), tk, proj(sk,Mi)) is in the reduced state graph rsg(Mi)(FMi
(M))

too.

The task is to construct FMi
(M) such that Property 5.5 holds. This is readily

accomplished by making all transition in V(Mi) visible to the partial order reduc-

tion. This forces the reduction to explore every possible firing order of signals and

transitions in the target submodule. The net effect is for the reduction to produce a

complete timed state space for the target submodule and a reduced state space for

all things outside of the scope of the target submodule; thus, Property 5.5 holds.

5.3 Related Work

Partial order reduction is an important tool in mitigating state explosion in

verification [67, 68]. Partial order reduction is applied to synthesis in [69, 70]. The
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approach in [70] is an unfolding technique that is applied to untimed specifications.

Not only is it not clear if the technique can be efficiently applied to a timed model,

the technique ignores hierarchy in the specification; thus, it is limited in the size

of systems it can be applied to. The approach in [69] exploits hierarchy in the

specification by applying a partial order reduction to signals not on the interface

of the target subcircuit. It modifies the partial order reduction method in [56, 67]

to always include all allowed orders of signals on the interface and in the target

subcircuit. It then uses the state space based synthesis approach in [42] to produce

an exact circuit. The work demonstrates a significant reduction in running time for

state space exploration in the synthesis problem and greatly increases the size of

systems that can be analyzed. The approach, however, is tied to the time Petri net.

This negatively impacts the size of the reduced state space due to the structural

complexity of the model.

This research extends the modular synthesis approach in [69] to level-ruled

Petri nets to further reduce the size of the reachable state space through syntactic

abstraction. The partial order in the timing information in [10, 65] is similar to

that found in [24, 25], and like the approach in [25] does not require extra reference

clocks for synchronization. The basis for the new algorithm is actually presented

in [25] and is based solely on the time separation of transitions, but an initial

implementation on timed Petri nets in [71] shows it to be incorrect for Boolean

expressions and incomplete for partial order reduction; thus, this work corrects the

algorithm and completely derives the conditions necessary to preserve correctness

in the reduction. The partial order reduction is restricted to safe nets and works

for any type of choice structure. The partial order reduction uses untimed methods

from [67] and timed methods in [24, 25, 56] to determine independence between

transitions. It augments these definitions to incorporate the notion of independence

in the presence of Boolean functions. The definitions are not only tied to the

structure of the net, but also consider the timing of transitions.

Interface abstraction is a common approach to reduce the cost of state based

synthesis by exploiting hierarchy in the specification. As performing the abstraction
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by hand is error prone, work in [72] automates the abstraction process. It alters the

actual system model by removing from it transitions that are not on the interface of

the target subcircuit. Although the simplified model structure reduces the reachable

state space, the approach is limited in the transitions it can remove, is not efficient

on specifications with Boolean functions, and can produce nonexact circuits due to

conservative timing behavior from the abstraction [72]. The work described in this

paper does not alter the specification. It reduces the state space by exploring a

single firing order on independent transitions not in the target subcircuit.

In [73, 74, 75, 76], partial cubes are used to conservatively explore reachable state

spaces. A partial cube denotes that a state consists of primary inputs and outputs

coupled with a boolean cube representing values for internal signals. In any given

state, an internal signal may be known or unknown, so more states are included

than may actually be reachable by the circuit. In abstracting out internal signal

behavior in the state space, partial cubes can potentially achieve an exponential

reduction in the size of the state space.

5.4 Summary

This chapter describes a partial order reduction for the level-ruled Petri net to

verify the correctness properties from Chapter 3 in a reduced reachable state space

of the system. The partial order reduction follows published work in the area. It

adds to the published work an exact definition of relevant transitions used in the

partial order reduction.

This chapter describes a modular synthesis approach that relies on the partial

order reduction. The approach expands the set of visible transitions in the partial

order reduction to include all transitions in the target module, as well as all

transitions on signals that are visible to the target module. The partial order

reduction is then able to produce the exact state space of the target module using

the new visible set without exploring all the reachable states of the larger system.

A circuit is synthesized from the reachable state space of the module using an

algorithm in [42]. The circuit is exact when the timing analysis algorithm is exact.
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RESULTS AND ANALYSIS

The goal of this chapter is two pronged: first, to evaluate the performance of

the timing analysis algorithm; and second, to evaluate the impact of the modular

approach. Neither of these goals is easily addressed. Generalities are fraught with

issues because there are so many variables that affect performance. It is especially

difficult to analyze the performance of algorithms that are operating on a new

model—the level-ruled Petri net. It is almost necessary to adapt and implement

prior algorithms to the new model. This defeats the purpose, however, of the

evaluation because the adapted algorithms now become new algorithms running on

a new model. There is no obvious unbiased means to overcome this obstacle.

Section 6.1 is an analysis of the timing analysis algorithm presented in this

work. Section 6.2 is an analysis of the modular synthesis reduction technique. The

two sections open with an explanation of the analysis approach. Both sections

show favorable and less than favorable results for the work in this dissertation.

This is important in correctly setting the potential for this work. It is important

to note too that several of the benchmarks for the analysis come from industrial

designs. These include the analysis of circuits from the Intel RAPPID decoder

[1], the IBM gigahertz processor in [4], the STARI FIFO (recently appearing in a

product from Sun Microsystems [14, 15]), and the gasp pipeline controller again

from Sun Microsystems [2].

This chapter concludes with an industrial scale design from IBM. Section 6.3

analyzes and synthesizes circuits for IBM’s synchronous interlocked CMOS pipelines

[12]. It verifies general pipeline structures and suggests alternative circuits to

published results that may yield better performance. This example is significant
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because it is beyond the capability of previous algorithms. This chapter concludes

with a brief summary in Section 6.4.

All of the results for this chapter are run on a common machine. The machine,

donated by Intel Corporation, is a Pentium III 930 MHz with 256Mb of memory.

Although it is a competent machine, it is not a compute server. The results

and analysis are to be understood with this in mind. The new timing analysis

algorithm is implemented in the CAD tool ATACS. ATACS is a tool for the synthesis

and verification of timed circuits [42, 77]. The POSET timing algorithm, [43], is

also implemented in this tool too making it a convenient algorithm to compare

against.

Many of the designs in this chapter are based on published industrial pipeline or

FIFO circuits. This suggests that perhaps the evaluation is incomplete because it

does not consider a more heterogeneous system. Although this is a point of interest,

it does not devalue the import of demonstrating timed circuit analysis applied to

real design—even pipeline design. The pipeline stage is the basic building block

in many digital designs. It is replicated across an entire chip, and it is one of the

first places that designers are exploring in their quest to save power and reduce

noise; thus, the development of tools and methodology to improve the analysis of

pipeline stages seems important to industry. In addition, it demonstrates a class of

circuits that commercial tools do not adequately address, and for which this type

of analysis is well suited. These case studies help to crystallize the challenge of

synthesis and verification in emerging circuit technologies.

6.1 Timing Analysis

The first analysis is a direct comparison to Belluomini’s POSET timing method

in [43]. The POSET timing algorithm is implemented for the timed event/level

structure that closely resembles the level-ruled Petri net. The reader is referred to

Section 2.4 for a discussion on the differences between the two system models. The

comparison is appropriate because it is previous work from this group, and it sets

the baseline performance metric for derivative algorithms on these types of system
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models. More specifically, it is the first known timing analysis algorithm to support

syntactic abstraction in an event based model. The comparison benefits from the

fact that the two system models can be restricted to a set of examples where their

modeling power has no effect. This makes the comparison as close as possible to

two different algorithms running on the same timed circuit model.

POSET timing analysis stores rule timer separation values in the zone. This is

different from the new timing analysis algorithm in this work that stores transition

separations in the zone. A close look at the POSET algorithm reveals that it uses

two zones in building the finite representation: one containing rule separations

and one containing transition separations. The new algorithm uses a single zone

with transition separations. The comparisons in this section look at the number of

zones used in the finite representation. The zones, however, contain very different

information.

The first comparison to the POSET timing algorithm is for a regression suite

of examples. The suite contains 122 examples. Most of the examples are for

asynchronous circuits that have appeared in various publications over the last

several years. All of the examples have running times that are under one second for

both the new timing analysis algorithm and the POSET timing analysis algorithm.

The amount of memory used to by each algorithm is near identical too because the

examples are relatively small. The goal of looking at all of these examples is to

show functionality in the new analysis algorithm.

The results of the comparison are shown in Table 6.1 and Table 6.2. The division

between the two tables is arbitrary. It exists to accommodate the large number of

examples in the regression suite. The column labeled States in the table refers

to the number of unique marking and Boolean state pairs, (µ, ν), in the example.

The columns labeled Zones is the number of zones needed to capture the complete

timed state space of the example. This represents the cost of the timing information.

The results from the new timing analysis algorithm are indicated with the BAP

label (bourne again POSET timing analysis). The results from the POSET timing

analysis are indicated with the POSET label.



169

TABLE 6.1
Comparison with POSET Timing on Regression Suite I

BAP POSET
Example States Zones Zones

abstract 6 6 6
alloc-ob 21 21 21
alloc-obusc 21 21 21
box1 25 25 31
box 25 25 34
case1 8 8 8
case2 10 10 10
case3 11 11 11
case4 11 11 11
case7 28 28 70
celement 8 8 10
choice2 51 51 102
circ1 8 8 16
circ2 6 6 8
circ3 8 8 14
circ4 9 9 20
c 6 6 6
cnt11 108 108 172
cnt3 32 32 48
cnt3 synch 64 64 89
coverlap 24 24 28
cstat 8 8 12
dlatch 10 10 10
DME 28 28 28
elatchB 38 39 69
elatch 37 38 67
etlatch2 30 36 63
etlatch3 55 60 104
etlatchP 60 63 113
ex1b 12 12 12
ex1 9 9 9
FIFO 16 17 27
FIFOR 14 15 23
FIFOSV 24 25 45
go 16 19 78
ifreq1 20 20 32
ifreq2 15 17 36
inv 4 4 4
jordi1P 20 20 41
jordi2 6 6 25
JSPelatch 72 73 180
lapb2 82 102 202
lapbN 82 102 202

BAP POSET
Example States Zones Zones

lapb pa 12 14 18
lapbsv 20 20 31
lecture7 20 20 35
loop 16 16 16
merge 33 33 58
mul2c 50 59 169
must-share1 24 24 28
nondisj 16 16 16
nosing 14 14 16
overlap 16 16 18
pab a1 10 11 12
pab b2 11 11 14
pab c3 12 13 18
pab c4 2 32 83 120
pab c4 12 15 19
pab c5 10 10 11
pab c8 10 11 12
pab c9 8 8 8
pif 9 10 11
pvuv 13 13 16
rcv-setup-usc 16 16 17
regions 5 5 7
rev 15 15 15
rlm 12 12 12
scsiP 17 17 26
scsiR 10 10 13
scsiSV2 22 22 42
scsiSV 16 16 23
scsiSVN2 50 136 220
SEL 58 66 180
selopt 64 64 362
silly 8 8 9
simple 6 6 6
simp 7 7 7
slatch2 25 26 34
slatch 30 31 48
sm 10 10 10
splitsemi 80 102 178
srdand 10 20 52
srdaoi 23 37 56
srdor 11 11 12
srgate 40 40 42
stariE 105 105 211
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TABLE 6.2
Comparison with POSET Timing on Regression Suite II

BAP POSET
Example States Zones Zones
start6 50 50 61
statem 2 2 2
sunfifo2 29 30 60
tff 8 8 8
udding 66 66 91
upipe 11 12 13
var 12 12 15
varP 11 11 15
vmeP 14 14 18
x 8 8 11
xor 6 6 9
share 24 24 28
tag1 48 65 281
cgate 10 10 14
circ5 8 8 8
compare 53 53 56
hb 33 35 35
hw4 22 22 22

BAP POSET
Example States Zones Zones

level 4 4 4
mul2 62 68 70
oneshot 3 3 3
pcfb 55 75 67
pchb 33 35 35
ring 4 4 4
scsiL 16 18 16
scsiSVimp 16 16 16
split 27 27 33
sunfifo 29 30 29
timedep 23 23 31
csa tb 10 10 10
direct 4 4 4
killpack 71 73 71
spdor 47 47 47
tb pre dec 87 91 87
uno1 ctrl tb 138 139 138
uno ctrl tb 138 139 138

A result that has equal values for the states and zones is ideal. The timing

representation cannot be optimized beyond this point. There is a single zone for

each unique (µ, ν) pair reachable by the level-ruled Petri net model of the example.

The new algorithm meets this ratio for many of the examples in the regression

suite. The new algorithm represents the timed state space using fewer zones than

the POSET timing analysis in all but seven of the examples. These examples

are found in Table 6.2: pcfb, scsiL, sunfifo, killpack, tb pre dec, uno1 ctrl tb, and

uno ctrl tb. The results for the sunfifo, uno1 ctrl tb, and uno ctrl tb examples differ

by one zone. The results for pchb differ by 8 zones. The results for scsiL and killpack

differ by two zones. The results for tb pre dec differ by four zones. The average

increase is 5% for these examples. The cause of the differences is a fundamental

property of the new algorithm. Multiple causal assigned zones exist for a causal

assignment. Each zone reflects an order on transitions in the assignment. If pruning

can remove most of the transitions, then the number of causal assigned zones is
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reduced. If it cannot prune many transitions, however, then each causal assigned

zone is unique and must exist in the final timed state space representation. The

POSET timing analysis algorithm does not suffer from this because it abstracts

away transition orders and looks only at the resulting rule orders. Two unique

transition orders for a causal assignment can result in the same rule order in the

POSET timing method; thus, it needs a single zone where the new algorithm may

need two.

The new timing analysis algorithm outperforms the POSET algorithm in 81

examples—there are 33 examples where they post identical results. The new

algorithm yields a 33% average reduction over the POSET method in the number of

zones needed to represent the state space in these 81 examples. The improvement

of the new algorithm over the POSET approach is most likely attributed to pruning

in the zone. The new method is able to effectively prune in these examples; thus,

reducing the number of zones at each untimed state. The new analysis algorithm

gives a 22% average reduction over the POSET algorithm in the number of zones

across all 122 examples in the regression suite.

Belluomini presents results for POSET timing on several examples in [43].

Table 6.3 is a summary of results from a selection of these examples. The selection is

TABLE 6.3
Comparison with POSET Timing on Dissertation Examples

BAP POSET
Example States Zones Mb Time States Zones Mb Time

cnt7 synch 2048 2048 266 108.5 2048 4737 267 569.94
lapb4sv 885 1238 4 3.08 885 5321 8 2.01
lapb6sv 7930 15154 116 280.85 7930 160905 290 242.33
selector2 452 582 3 0.65 452 1553 5 0.68
selector3 5643 12962 28 61.01 5643 33569 108 132.17
tag7 2745 3361 13 13.09 2745 8641 65 26.14
tag level 3949 6259 22 30.12 3949 4194 33 19.38
stari old10 14529 19839 36 73.21 14529 14857 120 51.2
domino compare 788 788 4 1.7 788 788 7 0.69
clz 8013 8021 36 40.8 7997 8024 77 60.01
mfxu DNF DNF DNF DNF 1549 6326 28 38.69
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based on the complexity of an example, the application to this work, the level-ruled

Petri net semantics and algorithm limitations, and the current state of ATACS. The

trivial examples are omitted in the table because they are already shown in Table 6.1

and Table 6.2. These tables show that the new algorithm generally gives a better

representation size for small examples. There are six other examples excluded from

the table besides the trivial ones. Two of the examples generate an enormous

number of zones to test the MTBDD zone representation. This is not implemented

in this work because it results in a severe degradation in running time. Two are

from the analysis of the IBM gigahertz processor in [13, 43]. These are the pla and

mle circuits. The pla circuit uses nondisabling semantics. These are not supported

by the level-ruled Petri net, so the new timing analysis method cannot be applied

directly to the pla example. A modified version of the pla circuit that does not

include nondisabling constructs completes in both POSET timing and the new

algorithm giving identical results. The mle specification no longer completes in

POSET timing analysis as implemented by the CAD tool ATACS.

The alpha and beta specifications are the two last examples that are not included

in this analysis. The new timing analysis algorithm cannot be applied to these

examples because the separation on the transitions is divergent. Consider the beta

example in Fig. 6.1 with two transitions. The separation between successive a+

and a− transitions is bounded in the 0 to 15 time unit range; and the separation

between successive a− and a+ transitions is bounded in the 0 to 15 time unit range.

This is true for successive transitions on signal b, too. What about the separation,

however, between a+ and b+? Is this separation bounded? No, it is not. Consider

the case where a+ and a− always fire 3 time units after being marking satisfied;

a− a+

[0, 15]

[0, 15]

b− b+

[0, 15]

[0, 15]

Fig. 6.1. The beta example with two signals a and b.
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and b+ and b− always fire 12 time units after becoming marking satisfied. The

first instance of a+ is at time 3 and the first instance of b+ is at time 12. Their

separation is 9. The second instance of a+ is at time 9, and the second instance of

b+ is at time 36. Their separation is now 27. The separation between a+ and b+

increases with every instance of their firing; thus, the new timing analysis algorithm

always grows this separation and never terminates exploration. The POSET timing

algorithm does not suffer from this issue due to how it represents the timed state

space with separations on rule timers rather than transitions. The new analysis

algorithm can be applied only to examples that correlate transitions in some way.

Fortunately, noncorrelated transitions seem to mainly exist in contrived examples

that are designed to break analysis algorithms; at the least, this is the case with

the examples analyzed in this work.

The comparison in Table 6.3 does not show one algorithm to be clearly superior

to the other; although, memory is better managed by the new algorithm when

compared to the old. The new algorithm completes in one-fifth the running time of

the POSET algorithm for cnt7 synch and reduces the representation size by over

half that of POSET algorithm. A similar improvement is seen for the selector2 and

selector3 examples, as well as the tag7 example. The new algorithm reduces the

number of zones for the lapb4sv and lapb6sv examples over POSET timing, but its

running time is above that of POSET timing. This increase in running time is most

likely due to the pruning operation in the zone. Tracing backward in the level-ruled

Petri net can be costly if the net is large. The tag level example is a gate model of

a tag circuit from the Intel RAPPID decoder with seven inputs that use syntactic

abstraction [1]. The tag7 example is a behavioral model of this same circuit that

does not use syntactic abstraction. POSET timing produces better results for the

tag level circuit in both the number of zones and running time. This is also the case

for the stari old10 example—a gate level model of 10 stages of the STARI FIFO

in [16]. These results seem to suggest that the new analysis algorithm does not

perform as well in highly concurrent specifications that use syntactic abstraction.

The domino compare example, however, uses syntactic abstraction, but the two
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analysis algorithms produce near identical results. The degraded running time in

the new algorithm is a result of the cost of pruning the zones in the representation.

It is more likely, that aside from the running time, the differences between the two

representation sizes is a fundamental property of the algorithm.

The new analysis algorithm must split zones to create causal assignments where

the POSET timing does not. The splitting usually occurs only in the presence of

syntactic abstraction. Recall that a causal assigned zone given a causal transition

is created for each member of the necessary set that contains the causal transition,

as well as other transitions. If a transition has a necessary set of {{t1, t2} , {t1, t3}},

then the t1 causal assignment creates two zones to order t2 and t3 with respect to t1.

This ordering is not reflected in the zone for the POSET timing algorithm because

its zone contains rule separations instead of transition separations.

The final three examples in Table 6.3 are from the IBM gigahertz processor

[13, 43]. The new timing analysis algorithm and the POSET timing algorithm do

not agree on the number of unique marking and Boolean state pairs for the clz

example. It is not known if this difference is a result of an implementation issue

in either of the two algorithms. The example, unfortunately, does not complete

for other analysis methods in ATACS, so the correct count is not known. The final

example, mfxu, does not finish (DNF) in the new timing analysis algorithm. The

number of zones generated by the new algorithm grows unbounded until system

memory is exhausted.

Table 6.4 shows the results of pushing both algorithms to their very limits. The

two algorithms are applied to increasingly larger designs until they are unable to

complete. The first two entries in the table are 11 and 13 stage STARI FIFOs.

These are behavioral specifications of the FIFO that do not use any syntactic

abstraction. They are purely transition based. The new analysis algorithm outper-

forms the POSET timing algorithm in zones, memory, and time for both examples.

The next two examples are again STARI FIFOs, only this time they are gate

level descriptions of the FIFO that use syntactic abstraction for all of the gates.

Note that this implementation is different from stari old 10 in the previous table.
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TABLE 6.4
Comparison of Algorithms at Limits

BAP POSET
Example States Zones Mb Time States Zones Mb Time
stari11 11508 13942 35 60.51 11508 56182 204 467.83
stari13 69756 88230 302 1093.49 DNF DNF DNF DNF
lstari10 21428 36439 73 212.62 21428 21914 185 151.19
lstari12 41507 66205 155 542.67 DNF DNF DNF DNF
gasp3 16288 28176 91 155.99 16288 20908 170 91.87

The new algorithm does not perform as well on this example. This is consistent

with the analysis in Table 6.3. Also consistent with the earlier analysis is the

better management of memory, since the new algorithm can complete twelve stages

(lstari12 ) of the design without running out of memory. The final entry in the

table is gate level description of the GasP FIFO by Sun Microsystems [2]—a

minimal self-timed FIFO control. The use of syntactic abstraction degrades the

performance of the new analysis algorithm as expected; though, the new algorithm

uses significantly less memory.

The analysis seems to indicate that the new algorithm is better suited to designs

that do not use syntactic abstraction. In the majority of the examples that fit this

requirement, the new algorithm outperforms the POSET timing analysis in zones,

memory, and running time. For the designs where syntactic abstraction is used, the

new algorithm is competitive with the POSET timing. Although it usually shows a

degraded zone count and running time, the differences are not too significant. More

importantly, however, is that its superior memory management allows it to complete

on larger designs. The author acknowledges, however, that this is more a result of

implementation than that of algorithm design; although, the same argument can

be made for running time too.

6.2 Reduction

This section first analyzes the impact of reduction by comparing it against flat

analysis. The idea is to better appreciate what the modular analysis can do. Beyond
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this the analysis becomes complicated. The modular approach makes comparison

to other methods complicated because there are not many that exists for timed

systems outside of our research group. Those that do exist are geared to protocol,

not circuit, verification; thus, they cannot be fairly compared to modular synthesis.

This section compares modular synthesis to the two other methods that we have

access too: automatic abstraction by Zheng in [72] and modular synthesis by Yoneda

in [69]. Although these approaches are not independent of this work, they do serve

as a reference for comparison.

Table 6.5 is a comparison between flat and modular synthesis. The goal is to see

if the cumulative cost of having to analyze each component of a design in a reduced

state space overpowers the savings in the modular approach. The table indicates

that this is not the case for these three examples. The first three columns of the

table show the cost of synthesizing each stage of the behavioral specification of the

STARI FIFO. Each stage of the STARI FIFO is not identical in the design due to

timing and initial state. The typical STARI FIFO can have up to three different

cells from two literals to ten literals in size. The next three columns are the cost to

verify each stage of a STARI FIFO circuit implementation. The final three columns

TABLE 6.5
Cost of Modular Analysis

stari13 lstari12 gasp3
States Zones Time States Zones Time States Zones Time

1 459 752 1.7 542 679 1.52 396 478 2.43
2 463 723 1.61 544 681 1.52 529 553 4.68
3 467 701 1.78 544 677 1.53 616 972 14.88
4 655 1178 2.96 506 646 1.44
5 758 1239 3.46 506 636 1.11
6 658 1197 3.74 506 562 0.72
7 1900 2426 8.47 675 979 2.23
8 994 1345 5.05 604 880 2.13
9 982 1070 4.3 506 562 0.75
10 831 983 3.55 535 666 1.49
11 984 1222 2.73 542 679 1.51
12 439 584 0.94 544 680 1.49
13 439 696 1.18

10029 14116 41.47 6554 8327 17.44 1541 2003 21.99
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are the cost to verify each stage of a GasP circuit implementation. The number of

zones and running time is trivial at each stage of all three designs. The total cost

is shown in the last row of the table. These numbers show a dramatic improvement

compared with those in Table 6.4 for the same specifications. If hand abstraction

is used to create an environment for a single stage of any of these designs, then the

analysis cost of the hand abstracted model of a single stage is around a hundred

states and zones. This gives perspective to the effectiveness of the partial order

reduction in these examples.

Table 6.6 tries to set new bounding sizes for the STARI FIFO and GasP exam-

ples. Although this is not reflective of every example, it does improve the number of

stages that can be considered in these examples. The new analysis algorithm with

the reduction can analyze the tenth stage in a STARI FIFO behavioral specification

with 20 stages in under 72 minutes. Note, the analysis cost for all stages is not this

large. The third stage is analyzed in under 5 minutes. These results do compare

favorably to those in [27], where the same size STARI FIFO modeled by a timed

automata is analyzed using discrete time semantics in over 10000 seconds using a

Pentium II processor with 512Mb. Although it is important to temper the results

by the fact that the analysis in [27] is a flat analysis, not a modular analysis.

These results also show a dramatic improvement over those in [44], where hand

abstraction is used. The gains for a stage (third stage) in the GasP example are

not as dramatic due to the length of the running time, but they do push the limits

out further. More importantly, however, is that memory is effectively managed in

the reduction. These are not the actual limit for these examples, but they serve to

establish that the reduction extends the ability of the timing analysis algorithm.

TABLE 6.6
Limits for Modular Analysis

Example States Zones Mb Time
stari20 39109 99995 163 4276.58
gasp6 929 2027 83 1575.24
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Table 6.7 is a comparison to two other modular analysis approaches. The STARI

FIFO is used for the comparison because the other two methods can only be applied

to examples that do not use syntactic abstraction. Zheng presents an abstraction

method in [72]. The approach is conservative and changes the physical structure of

the level-ruled Petri net by combining rules and timing information on abstracted

events; thus, the resulting circuit from synthesis may be larger than it needs to be.

The first section of the table presents the abstraction method applied to the STARI

FIFO with thirteen stages. The abstraction alone yields a significant reduction in

the analysis of the STARI FIFO. It is not, however, as effective as the modular

approach in this work as evidenced by Table 6.5. The two methods can be combined

to produce a more significant reduction in analysis cost. The result of using both

abstraction and modular synthesis is shown in the second section of the table labeled

Both. This is a significant reduction in the analysis cost for each stage. The

progressive nature of the states and zones is due to the amount of abstraction that

can be performed given each stage of the design. There is more abstraction in the

early stages than in the latter stages. The resulting circuit using abstraction may

not be the exact minimal circuit in general. This is not, however, the case for the

TABLE 6.7
Comparison to Abstraction and VINAS-P

Abstraction Both VINAS-P
States Zones Time States Zones Time States Zones Time

1 1253 4164 17.12 51 80 0.07 611 942 0.24
2 617 870 2.69 62 73 0.1 549 880 0.21
3 854 1336 5.53 74 104 0.21 537 836 0.24
4 978 1601 6.99 86 92 0.11 641 1049 0.34
5 872 1757 5.25 104 135 0.3 648 1043 0.83
6 1068 1790 6.89 145 229 0.66u 1019 1535 1.83
7 808 1480 2.64 232 339 0.69 1379 1665 3.02
8 906 2033 5.47 338 630 1.44 1170 1337 1.11
9 996 1992 5.48 189 364 0.88 1033 1111 0.79
10 1800 2899 17.41 200 380 0.92 626 674 0.4
11 1804 2648 14.07 359 359 0.98 607 908 0.23
12 2484 3640 30.89 221 235 0.38 607 908 0.22
13 4168 6320 76.87 301 323 0.75 607 908 0.21

18606 32530 197.3 2362 3333 7.49 10034 13796 9.67
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STARI FIFO. Abstraction gives the exact results.

Yoneda presents a modular synthesis approach that is similar to that of this work

in [69]. The primary difference is in the timing analysis algorithm and the system

model. Yoneda does not implement a partial order in the timing information and

uses the time Petri net for the circuit model. The results of the modular analysis for

the STARI FIFO is shown in the third section of Table 6.7 labeled VINAS-P. These

results are not generated on the same machine as the other results thus presented.

These results are from a 1 gigahertz Pentium III with 2GB memory. They compare

similarly to those in Table 6.5 from the new analysis algorithm. The running

time for VINAS-P, however, is better than ATACS. This can be attributed to two

things: first, a more efficient implementation; and second, the simpler semantics of

the time Petri net. The level-ruled Petri net has a richer semantic structure due

to the support for syntactic abstraction and the rule based timing model. This

adds complexity to the analysis algorithm that does not exist in the time Petri

net analysis algorithms. The total number of explored states and zones is near

identical for the two analysis algorithms. The differences in the number of zones

and states explored at each stage is due to different implementations of the partial

order reduction. The two implementations more than likely explore different orders

of independent transitions that lead to different levels of reduction.

6.3 Synchronous Interlocked Pipelines

An asynchronous pipeline is seemingly well suited to low power and noise

sensitive applications because it eradicates the clock—the rightfully accused power

abuser and noise generator in digital design. The lack of global synchronization on

a clock, however, is not the source of the asynchronous benefit. It is the byproduct.

A careful analysis reveals two properties that fuel low power and noise reduction in

asynchronous pipelines: first, asynchronous pipeline stages only activate for valid

data; and second, pipeline stages make local control decisions for data movement.

Though this removes the need for a global clock, it more importantly reduces

switching activity in the circuit; thus, energy consumption and noise generation



180

is decreased. The remaining switching activity is also not correlated too. This

leads to a further noise reduction. Asynchronous circuits do not generate spurious

switching by design (i.e., designs are hazard or glitch free). The reduced switching

activity results in power savings too. This is not, however, as significant a saving

as that in selective activation and local control of data flow.

A typical synchronous pipeline stage is active on every clock cycle even if data is

not present. A significant amount of power is wasted in the absence of data because

almost all of the power is consumed at the leaf nodes of a clock tree. Synchronous

pipeline stages rely on global control signals to dictate data flow. Local decisions

on data movement cannot be made at the stage level. The asynchronous pipeline

overcomes these issues by interlocking control signals in the forward and backward

directions of the pipeline at the stage level of the design. A given stage cannot

forward data to the next stage unless it has data to forward and the next stage

is ready to accept that data. This forward and backward interlock in the pipeline

implements the selective activations and local control of data flow.

The synchronous interlocked pipeline is a synchronous pipeline from IBM that

interlocks control at the stage level in a manner similar to asynchronous pipelines

[12]. The primary difference, however, is that the interlock is achieved using the

global clock signal, along with control signals generated at the stage level of the

pipeline. A traditional asynchronous pipeline uses only the stage level signals. A

stage only activates on valid data; and a stage only forwards valid data when the

downstream stage is ready to accept it. If a valid piece of data is to be forwarded

to the next stage, then it is not sent until the clock edge, making the pipeline

synchronously interlocked rather than asynchronously interlocked. A synchronous

pipeline can now enjoy some of the benefits of asynchronous design while staying

in the widely accepted and supported synchronous paradigm.

This section applies modular analysis to the synthesis and verification of IBM’s

synchronous interlocked pipeline structures. Many of these structures are beyond

the capacity of the new analysis algorithm and can only be analyzed using the

modular approach. Each section is devoted to a structure from [12]. It identifies
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where internal glitches exist in the design, and then suggests alternative circuit

implementations found in modular synthesis that do not generate any internal

glitches. Although the internal glitches do not affect the correctness of the initial

implementation, they do contribute to noise generation and power consumption.

The goal of this section is to show the application of modular analysis to real

world design; and more importantly, on a design that can now be analyzed without

needing to apply error prone hand abstractions.

6.3.1 Elastic Synchronous Pipelines

The elastic synchronous pipeline is key to the interlocked synchronous pipeline

stage. The forward interlock signals valid data. This is readily implemented by a

valid bit that moves forward in the pipeline with valid data. Stages activate only

if the valid bit is set. The backward interlock is less obvious. The current stage

signals to its upstream stage that it can accept data using the backward interlock

signal. This implies that any stage in the pipeline can stall on any clock cycle if it

cannot accept data; thus, it must be possible to progressively stall the synchronous

pipeline at any point. Consider the scenario where the pipeline is completely full

with valid data. Suppose that the last stage of the pipeline stalls and cannot accept

new data. It asserts a control signal to its adjacent upstream stage indicating it

is not ready for data. At the global clock edge, the upstream stage holds its data,

but what happens with all of the other stages in the pipeline? They do not know

anything about the stall at the end of the pipeline, so they forward their data;

thus, data are lost at the stall boundary unless there exists extra storage to hold

it until the stall is propagated to the front of the pipeline. This creates a simple

formula: if there are N data items in a pipeline, then it takes 2N storage locations

to progressively stall the pipeline assuming that data are inserted on each clock

edge until the first stage is stalled.

The elastic synchronous pipeline implements the progressive stall and creates

the backward interlock. It is shown in Fig. 6.2. The pipeline relies on two-phase

clocking for correct operation. Data exist in every other stage of a two-phase
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latch latch latch latch

clk1 clk2 clk3 clk4

clk
stall

stall1 stall2 stall3

Fig. 6.2. Elastic synchronous pipeline.

clocked pipeline; thus, an N -stage pipeline holds N
2

data items when it is full. The

stall signal is propagated backward in the pipeline by the one-bit latches. It moves

backward one stage on each edge of the clock. The clock inputs to the data latches

are gated by the respective stall signals at each stage. It takes N clock edges to

propagate the stall signal from the last stage of the pipeline to the first stage of the

pipeline; this is equivalent to N
2

clock cycles. If a new data item is inserted into the

pipeline on every rising edge of the clock, then the pipeline holds N data items by

the time it is stalled: N
2

data items are inserted into a pipeline that already holds

N
2

data items before the first stage sees the stall signal. The extra N
2

data items

inserted into the pipeline before it is stalled are inserted into the empty stages that

naturally exist as a result of the two-phase clocking; thus, the empty stages become

full stages when the pipeline stalls to absorb the latency of propagating the stall

progressively backward in the pipeline.

A gate level model of the three stage elastic synchronous pipeline is analyzed by

ATACS. The model uses syntactic abstraction to describe all gates, and it includes

one-bit of the data path. The clock gating logic must not produce any glitches, and

setup and hold times must be satisfied at the latches for the data and stall bits.

This design is simple enough that it does not require modular analysis or synthesis.

The new algorithm in ATACS verifies the correctness of the implementation in a few

seconds. ATACS did, however, find an important timing assumption for correctness

to hold. Data at a latch input cannot change faster than the delay through an
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inverter and a single AND gate. If this timing constraint is not met, then there is

a race condition between the positive phase and negative phase adjacent pipeline

stages. If there is no logic between the stages, then the noninverted inputs of the

clock gating logic needs to be buffered to minimize clock skew in the design. This

constraint, however, is typical in any latch based pipeline design.

6.3.2 Two-phase Interlocked Pipelines

The two-phase interlocked pipeline is shown in Fig. 6.3. The pipeline implements

a forward and backward interlock using the valid and stall signals respectively with

the gclk signal. A high valid signal indicates that there is valid data at the stage. A

high stall signal indicates that the stage must hold its current data if it is valid and

propagate the stall signal backward. If data at the current stage is invalid, however,

then the stall signal is ignored at that stage and is not propagated backward. The

stall signal is ignored until the stage has valid data.

The schematic in Fig. 6.3 is verified at a gate level for three stages by ATACS.

If the data latches are omitted in the analysis, then the modular approach is not

required. The analysis completes in 30 seconds for the new analysis algorithm. It

takes 60 seconds, incidentally, for POSET timing to complete. Both algorithms find

the same number of states. The analysis reveals that the logic used to compute

the stall input at each stage generates glitches. This signal is not critical, however,

until the stall latch opens. ATACS verifies that this signal is stable before the latch

opens and remains stable until the latch closes; thus, it satisfies setup and hold
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Fig. 6.3. Two-phase interlocked pipeline.
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times in normal synchronous operation.

An alternative behavioral model of the pipeline is constructed to see if the

glitch can be removed from the design. The logic to compute the stall signal at

each stage is moved into the stall latch. The analysis in ATACS shows this design to

not produce any glitches on any of its internal wires. The synthesis of this model

shows that the latch for the stall signal at each stage is replaced by the generalized

C-element shown in Fig. 6.4. This generalized C-element is the latch with the stall

logic folded into it. If standard cell design is not an issue, then the internal glitches

can be removed using the new gate. The synthesized results also show that the

other gates in the design remain unchanged.

6.3.3 Master-slave Interlocked Pipelines

The master-slave implementation of the synchronous interlocked pipeline moves

away from two-phase clocking. It uses a one-phase clock and utilizes the fact

that most commercial pipeline designs use master-slave latches at each stage. A

stall

valid

stall

stall out

clk

¬clk

Fig. 6.4. Hazard free circuit for stall signal.
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master-slave latch can hold up to two data items. The master half of the latch

loads a data item on the rising edge of the clock; and the slave half loads the same

data item on the falling edge of the clock. The interlock pipeline gates the clock

input to the master and slave portions of the latch. This is shown in Fig. 6.5. This

figure resembles the two-phase interlock pipeline in Fig. 6.3, only there is no logic

between the master and slave portions of the latch. The master-slave latch can

now be used to store two data items to absorb the latency of the stall propagating

backward in the pipeline.

The gate level model of two master-slave stages can be analyzed flat on the

testing machine, but it takes 700 seconds and there are 116674 reachable states in

the gate level specification. The analysis also finds 116685 zones. POSET timing

does not complete due to memory limitations. If a module is a single gate in the

design, then the average cost of analyzing each gate in a reduced state space is

around 14 seconds of running time. There are 36 gates in the specification giving a

total cost of 540 seconds to analyze every gate. If a module is the complete master-

slave pair with the accompanying logic, then the average cost is 80 seconds for

analysis. The complete analysis of the two stage master-slave gate level specification

is 160 seconds. This is well under the time to complete the flat analysis.

The analysis shows the design to be correct; although, the AND gate between

the master and slave latches is once again hazardous. This does not affect the

gclk

master slave

valid
stall

latch latch

Fig. 6.5. Master-slave interlocked pipeline.
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correctness of the master-slave stage because the signal is not an output to the

stage. Furthermore, the stall input is not active when the glitch occurs. A new

specification is created, however, with the AND gate moved into the stall latch.

The gate is exactly that shown in Fig. 6.4. This design is shown to not produce

any internal glitches because it does not sample the valid and stall signals until the

clock edge when both signals are stable.

There is a timing assumption that must be met for the implementation to

be correct. The data must be delayed between pipeline stages to prevent race

conditions. This is not an issue between the master-slave latches because the master

latch is active on the negative phase of the clock; thus, it always opens and closes

the master latch after the slave latch. Note that this again is a normal synchronous

design constraint.

6.3.4 Fork

A pipeline fork stage copies data to N parallel downstream stages. A fork

stage must stall if any of its downstream stages stall. Nonstalled downstream

stages must be prevented from receiving duplicate copies of the data when the fork

stage is stalled; thus, the valid signals to all downstream stages are lowered until

all downstream stall conditions are removed. The data are now received by all

downstream stages simultaneously.

The logic for a one to two fork structure in a synchronous interlocked pipeline

is shown in Fig. 6.6. The gate level specification of this circuit cannot be analyzed

flat by either timing method on the test machine. The fork stage and the two

receiving stages are shown to be correct in under 100 seconds of running time using

the modular approach. The stall logic is again hazardous when the stall latch is

not active. The logic must be moved into the latch to suppress the glitch.

6.3.5 Branch

A pipeline branch stage copies data from an upstream stage to one of N parallel

downstream stages. The decision to which of the downstream stages data is to

be copied is determined by the datapath logic that generates a set of N one-hot
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Fig. 6.6. A one to two fork implementation.

encoded enabling signals. These enable signals mask the branch stage valid signal

through a set of AND functions such that a valid is propagated only to the selected

downstream stage. The branch stage must be stalled only if an already stalled

downstream stage is selected as the destination of the data.

The logic for a one to one-of-two branch structure is shown in Fig. 6.7. The

gate level specification is too large to analyze flat. The number of states explored

in the reduced state space of the left stage in Fig. 6.7 is 114405 zones in 113304

states. The completes in 148Mb of memory with 522 seconds of running time. The

total analysis takes around 1600 seconds, but shows the design to be correct.

6.3.6 Join

A pipeline join stage is a merge that concatenates data from N upstream stages

to one downstream stage. The join stage waits until data is valid in all upstream

stages before concatenating and propagating the data to the downstream stage. A

join stage is used to synchronize and align the data streams of multiple pipelines.

Any stage that becomes valid must be stalled until all stages have become valid

and the data can be propagated to the downstream stage since data in different

upstream stages can become valid at different times. If the join stage stalls all

upstream stages must stall.
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Fig. 6.7. A one to one-of-two branch implementation.

The logic for a two to one join structure is shown in Fig. 6.8. The gate level

specification is too large to analyze flat. The number of states explored in the

reduced state space of the left top stage in Fig. 6.8 is 11224 zones in 11199 states.

This completes in 23Mb with 31 seconds of running time. The total analysis

completes in under 120 seconds.
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Fig. 6.8. A two to one join implementation.
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6.3.7 Priority Select

A pipeline select stage is a selector that propagates data from one of N upstream

stages to one downstream stage. A select stage implements a basic if-then-else

multiplexer function. A select stage waits until data is valid in at least one of the

upstream stages. One stage is then chosen through priority based selection and

its data is propagated to the downstream stage. An upstream stage that contains

valid data must stall until it is selected.

The logic for a one-of-two to one priority select structure is shown in Fig. 6.9.

The gate level specification is too large to analyze flat. The number of states

explored in the reduced state space of the top left stage in Fig. 6.9 is 12247 zones

in 12241 states. It completes in 23Mb of memory with a running time of 31.17

seconds. The total cost of analysis of all stages is under 120 seconds of running

time.

6.4 Summary

The new timing analysis algorithm generally out performs POSET timing for

examples that do not use syntactic abstraction. It is competitive with POSET
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Fig. 6.9. A one-of-two to one priority select implementation.
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timing for examples that do use syntactic abstraction. Its performance is largely

determined by the effectiveness of the pruning algorithm. The running time is

degraded if many transitions cannot be pruned from the zone. This is typically

the case for designs where the inputs to every gate are concurrent and causal. The

performance on sequential design, such as the synchronous interlocked pipeline, is

very positive. The implementation of the new timing analysis algorithm in ATACS

is more efficient with memory. Memory becomes an issue in the POSET timing

algorithm for larger examples; thus, the new analysis algorithm can complete on

several examples that are beyond the implementation capacity of POSET timing.

Modular analysis extends the size of specifications that can be analyzed. This

is shown in a complete analysis of the synchronous interlock pipeline structures

from IBM. The structures are shown to be hazard free at the outputs of each stage.

The timing obeys setup and hold times at the latch interfaces. The flat analysis

of many of these structures is not possible without a very large compute server.

The modular approach makes the application of these algorithms to real designs

possible.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The conclusions and future work follow the contributions of the dissertation. It

also follows the layout of the dissertation. Each section relates to a contribution.

It contains a synopsis of that contribution with a discussion on its impact. That is

followed by areas of future work.

7.1 Specification

The level-ruled Petri net is a compact model for timed circuits. It combines the

event based Petri net specification with the state machine to produce a model that

better represents a circuit. This is demonstrated by its ability to directly model

standard and nonstandard designs. This is a key advantage to the level-ruled Petri

net. It closely conforms to gate level circuits due to the syntactic abstraction. This

makes circuit specification easier to construct by hand, and easier to compile to from

higher level languages. The compact representation can improve the performance

of analysis algorithms.

The level-ruled Petri net model is different than the timed event/level structure

in [43]. The first difference is the semantic and structure basis. The level-ruled

Petri net uses the widely accepted Petri net formalism which is a bipartite graph.

The timed/event level structure is a directed graph that does not have a notion

of a place. This makes the two languages different in their modeling power. The

second key difference is seen in conflict. The timed event/level structure uses a

relation, where conflict is modeled in the structure of the level-ruled Petri net.

This restriction simplifies the semantics and analysis of the level-ruled Petri net.

Not every transition in a specification is relevant or important to correctness.

The timing analysis algorithm, however, tracks every signal firing and transition.



192

Moon adds a notion of don’t care to the signal transition graph in [35]. This specifies

a region of the graph where a signal can arbitrarily toggle. The level-ruled Petri

net can benefit from the ability to specify time windows where signal behavior is

not important. It is effectively a don’t care region in time. This can be used to

automatically validate setup and hold times in synchronous logic.

The delay model can be greatly improved in the level-ruled Petri net. The

minimum/maximum delay model does not accurately reflect a real device. It is

not likely that a gate can fire first at its maximum delay and then at it minimum

delay on the same die in the same environment. It is also not likely that given two

identical gates, right next to each other on the die with the same supply voltage,

one gate will switch on its maximum delay with the other switching at its minimum

delay. This is the model, however, in the level-ruled Petri net. A correlation factor

can greatly improve the delay model. The correlation can be based on location,

temperature, mismatch gradient, and other physical realities of the process. The

correlation makes the timing model less conservative.

Greenstreet recently published interesting work using the Charlie diagram to

predict switching delay [78]. The experiment controlled spacing of pulses in an

asynchronous timing ring. The Charlie diagram is able to predict if the pulses

are evenly spaced or grouped together in a burst as they move around the ring.

Applying the Charlie diagram to the level-ruled Petri net as a timing model is

interesting work. An important step in the work is validating if a level-ruled Petri

net predicts the same timing behavior in the asynchronous ring using the new

timing model. This can solidly connect the level-ruled Petri net to physical reality

in CMOS design.

7.2 Correctness

The correctness definition is important to understanding the analysis results.

This dissertation contributes a formal definition of correctness in the level-ruled

Petri net. A net is correct if it is safe, consistent state assigned, output semi-

modular, and constraint satisfied. The safe, consistent state assigned, and output
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semimodular are common correctness properties. Constraint satisfied is becoming

more common. The constraint rules in a component are checked in each transition

firing to ensure than none of the timers on the rules exceed their latest firing time.

Whenever a transition in the component fires, however, the transition’s constraint

rules are checked to see that they are satisfied in the current state of the system.

This enables a designer to specify bounded response and ordering properties in

noncausally related transitions.

The current correctness definition only covers safety conditions and bounded

response liveness properties. It can check that nothing bad in the model happens,

and it can check that something good happens in a bounded amount of time.

Future work in correctness needs to address untimed liveness properties. Another

issue is the notion of conformance to a specification. Correctness does not consider

conformance. It can validate correctness in an environment, but it does not verify

that the timed circuit model conforms to a specification. There is no mechanism to

compare a gate specification against a behavioral specification. This is an important

feature for more general verification.

7.3 Timing Analysis

The timing analysis algorithm for the level-ruled Petri net improves in several

examples over previous algorithms. It is difficult, however, to quantify if the

improvement is a result of the model or the algorithm. Although the results show

favorably for the new algorithm in many cases, it is important to understand that

it is being applied to a new model that is different than other models. It is also

important to remember that it showed less favorably in certain examples too. The

choice of structure and time semantics all impact the cost of timing analysis making

some things hard and other things easy. This is readily evident in comparing the

new analysis algorithm to algorithms for the time/timed Petri net or the timed

automata. There are examples for which the new algorithm out performs existing

algorithms, and there are examples showing the opposite. The comparison is not

just because the models are so very different.
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The new algorithm is a marked improvement over Belluomini in [43]. This

is the only published algorithm on an event based model that supports Boolean

functions too. POSET timing performs over the new analysis algorithm in a handful

of examples, a direct comparison, however, between the two algorithms shows a

general reduction from the new analysis algorithm in the size of the timed state

space representation on average for a variety of benchmarks. Although the two

specification models are different, the improvement is not due to this. It is a

result of directly computing causality and pruning out redundant transitions in the

zone. These two properties of the new algorithm affect its performance. Although

Belluomini presents a similar optimization in [43] for computing causality, it is

not general; thus, it cannot match the performance of the new algorithm in all

examples.

An important contribution of the new timing analysis algorithm is its ability

to support arbitrary Boolean functions. The algorithm in [43] is restricted to

conjunctive or disjunctive expressions with a single term in them. This is not the

case for the new algorithm; thus, atomic gates that implement complex Boolean

functions do not need to be decomposed into two level logic clouds. They can be

directly modeled and analyzed as they are implemented. This moves the model

and analysis closer to the actual implementation lending credence to the results.

An area of future work is to not generate many small zones in building the

finite state space representation. This occurs when there is a small loop in a larger

loop that executes until time advances to a certain point. The current algorithm

will generate many small zones on each iteration of the loop until the time point

is reached. Hendriks presents a method in [79] that avoids generating many small

zones by moving directly to the terminating time point. Möller presents a more

general approach that accomplishes the same goal [80]. Although these methods

are developed for timed automata, they are equally applicable to the level-ruled

Petri net. In the given scenario, they have a dramatic affect on running time and

representation size.

The timing analysis algorithm needs to use a better time model. A notion
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of correlation is important to accuracy. It also needs to consider other factors

that affect delay such as supply voltage variation, device mismatch, and capacitive

coupling. The current timing model is too conservative. It can produce false

negatives showing failures where none really exist. A more accurate timing model

can alleviate this issue.

The algorithm needs to better support synchronous design. Not all signal

transitions matter. The algorithm needs to be able to ignore signal transitions at

certain times. For example, signal transitions are not important in a synchronous

circuit while a latch is closed. They are important, however, during the setup and

hold times for the latch. This type of selective interest is important to modeling

timed systems.

Enumerating states is too costly. There are two areas of possible future work in

this area. The first is to use symbolic methods to represent the timed state space.

The key area of research is in modeling the zone. The second area of research is

to change perspective on the verification problem. Rather than starting from an

initial state and then searching for a failure, start at a failure and then search for

the initial state. For some types of verification issues, this may prove to be very

effective.

Another piece of future work is a change of perspective in the algorithm itself.

The algorithm currently models the timed state space using zones in the timed state

class. These zones contain the time separation on transitions. What if the zones

contained the timed separation on rules? This can reduce the cost of computing

causality, as well as pruning in the zone. It is also interesting to explore the cost of

not adding transitions to the zone as they become enabled. The current algorithm

computes casualty multiple times for each transition: once to see if it is fireable,

and once to actually fire it; thus, it only explores every combination of causal

assignments in a group of marking and level satisfied transitions when it needs to.

If many events are removed from the zone due to pruning, however, then there may

not be that many combinations to explore in the first place. Adding all enabled

transitions into the zone reduces the number of redundant calculations.
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7.4 Reduction

Partial order reduction greatly improves the performance of analysis. Large

systems can now be analyzed one component at a time. The reduction does not

require the model to be altered, and the designer does not have to create a hand

abstraction—a process that is often prone to errors. The reduction preserves the

exact timed state space of the component. This enables state based synthesis

methods to create exact circuits for components in the system. These results show

that the idea of applying partial order reduction to the modular synthesis of timed

circuits can provide substantial improvements in synthesis time. This includes

several examples that could not previously be synthesized using a flat synthesis

approach. Future work includes the ability to verify general liveness properties in

the reduction.



APPENDIX A

OUTPUT SEMIMODULAR TRANSITIONS

The semimodular property can be verified by looking at groups of reachable

states. The groups are created according to the perspective of a circuit seeing only

the Boolean state of signals on its interface. All transitions between these state

groups must be output semimodular.

Definition A.1 (Boolean Match States). The pair of states (s, s′) are matching

states for a set of signals W ′ ⊆ W if ν ′ ⊆ ν and (ν−ν ′)∩W ′ = ∅ where s = (µ, ν, C)

and s′ = (µ′, ν ′, C ′).

Boolean match states look identical from a circuit perspective. They have identical

Boolean state valuations for every signal on the circuit’s interface. The goal is to

build a maximally connected set of Boolean match states. This can be done by a

fixed point calculation.

Definition A.2 (One-step reachable). A pair of state (s, s′) is one-step reach-

able if there exists a transition t ∈ T and a delay d ∈ R+ ∪ {∞} such that either

s ` (d, t) ∧ s [(d, t)〉 s′ or s′ ` (d, t) ∧ s′ [(d, t)〉 s.

A given pair of states is one-step reachable if some delay-transition pair exists that

moves the system from one state to the other. The relation can exist in either

direction. The delay-transition pair can move the system from the first state to

the second, or it can move the system from the second state to the first. The core

function for the fixed point calculation can now be presented using Definition A.1

and Definition A.2.

Definition A.3 (Reach Function). The reach function g(S,W ′) returns the set
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of states S ′ ⊇ S where s ∈ S ′ if s ∈ S or if s ∈ [so〉 and there exists a state s′ ∈ S

such that (s, s′) are one-step reachable and Boolean state match on W ′.

The reach function intuitively adds new states to the existing set of states that are

reachable by a single delay-transition pair firing and retain a Boolean match with

other states already in the set given the signal set W ′.

A reduced state graph like that in Fig. A.1(a) can be constructed using the

reach function to compute fixed points on the Boolean states defined over a signal

set. Each node in the reduced state graph is a set of states that is a Boolean match

set for some reduced signal set W ′ ⊆ W .

Definition A.4 (Boolean Match Set). A set of states S is a Boolean match

set for the Boolean state ν ′ defined over the signals W ′ if given any member state

(µ, ν, C) ∈ S, the following two conditions hold:

1. ν ′ ⊆ ν and (ν − ν ′) ∩W ′ = ∅; and

2. the fixed point S ′ = g(S ′,W ′) is equal to S for any initial seed S ′ = {(µ, ν, C)};

the function S(ν ′,W ′) is the set of all Boolean match sets for ν ′ and W ′; the function

S(W ′) =
⋃
ν′∈2W

′{S(ν ′,W ′)} builds the set of Boolean match sets for all possible

Boolean states defined on W ′.

The Boolean match set for a given Boolean state and signal set is a maximally

connected set of reachable states that share a common state valuation of signals in

the signal set W ′; all signals not in the signal set are treated as don’t care signals.

Consider again the graph in Fig. A.1(b). Suppose that the signals mapped to t3

and t4 are the signal set for the system. The Boolean match set is built from the

initial seed S = {s1}. The fixed point calculation in the reach function expands

the set to S = {s0, s1, s2}. Each individual state code defined on W ′ can result

in a set of Boolean match sets because a given state code can match in several

maximally connected components. The final function S(W ′) quantifies out each

possible Boolean state that can be defined on the signals in W ′. Each state set

in each member of the S(W ′) set represents a distinct state perceived in a circuit
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level implementation. This set is used to validate that a component module has

semimodular states. A reduced state graph can now be analyzed to completely

validate the output semimodular property for a module in a network of level-ruled

Petri nets.

A semimodular state set transition affects transitions moving from one Boolean

match set to another. Its counterpart is the semimodular transition. The properties

required for a transition to be semimodular in a pair of states must also hold for a

transition in a pair of Boolean match sets.

Definition A.5 (Semimodular State Set Transition). A transition t is semi-

modular in the state set pair (Si, Sj) for a given set of visible transitions TV ⊆ T

and a set of transitions on outputs TO ⊆ TV if the following implication holds: for

all si ∈ Si, sj ∈ Sj, and d ∈ R+∪{∞} such that si ` (d,R(t)) and si [(d, t)〉 sj =⇒

1. t ∈ TO ∧ ((mls(Si)− {t}) ∩ TV ⊆ mls(Sj) ∩ TV ); or

2. t /∈ TO ∧ ((mls(Si)− {t}) ∩ TO ⊆ mls(Sj) ∩ TO);

where for a given s = (µ, ν, C), mls(s) = {t ∈ T | (µ, ν) ` R(t)}, and for a given

state set S, mls(S) =
⋃
s∈S mls(s).

This definition considers all marking and level satisfied transitions in the two state

sets to determine the semimodular property. The first part of the implication

exists to filter out transitions and state set pairs that are not connected. These are

semimodular by default since the transition does not fire in a state in one state set

to move the system to a state in the other state set. If, however, such a state pair

exists for the two state sets, then one of the two stated conditions must hold. If the

transition is an output from TO, the first condition does not allow the firing of the

output transition to disable any marking and level satisfied visible transitions in

the states of the Si set. If the transition is not an output, then the second condition

does not allow the firing of the transition to disable any marking and level satisfied

transitions in the states of the Si set. These conditions exactly match those for an



200

output semimodular transition in Definition 3.13, only these consider all marking

and level satisfied transition from the states in the entire state sets Si and Sj.

The semimodular state set transition validates semimodular states for a compo-

nent. Consider again the fragment of the state graph in Fig. A.1(b). The Boolean

match sets for the component are shown in Fig. A.1(a). The transition t3 is not an

output semimodular state set transition by the second condition of Definition A.5

for S = {s0, s1, s2} and S ′ = {s3} given TV = {t3, t4} and TO = {t4}. From the

level-ruled Petri net in Fig. A.1(c), firing the input transition t3 disables the output

t4; thus, the marking and level satisfied set from S minus t4 is {t3} and the same

set is empty for S ′. At the circuit level perspective, this module does not have

semimodular states.

Definition A.6 (Output Semimodular). A component Mi in a network of level-

ruled Petri nets M = M1 ‖ M2 ‖ · · · ‖ Mn is output semimodular if two conditions

hold for all transitions t ∈ T :

1. for all state pairs (s, s′) ∈ [so〉, there exists a delay d ∈ R+ ∪ {∞} such that

si ` (d,R(t)) and si [(d, t)〉 sj =⇒ t is a semimodular transition on (s, s′)

given TV and TO; and

s3 s4

t3 t4

s0, s1, s2

s0

s3

s1

s4

s2

t1 t2

t4t3

t3 t4

t2t1

(c) (b) (a)

Fig. A.1. A net fragment with its full and reduced state space. (a) A reduced state
graph for the visible transitions t3 and t4 showing the state semimodular violation.
(b) The state graph for the net fragment. (c) A level-ruled Petri net fragment that
enables two invisible transitions t1 and t2 on a choice place eventually followed by
the visible transitions t3 and t4.
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2. for all state set pairs (S, S ′) ∈ S(Wi), t is a semimodular state set transition

given TV and TO.

where TV = T (Wi) and TO = T (Oi).

If there does not exist a delay such that the delay-transition pair is enabled in the

first state, and firing it leads to the second state, then the transition is semimodular

because it cannot fire from the first state. If there does exist a delay such that the

delay-transition pair is enabled and firing it from the first state results in the second

state, then one of two conditions must hold for the transition to be semimodular.

The first condition in Definition A.6 ensures that the transitions in a component

model are semimodular. Many output semimodular violations are discovered by the

first condition. More importantly, the first condition can be dynamically validated

as a firing sequence is evolved. The second condition in Definition A.6 ensures that

the module has output semimodular states at the circuit perspective. It covers all of

the violations in the first condition too, but it cannot be dynamically applied to an

evolving firing sequence. It exists to discover output semimodular state violations

that can not be uncovered in an evolving firing sequence; thus, both the reachable

state set and allowed firing sequences are required to validate that a module is

output semimodular in a defined environment.



APPENDIX B

BOOLEAN FUNCTION MANIPULATION

The level necessary for a transition is derived from its rule set. It is the prime

implicants of the function formed by the conjunction of the functions on each

rule in the rule set of the transition in max term form mapped onto transitions.

The maxterm prime implicants can be computed with known algorithms. This

section presents operations on the Lsat in the level-ruled Petri net to compute the

prime implicants recursively using positive and negative cofactors. The recursive

algorithm itself is not presented.

A Boolean state of the system is a member of the power set of the signals it

is defined over. This is any ν ∈ 2W for the signal set W in the level-ruled Petri

net. For any signal w ∈ W and Boolean state ν ∈ 2W , w ∈ ν means that the

signal is in its high Boolean state, and w 6∈ ν means that the signal is in its low

Boolean state; thus, the Boolean state {a, b} defined over the signal set {a, b, c} is

understood to mean that the signals a and b are high, and the signal c is low. Recall

from Definition 2.10 that the Lsat member of the level-ruled extension implements

the syntactic abstraction. It is the function Lsat : R → (2W → {true, false}). The

function takes a rule and a Boolean state defined over the signals in the level-ruled

Petri net, and it returns either true or false. The true value indicates that the level

information is satisfied by the passed in state vector; the false value indicates the

opposite.

A Boolean function for a rule has a canonical form that can be a set of minterms

or a set of maxterms. A minterm is a product term in a Boolean function, and it

is a Boolean state where the function evaluates to true.

Definition B.1 (Sum of Products Form). The sum of products canonical form
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of a Boolean function defined over the set of signals W for a given rule r ∈ R

is f(r) =
{
ν ∈ 2W | Lsat(r)(ν) = true

}
; a function is always true if f(r) = 2W ; a

function is always false if f(r) = ∅; the sum of products form for a transition

t ∈ T is f(t) =
⋂
r∈R(t) f(r).

The sum of products form of the Boolean function is the set of minterms for the

function. It is only necessary to satisfy a single minterm for the function to be

true. Consider again the rule r1 in Fig. B.1 with the Boolean function ab ∨ ¬c

defined over the set W = {a, b, c}. The sum of product form for r1 is the set

f(r1) = {∅, {b} , {a} , {a, b} , {a, b, c}}. Using a more standard notation, f(r1) =

(¬a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ b ∧ c). This

notation is used for the rest of the presentation. The sum of products form of the

Boolean function for the transition t4 is f(t4) = f(r1) because f(r2) = true.

The sum of product form with the negative and positive cofactor is used to

compute the dependence of a Boolean function on a given signal. Suppose that

there exists a transition t such that f(t) = (a ∧ b ∧ ¬c) ∨ (a ∧ b ∧ c). The signal c

does not affect the truth value of this function because it is level satisfied whenever

a and b are high. This is detected using cofactor operations.

Definition B.2 (Positive Cofactor). The positive cofactor on a signal w ∈ W

in a Boolean function f in the sum of products form defined over the set of signals

W is fw =
{
ν ∈ 2W | ∃ν ′ ∈ f : w ∈ ν ′ ∧ (ν = ν ′ − {w}) ∨ (ν = ν ′)

}
; fw(t) returns

the positive cofactor of the signal w in the sum of products form of the Boolean

function for the transition t ∈ T .

t1 t2

[3, 5]
ab ∨ ¬c

[2, 6]r1

r2

t3

t4

L(t5) = a+
L(t6) = b+
L(t7) = c−

Fig. B.1. A fragment with a merge place and a rule with a Boolean function.
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The positive cofactor of a function is all the minterms in the function with the

signal w removed if it originally appeared in the minterm or the minterm itself

if signal w is appears in it. This makes signal w a don’t care term in the sum

of products representation. The positive cofactor on c for the transition in this

example is fc(t) = (a ∧ b ∧ ¬c) ∨ (a ∧ b ∧ c).

Definition B.3 (Negative Cofactor). The negative cofactor on a signal w ∈ W

in a Boolean function f in the sum of products form defined over the set of signals W

is f¬w =
{
ν ∈ 2W | ∃ν ′ ∈ f : w 6∈ ν ′ ∧ (ν = ν ′ ∪ {w}) ∨ (ν = ν ′)

}
; f¬w(t) returns

the negative cofactor on the signal w in the sum of products form of the Boolean

function for the transition t ∈ T .

The negative cofactor is similar to the positive only it adds new minterms containing

the signal w rather than adding minterms that do not contains the signal w like the

positive cofactor. The negative cofactor on c for the example transition is f¬c(t) =

(a ∧ b ∧ ¬c) ∨ (a ∧ b ∧ c). The signal c is independent of the Boolean function for t

in this example because fc(t) = f¬c(t). This is not the case for the signal c and the

transition t4 in Fig. B.1. The positive cofactor on c is fc(t4) = (a∧b∧¬c)∨(a∧b∧c),

and the negative cofactor on c is f(t4) = (¬a∧¬b∧¬c)∨ (¬a∧¬b∧ c)∨ (¬a∧ b∧

¬c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ b ∧ c) This

function depends on the signal c, and more specifically, it depends on ¬c because

it is negative unate; this means that f¬c(t4) ⊇ fc(t4). This is necessary information

in computing a causal group set.

Not all signals contribute to the truth value of the function as shown above where

fc(t4) = f¬c(t4). The level necessary set needs to be in terms of transitions that

contribute to the truth value of the function. The positive and negative cofactor

are used to test if a signal is independent in a function—meaning that it does not

contribute to the function’s truth value. Recall the example of f(t) = (a∧ b∧¬c)∨

(a ∧ b ∧ c) for some transition t ∈ T . The signal c is independent in this function

because fc(t) = f¬c(t). The Boolean function for t4 in Fig. B.1, however, depends

on the negative phase of c because f¬c(t4) ⊇ fc(t4).
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Definition B.4 (Level Transition Set). The set of level transitions for a tran-

sition t ∈ T is the set of transitions t′ ∈ T such that there exists a signal w ∈ W

where fw(t) 6= f¬w(t) (not independent) and one of the following holds:

1. fw(t) ⊇ f¬w(t) ∧ L(t′) = w+ (positive unate);

2. fw(t) ⊆ f¬w(t) ∧ L(t′) = w− (negative unate); or

3. fw(t) 6⊇ f¬w(t) ∧ fw(t) 6⊆ f¬w(t) ∧ (L(t′) = w+∨L(t′) = w−) (mixed unate);

the function lts(t) returns the level transition set for the transition t; lts(r) returns

the level transition for a rule r ∈ R.

The level transition set is the set of transitions on signals that affect the truth value

of the Boolean function on the given transition. If the signal is not independent

in the function, then there are three cases to consider: the first case indicates the

function is positive unate on the signal; the second case indicates that the function

is negative unate on the signal; and the third case indicates that the function

is mixed unate on the signal. Consider a transition t ∈ T with an exclusive-or

function defined over the signals set W = {a, b}. The sum of products form is

f(t) = (a∧¬b)∨ (¬a∧ b). The positive cofactor on a is fa(t) = (a∧¬b)∨ (¬a∧¬b),

and the negative cofactor on a is f¬a(t) = (¬a ∧ b) ∨ (a ∧ b). This satisfies the

third case where the function depends on the positive and negative phase of the

signal a because the positive and negative cofactor on a are not related. Consider

the transition t4 in Fig. B.1 with the specified transitions t5, t6, and t7. The level

transition set for t4 is {t5, t6, t7}.

The level necessary set for a transition t is essentially the collection of Boolean

function created from each rule r ∈ R(t) in its product of sums form. A product of

sums form is a set of maxterms. A maxterm is a sum term in a Boolean function.

It is a set of disjunctive signals. A single signal in the maxterm must be in its

specified Boolean state to satisfy the sum term. The product of sums Boolean

function representation is a set of maxterms for the function.
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Definition B.5 (Product of Sums Form). The product of sums canonical

form of a Boolean function defined over the set of signals W for a given rule

r ∈ R is f̆(r) =
{
ν ∈ 2W | ∃ν ′ ∈ 2W : ν = W − ν ′ ∧ Lsat(r)(ν ′) = false

}
; a function

is always false if f̆(r) = 2W ; a function is always true if f̆(r) = ∅; the product of

sums form for a transition t ∈ T is f̆(t) =
⋃
r∈R(t) f̆(r).

A maxterm is the compliment of the signals in a state where the function evaluates

to false. This is computed by W − ν ′ where ν ′ is a state where the function is

false. The set of all these maxterms is the product of sums form for the Boolean

function. Consider again the rule r1 in Fig. B.1 with the Boolean function ab ∨ ¬c

defined over the set W = {a, b, c}. The product of sums form for r1 is the set

f̆(r1) = (a∨¬b∨¬c)∧ (¬a∨b∨¬c)∧ (a∨b∨¬c). The product of sums form for the

rule r2 is f̆(r2) = true, because the function is true in every state by definition. The

product of sums form of the Boolean function for the transition t4 is f̆(t4) = f̆(r1)

because f̆(r2) = true.

The level transition set with the product of sums form of the Boolean functions

is used to build the final level necessary set for a given transition. The set contains

only transitions that affect the truth value of the function.

Definition B.6 (Level Necessary Set). The level necessary set lrs(t) for a given

transition t ∈ T is lrs(t) =
⋃
ν∈f̆(t)

{⋃
w∈W x(t, ν, w)

}
; where the function x(t, ν, w)

returns the set of transitions from the level transition set that must fire for the signal

w to match its phase in the Boolean state ν; this is given as x(t, ν, w) = {t′ ∈ T |

t′ ∈ lts(t) ∧ ((w ∈ ν ∧ L(t′) = w+) ∨ (w 6∈ ν ∧ L(t′) = w−))}.

Consider again the transition t4 in Fig. B.1 with the specified transitions t5, t6, and

t7 for a+, b+, and c−, respectively. Recall that the product of sums form for the

Boolean function on t4 is f̆(t4) = (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ b ∨ ¬c). The

level transition set for t4 is {t5, t6, t7} so ¬a and ¬b are independent in the function.

The level necessary set for t4 is {{t5, t6, t7} , {t5, t7} , {t6, t7}}. This is a result of the

Boolean function on t4. The {t5, t7} set comes from the (a∨¬b∨¬c) maxterm; the

{t6, t7} derives from the (¬a ∨ b ∨ ¬c) maxterm; finally, the {t5, t6, t7} set comes
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from the (a ∨ b ∨ ¬c) maxterm. Note that if there existed another transition t8 in

this system such that L(t8) = a+, then the level necessary set includes both t5 and

t8 for any a+ transition; thus the new level necessary set for t4 considering this

new transition is {{t5, t6, t7, t8} , {t5, t7, t8} , {t6, t7}}.

The level necessary set given in Definition B.6 is not optimal. The optimal level

necessary set is the set of prime implicants for the Boolean function defined in a

transition. The level necessary set in Definition B.6 may be larger than it needs

to be, but it is still correct nonetheless; it produces the same set of causal groups

as the possible smaller set created from the prime implicants. It is less optimal

because it can result in a larger finite representation of the reachable state space.

The level necessary set is key to computing new timed state classes from firing

transitions using different causal groups. Although the causal groups are the same,

a larger level necessary set implies smaller zones in the timed state class; thus,

more zones are required to cover the state space. The Boolean functions on each

transition derived from its rule set that are used to create the level necessary sets

can come from a logic optimizer, be provided by the user for each transition, or be

constructed from the maxterms in the Boolean functions of the rules. The smallest

set is the most optimal.
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