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ABSTRACT

The increasing demand for smaller, more efficient circuits has created a need for both

digital and analog designs to scale down. Digital technologies have been successful in

meeting this challenge, but analog circuits have lagged behind due to smaller transistor

sizes having a disproportionate negative affect. Since many applications require small,

low-power analog circuits, the trend has been to take advantage of digital’s ability to scale

by replacing as much of the analog circuitry as possible with digital counterparts. The

results are known as digitally-intensive analog/mixed-signal (AMS) circuits. Though such

circuits have helped the scaling problem, they have further complicated verification. This

dissertation improves on techniques for AMS property specifications, as well as, develops

sound, efficient extensions to formal AMS verification methods.

With the language for analog/mixed-signal properties (LAMP), one has a simple intu-

itive language for specifying AMS properties. LAMP provides a more procedural method

for describing properties that is more straightforward than temporal logic-like languages.

However, LAMP is still a nascent language and is limited in the types of properties it is

capable of describing. This dissertation extends LAMP by adding statements to ignore

transient periods and be able to reset the property check when the environment conditions

change.

After specifying a property, one needs to verify that the circuit satisfies the property.

An efficient method for formally verifying AMS circuits is to use the restricted polyhedral

class of zones. Zones have simple operations for exploring the reachable state space, but

they are only applicable to circuit models that utilize constant rates. To extend zones to

more general models, this dissertation provides the theory and implementation needed to

soundly handle models with ranges of rates.

As a second improvement to the state representation, this dissertation describes how

octagons can be adapted to model checking AMS circuit models. Though zones have efficient

algorithms, it comes at a cost of over-approximating the reachable state space. Octagons

have similarly efficient algorithms while adding additional flexibility to reduce the necessary

over-approximations.

Finally, the full methodology described in this dissertation is demonstrated on two



examples. The first example is a switched capacitor integrator that has been studied in

the context of transforming the original formal model to use only single rate assignments.

Th property of not saturating is written in LAMP, the circuit is learned, and the property is

checked against a faulty and correct circuit. In addition, it is shown that the zone extension,

and its implementation with octagons, recovers all previous conclusions with the switched

capacitor integrator without the need to translate the model. In particular, the method

applies generally to all the models produced and does not require the soundness check

needed by the translational approach to accept positive verification results. As a second

example, the full tool flow is demonstrated on a digital C-element that is driven by a pair

of RC networks, creating an AMS circuit. The RC networks are chosen so that the inputs

to the C-element are ordered. LAMP is used to codify this behavior and it is verified that

the input signals change in the correct order for the provided SPICE simulation traces.

iv
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CHAPTER 1

INTRODUCTION

As embedded systems become more popular, it is increasingly difficult to meet the

challenge of creating higher performance circuits within smaller sizes and lower power

constraints. Digital devices have been successful in meeting this demand. As one example,

in 1971 the Intel 4004 processor had 2,300 transistor and in 2012 the number had grown

to over 1.4 billion transistors in the 3rd Generation Intel Core I7 [60]. In the same time

frame, the process node decreased from 10µm to 22nm. However, shrinking transistor sizes

and increasing transistor counts are not enough to create useful designs, especially when

the number of transistors is in the billions. Abstraction is necessary to handle such complex

designs. Here too, the simplicity of digital circuits has met the challenge by introducing

computer-aided design (CAD) tools that support a wide range of abstraction levels and

automate large portions of the design process. In particular, several methods have been

successfully applied to verifying the correctness of designs [13, 23, 24, 26, 27, 47, 63, 65].

In contrast, analog circuits have not been able to keep pace. Performance doubles about

every two years for digital circuits while it takes four to five years for analog performance

to double [83]. In particular, scaling is not as favorable to analog circuits. Noise is more

prevalent, gains are harder to achieve, and the lower power requirement only exacerbate

these concerns. However, analog circuits are necessary in any application that interacts with

the real world, such as cell phones and sensors. To cope with this challenge, analog designers

have turned to digital alternatives as much as possible resulting in analog/mixed-signal

circuits (AMS). In fact, some designs have reached the point of essentially adding a processor

and are more accurately described as digitally-intensive AMS circuits. Of course, adding

this additional circuitry increases the complexity, making errors more likely, especially when

designs are still being done by hand. Although CAD tools have made some strides in

areas like sizing and layout [28], the verification problem is particularly difficult to handle

in the AMS setting. The traditional simulation methodology is difficult to adapt to the

large transistor counts resulting from the digital portions while digital techniques do not

support the continuous nature of the analog portion. Even so, strides have been made to
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adapt simulation-based verification and convert digital verification methodologies to the

AMS domain. These methods are briefly surveyed in Section 1.1. Section 1.2 details this

dissertation’s contribution to these methods. Finally, Section 1.3 concludes the chapter

with an outline of the rest of the dissertation.

1.1 Survey of AMS Circuit Verification
Since AMS circuits combine both the analog and digital domains, it is natural to start

with either and attempt to extend the techniques to the entire AMS design. Indeed, most

AMS verification techniques have been developed in this way and fall into one of four

categories: simulation-based, equivalence checking, theorem proving, and model checking.

Each of these categories is explored in greater detail in the following subsections. For

additional information, one can consult recent survey papers [6, 103, 117].

1.1.1 Simulation-Based
Traditional simulation-based verification utilizes some variant of the Simulation Program

with Integrated Circuit Emphasis (SPICE). SPICE [85] simulation does not require any

additional work to apply to AMS designs, since, after all, the digital circuits are nothing

more than transistors with a convenient abstraction. The difficulty comes when handling

the large number of transistors introduced by the digital portion. For example, a digitally-

intensive phase locked loop (PLL) can take days or even weeks to verify due to the large

number of transistors. Longer simulation time naturally leads to less simulation runs and

severely slows down the design process. In turn, functional bugs are more likely to be

missed. Simulation is also plagued by the need for a designer to check simulations by hand

to determine whether the circuit is functioning correctly, which becomes more difficult as

the designs become more complex.

Instead of having a designer check all the simulations by hand, an alternative is to use

monitors [5, 22, 31–33, 36, 42, 44, 75–79, 99, 106, 107, 113, 114, 119]. The first step in

automatization is to develop a language for describing correct behaviors. Such descriptions

are usually written in a type of formal language like linear temporal logic (LTL) [13, 97]

or the property specification language (PSL) [1], which can be parsed algorithmically. Once

the property language is chosen, it is used to create assertions that are checked against the

traces. This check is performed in one of two ways: online or offline. Online monitoring

usually relies on constructing a sequence recognizer that continually checks or monitors the

signal. As soon as a trace violates the property, an error is raised. In offline monitoring, the

whole set of simulations is constructed beforehand and then checked against the property.
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Without having a runtime constraint, offline monitoring is more flexible and can use more

complicated algorithms. Though offline and online monitors have made advances towards

automation, they remain susceptible to missing errors due to incomplete simulations.
To mitigate the concerns with simulation, one can determine the robustness [32, 36] of

the property. With robustness, one attempts to determine how sensitive a property is to

changes in the simulation traces. Tolerances are provided to indicate how far traces can

drift before a property is violated. So robust properties allow traces to vary widely before

they are violated. The tolerances allow one to reduce the number of simulations since only

one trace needs to be tested in the region defined by the tolerance. Though robustness

helps to ensure that all necessary regions are tested, all traces have to be recalculated if

any parameters change and sensitive properties still require a large number of simulations.
Another method to reduce the number of required simulations is event-driven (ED)

simulation. ED simulation attempts to make the cost of creating simulations cheaper by

using triggers to determine when to solve differential equations and which equations need to

be solved. Like the online methods, however, these approaches ultimately cannot guarantee

the correct functioning of a circuit and could miss important behaviors not being simulated.
If the cost of simulations is not a concern, one can use Monte Carlo simulation [113] to

determine a properties sensitivity to changes in parameters. With Monte Carlo methods,

one runs randomly chosen simulations and aggregates the data to determine the possible

distribution of solutions. Confidence intervals are provided to determine the likelihood of

failure when conditions change. Of course, the downside is that even more simulations need

to be calculated compounding the problem when simulations are expensive.
In contrast to the above methods, which still calculate individual traces, symbolic

simulation [108, 111] gathers several traces together in an abstract representation. The

simulation is then calculated by manipulating the whole collection. The method of [108]

uses a first-order language to describe the state space. The states are formally manipulated

to determine how the collection evolves. In [111], the authors use a similar approach

by representing states as conjunctions involving interval constraints. Symbolic solution

techniques are then used to determine how the state evolves. Though several traces are

simulated together, there is still no guarantee that all behaviors are explored and the

describing formulas can experience exponential blow-up.

1.1.2 Equivalence Checking
A related notion to verifying circuit correctness is equivalence checking where one verifies

two circuits perform the same task. In fact, a method of equivalence checking can often
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be used as a method of verification by using one circuit description as the specification

and the other as the circuit to verify. Then, determining the circuits are equivalent is

the same as determining that the circuit matches the specification. In the digital context,

equivalence checking is simply the process of determining if two descriptions perform the

same function. This ability enables digital circuits to be designed at different levels of

abstraction by ensuring that each level is equivalent to the others. For example, one

can ensure that a register-transfer level (RTL) description is the same as the synthesized

transistor implementation.

With all the benefits equivalence checking brings to digital circuits, it would be ad-

vantageous to have this ability for AMS designs. Although it is straightforward to define

the equivalence of two digital circuits, AMS circuits are not as simple. Equivalences have

been based on frequency domain characteristics [15, 56, 101] and time domain character-

istics [55, 59]. In addition, methods have utilized hardware description languages (HDL).

Specifically, the AMS extension of the very high speed integrated circuit hardware description

language (VHDL), called VHDL-AMS [100]. In each case, equivalence checking is used to

determine if descriptions on different levels of abstraction or different implementations on

the same level are equivalent.

The methods based on frequency domain characteristics define two descriptions to be

equivalent if their transfer functions are equivalent. In [15], the authors map the transfer

function to the Z-domain and utilize a digital representation using adders, multipliers, and

delay elements. Staying in the s-domain, [56] uses interval arithmetic and tolerances to

establish that the transfer functions describe essentially the same behavior. Finally, [101]

turns the check into an optimization where one optimizes the conformation of the magnitude

and phase response of the implementation to a tolerance around the specification. Though

this is useful for analog circuits, it does not extend well to the full range of behavior for

AMS circuits since not all behavior needed is frequency based.

Staying in the time domain, instead of mapping to the frequency domain, [55] establishes

equivalence by creating a correspondence between solutions of the respective governing

differential equations. To identify this correspondence, local linearizations are employed

so that the problem reduces to finding transformation matrices. Thus, for a given pair of

systems, the local vector fields are computed for a point, then the transformation matrix

is found, and a new point along the solution curve is selected. The process of finding local

linearization and stepping along the solution curves is equivalent to numerically integrating
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the differential equation, so the method is as costly as jointly solving two sets of differential

equations and is similar to the calculations needed for SPICE.
Instead of looking at local linearizations, [59] restricts the problem to circuits that have

a global linear behavior. Thus, two circuits are equivalent if they exhibit the same linear

behavior within a specified tolerance. To determine this linear behavior, a set of random

inputs is applied to each system, the output responses are recorded, and the results of

linear regression are compared. For general circuits, the design must first be partitioned

into appropriate sized blocks and each of these blocks must be verified separately.
On a higher level of abstraction, [100] establishes equivalence based on VHDL-AMS cir-

cuit descriptions. The check is split into identifying the digital and analog pieces separately.

The digital pieces are compared by creating a mitre and then using Boolean satisfiability

(SAT) and binary decision diagram (BDD) [3, 21] techniques to verify equivalence. For the

analog portion, the corresponding analog pieces are tied together with a comparator and

are equated using a combination of rewriting rules and simulation to determine equivalence.

Since the digital and analog portions are handled separately, their interaction is not taken

into account.

1.1.3 Theorem Proving
Theorem proving verifies circuit correctness by mapping the circuit and specification to

a formal description and establishing a proof that the circuit satisfies the property. Formal

descriptions include combinations of linear constraints [46, 48–50], systems of recurrence

relations (SRE) [4, 5], and the differential temporal logic (dTL) [61, 82, 88–95].
In [48–50], the linear or piecewise linear nature of many analog components is exploited

to map the behavior of voltages and currents to a conjunction of linear constraints. After

also giving the specification in terms of linear constraints, a decision procedure is applied to

determine if the circuit description implies the specification. As a variant of this idea, [46]

maps a circuit netlist together with a VHDL-AMS specification to the prototype verification

language (PVS) [86] and applies the PVS decision procedures to prove that the netlist

satisfies the property. In this context, the circuit description is again based around linear

constraints and is thus applicable to analog circuits that can be described by linear or

piecewise linear functions. Since these methods are based on intervals and linearizations,

they are approximate; however, steps are taken to ensure that the results are conservative.
SREs are a more general class of equations than linear constraints. They allow for more

arbitrary combinations of additions and multiplication, as well as allowing for division,

logical expressions, and if-then-else constructs. The work of [4] maps AMS circuits and
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corresponding properties to SREs by using a set of rewriting rules. After obtaining the

SRE description, the proof proceeds by an induction argument. In [4], the properties are

written almost directly in terms of SREs; however, [5] extends the property descriptions to

PSL [1, 45].
Instead of extending the the class of equations, one can build on the logic specification

idea. The series of papers [61, 82, 88–95] directly incorporate differential equations into the

logic semantics creating the differential dynamic logic (dL) and its extensions differential

temporal dynamic logic (dTL) and dTL2. With dL, dTL, and dTL2, one can directly

translate a hybrid automata model into a hybrid program that is a description of the

circuit in the formal language. Once the model is constructed, one can then proceed to

prove properties about the system using formal proofs in dL, dTL, or dTL2. In particular,

one can write properties for the correct operation of the circuit and prove whether the

system satisfies them. In all cases, the proofs can be partially automated. When running

the automation, one of three cases occurs: a proof that the property is satisfied, a proof

that the property is not satisfied, or the theorem prover cannot produce a proof either

way. When the theorem prover cannot produce a proof, it is necessary that additional

information be found (by hand) to give to the theorem prover so it can make progress.

1.1.4 Model Checking
Model checking, also known as reachability analysis, is the process of finding all the

possible states a system can reach from the initial conditions. Properties are translated

into forbidden states and are checked by determining if these states are in the reachable set.

Model checking is a well established methodology in the digital domain [26, 27, 63]. Though

digital model checking has to contend with large state counts, the state space is computable

and the basic process is straightforward. AMS model checking, on the other hand, has an

infinite state space that is usually not computable [58, 96]. Even still, progress has been

made with approaches ranging from discretizing the state space [51–53, 105], performing

numeric next state calculations [39, 70, 71, 73, 109, 110, 118], manipulating symbolic next

states [112], and combining different methods [116].
One of the earliest ideas for model checking AMS designs stems from the already

available digital model checking tools. If the AMS problem is turned into a digital problem,

then the rest of the checking can be done utilizing already existing tools. In [51–53], the

authors attempt to turn the AMS model checking problem into a digital one by cutting

the continuous space into hyper-cubes thereby discretizing the space. The hyper-cubes

are formed by selecting a finite set of discrete points for each coordinate direction. Each
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hyper-cube becomes a state and transitions are added between any two states for which

there is a local linear solution that starts in one state and ends in the other. In this

approach, trajectories are best approximated when they move perpendicular to the face

of the hyper-cubes; however, the hyper-cubes are fixed regardless of the direction of the

dynamics. To achieve a better approximation, [105] extends the hyper-cube construction so

they follow the path of the trajectories. To verify properties of interest, it is often necessary

to pick fine-grained partitions which result in a large state space for the digital checker.

Hence, the state space limit of digital model checking is often reached.

To avoid a complete discretization, one usually adopts a model formalism that has both

discrete and continuous parts such as linear hybrid automata (LHAs) [7] or labeled Petri

nets (LPNs) [74]. Due the presence of continuous variables, the state space is infinite, so

equivalence classes of states are formed to produce a finite representation. These equivalence

classes are usually some subclass of polyhedra. The choice of which subset is a trade-off

between accuracy and complexity of representation. After selecting the subclass, the next

challenge is to determine how the state space evolves. In [70], the authors allow time to flow

forwards until a constraint on the continuous variables is violated. SPICE simulations are

run to determine which constraints are reachable from the current state. Avoiding SPICE

calculations, [118] uses a more symbolic approach. The state space is represented as a

formula on intervals and interval arithmetic together with Taylor series approximations to

find estimates on the solutions to the differential equations that start in the given state.

Allowing for even more general sets of solutions, [39, 71] introduce a class of polyhedra

defined by a fixed set of prechosen unit vectors. The next states are found by essentially

incorporating a linear numerical integrator that is lifted to sets. By using set representation,

these methods have the advantage of collecting together multiple solutions, though the

complexity of finding these solutions is still high.

In an effort to simplify these calculations, [73] chooses a more restrictive polyhedra set.

By reducing the complexity of the representing space, they are able to reduce the complexity

of the next state calculations to essentially setting the upper bound variable constraint to

their maximum values allowed by any constraints defined on the variables. Though the

method reduces the calculation overhead, the restrictive nature of the polyhedral class

leads to large over-approximations of the exact state space.

An even more symbolic approach to constructing next states is to encode the behavior

as a BDD or SAT formula. In [112], the authors present two methods: the first is based

on BDDs and the second on SAT. In both cases the states are represented symbolically as
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constraints on the system. In the BDD version, the method starts with the set of failure

states and then iteratively calculates which states could have reached the current collection

of states. The process continues until a fixed point is reached, which is then intersected with

the initial states to determine if any of the initial states can lead to the failure. The SAT

method starts with a symbolic representation for the initial state and then iteratively adds

constraints that represent the next states reachable from the current states. This process is

similar to the unrolling of a programming loop with each stage indicating what states are

reachable after n iterations. Though these methods avoid performing numerical integration,

the BDDs are difficult to maintain as the state space increases while the SAT method is

only able to perform bounded model checking, that is modeling checking that is bounded in

either time or number of iterations.

Recently, [116] has proposed a hybrid approach combining SPICE simulations and

SAT solvers. Since SAT solvers can have an exponential runtime, [116] first uses SPICE

simulations to reduce give an initial estimate of the state space and then runs a SAT solver

to provide soundness. Running too many SPICE simulations follows the law of diminishing

returns where the extra run-time needed to calculate the SPICE traces does not significantly

reduce the run-time for the SAT solver. To find an optimal point, [116] uses a Bayesian

estimate to determine how many SPICE simulations should be run.

1.2 Contributions
This dissertation presents improvements in the tools and algorithms used to specify

and verify properties for AMS circuits. The four contributions of this dissertation are the

following.

• An extension to the language for analog/mixed signal properties (LAMP).

• Developing the necessary theory for soundly exploring LPNs with ranges of rates and

applying it to extending zones.

• Implementing a state exploration algorithm based on octagons.

• Demonstrating the new verification flow for LEMA.

The first contribution is to extend the AMS property language LAMP. The goal of

LAMP [37, 66, 67] is to be a simple, intuitive language that is easier for nonexperts to

use. The LAMP language is written more like a programming language and describes

properties that are checked procedurally. Thus, LAMP avoids the need for analog designers
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to learn and understand temporal logics. In addition, LAMP is easy to translate into LPNs,

making model checking simpler. However, LAMP is still at a nascent stage and does not

support many constructs. Two new constructs are added to LAMP: a delay statement

and a generalized always block. The delay statement allows LAMP to ignore transient

periods without performing a check. The always block is given a sensitivity list that allows

the property check to break out of the loop when the signal changes. This change allows

the property to handle more general environments since checks can be aborted when the

conditions change.

The second contribution is to provide the underlying theory necessary to perform zone-

based state exploration for LPNs with ranges of rates. Part of the flexibility of the LPN

semantics is to allow a continuous variable to be assigned a range of possible rates. Such

generality aids in doing linear approximations to nonlinear dynamics and is built into the

automatically generated LPNs in [73]. While some versions of state exploration can handle

these ranges of rates, methods like zones are designed around having a single rate. Though

zones are less accurate than other methods, they are easier to implement and have efficient

algorithms, so it would be useful to apply them to LPNs with ranges of rates. It is shown

that it is enough to consider only the extremal and zero rates. Using this fact, the zone

based model checker algorithm of [72] is extended to handle ranges of rates.

The third contribution is to implement an octagon-based model checker. While zones

have the advantage of having a simple representation and efficient algorithms, they lead

to large over-approximations of the state space, especially in the presence of negative

rates. Octagons add a symmetry that reduces the negative-rate over-approximations to

the same level as positive rates, thus creating a more accurate state space representation.

Moreover, the representation requires only a minor adjustment to the zonal version while

the algorithms maintain the same level of complexity.

The fourth contribution is to demonstrate the complete new verification flow for LEMA.

This dissertation adds additions to LAMP, extends the zone-based method to ranges of

rates, and adds the new octagon-based model checker. With these additions, LEMA’s tool

flow has been altered some from previous versions. Now, it is possible to learn models,

create properties, and directly verify the properties against the models with the zone-based

model checker and a new octagon-based model checker. These new changes are illustrated

with the aid of a few small examples.
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1.3 Dissertation Overview
The rest of the dissertation is divided into six chapters. The basic outline is a background

chapter, a chapter per contribution, and a final concluding chapter.

Chapter 2 provides the background material for the dissertation. This chapter introduces

the formal syntax and semantics for LPNs, and introduces the LPN embedded mixed-signal

analyzer (LEMA) tool. It is critical to introduce LPNs since they are the formalism used by

the work in this dissertation for modeling AMS circuits, as well as representing properties.

In fact, the most relevant verification flow for this dissertation is the following. Start with

an LPN model of the circuit. Combine this model with an LPN for the property. Finally,

use a state exploration algorithm to determine whether a failure transition can ever fire.

Every chapter that follows relates back to some aspect of this flow. Since this is the case,

Chapter 2 also provides a brief overview of the tool LEMA.

Chapter 3 introduces the LAMP language. Before giving the formal definition of LAMP,

this chapter provides an overview of other property languages used in specifying AMS

properties. Some of these languages are illustrated by creating a property for a phase

interpolator (PI). LAMP is then formally defined and used to specify the same PI property

for comparison. The extensions to LAMP are folded into the definition of LAMP and

are further illustrated by means of an example property for a voltage controlled oscillator

(VCO). Specifically, the previous LAMP statements could not handle the transient behavior

of the VCO that is present before the oscillation stabilizes. This behavior can now be ignored

by using a delay statement. In addition, the always block is extended to allow breakouts

when the environment changes. Previously, properties would incorrectly signal a failure

if the environment changed in the middle of the check. The new always block allows the

property to reset the check when the environment changes. This ability is illustrated using

the the VCO. The always block is written to use the voltage so the correct oscillation can

be checked after the voltage changes.

Chapter 4 provides the theory and implementation for handling ranges of rates. This

chapter is comprised of 3 stages. It starts with a discussion of previous attempts to handle

ranges of rates. In particular, two translational methods are discussed that both seek to

solve the problem by changing the LPNs involved. It is already known that one of the

approaches does not solve the problem; however, it is shown that the second approach does

not work either. It may be possible to adapt these methods, but this approach leads to

generating a new LPN model per LPN property. Following this discussion, some additional

terminology for LPNs is introduced and then the general theory for handling ranges of rates
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is presented. Using the theory as inspiration, LEMA’s zone-based model checker is modified

to handle ranges of rates.

Chapter 5 presents the use of octagons for AMS verification. This chapter starts by

presenting an example where LEMA’s zone-based model checker falsely declares that an LPN

fires a failure transition. It is also shown that by tightening the over-approximation for

negative rates with the use of octagons, the false negative can be eliminated. Octagons are

then formally defined and the zone-based model checker is modified to implement octagons.

The new octagon model checker is then run on the example to show that indeed, the

false negative is eliminated. This chapter concludes by indicating how much of an over-

approximation is introduced by the operations on octagons.

Chapter 6 demonstrates LEMA’s full tool flow starting with properties and SPICE traces

and ending with the extensions to the zone-based model checker and using the new octagon-

based model checker. The first case study is a switched capacitor integrator. It is shown

that the previous property of nonsaturation can be codified in LAMP and that all the

previous results for this circuit can be recovered with less of a state count and without

needing to translate the model or check additional conditions to ensure correctness. The

second example is a digital C-element that is driven by two RC networks. The property

provided is to ensure an ordering on the inputs for the C-element. It is shown how the

property can be written in LAMP and the circuit is verified.

Chapter 6 demonstrates the complete new verification flow for LEMA with the the aid

of two examples. In each case, a model is learned using the model generator, a property

is written in LAMP, and the zone-based and octagon-based model checkers are applied.

The first example is a switched capacitor integrator. This circuit has been studied before

in [74]. The main changes to the previous demonstration are the addition of using LAMP,

the removal of the model translation steps, the removal of any additional checks in order to

accept positive verification results, and the use of octagons. The second example is a digital

C-element whose inputs are driven by a pair of RC networks. The SPICE simulation traces

were provided by a third party along with the property that the one input signal to the

C-element changes before the other. This property is codified in LAMP, a model is learned

from the SPICE traces, and the property is verified.

Chapter 7 provides a summary of the contributions of this dissertation. It recaps how

LAMP is extended and what additional flexibility this provides. Then, it discusses how the

theory for handling ranges of rates lays the foundation for implementations based on single

rates. Next, the utility of using octagons is summarized followed by a brief discussion of how
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the case studies indicate where octagons and zones fit in view of more general polyhedral

methods. This chapter concludes with future work.



CHAPTER 2

BACKGROUND

This dissertation utilizes LPNs [17, 66, 68, 73] as the chosen formal model for both

modeling the behavior of circuits and for creating properties that check this behavior.

As such, nearly every chapter depends on a knowledge of them. Furthermore, the work

presented has been incorporated into LEMA. This chapter presents this necessary background.

Section 2.1 introduces LPNs and Section 2.2 describes LEMA.

2.1 Labeled Petri Nets
This section provides an overview of the LPN formalism used in this dissertation. LPNs

are a type of Petri net that add the ability to reason with continuous variables in addition

to the discrete events supported by LPNs. LPNs are a culmination of a few iterations

of extensions to Petri nets, a formalism introduced in [87]. The basic Petri net structure

provides a framework for discrete events and naturally supports concurrent events. On

this foundation, several variants have been developed including timed Petri nets (TPNs)

[80], timed event/level (TEL) structures [18], first-order Petri nets (FOPN) [14], and many

others. LPNs are a type of hybrid Petri (HPN), which incorporate timing, discrete events,

and continuous variables. The formal definition is provided in Sections 2.1.1 and 2.1.2.

2.1.1 LPN Syntax
An LPN is a type of Petri net that has been augmented with a set of labels for modeling

continuous variables and their rates of change. This does not preclude the use of discrete

(or Boolean) variables since they can be modeled using a continuous variable with a rate

of zero. LPNs are assumed to be safe and, in general, continuous variables are allowed to

nondeterministically choose a rate from an interval of possible rates. Formally, an LPN is

a tuple N = 〈P , T , Tf , V , F , M0, Q0, R0, L〉 where:

• P is a finite set of places;

• T is a finite set of transitions;
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• Tf ⊆ T is a finite set of failure transitions;

• V is a finite set of continuous variables;

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• M0 ⊆ P is the set of initially marked places;

• Q0 : V → Q is the initial value of each continuous variable;

• R0 : V → Q×Q is the initial range of rates for each continuous variable;

• L is a tuple of labels defined below.

Failure transitions are used by LPNs to signal when a failure has occurred, and the flow

relation, F , is used to describe how the places and transitions are connected. Every

transition t ∈ T has a preset denoted by •t = {p | (p, t) ∈ F} and a postset denoted

by t• = {p | (t, p) ∈ F}. The set Q × Q is identified with the set of intervals so that

(a, b) ∈ Q×Q corresponds to the interval [a, b] with a ≤ b. Furthermore, the intervals are

restricted to either be nonnegative (that is, a ≥ 0) or negative (that is, b < 0). The labels,

L, for an LPN are defined by the tuple L = 〈En, DA, VA, RA〉:

• En : T → Pφ labels each transition t ∈ T with an enabling condition;

• DA : T → Pχ labels each transition t ∈ T with an expression for the delay before a

transition t can fire;

• VA : T × V → Pχ labels each transition t ∈ T and continuous variable v ∈ V with an

expression for the continuous variable assignment that is made to v when t fires;

• RA : T × V → Pχ labels each transition t ∈ T and continuous variable v ∈ V with an

expression for the rate assignment that is made to v when t fires.

The enabling conditions are Boolean expressions, Pφ, that satisfy the grammar:

φ ::= true | ¬φ | φ ∧ φ | v ≥ c

where ¬ is negation, ∧ is conjunction, v is a continuous variable, and c is a rational constant.

The expressions false and ∨ are defined from these. In addition, the negation of v ≥ c is

defined as v ≤ c since strict inequalities are not supported in the zone-based verification
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that is extended in this dissertation. The assignments are numerical formulae, Pχ, that

satisfy the following grammar:

χ ::= c | ∞ | v | (χ) | − χ | χ+ χ | χ ∗ χ | INT(φ) | rate(v) | [χi, χj ]

where the function INT(φ) converts a Boolean expression that evaluates to true or false to 1

or 0, respectively, the function rate(v) returns the current range of rates for the continuous

variable v, and [χi, χj ] defines an interval of values that depends on the values of χi and χj
when evaluated.

As a running example, consider a sequence of capacitors that are charged sequentially.

The charging phase of the first capacitor is initiated by a switch sw0. After 20µs of charging,

a switch sw1 is turned on, initiating the second capacitor’s charging phase, and so on. When

the switch sw0 is turned off, the first capacitor starts discharging and the switch sw1 is

turned off, starting the second capacitor to discharge, and so on. Fig. 2.1 shows an LPN

model of the i-th capacitor where the charging is some uncertain rate between 1mV/µs and

2mV/µs. The initial marking is M0 = {p1,i} and is represented by the filled in circle. The

values Vi = 0 and V ′i = 0 are the initial conditions for the voltage Vi. The variables swi
and sw(i+1) are essentially Boolean variables with initial values of 0, representing false.

The enabling conditions, delays, and variable assignments are in the curly braces, square

brackets, and angle brackets, respectively. In this example, the delays are constants rather

than bounds. Initially, the capacitor is not charging. When the signal swi is set to 1,

charging is initiated by assigning the interval [1, 2] to V ′i , which indicates the rate of Vi
can be any rate between 1mV/µs and 2mV/µs. The capacitor is allowed to charge for 20µs

(given as a delay on the transition t2,i) before setting the variable sw(i+1) to 1. Once the

charging is turned off, that is, when swi is set to 0, the capacitor begins to discharge at a

rate of −1mV/µs. Finally, when the capacitor is fully discharged, the t0,i transition fires,

setting the rate to zero.

Property checks are added to an LPN model by adding failure transitions Tf . Failure

transitions are specialty transitions that, when fired, indicate a failure. The red transition,

tFail, in Fig. 2.2 is an example of a failure transition. This transition checks the property

that, when swi ≥ 1 is true, if Vi is greater than 15 after 10 time units, then Vi is greater

than 30 after an additional 10 time units. Failure transitions can be added directly to a

model or to a separate LPN as in Fig. 2.2. When the failure transition is in a separate

LPN, the LPN with the failure transition is called a property LPN. For example, the LPN

in Fig. 2.2 is a property LPN that checks a property for Fig. 2.1.
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t0,i

{¬(Vi ≥ 0)}

〈V ′i := 0〉
[0]

p2,i

p0,i

p3,ip1,i

t2,i

{true}
[20]

〈sw(i+1) := 1〉〈V ′i := [1, 2]〉

t1,i

{swi ≥ 1}
[0]

sw(i+1) = 0

Vi = 0
sw′(i+1) = 0

V ′i = 0

swi = 0
sw′i = 0

t3,i

{¬(swi ≥ 1)}
[0]

〈sw(i+1) := 0, V ′i := −1〉

Figure 2.1: A model of a capacitor whose charging is turned on by swi. After a time delay
of 20µs, the switch sw(i+1) is turned on (i.e., set to 1), initiating the charging of the next
capacitor. Note that [d] is used when dl(t) = du(t) = d.

2.1.2 LPN Semantics
The state of an LPN consists of the set of marked places, the time each transition has

been enabled, the delay range for each transition, the values of the continuous variables,

the rate for each continuous variable, and the range of rates for each continuous variable.

To determine which transitions can fire, the state also includes the truth value of each

predicate, vi ≥ ci. The set of all inequalities is denoted by I. The state of an LPN is

formally defined as a tuple σ = 〈M,C,D,Q,R,RR, I〉 where:

• M ⊆ P is the set of marked places;

• C : T → Q is the value of each transition’s clock;

• D : T → Q×Q is the delay range for each enabled transition;

• Q : V → Q is the value of each continuous variable;

• R : V → Q is the rate of each continuous variable;

• RR : V → Q×Q is the range of rates for each continuous variable;

• I : I → {false, true} is the value of each inequality.1

1Recording the inequality values is not strictly necessary. It is included as a matter of convenience
so that an implementation does not need to calculate it repeatedly.
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t4
{¬(Vi ≥ 15)}

[0]

t5

[10]
{true}

t0

[10]
{true}

t2
{true}

[10]
t3

{Vi ≥ 30}
[0]

pStart0

t6
{¬(Vi ≥ 0)}

[0]

[0]
{¬(Vi ≥ 30)}

tFail0

p0

p2

p3

p1

pEnd0

t1
{Vi ≥ 15}

[0]

Figure 2.2: A property LPN for a capacitor stage in Fig. 2.1. When swi is 1, the property
checks that Vi is above 15mV after 10µs, and then that Vi is more than 30mV after an
additional 10µs. The property is violated if the fail transition, tFail, fires.

The collection of all states is Σ and the set of all enabled transition is E(σ), described further

below. Again, the expressions (a, b) ∈ Q×Q are identified with intervals [a, b]. Furthermore,

it is assumed that a ≤ b, and the entire interval is either nonnegative (that is, a ≥ 0) or is

negative (that is b < 0). In the case of the delay, the ranges clearly must be nonnegative.

Associated with the delays, D, and the range of rates, RR, are the functions dl(t), du(t),

rl(v) and ru(v), which access the lower and upper bounds of the ranges. Specifically, if

D(t) = [a, b], then dl(t) = a and du(t) = b. Similarly, if RR(v) = [a, b], then rl(v) = a and

ru(v) = b.

In LPNs, the Boolean value of an inequality is evaluated in a nonstandard way at the

boundary. For example, if the inequality is v ≥ 5 and v is equal to 5, then the inequality

is considered true if the rate of v is nonnegative and false if the rate is negative. The

intuition for these semantics is that when the rate is negative and the variable is at the

boundary, then the inequality is about to become false while when the rate is positive, then

the inequality remains true as time progresses. Formally, the evaluation of an inequality is

given by:
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evalInequalities(σ)(v ≥ c) =
{
R(v) ≥ 0 if Q(v) = c;
Q(v) ≥ c otherwise.

The initial state, σ0, for an LPN consists of the initial markings, M0, the initial value

of each continuous variable, Q0, the initial range of rates, R0, an initial rate within this

range, the initial value of the inequalities, and the time each transition has been enabled

set to 0. The value I(Vi ≥ 0) = true is an example of the nonstandard evaluation of the

inequalities. Since the value of Vi is equal to 0 (the boundary for the inequality) and the

rate is zero, the value of the inequality is true. The initial rate for each variable, v, is

determined using the function resetRates(RR), which is defined by:

resetRates(RR)(v) = rl(v),

where rl(v) returns the lower bound rate. Similarly, ru(v) returns the upper bound. The

initial state, σ0, of the LPN in Fig. 2.1 has M = {p1,i}, Q(Vi) = Q(swi) = Q(sw(i+1)) = 0,

C(t0,i) = C(t1,i) = C(t2,i) = C(t3,i) = 0, D(t1,i) = [0, 0], R(Vi) = R(swi) = R(sw(i+1)) = 0,

RR(Vi) = RR(swi) = RR(sw(i+1)) = [0, 0], I(Vi ≥ 0) = true, and I(swi ≥ 1) = false. The

initial marking is indicated by the filled circles and the initial values of the variables are

given in the upper left. Delays are only important for enabled transitions, hence the only

delay given is for t1,i. This convention is used for all states presented.

Requiring that the initial rate is given by the function resetRates is not a limiting

assumption, since the initial choice of rate is immaterial. If σ0 = 〈M,C,D,Q,R, I,RR〉 has

rates R(vi) = ri, σ′0 = 〈M ′, C ′, D′, Q′, R′, I ′, RR′〉 has rates R(vi) = r′i and M = M ′, C =

C ′, D = D′, Q = Q′, RR = RR′, then the state σ′0 can be obtained from σ0 by a sequence of

rate change events Ei (formally defined below) such that for each i, the event Ei changes

the rate of vi from ri to r′i. So any future for σ′0 is a possible future for σ0. Furthermore,

interchanging the roles of σ0 and σ′0 shows that any future of σ0 is also a possible future of

σ′0.

The state σ can change to a new state σ′ = 〈M ′, C ′, D′, Q′, RR′, R′, I ′〉 by firing a transi-

tion, advancing time, or changing a rate. Collectively, transition firings, time advancements,

and rate changes are known as events. A time advancement that results in the truth value

of an inequality changing is an inequality event.

A transition t ∈ T is enabled when all the places in its preset are marked (that is, when

•t ⊆ M) and the enabling condition on t evaluates to true (that is, when Eval(En(t), σ)

is true where the function Eval : Pφ × Σ → {false, true} evaluates an expression given

a state σ ∈ Σ). The set of all enabled transitions in a state σ is given by E(σ). When
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a transition becomes enabled, the delay assignment, DA(t), is evaluated by EvalAssign :

Pχ × Σ → Q × Q. The transition must fire after the minimum delay dl(t) and before the

maximum delay du(t). The state σ′ created as a result of firing the transition t is defined

by:

M ′ = (M − •t) ∪ t•;

∀t ∈ T.C ′(t) =
{

0 if t ∈ E(σ′) ∧ t /∈ E(σ);
C(t) otherwise;

∀T ∈ E(σ).D′(T ) =
{

EvalAssign(DA(t)) if t ∈ E(σ′) ∧ t /∈ E(σ)
D(t) otherwise

∀v ∈ V.Q′(v) = EvalAssign(VA(t, v), σ);

∀v ∈ V.RR′(v) = EvalAssign(RA(t, v), σ);

R′ = resetRates(RR′);

I ′ = evalInequalities(σ′).

When a transition is fired, the marking is updated and any assignments to the continuous

variables and their rates are performed. The firing of a transition, t, causing a change

from a state σ to a state σ′ is denoted by σ
t−→ σ′. As an example, consider the state σi,

which is identical to σ0 except swi = 1. The new state, σi+1, after t1,i that fires in Fig. 2.1

is M = {p2,i}, C(t0,i) = C(t1,i) = C(t2,i) = C(t3,i) = 0, D(t2,i) = [20, 20], Q(Vi) = 0,

Q(swi) = 1, Q(sw(i+1)) = 0, R(Vi) = 1, R(swi) = R(sw(i+1)) = 0, RR(Vi) = [1, 2],

RR(swi) = RR(sw(i+1)) = [0, 0], and I(Vi ≥ 0) = I(swi ≥ 1) = true.

Time can advance by any amount τ such that τ ≤ τmax(σ) where τmax(σ) is the largest

allowable time advancement before an inequality changes value or a transition is forced to

fire due to its maximum delay expiring.

τmax(σ) = min


c−Q(v)
R(v) ∀(v ≥ c) ∈ I.I(v ≥ c) 6= (R(v) ≥ 0);
du(t)− C(t) ∀t ∈ E(σ).

In this equation, division by 0 is interpreted as yielding ∞. Thus, a zero rate variable does

not limit the maximum time advancement. The new state σ′ after advancing τ time units

is given by:
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M ′ = M ;

∀t ∈ T.C ′(t) =
{
C(t) + τ if t ∈ E(σ);
0 otherwise;

D′ = D;

∀v ∈ V.Q′(v) = Q(v) + τ ∗R(v);

RR′ = RR;

R′ = R;

I ′ = evalInequalities(σ′).

A time advancement by an amount τ is denoted by σ τ−→ σ′. If a time advancement, τ , results

in the change of truth value of an inequality in the set I (that is, the time advancement is

an inequality event), then the event is denoted by σ τ,I−−→ σ′ where I is the set of inequalities

that change truth value. In addition, the rates are reset to the initial conditions (i.e.,

R′ = resetRates(RR′)). Note that a time advancement results in an inequality event, if

and only if, τ = τmax(σ). In state σi+1 above, τmax = 20, since after 20 time units, the timer

for the transition t2,i expires. The new state, σi+2, after a time advancement of 10 time units,

is M = {p2,i}, C(t0,i) = C(t1,i) = C(t3,i) = 0, C(t2,i) = 10, D(t2,i) = [20, 20], Q(Vi) = 10,

Q(swi) = 1, Q(sw(i+1)) = 0, R(Vi) = 1, R(swi) = R(sw(i+1)) = 0, RR(Vi) = [1, 2],

RR(swi) = RR(sw(i+1)) = [0, 0], and I(Vi ≥ 0) = I(swi ≥ 1) = true.

The final type of state change is a rate change event. This event changes the rate of

a single continuous variable v̂ ∈ V to a new rate r̂ ∈ RR(v̂). Since the truth value of

an inequality depends on the rate, a rate change requires the updating of the inequalities

involving v̂. The corresponding new state is given by:

M ′ = M ;

C ′ = C

D′ = D;

Q′ = Q;

R′(v) =
{
r̂ if v̂ = v;
R(v) otherwise;

RR′ = RR;

I ′ = evalInequalities(σ′).

After a rate change event for a continuous variable, the rate cannot change again until

another nonrate event occurs. This restriction disallows the possibility of the state changing
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infinitely often solely due to the rates of continuous variables changing. Generality is not

sacrificed in imposing this condition since the rate can be set to any value prior to the

advancing of time, which is all that matters to the final trajectory of the continuous variable

concerned. A rate change for a particular variable v̂ to the rate r̂ is denoted by σ R(v̂)←r̂−−−−−→ σ′.

In the state σi+2, the state σi+3 after changing the rate of Vi to a rate of 1.5 is given by

M = {p2,i}, C(t0,i) = C(t1,i) = C(t3,i) = 0, C(t2,i) = 10, D(t2,i) = [20, 20], Q(Vi) = 10,

Q(swi) = 1, Q(sw(i+1)) = 0, R(Vi) = 1.5, R(swi) = R(sw(i+1)) = 0, RR(Vi) = [1, 2],

RR(swi) = RR(sw(i+1)) = [0, 0], and I(Vi ≥ 0) = I(swi ≥ 1) = true.

A trace in an LPN is a finite or infinite sequence T = σ0
E0−→ σ1

E1−→ σ2 . . . where σ0 is the

initial state 〈M0, C0, Q0, resetRates(R0), I0, R0〉. The initial values for the inequalities is

given by I0(v ≥ c) = (Q0(v) > c)∨ ((Q0(v) = c)∧ (r ≥ 0)) for all (v ≥ c) ∈ I where r is the

rate chosen by resetRates(R0). Each Ei is either a transition firing, a time advancement,

or a rate change. The previous state before an event Ei and the successor state after an

event Ei are given by P(Ei) and S(Ei), respectively. Thus P(Ei)
Ei−→ S(Ei). A trace

fragment T̂ is a finite or infinite sequence T̂ = σi
Ei−→ σi+1

Ei+1−−−→ σi+2 . . . such that T̂ can

be extended to a trace T = σ0
E0−→ σ1 . . . σi

Ei−→ σi+1
Ei+1−−−→ σi+2 . . .. The set of all traces is

denoted by T. An example trace for the LPN in Fig. 2.1 is:

σ0
t1 i−−→ σ1

10−→ σ2
R(v)←1.5−−−−−−→ σ3.

For verification, LPNs use failure transitions that signal the failure of a system. Thus,

a system passes verification if the set all possible transition sequences does not contain a

sequence that leads to a failure transition firing and fails otherwise. So, it is enough to

just consider all possible sequences of transition firings. This fact suggests that for a trace

fragment T̂ = σi
Ei−→ σi+1

Ei+1−−−→ σi+2 . . ., what is really important is only the transition

events and not the entire sequence of events (Ej)j≥i, which may also include rate and

inequality events. To extract only the sequence of transition events from a trace fragment

T̂ , define subTran(T̂ ) to be the subsequence consisting of only the transition events in

the sequence of events (Ej)j≥i. Formally, subt(T̂ ) is the subsequence (Ejk)k≥0 of (Ej)j≥i
satisfying the following two conditions:

• for all k, the event (Ejk) is a transition event;

• for all transition events Ej such that j ≥ i, there exists a k such that (Ejk) = Ej .

It is important to note that since subt(T̂ ) is defined as a subsequence of (Ej)j≥i, the

transitions that occur in subt(T̂ ) appear in the same order as in the original sequence (Ej)j≥i.
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The definition of subt(T̂ ) leads to an equivalence relation on traces defined as follows. If

two traces T1 and T2 are such that subt(T1) = subt(T2), then T1 and T2 are called transition

equivalent, denoted T1 ∼T T2. To verify whether an LPN has a failure (equivalently,

to determine if a failure transition fires), it is enough to consider one representative per

equivalence class in T/ ∼T .

2.2 LEMA
LEMA is a tool for the formal verification of AMS circuits and has a tool flow as shown

in Fig. 2.3. LEMA takes the transistor-level SPICE simulation traces from a traditional

analog circuit verification approach and a set of discrete thresholds. It then applies a

model generator to produce an LPN (Section 2.1). The properties that LEMA verifies can

be provided using LAMP (described in Chapter 3), which is a simple, intuitive language

for expressing AMS circuit properties [37, 66, 69]. LEMA includes a property compiler that

can convert a LAMP property into an LPN. The model and property LPNs can then be

combined in order to check that the model satisfies the property. This checking can be done

either through simulation or model checking. For simulation, LEMA includes a translator that

can convert LPNs into a SystemVerilog model that can then be simulated using a standard

SystemVerilog simulator [17]. Formal verification can also be performed by LEMA using one

of four model checkers: an exact BDD model checker [112], a SMT bounded model checker

[112], a conservative model checker that uses zones [72], and a new conservative model

checker that uses octagons (Chapter 5). All four model checkers provide a pass or fail result

and, in the case of failure, provide a failure trace.

Subsection 2.2.1 describes the model generator. Subsection 2.2.2 presents the translator

to SystemVerilog. Finally, Subsection 2.2.3 briefly describes LEMA’s previous three model

checkers.

2.2.1 Model Generator
In order to use formal verification on AMS designs, one needs a method for constructing

formal models that takes into account the continuous nature of analog circuits. For example,

before the phase-locked loop (PLL) in Fig. 2.4 can be verified, one needs to be able to

construct a formal model that takes into account the analog nature of the voltage controlled

oscillator (VCO). A PLL is a circuit that outputs a clock signal that is in-phase with an

input reference clock and whose frequency is a multiple of the reference clock’s frequency.

Although the VCO outputs a clock, the VCO is a purely analog circuit that outputs a clock
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Figure 2.3: LEMA’s tool flow.
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Figure 2.4: Digitally-intensive AMS design of a PLL.

whose frequency depends on an input voltage. An example LPN generated by LEMA for the

VCO is shown in Fig. 2.5.

Creating LPNs by hand is a tedious process, and it is not easy to convince AMS designers

to do. Consequently, LEMA provides a model generator that takes as input the more familiar

transistor-level SPICE simulations together with some threshold values and automatically

constructs an LPN model [17, 66, 68, 73]. The thresholds divide the space of continuous

variables into regions. These regions become the places and the boundaries between the

regions become the enabling conditions on the transitions. Furthermore, the model gener-
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[19]

p0

p1

p2 p4

{(stable ≥ 1)}
[0]

pt6

{¬(stable ≥ 1)}
[0]

pt4

p3 p5{¬(stable ≥ 1)}
pt5

[0]
pt7

[0]
{(stable ≥ 1)}

t0

〈out := [0, 2]〉
[0]

{¬(stable ≥ 1)}

t2
{¬(stable ≥ 1)}

〈out := [0, 2]〉
[f1(ctl)]

〈out := [49, 50]〉
[f2(ctl)]

〈out := [0, 2]〉
[f3(ctl)]

〈out := [49, 50]〉
[f4(ctl)]

t3 t5
{¬(stable ≥ 1)} {stable ≥ 1}

t6
{stable ≥ 1}

〈out := [49, 50]〉

{true}
t1

Figure 2.5: LPN model for a VCO.

ator can identify discrete transitions and assign an appropriate delay.
The VCO model shown in Fig. 2.5 is generated using a set of three traces providing the

frequency for three separate voltage values. LEMA creates a discrete variable out representing

the output clock and adds delay functions f1(ctl), f2(ctl), f3(ctl) and f4(ctl), which vary

based on the input control voltage. These functions produce a linear interpolation between

the points of observation in the provided simulation traces. The delay functions are given

by:

f1(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ [(ctl ∗ (−2) + 17), (ctl ∗ (−2) + 113)]

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ [(ctl ∗ (0) + 11), (ctl ∗ (0) + 107)]

+ (ctl ≥ 4) ∗ [(ctl ∗ (0) + 11), (ctl ∗ (0) + 107)]

f2(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ [(ctl ∗ (−2) + 21), (ctl ∗ (−3) + 26)]

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ [(ctl ∗ (−2) + 21), (ctl ∗ (−2) + 23)]

+ (ctl ≥ 4) ∗ [(ctl ∗ (−2) + 21), (ctl ∗ (−2) + 23)]

f3(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ (ctl ∗ (−2) + 19)

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ (ctl ∗ (−1) + 16)

+ (ctl ≥ 4) ∗ (ctl ∗ (−1) + 16)

f4(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ (ctl ∗ (−5) + 3)

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ (ctl ∗ (−2) + 21)

+ ctl ≥ 4) ∗ (ctl ∗ (−2) + 21)

The two states, p4 and p5, create the oscillations of the output clock. When the control

voltage changes, the circuit cannot instantly respond with the appropriate frequency, as it

takes some amount of time for the output to settle into the right value. During this time,
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the circuit is unstable and has a varying frequency of oscillation until it settles into the

right value. This unstable behavior is represented in the model by the places p2 and p3

together with delay functions f1(ctl) and f2(ctl). When the control voltage changes, the

model changes the stable signal to false (indicating the unstable phase) and one of the

transitions pt4 or pt5 fires moving the model into the left diamond. After some time, the

stable signal is changed to true (indicating the stable phase) and one of the transitions pt6
or pt7 fires moving the model into the right diamond. In order to construct this unstable

period, LEMA also includes an algorithm for recognizing the unstable part of the oscillation

provided in the simulation trace. This procedure is described in more detail in [17, 66].

2.2.2 Translator
In order to check a property using a system-level simulation, LEMA can encode an LPN

in SystemVerilog. In SystemVerilog, places become logic variables and transitions become

wires. A low signal in a logic variable implies that the place is not marked and a high signal

indicates that it is marked. Initially, all places are set low, then after a delay, the initial

places are marked to start the simulation. A transition fires by sending a pulse on the wire,

that is, the transition wire is set high and then set back low. This process is handled by

an assign statement whose delay is set by a custom function and an assignment composed

of a conjunction of the marking needed for this transition and the transition’s enabling

condition. The custom delay function handles the setting of the wire high after suitable

delay and resetting the wire low immediately after the transition occurs. Finally, an always

statement is added that is triggered by the positive edge of the transition wire. The body

of the always statement handles updating the state by setting the incoming places low, the

outgoing places high, and making any necessary signal assignments. A portion of the VCO

model could be translated as shown in Listing 2.1.

2.2.3 Model Checkers
Verification can also be performed using a model checker that determines all possible

reachable states and whether or not a failure transition can occur. LEMA has three different

model checkers. It has a BDD-based model checker that is exact, but it trades performance

for memory efficiency [112]. It also has an SMT-based bounded model checker that scales

better, but it can only prove there are no failure transitions in a specified number of

iterations [112]. Finally, it has a conservative zone-based model checker that lies somewhere

between the SMT and BDD model checkers [72]. While it is not exact, it has better

performance than the BDD model checker, and it can prove that failure transitions never
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’timescale 1ps/1fs
module VCO(input real ctl , input real stable , output real out );

wire t0 ,t1 ,t2 ,t3 ,t4 ,t5 ,t6;
wire pt4 ,pt5 ,pt6 ,pt7;
logic p0 ,p1 ,p2 ,p3 ,p4 ,p5;
initial begin

p0 =0; p1 =0; p2 =0; p3 =0; p4 =0; p5 =0;
#1 p0 = 1; // i n i t i a l ma rk i ng

end
assign #( delay( ∼ t0 ,0)) t0=(p0 && ∼ (stable >=1));

...
always@ ( posedge t0) begin

p0 = 0; p1 = 1; out = uniform (0 ,2);
end

endmodule

Listing 2.1: Portion of the SystemVerilog for the VCO model.

fire which the SMT model checker cannot. With all three methods, LEMA provides a pass

or fail answer and in the case of failure, a failure trace is provided.

In order to perform the BDD and SMT based methods, LEMA constructs a symbolic

model of the given LPNs. The symbolic model consists of three pieces: an invariant,

a set of possible rates, and a set of guarded commands. The invariant ensures that any

states considered are reachable when ignoring the continuous variables and that the time

elapsed since a transition was enabled does not exceed the maxium allowable delay for that

transition. The possible rates simply encode the possible rate assignments. Finally, the

guarded commands indicate which transitions are enabled and the effect on the state when

a transition fires.

After constructing the symbolic model, LEMA can then proceed with the BDD model

checker. In this method, facts about continuous variables are expressed using hybrid sepa-

ration logic (HSL). These statements are then converted to a set of canonical representations

which, in turn, are mapped to BDD variables. Next a fixed-point algorithm is performed

to determine if a failure is possible. The algorithm starts with which states fail. Next, all

states are found which could have occured just prior to the failure occuring. Then, time is

evolved backwards as far as possible without violating the invariant. These two steps are

then repeated until a fixed-point occurs, that is, until the states just found all occur in the

set of states already found. Finally, the set of all states found is returned. These states

represent the set of states that lead to failure when taken as an initial state.

Like the BDD-based model checker, the SMT-based checker uses the symbolic model of
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the LPN. Basically, the SMT approach is to construct a statement that asserts which states

are reachable in some fixed number of steps n. One then adds a statement that indicates

which states cause failures. Finally, the statement is passed to an SMT solver to determine

if it is satisfiable, meaning there is some sequence of states (less than n) that leads to a

failure. Thus, the process boils down to constructing the statement passed to the solver.

The statement is constructed one step at a time. The first part of the statement is to assert

the initial states. Then, in each following iteration, a statement is constructed that asserts

the invariant and asserts which next states are possible by elapsing time or firing transitions.

Finally, a statement is constructed indicating when a failure occurs. The statement sent to

the SMT solver is then constructed by combining these statements.

LEMA’s last model checker prior to this dissertation is a zone-based model checker that

uses a form of reachability analysis. Zones are a subset of Euclidean space formed by

intersecting half-planes associated with equations of the form v ≤ a, v ≥ a, or vi − vj ≤ a

where v, vi, and vj are variables and a is a constant. In reachability analysis, one finds

all possible states that are reachable from the initial states. Of course, with continuous

variables, the state space is infinite; however, the zones allow for a finite representation.

The basic algorithm is a depth first search. The algorithm starts with the initial state set

and finds all possible events. An event is chosen and fired. Then, the resultant state set

is found, time is allowed to move forward as far as possible without causing another event,

and then all possible events are found again. This process continues until one reaches a

state set found before or no events are possible. At this point, the algorithm backs up to the

previous state set and another event is chosen. The algorithm ends when all possible state

sets have been found. Initially, zone-based methods were used to verify timed models such

as timed automata (TAs) [10, 19, 30] and timed Petri nets (TPNs) [43]; however, LEMA uses

warping [72] to allow zones to be applied to nonrate one continuous variables in addition to

clock variables. With warping, variables are scaled by their rate, turning them into rate-one

variables and then the resulting subset is over-approximated by a zone. Building on this

algorithm, Chapter 4 adds the ability to handle ranges of rates and Chapter 5 makes zones

more accurate by allowing additional types of constraint.



CHAPTER 3

LAMP

This chapter introduces the Language for Analog/Mixed-Signal Properties (LAMP)

to provide AMS designers with a easier, more intuitive property language to use. To

demonstrate the utility of LAMP, this chapter describes how it can be used to specify

verification properties for a phase interpolator (PI) and voltage controlled oscillator (VCO).

In particular, the property for the PI that is verified is that it changes to the appropriate

phase for a given control signal. The property for the VCO is that the appropriate phase

occurs after a suitable settling time. LAMP is incorporated into our AMS verification tool

LEMA (Section2.2), which uses LPNs (Section 2.1) as its primary model for verification.

Accordingly, LEMA includes a compiler for the language, which converts statements into a

property LPN that can be combined with a model LPN for the AMS circuit, and then model

checking techniques can be performed to check that the AMS circuit satisfies the property

of interest.

This chapter is organized as follows. Section 3.2 introduces the PI and VCO circuits,

which are used as a motivating examples. Section 3.3 describes LAMP and sketches how

a property in LAMP is compiled by LEMA into an LPN. Section 3.4 shows the results of

using LAMP for the verification of a PI and a VCO circuit, and finally, Section 3.6 gives

the conclusions and future work.

3.1 Related Work
It is well-known that the process of verifying analog circuits is not nearly as automated

as its digital cousin. The difficulty is exacerbated when these areas are combined to create

AMS circuits. To address this, there has been significant recent interest in developing

formal approaches for verifying AMS circuits [117]. In order to apply formal verification

approaches, such as model checking or monitors, it is necessary to create or extend formal

languages to describe the time-dependent properties of AMS designs. Several languages

have been proposed, which for the most part fall into two categories. They are either

inspired by temporal logics like linear temporal language (LTL) [13, 97] and computational
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tree logic (CTL) [13] or have a grammar closer to a programming language, similar to

SVA [2].

A few examples of languages inspired by LTL/CTL are metric temporal logic (MTL [64]),

metric interval temporal logic (MITL [9]), signal temporal logic (STL [79]), and ana CTL [29].

MTL augments LTL with timing [64], but unfortunately, it is not decidable in general [9].

MITL creates a balance between decidability and expressiveness by relaxing the continuous

model of time [9]. In [75] and [78], the authors study the use of MITL in online monitoring

while in [79], the authors extend MTL to create STL. As an extension of CTL, Ana CTL

adds statements to match analog signals to allow CTL to be used in the verification of analog

circuits. These languages have been difficult to convince the analog and AMS community

to use in practice since the formalism is so foreign to designers, and it is often difficult to

determine which expression is needed to capture a desired property.

In addition to languages being built from LTL or CTL-like formalisms, several lan-

guages have been proposed taking inspiration from assertion languages. A prominent

example is the property specification language (PSL [1, 35]), which can be used for spec-

ifying properties both in the digital and AMS domains. For example, [20] uses PSL to

express temporal properties of AMS designs, [62] uses PSL to describe the behavior of the

DDR2 memory protocol in terms of assertions, and [5] extends PSL to better combine the

language with verifying SRE circuit descriptions. Furthermore, [105] extends PSL to the

analog specification language (ASL) to better describe continuous state space properties of

AMS designs. As an alternative to PSL, [104] uses SystemVerilog [2] to describe the inherent

asynchronous behavior in synchronous circuits, and [54] introduces real-time SVA (RT-SVA)

as an extension of SVA adding more direct support for continuous assertions. Despite their

generality and their aim to provide designers with a more program-like language, it is still

difficult to craft a particular property of interest when using these languages.

3.2 Motivating Examples
This section introduces the two circuits used to demonstrate LAMP’s capabilities. The

first circuit, the PI, is used in [66, 69] to motivate why LAMP was initially developed. This

discussion is included here for context. In particular, the initial PI verification results of [69]

serve as motivation for the always block extension presented in this chapter. The second

circuit, the VCO, is used to illustrate how the LAMP extensions can be utilized. This

section is separated into two parts: Section 3.2.1 introduces the models and Section 3.2.2

discusses the properties.
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3.2.1 Models
A circuit implementation of a PI circuit is shown in Fig. 3.1. A PI circuit is a circuit

that takes an input clock, phi, and according to the value of a control signal, ctl, produces

a shifted output clock, omega. Fig. 3.2 gives an example of an LPN model generated by

LEMA from simulation data for a PI circuit with four different phase shifts. For the example

LPN shown in Fig. 3.2, transition, t0, is enabled, and it fires immediately since its delay

assignment is 0. This moves the marking from place p0 to p1 and changes omega to a value

between 194 and 195. At this point the circuit waits until phi goes high (i.e., above 0),

then checks the value of the ctl signal to determine which uniform statement is evaluated

in the delay condition. It then waits the specified amount of time before firing transition

t1 to set omega to a value between 245 and 246, and moves the marking to place p2. Note

that in Fig. 3.2 all the values are integers. During the model generation process, all of

the continuous variables are scaled (with the same factor) to ensure that all the values are

integers. Similarly, the time is scaled by a factor to ensure integer values as well. These two

scaling factors are returned to the user to adjust their properties accordingly. For the LPN

in Fig. 3.2, the time units are in picoseconds and the values of phi, omega, and ctl are in

10−2 volts. While this scaling is not strictly necessary, it does simplify the implementation.

.

Vbn

.. . .

Vbp

Vdd

.

.
.

phib psiphi

ctlb[i]

.

..

ctl[i]

omega

Vdd

16 similar blocks

 for i = 0...15

omegab

psib

Figure 3.1: Phase interpolator circuit implementation.
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phi = [−250,−250]
clt = [100, 100]

omega = uniform(170, 180)

t2

INT((ctl ≥ 170) ∧ ¬(ctl ≥ 250)) ∗ 1540)+

INT(ctl ≥ 320) ∗ 760]
< omega := uniform(194, 195) >

p2

t1
{(phi ≥ 0)}

< omega := uniform(245, 246) >

t0
{true}

[0]
< omega := uniform(194, 195) >

p1

p0

[INT(¬(ctl ≥ 170)) ∗ uniform(1700, 1800)+
INT((ctl ≥ 170) ∧ ¬(ctl ≥ 250)) ∗ uniform(1480, 1500)+
INT((ctl ≥ 250) ∧ ¬(ctl ≥ 320)) ∗ uniform(1000, 1020)+

INT(ctl ≥ 320) ∗ 760]

{INT(¬((phi ≥ 0)))}
[INT(¬(ctl ≥ 170)) ∗ 1680+

INT((ctl ≥ 250) ∧ ¬(ctl ≥ 320)) ∗ 1040)+

Figure 3.2: Generated LPN model of a PI circuit.

The second example this chapter explores is a VCO, which is a circuit that outputs a

clock signal, out, whose frequency changes according to the voltage level of a control signal,

ctl. A model for a VCO is shown in Figs. 3.3 and 3.4. This model is generated using LEMA’s

model generator on simulation data for three control voltages 2 V, 3 V, and 4 V together

with interpolation between these values as described in Section 4 of [66]. A sample trace

is shown in Fig. 3.5. The model consists of two phases: an unstable phase signified by

stable = 0 and a stable phase signified by stable = 1. The unstable state is modeled by

the p2, t2, p3, and t3 loop, while the stable phase is modeled by the p4, t5, p5, and t6 loop.

When the control signal changes, it takes the system some amount of time before the signal

settles into the expected phase. This transient behavior is modeled by setting the stable

signal to 0 when the control changes and then setting stable signal to 1 after some delay,

signifying a shift to the stable phase. The setting of the stable signal is handled by the

model in Fig. 3.4. The delays in Fig. 3.3 are:
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[19]

p0
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p2 p4

{(stable ≥ 1)}
[0]

pt6

{¬(stable ≥ 1)}
[0]

pt4

p3 p5{¬(stable ≥ 1)}
pt5

[0]
pt7

[0]
{(stable ≥ 1)}

t0

〈out := [0, 2]〉
[0]

{¬(stable ≥ 1)}

t2
{¬(stable ≥ 1)}

〈out := [0, 2]〉
[f1(ctl)]

〈out := [49, 50]〉
[f2(ctl)]

〈out := [0, 2]〉
[f3(ctl)]

〈out := [49, 50]〉
[f4(ctl)]

t3 t5
{¬(stable ≥ 1)} {stable ≥ 1}

t6
{stable ≥ 1}

〈out := [49, 50]〉

{true}
t1

Figure 3.3: Model of a VCO with a stable and unstable phase.

f1(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ [(ctl ∗ (−2) + 17), (ctl ∗ (−2) + 113)]

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ [(ctl ∗ (0) + 11), (ctl ∗ (0) + 107)]

+ (ctl ≥ 4) ∗ [(ctl ∗ (0) + 11), (ctl ∗ (0) + 107)]

f2(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ [(ctl ∗ (−2) + 21), (ctl ∗ (−3) + 26)]

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ [(ctl ∗ (−2) + 21), (ctl ∗ (−2) + 23)]

+ (ctl ≥ 4) ∗ [(ctl ∗ (−2) + 21), (ctl ∗ (−2) + 23)]

f3(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ (ctl ∗ (−2) + 19)

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ (ctl ∗ (−1) + 16)

+ (ctl ≥ 4) ∗ (ctl ∗ (−1) + 16)

f4(ctl) = ((ctl ≥ 2) ∧ ¬(ctl ≥ 3)) ∗ (ctl ∗ (−5) + 3)

+ ((ctl ≥ 3) ∧ ¬(ctl ≥ 4)) ∗ (ctl ∗ (−2) + 21)

+ (ctl ≥ 4) ∗ (ctl ∗ (−2) + 21)

3.2.2 Properties
A simple property to verify for the PI is that the phase shift of the output clock,

omega, generated by the circuit matches the desired phase shift for the given control signal

value. This verification property can be expressed as an LPN, as shown in Fig. 3.6 [17,

66]. The LPN accomplishes this by first waiting for phi to go high, which marks the

places pCheckMin and pCheckMax. At this point, one of the tMin and one of the tMax

transitions are enabled depending on the value of ctl. If the output clock, omega, goes

high before the delay on the appropriate tMin transition passes, then the fail transition,

tFailMin, fires indicating that the phase shift is too small. On the other hand, if the

appropriate tMin fires, then pCheck is marked, and the LPN waits for omega to go high.
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〈stable := 0〉

t30
{(ctl ≥ 2.5) ∧ ¬(ctl ≥ 3.5)}

[0]

pt4
{¬(ctl ≥ 2.5)}

〈stable := 0〉
[0]

{¬(ctl ≥ 2.5)}
[0]

t25

〈stable := 0〉

{(ctl ≥ 2.5) ∧ ¬(ctl ≥ 3.5)}
pt3

〈stable := 0〉
[0]

t29
{(ctl ≥ 3.5)}

[0]
〈stable := 0〉

t26
[970]

〈stable := 1〉

pt0
{(ctl ≥ 3.5)}

〈stable := 0〉
[0]

pt1
{¬(ctl ≥ 2.5)}

[0]
〈stable := 0〉

[874]
〈stable := 1〉

t28

〈stable := 1〉
[957]
t27

pt5
{(ctl ≥ 3.5)}

〈stable := 0〉
[0]

p12p13

p10

p11

pt2
{(ctl ≥ 2.5) ∧ ¬(ctl ≥ 3.5)}

[0]
〈stable := 0〉

Figure 3.4: Model for the process that changes the stable and unstable phases for Fig. 3.3.

If the delay on the appropriate tMax transition passes, then the tMax fail transition fires

indicating that the phase shift is too large. However, if omega goes high first, then pReset

is marked, and the LPN waits for phi to go low and high again before checking the next

phase shift. When this LPN is combined with the LPN for the circuit and an LPN for the

environment, reachability analysis can be performed to determine if a failure transition is

possible [72].

As opposed to the model and environment LPNs, the property LPN must be constructed

by hand, which is a tedious and error prone process. It is not very reasonable to require

designers to formulate their properties in this way. Therefore, a more intuitive property

language is needed that can readily be compiled into property LPNs for verification.

Before creating LAMP, some other existing AMS property language were considered.

For example, this same property can be written in STL as follows:
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Figure 3.5: Typical simulation trace for a VCO.

�(((↑ (phi ≥ 0) ∧ (ctl ≤ 1.7))→

(�[0,1699]omega < 2.2) ∧ (♦[1699,1801]omega > 2.2))

∨((↑ (phi ≥ 0) ∧ (ctl ≥ 1.7) ∧ (ctl ≤ 2.5))→

(�[0,1479]omega < 2.2) ∧ (♦[1479,1501]omega > 2.2))

∨((↑ (phi ≥ 0) ∧ (ctl ≥ 2.5) ∧ (ctl ≤ 3.2))→

(�[0,999]omega < 2.2) ∧ (♦[999,1021]omega > 2.2))

∨((↑ (phi ≥ 0) ∧ (ctl ≥ 3.2))→

(�[0,759]omega < 2.2) ∧ (♦[759,761]omega > 2.2)))

The � notation indicates that the property is always checked. The statement ↑ waits

for the positive edge of a Boolean expression. Thus, collectively the first part of the

statement checks that phi goes high and ctl is below 1.7. If this condition is satisfied,

then the statement (�[0,1699]omega < 2.2) ∧ (♦[1699,1801]omega > 2.2) is checked. The

interval subscript on � indicates that the statement omega < 2.2 must remain true for

1699 time units. The next part of the statement (♦[1699,1801]omega > 2.2) requires that the
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tReset
{¬(phi ≥ 0)}

[0]tMin3

∧(ctl ≤ 320)}
{(ctl ≥ 250)

[999]

tMax2

∧(ctl ≤ 250)}
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tFailMin
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{(ctl ≤ 170)}
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pResetpCheck

tClk
{(phi ≥ 0)}

[0]

pCheckMin pCheckMax

[0]

tCheck
{(omega ≥ 220)}

tMin3

[759]
{(ctl ≥ 320)}

Figure 3.6: An LPN for the phase interpolator verification property.

statement omega > 2.2 becomes true between 1699 and 1801 time units. The rest of the

statements are similar.

Writing a specification in a temporal logic is quite removed from the environment

designers commonly use, and thus can be difficult for a designer. To address this issue,

this property can be written using STL-PSL as follows:

vprop PhaseInterpolator{
PI1 assert:

always((rise(a:phi >= 0) and (a:ctl <= 1.7))
→ (always[0,1699](a:omega < 2.2)) and
(eventually[1699, 1801](a:omega > 2.2)) or
(rise(a:phi >= 0) and (a:ctl >= 1.7) and (a:ctl <= 2.5))
→ (always[0, 1479](a:omega <2.2)) and
(eventually[1479, 1501](a:omega > 2.2)) or
(rise(a:phi >= 0) and (a:ctl >= 2.5) and (a:ctl <= 3.2))
→ (eventually[0, 999](a:omega < 2.2)) and
(eventually[999, 1021](a:omega > 2.2)) or
(rise(a:phi >= 0) and (a:ctl >= 3.2))
→ (eventually[0, 759](a:omega < 2.2)) and
(eventually[759, 761](a:omega > 2.2)));

}

This version is less intimidating, but it still requires designers to learn some temporal logic

semantics in order to correctly use the always and eventually statements. Furthermore,

it is difficult to determine how to convert this type of language into the LPN with failure

transitions that LEMA needs.

Another alternative is to write this property using RT-SVA [54] as shown below:

(phi ≥ 0)[∼> 1] ##0

(((ctl ≤ 1.7)[∼> 1] ##0
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(!(omega > 2.2))[∗1699 : 1801] ##1 (omega > 2.2))

or

(((ctl ≥ 1.7)&&(ctl ≤ 2.5))[∼> 1] ##0

(!(omega > 2.2))[∗1479 : 1501] ##1 (omega > 2.2])

or

(((ctl ≥ 2.5)&&(ctl ≤ 3.2))[∼> 1] ##0

(!(omega > 2.2))[∗999 : 1021] ##1 (omega > 2.2))

or

(((ctl ≥ 3.2))[∼> 1] ##0

(!(omega > 2.2))[∗759 : 761] ##1 (omega > 2.2))) ##1

(phi < 0)[∼> 1]

In RT-SVA, the expression [∼> 1] waits for the preceding Boolean expression to become

true. Thus, the first line waits for the input clock phi to become nonnegative. The

expression A ##0 B is a concatenation operator that indicates the next expression B

should become true at some time overlapping when A is true. Therefore, the next part

checks the value of ctl when phi goes high. Finally, the A[∗l : u] statement specifies that

A must be true for between l and u time units. Therefore, the last part of the statement

checks for a change in omega from a low to a high value within a specified amount of time.

Considering this example, it again appears to be tricky and somewhat tedious to read and

write verification properties in RT-SVA. It is also difficult to translate these properties into

LPNs with failure transitions.

The VCO adds an additional complication. The property that this chapter considers is

that the correct frequency is output for a given voltage level. The first difficulty arises from

the circuits inability to instantly respond to start-up or a change in voltage. Specifically,

when the circuit is first provided powered or the voltage changes, it takes some time before

the circuit settles into a stable frequency. This behavior is shown by the first oscillation in

Fig. 3.5, which is much longer than the rest of the oscillations. A second difficulty appears

when the VCO is put in an environment that can nondeterministically change the input

voltage. When the voltage is allowed to changed at any time, it is possible that a property

will fail due to the check being performed on the previous voltage value instead of the

current one.

To solve these two issues, one needs an ability to ignore the curve for some transient

period and an ability to reset the property check when a signal like the voltage changes. It is

not transparent how one would specify this behavior in the previous formalisms; moreover,
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the previous version of LAMP [66] is not able to handle these cases. The extensions to

LAMP presented in Section 3.3 solve these problems by providing statements that can

ignore the initial unstable period and can react to a changing environment.

3.3 LAMP
To make properties easy to read and write, LAMP uses a procedural approach where

statements are checked in order. LAMP’s statements are also chosen to match straightfor-

ward concepts, though the formal semantics are defined in terms of LPNs. Figure 3.7 shows

the format for a property in LAMP. The property consists of a name, followed by variable

declarations and LAMP statements. The statements of LAMP are as follows:

• delay(d) – wait for d time units. This statement is compiled into the LPN shown in

Fig. 3.8(a).

• wait(b) – wait until the Boolean expression b becomes true. This statement is

compiled into the LPN shown in Fig. 3.8(b). In this LPN, transition t0 fires when b

becomes true. There is no time limit which means that the firing of t0 can wait as

long as necessary for b to become true.

• waitPosedge(b) – wait for a positive edge on the expression b (i.e., wait(∼ b); wait(b)).

The LPN for this statement is shown in Fig. 3.8(c) and is the concatenation of the

statements wait(∼ b) and wait(b).

• wait(b, d) – wait at most d time units for the Boolean expression b to become true.

This statement is compiled into the LPN shown in Fig. 3.8(d). If b is false initially, the

failure transition, tFail0, is enabled, but it has a delay of d time units. If during this

time interval b becomes true, t0 fires immediately, since it has 0 delay. If, however, b

remains false for d time units, tFail0 fires and a failure is recorded.

• assert(b, d) – ensures that the Boolean expression b remains true continuously for d

time units. This statement is compiled into the LPN shown in Fig. 3.8(e). If b is true

initially, the transition t0 is enabled, but it has a delay of d time units. If during this

property <name> {
<declarations>
<statements>
}

Figure 3.7: Format for a LAMP property.
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t0
{true}

[d]

p1

p0

t0
{b}
[0]

p1

p0 p1

p2

p0

t1
{b}
[0]

t0
{¬(b)}

[0]

tFail0
{¬(b)}

[d]

t0
{b}
[0]

p1

p0

tFail0
{¬b}
[0]

t0
{b}
[d]

p1

p0

tFail0

[0]

t0
{b2}
[0]

p1

p0

{¬(b1) ∧ ¬(b2)}

(a) (b) (c) (d) (e) (f)

Figure 3.8: LPN translations for LAMP statements. LPN for (a) delay(d), (b) wait(b), (c)
waitPosedge(b), (d) wait(b, d), (e) assert(b, d), and (f) assertUntil(b1, b2) statements.

time interval b goes false, the failure transition, tFail0, fires immediately indicating

a failure. If, however, b remains true for d time units, t0 fires.

• assertUntil(b1, b2) – ensures that the Boolean expression b1 remains true until the

Boolean expression b2 becomes true. This statement is compiled into the LPN shown

in Fig. 3.8(f). In this LPN, the failure transition, tFail0, fires if b1 and b2 are false

simultaneously before b2 becomes true.

• The language also provides an if-else statement, as shown in Fig. 3.9.

• always(conditionsList) {statements} – continue to execute statements until one

of the signals in the list of variables conditionsList changes, then break out. The

generated LPN is shown in Fig. 3.10, assuming a list containing at least the variables

a and b. First, transition t0 fires and stores the current values of the variables in the

list conditionsList in a set of new variables a, b, . . .. Then, the statements inside the

always block continue to execute as long as the condition alcond = (a = a) ∧ (b =

b)∧. . . remains true. If alcond becomes false, an exit transition fires leaving the loop.

In particular, every transition in the always block has alcond added to the enabling

condition while every place has an exit transition with ¬alcond. If the conditionsList

is empty, then alcond is taken to be true and all the exiting transitions are removed.
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if (b1) {
R1

}
else if (b2) {

R2
}
else {

R3
}

R1 R3R2

pEnd0

t0

[0]
{b1}

pStart0

[0]

t2
{¬(b1) ∧ ¬(b2)}

t1

[0]
{¬(b1) ∧ (b2)}

(a) (b)

Figure 3.9: LPN translation for the if-else statement. (a) LAMP syntax for an if-else
statement. (b) LPN for an if-else statement.

Note that the formal semantics of each of these statements is defined by the corresponding

LPN given in Figs. 3.8, 3.9, and 3.10.
A property compiler for LAMP is incorporated into the LEMA verification tool. This

compiler generates a property LPN from a written property as follows:

1. Create an LPN with the name of the property.

2. For each variable declaration, create a continuous or Boolean variable in the LPN.

3. For each statement, construct an LPN using the templates described above making

the last place for each statement the same as the first place for the following statement.

4. When an always block is encountered, create a new variable a for each variable a in

the condition list. Add the transition that stores the variables and add the starting

place for the always block. Construct all the interior statements according to 3 while

adding the alcond to each transition constructed. A transition is added from the last

place to the starting place with the alcond as its enabling condition. Finally, add the

exit place and the exit transitions with enabling condition ¬alcond.
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t4
{alcond}

[0] t5
{¬alcond}

[0]

{true}
〈 a := a, b := b, . . .〉

[0]

t0

t3
{¬alcond}

[0]

t2
{¬alcond}

[0]pstart0

t1
{cond ∧ alcond}

[d]

...

pend0

pexit0

p0

Figure 3.10: LPN for an always statement with condition list {a, b, . . .}. The LPN
associated with the statements in the always block go between the pstart0 and pend0
places. Each transition in this LPN and between them has the condition alcond combined
with the original condition. The expression alcond is (a = a) ∧ (b = b) · · · .

5. Mark the initial place of the first statement.

Using LAMP, the property for our PI circuit can be expressed as shown in Fig. 3.11. Note

that the values have been scaled according to the factor provided by the model generator

to give integer values. After this property is compiled by LEMA, the property LPN shown in

Fig. 3.12 is obtained.

3.4 Results
Using simulation data and the model generator in LEMA, three different PI models were

created using PI circuits with 4, 8, and 16 phase shifts, respectively. Fig. 3.2 shows the
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property PhaseInterpolator {
real ctl;
real omega;
real phi;
always {

wait(phi>=0);
if (∼(ctl>=170)) {

assert(omega<220, 1699);
wait(omega>=220, 102);
}
else if ((ctl>=170)&∼(ctl>=250)) {

assert(omega<220, 1479);
wait(omega>=220, 102);
}
else if ((ctl>=250)&∼(ctl>320)) {

assert(omega<220, 999);
wait(omega>=220, 102);
}
else if (ctl>=320) {

assert(omega<220, 759);
wait((omega>=220, 102);
}
wait(∼(phi>=0));
}

}

Figure 3.11: PI circuit property using LAMP.

model generated for the circuit with 4 possible phase shifts. For each of the circuits, a

corresponding property was constructed in LAMP to check that the phase shifts generated

by the circuit are correct. One example is shown in Fig. 3.11 for a PI with 4 different phase

shifts. After combining the LPN generated for this property with the LPN for the model

LPN and an LPN for the environment, LEMA’s zone-based model checker was used to verify

the PI circuit satisfies the property (i.e., no fail transitions fired). The verification results

of PI circuits for 4, 8, and 16 phases are given as the first three entries of Table 3.1. As can

be seen from this table, LEMA is able to successfully verify that the output phase shifts are

correct.

Also considered were a couple of variations that caused verification errors. First, to

simulate an output clock that goes high too soon, the property was changed for the PI with

4 phases so that the assert statement for the control value 40 asserts that omega is less

than 220 for 680 time units instead of 759. As seen in the fourth entry of Table 3.1, the
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Figure 3.12: The LPN generated for the LAMP property in Fig. 3.11.

Table 3.1: Verification results for a PI circuit. These results are generated using LEMA,
a java-based verification tool, on a 64-bit machine running an Intel Core i5 CPU M 480@
2.67GHz with 4 processors and 4GB of memory.

Property Time (s) States Verifies?

PI with 4 control signals 0.135 126 Yes
PI with 8 control signals 0.277 300 Yes
PI with 16 control signals 1.362 769 Yes
PI with short delay 0.083 14 No
PI with changing controls 0.779 2407 No
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property correctly signals a failure. Each of these checks is done with an environment that

can nondeterministically change the control signal shortly before the next time the input

clock goes high. If this restriction is removed and the control signal is allowed to change

at any time, LEMA finds a failure as indicated by the fifth result of Table 3.1. This failure

occurs because after the property LPN begins checking the output clock phase for one

control signal, the environment can change the control signal to a different value, resulting

in a different phase. The property then continues to check for the behavior for the previous

control value which indicates a failure. This failure can be fixed by adding a second always

block around the whole property and adding the control signal ctl to the condition list.

Dealing with such transient behavior is further illustrated in verifying the VCO model of

Figs. 3.3 and 3.4.

To verify that the VCO has the correct delay after a suitable time in the unstable period,

one could use the property in Fig. 3.13 and compile it into the LPN shown in Fig. 3.14. This

property declares a control variable, ctl, and a clock signal, out. The first always block

ensures that the following property is checked repeatedly. Next, the delay waits for the

clock to stabilize and the waitPosedge ensures that the frequency check starts when the

clock, out, next goes high. The second always block includes ctl in its condition list, thus

the next statements are repeatedly checked unless ctl changes. On the event of ctl changing,

the second always block exits and the outer always block starts the property check over.

The statements inside the inner always block check that the output clock remains high

(indicated by out being at least 40 units) for the appropriate delay f3. Then, the property

checks that the clock goes low (out less than 30) within 3 time units and remains low for

f4 time units before, finally, going high again within 5 time units.

The results of applying the property in Fig. 3.14 to the VCO model in Figs. 3.3 and 3.4

are listed in Table 3.2 with the label Limited Phase Checker. The first three lines show the

results when the control is set to a single control value of 2, 3, or 4 and in each case the

system is verified. Next, the environment is modified to nondeterministically change to one

of the three values 2, 3, or 4 every 3000 time units and again the system is verified. Finally,

the environment is modified to allow the voltage level to change to 2, 3, or 4 at any time.

In this case, the property fails. The reason is due to the placement of the delay statement

outside the second always block. If the control changes just prior to entering the second

always block, then the model is in the unstable state while the property LPN checks for

the stable frequency. Once the delay and waitPosedge statements are placed inside the

second always block, the property is verified in all cases of the environment as shown in
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property VCO {
real ctl;
real out;
always {

delay(1000);
waitPosedge(out >= 40);
always (ctl) {

assert(out >= 40, f3);
wait(out <= 30, 3);
assert(out <= 30, f4);
wait(out >= 40, 5);
}
}
}

Figure 3.13: VCO circuit property using LAMP.

the last five lines of Table 3.2.

3.5 TA Translations
LAMP can be used in the context of formalisms other than LPNs. This section illustrates

the compilation of LAMP into a set of TAs inspired by the properties constructed in [16]

to verify hybrid systems. Following in a similar vein, Figs. 3.15 and 3.16 show how the

statements of LAMP can be compiled into TAs. In these automata, there is a single clock

variable x. When a transition is taken (that is, one of the arrows is followed), the clock x

is reset as is indicated by being listed in the curly braces. A transition is allowed to fire

if the received signal satisfies the Boolean expression (the top expression listed) and the

clock variable x satisfies the corresponding inequality. For example, in Fig. 3.15b, the ¬b

transition can be taken as long as b has not been received. Each time the transition is taken,

the clock is reset. Once a b is received, then the lower transition can be taken, leading to

the state q1.

When compiling a LAMP statement into TAs, one uses the same process as in Sec-

tion 3.3. So, each statement of LAMP is converted to its corresponding template, making

the last state of the prior statement (q1 in Fig. 3.15, q2 in Fig. 3.16, and end0 in Fig. 3.17)

the same as the first state in the following statement (q0 in Figs. 3.15 and 3.16 and start0 in

Fig. 3.17). The statements inside an if-else are compiled in a similar way and are stated in

the corresponding blocks R1, R2, and R3. The first state of the first statement is considered

the initial state.
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Figure 3.14: The LPN generated for the LAMP property expressed in Fig. 3.11.

The Figs. 3.15, 3.16, and 3.17 comprise all the statements of LAMP except for the

always block with the conditions list. This full generality is not supported for TAs; however,

an always block with no conditions list is supported in the same way as in [66], that is, the

always block indicates the last state of the last statement is identified with the first state

of the first statement. Again, the first state of the first statement in the always block is

considered the first state.

As an example, this section considers a version of the robot property introduced in [16],

as shown in Fig. 3.18. A robot can move with a rate of λ and is constrained to an NxN grid

where it can move up, down, left, or right. Cells that are marked with C have a time out,

T1, so that the robot cannot stay in cells marked C for more than T1 time units. Similarly,

cells marked D have a time out of T2 time units. The blacked-out cells (which are considered
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Table 3.2: Verification results for a VCO circuit. These results are generated using LEMA,
a java-based verification tool, on a 64-bit machine running an Intel Core i5 CPU M 480@
2.67GHz with 4 processors and 4GB of memory.

Property Control Signals Time (s) States Verifies?

Limited Phase Checker 2 0.144 22 yes
Limited Phase Checker 3 0.177 22 yes
Limited Phase Checker 4 0.177 136 yes
Limited Phase Checker 2,3,4 reg. int. 0.223 185 yes
Limited Phase Checker 2,3,4 random 0.419 322 no
General Phase Checker 2 0.158 18 yes
General Phase Checker 3 0.161 18 yes
General Phase Checker 4 0.161 24 yes
General Phase Checker 2,3,4 reg. int. 0.195 24 yes
General Phase Checker 2,3,4 random 1.411 336 yes

to have a label of E) are walls that the robot should never enter. The robot starts in the

A cell indicated by the ‘Start’ arrow and must reach the end cell labeled B by a time limit

T3.

Collectively, there are four assertions: the time out condition for C cells, the time out

condition for D cells, the prohibition of entering E cells, and the time limit to reach the

B cell. Multiple, simultaneous properties are not explored in the previous material in

this chapter, but for LPNs there is nothing inherently difficult. To check more than one

property, one compiles each property LPN and then verifies the model LPN together with

all the property LPNs, simultaneously. In like fashion, each of these assertions is given

a separate LAMP description. This gives rise to the four properties listed in Figs. 3.19a,

3.20a, 3.21a, and 3.22a.

In Fig. 3.19a, the property declares a Boolean variable C to indicate when the robot

enters a cell labeled C. The property is to limit the time the robot stays in a cell labeled C.

The wait statement waits for C to become true, indicating that the robot has entered a

C state. The property then waits for C to go false in T1 time units. Thus, a failure occurs

if C does not go false within T1 time units. If C does become false within T1 time units,

then the bounded wait passes and the always block brings the checker back to waiting for

C to become true. The property for D is nearly the same and is shown in Fig. 3.20a.

Fig. 3.21a shows how to assert that the wall cells are never entered. In this property,

the assertUntil is used to utilize its purely Boolean characteristics. By putting the first
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Figure 3.15: TA translations for single argument LAMP statements. TA for (a) delay(d),
(b) wait(b), and (c) waitPosedge(b).

q0

true,
x ≥ d,
{x}

¬b,
x ≤ d,
{x}

b,
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q1 q2

(a)
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¬b„
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{x}

true,
x ≤ d,
{x}

q1 q2

(b)

q0

¬b1 ∧ ¬b2,
x ≥ 0,
{x}

b1 ∧ ¬b2,
x ≥ 0,
{x}

b2,
x ≥ 0,
{x}

q1 q2

(c)

Figure 3.16: TA translations for binary argument LAMP statements. (a) wait(b, d),
(b) assert(b, d), and (c) assertUntil(b1, b2) statements. In each case, q1 is the incorrect
behavior and q2 is the correct behavior.

condition to ∼ E and the second condition to false, the condition asserts that ∼ E occurs

until false. Since false never occurs, the assertUntil can only be satisfied as long as E

remains false.

The final property is the assertion that the robot reaches the B cell in T3 time units. The

LAMP translation of this property is shown in Fig. 3.22. This property is just a bounded

wait statement that waits for B to become true in T3 time units.

The last thing that needs to be added to these automata are the accepting states

that indicate successful runs. To match the safety property semantics of LPNs, every

state is marked as accepting, except the failure states of wait(b, d), assert(b, d), and
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if (b1) {
R1

}
else if (b2) {

R2
}
else {

R3
}

start0

¬b ∧ b2,
x ≤ d,
{x}

end0

R2

¬b1 ∧ ¬b2,
x == 0,
{x}

R3R1

b1,
x == 0,
{x}

(a) (b)

Figure 3.17: TA translation for the if-else statement. (a) LAMP syntax for an if-else
statement. (b) TA for an if-else statement.

E

EE

E

A A A A A B

A D D A A

A D D A

A D C C A

A A C C A A

A A A A A AStart

End

Figure 3.18: Robot grid. The robot starts in the A cell indicated by the ‘Start’ arrow and
must reach the cell labeled B withing T3 time units. Cells that are blacked out (E cells)
cannot be entered. The robot can only remain in cells labeled C and D for T1 and T2 time
units, respectively.

assertUntil(b1, b2). As an example, Fig. 3.23 shows the translated TA properties for

the robot.

3.6 Conclusion
In order to verify whether an AMS circuit is correct given a model of the behavior,

one needs to start with a property to verify. Several options have been proposed that are

primarily inspired by LTL/CTL-like formalisms or by programming-like languages such as

PSL and SystemVerilog. Although these methods are powerful and quite general, these

languages often are difficult to convince designers to use since they have a steep learning

curve.

Prior to this work, LAMP had statements to wait an unbounded or bounded amount
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property Robot C {
boolean C;
always{

wait(C);
wait(∼ C, T1);
}
}

q1

true,
x ≥ T1,
{x}

C,
x ≤ T1,
{x}

¬C,
x ≤ T1,
{x}

q2

q0
¬C,
x ≥ 0,
{x}

C,
x ≥ 0,
{x}

(a) (b)

Figure 3.19: Property and TA translation for staying in state C for a limited time. a)
A property asserting that the robot cannot be in a state C for more than T1 time units.
b) The TA translation of the property. Runs that enter the q2 state exhibit the incorrect
behavior.

of time for a Boolean variable to become true, to wait on the positive edge of a Boolean

variable, to assert a Boolean variable remains true for a bounded amount of time, and

to assert that a Boolean variable must be true until a second Boolean variable becomes

true [66, 69]. LAMP also has the control constructs of if-then and always. However,

the existing statements are not sufficient to verify all properties of interest. In particular,

LAMP has difficulty when a transient period needs to be ignored without an assertion or

when the environment changes while a property is being checked. Such an ability is helpful

when one wants to ignore an unstable period and begin a check after a suitable settling

time. This chapter extends the types of properties that LAMP can verify by adding a more

flexible always statement that can detect when the environment changes and adding a

delay statement that merely delays a check for a prescribed amount of time.

This chapter presents LAMP, a more intuitive language for AMS property specification,

and demonstrates the utility of LAMP by showing how it can be used to express a desired

property of a PI and VCO circuit. For the PI, the property is that a precise phase shift

should be produced by this circuit under the control of its input signal. This property is

shown to be simple to express in LAMP while it is more opaque in formalisms such as STL

and RT-SVA. Furthermore, this chapter demonstrates the use of LAMP in a verification

setting by verifying that the output phase for various control signals is correct for a PI

circuit with 4, 8, or 16 different phase shifts. For the VCO example, the property is to
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property Robot D {
boolean D;
always{

wait(D);
wait(∼ D,T2);
}
}

q1

true,
x ≥ T2,
{x}

D,
x ≤ T2,
{x}

¬D,
x ≤ T2,
{x}

q2

q0
¬D,
x ≥ 0,
{x}

D,
x ≥ 0,
{x}

(a) (b)

Figure 3.20: Property for staying in state D for a limited time. (a) The property
statement. The property asserts that the robot cannot be in a state D for more than
T2 time units. (b) The automaton translation of the property. Runs that enter the q2 state
exhibit the incorrect behavior.

property Robot E {
boolean E;
always{

assertUntil(∼ E, false);
}
}

q0

E ∧ true,
x ≥ 0,
{x}

false,
x ≥ 0,
{x}

q1

¬E,
x ≥ 0,
{x}

(a) (b)

Figure 3.21: Property for prohibiting entering E. (a) The property statement. The
property asserts that the robot cannot be in an E state. (b) The automaton translation of
the property. Runs that enter the q1 state exhibit the incorrect behavior.

verify the appropriate frequency is produced according to the what the voltage signal is

after a suitable delay for the frequency to stabilize. This property is checked for three

control voltages and it is shown that the property can be written to verify the circuit in an

environment that randomly changes the control voltage. Finally, it is shown how LAMP

can be translated into TAs and used for verification. As a case study, it is shown how a

constraint on the motion of a robot can be written in LAMP and be translated into TAs.
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property Robot B {
boolean B;
wait(B, T3);
}

q0

true,
x ≥ T3,
{x}

¬B,
x ≤ T3,
{x}

B,
x ≤ T3,
{x}

q1 q2

(a) (b)

Figure 3.22: Property for asserting B must be reached. The property asserts that the
robot must reach state B in time T3. Runs that enter the q1 state exhibit the incorrect
behavior. Runs that enter the q2 state exhibit the correct behavior.

q1

true,
x ≥ T1,
{x}

C,
x ≤ T1,
{x}

¬C,
x ≤ T1,
{x}

q2

q0
¬C,
x ≥ 0,
{x}

C,
x ≥ 0,
{x}

(a)

q1

true,
x ≥ T2,
{x}

D,
x ≤ T2,
{x}

¬D,
x ≤ T2,
{x}

q2

q0
¬D,
x ≥ 0,
{x}

D,
x ≥ 0,
{x}

(b)

q0

E ∧ true,
x ≥ 0,
{x}

false,
x ≥ 0,
{x}

q1

¬E,
x ≥ 0,
{x}

(c)

q0

true,
x ≥ T3,
{x}

¬B,
x ≤ T3,
{x}

B,
x ≤ T3,
{x}

q1 q2

(d)

Figure 3.23: TAs that accept runs for the correct behavior of the robot. Only the failure
states are not marked as accepting. (a) Robot C (Fig. 3.19). (b) Robot D (Fig. 3.20). (c)
Robot E (Fig. 3.21). (d) Robot B (Fig. 3.22).



CHAPTER 4

RANGES OF RATES

A common method for modeling hybrid systems is to use hybrid automata (HA) [8],

which combine discrete transitions with dynamics described by first-order differential equa-

tions. The full generality of hybrid automata is difficult to formally verify, and it is common

for authors to restrict their attention to more restrictive subclasses, such as LHAs [7].

Instead of allowing general first-order differential equations, LHAs restrict the invariants,

guards, and flow relations to be linear equations over the continuous variables. Even though

LHAs represent a restricted class of hybrid automata, they are still useful in describing

systems and can approximate more general automata [98].

By restricting to LHAs, one can perform reachability analysis to verify that a system

satisfies a given condition. Although the exact state space is undecidable [57], methods

have been able to verify systems by approximating the reachable state space using classes

of polyhedra [11, 39, 40, 102, 115]. The complexity of these methods comes from the

choice of polyhedral class along with the methods used to update the space. For example,

SpaceEx [41] utilizes template polyhedra and updates the state space by essentially lifting

a numerical integrator to the level of sets. By increasing the number of template directions,

the accuracy of the approximating state space improves, but at a cost of increasing the

storage requirements and the number of operations needed to update the state.

One can avoid numeric integration techniques by restricting the modeling class even

further. One option is to use LPNs [73] (Section 2.1). Although LPNs, in general, allow for

a range of possible rates for each continuous variable, the authors in [72] assume a constant

rate. This simplification allows them to avoid the expense of numerical integration by

extending the methods used for timed automata (TA) [19, 84] to LPNs whose derivative is

a single constant. Their method is based on zones that are described by difference bound

matrices (DBM) [30]. One key advantage to this method is that time advancements can be

performed by appropriately adjusting the largest possible value for each continuous variable

and then retightening the boundary constraints defining the zone. To handle rates other

than one, the zone is warped [72], a process where the variables in the original zone are scaled
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to produce rate 1 variables. After the scaling, the resulting Rn subset Z is, in general, no

longer a zone. So the subset Z is replaced with the best over-approximating zone Z such

that Z ⊆ Z.
Although the methods used in [72] are straight-forward, they fall short of handling the

ranges of rates possible in more general LPNs. To remedy this situation, a couple attempts

([25, 74]) have been made to extend zones to a range of rates. Both methods are based on a

translational approach whereby the original model is transformed into a single rate model;

however, as explained later, neither fully handles the use of ranges of rates in models.
This chapter shows how the method of zones can be extended to verify LPN models

with ranges of rates. Similar to the translational approaches, this extension is based on

the fact that states reachable using a rate chosen from a range of possible rates are also

reachable using only the extremal rates together with rate zero. Moreover, since the work

of [73] extends zones to capture all the states reachable from a set of states advancing with

a particular rate, it is only necessary to consider the rate changes at fixed discrete moments

in time and allow the zones to capture the simultaneous advancement of a collection of

states.
This chapter is organized as follows: Section 4.1 introduces the main example used

to illustrate the ideas in this chapter. Section 4.3 presents an algorithm for computing

an over-approximation of the reachable state space. Section 4.4 presents a correctness

argument for the algorithm. Section 4.5 discusses the related translational approaches

followed by Section 4.6, which provides some experimental results. Finally, Section 4.7

gives conclusions.

4.1 Motivating Example
As a running example, consider a sequence of capacitors that are charged sequentially

(see Fig. 4.1). The charging phase of the first capacitor is initiated by a switch sw0. After

20µs of charging, a switch sw1 is turned on, initiating the second capacitor’s charging

phase, and so on. When the switch sw0 is turned off, the first capacitor starts discharging

and the switch sw1 is turned off, starting the second capacitor to discharge, and so on.

Fig. 4.2 shows an LPN model of the i-th capacitor where the charging is some uncertain

rate between 1mV/µs and 2mV/µs. The initial marking is M0 = {p1,i} and is represented

by the filled in circle. The values Vi = 0 and V ′i = 0 are the initial conditions for the voltage

Vi. The variables swi and sw(i+1) are essentially Boolean variables with initial values of

0, representing false. The enabling conditions, delays, and variable assignments are in the

curly braces, square brackets, and angle brackets, respectively. In this example, the delays
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· · ·

· · ·

· · ·

· · ·

Vi Vi+1

−

+

−

+
swi swi+1

Figure 4.1: Capacitor stages i and i+ 1.

are constants rather than bounds. Initially, the capacitor is not charging. When the signal

swi is set to 1, charging is initiated by assigning V ′i the interval [1, 2], which indicates the

rate of Vi can be any rate between 1mV/µs and 2mV/µs. The capacitor is allowed to charge

for 20µs (given as a delay on the transition t2,i) before setting the variable sw(i+1) to 1. Once

the charging is turned off, that is, when swi is set to 0, the capacitor begins to discharge at

a rate of −1mV/µs. Finally, when the capacitor is fully discharged, the t0,i transition fires,

setting the rate to zero, which indicates that the capacitor is fully discharged.

4.2 Theory
Zones are the class of polyhedra in Euclidean space Rn that are formed by intersecting

half-planes of the formed by intersecting half-planes of the form vj − vi ≤ c, where vi and

vj are continuous variables and c is a constant. Given a finite set of continuous variables

v0, v1, . . . , vn−1, the zone is completely determined by the pairwise inequalities vj−vi ≤ ci,j
together with vi − t0 ≤ c0,i and t0 − vi ≤ ci,0 where t0 is a timer that is always zero. By

collecting the constants into a matrix, one forms the DBM for the zone. A standard zone

is depicted in Fig. 4.3a. This example has two continuous variables v0 and v1 and the

corresponding inequalities are:

t0 − t0 ≤ c0,0 = 0 v0 − t0 ≤ c0,1 = 5 v1 − t0 ≤ c0,2 = 3

t0 − v0 ≤ c1,0 = −1 v0 − v0 ≤ c1,1 = 0 v1 − v0 ≤ c1,2 = 1

t0 − v1 ≤ c2,0 = −1 v0 − v1 ≤ c2,1 = 3 v1 − v1 ≤ c2,2 = 0.

Collecting the constants into the DBM gives:
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t0,i

{¬(Vi ≥ 0)}

〈V ′i := 0〉
[0]

p2,i

p0,i

p1,i

t2,i

{true}
[20]

〈sw(i+1) := 1〉〈V ′i := [1, 2]〉

t1,i

{swi ≥ 1}
[0]

sw(i+1) = 0

Vi = 0
sw′(i+1) = 0

V ′i = 0

swi = 0
sw′i = 0

p3,i

t3,i

{¬(swi ≥ 1)}
[0]

〈sw(i+1) := 0, V ′i := −1〉

Figure 4.2: A model of a capacitor whose charging is turned on by swi. After a time delay
of 20µs, the switch sw(i+1) is turned on (i.e., set to 1), initiating the charging of the next
capacitor. Note that [d] is used when dl(t) = du(t) = d.

Z =


t0 v1 v2

t0 0 5 3

v1 −1 0 1

v2 −1 3 0


In the verification setting, the continuous variables are both the timers that determine

how long a transition has been enabled, as well as the general continuous variables being

used to model currents, voltages, and so on. When the rates of the continuous variables

are 1, like in the case of timers, then it is simple to evolve the zone forward in time. One

simply allows each point to move along a positive 45◦ angle as depicted in Fig. 4.3b. It is

important to note that the set resulting from evolving time is still a zone. Thus, the method

of allowing time to move forward is exact in the zone domain, that is, no over-approximations

are introduced.

Algorithmically, time-advancements are implemented by setting the upper-bound on

each variable to the largest possible value before an event is forced to happen for the

variable. In particular, inequalities set the bound on the next inequality that changes as

time evolves or infinity if no such inequality exists, and timers are set to the upper bound
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V 0
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(b)

Figure 4.3: Time advancement of a zone. (a) An example of a zone. (b) The zone in
evolved forward 1 time unit.

delay du(t). The inequalities in the DBM are then tightened by running Floyd’s all-pairs

shortest path algorithm [84]. This retightening of the bounds handles the fact that time

might not be able to evolve to the inequality or the upper bound due to a constraint on

the other variables. In other words, the combination of setting timers and variables to their

upper bounds and retightening automatically determines τmax, as explained in Section 2.1.2.

Performing time advancements in this way is possible by assuming that all the variables

have a rate of 1. If the rate of a continuous variable has a rate other than 1, then evolving

time may result in the points not following the 45◦ path, resulting in a subset that is no

longer a zone. Warping (see Fig. 4.4) was introduced in [72] to address this problem. With

warping, if a variable v has a rate r that is not 1, then that variable is replaced with v̂ = v
r ,

creating a variable that does evolve with rate 1. Since the resulting variable again has rate

1, time-advancement works exactly the same as before. However, after replacing v with v̂,

the resulting subset Ẑ may not be a zone that is describable by the inequalities vj − vi ≤ c.

To solve this issue, the set Ẑ is replaced by an over-approximating zone Z such that Ẑ ⊂ Z.

By combining warping and time-advancements, the following theorem is obtained, which

is essentially shown in [74].

Theorem 1 (Section 4.4 of [74]). Let Z be a zone, let Z be the zone obtained by warping

Z, τ, r ∈ R such that τ ≥ 0 and r 6= 0. Then, for all z ∈ Z, z/r+ τ ∈ Z ⊕ [0, τ ] where ⊕ is

the Minkowski sum X ⊕ Y = {x+ y | x ∈ X and y ∈ Y }. Consequently, the point z + rt is

represented by a point in the time-advanced warped zone Z ⊕ [0, τmax].

Theorem 1 implies that if Z is the original zone, then by changing the rates, warping,

and advancing time, one obtains a zone that captures all the reachable states achievable
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Figure 4.4: Warping a zone. a) Zone before warping. b) Resulting subset after scaling
V0 according to a rate of 2 and V1 according to a rate of 3. c) Subset after scaling (darker
subset) with over-approximating zone.

by starting in the original zone, making a rate change, and allowing time to move forward.

Thus, warping provides a means of finding an over-approximation to the reachable state

space of LPNs when the rates for each continuous variable evaluate to a constant.

Since a method already exists that handles single rates, ranges of rates can be handled

if the range can be reduced to evaluating single rates. The following theorem provides a

method for translating a trace of a continuous variable that has a range of rates [a, b] into

a trace that uses only the rates a and b.

Theorem 2 (See Theorem 3 for the proof). Let a, b ∈ R with 0 ≤ a ≤ b or a ≤ b ≤ 0,

τ ∈ R any nonnegative real number, and q ∈ R any real number. Then, for any real number

v such that aτ + q ≤ v ≤ bτ + q, there exists a τ ′ ∈ [0, τ ] such that f(τ) = v where:

f(x) =
{
b(x− τ ′) + aτ ′ + q if τ ′ ≤ x ≤ τ
ax+ q if 0 ≤ x ≤ τ ′

.

Section A.2 in the appendix provides a proof of Theorem 2. The main point of this

theorem is that if v is a continuous variable with a range of rates of [a, b] (such that

a < b < 0 or 0 ≤ a < b), then any point that is reachable by v after τ time units is

reachable by an approximating trace that uses only rates a and b.

At first inspection, this reduction may not appear to solve the problem of reducing

a range of rates since their is an infinite number of points where the trace may switch

that must be considered. It is true that one must consider an infinite number of points

when considering single traces; however, the method of this chapter is to use a state

set representation, namely zones, which collects an infinite number of traces into a finite

representation. Using a zone, all states reachable from a state in zone Z in τmax time units
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using only the lower bound rate are collected together by performing warping and time

advancement (Theorem 1). Let Z ′ be the resulting zone. After changing the rate of a

continuous variable, say v, to the upper bound rate, warping and advancing time collects

together all the states that are reachable from Z ′ in τmax time units using the new rate for

v and the same rate for each of the remaining continuous variables. Let the resulting zone

be Z ′′. By the preceding argument, Z ′′ contains as all traces (collection of states) that start

in Z with all the rates at their lower bound, changes the rate of v to the upper bound at

some time less than τmax, and finally, advances time less than or equal to τmax time units.

Theorem 2 ensures that every state reachable from z using any rate in the range is also

reachable using only lower bound rate with a one time switch to the upper bound rate.

Thus, Z ′′ contains all the reachable states allowing the variable v to assume any rate in its

range of rates. For multiple rates, one considers the interleavings of the different possible

rate changes and again the zone covers the reachable states.

4.3 Reachability Algorithm
The reachability algorithm presented here is an extension of the zone-based model

checking algorithm used by LEMA as described in [72]. The main point of using zones (or any

polyhedral method) is to reduce the infinite number of possible continuous variable states

to a finite set of state sets that collect together several states into a finite representation.

A state set is a tuple ψ = 〈M,D,Q,RR,R, I, Z〉 where:

• M ⊆ P is the set of marked places;

• D : T → Q×Q is the current range of delays for each transition;

• Q : V → Q×Q is the range of values for each zero rate continuous variable;

• RR : V → Q×Q is the current range of rates for each continuous variable;

• R : V → Q is the current rate for each continuous variable;

• I : I → {false, true} is the truth value for each inequality;

• Z : (T ∪ V ∪ {c0})× (T ∪ V ∪ {c0})→ Q∪ {∞} is a DBM composed of the transition

clocks for the enabled transitions, the nonzero rate continuous variables, and c0, a

reference clock which is always zero.

This definition is modified from that in [72] to accommodate ranges of rates.
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The basic reachability algorithm used by LEMA is shown in Algorithm 4.1. The algorithm

starts by constructing the initial state set, ψ, for the LPN. In the initial state, M = M0,

Q = Q0, RR = R0, R = resetRates(RR), and I = evalInequalities(ψ). The DBM,

Z, is composed of the initial values for all the continuous variables for which R(v) 6= 0.

In addition, the DBM contains a clock initialized to 0 for every enabled transition. After

adding the initial state to the set of reachable states, Ψ, the algorithm next calls the function

findPossibleEvents which returns the set of all events, E , that are possible in the current

state. The function select then chooses an arbitrary event, e, to be the next event to

explore. If, after removing the event, e, the event set, E , still has events remaining, these

remaining events are pushed onto a stack together with the current state. The next state,

ψ′, is computed by the updateState function and is the result of executing the event, e, in

the current state, ψ. If the state ψ′ has not been seen before, then the algorithm adds it to

the set of reachable states, makes ψ′ the current state to search from, and finds the possible

events that can be executed from ψ′ (now the current ψ). If ψ′ has been seen before, then

the algorithm checks if there are any event sets left on the stack to explore. If the stack

is not empty, then the last record is removed and is used as the new current state, ψ, and

current set of events, E . If the stack is empty, then there are no events left to explore, and

the result is returned.

The functions findPossibleEvents and updateState must be modified to take into

account a new rate change event. The findPossibleEvents algorithm is shown in Algo-

rithm 4.2. Lines 1-7 are the same as in [72] and handle determining which transitions can

fire and which inequalities can change. A transition can fire as soon as the clock (stored

in the zone) exceeds the lower bound of the delay assignment for that transition. The

function ub(Z, t) is used to obtain the largest value of the clock, t, from the zone, Z. An

inequality can change if time has advanced far enough for the variable to cross the constant

associated with the inequality. Lines 8-10 are added to determine if any rate events are

possible. Namely, any variables that are not evolving at their upper rate bound can have

a rate event to set it to its upper rate. In all cases, the function addSetItem handles the

adding and removing of elements from the event set according to which events should occur

first.

The modified updateState function is shown in Algorithm 4.3. The main modifications

to the original algorithm are the addition of resetRates and the rateChange event. The

first step is to restrict the zone according to the knowledge provided by which event has

occurred. When a transition fires, this means that the time has advanced at least to the
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Algorithm 4.1: reach(N,Tfail)

1 let N = (P, T, V, F,En,DA, V A,RA,M0, Q0, R0);
2 ψ0 = (M,D,Q,R,RR, I, Z) := initialStateSet(T, V,DA,En,M0, Q0, R0);
3 ψ := ψ0;
4 Ψ := {ψ};
5 E := findPossibleEvents(T,En,D,R,RR, I, Z);
6 while (true) do
7 E := select(E);
8 if (E − {E} 6= ∅) then
9 push(E − {E}, ψ);

10 ψ′ := updateState(P, T, V, F,En,D,DA, V A,RA,RR,Z, e, ψ);
11 if (ψ′ /∈ Ψ) then
12 Ψ := Ψ ∪ {ψ′};
13 Γ := Γ ∪ {(ψ,ψ′)};
14 ψ := ψ′;
15 if (E ⊆ Tfail) then
16 return Fail;
17 else
18 Γ := Γ ∪ {(ψ,ψ′)};
19 if stack not empty then
20 (E , ψ) := pop();
21 else
22 return
23 Success;

lower bound delay and for inequalities this means that the continuous variable has reached

the bounding constant. After the restriction, the bounds are retightened. Next, the state is

updated according to whether the event is a set of inequalities changing, a transition firing,

or a rate change event. In the cases of inequalities changing or transitions firing, the rates

are reset via resetRates(RR), which resets the rates of each continuous variable according

to its range of rates. A rate change event consists of a call to rateChange which takes the

current state ψ and the rate change event, e, and makes the rate change of R(v) = ru(v).

Note, this change has the effect of changing the rate for every state represented by the

state set ψ. After assigning the new rate, the inequalities are updated according to any

variable assignments and rate changes. The delays are then evaluated for any newly enabled

transitions and the zone is updated according to which transitions are enabled. Finally, the

zone is rewarped, time is allowed to advance up to τmax, and the bounds are retightened.
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Algorithm 4.2: findPossibleEvents(T,En,D,R,RR, I, Z)

1 E := ∅;
2 foreach (t ∈ Z) do
3 if (ub(Z, t) ≥ dl(t)) then
4 E := addSetItem(T,En,D,R,Z,E , t)
5 foreach (i ∈ ineq(En)) do
6 if (ineqCanChange(R, I, Z, i)) then
7 E := addSetItem(T,En,D,R,Z,E , i)
8 foreach (v ∈ V ) do
9 if (R(v) 6= ru(v)) then

10 E := addSetItem(T,En,D,R,Z,E , v)
11 return E ;

4.4 Correctness
The proof that the above algorithm does over-approximate the reachable state space is

done in 2 stages (see [38] for additional details). The first stage shows that every state set

S′ resulting from a transition firing or a set of inequalities changing is captured by some

state set ψ′. The second stage handles the intervening rate changes and time advancements.

First, suppose that tr is a transition and S
tr−→ S′. Since S ∈ ψ, the same transition tr

is enabled in ψ and is one of the possible event firings that are explored. Thus, one has

ψ
tr−→ ψ′. The state S′ is then in ψ′, since the same operations of updating the state S to

produce S′ are performed for all the states in ψ to produce ψ′. For example, the markings,

M , are updated in the same fashion, the zone, Z, is updated to reflect the same continuous

variable assignments, etc. If S′ is the result of a set of inequalities, I, changing, then this

same set of inequalities is enabled to change in the state set ψ. Furthermore, the same set

of inequalities can change to produce ψ′. Since the only states that are removed from ψ to

produce ψ′ satisfy the condition v 6= c for each v ≥ c ∈ I, the state S′ is not removed since

v must equal c for each v ≥ c ∈ I owing to the fact that the inequality is changing its truth

value.

Next, the rate change events and time advancements are handled. Let ψ be the result of

a transition firing, a set of inequalities changing, or the initial state set, and let S be a state

in ψ. It is shown that if S′ is a state resulting from a sequence of rate changes and time

advancements up to a total time advancement of τmax, then S′ is in some ψ′ resulting from ψ

by a sequence of rate changes. For simplicity, assume that v̂ is the only continuous variable

and that RR(v̂) = [a, b]. The argument is to first show that the state S′ can be obtained by

using a single rate change and then show that the resulting trace is captured by a sequence
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Algorithm 4.3: updateState(P, T, V, F,En,D,DA, V A,RA,RR,Z, e, ψ)

1 Z := restrict(Z, e);
2 Z := recanonicalize(Z);
3 Rold := R;
4 if (e ⊆ I) then
5 ψ := updateInequalities(ψ, e);
6 R := resetRates(RR);
7 else if (e ⊆ T ) then
8 ψ := fireTransition(M,F,Q, V, V A,RA,Z, ψ, t);
9 R := resetRates(RR);

10 else
11 R := rateChange(ψ, e);
12 ψ := evalInequalities(ψ);
13 forall the (t /∈ Z ∧ t ∈ E(ψ)) do
14 D(t) = EvalAssign(DA(t), Q, I, Z);
15 forall the (t ∈ T ) do
16 if (t /∈ Z ∧ t ∈ E(ψ)) then
17 Z := addT(Z, t);
18 else if (t ∈ Z ∧ t /∈ E(ψ)) then
19 Z := rmT(Z, t);
20 (R,Z) := dbmWarp(R,R′, Z);
21 Z := dbmWarp(Rold, R, Z);
22 Z := advanceTime(R, I, Z);
23 Z := recanonicalize(Z);
24 return ψ;

of state sets. Theorem 2 establishes the first part. Using this theorem, there exists τ1, τ2

such that S τ1−→ S′′
R(v̂)←b−−−−−→ S′′′

τ2−→ S′. In like fashion, let ψ′ be the state set resulting from

ψ by changing the rate of v̂ to b, and advancing time τmax, that is ψ R(v̂)←b−−−−−→ ψ′′
τmax−−−→ ψ′.

All that remains to show is that the states S, S′, and S′′ are captured by the two state

sets ψ and ψ′. Using Theorem 1, ψ contains all points z ∈ Z that are the result of a time

advancement τ such that τ ≤ τmax when the rate of v̂ is a. Thus, S′′ is in ψ. Similarly,

the construction of ψ′ changes the rate of v̂ to b for each state in ψ and captures all time

advancements up to τmax. So, S′′′ and S′ are in ψ′.

Finally, extending to multiple continuous variables is a matter of finding the sequence of

switching points for each of the continuous variables and applying the appropriate warping

for each dimension.
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4.5 Related Work
This chapter presents an extension of zones via a functional approach where the al-

gorithm accounts for the changes needed to handle the ranges of rates. In contrast, the

methods of [25, 74] use a translational approach where the original LPN or automaton is

transformed by replacing the range of rates with single rate changes. Suppose a variable v

has a range of possible rates [a, b] in a given state. The method of [25] replaces the range of

rates with 3 stages. The first stage determines the total amount of time the system spends

in the state, say τ time units. The second stage determines the value of the continuous

variable v after τ time units, provided the rate is a. The third stage determines the possible

values for the continuous variable after τ time units for each of the possible rates in the

interval [a, b]. Similar to the approach of [25], the method used in [74] replaces the state

with 2 stages. The first stage sets the rate of v to a and then allows a transition to fire that

sets the rate to b.

Both these methods achieve the goal of breaking the range of rates into traces that utilize

only single rates, namely, the rates a and b. However, in each case, the traces explored only

allow for a single rate change. Such a transformation is enough when the LPN or automaton

is used to check a property, but it is not necessarily enough when ranges of rates are used for

an LPN or automaton model. The single switching ensures that given a time τ and a range

of rates [a, b], every possible value of v at time τ is achievable by setting v to have rate a for

some time τ̂ , switching the rate to b and then allowing time to advance τ − τ̂ (Theorem 2).

This process breaks down when two sample times are involved. For example, suppose v is

required to be at 2b at time 2 and at 2b+ a after 1 more time unit, for 0 < a < b. Then, it

is no longer possible to start with the rate at a and then switch once to b since after 2 time

units the rate needs to be changed back to a. A concrete example is given by the property

LPN shown in Fig. 4.5. After being initiated by swi becoming true, the property checks

that Vi is above 15 mV after 10 µs and then checks that Vi is more than 30 mV after an

additional 10 µs. For Vi to be greater than 15 mV at 10 µs, the rate of Vi must switch at

or before 5 µs. However, since the rate has switched, the rate must remain at 2 mV/µs for

the next 10 µs resulting in Vi being at least 35 mV. Thus, it is not possible for the failure

transition to fire. However, if Vi is 15 mV at 10 µs and the rate is set to 1 mV/µs, then Vi

is 25 mV after an additional 10 µs, enabling the failure transition.

Instead of a translational approach, the method of Section 4.3 uses an algorithmic

approach that allows the rate to switch once per transition firing or inequality changing.

For LPNs, the number of times that a variable needs to be allowed to switch is the number
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property Example {
real Vi;
always {

delay (10);
if (Vi >= 15){

delay (10);
assert (Vi >= 30, 0);
}
else {

delay (10);
}
wait (∼(Vi >= 0));
}
}

t4
{¬(Vi ≥ 15)}

[0]

t5

[10]
{true}

t0

[10]
{true}

t2
{true}

[10]
t3

{Vi ≥ 30}
[0]

pStart0

t6
{¬(Vi ≥ 0)}

[0]

[0]
{¬(Vi ≥ 30)}

tFail0

p0

p2

p3

p1

pEnd0

t1
{Vi ≥ 15}

[0]

Figure 4.5: A property LPN for a capacitor stage in Fig. 4.2. When swi is 1, the property
checks that Vi is above 15mV after 10µs, and then that Vi is more than 30mV after an
additional 10µs. The property is violated if the fail transition, tFail, fires. On the left is a
LAMP description of the property and on the right is an LPN translation.

of times that the LPN ‘samples’ the variable, that is, when an inequality changes or a

transition fires. It is with these events that something is learned about the values of the

continuous variables.

4.6 Experimental Results
This section compares verification results from the translational approach of [74] with

results from the algorithmic approach of this chapter by using models having a varying

number of capacitor stages (Fig. 4.2). In the translational approach of [74], the capacitor

stages in Fig. 4.2 are modified to only use a single rate by setting the rate initially to 1

and then adding a one time transition which optionally sets the rate to 2. The transformed

model is shown in Fig. 4.6. The algorithmic approach requires no modifications. The

capacitor models are verified against the property in Fig. 4.5 with three different enabling

conditions for tFail and t11 using LEMA, a java-based verification tool. All experiments are
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p1,i

t0,i

{¬(Vi ≥ 0)}

〈V ′i := 0〉
[0]

t3,i

{¬(swi ≥ 1)}
[0]

〈sw(i+1) := 0, V ′i := −1〉

p0,i

p2,i

〈V ′i := 1, ri := 1〉

t1,i

{swi ≥ 1}
[0]

p3,i

t4,i

〈V ′i := 2, ri = 0〉
[0,∞]
{ri ≥ 1}

sw(i+1) = 0

Vi = 0
sw′(i+1) = 0

V ′i = 0

swi = 1
sw′i = 0

ri = 0

t2,i

{true}
[20]

〈sw(i+1) := 1〉

Figure 4.6: An example of translating an LPN model into single rates. The LPN model of
Fig. 4.2 transformed according to the process in [74] to have only single rate assignments.
In particular, the rate assignment of transition t1,i is changed to V ′i = 1 instead of the range
V ′i = [1, 2], and the transition t4,i is added to assign the rate to V ′i = 2. The delay on t4,i
is [0,∞] to indicate that the rate change can occur at any time. After t4,i fires once, any
subsequent firings have no effect, since the rate is already 2. The variable ri is added to
prevent these additional unneeded firings.

run on a 64-bit machine with an 3.4 GHz Intel Core i7-3570 CPU with 4 cores and 12GB of

memory with a time limit of 6 hours. In each case, the property is placed on the last stage.

For the first example, the enabling condition on tFail is ¬(Vi ≥ 18) (see Fig. 4.7a).

In the capacitor models, the smallest possible voltage is 20mv, thus the failure transition

should not fire. The verification results for the modified property are shown in Table 4.1.

Both the translational approach and this chapter’s algorithmic approach give the correct

verification result. Namely, that the model satisfies the property. The state spaces are

comparable, with the algorithmic approach producing no more than a multiple of 2 more
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pEnd0
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Figure 4.7: Modified capacitor properties. (a) Capacitor property (Fig. 4.5) changed to
have the failure condition on tFail to be ¬(Vi ≥ 18). (b) Capacitor property (Fig. 4.5)
changed to have the failure condition on tFail to be (Vi ≥ 30).

than the translational approach; however, the run time quickly explodes. This fact suggests

that many new states are either subsets or supersets of previously found zones. To address

this problem, addSetItem can be modified to ensure that rate events fire before all other

events. The results are in the Algorithmic (opt) column in Table 4.1.

Another metric for comparing the three approach is to compare the number of events

that are fired. Table 4.2 shows the total number of times an event fires during the state

exploration for the translation method, the algorithmic method, and the algorithmic method

with the rate optimization. Similar to the time statistics, the number of events for the

algorithmic approach increases more rapidly than for the algorithmic approach with the

rate optimization, and the number of events for the rate optimized algorithmic approach

increase more rapidly than the number of events for the translational approach.

As a second example, the enabling condition for the failure transition tFail is changed

to Vi ≥ 30 (see Fig. 4.7b). In this case, the model does not satisfy the property and both
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Table 4.1: Comparison of translational approach [74] to our algorithmic approach with a
tFail enabling condition of ¬(Vi ≥ 18). All cases verify as correct.

Translational Algorithmic Algorithmic (opt)
# Caps Time (s) States Time (s) States Time (s) States

1 0.149 72 0.188 59 0.108 35
2 0.268 235 2.01 144 0.457 56
3 0.487 553 40.085 279 0.941 65
4 1.083 881 15311.948 1148 2.954 105
5 3.066 3009 TIMEOUT - 4.081 207

Table 4.2: The total number of event firings for the property with tFail Vi ≥ 18.
Event Count (Vi ≥ 18)

# Caps Translational Algorithmic Algorithmic (opt)

1 139 313 106
2 407 29378 6484
3 950 805024 44372
4 3235 174330848 15395081
5 17179 - 414627973

approaches correctly find this result, as is shown in Table 4.3. In this case, the translational

approach has state counts that are four to seven times larger than the algorithmic approach

for 100, 200, 300, 400, and 500 stages of capacitors. Furthermore, the translational approach

is now the one experiencing the rapid increase in time. The state count for the algorithmic

approach is relatively small, which indicates that the failure occurs rather early in the state

search. This analysis is backup by considering the number of events firing. Table 4.4 shows

the number of events fired for both the translational and algorithmic approaches. The

number of event firings is less for the algorithmic approach, which matches the fact that

the state count is less.

The final property is the one shown in Fig. 4.5. This property first checks that if the

voltage Vi is at least 15mV at 10µs, then the voltage must be at least 30mV after an

additional 10µs. If this is not true, then tFail fires, indicating a failure. The results of

verifying the last capacitor stage for models with one capacitor through eight are shown

in Table 4.5. For each example, the translational approach indicates the model passes

verification; however, this result is incorrect. If Vi has a rate of 1mV/µs for 5µs and then
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Table 4.3: Comparison of translational approach [74] to our algorithmic approach with a
tFail enabling condition of Vi ≥ 30 that should not verify to be correct.

Translational Algorithmic
# Caps Time (s) States Verifies? Time (s) States Verifies?

100 108.686 1639 no 6.504 233 no
200 972.568 3239 no 88.599 723 no
300 3496.862 4839 no 287.089 875 no
400 10290.709 6439 no 710.162 1127 no
500 TIMEOUT - no 3418.39 1967 no

Table 4.4: The total number of event firings for the property with tFail Vi ≥ 30.
Event Count (Vi ≥ 30)

# Caps Translational Algorithmic

100 2054 232
200 4054 722
300 6054 874
400 8054 1126
500 - 1924

has a rate of 2mV/µs for 5µs, the value of Vi at 10µs is 15mV. If the rate goes back to

1mV/µs for another 10µs, then the value of Vi is 25mV. This trace results in the sequence

of transitions t5, t9, t10, and tFail in Fig. 4.5. Although zones over-approximate the state

space, this trace is missing from the transformed model. Thus, the translational approach

does not find this failure trace while the algorithmic approach does. Since the total state

count is less for the algorithmic approach than for the translational approach, it is not

surprising that the event count is also less as is shown in Table 4.6.

4.7 Conclusion
This chapter shows how a zone-based reachability method can be extended to verify

models that utilize a range of rates. Previous methods have opted for a translational

approach that converts models to ones with only a single rate change. Although this

approach is adequate for properties, it is not enough when used for models. By using

a method that allows for multiple resets, one can recover all the necessary behaviors.
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Table 4.5: Comparison of translational approach in [74] to our algorithmic approach for
the property shown in Fig. 4.5 that should not verify to be correct.

Translational Algorithmic
# Caps Time (s) States Verifies? Time (s) States Verifies?

1 0.162 81 yes 0.146 52 no
2 0.287 240 yes 0.534 143 no
3 0.529 622 yes 2.00 280 no
4 1.31 1550 yes 13.6 481 no
5 3.83 3710 yes 130 877 no
6 13.1 8926 yes 1047 1649 no
7 76.2 52574 yes 860 3798 no
8 410 122014 yes 29709 7489 no

Table 4.6: The total number of event firings for the property with tFail ¬(Vi ≥ 30).
Event Count ¬(Vi ≥ 30)

# Caps Translational Algorithmic

1 166 169
2 457 1724
3 1134 25597
4 4295 288859
5 22007 2159222



CHAPTER 5

OCTAGONS

Zones have been a successful tool for the formal verification of timed models like TA

and TPNs. Zones form the basis of one of the three model checkers provided by LEMA [72],

as well as the backbone for UPPAAL [19]. While the work of [73, 74] extends zones to

models whose variables have rates other than 1, the necessary over-approximations are

more extensive when the rates are both positive and negative. When the rates are positive,

the best over-approximation can utilize positive 45circ boundary lines to retain some of

the relationships between pairs of variables. When one rate is positive and an another

is negative, the best over-approximation that can be made is to accept the full rectangle

defined by the variables’ maximum and minimum values. In other words, one loses any

restriction on the pairs of values.

A natural extension to zones that improves the approximation when the rates are

different is to allow lines forming negative 45◦ degree angles. Such figures are, predictably,

called octagons. Octagons can also be represented using a DBM [81], and the algorithm

for finding the tightest constraints has complexity O(n3) [12, 81], which is the same as for

zones. These facts make octagons an attractive choice for a simple, more accurate extension

to zones. Octagons have been studied in the context of software checking, and so, some of

the necessary algorithms are already available, such as restricting an octagon according to

an inequality, projecting an octagon onto a single dimension to provide the variable’s range,

and the algorithm for ensuring the tightest constraints. So, the main algorithms needed

for dynamic hybrid system models are warping, determining how time should advance, and

adding new continuous variables and timers.

The chapter is structured as follows: Section 5.1 motivates the need for octagons by

demonstrating how zones can lead to false negatives that octagons can avoid. Section 5.2

provides the necessary theory including the octagon DBM representation and explanations

on how to add variables to the octagon, perform time advancements, and warp the octagon.

Section 5.3 describes the necessary changes to the zone-based algorithms to adapt them
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to octagons. Section 5.4 demonstrates the use of the new algorithms on the motivating

example and Section 5.5 provides conclusions.

5.1 Motivating Example
Although zones are able to capture the exact state space when every variable’s rate

is 1 [84], warping leads to an over-approximation of the state space when any the rate is

different from 1. For example, consider the zone in Fig. 5.1a. If the variable y is assigned

a rate of 3 and x is assigned a rate of 2, then the zone is first scaled by replacing y with
y
3 and x with x

2 . With this change, the subset is no longer bounded tightly by 45◦ lines on

the upper left and lower right. Instead, the slopes of these lines are now both 2
3 (Fig. 5.1b).

Since the slope is no longer 1, the resulting subset is not a zone. To compensate, the subset

is bounded by the best approximating slope 1 lines, thus producing the zone in Fig. 5.1c.
While the resulting zone is an over-approximation, the approximation is able to utilize

45◦ lines to avoid using the full bounding rectangle formed by the extreme values. When the

rate is negative, the rectangle is the best possible approximation. Consider again the zone

in Fig. 5.1a. When the rate of y is changed to −1, the zone in Fig. 5.1a is reflected across

the x-axis and becomes the subset in Fig. 5.2a. The reflection changes the positive 45◦ lines

into −45◦ lines, which are not representable by inequalities of the form y − x ≤ c. Thus,

these constraints must be removed, creating the rectangle in Fig. 5.2b. With octagons, the

negative 45◦ lines are allowed, so these constraints remain. In fact, Fig. 5.2 is an octagon,

thus no approximations are necessary.
Since over-approximations add states to the reachable state space, it is possible that

the resulting state space violates properties that the exact state space does not. Such cases
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Figure 5.1: Warping a zone. a) Zone before warping. b) Resulting subset after scaling
x according to a rate of 2 and y according to a rate of 3. c) Subset after scaling (darker
subset) with over-approximating zone.
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Figure 5.2: Negative warping. a) Subset resulting from changing the rate of y to −1
in 5.1a. b) Best over-approximating zone for negative warping.

are known as false negatives. As a concrete example, consider the LPN in Fig. 5.3. In this

model, y starts with a range of values 0 ≤ y ≤ 1 and a rate of 1. Since t0 has a delay

of [0, 2], y can increase up to 2 units before t0 fires. Hence, the largest value y can get

before t0 fires is 3. After t0 fires, y is assigned a negative rate. So, y is largest if t1 fires

immediately. After t1 fires, y is again assigned a rate of 1. This time y can increase for 1

time unit, resulting in y being 4. Now, either t3 or t4 fires once x reaches 5. To maximize

y, x needs to be at a minimum in this zone, so y can increase the most. Since x always has

a rate of 1, x has its minimum value if x starts at 0, the minimum initial value. Starting

with x as 0 and firing the same sequence of transitions (t0, t1, and t2) with the same delays

(2, 0, and 1) gives x = 3. So, y can increase a maximum of 2 units before t3 or t4 must fire.

Adding 2 to the maximum value of 4 reached so far yields a maximum value of 6. Thus, t3
fires and sets y to 0. Since this analysis gives the largest value of y, y never reaches 7, so

the transition t4 never fires.

Even though the failure transition t4 never fires, due to the over-approximations used

by zones and warping, the reachable state space for the system in Fig. 5.3, using zones,

indicates that the failure transition does fire, as is shown in Figs. 5.4, 5.5, and 5.6. Note

that each of these figures depicts the portion of the zone in the xy-plane. Fig. 5.4a shows

the initial zone where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. In this zone, transition t0 is enabled and

has a delay of [0, 1] time units. Thus, time can advance up to 1 time unit before t0 fires.

The resulting zone is shown in Fig. 5.4b.

After t0 fires, y is assigned a rate of −1. This rate change flips the zone across the x-axis

(Fig. 5.4c), which results in a subset that is not a zone. To make the subset into a zone, the
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x = [0, 1]
x′ = 1
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y′ = 1

{¬(y ≥ 7) ∧ (x ≥ 5)}
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〈x := 0, y := 0〉

t3 t4
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{true}
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〈y′ := −1〉

t0

{true}
[0, 1]

t2

p0

p2

p1

p3

Figure 5.3: A model where zones leads to a false negative result.

subset is filled out to the rectangle shown in Fig. 5.5a. In this zone, t1 is enabled and has

a delay of [0, 1]. So, the zone can advance up to 1 time unit (Fig. 5.5b). After transition t1
fires, the rate of y is set back to 1, yielding Fig. 5.5c. This subset is again not a zone and

has to be filled out to the rectangle in Fig. 5.6a. In this zone, transition t2 is enabled and

has a delay of [0, 1], thus the zone can advance up to 1 time unit, as shown in Fig. 5.6b.

Finally, after t2 fires, the zone can advance until x is 5. The result of this advancement is

shown in Fig. 5.6c. The upper right corner of this zone is the point x = 5 and y = 7, thus

enabling the failure transition t4.

The over-approximations that lead to this spurious error are directly due to the need

to approximate a subset with a rectangle when the rate changes sign. With octagons, it

is not necessary to over-approximate the space with rectangles. In fact, every subset in

Figs. 5.4, 5.5, and 5.6 is an octagon including Figs. 5.4c and 5.5c. The sequence of octagons

for Fig. 5.3 is shown in Figs. 5.7, 5.8, and 5.9. The initial octagon is shown in Fig. 5.7a,

followed by the octagon resulting from advancing time 1 unit (Fig. 5.7b) and firing transition

t0 (Fig. 5.7c). In this case, the assignment of a rate of −1 to y is still a octagon, so there

is no need to fill it out to a rectangle, as in the case of zones. Fig. 5.8a shows the result

of advancing the octagon 1 time unit. After transition t1 fires, the octagon in Fig. 5.8b is

produced and, again, there is no need to fill out to a rectangle. Time is, again, advanced 1

time unit before t2 fires (Fig. 5.8c). After t2 fires, time is advanced until x = 5, producing



74

x

y

7

6

5

4

3

2

1

1 2 3 5 6 74

(a)

x

y

7

6

5

4

3

2

1

1 2 3 5 6 74

(b)

x

−y
7

6

5

4

3

2

1

1 2 3 5 6 74

(c)

Figure 5.4: The first sequence of zones for Fig. 5.3. a) The initial zone. b) Zone after
advancing 2 time units. c) Subset after firing t0 and assigning y a rate of −1.
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Figure 5.5: The second sequence of zones for Fig. 5.3. a) Zone after performing warping
on Fig. 5.4c. b) Zone after advancing time 1 unit. c) Subset after firing transition t1 and
assigning y a rate of 1.

the octagon in Fig. 5.9a. This time, when x = 5, y is less than 7 and transition t3 fires

instead of t4. After t3 fires, the octagon in Fig. 5.9b is produced, which is the same as the

initial octagon in Fig. 5.7a, and the process repeats.

5.2 Theory
This section introduces the necessary background for octagons, as well as the theory

behind the required algorithmic changes. In changing from zones to octagons, the basic

structure of the algorithms remain the same. The major differences come from interacting
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Figure 5.6: The third sequence of zones for Fig. 5.3. a) Zone after performing warping
on Fig. 5.5c. b) Zone after advancing 1 time unit. c) Zone after firing transition t2 and
advancing time τmax units.

with the new representation. Specifically, it must be explored how new variables are added

to the octagon, how time advances, and how warping is performed.

Accordingly, this section starts with discussing the DBM representation in Section 5.2.1.

Then, Section 5.2.2 describes how new variables are added, Section 5.2.3 describes the new

method for time advancements, and Section 5.2.4 describes warping.

5.2.1 DBM Representation
Let V1, . . . , Vn be continuous variables. An octagon is a subset of Rn formed by intersect-

ing the hyperplanes of the form ±Vi ± Vj ≤ ci,j for some constants ci,j . Just like for zones,

octagons can be represented as DBMs [81]. The first key step to the DBM representation is

to introduce a positive variable V +
i and a negative variable V −i for each continuous variable

Vi. The positive variables satisfy +Vi = V +
i and the negative variables satisfy −Vi = V −i .

With these variables, every inequality ±Vi ± Vj ≤ c can be written in the form Y −X ≤ c:

Vj − Vi ≤ c↔ V +
j − V

+
i ≤ c −Vj + Vi ≤ c↔ V −j − V

−
i ≤ c

↔ V −i − V
−
j ≤ c ↔ V +

i − V
+
j ≤ c

Vj + Vi ≤ c↔ V +
j − V

−
i ≤ c −Vj − Vi ≤ ↔ V −j − V

+
i ≤ c

↔ V +
i − V

−
j ≤ c ↔ V −i − V

+
j ≤ c

Vi ≤MVi ↔ V +
i − V

−
i ≤ 2MVi Vi ≥ mVi ↔ V −i − V

+
i ≤ −2mVi ,
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Figure 5.7: The initial sequence of octagons for Fig. 5.3. a) Initial octagon. b) Octagon
after advancing time 1 time unit. c) Octagon after firing transition t0 and assigning a rate
of −1 to y.
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Figure 5.8: The second sequence of octagons for Fig. 5.3. a) Octagon after advancing
time 1 time unit from the octagon in Fig. 5.7c. b) Octagon after firing transition t1 and
assigning a rate of 1 to y. c) Octagon after advancing time 1 time unit.

where mVi is the minimum of Vi and MVi is the maximum value of Vi. Since the minimum

and maximum values can be written in the same for as the rest of the constraints, there is

no need for a zero timer like with zones.

For N variables, V1, . . . Vn, there are 2N variables in the DBM representation: the

variables V +
1 , V −1 , V +

2 , V −2 , . . . , V +
n , V

−
n . Thus, the DBM is a 2N × 2N matrix M . Given

an index i for a variable Vi, the 2i row/column index corresponds to V +
i and the 2i + 1

row/column index corresponds to V −i . So, the positive variables are the even indices in the

DBM matrix and the negative variables are the odd indices in the DBM matrix. Given
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Figure 5.9: The third sequence of octagons for Fig. 5.3. a) Octagon after firing transition
t2. Notice that transition t4 is not enabled. b) Octagon after transition t3 fires.

an index i for the DBM, one can convert between the positive and negative indices via the

function • = 7→ • given by i = i⊕1, where ⊕ is the bit-wise exclusive or operator. Literally,

this function flips the last bit of the binary representation for i. Thus, if i is even, i = i+ 1

and if i is odd, i = i− 1. Hence, if i is the index in the DBM of V +
j , that is if i = 2j, then i

is the index of V −j , that is, i = 2j + 1. Similarly, if i is the index of V −j , then i is the index

of V +
j .
As with zones, the DBM collects together the constants of the constraints Y −X ≤ c.

If the entries of the matrix are mi,j , the connection is established by:

V +
i − V

+
j ≤ m2i,2j V −i − V

+
j ≤ m2i+1,2j

V +
i − V

−
j ≤ m2i,2j+1 V −i − V

−
j ≤ m2i+1,2j+1.

In addition, the entries m2i,2i and m2i+1,2i+1 should always be 0 since they correspond to

V +
i −V

+
i ≤ 0 and V −i −V

−
i ≤ 0, respectively. The DBM has some redundancy since almost

every equation corresponds to another equation that conveys the same information. For

example, V +
j − V

+
i ≤ c imposes the same constraint on Vj − Vi as V −i − V

−
j ≤ c. A DBM

is called coherent, if these redundant entries are equal. Specifically, a DBM is consistent, if

and only if, for all DBM indices i and j, the entries satisfy:

mi,j = mj,i.

As a concrete example, consider the octagon in Fig. 5.10, repeated from Fig. 5.8b. The

variables x and y are replaced with V0 and V1, respectively, to aid in following the indices.

The inequalities that bound this octagon are as follows:
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Figure 5.10: A generic octagon.

V1 − V0 ≤ 1 −V1 + V0 ≤ 2

V1 + V0 ≤ 8 −V1 − V0 ≤ 0

0 ≤ V0 ≤ 5 −1 ≤ V1 ≤ 4.

After changing these equations into their equivalent forms using the positive and negative

variables, the equations become:

V +
0 − V

+
0 ≤ 0 V −0 − V

+
0 ≤ 0 V +

1 − V
+

0 ≤ 1 V −1 − V
+

0 ≤ 0

V +
0 − V

−
0 ≤ 10 V −0 − V

−
0 ≤ 0 V +

1 − V
−

0 ≤ 8 V −1 − V
−

0 ≤ 2

V +
0 − V

+
1 ≤ 2 V −0 − V

+
1 ≤ 0 V +

1 − V
+

1 ≤ 0 V −1 − V
+

1 ≤ 2

V +
0 − V

−
1 ≤ 8 V −0 − V

−
1 ≤ 1 V +

1 − V
−

1 ≤ 8 V −1 − V
−

1 ≤ 0.

Collecting these values into a matrix yields the DBM:

D1 =



V +
0 V −0 V +

1 V −1

V +
0 0 0 1 0

V −0 10 0 8 2

V +
1 2 0 0 2

V −1 8 1 8 0

.

For this matrix to be coherent, the entries must satisfy m0,0 = m1,1, m0,1 = m0,1, m1,0 =
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m1,0, m0,2 = m3,1, m0,3 = m4,1, m1,2 = m3,, m1,3 = m4,2, and m2,2 = m3,3, which this

DBM satisfies.

5.2.2 Adding A New Variable
Adding new continuous variables and timers is simply a matter of reinterpreting the

algorithms for zones in the language of octagons. For example, when adding a continuous

variable v with rate r, the maximum and minimum values for v are divided by r and added

to the DBM (after multiplying by 2 due to the way octagons store these values). Then, the

relational entries are set to infinity, indicating no relationship. This section describes the

necessary details.

Suppose Vi is a clock or a continuous variable in the octagon, and Vj is a new clock to

be added to the Octagon. Since the new clock is initialized to 0, the new timer satisfies:

Vj ≤ 0 −Vj ≤ 0,

and thus, V +
j and V −j satisfy:

V +
j ≤ 0 −V +

j ≤ 0 V −j ≤ 0 −V −j ≤ 0.

Furthermore, the old variable satisfies:

V +
i − V

−
i ≤ 2MVi V −i − V

+
i ≤ −2mVi ,

and so:

V +
i ≤MVi V −i ≤ −mVi −V +

i ≤ −mVi −V −i ≤MVi .

Combining these inequalities gives:

V −j − V
−
i ≤MVi V +

j − V
−
i ≤MVi V +

i − V
−
j ≤MVi V +

i − V
+
j ≤MVi

V −j − V
+
i ≤ −mVi V +

j − V
+
i ≤ −mVi V −i − V

−
j ≤ −mVi V −i − V

+
j ≤ −mVi .

These equations define the required relationships between a new clock, Vj , and an old clock

or continuous variable, Vi. If Vi and Vj are both new timers added at the same time, then

all relations are 0, as can be seen by noting that, in this case, mVi = 0 and MVj = 0.

Next, suppose Vi is a clock or a continuous variable already in the octagon, and Vj is a new

continuous variable. Since Vj is a continuous variable, the minimum and maximum values

are not required to be 0. Thus, suppose Vj satisfies the following conditions for the upper
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and lower bounds:

Vj ≤MVj −Vj ≤ −mVj ,

where MVj and mVj are not necessarily 0, and so:

V +
j ≤MVj −V +

j ≤ −mVj V −j ≤ −mVj −V −j ≤MVj .

It follows that:

V +
j − V

−
j ≤ 2MVj V −j − V

+
j ≤ −2mVj .

For the relations between Vi and Vj , no constraints are assumed, just like in the case for

zones. Accordingly, the constraints are:

V −j − V
−
i ≤ ∞ V +

j − V
−
i ≤ ∞ V +

i − V
−
j ≤ ∞ V +

i − V
+
j ≤ ∞

V −j − V
+
i ≤ ∞ V +

j − V
+
i ≤ ∞ V −i − V

−
j ≤ ∞ V −i − V

+
j ≤ ∞.

These constraints assume no relation between the variables. Usually, the tightening routine

is used next to find the best constraints.

5.2.3 Time Advancement
Time advancement for octagons is not quite as simple as it is for zones. With a zone,

one sets the upper bounds for the timers to the largest values possible given their ranges

of delays, and the continuous bounds are set to the largest possible values that can be

obtained without an inequality changing truth value. Furthermore, if the original zone

is exact, then the time advancement is exact, ignoring over-approximations due to some

constants not being evenly divisible by the current rate. The main point is that performing

time advancement on a zone produces a zone. With octagons, one can still set the timers

to (twice) their upper bounds and set the continuous variables’ upper bounds to (twice)

the largest possible values that can be obtained without changing the truth value of an

inequality. However, unlike with zones, an octagon must have one of the intercepts values

adjusted as well, namely, the intercept associated with the upper right diagonal. Moreover,

the time advancement process itself may introduce an over-approximation due to the exact

subset no longer being an octagon.
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As a concrete example, consider the three continuous variables V1, V2, and V3, all with a

rate of 1. Let O be the octagon consisting of the line segment joining (V1, V2, V3) = (1, 0, 0)

and (V1, V2, V3) = (0, 1, 0) (Fig. 5.11a). This octagon is defined by:

0 ≤ V1 ≤ 1 0 ≤ V2 ≤ 1 0 ≤ V3 ≤ 0

−V2 + V1 ≤ 1 −V3 + V2 ≤ 1 −V3 + V1 ≤ 1

V2 − V1 ≤ 1 V3 − V2 ≤ 0 V3 − V1 ≤ 0

V2 + V1 ≤ 1 V3 + V2 ≤ 1 V3 + V1 ≤ 1

−V2 − V1 ≤ −1 −V3 − V2 ≤ 0 −V3 − V1 ≤ 0.

Fig. 5.11b shows the exact set of states reachable from this octagon by allowing time

to advance up to 4 time units. Mathematically, this subset can be described as S =

O ⊕ {(t, t, t) | t ∈ [0, 4]}, where ⊕ is the Minkowski sum A⊕ B = {a+ b | a ∈ A ∧ b ∈ B}.

Intuitively, the effect of this sum is to allow the points in O to flow forward between 0 and

4 time units in the direction of the vector 〈1, 1, 1〉, that is, the vector that forms a positive

45◦ angle with each axis. Although the initial subset is an octagon, the subset in Fig. 5.11b

is not an octagon. Before presenting a proof of this fact, note that S consists of the points:

S = {(1− s+ t, s+ t, t) | s ∈ [0, 1] ∧ t ∈ [0, 4]}.

The projection of this set onto the V1, V3-plane is:

SV1,V3 = {(1− s+ t, t) | s ∈ [0, 1] ∧ t ∈ [0, 4]}.

From this set, it is seen that the difference V3 − V1 = t− (1− s+ t) = s− 1 is maximized

over s ∈ [0, 1] when s = 1, yielding V3 − V1 ≤ 0. Similarly, the difference −V3 + V1 =

−t+ (1− s+ t) = 1− s is maximized over s ∈ [0, 1] when s = 0, yielding V1− V3 ≤ 1. By a

similar analysis, V3 + V1 and −V3 − V1 must satisfy V3 + V1 ≤ 9 and −V3 − V1 ≤ 0. Thus,

any octagon containing S cannot have constraints tighter than:

V3 − V1 ≤ 0 −V3 − V1 ≤ 1 V3 + V1 ≤ 9 −V3 − V1 ≤ 0.

When the same processes is applied to the projections onto the V2, V3-plane and V1, V2-plane,

the tightest constraints for the other pairs of continuous variables are:

V3 − V2 ≤ 0 −V3 − V2 ≤ 1 V3 + V2 ≤ 9 −V3 − V2 ≤ 0

V2 − V1 ≤ 1 −V2 + V1 ≤ 1 V2 + V1 ≤ 9 −V2 − V1 ≤ −1.
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Figure 5.11: Exact space obtained by advancing the octagon consisting of the line joining
(1, 0, 0) and (0, 1, 0) forward 4 time units.

Finally, the extreme values for each variable are:

0 ≤ V1 ≤ 5 0 ≤ V2 ≤ 5 0 ≤ V3 ≤ 4.

Combining these inequalities gives the smallest octagon that contains S. The octagon that

they describe is shown in Fig. 5.12, which contains more than the original plane depicted

in Fig. 5.11b. In other words, the octagon contains the subset S, but it is not equal to S.

To be explicit, the point (1, 1, 1) belongs to the octagon, but it does not belong to S. If

(1, 1, 1) is in S, then t would be 1, since 1 = V3 = t. This fact, in turn, implies that s = 0,

since 1 = V2 = t + s = 1 + s. However, then V1 is given by 1 − s + t = 1 − 0 + 1 = 2,

contradicting V1 = 1.
Although it is sometimes necessary to over-approximate the subset obtained by ad-

vancing time, the over-approximation is no worse than what would be necessary for zones.

In fact, the best over-approximating zone is found by taking the constraints of the form

Y − X ≤ c from the octagon constraints. Furthermore, the algorithm for producing the

time advanced octagon is as simple as for zones. Similar to zones, advancing time nearly

amounts to setting the upper bound on each variable to the largest permissible value and

then recanonicalizing. The only exception is that the constraints of the form X+Y ≤ c have

to be adjusted as well, since they limit the forward progress of the variables involved. In two

dimensions, these constraints correspond to the −45◦ lines on the upper right corner of the

octagon. If these constraints were not adjusted, then the octagon would be prevented from

advancing. For example, the octagon of Fig. 5.12 can be obtained from O by setting the

upper bounds on the variables V1, V2, and V3 to 5, 5, and 4 and by adjusting the constraints

V3 + V1 ≤ 1, V2 + V1 ≤ 1, and V2 + V1 ≤ 1 to V3 + V1 ≤ 9, V2 + V1 ≤ 9, and V2 + V1 ≤ 9.
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Figure 5.12: Over-approximation required for advancing the octagon consisting of the line
joining (1, 0, 0) and (0, 1, 0) forward 4 time units.

Notice that if these constraints remain V3 + V1 ≤ 1, V2 + V1 ≤ 1, and V2 + V1 ≤ 1, then the

upper bounds can be tightened back to V1 ≤ 5, V2 ≤ 5, and V3 ≤ 4. For example, adding

the inequalities V2 + V1 ≤ 1 and −V2 + V1 ≤ 1 yields 2V1 ≤ 2 or V1 ≤ 1, which is the same

as for the original octagon O, thus preventing the variable V1 from advancing.
Although, nonexact time advancement is a problem that arises when three or more

variables are present, the upper right constraint is present in two dimensions. Consider

the octagon in Fig. 5.13a. Suppose the upper bound of x is set to 5 for the octagon and

the upper right negative 45◦ line is not moved. Then, this negative sloped line limits the

growth of x to no more than 4, resulting in the octagon not changing at all. However, if

the upper bound of x is set to 5, the upper bound of y is set to 4, and the upper right

constraint, y + x ≤ 6, is moved to y + x ≤ 7, then Fig. 5.13b is produced. With the upper

right constraint adjusted time is allowed to move 1 unit. Thus, when advancing time, not

only do the upper bounds on the variables have to be set to their maximum allowed values,

but the entries associated with the inequalities y + x ≤ c must be adjusted.
So, to advance time, one sets the upper bounds to the maximum allowable value and
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Figure 5.13: Two dimensional time advancement of an octagon. (a) Octagon before time
advancement. (b) One unit time advancement of the octagon in (a).

adjusts the Y +X ≤ c constraints. For this chapter, the constraints Y +X ≤ c are set to

Y + X ≤ ∞, that is, the constraints are effectively removed. By removing the constraint,

time advancement is not restricted. In general, removing the constraint is an additional

over-approximation; however, it is no worse of an over-approximation than if zones are used

alone, since a zone does not contain this type of constraint.

5.2.4 Warping
This section describes how warping is applied to octagons. Recall that warping is the

method used to find the best approximating zone after a rate for a continuous variable

has changed. Conceptually, determining how warping should be done for octagons is

straightforward. Start by replacing every variable v by the scaled quantity v
r , where r

is the rate of v, just as with zones. The resulting subset is, in general, not an octagon, so

replace the scaled subset with the smallest octagon in which it is contained. Finding the

over-approximating octagon amounts to solving a few algebraic equations that determine

where the new axis intercepts are in terms of the old intercept values. This procedure is

much the same as presented in [72] for warping zones, though the derivation used by this

chapter is slightly different. Half the equations involved for the positive rate case are the
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same as for zones. These equations are the ones that handle the upper and lower bounds,

as well as the positive 45◦ constraints. The other equations are introduced to handle the

negative 45◦ lines.

Warping only involves two variables, so let Vi and Vj be two continuous variables with

rates ri and rj . Since the values in the octagon are scaled, the variables used for the DBM

are x = Vi
ri

and y = Vj

rj
. Fig. 5.14a shows an arbitrary octagon in the x, y-plane. Now,

suppose that Vi is assigned a rate of r′i and Vj is a assigned a rate of r′j . Then, the new

scaling is u = Vi
r′i

and v = Vj

r′j
, and the new figure is shown in Fig. 5.14b. Let α = ri

r′i
and

β = rj

r′j
, then α and β transform the x, y-plane into the u, v-plane, that is,

u = αx v = βy.

As described in Sectionoct:sec:dbm, the octagon can be described as a DBM

D =



x+ x− y+ y−

x+ 0 −2mx b1 −b4

x− 2Mx 0 b3 −b2

y+ −b2 −b4 0 −2my

y− b3 b1 2My 0


for Fig. 5.14a and

D′ =



u+ u− v+ v−

u+ 0 −2mu b′1 −b′4
u− 2Mu 0 b′3 −b′2
v+ −b′2 −b′4 0 −2mv

v− b3 b1 2Mv 0


for Fig. 5.14b. In the DBM representation, the constants b1, b2, b3, and b4 are the y

intercepts of the bounding lines:

y − x ≤ b1 −y + x ≤ −b2 y − x ≤ b3 −y − x ≤ −b4.

and the constants b′1, b′2, b′3, and b′4 are the u intercepts of the bounding lines:

v − u ≤ b′1 −v + u ≤ −b′2 v − u ≤ b′3 −v − u ≤ −b′4.

The constant with a minus sign are those that are defining lower bounds. The goal of

warping is to determine mu, mv, Mu, Mv, b′1, b′2, b′3 and b′4 in terms of mx, my, Mx, My,

b′1, b′2, b′3 and b′4.
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Figure 5.14: Labeled octagon. (a) An octagon with y-intercepts labeled b1, b2, b3, and b4,
and vertices labeled p0, . . . , p7. (b) Warped octagon with β

α > 1.

The easiest values to determine are the new minimum and maximum values mu, mv,

Mu, and Mv. If α is positive, then

mu = αmx

Mu = αMx,

and if α is negative

Mu = αmx

mu = αMx.

That is, the new minimum and maximum values are obtained by undoing the previous

scaling and introducing the new scaling. Additionally, if α is negative, then the minimum
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and maximum values are swapped. The situation is analogous for mv and Mv. If β is

negative, then

mv = αmy

Mv = αMy,

and if β is negative

Mv = αmy

mv = αMy.

The intercepts require a little more care. One could simply do the same idea; however,

this results in a larger octagon than necessary. Instead the new relations are given by the

following possible two possible sets of equations. First assume that α > 0 and β > 0. When
β
α > 1, the possible equations are:

b′1 = (β − α)My + αb1

b′2 = (β − α)my + αb2

b′3 = (β − α)My + αb3

b′4 = (β − α)my + αb4,

and, when β
α < 1, the equations are:

b′1 = (β − α)mx + βb1

b′2 = (β − α)Mx + βb2

b′3 = (α− β)Mx + βb3

b′4 = (α− β)mx + βb4.

These equations are called the warping equations. When α is negative and β is positive,

the equations are identical except the constants are interchanged according the following

correspondence:

b1 7→ b3 b2 7→ b4 b3 7→ b1 b4 7→ b2.

Similarly, if α is positive and β is negative, the equations are identical except the constants

are interchanged according the following correspondence:

b1 7→ −b4 b2 7→ −b3 b3 7→ −b2 b4 7→ −b1.
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Finally, if α is negative and β is negative, the equations are identical except the constants

are interchanged according the following correspondence:

b1 7→ −b2 b2 7→ −b1 b3 7→ −b4 b4 7→ −b3.

The full derivation of these equations is given in Appendix C; however, the idea is

relatively straightforward. The basic idea is to find the x and y coordinates of each vertex

using the boundary lines. Find the transformed u and v coordinates of the new subset by

multiplying the x coordinates by α and the y coordinates by β. Use the new boundary

lines and the coordinates of the vertex to solve for the new intercept. This scheme gives the

warping equations. For determining how changing the signs affects these questions, one can

perform the coordinate change on the the equations and then compare new the equations

with the old equations.

5.3 Reachability Algorithm
The basic structure of the reachability algorithm remains the same as the depth-first

search algorithm used for zones (Algorithm 4.1). Throughout the rest of the algorithms,

minor differences are introduced based on how items are stored in the DBM for an octagon

versus the DBM for zones. For example, in accessing the upper bound for a zone, one looks

at the DBM entry mi,0 associated with Vi− t0, where t0 is the zero clock, which always has

a value of 0. For octagons, the upper bound entry is associated with V +
i + V +

i and is given

by the DBM entry m2i,2i. In this section, the algorithms that require a more substantial

modification are presented. These algorithms include AddT, AddV, advanceTime, dbmWarp,

and recanonicalize.
The algorithm addT shown in Algorithm 5.1 is simply a direct translation of the inequal-

ities in Section 5.2.2. The upper and lower bounds for the newly enabled transitions, Ennew,

are set to zero and all relationships between the newly enabled transitions are set to zero.

Finally, the relationships of Section 5.2.2 are set between the newly enabled transitions, the

previously enabled transitions, and the continuous variables.
In this algorithm, ub(O, x) is the entry of the octagon associated with the inequality

x+ − x− ≤ c and gives twice the upper bound, while nlb(O, x) is the entry of the octagon

associated with the inequality x−−x+ ≤ c and gives twice the negative of the lower bound.

The functions O(x±, y±) give the entry associated with y± − xpm ≤ c. With this function,

ub(O, x) = O(x−, x+) and nlb(O, x) = O(x+, x−).
The algorithm for adding a continuous variable v is similar and is shown in Algorithm 5.2.

Just like in the case of addT, the algorithm is a direct translation of the necessary inequalities
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Algorithm 5.1: addT(O,Ennew)

1 forall the t ∈ Ennew do
2 ub(O, t) := 0;
3 nlb(O, t) := 0;
4 forall the s ∈ O do
5 if s ∈ Ennew then
6 O(t+, s+) := 0;
7 O(t+, s−) := 0;
8 O(t−, s+) := 0;
9 O(t−, s−) := 0;

10 O(s+, t+) := 0;
11 O(s+, t−) := 0;
12 O(s−, t+) := 0;
13 O(s−, t−) := 0;
14 else
15 O(t+, s+) := nlb(O, s);
16 O(t+, s−) := ub(O, s);
17 O(t−, s+) := nlb(O, s);
18 O(t−, s−) := ub(O, s);
19 O(s+, t+) := ub(O, s);
20 O(s+, t−) := ub(O, s);
21 O(s−, t+) := nlb(O, s);
22 O(s−, t−) := nlb(O, s);

in Section 5.2.2. The upper and lower bounds are scaled according to their rate. Since a

change in sign flips the upper and lower bounds for a variable, when the rate is negative,

the variables are scaled and the bounds are swapped. Then, the relationships between the

newly added continuous variables and every variable in the octagon are set to ∞.

The algorithm for advancing time is advanceTime and is shown in Algorithm 5.3. The

algorithm starts by setting the upper bound of every transitions t to the upper bound on

the delay given by du(t). Next, the upper bounds for each continuous variable v are set

to the largest possible value before changing an inequality. This value is found by the

function checkIneq as described in Appendix B. Finally, the inequalities v+ + v′+ ≤ b3 are

removed for each pair of continuous variables by setting the bound to ∞. The assignment

is performed by using the function uc(O, v, v′) to access the element of O corresponding the

inequality v+ + v′+ ≤ b3.

The DBM warping procedure for octagons is shown in Algorithm 5.4. The algorithm

is in 2 stages. The first stage handles the warping according to the signs and the second

stage handles the warping according to the rates. In the first stage, if the rate of a variable

changes sign, then the upper and lower bounds must be swapped. This step is handled by
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Algorithm 5.2: addV(Q,R,O, v)

1 O := O ∪ v;
2 if R(v) then
3 ub(O, v) := 2 ∗ cdiv(qu(v), R(v));
4 nlb(O, v) := 2 ∗ cdiv(ql(v), R(v));
5 else
6 ub(O, v) := 2 ∗ cdiv(ql(v), R(v));
7 nlb(O, v) := 2 ∗ cdiv(qu(v), R(v));
8 forall the s ∈ O do
9 O(v+, s+) :=∞;

10 O(v+, s−) :=∞;
11 O(v−, s+) :=∞;
12 O(v−, s−) :=∞;
13 O(s+, v+) :=∞;
14 O(s+, v−) :=∞;
15 O(s−, v+) :=∞;
16 O(s−, v−) :=∞;

Algorithm 5.3: advanceTime(En,D,R, I,O)

1 forall the t ∈ O do
2 ub(O, t) := du(t);
3 forall the v ∈ O do
4 ub(Z, v) := checkIneq(En,R, I,O, v);
5 forall the v′ ∈ O do
6 uc(O, v, v′) := ∞;

the function swapBounds(O, x). In addition to the bounds, changing the sign of the rates

affects the relationships between pairs of variables. Thus, the second for-loop considers

the ordered-pair of relations y± − x±. The constraints b1, −b2, b3, and −b4 are swapped

according to which rates have changed. Thus, there is a case for whether the rate of

x became negative, the rate of y became negative, or both rates became negative. The

function swap(O, x, y, bi, bj) swaps the bi and bj constraints for the variables y±−x±. Which

bounds need to be switched is explained in Section 5.2.1. The next for-loop considers pairs

of variables x and y and handles the warping of the constraints according to the rates. As

explained in Section 5.2.1, the equations are different depending on which ratio of rates is

larger. To be succinct, the conditions are written according to the function warp given by:

warp(z1, z2, r1, r2) = (r2 − r1)z1 + r1z2. (5.1)

Finally, the bounds are warped according to their new rates and the new octagon is returned.
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Algorithm 5.4: dbmWarp(R,R′, O)

1 forall the x ∈ O do
2 if R(x)/R′(x) < 0 then
3 O := swapBounds(O, x);
4 forall the y ∈ O ∧ y 6= x do
5 if R(x)/R′(x) < 0 ∧R(y)/R′(y) > 0 then
6 O := swap(O, x, y, b1, b3);
7 O := swap(O, x, y, b2, b4);
8 else if R(x)/R′(x) > 0 ∧R(y)/R′(y) < 0 then
9 O := swap(O, x, y, b1, b4);

10 O := swap(O, x, y, b1, b3);
11 else if R(x)/R′(x) < 0 ∧R(y)/R′(y) < 0 then
12 O := swap(O, x, y, b1, b2);
13 O := swap(O, x, y, b3, b4);
14 forall the {x, y} | x ∈ O, y ∈ O, x 6= y do
15 α := |fdiv(R(x), R′(x))|;
16 β := |fdiv(R(y), R′(y))|;
17 if α > β then
18 O(x+, y+) := warp(ub(O, y), O(x+, y+), α, β);
19 O(x−, y−) := warp(nlb(O, y)), O(x−, y−), α, β);
20 O(x−, y+) := warp(ub(O, y), O(x−, y+), α, β);
21 O(x+, y−) := warp(nlb(O, y), O(x+, y−), α, β);
22 O(y−, x−) := O(x+, y+);
23 O(y+, x+) := O(x−, y−);
24 O(y−, x+) := O(x−, y+);
25 O(y+, x−) := O(x+, y−);
26 else
27 O(x+, y+) := warp(nlb(O, x), O(x+, y+), β, α);
28 O(x−, y−) := warp(ub(O, x)), O(x−, y−), β, α);
29 O(x−, y+) := warp(ub(O, x), O(x−, y+), β, α);
30 O(x+, y−) := warp(nlb(O, x), O(x+, y−), β, α);
31 O(y−, x−) := O(x+, y+);
32 O(y+, x+) := O(x−, y−);
33 O(y−, x+) := O(x−, y+);
34 O(y+, x−) := O(x+, y−);
35 forall the x ∈ O do
36 nlb(O, x) := cdiv(|R(x)|, |R′(x)|) ∗ nlb(O, x);
37 ub(O, x) := cdiv(|R(x)|, |R′(x)|) ∗ ub(O, x);
38 return O;
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The recanonicalization routine is described in Algorithm 5.5. This routine is a direct

translation of the algorithm presented in [12] for finding the tightest constraints. The

algorithm is a simple modification of the version for zones. Indeed, the first set of for-loops

is the Floyd’s all-pair algorithm, the same as is used for zones. The second set of for-loops

handles adjusting for the fact that the bounds are stored as twice the actual bound, while

the rest of the constraints are not.

5.4 Experimental Results
As described in Section 5.1, zones over-approximate the exact reachable state space of

an LPN. Since there are states that are not present in the actual system, it is possible that a

system can erroneously fail verification due to these additional states violating the property

instead of any actual states reachable by the system. By using octagons, some of these false

reachable states can be removed. The LPN in Fig. 5.3 provides a concrete example where

using zones results in a false negative, while using octagons provides the correct result (see

Table 5.1).
After implementing the octagon algorithm in LEMA (Section 2.2), the zone and octagon

model checkers are ran on the LPN in Fig. 5.3. The results are shown in Fig. 5.1. As

expected, the zone-based method indicates that the system fails while the octagon-based

method correctly indicates that the system passes verification.
Even though octagons are more accurate, the additional overhead for the representation

is not substantial. The space requirements of an octagon are about twice that for a zone:

n+1 versus 2n where n is the number of active timers and nonrate zero continuous variables.

Furthermore, the algorithm with the highest complexity, warping, has the same complexity

for octagons as for zones. So, although one expects octagons to be more costly, the cost is

not unreasonable. To explore the additional overhead incurred by using octagons instead

of zones, the verification scenarios of Chapter 4 are revisited below.
Recall that in Chapter 4, zones were applied to a sequence of capacitor models with each

Algorithm 5.5: recanonicalize(O)

1 for k := 0 to 2n− 1 do
2 for i := 0 to 2n− 1 do
3 for j := 0 to 2n− 1 do
4 O(i, j) := min(O(i, j), O(i, k) +O(k, j))
5 for i := 0 to 2n− 1 do
6 for j := 0 to 2n− 1 do
7 O(i, j) := min(O(i, j),floor(O(i, ī)/2) + floor(O(j̄, j)/2))
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Table 5.1: Results of running LEMA on the LPN in Fig. 5.3. The experiment was run on
a 64-bit machine with a 2.90 GHz Intel Core i7-4910MQ CPU with 4 cores and 32GB of
memory.

Method States Time (s) Verifies?
Zones 6 0.013 no

Octagons 6 0.007 yes

stage modeled by the LPN in Fig. 4.2. Verification is preformed using three different failure

conditions for the property in Fig. 4.5. In the case of Chapter 4, the point of these models

is that the previous translational approach is not sound in general and that the algorithmic

approach can sometimes find bugs faster, even with the extra overhead. In this section,

the point of the examples is to show the cost of using octagons versus zones. Note: the

octagon-based method is built on the zone-based and so it has the same ability to handle

ranges of rates and, consequently, is also sound.
The first case that is considered is when the failure condition on tFail in Fig. 4.5 is

¬(Vi ≥ 15). In this case, the failure condition never fires, so the algorithms perform a full

state space exploration. The results of running the zones and octagons with this condition

are shown in Table 5.2. For this example, it turns out that the same number of states is

found by both algorithms and they both time-out at the same number of capacitor stages.

Also, in each case verification does complete, the octagon-based method takes no more than

2 times as long to finish.
When the rate optimization is applied, the results are quite different, as seen in Table 5.3.

In this example, the state counts are different with the octagons state count growing more

rapidly than for zones. The runtimes are still comparable for these small examples; however,

with the rising state counts, it is likely that the octagons runtime will rapidly outpace that

for zones.
The number of events fired during the state exploration process provides additional

insight into the cost of octagons versus zones. Table 5.4 shows the number of events fired

for zones and octagons, with and without optimization. For the zones and octagons without

the rate optimization, the number of events fired is the same; however, the runtime for

the octagons is increasing more rapidly than for zones. Thus, the octagon approach is

more costly than for zones. A similar result is suggested by comparing zones with rate

optimization to octagons with rate optimization. Although, with octagons, the number

events fired is less, the runtime for the octagon approach is still more than for zones.
For the second example, the failure condition is set to Vi ≥ 30. In this case, a failure is
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Table 5.2: Comparison of zones and octagons with a tFail enabling condition of ¬(Vi ≥ 18).
All cases verify as correct. TIMEOUT indicates a runtime of more than 12 hours.

Zones Octagons
# Caps Time (s) States Time (s) States

1 0.188 59 0.204 59
2 2.01 144 3.081 144
3 40.085 279 73.829 279
4 15311.948 1148 26858 1148
5 TIMEOUT - TIMEOUT -

Table 5.3: Comparison of zones and octagons with a tFail enabling condition of ¬(Vi ≥ 18).
All cases verify as correct.

Zones (Optimization) Octagons (Optimization)
# Caps Time (s) States Time (s) States

1 0.108 35 0.118 55
2 0.457 56 0.512 140
3 0.941 65 1.042 262
4 2.954 105 4.809 1498
5 4.081 207 6.497 2122

Table 5.4: The total number of event firings for the property with tFail Vi ≥ 18.
Event Count (Vi ≥ 18)

# Caps Zones Zones (Opt) Octagons Octagons (opt)

1 313 106 313 106
2 29378 6584 29378 1576
3 805024 44372 805024 5997
4 174330848 15395081 174330848 59993
5 - 414627973 - 78603

expected. The results are shown in Table 5.5. As before, the zones find a failure, and the

octagons find a failure. As with the first example, the state counts are the same; however,

the runtime for octagons increases more rapidly, resulting in the last example not completing

before reaching 5 hours. Again, the increase in the runtime is due to the cost of running

the octagons algorithm and not due to an increase in the number of event firings since the

number of event firings between the two approaches is the same (Table 5.6).

The final example has the failure condition on tFail as ¬(Vi ≥ 30). This case is the one

which the translational approach indicated that the system passed verification, when the
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Table 5.5: Comparison of zones and octagons with a tFail enabling condition of Vi ≥ 30
that should not verify to be correct. TIMEOUT indicates a runtime of more than 5 hours.

Zones Octagons
# Caps Time (s) States Correct? Time (s) States Correct?

100 6.504 233 no 269.648 233 no
200 88.599 723 no 4131.728 723 no
300 287.089 875 no 18127.973 875 no
400 710.162 1127 no 65278.836 1127 no
500 3418.39 1967 no TIMEOUT - -

Table 5.6: The total number of event firings for the property with tFail Vi ≥ 30.
Event Count (Vi ≥ 30)

# Caps Zones Octagons

100 232 232
200 722 722
300 874 874
400 1126 1126
500 1924 -

system does not. As is seen in Table 5.7, both the zones and the octagons get the correct

verification result. The octagon-based model checker is able to get the same result, since it

uses the same reset rates methodology as described for zones in Chapter 4. When finding

the error, this time it is the octagons that have the lower state counts and better runtimes.

For 8 capacitor stages, the zone-based method completes in more than 8 hours, while the

octagons complete is less than a minute. The difference in the runtimes is due to the error

lying much sooner on the search path of the octagon algorithm than for zones. Further

evidence of this fact is seen in Table 5.8 where the number of event firings is much less for

octagons than for zones for 2-5 stages.

5.5 Conclusion
Zones provide efficient methods for finding the state space of LPNs. Indeed, most of the

major algorithms have a complexity of O(n2) or O(n3). Although zones were originally used

to verify systems with continuous variables that have a rate of 1 (that is, timers), zones have

been successfully extended to LPNs where the continuous variables have rates other than



96

Table 5.7: Comparison of zones and octagons for the property shown in Fig. 4.5 that
should not verify to be correct.

Zones Octagons
# Caps Time (s) States Correct? Time (s) States Correct?

1 0.146 52 no 0.134 49 no
2 0.534 143 no 0.211 35 no
3 2.00 280 no 0.449 122 no
4 13.6 481 no 0.866 222 no
5 130 877 no 1.427 418 no
6 1047 1649 no 2.413 806 no
7 860 3798 no 5.343 1574 no
8 29709 7489 no 14.811 3116 no

Table 5.8: The total number of event firings for the property with tFail ¬(Vi ≥ 30).
Event Count (¬(Vi ≥ 30))

# Caps Zones Octagons

1 169 165
2 1724 359
3 25597 1091
4 288859 3097
5 2159222 8397

1. Furthermore, Chapter 4 of this dissertation extends zones to LPN with ranges of rates.

However, due to the rigidity of zones, states must be added during the state exploration

process that are not actually reachable. The primary source of these additional states is

the warping process. The necessary over-approximations are greatest when the rates of two

variables differ in sign, so that one is positive and the other is negative. With octagons,

the negative approximation can be improved so that it is no worse than for positive rates,

though over-approximations are not eliminated.

In addition to over-approximations being necessary, time advancement for octagons also

requires a degree of over-approximation. The source of this over-approximation is related

to the presences of the negative 45◦ lines. The crux of the matter is that the advancement

in three dimensions of one of these negative 45◦ line segments belongs to a plane of the form

ax + by + cz = d, where none of the constants a, b, or c is zero. However, the bounding
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hyperplanes for octagons are of the form ±vi±vj ≤ c and are not able to capture this plane.

Although this over-approximation is not necessary for zones, the over-approximation for

octagons is not worse than for zones, since, in the case of zones, the original 45◦ line would

be over-approximated by a rectangle, leading to additional states in the timed-advanced

zone.

Although the methods of warping and time advancement are new, the basics methods

of using octagons have been studied before in the context of software state exploration,

such as how to represent octagons as DBMs, how to access the extreme rates, and how to

restrict the octagon. Thus, the contribution of this chapter is to add suitable extensions

to the method of zones to fill out the necessary algorithms for applying octagons to AMS

model checking. With these extensions, it is concretely demonstrated that zones can lead

to false negatives that octagons can avoid.



CHAPTER 6

CASE STUDIES

To formally verify an AMS circuit, one needs to have an ability to create a model of the

circuit, specify properties, and have a method to check the model against the property. This

dissertation improves on the last two of these requirements. With Chapter 3, the ability to

express properties in LAMP is increased, while Chapter 4 extends zones to verify models

with ranges of rates, and Chapter 5 introduces the use of octagons in the formal verification

of AMS circuits. Armed with the ability to verify models with ranges of rates, LEMA’s

zone-based model checker can now be applied to every model that LEMA’s model generator

can produce. Previously, the zone-based method was not able to verify every model, since

some models are not amenable to translational approach discussed in Section 4.5. The

octagon-based model checker is built on the same concepts as the zone-based model checker,

and so it is also applicable to models with ranges of rates. In this chapter, the zone and

octagon-based verification flows are demonstrated using two case studies.

This chapter demonstrates the new methodology with the help of two circuits: a switched

capacitor integrator and a digital C-element whose inputs are driven by RC networks. In

the case of the switched capacitor integrator, the original property of avoiding saturation

is added by directly creating a simple assertion LPN, and the model that is learned is

translated to avoid the ranges of rates which are produced. With the current methodology,

the property is written in LAMP and the translational approach becomes unnecessary. In

the case of the C-element, the SPICE simulations were provided by a third party, as well

as the property that the inputs are ordered. It is shown how to codify this property in

LAMP, learn the model, and verify the property against the model using the zone-based

and octagon-based model checkers.

The chapter is laid out as follows: Section 6.1 focuses on a switched capacitor integrator.

In [74], this circuit is analyzed with the use of LEMA’s zone-based model checker and

translation of the model. Section 6.1 shows the how the new flow is applied in the case

of the switched capacitor integrator. Section 6.2 demonstrates the verification of an AMS
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circuit built from a digital C-element and some RC networks presented in [34]. Section 6.3

provides the conclusion.

6.1 Switched Capacitor Integrator
A switched capacitor integrator is a particular type of integrator circuit that uses a

pair of transistors and a capacitor to implement a type of resistor. A schematic diagram

of a switch capacitor is shown in Fig. 6.1 (Fig. 2.1 of [74]). The basic operation of any

integrator is to take an input signal, Vin, and provide the integral of the signal at Vout. A

typical application of a switched capacitor is in discrete-time integrators where they are

used to accumulate charge. One particular difficulty with switch capacitors is that they can

accumulate more charge than desired and end up in the saturation bands of the amplifier.

In [74], the switch capacitor integrator of Fig. 6.1 is considered under the environment of

an input square-wave signal running at 5 kHz with a low of −1000 mV and a high of 1000

mV. Since the integral of a square wave is a triangle wave, one expects the output of the

switched capacitor integrator to be a triangle wave that has a rate of ±20 mV/µs. To

analyze the circuit, two simulations are run with different values for C2. In the first case,

C2 is given a value of 23 pF and 27 pF, resulting in slew rates of ±22 mV/µs and ±18

mV/µs, respectively.

Even though these rates are quite different, under simulation, neither set of conditions

lead to saturation, which is seen in the simulation traces of Figs. 6.2 and 6.3. However,

as is indicated by [74], an experienced analog designer would know that this circuit has a

potential problem for excessive charge build up. To find this potential flaw, the simulation

freq(Vin) = 5 kHz
Vin = ±1V

Φ2Φ1

C1

Q1
Vin

Vout

C2

C2 = 25 pF
C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz
dVout/dt = ±20 mV/µs

Q2 +

−

Figure 6.1: A schematic drawing of a switched capacitor integrator.
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Figure 6.2: SPICE simulation of the switched capacitor integrator with C2 = 23 pF.

traces are run through LEMA’s model generation procedure, and the LPN in Fig. 6.4 is

produced. As observed in Chapter 4, LEMA’s model generation process often produces

LPNs with ranges of rates, which is the case with the switched capacitor integrator circuit.

The property is added as a single transition that checks that the output voltage does not

exceed 2000 mV or −2000 mV. In [74], this property is added by hand; however, it is also

possible to encode the property in LAMP, as is shown in Fig. 6.5. The assertUntil(A,B)

statement ensures that A remains true until B becomes true. If B is false, this statement

requires that A is always true, since B cannot become true.

To verify this model,[74] relies on the translational approach referred to in Chapter 4,

whereby the range of rate assignments are replaced with single rate assignments to the lower

bounds and new transitions are added that optionally set the rates to their upper bounds.

Using zones on the newly produced LPN does find an error trace where the charge continues

to build. However, with the approach of Chapter 4, this additional translation step of the

LPN is no longer necessary. LEMA can run on the LPN produced by the model generation

process directly. Indeed, when the new version of the zone-based model checker is run on

the LPN in Fig. 6.4, the error is also found.

The common method of removing the excessive charge problem is to add a resistor to

the feedback loop. A schematic of the new circuit is shown in Fig. 6.6 (Fig. 6.11 of [74]). By

running simulation traces (Fig. 6.7) from this new circuit through LEMA’s model generator,

one obtains the LPN in Fig. 6.8. As before, the approach in [74] is to translate the model
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Figure 6.3: SPICE simulation of the switched capacitor integrator with C2 = 27 pF.

to remove any ranges of rates. After running verification, it is found that the model, again,

fails verification. Similarly, with the approach of this dissertation, the model of Fig. 6.8

does not pass verification. So, in both cases it is found that the model does not satisfy

the property, even with the fix; however, the approach of this dissertation, again, is able

to run on the model produced and does not require an additional translation step. The

first row in Table 6.1 shows a comparison of the approach in [74] (labeled Translational),

the zone-based approach of this dissertation (labeled Algorithmic), and the octagon-based

approach of this dissertation (labeled Octagons). All three approaches finish in less than a

second. The approaches of this dissertation find the error in one-fifth the number of states.

The error in this LPN model is due to the model not capturing the new circuits behavior

accurately enough. To correct this, the thresholds are changed in the model generation

process producing the LPN in Fig. 6.9. In this model, more states are added to divide

up the continuous state space of the continuous variables. After changing the model to

single rate assignments, [74] notes that the model now satisfies the property. Although it

is known that, in general, the translation approach can lead to false positives (Section 4.5

and Section 2.6 of [74]), under certain conditions, the translation is sound, which is the case

for this particular LPN model. However, with the approach of this dissertation, one does

not need to check if the LPN satisfies any conditions to know if the verification results are

correct. Running the approach of Chapter 4 on the model in Fig. 6.9 it is verified that the

model does satisfy the property; there is no need to confirm that the model satisfies any
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Vout = −1000
V ′out = [17, 24]
Vin = −1000
V ′in = 0

t4
{¬(Vout ≥ 0)}

[0]
< V ′out := −24,−17] >

p5

t5
{¬(Vin ≥ 0)}

[0]
< V ′out := [17, 24] >

p6

t6
{Vout ≥ 0}

[0]
< V ′out := [17, 24] >

t0
{¬(Vout ≥ −2000) ∨ Vout ≥ 2000}

[0]

t1
{true}
[99, 101]

< Vin := [999, 1000] >

p2

t2
{true}
[99, 100]

< Vin := [−1000,−999 >

p1

t3
{Vin ≥ 0}

[0]
< V ′out := [−24,−17] >

p3

p0p4

Figure 6.4: Generated LPN model of a switched capacitor integrator.

property saturation {
real Vout;
assertUntil((Vout >= -2000)&(Vout >= 2000), false);
}

Figure 6.5: Saturation property for the switch capacitor integrator. The false keyword is
not officially supported but can be constructed using a Boolean expression with its negative.
For example, ∼(Vout >= 0) & (Vout >= 0).

additional properties. Furthermore, as the second line in Table 6.1 shows, the number of

required states is cut in half. Just as before, the runtimes of all the algorithms complete is

less than a second.

6.2 C-element
For a second case study, a digital C-element whose inputs are driven by RC-networks

is studied [34]. Simulation traces for this circuit are provided by Vladimir Dubikhin from

Newcastle, along with a property to verify that one of the two input values changes before

the second.
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Figure 6.6: The switch capacitor integrator of Fig. 6.1 with a feedback resistor. The
resistor is added in the form of transistors Q3 and Q4 together with capacitor C3.

A C-element is a type of digital circuit that has the following behavior: when all the

inputs are false, the output is false; when all the inputs are true, the output is true; and

when the inputs are different, the output retains the previous value. In the case of two

inputs, A and B, the output, C, can be described by C = AB + C(A+B). The circuit in

Fig. 6.10 creates a simple AMS circuit by driving the inputs of a C-element with two RC

networks. The RC circuits take as input the inverted output of the C-element and eventually

they produce the same output. So, when C is high, the input into the RC networks is low

and each RC network starts to fall. Eventually, both A and B become low, changing the

output C to low. The inverter then makes the input into the RC networks high. This high

value causes the values A and B to become high. The C-element then outputs high and the

cycle repeats. A SPICE simulation trace of the circuit is shown in Fig. 6.11.

The speed at which A and B change between high and low depends on what values are

chosen for the resistor and capacitor. In particular, the values can be chosen so that A

changes faster than B. Using LAMP, this condition can be described as requiring that A

goes high before B and A goes low before B. An example of such a property is shown is
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Figure 6.7: SPICE simulations traces for the corrected switched capacitor circuit of
Fig. 6.6.

Fig. 6.12. Since the RC circuits are analog circuits, A, B, and C are continuous variables.

The high value is considered greater than 5000, and the low value is less than 5000. Thus,

the property starts by declaring A, B, and C as real variables. Next, an always loop is

added to repeatedly check the property of A changing before B. The assertUntil ensures

that B cannot go high before A. After A goes high, the property waits for B to go high.

Then, the second assertUntil ensures that B stays high until A goes low. Finally, after A

goes low, the property waits for B to go low and the check repeats. The compiled property

LPN for this property is shown in Fig. 6.13.

With the property set, some values are chosen for R and C so that A changes faster

than B. The circuit is then simulated using SPICE and the simulation traces are passed

through the model generator. The resulting C-element LPN is in Fig. 6.14, the R1C1 LPN

is in Fig. 6.15, and the R2C2 LPN is in Fig. 6.15. To connect the different LPNs together in

LEMA a top-level model is created with modules for each of the LPNs, including the model

LPNs and the property LPN. A screenshot of the top-level model in LEMA is shown in

Fig. 6.16. Each module represents one of the LPN models or the property. Module C1 is the

C-element LPN depicted in Fig. 6.14. Modules C2 and C4 are LPNs for the R1C1 network

in Fig. 6.15. The C2 module is the LPN in Fig. 6.15a and sets the rates for charging and

discharging the capacitor, while the C4 module is the LPN in Fig. 6.15b and set the output

A. The modules C3 and C4 are similar to C2 and C4, but they handle the R2C2 network
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Vout = −1000
V ′out = [18, 32]
Vin = −1000
V ′in = 0

t4
{¬(Vout ≥ 0)}

[0]
< V ′out := [−32,−18] >

p5

t5
{¬(Vin ≥ 0)}

[0]
< V ′out := [18, 32] >

p6

t6
{Vout ≥ 0}

[0]
< V ′out := [9, 22] >

t0
{¬(Vout ≥ −2000) ∨ Vout ≥ 2000}

[0]

t1
{true}
[99, 101]

< Vin := [999, 1000] >

p2

t2
{true}
[99, 100]

< Vin := [−1000,−999] >

p1

t3
{Vin ≥ 0}

[0]
< V ′out := [−22,−9] >

p3

p0p4

Figure 6.8: Generated LPN model of a switched capacitor integrator with feedback
resistor.

Table 6.1: Comparison of the verification results. for a switched capacitor integrator using
the approach of [74], the zone-based approach of Chapter 4, the octagon-based approach of
Chapter 5.

Translational Algorithmic Octagons
Model Time (s) States Time (s) States Time (s) States

Original < 1 20 < 1 9 < 1 9
Corrected < 1 73 < 1 44 < 1 42

and correspond to the LPNs in Fig. 6.17. The property LPN of Fig. 6.13 is added as module

C6. An example simulation for the model portion of the LPN is shown in Fig. 6.18.
After the property LPN in Fig. 6.13 is combined with the LPNs in Figs. 6.14, 6.15,

and 6.17, both the zone-based and octagon-based model checkers are run. In both cases,

the property is satisfied (first row in Table 6.2). Thus, it is verified that the values of the

resistors and capacitor are chosen correctly to ensure that A changes first.
As another check with this property, the values of A and B are reversed. Reversing the

signals A and B results in a property that checks for B to change before A. In the top-level

model in Fig. 6.16, switching A and B in the property amounts to reversing the input ports
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Vout = −1000
V ′out = [26, 32]
Vin = −1000
V ′in = 0
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[0]
< V ′out := [9, 16] >

p2
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[0]
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p3 p10

Figure 6.9: Generated LPN model of a switched capacitor integrator with more thresholds.
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Figure 6.10: Digital C-element with inputs driven by RC circuits.

Figure 6.11: SPICE simulation data for Fig. 6.10.

of module C6 by assigning the variable A to input B and the variable B to input A. With

this change, the zone and octagon-based model checkers both, again, indicate that the

C-element circuit fails (second line in Table 6.2). This result provides further the evidence

that signal A does, indeed, change before B. A provided error trace for this failure is:

s0
C2 t8−−−−−−−→ s1

C4 t2−−−−−−−→ s2
C3 t6−−−−−−−→ s3

C5 t2−−−−−−−→ s4
C1 t2−−−−−−−→ s5

RC1≥11683−−−−−−−→ s6
C2 t7−−−−−−−→ s7

RC1≥23367−−−−−−−→ s8
C2 t0−−−−−−−→ s9

RC2≥17566−−−−−−−→ s10

C3 t0−−−−−−−→ s11
C4 t1−−−−−−−→ s12

C6 tFail0−−−−−−−→

Each transition’s label is prefixed with the module it is related to in the top-level model

Fig. 6.16. Before following the trace, the initial condition must be known. To determine

the initial conditions, one takes the initial value for the variable from the LPN that has
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property A faster B {
real A;
real B;
always {

assertUntil(∼(B>=5000), A>=5000);
wait(B>=5000);
assertUntil(B>=5000, ∼(A>=5000));
wait((∼B>=5000));
}

}

Figure 6.12: Property for the circuit in Fig. 6.10 requiring that A changes before B.

that variable as an output, that is the LPN that has an assignment to the variable. For

example, the initial condition for C is found by looking at the LPN for the C-element

(Fig. 6.10), since this LPN is the one that set the value of C. Following this convention, the

initial values of the continuous variables are A = 0, B = 0, C = 10000, RC1 =, RC2 = 0,

RC ′1 = 32, and RC ′2 = 16. The trace starts by firing the t8 transition in Fig. 6.15a, which

is enabled since the initial condition of C is 10000, that is, C is high. Next, the transition

t2 in Fig. 6.15b fires, setting A low. These two transitions setup the initial conditions for

the R1C1 network. Similarly, the transition t6 of Fig. 6.17a fires since C is high, followed

by transition t2 in Fig. 6.17b firing, setting B low. These two transitions setup the initial

conditions for the R2C2 network. Since A and B are initially low, the assignments to these

variables are vacuous. The model generator includes them in case of multiple simulation

traces that may have different initial conditions. Now, the transition t2 of Fig. 6.10 fires,

setting C low. Next, RC1 increases enough to cross the 11683 boundary, so the value of the

inequality RC1 ≥ 11683 changes from false to true, enabling transition t7 of Fig. 6.15a.

This transition then fires and sets the rate of RC1 to 32. This assignment is vacuous in this

case; however, it is possible for the rate to be changed to 33 by a rate change event since

RC1 is given an initial range of rates [32, 33]. After t7 fires, RC1 increases enough to cross

the 23367 boundary and the inequality RC1 ≥ 23367 changes from false to true, enabling

the transition t0 in Fig. 6.15a and transition t1 in Fig. 6.15b. The transition t0 in Fig. 6.15a

fires first, since its delay is zero, and sets the rate of RC1 to 20. The minimum delay on t1 in

Fig. 6.15b is large enough that RC2 crosses the boundary 17566 before the delay is reached.

Thus, the inequality RC2 ≥ 17566 changes from false to true, enabling the transition t0 in

Fig. 6.17a. This t0 transition has a zero delay and so, it fires immediately and sets the rate

of RC2 to 12. Finally, enough time elapses for the transition t1 in Fig. 6.15b to fire and
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tF ail0
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{¬((B ≥ 5000))}

[0]

p3
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Figure 6.13: The property LPN associated with Fig. 6.12.

the value of A is set to 10000, that is, A is set high. This change of A enables the failure

transition tfail0 in Fig. 6.12, which fires immediately and signals the failure. To understand

why this failure transition is enabled, recall that the inputs of the property module C6 are

reversed, effectively switching A and B in the property LPN of Fig. 6.12. Thus, the enabling

condition of tfail0 is ¬(¬(A ≥ 5000)) ∧ ¬(B ≥ 5000) or (A ≥ 5000) ∧ ¬(B ≥ 5000). Since

A is set high by t1 and B is still low, that is, B = 0, this condition is satisfied. On a higher

level, A changes before B, while the property is designed to check that B changes before

A, when the senses of A and B are swapped.

6.3 Conclusion
This chapter applies the techniques of this dissertation on two case studies. The first

case study is a switched capacitor integrator. In [74], the switched capacitor is analyzed

with the aid of LEMA’s model generator and zone-based model checker. Since the model

generator produces an LPN with ranges of rates, the zone-based model checker does not

directly apply. Thus, the LPN model is translated into single rate assignments that first set

the rate to the lower bound and then to the upper bound rate once. The verification results

are used to detect an error in the circuit design and to verify the corrected circuit. This
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A = 0
B = 0

C = 10000

t0
{(¬((A ≥ 5000)) ∧ ¬((B ≥ 5000)))}

[20]
< C := 10000 >

p1

t1
{((A ≥ 5000) ∧ (B ≥ 5000))}

[20]
< C := 0 >

p0

t2
{true}

[0]
< C := 0 >

p2

Figure 6.14: An LPN model of a C-element.

approach is sufficient for the switched integrator, but it requires a check to ensure that the

translation is sound before accepting any positive verification results. Using LAMP and the

extensions to the zone-based model checker, the same conclusions are recovered without the

need to translate the model. Furthermore, since the method of this dissertation applies to

every model produced by the model generator, there is no need to determine whether the

method applies in order to accept a positive verification result. The results of the extended

zone-based model checker are also backed up by the new octagon-based model checker.

The second case study is an AMS circuit comprised of a digital C-element whose inputs

are driven by RC networks. Simulation traces were provided by Vladimir Dubikhin of

Newcastle along with the property that one input signal should change before the other.

This property is implemented in LAMP by means of ensuring that A goes high before B

and then, that A goes low before B. It is verified that the property holds. The signals are

also switched in the property, which corresponds to B going high before A and then, B

going low before A. With the new property, the system fails, strengthening the results that

A switches first.
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Figure 6.15: An LPN model of the R1C1 network.
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Figure 6.16: LEMA screenshot of a top-level model connecting the LPNs for each RC-
network, the C-element, and the property LPN. The modules are: C1 – the C-element LPN
(Fig. 6.14), C2&C4 – the R1C1 network LPN (Fig. 6.15), C3&C5 – the R2C2 network LPN
(Fig. 6.17), and C6 – the property LPN (Fig. 6.12).
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Figure 6.17: An LPN model of the R2C2 network.
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Figure 6.18: Simulation of the C-element models.

Table 6.2: Results for verifying the C-element network.
Zones Octagons

Property Time (s) States Verifies? Time (s) States Verifies?

Fig. 6.12 delayed. 1.9 243 yes 2.6 246 yes
Reversed Fig. 6.12 < 1 13 no < 1 13 no



CHAPTER 7

CONCLUSION

As devices have scaled, there has been a disproportionate benefit for digital circuits ver-

sus analog circuits. The performance of digital designs doubles about every two years, while

for analog designs, it take around five to six years for performance to double. The difference

can be traced to the different demands of transistors between the two methodologies and

the difference that scaling has on these demands. With the digital abstraction, transistors

operate in the saturation region and an emphasis is placed on threshold voltages. Scaling a

device naturally decreases the threshold voltage, which leads to lower power consumption

due to switching. Though the negative effects, such as increased leakage currents and more

apparent small channel effects, have started to plague the digital world, the performance

gap still remains large.

In contrast to the positive effects of scaling for digital designs, scaling often has negative

effects for analog. With analog designs, transistors are often required to operate in the

linear region. With smaller sizes, and corresponding smaller voltages, this region decreases,

making the allowable ranges smaller. Moreover, as the smaller voltages start approaching

the ambient noise levels, it becomes increasingly difficult to distinguish the signal from the

noise.

With scaling benefiting digital more than analog, it is tempting to only consider digital

designs for small devices. However, most applications requiring small designs also need to

interface with the real world, which is inherently analog. So, although a design may use

digital circuitry to scale, a portion of the design must be reserved for the analog domain,

leading to digitally-intensive AMS circuits.

The combination of digital processing power with analog interfacing helps to scale

devices; however, it makes the verification problem more difficult. The common analog

verification method of SPICE does not scale well due to the numerous transistors intro-

duced by the digital design, while the various digital methods do not natively support the

continuous nature of analog circuitry.

This dissertation improves the verification of digitally-intensive AMS circuits by improv-



116

ing the ability to specify properties and developing sound, efficient extensions for the formal

verification of AMS designs.

7.1 Summary
This dissertation improves the verification of AMS circuits by generalizing the LAMP

property language, extending the method of zones to systems with ranges of rates, improving

the accuracy of zones by introducing octagons to the verification domain, and applying these

methods to some case studies.

In order to perform any verification task, one needs a way to specify what is the correct

behavior for the circuit. In order to define this specification in a way that is amenable to

formal methods, one usually uses a type of formal specification language. These languages

are often either based on assertion languages or inspired by temporal logics. An example

of the former is RT-SVA, which is inspired by SVA, while STL is an example of the latter.

Though powerful, these languages tend to be difficult to use and to convince analog designers

to learn. They also tend to be difficult to translate into the property LPNs needed by

LEMA for model checking. In contrast, LAMP is a simple intuitive language that is easy to

translate; however, it is still a nascent language and cannot specify every property of interest.

By adding a delay statement and a conditional always block, one is able to ignore transient

periods without requiring a check and enable a check to be aborted if the environment

changes.

Properties alone are not very useful; one also needs an ability to check whether an AMS

model satisfies the property. Zones provide efficient methods for verifying systems that

have discrete events and constant rate continuous variables. Though less accurate than

other methods available, zones have algorithms whose complexity are no more than O(n3),

where n is the number of nonzero rate continuous variables and active transitions. Although,

through model translation these methods have been adapted to continuous variables with

ranges of rates, they do not handle cases where the continuous variables are sampled more

than once. One method to soundly extend zones to such cases is to change a range of rates

into a set of rate events, where the rate is initially set to the lower bound, is allowed to be

set once to the upper bound rate, and is then reset to the lower bound rate after any event.

On the face of it, such a method seems to maintain the complexity of a nondeterministic

switching point. However, zone-based reachability algorithms can be adapted to handle

these rate changes by simply adding a rate change event and using warping. The zone

representation itself applies the rate change to every point in the space, effectively capturing
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all the switching points. This situation is analogous to a zone’s ability to collect together

states into equivalence classes.

With the extension of zones to models with ranges of rates, the efficient methods of

zones are able to verify a large class of models, including all types of models produced by

LEMA’s model generator. However, the efficiency comes at the cost of over-approximating

the actual reachable state space. In particular, by only allowing positive 45◦ constraints

(x−y ≤ c), zones are often unable to do better than rectangles for representing the reachable

state space after a continuous variable has changed from a positive to a negative rate

or vice versa. By adding in −45◦ constraints (−x − y ≤ c and x + y ≤ c), the over-

approximations required for switching between positive and negative rates is no worse than

the normal over-approximations required for warping. Additionally, octagons have a similar

DBM representation that leads to the associated algorithms, again, having a complexity of

no more than O(n3). By increasing the accuracy of the state space representation, one

correspondingly removes some potential false negatives.

After adding to the ability to specify properties, extending the zone-based reachability

algorithms to properly handle ranges of rates, and increasing the accuracy via octagons,

the last step is to apply the methods to more real-world examples. The first example

is a switched capacitor integrator. The integrator has been studied before with LEMA’s

zone-based model checker and model generator. However, since the model generator pro-

duces models with ranges of rates, it is necessary to translate the model into single rate

assignments. Although the previous translational approach was adequate for the integrator,

it was not a general approach for any model that could be generated. With the method of

this dissertation, the translational step is unnecessary, and the method applies in general.

Furthermore, all verification results obtained by the previous approach are reproduced with

the approach presented in this dissertation with at least an order of two reduction in state

count. As an additional example, an AMS circuit is analyzed that centers around a digital

C-element driven by analog RC networks. It is successfully verified that the changes in the

inputs are ordered.

7.2 Future Work
Creating and verifying properties for AMS circuits is a difficult problem that currently

has no industrial solution. The benefits are clear: no need to perform tedious checks directly

on wave forms, reduction of human error, more automated processes, more assurance of cor-

rect behavior, etc. However, no methodology has yet reached a critical mass of usability and
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interest for it to become more than a sideline interest for companies. Partly, this situation

is due to a difficulty in convincing analog designers to learn a new paradigm of design. On

the other hand, the lack of serious interest is due to none of the methodologies being mature

enough to move into the production setting. Hence, there are many opportunities for future

work.

7.2.1 Extensions To LAMP
LAMP has only been in development for a few years and, even with the current ex-

tensions, still has places to improve before it becomes a full featured language that is

able to specify all properties of interest. LAMP provides a procedural semantics that is

different than most temporal logics, but it is currently unclear to what extent such semantics

can reproduce the property checks available in temporal logics. Similarly, it should be

determined exactly what subset of properties LAMP can verify. With a more thorough

evaluation of the properties LAMP can and cannot describe, one can better gauge where

the language fits in terms of expressiveness. This knowledge, in turn, will help determine

where improvements can be made. Of particular interest is the comparison of LAMP with

PSL, RT-SVA, and STL.

As another direction, the language can be extended further. A simple extension is

to add support for different units. Currently, the properties have to be added with the

appropriate scaling determined by hand. In particular, the scaling has to ensure that the

values are integers and match with the scaling introduced by the model generation process

[17, 66, 73, 74]. By adding units, context can be provided allowing the tool to determine

what the needed scaling should be.

In addition to adding support for units, it is also useful to have the ability to specify

parameters. With parameters, one can create properties that can be easily modified by

changing a few numbers. For example, if a model is going to be tested for several different

parameter values, the property could be defined in terms of these parameters, making it

easier to adapt the property to the given version of the model.

7.2.2 Improving Range of Rate Efficiency
Zones provide an efficient means of performing state space reachability analysis; however,

with the support of ranges of rates, the runtimes can still be prohibitive. The situation is

exacerbated the more continuous variables are allowed to have a range of rates. In particular,

the current algorithm requires a full interleaving of all the currently possible rate change

events with all the other rate change events, as well as any other currently enabled events,
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which leads to a potential exponential blowup relative to the number of continuous variables

that currently have a range of rates.
Chapter 4 introduces a modest attempt at improving the runtimes by biasing the search

towards rate change events. In this way, the rate events only interleave with each other and

not with all currently enabled events. This optimization still has an exponential blowup in

terms of the continuous variables with ranges of rates, but should reduce the exploration

overhead. One detail that remains to resolve, however, is whether the optimization is sound

or not. The full algorithm is sound (Chapter 4), but it has not been proven that the

reduction is as well.
Even with the rate optimization method of biasing toward rate events, the runtime is still

substantial. This fact leaves open the need for even more aggressive optimization strategies.

Potential first steps are to consider quicker ways of generating the zones resulting from the

rate event interleavings.

7.2.3 Improving the Octagon Representation
Although the octagon representation is able to utilize a DBM representation, there is

a lot of redundancy. Every inequality involving two different base variables, that is, any

inequality V ±i − V ±j ≤ c such that i 6= j, always has two representations in the DBM.

Consider again, the standard representation for two variables V0 and V1 shown below:

D =



V +
0 V −0 V +

1 V −1

V +
0 0 −2mV0 b1 −b4

V −0 2MV0 0 b3 −b2

V +
1 −b2 −b4 0 −2mV1

V −1 b3 b1 2MV1 0

.

Every entry involving bi in the lower left corner is redundant. Thus, one loses no information

by eliminating these entries:

D =



V +
0 V −0 V +

1 V −1

V +
0 0 −2mV0 b1 −b4

V −0 2MV0 0 b3 −b2

V +
1 0 −2mV1

V −1 2MV1 0

.

Thus, the DBM is nearly an upper triangular matrix. So, it is likely that a sparse matrix

representation will be helpful. A good representation that eliminates these redundant

equations will make coherency checks unnecessary.
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7.2.4 Counter-Example Guided Abstraction Refinement
A popular method for eliminating false negatives is to use counter-example guided

abstraction-refinement (CEGAR). The basic idea is to first run verification and get an

error trace. Next, determine whether the error trace is real, that is, the original system

does exhibit the behavior, or if it an erroneous trace, that is, the system does not really

exhibit the behavior. If the trace is not really possible, then the trace is used to inform

a refinement routine so that the model no longer exhibits the erroneous behavior. The

loop is continued until the system is verified as being correct or a real error trace is found.

With a CEGAR loop, if the original model does not capture the desired behavior accurately

enough, then the model can be fixed until it does.

In order to implement a CEGAR loop for LEMA, two additional capabilities have to be

added. The first is to develop a method for determining whether a trace is a false trace or

a real trace. Determining whether a trace is real or not has some challenges. The first is

that the state space explored by LEMA is via equivalence classes of states. Thus, in order

to produce a traditional trace, one has to start with a violating trace and back-trace it to

a set of initial conditions. Since certain steps of the algorithm involve adding additional

states (like warping), it may not be possible to finish such a back trace. Presumably, such

a case would mean that the trace is not a real trace for the current model. This process is

further complicated by the fact that different events could lead to the same state space or

a subset, thus, the back trace will require exploring various different possibilities much like

the original state space exploration.

Alternatively, one can consider verifying traces using an interval SPICE simulator as

suggested by [74]. This avenue still needs to be explored in the context of LEMA. Such

a direction would alleviate the need to find a particular trace, though it still needs to be

explored how the initial conditions would be identified.

Once a false trace has been identified, one needs a way of adjusting the model. LEMA’s

model generation algorithm has a few parameters that can be adjusted, such as the number

of thresholds that can be adjusted, as well as the scaling of time and the continuous variables

can be adjusted. Changing the thresholds leads to tighter bounds on the ranges of possible

rates, while changing the scaling increases the accuracy of the zones by reducing rounding

errors and tightening the warping bounds. However, more methods should be identified

for increasing the faithfulness of the model to the real circuit. The best case would be to

identify a method that has the potential of at least asymptotically approaching the actual

behavior of the circuit.
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7.2.5 Real World Case Studies
Since the methods of this dissertation are aimed at the verification of AMS circuits, it is

useful to investigate their use on real case studies. Real case studies serve several purposes

for the evaluation of any method of verification. They provide insight into how the methods

are utilized in a real setting, while providing designers with real examples on how to apply

the methods. This helps to motivate interest, as well as helps provide concrete uses to

understand the methods better. They also show that the methods are practical and are not

just of theoretical interest.

One particular circuit of interest is the PLL. A PLL is used in several applications

including clock recovery, correcting clock skew, frequency synthesis, and wireless commu-

nication. They have been the focus of several attempts of formal verification with some

success; however, their still does not exist an accepted general method of verifying these

circuits. Hence, it would be of great interest to see how far the current methods can reach

in solving this problem.



APPENDIX A

TRACES AND RANGES OF RATES

This appendix demonstrates how the zone-based exploration of ranges of rates can be

reduced to considering rate change events that only involve the lower bound, upper bound,

and zero rates. The focus of this appendix is to show how the same result is true at the

level of traces, that is, for the purpose of verification, it is enough to consider traces that

only use the extremal rates and rate zero.

A.1 Modeling with Ranges of Rates
Section A.2 motivates using only the lower and upper bound rates together with zero by

showing that a piecewise linear function which uses only the lower, upper, and zero rates

can be used to provide the same outcome between a given pair of events. This section

also presents a more detailed discussion on why only allowing a single rate change is not

enough when using LPNs and automata for models. Section A.3 provides a set of traces

that do have enough flexibility in the number of times their rates can switch to give a

representative of each equivalence class in T/ ∼T and states the two main theorems of this

appendix. Section A.4 provides the proof of the theorems in Section A.3. Section A.5 shows

that the method of allowing multiple resets provides the correct results for the model used

in this appendix and Section A.6 provides a discussion on why the methods work.

A.2 Linear Approximations of Ranges of Rates
To simplify the presentation, this appendix focuses on LPNs whose transitions have zero

delay. The model and property LPNs used in this appendix are shown in Fig. A.1. The

model LPN is a simplified model of one of the capacitor stages shown in Fig. 4.2. After the

transition t7 fires, the range of rates for v is [1, 2] and the rate of t is [1, 1]. A myriad of

trajectories for the continuous variables t and v exist that reach the point (t, v) = (10, 15)

allowing the pair of transitions t0 and t1 to fire sequentially. One such trajectory is shown

as the middle heavy line in Fig. A.2a. This trajectory is given by the trace:
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t8

[0]

p4

t7

[0]

p5

t′ = [1, 1]
v = 0

v′ = [−1,−1]

{(t ≥ 20)}

< v′ := −1 >

{¬(v ≥ 0)}

t = 40

< t := 0, v′ := [1, 2] >

(a)

p3

p2

p1

t0

[0]

branch

p0

t1

[0]

t5

[0]

[0]

t4

[0]

tFail

[0]

t2

[0]
t3

[0]
{¬(v ≥ 30)} {v ≥ 30}

{t ≥ 20}

{¬(v ≥ 0)}

{v ≥ 15}

{t ≥ 10}

{t ≥ 20}

{¬(v ≥ 15)}

t6

merge

(b)

Figure A.1: Example LPN illustrating that resetting a rate once per assignment is not
enough to capture all behavior. This model is a simplified version of one of the capacitor
stages shown in Fig. 4.2. (a) A model circuit controlling the charging and discharging of
a capacitor. (b) A property for the capacitor control circuit that checks that the charge is
either below or exceeds 15 mv at 10 µs; if the charge exceeds 15 mv, then the charge must
exceed 30 mv after 20 µs.

TH = σ0
t7−→ σ1

R(v)←1.5−−−−−−→ σ2
4−→ σ3

R(v)←1−−−−−→ σ4
2−→ σ5

R(v)←2−−−−−→ σ6
3−→ σ7

R(v)←1−−−−−→ σ8
1,{t≥10,v≥15}−−−−−−−−−→ σ9

t0−→ σ10
t1−→ σ11.

For this example, the sequence of events (Ej)j≥i is the sequence of statements above

the arrows. Specifically, E0 = t7, E1 = (R(v) ← 1.5) and so on. Then subt(TH) =

{E0, E9, E10} = {t7, t0, t1}. This same sequence of transitions can also fire by firing the

transition t7 (which sets v′ = 1), allowing time to flow for 5 time units, setting v′ = 2, and

allowing time to flow for 5 more time units, that is:

TL = σ0
t7−→ σ1

5−→ ψ0
R(v)←2−−−−−→ ψ2

5,{t≥10,v≥15}−−−−−−−−−→ σ9
t0−→ σ10

t1−→ σ11.
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Figure A.2: Piecewise approximation of a ranges of rates. (a) Piecewise approximation of
the range of rates [1,2]. The heavy line in the middle is the derived function fTH

and the
thinner line is the derived function fTL

. (b) Piecewise approximation of the range of rates
[−3, 2] illustrating that an approximating trajectory that uses −3 and then 2 can lead to
crossing an addition inequality v ≥ −1 not crossed by the original trace.

Again, subt(TL) = {t7, t0, t1}. Since the same sequence of transitions fire (t7, t0, and t1),

TH ∼T TL even though trace TH is much more complicated between the transitions. Thus,

it is enough to consider only TL. This situation is not unique to this pair of traces. Any

trajectory for the variable v must terminate at some point (10, y) for 10 ≤ y ≤ 20 since

the rate is bounded between 1 and 2. Moreover, a function can always be found that starts

with rate 1, switches to rate 2 at some point τ ′, and has this same endpoint (10, y). The

following theorem and corollary ensure that such a function can always be found for any

trajectory and any range of rates.

Theorem 3. Let a, b ∈ R with 0 ≤ a ≤ b or a ≤ b ≤ 0, τ ∈ R any nonnegative real number,

and q ∈ R any real number. Then, for any real number v such that aτ + q ≤ v ≤ bτ + q,

there exists a τ ′ ∈ [0, τ ] such that f(τ) = v where f is defined by
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f(x) =
{
b(x− τ ′) + aτ ′ + q if τ ′ ≤ x ≤ τ
ax+ q if 0 ≤ x ≤ τ ′

.

The point τ ′ is called the switching point for the function f . Furthermore, the roles of a

and b can be reversed in the function so that f has a slope of b on [0, τ ′] and a on [τ ′, τ ].

Proof. The theorem can be reduced to the case when q = 0 by subtracting q from the

problem and then adding it back at the end. So, all that needs to be proved is the case

when q = 0. First, if a = b, there is nothing really to prove since v = aτ = bτ and

f(x) = ax = bx. So, τ ′ can be taken to be any value in [0, τ ] and f(τ) = aτ = bτ = v. So

assume that a < b. Then τ ′ = bτ−v
b−a is the value needed. To verify this, first note that by

assumption, aτ ≤ v ≤ bτ , from which it follows that −aτb−a ≥
−v
b−a ≥

−bτ
b−a . After adding bτ

b−a

throughout and simplifying, one obtains τ ≥ τ ′ ≥ 0. Furthermore, with this choice of τ ′:

f(τ) = b(τ − τ ′) + aτ ′

= bτ − (b− a)τ ′

= bτ − (bτ − v) = v

as required. The proof that the roles of a and b can be reversed is similar.

For Fig. A.2a, the values are a = 1, b = 2, τ = 10, τ ′ = 5, v = 15 and q = 0.

This theorem is not stated in full generality. It, in fact, works with just assuming that

a, b ∈ R and v is between aτ and bτ . In particular, it does not really matter whether or

not 0 is between a and b. The reason it is stated with excluding zero is for a secondary

consideration as to how this theorem is used later in the theory. The main point is that

if both a and b are nonnegative or both are nonpositive, then the range of the function f

is contained in the range of the function `(t) : [0, τ ] → R given by `(t) = (1 − t)q + tv,

the line connecting the starting value q with the ending value v. This is important since it

guarantees that if the original trajectory (which is continuous) does not cross an inequality,

then this approximating trajectory does not cross an inequality.

If zero is strictly between a and b, then it is no longer possible to ensure that the ap-

proximating trajectory does not introduce new behaviors by crossing additional inequalities.

This is illustrated in Fig. A.2b. In this figure, the variable v is now allowed to have a range

of rates of [−3, 2]. The heavy-line trajectory from Fig. A.2a is still a valid trajectory and is

repeated on Fig. A.2b. Also, similar to Fig. A.2a, an approximate trajectory can be created

that starts off using −3 for 1 time unit and then switches to 2 for 9 time units. Then the

resulting trajectory again hits (10, 15). Now suppose there is an inequality v ≥ −1 (shown
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as the horizontal dashed line in Fig. A.2b). In this case, the original trajectory (the heavy

line) does not change the value of v ≥ −1 while the approximating trace (the thin line)

changes the truth value of the inequality twice. This could lead to different transitions

firing if the inequality v ≥ −1 enables another transition. This problems can be avoided

by first setting the rate to the highest positive rate and then setting the rate to zero. In

this case, one would set the rate to 2 for 7.5 time units and then to 0 for 2.5. It is just as

possible to set the rate to zero first and then to the appropriate nonzero rate, except when

the value of the continuous variable v is equal to the right hand side of the inequality v ≥ a.

In this case, setting the rate to zero first and then to a negative rate changes the value of

the inequality v ≥ a from true to false, whereas setting the rate directly to a negative rate

keeps the value of the inequality false. If a transition depends on the truth value of v ≥ a,

then it is possible the method of setting the rate to zero first will not be sufficient. Thus,

when zero is a possible rate, the method adopted in this appendix is to set the rate to the

maximum rate or the minimum rate, then set the rate to zero. This notion is formalized in

the following corollary to Theorem 3.

Corollary 1. Let a, b ∈ R with a ≤ 0 ≤ b, τ ∈ R a nonnegative number, and q ∈ R any

real number. Then, for any real number v such that aτ + q ≤ v ≤ bτ + q, there exists a

τ ′ ∈ [0, τ ] such that f(τ) = v where f is defined by

f(x) =

[a−b2 (1− v
|v|) + b]τ ′ + q if τ ′ ≤ x ≤ τ

a−b
2 (1− v

|v|) + b]x+ q if 0 ≤ x ≤ τ ′

provided v 6= 0 and f(x) ≡ 0 otherwise. The expression a−b
2 (1− v

|v|) + b is just a shorthand

way of writing b when v > 0 and a when v < 0.

Proof. The case when v = 0 is trivial. The rest of the theorem follows by applying the

second part of Theorem 3 with a = 0, and b = b when v > 0 and applying the first part of

Theorem 3 with a = a, and b = 0 when v < 0.

With Theorem 3 and Corollary 1, it is possible to approximate a sequence of rate changes

and time advancements with a trajectory that uses only the lower and upper bound rates

together with rate zero. The key lies in how many times the trace is allowed to reset the

rates. The situation where the trace is only allowed to be set to the lower bound and then

be set to the upper bound once per assignment to the variable’s rate is explored in Section

2.6 of [74]. It is shown in [74], using an LPN similar to Fig. A.1, that this is not enough

to capture all the important behavior; that is, there is a trace in the original model that
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fires a failure transition, whereas no traces fire the failure transition when only resetting

the rate once. In the terminology of trace equivalence, this means there is a trace in the

original model that is not trace equivalent to any trace in the resetting once situation.
As an example, consider the following trace for the LPN in Fig. A.1. First, fire the

transition t7 and assign v a range of rates [1, 2]. Change the rate of v to be 1.5, then

advance time 10 time units. The value of (t, v) is then (10, 15) so transitions t0 and t1 fire.

Set the rate to 1.3 and advance time another 10 units. Then the value of (t, v) is (20, 28)

so transitions t2 and tFail fire, signaling a failure. Symbolically, the trace is:

TF = σ0
t7−→ σ1

R(v)←1.5−−−−−−→ σ2
10,I1−−−→ σ3

t0−→ σ4

t1−→ σ5
R(v)←1.3−−−−−−→ σ6

10,I2−−−→ σ7
t2−→ σ8

tFail−−−→ failure,

where I1 = {t ≥ 10, v ≥ 15} and I2 = {t ≥ 20}. The trajectory for t and v is shown in

Fig. A.3a. No trace that is obtained by doing one rate change per rate assignment can fire

the failure transition tFail. To see why, consider a trace starting in the initial state. Since

the transition t7 is enabled, it must fire. So, t7 fires and assigns the range of rates [1, 2] to

v, as well as sets the current rate of v to 1. In order to be able to fire tFail, the transitions

t0 and t1 must fire, so v must be above 15 after 10 time units (when t ≥ 10). If the rate of

v is not changed before 10 time units, then after 10 time units v = 10 and the transitions

t0 and t4 fire. After 10 more time units, (t, v) are (20, 35), so t5 and t8 fire. Eventually, t6
and t7 fire, returning the LPN to the state already considered. Thus, in order for t1 to fire,

the rate of v must be set to 2 before t0 fires. Once t1 fires, v ≥ 15 and the rate of v must

remain 2, since the rate is only allowed to changed once per rate assignment. So after 10

more time units, t = 20 and v ≥ 35, forcing transitions t2 and t3 to fire (see Fig. A.3b).

Eventually, t6 and t7 fire, which returns the LPN back to the state following t7 firing in the

initial state. Thus, the failure transition does not fire.
Similar to the LPN translational approach of [74], the authors of [25] provide a trans-

lation from LHAs to stopwatch automata (SWAs). The basic idea for the translation of

a range of rates [a, b] for a continuous variable v is to replace the place (call it p0) with

the range of rate assignment with 3 stages. The first stage determines how much time

the system stays in p0. Call this time τ . The second stage determines the value of the

continuous variable v after τ time units if v has a rate of a, that is, it calculates x0 + aτ

where x0 is the initial value of v in p0. Finally the third stage runs the variable v through

the possible values v could have for all the rates [a, b], that is, v goes through the values

[x0 + aτ, x0 + bτ ]. This process can be illustrated using Fig. A.2a. Again let v be the

continuous variable and suppose that the range of rates is [1, 2]. The first stage allows time
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Figure A.3: Example trajectories for the continuous variables t and v in Fig. A.1 starting
from when transition t7 fires. In each diagram, the first dashed line from left to right is the
relevant part of the enabling conditions for t0 and t1 (combined) in Fig. A.1. The second
dashed line in the relevant portions of the enabling conditions for t2 and tFail (combined).
(a) A trajectory where the rate is first set to 1.5 and then set to 1.3 after 10 time units. (b)
A trajectory where the rate starts with 1 and then switches to 2 once at 5 time units. (c)
A trajectory for a reset trace that is inequality equivalent to the trace giving the trajectory
in (a).

to go for 10 time units. Then the second stage uses the rate of 1 and ends with v having

the value of 10 at 10 time units. Finally, the third stage considers the possible values of

v while v travels along the vertical line from 10 units to 20, that is, the points (10, v) for

10 ≤ v ≤ 20.

Fig. A.4 gives an example of Fig. A.1a translated using this idea. In this figure, places

p5 1, p5 2, and p5 3 handle the first, second, and third stage, respectively. Since a direct

application of the method in [25] is not possible due to the differences in the formulation,

Fig. A.4 is used to simulate the spirit of the [25] approach. Three main differences should

be noted. The first and least of the three is the absence of an extra transition from p5 2 to

p5 2 and similarly from p5 3 to p5 3. These transitions are only needed if the lower bound

rate is greater than 1 and if the difference between the upper bound and lower bound rates

is greater than 1, respectively. So as an optimization, these transitions may be omitted (as

they are in Fig. 2 of [25]). The second difference is the use of a delay on transition t7 2. In

a direct translation of [25], the time variable would be allowed to be any value from 0 to∞.

In the present circumstance, any value other than 20 is not valid for this particular model
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v = [0, 0]
v′ = [−1,−1]
t = [40, 40]
t′ = [1, 1]

{(t ≥ 20)}
[0]

< v′ := −1, t′ := 1 >

p4

t7 1

{¬(v ≥ 0)}
[0]

< v := 0, t := 0, v′ := 1, t′ := 1 >

p5 1

t7 2

{true}
[20]

< t′ := 0 >

p5 2

t7 3

{true}
[0, 20]

p5 3

t8

Figure A.4: Translation of Fig. A.1a inspired by [25].

because of the enabling condition of t ≥ 20 on transition t8 in Fig. A.1a. In particular, if t

is chosen to be a value less than 20, then the model deadlocks since transition t7 3 never is

enabled. On the other hand, if t is allowed to be a value more than 20, then the new model

has a trace that switches the rate of v to −1 after more than 20 time units, which is not

possible in the model of Fig. A.1a. Thus, the delay of 20 has been added to remove such

cases. The third main difference is the use of a delay in transition t7 3. A direct translation

would use an enabling condition on t7 2 that allows the transition to fire at any time less

than or equal to the value of t in the given state. Since in the current situation, the upper

bound on the time for t is known, this same idea can be accomplished by using a delay that

allows the transition t7 3 to fire any time between 0 and 20 time units. These remarks, of
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course, do not represent a general method for the adaptation of [25] to LPNs since they

rely heavily on the nature of the current model; however, they do provide a reasonable

adaptation for comparison purposes.

After obtaining the model in Fig. A.4 and combining it with the LPN from Fig. A.1b,

one again finds that the failure transition tFail does not fire. The key observation why this

does not work is that the model of Fig. A.4 only allows for v to be equal to 10 when t is 10

and thus t1 does not fire. This transition can be enabled if t7 1 is allowed to have a delay of

10 instead of being forced to 20 since v would then be allowed to consider all possible values

from 10 to 20 while t is 10. However, as noted above, the model deadlocks. The deadlock

could be avoided by allowing t to progress, but this does not match the spirit of translation

in [25], which requires all progress in time to occur in the initial stage p5 0. In any case,

even if all variables are allowed to return to the values they had before entering the first

stage, then negating the enabling conditions on tFail, again, misses the failure. In fact,

nothing short of adding an entire second set of stages ensures that the failure transition is

not missed no matter how it is altered.

Focusing too much on examples and what is or is not tweaked may belie the true nature

of why the approaches of [74] and [25] do not solve the current problem. The crux of the

matter (as mentioned in [74]) deals with how many times the variable with a range of rates

is sampled. If the variable is sampled as a single time per rate assignment, then Theorem 3

together with Corollary 1 ensure that the method of [74] works. A similar assertion can be

made for the method of [25]. The situation is quite different when the variable is sampled

twice (or more). With two samplings, the first sampling can force a rate change in the

case of [74] or force a particular pass through the calculation stages in [25]. In both cases,

the variable is no longer able to use the full range of rates to reach the necessary point for

the second sampling, and thus, a second reset needs to be allowed. Section A.3 provides a

sufficient number of times for the resetting in order to ensure that no behavior is missed.

It should be noted that although [25] does not appear to solve the current problem, this is

not an indication that the method is flawed. It simply means that the contexts are more

different than they superficially appear.

A.3 Transition Equivalent Traces
This section introduces a larger class of traces that still uses only the lower and upper

bound rates together with rate zero; however, they allow for resetting the rates and having

another rate change every time an inequality changes or transition fires. Call a trace T a
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reset trace if every time an inequality or transition event occurs, the rate for each continuous

variable is reset via the resetRates function and is allowed to have another appropriate

rate change event. The formal definition is as follows:

Definition 1. If Ei is a transition event or inequality event and Ej is a transition event

or inequality event, call Ei and Ej time insensitive successors provided i < j and any event

Ek such that i < k < j is either a rate change event or a time advancement that is not

an inequality event. Then, a trace T = σ0
E0−→, σ1

E1−→ . . . is a reset trace, denoted Tr, if

the following condition is satisfied: for any pair of time insensitive events Ei and Ej, there

is at most one rate change event Ek such that i < k < j for each continuous variable v.

Furthermore, the rate change events Ei must be one of the following types:

• R(v)← max(RR(v)) if 0 /∈ RR(v) or max(RR(v)) = 0.

• R(v)← 0 if 0 ∈ RR(v) and either 0 is not one of the bounds or min(RR(v)) = 0.

The main theorem to prove is:

Theorem 4. For each trace equivalence class [T ]T ∈ T/∼T , there exists a reset trace Tr

such that [Tr]T = [T ]T .

This theorem implies that for every sequence of transitions that are possible to fire,

there is a trace using only the lower and upper bound rates together with rate zero that

fires the same sequence of transitions. So, it is enough to just consider the reset traces.
To prove Theorem 4, it turns out to be easier to prove a theorem for a finer set of

equivalence classes than transition equivalence. Two traces T = σ0
E0−→ σ1

E1−→ . . . and

T ′ = σ′0
E′0−→ σ′1

E′1−→ . . . are called inequality equivalent, denoted T ∼I T ′, if the following

conditions are satisfied for subI(T ) = (Eik) and subI(T ′) = (E′jk) where subI(T ) is the

subsequence of inequality events and transition events:

• Eik is a transition event if and only if E′jk is a transition event.

• Eik is an inequality event if and only if E′jk is an inequality event.

• If Eik is an inequality event then ineq(Eik) = ineq(E′jk) where ineq(Ei) is the set of

inequalities that change truth value as a consequence of the time advancement Eik .

With this definition in place, the theorem to prove becomes:

Theorem 5. For each inequality trace equivalence class [T ]I ∈ T/∼I , there exists a reset

trace Tr such that [Tr]I = [T ]I .
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Notice that T ∼I T ′ ⇒ T ∼T T ′. Thus, Theorem 4 follows directly from Theorem 5.

The proof of Theorem 5 is the topic of Section A.4.

A.4 Proof
The proof of Theorem 5 follows the outline of first extracting a function to follow

the trajectory of the continuous variables for a trace fragment consisting of only time

advancements, then constructing an approximating function, and finally deriving a new

trace that is inequality equivalent to the original. The first two steps are accomplished by

the next two lemmas.

All the first lemma aims to do is formalize extracting a function from the trajectory of

the continuous variables in a trace. For example, the heavy middle line and the thinner line

in Fig. A.2a are the derived functions for the traces TH and TL described in Section A.1.

Similarly, the function shown in Fig. A.3a is the derived function fTF
for the trace TF also

described in Section A.1.

Lemma 1. Let k ≥ 1 be an integer and

T̂ =σ0
0
E0

0−−→ σ0
1
E0

1−−→ · · ·
E0

l0−−→ σ0
l0

τ1−→ (A.2)

σ1
0
E1

0−−→ σ1
1
E1

1−−→ · · ·
E1

l1−−→ σ1
l1

τ2−→ (A.3)
... (A.4)

σk−1
0

Ek−1
0−−−→ σk−1

1
Ek−1

1−−−→ · · ·
Ek−1

lk−1−−−−→ σk−1
lk−1

τk,I−−→ σk0 (A.5)

be a trace fragment where li is a natural number for 0 ≤ i ≤ k − 1 and each Eij is a rate

change event for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ li. Also, let V1, . . . , VN be an ordering of the

continuous variables V , and let Qij(Vn) be the value of Vn in state σij where 0 ≤ n ≤ N ,

0 ≤ i ≤ k − 1, and 0 ≤ j ≤ li. Then, there exists a function

f = (f1, f2, . . . , fN ) : [0, τ ]→ RN

where N is the number of continuous variables and τ =
∑k
i=1 τi that has the following

properties for each coordinate function f i:

1. fn(0) = Q0
i (Vn) for all 0 ≤ n ≤ N and 0 ≤ i ≤ l0,

2. fn(
∑i
j=1 τj) = Qij(Vn) for all 0 ≤ n ≤ N , 1 ≤ i ≤ k − 1, and 0 ≤ j ≤ li,

3. fn(τ) = Qk0(Vn) for 0 ≤ n ≤ N ,
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4. fn(t) is piecewise linear for each 0 ≤ n ≤ N .

The function f is called the derived function for T̂ and is denoted fT̂ .

Proof. Identify the tuple (a1, a2, . . . , an) ∈ RN with vectors. For each i such that 1 ≤ i ≤ k,

define

f(t+
i∑

j=1
τj) = (1− t)(Qi−1

li−1
(V0), . . . , Qi−1

li−1
(VN )) + t(Qi0(V0), . . . , Qi0(VN ))

for 0 ≤ t < 1 and define

f(τ) = (Qk0(V0), . . . , Qk0(VN )).

This function is the linearization between the points

(Qi−1
li−1

(V0), . . . , Qi−1
li−1

(VN ))

and

(Qi(V0), . . . , Qi0(VN )),

which are the values of the continuous variables for each of the previous states and successor

states involved in the time-advancement events. Then this function satisfies the necessary

conditions. One key fact to note, to make this work, is that the rate change events do not

change the value of Q so Qi0 = Qij for all 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ li.

For the next lemma, it is shown that given a trace fragment that is only rate changes and

time advancements, then a reset trace fragment can be created that is inequality equivalent

to the given trace fragment. One example of this process is again the traces TH and TL

of Section A.2. Lemma 2 ensures that, given a trace like TH (minus the transition events)

that has only time advancements, rate changes and one inequality event, then a trace like

TL (minus the transition events) always exists such that TH ∼I TL (see Fig. A.2a).

Lemma 2. Let T̂ = σi
Ei−→ σi+1

Ei+1−−−→ σi+2 . . . σn
En−−→ σn+1

τ̂ ,I−−→ σn+2 be a trace fragment

such that for each 0 ≤ i ≤ n the event Ei is a rate change or time advancement that is not

an inequality event. Then there exists a reset trace fragment T̂r such that T̂r ∼I T̂ .

Proof. Since T̂ is of the form in Lemma 1, the derived function fT̂ : [0, τ ] → RN exists

where τ is the sum of the time advancements in T̂ . Denote the component functions of fT̂
by f i

T̂
. Note that since the variable vi has a range of rates [ai, bi], f iT̂ has the same range

of rates [ai, bi] and thus aiτ ≤ f i
T̂

(τ) ≤ τbi. So either Theorem 3 or Corollary 1 applies

depending on whether 0 ∈ [ai, bi]. Using Theorem 3 when 0 /∈ [ai, bi] and Corollary 1 when



134

0 ∈ [ai, bi], there exists a piecewise function f i with switching point (τ ′)i ∈ [0, τ ] such that

f i(0) = f i
T̂

(0) and f i(τ) = f i
T̂

(τ) for each i. A trace fragment T̂r is constructed such that

fT̂r
= (f1, f2, . . . , fN ). Let τ ′0, τ ′1, . . . , τ ′n be the distinct switching points in increasing order

ignoring any (τ ′)i = τ and define τ0, τ1, . . . , τn such that τ0 = τ ′0 and for all 0 < i ≤ n,

τi = τ ′i − τ ′i−1.
The switching point marks a change of rate on the variable vi. This change is from the

lower bound rate to the upper bound rate if 0 /∈ [ai, bi] and is to 0 if 0 ∈ [ai, bi]. Thus,

at time (τ ′)i the reset trace fragment should have an event R(vi)←r−−−−−→ where r is the upper

bound rate or 0, respectively. For a fixed i let E0
i , E

1
i , . . . , E

ki
i be the rate changes that need

to occur at τ ′i , ordered according to the coordinate that the rate change affects. A reset

trace fragment can then be constructed as:

T̂r := σ′0
τ0−→ ⊕k0

j=0(σ′1+j
Ej

0−−→)σ′k0+2 . . . σ
′
κ

τn−→ ⊕kn
j=0(σ′κ+j+1

Ej
i−−→)σ′κ+kn+2

τ−τ̂ ,I−−−−→ σ′κ+kn+3 = σn+1

where ⊕ is the obvious concatenation of events and states, κ = (
∑n−1
i=0 ki) + 2 ∗ n, σ′0 is

the same as state σ0 except the rates of the continuous variables. In the case that the

range of rates for the continuous variable vi does not contain zero, then the rate is set

to the minimum rate. When 0 is one of the rate bounds, the rate is set to the nonzero

rate bound (if zero is not the only rate). Finally, if [ai, bi] is the range of rates for vi and

ai < 0 < bi, then a couple cases need to be consider depending on whether f i
T̂

(τ) is greater

than, equal to, or less than f i
T̂

(0). If f i
T̂

(τ) > f i
T̂

(0), then the rate is set to b. Similarly, if

f i
T̂

(τ) < f i
T̂

(0), then the rate is set to a. If f i
T̂

(τ) = f i
T̂

(0), then the rate is a, provided there

exists an inequality vi ≥ f i
T̂

(0) and the inequality is false in σ0. Otherwise, the rate of vi
is set to b. Note, in the case that f i

T̂
(τ) = f i

T̂
(0), the rate is originally set to a or b to give

the correct truth value for any inequality vi ≥ f i
T̂

(0). The rate is then immediately set to

0. Finally, τ̂ is the sum of the time advancements τi and the rest of the σ′i are the states

resulting from the events. The trace T̂r is then a reset such that T̂r ∼I T̂ .

The main idea for the proof of Theorem 5 is illustrated in Fig. A.3a and Fig. A.3c.

The basic idea is to fire the same transitions at the same times and to use Lemma 2 to

approximate the original trace for the time advancements and inequality event. Consider

again the trace:

TF = σ0
t7−→ σ1

R(v)←1.5−−−−−−→ σ2
10,I1−−−→ σ3

t0−→ σ4
t1−→ σ5

R(v)←1.3−−−−−−→ σ6
10,I2−−−→ σ7

t2−→ σ8
tFail−−−→ .

To construct the reset trace, the transition events remain the same; however, each sequence
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of rate changes and time advancements ending with an inequality event are replaced (using

Lemma 2) with a trace that starts with the lower rate 1, switches once to the upper rate

of 2, and ends with an inequality event that changes the same inequalities. In this case,

σ1
R(v)←1.5−−−−−−→ σ2

10,I1−−−→ σ3 is replaced with σ1
5−→ ψ0

R(v)←2−−−−−→ ψ1
5,I−−→ σ3 and similarly

σ5
R(v)←1.3−−−−−−→ σ6

10,I2−−−→ σ7 is replaced by σ5
7−→ ψ2

R(v)←2−−−−−→ ψ3
3,I2−−→ σ7 to obtain:

Tr = σ0
t7−→ σ1

R(v)←1−−−−−→ ψ0
R(v)←2−−−−−→ ψ1

5,I1−−→ σ3
t0−→ σ4

t1−→

σ5
7−→ ψ2

R(v)←2−−−−−→ ψ3
3,I2−−→ σ7

t2−→ σ8
tFail−−−→ .

Note that in both states σ1 and σ5, the previous event was a transition, so the rate for v is

reset to 1. The corresponding derived functions are shown in Fig. A.3(a) and Fig. A.3(c).

With Lemma 2 in place, the proof of Theorem 5 is only a matter of replacing the

sequences of events between pairs of inequality events with the results of Lemma 2. The

proof is as follows.

Proof of Theorem 5. Let T = σ0
E0−→ σ1 . . . σn

En−−→ σn+1 be any trace. Let subI(T ) =

(Eik)k≥0. The proof proceeds by inductively constructing a sequence (Tr)k with the property

that subI((Tr)k) = {E′k} where for all k, E′k = Eik for transition events and E′k is an

inequality event that changes the same set of inequalities as Eik for inequality events. The

base case is so much like the rest of the inductive steps that it is omitted. Suppose (Tr)k
has been constructed, the next step is to construct (Tr)k+1. Suppose Eik+1 is a transition

firing. Since (Eik)k≥0 is the subsequence of all inequalities changing and transitions firing, it

follows that the only events that can occur between Eik and Eik+1 are rate changes and time

advancements. Furthermore, the time advancements do not result in a change in the truth

value for an inequality. Thus, the truth value of the enabling condition does not change

from S(Eik) to the state P(Eik+1). Now, since the enabling condition for Eik+1 is true in

P(Eik+1), it must be true in S(Eik). Since transitions fire before any time advancements

or rate changes, it is, in fact, the case that the transition Eik+1 fires from the state S(Eik).

The next part of the sequence is defined as (Tr)k+1 := σik+1
Eik+1−−−−→ σik+1+1.

Now suppose that Eik+1 is a time advancement resulting in a set of inequalities changing,

that is
Eik+1−−−−→= τ,I−−→. In this case, define (Tr)k+1 := T̂r where T̂r is the trace given in the proof

of Lemma 2 based on the trace fragment T̂ = σik+1
Eik+1−−−−→ σik+2 . . . σik+1

Eik+1−−−−→ σik+1+1. It

has already been noted that T̂r ∼I T̂ in the lemma and a check of the trace constructed

in Lemma 2 shows that subI(T̂r) = {E′k} where E′k is an inequality event that changes the

same set of inequalities as Eik as desired.
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Once (Tr)k has been constructed, then define Tr := (Tr)0(Tr)1 . . . where juxtaposition

is the obvious concatenation of trace fragments. By the construction of the subsequence

(Tr)k, Tr ∼I T .

A.5 Results
The trace based theory presented in this appendix leads to the later development of the

zone-based extension presented in this chapter. Thus, it is the zone-based model checking

algorithm presented in Section 4.3 that is used in this section to show that the trace based

method works.
This section describes two sets of experiments performed using LEMA. Each experiment

corresponds to a block in Table A.1. The first block deals with methods of allowing the rate

to be reset a single time versus allowing multiple resets. In this experiment, the algorithm is

not changed, rather the comparison is performed by simulating the single reset method with

a translated LPN model. The second set of experiments aims at comparing the complexity

of allowing multiple resets of rates versus LPNs that do not assign ranges of rates. In this

experiment, the model is changed twice. One version uses only the lower bound rate, the

second uses only the upper bound rate. These two examples are then compared with the

original model. In all versions, the failure transition is removed from the property LPN so

that a full state exploration is performed. Also, in all cases, the algorithm is not changed.

Each of these experiments is described in more detail below.
As mentioned above, for the first experiment, a single reset per rate assignment is

simulated using a transformed LPN model and is compared against the method of allowing

multiple resets as described in Section 4.3. As indicated in Section A.2, if one only performs

a single reset for a continuous variable per range of rate assignment then a false positive

can occurred. This behavior is explicitly illustrated by transforming the model of Fig. A.1a

to that in Fig. A.5 via the procedure described in Chapter 2 of [74]. This transformation

replaces the range of rate assignment by an assignment to the lower bound rate of 1. Then,

it adds a transition t9 that sets the rate to the upper bound 2. A Boolean variable r0 is

added to ensure that the transition t9 is not fired more than once, since setting the rate to

the upper bound again after it is already at 2 does nothing. When the model in Fig. A.5

is used with the property LPN in Fig. A.1b, then LEMA ‘falsely’1 declares that the model

verifies. This is recorded as the ‘Reset Once’ line of Table A.1. However, when LEMA is

1Technically the verification is correct since indeed the transformed model does not have an error.
However, the transformed model does not provide the same behaviors as the original, which is what
is being illustrated.
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t = 0
t′ = 1
v = 0
v′ = 0

t8
{(t ≥ 20)}

[0]
< v′ := −1 >

p4

t7
{¬(v ≥ 0)}

[0]

p5

r0 = false

< r0 := true, t := 0, v′ := 1 >

t9
{r0}

[0,∞]
< r0 := false, v′ := 2 >

Figure A.5: Fig. A.1a model transformed to only allow a single resetting of the rate for v.

Table A.1: Collected verification results. These results are generated using LEMA, a java-
based verification tool, on a 64-bit machine running an Intel Core i5 CPU M 480@ 2.67GHz
with 4 processors and 4GB of memory.

Property Time (s) States Verifies? Correct Figs
Result?

Reset Once 0.148 42 yes no A.5, A.1b
Resetting Rates 0.170 51 no yes A.1a, A.1b
Rate 1 Only 0.147 19 yes yes A.1a, A.1b
Rate 2 Only 0.123 34 yes yes A.1a, A.1b
No Failure 0.205 91 yes yes A.1a, A.1b

applied directly to Fig. A.1, LEMA correctly detects the error. This is shown as the second

entry in Table A.1. The difference is, of course, that the rate is reset more than once.

For the second experiment, the increase in complexity when allowing a range of rates

assignment is investigated by comparing a version of the LPN that uses only a single rate

assignment. Suppose a range of rates is assigned to a variable where zero is one of the

bounds or is not in the range. Then, every time an inequality changes or a transition fires,

the algorithm has to account for two zones instead of one. Thus, one can expect a doubling

in the number of states. Similarly, if a second continuous variable is assigned a range of
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rates, then one has to consider an additional pair of rates independent of the first for every

zone that is found using a single rate. This provides an additional factor of 2. Therefore,

for each variable assigned to a range of rates, one can expect a doubling in the number

of zones that need to be considered. In addition, if zero is strictly between the lower and

upper bound rates, then an additional factor of 2 needs to be considered since the rate can

either be set to the greatest or lowest rate bound and in each case can then be set to zero.

However, in practice, one gets less than this amount since some of the resulting zones may

be equal or subsets of the other possibilities allowing the redundant zones to be removed.

Of course, this doubling only affects those states where the continuous variable is assigned a

range of rates and so the state count is less if the continuous variable is not always assigned

a range of rates.

Lines three through four in Table A.1 illustrate the increase in state count for the model

of Fig. A.1. The Rate 1 Only line gives the result when running the example of Fig. A.1

with only the lower bound rate being assigned and Rate 2 Only corresponds to only the

upper bound rate being assigned. Doubling the state count for each example according

to the analysis above, one gets 38 and 68 states moving from having a single rate to a

range. Furthermore, the LPN markings that are explored by each example are roughly

disjoint since the Rate 1 Only example explores the markings where t4 fires and the Rate

2 Only example explores the markings where t1 fires. This leaves a possible 6 markings in

common (the markings corresponding to pairing p4 and p5 with branch, p0, and merge).

Since the Resetting Rates line actually explores both sets of markings, a rough estimate for

the number of states required would be the sum 38 + 68 − 6 = 100. To get the number of

states for a full state exploration of Fig. A.1 using ranges of rates, the failure transition was

removed. The corresponding result is given as the No Failure line of Table A.1. Thus, the

number of states is 91, which accords well with the estimate of 100.

A.6 Conclusion
In moving from the theory to an implementation, the first thing one has to account for is

that the number of reset traces still remains infinite. For an indication of why, consider again

Fig. A.2a where v is a continuous variable with a range of rates of [1, 2], t is a continuous

variable with a rate of 1, and time has been allowed to elapse for 10 time units. A reset

trace starts at (0, 0) with a rate of 1 and then has the option to set the rate to 2 any time

between the 0 to 10 time units. Thus, one has a reset trace corresponding to each point

[0, 10] where the switching takes place. When dealing with equivalence classes of traces via
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subsets of Euclidean space, like polyhedra and zones, this difficulty is in fact an illusion. By

grouping the traces together into the subset bounded by the dashed lines in Fig. A.2a, one

accounts for all the reset traces, as well as all the other traces. Now, the resulting figure is

not a zone since zones only use lines that are horizontal, vertical, or at 45 degrees. However,

the figure can be over-approximated by a zone.

Since a zone can be used to collect up all the behaviors in addition to the reset traces,

the question arises: why does one need the theory of Section A.1? The true power of the

theory presented is not the existence of reset traces, but an explicit representation of the

more general idea that all the behaviors of an LPN can be captured as long as one accounts

for all possible starting and ending possibilities between the important events (the events

required for being inequality equivalent). Putting this into context, consider again the LPN

of Fig. A.1. After firing the transition t7, one has (v, t) = (0, 0), v′ ∈ [1, 2], and t′ = [1, 1].

The next important events are when time has advanced far enough for either t ≥ 10 or

v ≥ 15 to change sign. This is illustrated in Fig. A.6. All traces that start at (0, 0) and

end along the upper horizontal dashed line are inequality equivalent. Similarly, all traces

that start at (0, 0) and end along the vertical dashed line are also inequality equivalent (to

each other not to those ending along the horizontal line). The reset traces are able to have

a least one member in every inequality equivalence class specifically because they are able

to hit these two dashed lines. Then, at the next stage one has to consider every point along

these dashed lines as potential new initial points and ensure that the next important events

can all be reached.

The above scheme lays out a relatively clear path for an algorithm with a few reserva-

tions. Of course, some approximations would have to be made along the way since in general

LHAs are undecidable [57] and it is reasonable to assume that LPNs are as well. However,

the point of using zones in LEMA is to use simple approximating polyhedra that do not have

to deal with such general spaces as depicted in Fig. A.6. The desire to use an existing

system, such as LEMA, brings about a second useful aspect of the theory in Section A.1. As

stated before, LEMA has the ability to handle rate assignments to continuous variables as long

as the rate assignment is to a single rate. The knowledge that all behaviors are captured

using only the lower and upper bound rates together with zero provides a straightforward

idea for generalizing the algorithms already present in LEMA. For example, if zero is not in

the range of rates, then at every stage consider the zone produced by using the lower bound

rate and consider the zone produced by using the upper bound rate. As an illustration of

how this helps, consider a couple zones along an error trace produced when verifying the



140

1

2

3

4

5

7 8 96 101 2 3 4 5

6

7

8

9

10

11

12

13

14

15

v

t

Figure A.6: The set of inequality equivalent traces for Fig. A.1 starting at (v, t) = (0, 0),
v′ ∈ [1, 2], and t′ = [1, 1].

LPN in Fig. A.1. When the analysis reaches the point after firing transition t7 in Fig. A.6,

the next zone formed after assigning the rate of v to 1 is given in Fig. A.7a.

The zone clearly does not capture all the needed behaviors. Since v is 10 when t is 10,

the sequence of transitions t0 and t1 cannot fire. On the other hand, reset traces suggest

that the rate 1 and rate 2 cases should both be considered. Thus, one can consider the rate

change event setting the rate of v to 2. After doing this in LEMA, one obtains the zone in

Fig. A.7b (in particular, after applying warping and advancing time). In this figure, v has

been scaled by a factor of 2. With this zone, the transition sequence t0 and t1 is possible

since the point (7.5, 10)2 corresponds to v having a value of 15 and t having a value of 10.

Notice that this zone encapsulates the polyhedron in Fig. A.6, and so it is able to capture

all the possible behaviors for this stage of the analysis.

The next key inspiration from reset traces is that the rate of v should be reset to 1 after

the inequalities v ≥ 15 and t ≥ 10 change (and after t0 and t1 fire). Thus, after firing the

inequality changes of t ≥ 10 and v ≥ 15 (and resetting the rate of v to 1), the next zone

produced is shown in Fig. A.8. The bottom line of this zone does indeed lead to the failure

transition being enabled since the bottom right corner is (v, t) = (24, 20).

This example illustrates that the extension of zones by adding additional rate change

2LEMA technically stores zones as integers. So this zone is restricted to 7 along the v/2 axis. The
algorithm realizes that the inequality can change between 7 and 8 and enables the inequality to
change.
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Figure A.7: Comparison of rate change event with an exact polyhedra. (a) Zone after
firing t7 in Fig. A.1. (b) The zone from (a) after firing the rate change event R(v)← 2. (c)
Comparison of the zone from (b) with the polyhedron in Fig. A.6.
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Figure A.8: Zone after starting with Fig. A.7c, firing the inequality events v ≥ 15, t ≥ 10
(as well as transitions t0 and t1), and advancing time.
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events eliminates the false positive that is present in Fig. A.1 when using a method that

only allows for one rate change. The argument that this always works is given in Section 4.4.



APPENDIX B

ADDITIONAL REACHABILITY
COMPONENTS

This appendix contains the algorithms for the other functions in [72, 74] that have not

be explained in Section 4.3. These algorithms are included for completeness and do not

require any major modifications in order to implement the range of rates algorithm.

The first algorithm is initialStateSet and is shown in Algorithm B.1. The function

takes in the set of transitions, the set of continuous variables, the enabling conditions for the

transitions, the delay assignment formulas, the initial markings, the initial ranges of values

for the continuous variables, and the initial range of rates for the continuous variables. To

construct the initial state set, the algorithm needs to provide the marking, the range of

values of each rate zero continuous variables, the range of possible values, the current rate

of each continuous variable, the truth value of each inequality, and the zone. The markings

are provided directly from the initial markings, while the initial rates are provided by the

function resetRates defined in Section 2.1.2. Next, the current values of the continuous

variables are assigned. Additionally, if the rate of the continuous variable is nonzero, then

the variable is added to the zone. To fill out the rest of the zone, each transition is tested

to determine if it is enable, and if the transition is enabled, a corresponding clock is added

to the zone. After the zone is constructed, the algorithm next finds all the inequalities that

are involved in the enabling conditions and determines to truth value. Finally, the current

delay is evaluated for each of the enabled transitions and the state is returned.

To finish the description of the initialStateSet, two additional functions need to be

described: addV and addT. The algorithm addV is shown in Algorithm B.2 and handles

adding a continuous variable to the zone. The first step is to add the continuous variable

to the zones collection of variables. Next, the upper and lower bounds are assigned to the

continuous variables in the zone, after being warped by the rate. The function cdiv(a, b)

calculates the ceiling of the division a
b , while the functions nlb(Z, v) and ub(Z, v) access the

negative of the lower bound and upper bound of the zone for the variable v, respectively.

Using these functions, the assignment nlb(Z, v) := −1∗cdiv(ql(v), R(v)) assigns the ceiling
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Algorithm B.1: intitialStateSet(T, V,En,DA,M0, Q0, RR0)

1 M := M0;
2 R := resetRates(RR0);
3 forall the (v ∈ V ) do
4 if (R(v) 6= 0) then
5 (Q,Z) := addV(Q0, R, Z, v);
6 else
7 Q(v) := Q0(v);
8 forall the (t ∈ T ) do
9 if (Eval(En,M0, R,Q0, t)) then

10 Z := addT(Z, t);
11 forall the (v ≥ k ∈ ineq(En)) do
12 if (Q0(v) = k) then
13 I(v ≥ k) := R(v) ≥ 0)
14 else
15 I(v ≥ k) := Q0(v) ≥ k;
16 forall the (t ∈ Z) do
17 D(t) = Eval(DA,R,Q0, t)
18 return (M,D,Q,R,RR, I, Z)

of the division ql(v)
R(v) to the negative of the lower bound, which is a conservative estimate of

the scaled version of the lower bound for the continuous variable. Similarly, the assignment

ub(Z, v) := cdiv(qu(v), R(v)) assigns a conservative estimate of the upper bound of the

continuous variable scaled by the rate. When the rate is negative, the upper and lower

bounds are swapped, hence the upper bound value qu is used to assign nlb and ql is used to

assign ub. The following forall loop handles assigning the individual relationships between

the new variable being added to the zone and the variables already in the zone. These

assignments are performed with the aid of the function Z(x, y), which stores the constraint

y − x ≤ Z(x, y). No relation is assumed between a new continuous variable and the other

values in the zone, so the constraints are all assigned to ∞, except the constraint Z(v, v),

which is always 0.

Adding a new clock for a transition is a little shorter. The algorithm for addT is shown

in Algorithm B.3. The first step adds a clock to the zone that records the amount of time

the transition has been enabled. When a clock is added, it is initialized to zero, so the

next two lines set the negative of the lower bound and the upper bound to zero. Then,

the forall loop assigns the new relations for this newly added clock. Similar to adding a

variable, Z(ct, ct) is always zero, so Z(ct, ct) is assigned 0. Next, each upper bound and

negative lower bound is assigned to the relations Z(ct, xi) and Z(xi, ct), respectively. These
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Algorithm B.2: addV(Q,R,Z, v)

1 Z := Z ∪ {v};
2 if (R(v) > 0) then
3 nlb(Z, v) := −1 ∗ cdiv(ql(v), R(v));
4 ub(Z, v) := cdiv(qu(v), R(v));
5 else
6 nlb(Z, v) := cdiv(qu(v), R(v));
7 ub(Z, v) := cdiv(ql(v), R(v));
8 forall the (xi ∈ Z) do
9 if (xi = v) then

10 Z(v, xi) := 0;
11 else
12 Z(v, xi) :=∞;
13 Z(xi, v) :=∞;
14 return (Q,Z);

Algorithm B.3: addT(Z, t)

1 Z = Z ∪ {ct};
2 nlb(Z, ct) := 0;
3 ub(Z, ct) := 0;
4 forall the (xi ∈ Z) do
5 if (xi = Ct) then
6 Z(ct, xi) := 0;
7 else
8 Z(ct, xi) := ub(Z, xi);
9 Z(xi, ct) := nlb(Z, xi);

10 return Z;

assignments have the same effect as assigning the relations to ∞ and then tightening. To

see where these assignments originate, consider adding the clock ct and suppose that xi is

a variable that is already in the zone. When the clock ct is added, it is initialized as zero.

Thus, 0 ≤ ct. By definition of the function ub, xi ≤ ub(Z, xi). Subtracting the inequality

0 ≤ ct from xi ≤ ub(Z, xi), one obtains Z(ct, xi) = xi− ct ≤ ub(Z, xi). The justification for

assigning nlb(Z, xi) to Z(xi, ct) is similar.

The next missing function is the addSetItem function shown in Algorithm B.4. This

function adds events to a set of events, E , to be later returned as the possible next events.

The three types of events that can be added to E are: a set of inequalities that can change

at the same time, a transition that can fire, and a variable that can change rates. A rate

change event can always occur, so additional processing is only necessary if the event is
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Algorithm B.4: addSetItem(T,En,D,R,Z, E , enew)

1 if (isNotRateChange(enew)) then
2 forall the (E ∈ E) do
3 forall the (e ∈ E) do
4 if (enew ∈ ineq(En) ∧ e ∈ ineq(En)) then
5 (E, status) := happensFirstII(R,Z, enew, e, E);
6 else if (enew ∈ ineq(En) ∧ e ∈ T ) then
7 (E, status) := happensFirstIT(E,R,Z, enew, e, E);
8 else if (enew ∈ T ∧ e ∈ ineq(En)) then
9 (E, status) := happensFirstTI(D,R,Z, enew, e, E);

10 if (status = Notpossible ∨ status = Possible) then
11 return E ;
12 E = E ∪ {{enew}};
13 return E ;

not a rate change. In the case that the event is not a rate change, the rest of the function

determines which happensFirst function to call depending on whether the new event is an

inequality and the old event is an inequality, the new event is an inequality and the old event

is a transition firing, or the new event is a transition and the old event is an inequality. If the

result of any of the functions is Notpossibe or Possible, the result is immediately returned.

This statement is bypassed if the two transitions are returned or the result returned by the

executed happensFirst function is undecided.

The individual happensFirst functions are shown in Algorithms B.5, B.6, B.7. The

function happensFirstII (Algorithm B.5) handles comparing two inequality events. It

finds how the zone is restricted according to each inequality and then makes the final

determination depending on whether the inequalities deal with the same continuous variable

or different continuous variables. The function happensFirstIT (Algorithm B.6) determines

whether a new inequality event should happen before an old transition by comparing how

the inequality restricts the zone to the lower bound delay of the transition. The function

happensFirstTI (Algorithm B.7) is nearly the same.

To complete the happensFirst functions, two more functions need to be described: the

compareSameV (Algorithm B.8) and the compareDifferentV (Algorithm B.9) functions.

These functions determine whether the new inequality must occur before the old inequality.

The first function, compareSameV, handles the easy case when the inequalities involve the

same continuous variable. If the new inequality restricts the zone to a value after the

old inequality, then the inequality does not happen first. Hence, the value returned is

NotPossible. Conversely, if the old inequality restricts the zone to a value after the new
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Algorithm B.5: happensFirstII(R,Z, inew, i, E)

1 let i = (v ≥ k);
2 let inew = (vnew ≥ knew);
3 restrictVal := cdiv(k,R(v)));
4 restrictVAlnew := cdiv(knew, R(vnew));
5 if (vnew = v) then
6 return compareSameV (inew, i, E, restrictVAlnew, restrictVal);
7 else
8 return compareDifferentV(Z, inew, E, restrictValnew, restrictVal);

Algorithm B.6: happensFirstIT(D,R,Z, inew, E)

1 let inew = (vnew ≥ knew);
2 restrictVal := dl(t);
3 restrictValnew;
4 if (−restrictVAlnew > −restrictVal + Z(t, vnew)) then
5 E := E − {t};
6 return (E,Undecided);
7 else if (restrictValnew > ub(Z, t) + Z(vnew, t)) then
8 return (E,NotPossible);

Algorithm B.7: happensFirstTI(D,R,Z, tnew, i, E)

1 let i = (v ≥ k);
2 restrictVal := cdiv(k,R(v));
3 restrictVAlnew := dl(tnew);
4 if (−restrictVal > −restrictValnew + Z(tnew, v)) then
5 return (E,NotPossible);
6 else if (restrictVal > restrictValnew + Z(v, tnew)) then
7 E := E − {i};
8 return (E,Undecided);

inequality, then the new inequality happens first. The value Undecided is returned since

the new inequality may happen after another inequality not being compared. Finally, if the

two inequalities restrict the zone by the same amount, then the new inequality is added to

the same set of inequality events as the old inequality and the result is returned with the

status of Possible.

The compareDifferentV function is similar, however, since the inequalities depend on

different variables, the relationship between the two variables has to be taken into account.

The first and fourth cases determine if the new inequality would result in a restriction beyond

the old inequality, while the second and third cases determine that the new inequality
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Algorithm B.8: compareSameV(inew, i, E, restrictValnew, restrictVal)

1 if (restrictValnew > restrictVal) then
2 return (E,NotPossible);
3 else if (restrictVal > restrictValnew) then
4 E := E − {i};
5 return (E,Undecided);
6 else
7 E := E ∪ {inew};
8 return (E,Possible);

Algorithm B.9: compareDifferentV(Z, inew, i, E, restrictValnew, restrictVal)

1 let i = (v ≥ k);
2 let inew = (vnew ≥ knew);
3 if (−restrictVal > −restrictValnew + Z(vnew, v)) then
4 return (E,NotPossible);
5 else if (−restrictValnew > −restrictVal + Z(v, vnew)) then
6 E := E − {i};
7 return (E,Undecided);
8 else if (restrictVal > nlb(vnew) + Z(v, vnew)) then
9 E := E − {i};

10 return (E,Undecided);
11 else if (restrictValnew > nlb(v) + Z(vnew, v)) then
12 return (E,NotPossible);
13 else
14 E := E ∪ {inew};
15 return E,Possible);

happens before the old inequality. Just like for the compareSameV function, the last case

handles when the restrict values are the same.

The last function to describe before completing the description of findPossibleEvents

is the ineqCanChange function shown in Algorithm B.10. Consider an inequality v ≥ k.

The only way the inequality will change truth value is if the continuous variable crosses

the boundary condition c. The variable can cross the boundary in two ways: the value of

v is less than the boundary c and the rate is positive or the value of v is greater than the

boundary c and the rate is negative. Since the truth value of v ≥ c indicates whether the

value of v is greater than or less than c, the condition can be equivalently stated as the

inequality is false and the rate is positive or the inequality is true and the rate is negative.

If one of these two conditions is met and the value of the inequality is at the boundary, then

the inequality is about to change truth value. To check if the inequality is at the bounds,
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Algorithm B.10: ineqCanChange(R, I, Z, i)

1 if ((R(v) < 0 ∧ I(i)) ∨ (R(v) > 0 ∧ ¬I(i))) then
2 if (ub(Z, v) ≥ fdiv(k,R(v))) then
3 return true;
4 return false;

the upper bound of v in the zone Z is compared with the scaled version of k, that is the

value k
R(v) . Since zones are restricted to integers, the upper bound of v is compared to the

floor of the division given by fdiv.

The next set of algorithms describe the missing functions for the updateState and

the functions that they depend on. The first function is the restrict function shown in

Algorithm B.11. The restrict function constrains the zone according to the information

provided by which event occurred. If a transition fires, the time has advanced at least as

far as the lower bound delay. Thus, the lower bound of the associated clock is set to the

lower bound delay. If an inequality is changing truth value, then time has advanced far

enough that the associated continuous variable has reached the boundary. Thus, the lower

bound of the continuous variable is adjusted to the boundary. However, values in the zone

are scaled by the rate, so the lower bound is set to the boundary divided by the rate. If

the upper bound is also lower than the boundary, then the upper bound is adjusted to the

boundary to keep the zone consistent. An event can consist of more than one inequality, so

the restriction is made for each inequality in the event.

The restrict function simply changes the lower bound for the transition firing or the

lower bounds of the continuous variables involved in a set of inequalities; the function does

not change the values of the rest of the zone to reflect the restriction. Thus, the constraints

need to be retightened. The function recanonicalize performs this retightening by running

Floyd’s All-Pairs Shortest Path Algorithm. The algorithm is shown in Algorithm B.12.

Restriction and recanonicalization are two steps necessary for firing a transition; how-

ever, several other steps are also needed. The function fireTransition (see Algorithm B.13)

handles the steps for updating the state that are unique to firing a transition. The algorithm

updates the markings, removes the fired transition, makes any new assignments to the

continuous variables, makes any new assignments to the range of rates, and updates the

values in the zone for each continuous variable that is assigned a new range of values.

To update the value of the continuous variable, the function fireTransition uses the

function doVarAsgn shown in Algorithm B.14. The algorithm loops through all the variables

v such that the transition t makes an assignment to v. The variable is then removed from the
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Algorithm B.11: restrict(T,D,Z,E)

1 forall the (e ∈ E) do
2 if (e ∈ T ) then
3 let t = e;
4 nlb(Z, t) := −1 ∗ dl(t);
5 else
6 forall the ((v ≥ k) ∈ e) do
7 nlb(Z, v) := cdiv(k,R(v));
8 if (ub(Z, v) < cdiv(k,R(v))) then
9 ub(Z, V ) := cdiv(k,R(v));

10 return Z;

Algorithm B.12: recanonicalize(Z)

1 forall the (xi ∈ Z) do
2 forall the (xj ∈ Z) do
3 forall the (xk ∈ Z) do
4 if (Z(xj , xk) > Z(xj , xi) + Z(xi, xk)) then
5 Z(xj , xk) = Z(xj , xi) + Z(xi, xk);
6 return Z ;

zone, the assignment is made, and the variable is added back into the zone. The removing

and adding the variable has the effect of removing any relations between the continuous

variable v and other elements of the zone.

After a transition fires or a set of inequalities change value, time must be advanced.

The function advanceTime shown in Algorithm B.15 handles this step. Time is advanced

by setting the upper bounds on the transitions to the largest value before the transition

will fire, that is, the upper bound. The upper bounds for the continuous variables are set

to the largest value possible before an inequality changes. The function checkIneq shown

in Algorithm B.16 finds this value. The algorithm starts by setting the time advancement

to ∞. Next, the algorithm considers every inequality that involves the current continuous

variable and determines which boundaries will eventually be crossed. Each time a boundary

is found that the variable will cross, min is set to the smaller of the current value of min

and the time it will take to cross the boundary. To determine if a boundary will be crossed,

the algorithm considers whether the rate is positive or negative, whether the inequality is

true or false, and whether the upper bound is less than the boundary or not.
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Algorithm B.13: fireTransition(M,F,Q, V, V A,RA,Z, ψ, t)

1 M := (M − •t) ∪ t•;
2 Z := rmT(Z, t);
3 (Q,Z) := doVarAsgn(Q,R,Z, V A, t);
4 RR := EvalAssign(RA(t, v), Q, I, Z);
5 forall the (v ∈ V ∧ V A(t) 6= ∅) do
6 if (v /∈ Z ∧ 0 /∈ RR(v)) then
7 (Q,Z) := addV(Q,R,Z, v);
8 else if (v ∈ Z ∧ 0 ∈ RR(v)) then
9 (Q,Z) := rmV(Q,R,Z, v);

10 (R,Z) := dbmWarp(R,R′, Z);
11 return ψ;

Algorithm B.14: doVarAsgn(Q,R,Z, V A, t)

1 forall the (v ∈ V ∧ V A(t) 6= ∅) do
2 [al, au] := EvalAssign(V A(t, v), Q, I, Z);
3 (Q,Z) := rmV(Q,R,Z, v);
4 Q(v) := [al, au];
5 (Q,Z) := addV(Q,R,Z, v);
6 return (Q,Z);

Algorithm B.15: advanceTime(En,D,R, I, Z)

1 forall the (t ∈ Z) do
2 ub(Z, t) := du(t);
3 forall the (v ∈ Z) do
4 ub(Z, v) := checkIneq(En,R, I, Z, v);
5 return Z ;
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Algorithm B.16: checkIneq(En,R, I, Z, v)

1 min :=∞;
2 forall the ((vi ≥ ki) ∈ ineq(En) ∧ vi = v) do
3 if (R(v) > 0) then
4 if (¬I(vi ≥ ki)) then
5 if (ub(Z, v) < fdiv(ki, R(v))) then
6 min := min(min, fdiv(ki, R(v));
7 else if (nlb(Z, p) ≤ fdiv(ki, R(v))) then
8 min := min(min, ub(Z, v));
9 else

10 if (I(vi ≥ ki)) then
11 if (ub(Z, v) ≤ fdiv(ki, R(v))) then
12 min := min(min, fdiv(ki, R(v));
13 else if (nlb(Z, p) < fdiv(ki, R(v))) then
14 min := min(min, ub(Z, v));
15 return min;



APPENDIX C

DERIVING THE WARPING EQUATIONS

For this appendix, recall from Section 5.2.4, that Vi and Vj be continuous variables with

rates ri and rj , respectively. Since the values in the octagon are scaled, the variables used

for the DBM are x = Vi
ri

and y = Vj

rj
. Fig. C.1a shows an arbitrary octagon in the x, y-plane.

Now, suppose that Vi is assigned a rate of r′i and Vj is a assigned a rate of r′j . Then, the

new scaling is u = Vi
r′i

and v = Vj

r′j
, and the new figure is shown in Fig. 5.14b. Let α = ri

r′i

and β = rj

r′j
, then α and β transform the x, y-plane into the u, v-plane, that is,

u = αx v = βy.

Again, the original octagon can be described by:

D =



x+ x− y+ y−

x+ 0 −2mx b1 −b4

x− 2Mx 0 b3 −b2

y+ −b2 −b4 0 −2my

y− b3 b1 2My 0


for Fig. C.1a and

D′ =



u+ u− v+ v−

u+ 0 −2mu b′1 −b′4
u− 2Mu 0 b′3 −b′2
v+ −b′2 −b′4 0 −2mv

v− b3 b1 2Mv 0


for Fig. C.1b. In the DBM representation, the constants b1, b2, b3, and b4 are the y intercepts

of the bounding lines:

y − x ≤ b1 −y + x ≤ −b2 y − x ≤ b3 −y − x ≤ −b4.

and the constants b′1, b′2, b′3, and b′4 are the u intercepts of the bounding lines:

v − u ≤ b′1 −v + u ≤ −b′2 v − u ≤ b′3 −v − u ≤ −b′4.

For the first set of warping equations, suppose that α > 0 and β > 0. Then, the new
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(a)
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y
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b4 (Mx, b3 −Mx)
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My

my

mx Mx

(−My + b3,My)

(Mx, b2 +Mx)

(−my + b4,my)

(My − b1,My)

(mx, b1 +mx)

(mx, b4 −mx)

(b)

Figure C.1: Labeled octagon. (a) An octagon with y-intercepts labeled b1, b2, b3, and b4,
and vertices labeled p0, . . . , p7. (b) An octagon with the vertex labels of (a) replaced with
their coordinates in terms of the maximum values, minimum values, and y-intercepts.

minimum and maximum values are given by:

mu = αmx

mv = αmy

Mu = αMx

My = αMy.

Also, in this case, the warping equations are:
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b′1 = (β − α)My + αb1

b′2 = (β − α)my + αb2

b′3 = (β − α)My + αb3

b′4 = (β − α)my + αb4,

when β
α > 1, and

b′1 = (β − α)mx + βb1

b′2 = (β − α)Mx + βb2

b′3 = (α− β)Mx + βb3

b′4 = (α− β)mx + βb4,

when β
α < 1.

These equations are not difficult to derive once a couple of simple observations are made.

First, label the vertices p0, . . . , p7 of the octagon starting with the intersection of My and

y − x = b1 and labeling clockwise (see Fig. C.1a). The coordinates of each of the vertices

can be found by plugging one of the bounds mx, Mx, my, or My for either x or y in the

bounding equations y − x = b1, y − x = b2, y + x = b3, and y + x = b4 and solving for the

missing variable. For example, the y coordinate of p0 is My, and since it lies on the line

y − x = b1, the x coordinate, px0 , of p0 satisfies My − px0 = b1. Solving this last equation

gives px0 = My − b1, so the point is p0 = (My − b1,My). For completeness, the whole list is:

p0 on line y − x = b1 : y = My =⇒ x = My − b1

p1 on line y + x = b3 : y = My =⇒ x = b3 −My

p2 on line y + x = b3 : x = Mx =⇒ y = b3 −Mx

p3 on line y − x = b2 : x = Mx =⇒ y = Mx + b2

p4 on line y − x = b2 : y = my =⇒ x = my − b2

p5 on line y + x = b4 : y = my =⇒ x = b4 −my

p6 on line y + x = b4 : x = mx =⇒ y = b4 −mx

p7 on line y − x = b1 : x = mx =⇒ y = b1 +mx.

So the points are:

p0 : (My − b1,My) p1 : (b3 −My,My) p2 : (Mx, b3 −Mx) p3 : (Mx,Mx + b2)

p4 : (my − b2,my) p5 : (b4 −my,my) p6 : (mx, b4 −mx) p7 : (mx, b1 +mx),
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as is illustrated in Fig. C.1b. After performing the coordinate change u = αx and v = βy,

the points become p′0, . . . , p′7 and are given by:

p′0 : (α(My − b1), βMy) p′1 : (α(b3 −My), βMy)

p′2 : (αMx, β(b3 −Mx)) p′3 : (αMx, β(Mx + b2))

p′4 : (α(my − b2), βmy) p′5 : (α(b4 −my), βmy)

p′6 : (αmx, β(b4 −mx)) p′7 : (αmx, β(b1 +mx)).

As indicated by the warping equations, two separate conditions need to be addressed, when
β
α > 1 and when β

α < 1. In both cases, the ±45◦ lines in the xy-coordinate system are no

longer ±45◦ after the coordinate transformation. Specifically, the line segments p7p0, p1p2,

p3p4, and p5p6, where juxtaposition indicates the line segment between the two vertices, are

transformed into line segments p′7p′0, p′1p′2, p′3p′4, and p′5p′6 that no longer belong to any line

of the form ±y±x = b. To keep a ±45◦ boundary line for the polygon, the best that can be

done is to define b′1, b′2, b′3, and b′4 such that one of the endpoints belongs to the appropriate

line y − x = b′1, x − y = b′2, y + x = b′3, or −y − x = b′4 and the other endpoint belongs

to the appropriate half-plane y − x ≤ b′1, y − x ≤ −b′2, y + x ≤ b′3, or −y − x ≤ −b′4. The

case when β
α > 1 is shown in Fig. C.2. Notice that when transforming the octagon from

the xy-plane (Fig. C.2a) to the uv-plane (Fig. C.2b), the slopes of the line segments p7p0

and p3p4 become more than 45◦ while the slopes of the line segments p1p2 and p5p6 are less

than −45◦. This fact forces the lines y − x = b′1, x − y = b′2, y + x = b′3, or −y − x = b′4

to be tangent to the polygon at p′0, p′1, p′4, and p′5. In other words, the best approximating

lines of the form y − x = b′1 and x− y = b′2 that lie above the polygon are exactly the lines

that contain the points p′0 and p′1, respectively. Similarly, the best approximating lines of

the form y + x = b′3 and −y − x = b′4 that lie below the polygon contain the points p′5 and

p′4, respectively.

The intercepts b′1, b′2, b′3, and b′4 can now be found by plugging in the corresponding

point on the line as shown below:

p′0 = (α(My − b1), βMy) on line y − x = b′1 : βMy − α(My − b1) = b′1

p′4 = (α(my − b2), βmy) on line y − x = b′2 : βmy − α(my − b2) = b′2

p′1 = (α(b3 −My), βMy) on line y + x = b′3 : βMy + α(b3 −My) = b′3

p′5 = (α(b4 −my), βmy) on line y + x = b′4 : βmy + α(b4 −my) = b′4.

Gathering together like terms yields the warping equations for the case when β
α > 1.
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Figure C.2: Warping when β
α > 1. (a) Original octagon. (b) Warped octagon.

The case when β
α < 1 can be derived in a similar fashion as above. The only thing that

changes is that the line segments p′7p′0 and p′3p′4 have slopes less than 45◦ while the segments

p′1p
′
2 and p′5p′6 have slopes greater than −45◦. This fact translates to the best approximating

lines lying above the polygon are tangent to p′7 and p′2 instead of p′0 and p′1. Similarly, the

best approximating lines lying below the polygon are tangent to p′6 and p′3 instead of p′5
and p′4 (see Fig. C.3). From this point, one can do the exact same procedure of plugging

the point into the corresponding lines:

p′7 : (αmx, β(b1 +mx)) on line y − x = b′1 : β(b1 +mx)− αmx = b′1

p′3 : (αMx, β(Mx + b2)) on line y − x = b′2 : β(Mx + b2)− αMx = b′2

p′2 : (αMx, β(b3 −Mx)) on line y + x = b′3 : β(b3 −Mx) + αMx = b′3

p′6 : (αmx, β(b4 −mx)) on line y + x = b′4 : β(b4 −mx) + αmx = b′4.
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Figure C.3: Warping when β
α < 1.

As before, the warping equations for β
α < 1 follow by gathering together like terms.

Between the first set of equations and the second set, there seems to be an asymmetry.

With the first set of equations, (β − α) is all that is required; however, in the second set

of equations both factors (β − α) and (α − β) are present. This asymmetry is caused by

writing all the equations in terms of the y-intercepts. Before illustrating this fact, one needs

to know how the intercepts change when considering the subset as being in the xy-plane

versus being in the yx-plane, that is, whether it is the x or the y-axis that is horizontal.

Regardless of which plane one is in, the set of points is the same; however, when in the

xy-plane, one thinks of the boundary lines (except the vertical ones) as functions of x and

in the yx-plane, one thinks of the boundary lines (again, except the vertical) as functions

of y. In terms of equations, switching between the two planes amounts to interchanging x

and y. With this correspondence in mind, consider the boundary conditions y − x ≤ b1,
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−y + x ≤ −b2, y + x ≤ b3, and −y − x ≤ −b4. Let c1, c2, c3, and c4 be the corresponding

values for the yx-plane, that is the x intercepts. Then c1, c2, c3, and c4 are x-intercepts for

the boundary conditions x − y ≤ c1, −x + y ≤ −c2, x + y ≤ c3, and −x − y ≤ −c4. By

comparing the equations that give the same inequalities, one obtains:

c1 = −b2 c2 = −b1 c3 = b3 c4 = b4.

Using this correspondence (and the related version for the primed constants), the equations

then become:

−c′2 = (β − α)mx + β(−c2)

−c′1 = (β − α)Mx + β(−c1)

c′3 = (α− β)Mx + βc3

c′4 = (α− β)mx + βc4,

which simplifies to the following equations where the first and second equations have been

switched:

c′1 = (α− β)Mx + βc1

c′2 = (α− β)mx + βc2

c′3 = (α− β)Mx + βc3

c′4 = (α− β)mx + βc4.

This final set of equations has exactly the form as the first set of equations (after noting

that reversing x and y also reverse α and β). In fact, this translation provides an alternate

way of deriving the warping equations for the β
α < 1 case. Namely, start with the octagon in

the xy-plane, then translate it into the yx-plane (Fig. C.4), using the above correspondence.

In the yx-plane, the rate ratio to consider is α
β . Since β

α > 1, the inverse ratio gives α
β > 1,

and so, the first version of warping applies with the substitutions:

my 7→ mx My 7→Mx α 7→ β β 7→ α

b1 7→ −b2 b2 7→ −b1 b3 7→ b3 b4 7→ b4

b′1 7→ −b′2 b′2 7→ −b′1 b′3 7→ b3 b′4 7→ b4,

yielding the equations:
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Figure C.4: Warping in the yx-plane when β
α < 1.

−b′2 = (α− β)Mx + β(−b2)

−b′1 = (α− β)mx + β(−b1)

b′3 = (α− β)Mx + βb3

b′4 = (α− β)mx + βb4,

which matches the second form of the warping equations after a few simplifications.

So far, the only cases that have been consider are the ratios of α and β when α, β > 0.

The cases when at least one of the rate ratios is negative1. Before moving onto the general

1The cases when at least one of α or β is zero are not considered since rate zero variables are not
stored in the octagon.
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case, first consider the rate ±1 cases, that is, the cases when (α, β) is (1,−1), (−1, 1), and

(−1,−1).
When α = −1 and β = 1, then the coordinate transformation u = −x, v = y amounts

to a reflection about the y-axis. Furthermore, since mx ≤ x ≤ Mx, after the coordinate

change −Mx ≤ u ≤ −mx. So, this inequality gives the first part of the transformation:

mx 7→ −Mx Mx 7→ −mx.

For the intercepts, recall that x and y satisfy the equations:

y − x ≤ b1 −y + x ≤ −b2 y + x ≤ b3 −y − x ≤ −b4.

After applying the coordinate transformation u = −x and v = y, these equations become:

v + u ≤ b1 −v − u ≤ −b2 v − u ≤ b3 −v + u ≤ −b4.

By comparing the corresponding equations, one obtains the intercept correspondence:

b1 7→ b3 b2 7→ b4 b3 7→ b1 b4 7→ b2.

The first and third equations say that b1 and b3 are swapped, while the second and fourth

equations say that b2 and b4 are swapped. Geometrically, this is clear. The two diagonal lines

above the octagon, remain above the octagon; however, they switch sides under a reflection

across the y-axis. Similarly, the two diagonal lines below the octagon, remain below the

octagon, but they switch sides. The effect of the reflection across the y-axis is shown in

Fig. C.5. After reflecting (Fig. C.5b), the upper right bounding diagonal (y + x ≤ b3)

becomes the upper left bounding diagonal (y− x ≤ b3) and vice versa. Since the upper left

bounding line gives the b1 intercept in the uv-plane and the upper right bounding line gives

the b3 intercept, it follows that the intercepts b1 and b3 swap values in the uv-plane. This

observation matches the mapping b1 7→ b3 and b3 7→ b1. The similar swapping b2 7→ b4 and

b4 7→ b2 is shown Fig. C.5 by considering the effect of the transformation on lower left and

right bounding diagonals.
The coordinate transformation u = x and v = −y is nearly as simple. This time the

upper and lower bounds for y switch places with a minus sign yielding:

my 7→ −My My 7→ −my.

Before describing the intercept change, again recall that the intercepts satisfy:

y − x ≤ b1 −y + x ≤ −b2 y + x ≤ b3 −y − x ≤ −b4.
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Figure C.5: The effect of the coordinate transformation u = −x and v = y. (a) The
original octagon. (b) The octagon after the coordinate change.

After the coordinate transformation, the equations become:

−v − u ≤ b1 v + u ≤ −b2 −v + u ≤ b3 v − u ≤ −b4.

By comparing the corresponding inequalities, one gets the following correspondence:

b1 7→ −b4 b2 7→ −b3 b3 7→ −b2 b4 7→ −b1.

Similar to the previous case, this coordinate change results in a reflection. This time it is

about the x-axis. In this case, the upper left diagonal and the lower left diagonal switch

roles, as well as the upper right diagonal and the lower right diagonal. This swapping

is again reflected in the pairs of mappings above. Unlike the previous case, though, the

transformation introduces a set of minus signs on the intercepts. This additional sign is

another effect of having the intercepts defined as y-intercepts. Since the coordinate change
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flips the sign of the y values, the sign of the intercepts are similarly changed. The coordinate

change is illustrated in Fig C.6.

The coordinate change u = −x and v = −y is simply the combination of the previous

two coordinate changes. It does not matter which transformation is done first, which can

be verified by realizing that reflecting across the x-axis and then the y-axis or reflecting

across the y-axis and then the x-axis both result in the mapping:
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Figure C.6: The effect of the coordinate transformation u = x and v = −y. (a) The
original octagon. (b) The octagon after the coordinate change.
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mx 7→ −Mx Mx 7→ −mx my 7→ −My My 7→ −my

b1 7→ −b2 b2 7→ −b1 b3 7→ −b4 b3 7→ −b4.

A graphical illustration of this fact is shown in Fig. C.7.

After having these mappings in place, handling the more general case is simply a matter

of applying the appropriate transformation for rates ±1 and then applying the warping

equations for |α| and |β|.
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Figure C.7: The effect of the coordinate transformation u = −x and v = −y. (a) The
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Reflection across the line y = −x.
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