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ABSTRACT

In order to reach the Shannon limit, researchers have found more efficient error control

coding schemes. However, the computational complexity of such error control coding

schemes is a barrier to implementing them. Recently, researchers have found that bio-

inspired analog network decoding is a good approach with better combined power/speed

performance than its digital counterparts. However, the lack of CAD (computer aided

design) tools makes the analog implementation quite time consuming and error prone.

Meanwhile, the performance loss due to the nonidealities of the analog circuits has not

been systematically analyzed. Also, how to organize analog circuits so that the nonideal

effects are minimized has not been discussed.

In designing analog error control decoders, simulation is a time-consuming task be-

cause the bit error rate is quite low at high SNR (signal to noise ratio), requiring a large

number of simulations. By using high-level VHDL simulations, the simulation is done

both accurately and efficiently.

Many researchers have found that error control decoders can be interpreted as op-

erations of the sum-product algorithm on probability propagation networks, which is a

kind of factor graph. Of course, analog error control decoders can also be described at a

high-level using factor graphs. As a result, an automatic simulation tool is built. From

its high-level factor graph description, the VHDL simulation files for an analog error

control decoder can be automatically generated, making the simulation process simple

and efficient.

After analyzing the factor graph representations of analog error control decoders, we

found that analog error control decoders have quite regular structures and can be built

by using a small number of basic cells in a cell library, facilitating automatic synthesis.

This dissertation also presents the cell library and how to automatically synthesize analog

decoders from a factor graph description.

All substantial nonideal effects of the analog circuit are also discussed in the disserta-

tion. How to organize the circuit to minimize these effects and make the circuit optimized

in a combined consideration of speed, performance, and power is also provided.



To my family.
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CHAPTER 1

INTRODUCTION

In 1948, Shannon proved that it is possible, by proper encoding of the information

source, to reduce errors induced by a noisy channel to any desired level, without sacrificing

the rate of information transmission or storage of a given channel, as long as the rate

is below the so-called channel capacity [61]. The term encoding in this context means

that redundant information is added to the data stream. Since then, his theory has been

called the Shannon limit. In the last few years the demand for efficient and reliable digital

data transmission and data storage has tremendously increased. As a result, researchers

have found more efficient coding schemes to approach the Shannon limit. However, in

general, we can state that the more complex our coding schemes are constructed, the

more protection we get from coding. On the other hand, decoding has become more

complicated. The computational complexity of decoding for codes that try to reach

the Shannon limit grows more than linearly, i.e., quadratically or even exponentially.

Today’s state-of-the art codes such as Turbo codes, low-density parity-check codes, and

other similarly built codes need huge computational power to deliver real-time results.

In order to meet the rapidly growing computational effort, processing speed has to

be boosted by using more sophisticated semiconductor processes. Unfortunately, unless

more parallelism is introduced in the decoding system, the processing speed just increases

linearly with the clock frequency. Also, as the complexity and processing speed increases,

the power consumption increases dramatically, which makes the decoding strategy not

practical for system consideration and not appropriate for mobile devices.

Recently, researchers have found that bio-inspired analog network-decoding is a good

approach. Mead’s outstanding work on neuromorphic systems has clearly shown that

neuromorphic systems can reach outstanding precision on the system level [52]. Similarly,

analog decoders also reach a quite good performance at the system level [67] [26] [42] [69].

Compared with its digital conterparts, analog decoders have a much better combined

power/speed performance. Also, researchers have observed that a number of important
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algorithms in error-control coding can be interpreted as operations of the sum-product

algorithm on probability propagation network, which is a kind of factor graph [17] [35] [2].

The sum-product algorithm on probability propagation networks can be implemented

using analog VLSI [67] [26] [38]. As a result, analog decoders have been built using

BiCMOS [54] and recently by our research group using CMOS [69].

In designing our CMOS Hamming decoder, the issue of how to simulate this analog

circuit arose. This problem is even more complex when we must determine the error rate

at different noise levels efficiently and accurately. The error rate at a low noise level is so

low that a huge number of simulations must be done before we can know the error rate.

Of course, how to simulate the analog circuit efficiently becomes the dominant problem.

Although Spice is an accurate circuit simulator, it is mainly aimed at the transistor level

and is too time consuming for large circuit simulations. As a result, high level simulation

must be used.

Because an analog error control decoder can be represented by its factor graph, it

is possible to simulate it at the factor graph level. As a result, an atomatic simulation

tool can be built. The tool accepts a factor graph representation of an analog error

control decoder and generates the VHDL simulation file needed to do simulation. Thus

the simulation process can be made easy and quick.

Also, we noticed that the factor graph representations for error control coding systems

are always quite regular. Therefore, the corresponding circuits can be constructed by

duplicating only a few fundamental circuit cells. As a result, if a library including the

needed circuit cells has been built, by using files describing the factor graph of the system,

a circuit implementation can be generated. Automatic synthesis and automatic simulation

at a circuit level for analog circuits are difficult because analog design is usually less

systematic and more heuristic compared with digital design. However, error control

decoders are systematic, using only a few basic cells to build the whole circuit. This

makes automatic synthesis and simulation at the circuit level for such kinds of circuits

quite practical.

In designing the Hamming decoder, we also noticed many design issues. For example,

mismatch, noise, and channel length modulation can all affect the functionality of the

circuit. Also, researchers have found that CMOS circuits working under strong inversion

can still make analog decoders work with degraded performance. In conclusion, the

nonidealities of the analog circuit can affect the performance. These nonidealities need
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to be modeled and simulated. Using these simulation results, a strategy for designing

analog decoders to minimize these nonideal effects is developed.

1.1 Related Work

Frey [17], Kschischang [35], and Aji [2] have observed that a number of important

algorithms in error-control coding can be interpreted as operations of the sum-product

algorithm on probability propagation networks, which are a kind of factor graph. Wiberg

[67], Hagenauer [26] and Loeliger [38] have noticed that the sum-product algorithm on

probability propagation networks is well suited for analog VLSI with exponential current-

voltage relationships. Moerz [54] and Lustenberger [42] have built analog decoders by

using BiCMOS. Recently, our group has built an analog CMOS Hamming decoder [69].

Gielen [20] and other researchers have investigated computer-aided design of analog

and mixed-signal integrated circuits. In general, they have concluded that there were

not yet any robust commercial CAD tools to support or automate analog circuit design

apart from circuit simulators. Some of the main reasons for this lack of automation

are that analog design in general is perceived as less systematic and more heuristic and

knowledge-intensive in nature than digital design, and that it has not yet been possible for

analog designers to establish a high level of abstraction that shields all the device-level and

process-level details from the high level design. For simulation and modeling, VHDL-AMS

seems quite promising. However, it is still too time consuming for analog error control

decoder simulation and there is little CAD tool support [13] . For automatic synthesis,

tools are either ad-hoc heuristic methods such as OASYS [28], BLADES [14], OPASYN [33] or

using optimization-based approaches such as [51] that still need plenty of work.

In designing the analog QCRA decoder, Lustenberger found that the decoder has a

regular structure and the entire circuit can be built by using a few basic cells. As a

result, he built a few basic cells and then used a tool to automate the construction of the

decoder using these cells [42]. However, using his method, different decoders may need

different basic cells. As a result, it is still not a general method that can be used for

different analog error control decoders. Our research shows that all analog error control

decoders can be built by using a small number of basic cells in a cell library, facilitating

automatic synthesis. Moreover, our analysis shows that analog error control decoders

built using this method are comparable in performance, smaller, and lower power than

the corresponding canonical designs. Also, using the basic cells to construct the circuit
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makes automatic simulation at the circuit level possible.

Lustenberger has investigated the mismatch effect and shows a simulation technique

for mismatch [45]. However, how much the decoder’s performance is affected by mismatch

and how to organize the decoder to minimize the mismatch effect is not discussed and

left for time-consuming Monte-Carlo simulation to solve.

Lustenberger also shows in simulation that CMOS circuits working under the strong

inversion region can still make analog decoders work [42]. However, the reason this is

true has not been studied.

1.2 Contributions

In the past few years, researchers have found that using analog circuits to design error

control decoders is a promising approach. However, no one has systematically investigated

the modeling and implementation issues. Also, no researchers have provided a general

method to automate the design process. This thesis provides a design methodology for

analog implementation of error control decoders that solves these problems. There are

four major contributions of this thesis.

The first contribution is the development of a high-level simulation method using

standard VHDL. Because a large amount of the simulation task is to get the bit-error

rate (BER) curve, a high level simulation method is needed. VHDL is quite efficient in

doing simulation of parallel architectures so we use it to do the high level simulation.

Although VHDL-AMS can also be used to do simulation, it is still too complicated to be

efficient. By using real values, VHDL is used to do simulation efficiently and accurately.

The second contribution is the automatic simulation method. Because error control

decoders can be described by their factor graph description, a tool is built to generate

VHDL simulation files from the factor graph description of the analog error control

decoder. This greatly reduces the work to generate simulation files and helps speed

up the design exploration process.

The third contribution is the automatic synthesis method, which greatly speeds up

the design process for analog error control decoders. We have discovered that all analog

decoders could be partitioned into small circuit cells where the total number of these

circuit cells that is needed to build current analog decoders is limited. As a result,

an automatic synthesis tool that enables automatic synthesis of analog decoders from its

factor graph description is built. The cell library and the automatic synthesis tool greatly
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speed up the design process of analog decoders, which is time consuming, especially for

the state-of-art analog decoders that are quite large.

The fourth contribution is in the area of modeling and implementation issues. The

nonidealities of the analog circuit are discussed. Methods to model these nonidealities are

provided and techniques to minimize effects of these nonidealities are developed. In gen-

eral, the organization of an analog decoder that is optimized in a combined consideration

of speed, performance, and power is also provided.

1.3 Design Flow

Figure 1.1 shows the design flow for automatic synthesis and simulation. The factor

graph files (.fg files) for the decoder provide the factor graph description of the decoder

that is quite simple. Then, using these factor graph files, the compiler generates a

high-level VHDL description file for the decoder. In order to do simulation to find out

the bit error rate, the encoder should also be provided as a simulation environment

file. Using the simulation environment file, the compiler generates the VHDL simulation

environment file. Using the high-level VHDL description of the decoder and the VHDL

simulation environment file, a high-level VHDL simulation can be done to verify whether

the structure of the decoder is correct or not. Using the high-level VHDL description

of the decoder and the cell library, the high level VHDL description of the decoder can

be further decomposed into a cell library based VHDL structural description. The cell

library based VHDL structural description together with the layout of the cell library

can be used by an automatic layout generation tool to generate layout of the decoder

automatically. Also, the cell library based VHDL structural description together with

the circuit parameters of the cell library can be used to generate a circuit level simulation

result. Because the cell library needs to be built only once, using the automatic synthesis

and simulation technique, only the factor graph description of the decoder and its sim-

ulation environment description is needed to simulate and design an analog decoder. Of

course, the simulation and design process is greatly sped up.

1.4 Dissertation Outline

This dissertation is organized as follows: Chapter 2 gives some background information

about communication systems, coding theory, and the channel models that are essential

to understand this dissertation.
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Figure 1.1. Data flow for automatic synthesis and simulation.

Chapter 3 describes factor graphs and the sum product algorithm, which is the

basis for automatic simulation and synthesis. This chapter also describes an automatic

simulation method that generates VHDL simulation files from an analog error control

decoder’s factor graph description.

Chapter 4 first describes translinear circuits, which is the basis of circuit implementa-

tion. Then it describes the probability calculus modules and how the probability calculus

modules are constructed and how to use the probability calculus to construct analog

decoders. This chapter also describes how to partition probability calculus modules into

small cells and how to organize these small cells into a cell library that enables automatic

synthesis of all current practical analog decoders. At last, this chapter describes how to

do automatic synthesis from the factor graph description of an analog decoder.

Chapter 5 includes many circuit implementation and simulation issues. The modeling

and simulation issues of device mismatch, internal noise, thermal effects, and channel

length modulation are discussed in this chapter. Then, MOS circuits working in the strong

and moderate inversion region are discussed. The performance loss due to quadratic

behavior is also discussed. A one pole system approximation is provided to enable circuit

level simulation. At last, the technique of automatic generation of circuit level simulation

is provided.
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In Chapter 6, some case study results are included for an (8,4) Hamming decoder and

a (16, 11)2 Hamming product decoder.

Chapter 7 summarizes this dissertation, and discusses the future work.



CHAPTER 2

BACKGROUND INFORMATION

This chapter briefly describes some basic information about error control coding

systems. To simplify the description, we restrict ourselves to the binary case.

2.1 Parity-Check

In communication, the information transmitted can be deteriorated by noise. As a

result, the received information may not be the information that is transmitted. In order

to overcome this problem, when we transmit the information, we add some redundancy.

Then, when the receiver receives the information, it checks whether the information has

been deteriorated by noise and attempts to determine the information transmitted. For

example, just by simply repeating the information that is transmitted twice, redundancy

is added and the receiver can check whether the information has been deteriorated or not.

Actually, in the natural language, plenty of redundancy is used and we call it context. Of

course, by adding redundancy, more information needs to be transmitted and received. In

general, the more redundancy we use, the more protection we get from the redundancy.

However, we pay more for transmitting and receiving redundancy. In order to measure

how much redundancy is added, a term rate is used. It equals the number of information

bits divided by the number of bits that are sent out. Equation 2.1 shows the definition

of rate in which k is the number of information bits and n is the number of bits that are

sent out.

R = k/n (2.1)

Of course, we would like to add the smallest amount of redundancy to get the maximum

protection from the redundancy. Such a problem is the encoding and decoding problem.

In 1948, Shannon proved that it is possible, by proper encoding of the information source,

to reduce errors induced by a noisy channel to any desired level, without sacrificing the

rate of information transmission or storage of a given channel, as long as the rate is below
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the so-called channel capacity. However, Shannon did not point out how to realize it.

Such a problem is left for the encoding and decoding strategy to solve and researchers

have spent several decades to reach the Shannon limit. In the binary field, it is widely

known that by adding an additional parity bit to make the sum of bits to be always ’1’ or

’0’, we can easily find out whether an error has happened or not assuming only 1 bit error

happens. Assuming that we are using even parity-check, then Equation 2.2 is true (In

binary field GF(2), addition is mod 2 or XOR and multiplication is AND). The redundant

bit xk+1 is called the parity-check bit and Equation 2.2 is called the parity-check equation.

If we write down the coefficients of the parity-check equation as a row vector, we can have

a matrix that has only one length k + 1 row vector as shown in Equation 2.3. However,

we only know whether one error exists or not when only one parity-check bit is used

assuming at most one bit error can happen. Can we find more errors and even correct

the errors by adding more parity-check bits and parity-check equations?

x1 + ... + xk + xk+1 = 0 (2.2)

[

1 1 · · · 1
]

(2.3)

2.2 Basic Coding Concept

Before answering this question, we would like to introduce some basic coding concepts

in the following subsections.

2.2.1 Coding System

Figure 2.1 shows a simplified communication model used by many textbooks [48] [37]

[62]. In Figure 2.1, u is the source code, x is the output of the encoder, y is the received

value after transmission through the coding channel in which the encoded output x is

deteriorated by noise n, and û is the output of the decoder. These symbols are used in

the remaining of this thesis. Also, uk, xk, yk, nk, and ûk are also used to represent the

source, encoded output, received value, noise, and decoded output for a particular bit.

2.2.2 Systematic Codes

If the uncoded information bits are transmitted together with the parity-check bits, we

call the code systematic. Otherwise it is called nonsystematic. For example, when there
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Figure 2.1. Simplified model of a communication system.
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are three information bits u1, u2, and u3, if the three information bits are transmitted

along with the even parity-check bit x4 = x1 + x2 + x3, then the code is systematic.

However, if the information bits are not transmitted, instead the following bits are

transmitted, x1 = u1 + u2, x2 = u1 + u3, x3 = u2 + u3, and x4 = u1 + u2 + u3, then

the code is not systematic. In general, systematic codes can be more easily coded and

decoded than nonsystematic codes so they are more widely used.

2.2.3 Linear Codes

If the sum of two valid codewords is also a valid codeword, the code is called a linear

code. For example, the even parity-check code is a linear code while the odd parity-check

code is not a linear code. Using a code with two information bits and one parity bit as

an example, if even parity-check is used, since 011 and 110 are valid codewords, then

101 is also a valid codeword. However, if odd parity-check is used, 001 and 100 are valid

codewords while their sum 101 is not a valid codeword.

2.2.4 Hamming Distance

With more parity-check equations, we may find more errors and correct more errors.

However, how can we know how many errors a code can detect and how many errors it

can correct? Hamming gave the answer by using the concept of Hamming distance. The

distance between two codewords is defined as the number of positions that they differ.

Hamming distance is defined as the minimum distance between any two codewords of the

code. If a codeword has a larger distance between any other valid codewords, it is more

unlikely for the received codeword to be regarded as another valid codeword. Figure 2.2

shows how to use Hamming distance to find out how many errors a code can detect and

how many errors it can correct. Assuming that all the codewords are located in a plane,

the valid codewords are located at A, B, C, D, · · · and Hamming distance is 3. If 1 bit

error occurs on A, then the codeword is moved to the circle, which has A as its center

and radius 1. If two bit errors occur on A, then the codeword is moved to the circle that

has A as its center and radius 2. From Figure 2.2, it is easy to understand that a code

with Hamming distance 3 can correct only one error. If a code had Hamming distance d,

then it can correct ⌊(d − 1)/2⌋ errors where ⌊x⌋ denotes the greatest integer less than or

equal to x. If d is even, the code can simultaneously correct (d − 2)/2 errors and detect

d/2 errors. Because the combinations of two valid codewords is large, it is difficult to find

the Hamming distance by using the definition. However, for linear codes, the sum of any
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Figure 2.2. The relationship between Hamming distance and error detection, error
correction.

two valid codewords is also a valid codeword. As a result, for linear codes, the Hamming

distance equals the minimum number of 1’s of a valid codeword that is defined as the

Hamming weight.

2.3 Block Codes

A binary block code is defined as an algebraic mapping from the vector space 2k into

the vector space 2n. Thus, in the vector space 2n, only 2k codewords are valid. k is

the number of information bits and n is the code length and the code is called an (n, k)

block code with rate R = k/n. For example, the even parity-check code described by

Equation 2.2 is a (k + 1, k) block code with rate R = k/k + 1.

If the mapping from vector space 2k into the vector space 2n is linear, then the block

code is a linear block code, otherwise it is not a linear block code. For a linear block code,

given the k bit information sequence u, the n bit codeword x is always determined by

multiplying u with a generator matrix, G, shown in Equation 2.4. In the equation, u is a

length k row vector, x is a length n row vector where G is a k ∗ n matrix. For example,

the generator matrix for the even parity-check code shown in Equation 2.2 is shown in
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Equation 2.5. However, the odd parity-check code is not a linear block code and there is

no generator matrix for the odd parity-check code.

x = u · G (2.4)

G =









1 0 · · · 0 1
0 1 · · · 0 1
· · · · · · · · · · · · 1
0 0 · · · 1 1









(2.5)

For a linear block code, we can always find a matrix H that satisfies Equation 2.6

where H is a (n−k)∗n matrix that is called the parity-check matrix. Notice that for linear

block codes, all-zero input information bits is transformed into an all-zero codeword. As

a result, the right side of Equation 2.6 is a length n − k column vector. For linear block

codes, from its generator matrix, we can find out its parity-check matrix and vice versa.

The parity-check matrix for the even parity-check code shown in Equation 2.2 has been

shown in Equation 2.3.

H · xT = 0T (2.6)

Actually, a linear block code uses even-parity check on part or all of its information

bits. As a result, from these equations, its parity-check matrix can be directly written

out just as done for the even parity-check code shown in Equation 2.2. Then, from its

parity-check matrix, its generator matrix can be found.

In 1950, Hamming provided a class of linear block codes that could correct one error,

which we now call Hamming codes [27]. If the code length n = 2r−1, then the parity-check

matrix H of the Hamming code is constructed by using all the nonzero length r vectors

as the columns of H. Thus a Hamming code is an (n = 2r − 1, k = 2r − r − 1) linear

block code.

Using a Hamming (7,4) code as an example, n = 7, k = 4, r = 3, there are 4

information bits, the codeword length is 7, and 3 even parity-check equations exist. Let’s

use x1, x2, · · · , x7 to denote the 7 bits in the codeword. If the even parity-check equations

shown in Equation 2.7 are used, then the corresponding parity-check matrix is shown in

Equation 2.8 and this parity-check matrix was the one Hamming used in his paper [27].
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x4 + x5 + x6 + x7 = 0

x2 + x3 + x6 + x7 = 0

x1 + x3 + x5 + x7 = 0 (2.7)

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 (2.8)

Notice that the column vectors can have different permutations and the resulting

parity check matrix, H, is different. However, the constructed codes all have the same

rate and error correction ability and they differ only where the parity-check bits are

inserted. As a result, we call them equivalent. Equation 2.9 shows another parity-check

matrix of the famous Hamming (7,4) code where Ir is a r ∗ r identity matrix.

H =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



 =
[

P Ir

]

(2.9)

If a systematic code is used and all the information bits are sent out before the

parity-check bits, then we can have a generator matrix shown in Equation 2.10 where Ik

is a k ∗ k identity matrix, and Q is a k ∗ (n − k) matrix.

G =
[

Ik Q
]T

(2.10)

Since every row vector of the generator matrix is a valid codeword, Equation 2.11 can

be derived in which 0r is a r ∗ r all zero matrix.

HGT = 0r

[

P Ir

] [

Ik Q
]T

= 0r (2.11)

From Equation 2.11, it is easy to see that PT = Q. As a result, for a linear block

code, from its parity-check matrix, which has the form [PIr], we can immediately find its

generator matrix [IkP ]T and vice versa. Of course, from the parity-check matrix of the

Hamming (7,4) code shown in Equation 2.9, we can find the generator matrix shown in

Equation 2.12.
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G =









1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1









(2.12)

From the generator matrix shown in Equation 2.12, we can find that the Hamming

weight for the Hamming (7,4) code is 3. As a result, the Hamming distance is also 3

and the Hamming (7,4) code is also called the Hamming (7,4,3) code. Because it has

Hamming distance 3, it can correct 1 error.

Notice that if a single error happens, then the value at the right end of Equation 2.6

is not a zero vector. Instead, the result is a column vector of the parity-check matrix

and the position of the column vector is the position in which the error happens. If the

parity-check matrix of the Hamming (7,4,3) code is written in the form of Equation 2.13,

then a single error is identified by hj and j is the location of the error and all hj are

unique. However, double errors in positions i and j are not identifiable since hi +hj = hk

look like a single error in position k.

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 =
[

h1 h2 h3 h4 h5 h6 h7

]

(2.13)

From the generator matrix shown in Equation 2.12, you can see that all codewords

of the Hamming (7,4) code other than the all 0 codeword and the all 1 codeword have

weight 3 or 4.

Any code can be extended by adding an overall parity-check equation to ensure that

all symbols add up to zero modulo 2. This is done by modifying the parity-check matrix

as Equation 2.14 shows where H is the old parity-check matrix.

Ĥ =











1 1 · · · 1
0

H
...
0











(2.14)

If we choose the parity-check matrix of the Hamming (7,4) code to be the one shown

in Equation 2.15, by doing the transformation shown in Equation 2.14, the parity-check

matrix shown in Equation 2.16 is derived. By adding line 3 to line 1 and then move the
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last column to the first column, we can have another parity-check matrix of the extended

Hamming (8,4) code shown in Equation 2.17.

H =





0 1 1 0 1 1 0
0 0 0 1 1 1 1
1 1 0 0 0 1 1



 (2.15)

H =









1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 0
0 0 0 1 1 1 1 0
1 1 0 0 0 1 1 0









(2.16)

H =









1 1 1 1 0 0 0 0
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1
0 1 1 0 0 0 1 1









(2.17)

It is interesting to notice that for the extended Hamming (8,4) code shown in Equa-

tion 2.17, H · HT = 04∗4. As a result, every row vector of H is a valid codeword and H

is also the generator matrix G for the extend Hamming (8,4) code. From Equation 2.17,

we see that all the codewords other than the all 0 codeword and the all 1 codeword have

weight 4. As a result, the Hamming distance for this code is 4 and it is called the extended

Hamming (8,4,4) code.

2.4 Convolutional Codes

For block codes, usually redundancy is generated by the algebraic equations. However,

hardware implementation of the algebraic equations is not easy. As a result, the hardware

implementation of the encoder and decoder of a block code is not easy. This makes people

consider other ways of providing redundancy.

In sequential circuit design, finite state machines are widely used and can be easily

implemented. If the encoded output can be limited by the current state of a state machine,

then redundant information can be added according to the current state. If the states are

different, then the redundancy is added differently just like having different parity-check

equations in the block code. The number of registers used is called the memory order.

In general, the larger the memory order, the larger the state number it can provide and

the more protection the code gains. This kind of code is called a convolutional code.

Figure 2.3 shows an example of a convolutional code and we use this example to explain
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Figure 2.3. Convolutional code example.

some concepts related to convolutional codes. In Figure 2.3, there are two shift registers

and the corresponding stored value are d1, d2. Every time when an input u comes, the

encoder generates two outputs x1 = u + d2 and x2 = u + d1 + d2. As a result, this

convolutional code has rate R = 1/2. Because there are only two registers, the maximum

number of states is 4. If we use d1d2 to denote states and use u/x1x2 to label state

transitions, then we the corresponding state transition diagram is shown in Figure 2.4.

For example, if d1 = 1, d2 = 0 and u = 0, then the new values of d1 = 0, d2 = 1 and the

output x1 = u + d2 = 0 + 0 = 0, x2 = u + d1 + d0 = 0 + 1 + 0 = 1. As a result, there is a

state transition from 10 to 01 with label 0/01 on the transition.

Notice that for convolutional codes, the initial input can affect the next state, thus all

the following encoded output could be affected. As a result, the input-output sequence

can be infinite, unlike block codes. However, because the state number is finite, at some

time in the future, the state must be a state that has been seen before.

It is easy to convince yourself that the decoder of a convolutional code can also be

easily built by a finite state machine. In real applications, several continuous ’0’ bit inputs

are always used to terminate the sequence to make the state return to the all ’0’ state.
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Figure 2.4. The state-transition diagram of the convolutional code from Figure 2.3.
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2.5 Trellis Coding

2.5.1 Trellis Coding for Convolutional Codes

If we assume the initial state of the convolutional code shown in Figure 2.3 is ’00’, by

following the state transition diagram and drawing the state as a node and the transition

between states as a branch, we can get a tree description of the code shown in Figure 2.5.

Each path along the tree represents a valid codeword. However, as we proceed, the tree

explodes very quickly. Noticing that the output of time t + 1 is simply defined by the

state of time t and the input, we can represent all nodes showing the same state memory

content at a given time by using only one node. As a result, we can get the trellis

representation of the code shown in Figure 2.6, which is more compact.

From the example, we know that there are only four different states to depict. After

encoding u1 and u2, the state number reaches the maximum number. Then, when the

following information bit comes, the state number does not increase anymore and the state

set is the same as the previous state set. Because the next state is only determined by the

current state and input, it is easy to understand that the trellis of the code is simply built

by concatenating identical trellis sections as shown in Figure 2.7. From the derivation of

the trellis, we notice that for a single trellis section, the left nodes show the current state

S(t) where the right nodes show the next state S(t + 1). The branch between left state

and right state shows a valid state transition and combination of encoded input/output.

2.5.2 Trellis Coding for Block Codes

The previous subsection shows that a convolutional code has a trellis representation.

Are there trellis representations for block codes? The answer is absolutely yes. Since

every trellis path represents a valid codeword, if we use a trellis as a visual method

of the code, then every code has its trellis representation and each distinct codeword

corresponds to a distinct path through the trellis. Now, the problem is how to find

the trellis representation of block codes. Bahl, Wolf, and Massey [4] [71] [50] found the

answer. Following the approach in [4] [71], we define the states of the trellis as follows:

let sr be the label of the state at time r and let the initial state s1 to be in the 0 state

that means s1 = 0. Then,

sr+1 = sr + xrhr =
r
∑

l=1

xlhl (2.18)

where hr is the rth column of the parity-check matrix and xr runs through all permissible

code symbols at time r. The state at the end of time interval r+1, sr+1 is calculated from
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the preceding state sr according to Equation 2.18. If the states sr and sr+1 are connected,

they are joined in the trellis diagram by a branch labeled with the output symbol xr that

causes the connection. If a certain value for xr makes the final state unable to be the all 0

state, then this value for xr is not permissible. Using this method, we can find the trellis

of the extended Hamming (8,4,4) code defined by Equation 2.17 shown in Figure 2.8. In

the figure, the horizontal branches denotes xr = 0 where the up going or down going

branches denotes xr = 1. For example, if we choose x1 = 1, x2 = 1, x3 = 1, then state

s4 = 1000 + 1001 + 1101 = 1100. At this point, x4 = 0 is not permissible because no

matter what we choose for x5, x6, x7, x8, the final state s9 cannot be the all 0 state. As

a result, we can only choose x4 = 0. Then, if we choose x5 = 1, x6 = 1, x7 = 1, x8 = 1,

the final state s9 = 0000. As a result, 11111111 is a valid codeword, and there is a

corresponding trellis path on the trellis diagram.

2.5.3 Tail-biting Trellis

As the code complexity goes up, the trellis representation also goes up more than

linearly with the convolutional code’s memory order or the block code’s length. Some

trellis sections, especially the mid trellis sections, are so complex that they make the

hardware implementation a big problem. For the traditional trellis, there is only one node

at the beginning and ending point. As a result, the trellis sections near the beginning

point and ending point is comparatively simple as compared with the trellis sections at

the mid point. In other words, the trellis is not well balanced. Can we make the trellis

more balanced to decrease the overall complexity of the trellis? Calderbank [10] and other

researchers gave the answer by using the tail-biting trellis. Figure 2.9 shows the structure

of a tail-biting trellis (Notice that the trellis sections do not need to be identical). In the

tail-biting trellis, there is no single starting point and ending point. Instead, any path

that starts and ends at the same point represents a valid codeword.

For example, for the extended Hamming (8,4,4), there is a tail-biting trellis shown

in Figure 2.10 [10]. In Figure 2.10, every trellis starts and ends at the same point is a

valid codeword of the extended Hamming (8,4,4) code. For example, 11000110 is a valid

codeword because it starts and ends at the same state. For the tail-biting trellis shown

in Figure 2.10, the state-complexity profile is 2,4,4,4,2,4,4,4 while the state-complexity

profile for the conventional trellis shown in Figure 2.8 is 1,2,4,8,4,8,4,2,1. The tail-biting

trellis is simpler and easier to be realized than the conventional trellis.
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Figure 2.8. Trellis diagram of the extended Hamming (8,4,4) code.

Figure 2.9. Structure of a tail-biting trellis.
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Figure 2.10. Tail-biting trellis for the extended Hamming (8,4,4) code.

If we combine adjacent trellis sections together and redraw Figure 2.10, we can get

the figure shown in Figure 2.11 that is used for our extended Hamming (8,4,4) decoder

[69]. In Figure 2.11, u1 = x1, u2 = x2 + x3, u3 = x5, u4 = x6 + x7 and the branches are

labeled with the input/output of the encoder.

2.6 Noise Representation

Until now, we have not considered anything about noise. Of course, noise is im-

portant. Without knowing the noise model, we cannot know what is the probability of
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code.
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the received bit to be a ’1’ or ’0’. In communication, there are a large number of noise

models. However, the basic and most widely used noise model is the memory-less additive

white Gaussian noise, AWGN model. This thesis concentrates only on the memory-less

AWGN model. Figure 2.1 is a simplified communication model. In real applications, in

order to send and receive information, a modulator and demodulator are used to make

the transmitted signals on the channel continuous. As a result, a more complicated

communication model is shown in Figure 2.12.

Now, using BPSK (binary shift keying) as an example, we show the relationship

between the noise and the probabilities of a received bit to be a ’0’ or ’1’. The following

equation shows the two signals that BPSK uses. In the equation, Ec is the energy of each

symbol and Ts is the duration of one symbol and f0 is a multiple of 1/Ts.

s0(t) =

√

2Ec

Ts
sin(2πf0t +

π

2
), 0 ≤ t ≤ Ts

y Matched

channel

s(t)

r(t)

filter

n(t)

Modulator

Discrete memoryless channel

x

sampler

u Encoder

Decoder

Demodulator

receiver
Digital

Digital
source

û ρ

Figure 2.12. A more detailed model of a communication system.
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s1(t) =

√

2Ec

Ts
sin(2πf0t −

π

2
), 0 ≤ t ≤ Ts (2.19)

Since the noise is memory-less additive white Gaussian noise, the following equation

is true.

r(t) = s(t) + n(t), 0 ≤ t ≤ Ts (2.20)

In order to know the probability that the sender has sent out a ’1’, we need to know

how much the received signal resembles the signal denoting a ’1’. As a result, the following

equation is used by the demodulator and this equation is implemented by a matched filter.

ρ =

∫ Ts

0
r(t)

√

2

Ts
sin(2πf0(t) +

π

2
) dt (2.21)

However, this equation is too complex to be used. Because the noise is white, each

sample of the noise is independent to any other samples. As a result, the noise could be

denoted by a real number with the probability density function defined by

fn(x) =
1

√

2πσ2
n

e
− x2

2σ2
n (2.22)

in which σ2
n is the variance of the zero-mean white Gaussian noise n(t). This variance,

σ2
n, is related to the one-sided power spectral density (PSD) N0 by

σ2
n =

N0

2
(2.23)

Since s1(t) = −s0(t), we can normalize the noise power according to Ec and then use

1 to denote s1(t) and -1 to denote s0(t). Now, the equation between the transmitted bit,

the received bit, and the noise can be represented by Equation 2.24. In the equation, x

can only choose values 1 and −1 and n can be any real number with probability density

function described by Equation 2.22.

y = x + n (2.24)

Now, the conditional probability of knowing x = 1 based on the recevied value y is

determined by Equation 2.25. This equation is easy to use compared with Equation 2.21.

p(x = 1|y) =

1√
2πσ2

n

e
− (y−1)2

2σ2
n

1√
2πσ2

n

e
− (y−1)2

2σ2
n + 1√

2πσ2
n

e
− (y+1)2

2σ2
n

=
1

1 + e
− 4y

2σ2
n

(2.25)
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2.7 Soft Decision Versus Hard Decision

Traditionally, in the algebraic decoding of block codes, we determine first whether

the received information is a ’1’ or ’0’. Then, we use the parity-check equations to find

out what the information bits should be. For the decoding of convolutional codes, it is

also determined whether the received bit is a ’1’ or ’0’ first before finding a trellis path

with minimum distance to the determined value. The first step of deciding whether the

information is a ’1’ or ’0’ is called a hard decision. However, in the hard decision, we lose

some information. For example, no matter how close the information bit is near to a ’1’,

it is considered to be a ’1’ as long as it has more distance to a ’0’. Even if in situation

s1, the information bit is much closer to a ’1’ than in situation s2, the two situations are

treated as the same and part of the information is lost. However, if we use probability

to mean how close the information is near to a ’1’ or ’0’, then the probability of being a

’1’ in situation s1 is much higher than in situation s2. As a result, no information is lost.

This kind of decision is called a soft decision. Soft decision is superior to hard decision

in error rate, but is requires a more complex decoder.

Let us use the trellis of the extended Hamming (8,4) code shown in Figure 2.8 as

an example. Suppose that the probabilities of the received bits are shown in Table 2.1.

If hard decision is used, then in the first step it is decided that sequence 11100000 is

received, then by either using algebraic equations or finding a trellis path with minimum

distance to the determined value, the decoded sequence is decided to be 11110000 and

the information bit is decided to be 1000. However, using soft decision, the decoded

sequence is decided to be 00000000 and the information bit is decided to be 0000. From

the example, we can see that the probability of x1, x2, and x3 being ’0’ or ’1’ are nearly

equal. However, the probability of x4 being ’0’ is much larger than its probability of being

’1’. Using soft decision, x4 helps us find a better result.

Table 2.1. Example of received bits of the extended Hamming (8,4) code.

x1 x2 x3 x4 x5 x6 x7 x8

Probability of being ’0’ 0.49 0.49 0.49 0.99 0.99 0.99 0.99 0.99

Probability of being ’1’ 0.51 0.51 0.51 0.01 0.01 0.01 0.01 0.01
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2.8 Decision Rule

So far, we have described the code structure and the channel model (noise model). We

have not, however, described the decoder. Of course, the decoder is needed to decide what

the source information is. A decision rule is a rule that the decoder uses to determine

the source information. Of course, we would like to have a good decision rule that can

make a good decision based on what has been received. Two important decision rules are

maximum-a-posterior (MAP) decision rule and maximum-likelihood (ML) decision rule

and we describe them in the following subsections.

2.8.1 MAP Decision and ML Decision

Using a soft decision rule, we would like to choose the decoder output to be the

one with maximum conditional probability when we receive a sequence y as shown in

Figure 2.12. Thus, the maximum-a-posterior (MAP) decision rule is introduced. Suppose

that all the valid information sequences u construct the information space U and all the

received sequences y construct the space Y , then a MAP decoder can be defined as

ũMAP (y) = max [P (u|y)] (2.26)

in which the function max[P (u|y)] returns the particular u that maximizes the probability

P (u|y). This decision rule is called the maximum-a-posterior (MAP) decision rule because

it maximizes the a posterior probability p(u|y) for a certain y. Using the MAP decision

rule with trellis coding, Bahl, Cocke, Jelinek, and Raviv [4] presented the BCJR algorithm

(also called the forward-backward algorithm) that is widely used.

Because PY (y) is the statistical probability of receiving sequence y that is irrelevant

to u , Equation 2.26 can be written as the following equation.

ũMAP (y) = max [P (u|y)] = max

[

P (u, y)

PY (y)

]

= max [P (u, y)] (2.27)

PU (u) is the probability distribution of sequence u being sent in the set U . In most

cases, it is a constant and uniformly distributed. As a result, the equation can be further

simplified as follows.

ũML(y) = max [P (u, y)] = max [P (y|u)PU (u)] = max [P (y|u)] (2.28)

Now, instead of maximizing the conditional probability of having sent out u when we

know we have received y, we maximize the conditional probability of sending out u and



29

receiving y. This probability is much more directly related to the channel characteristics.

The decision rule using Equation 2.28 is called the maximum-likelihood (ML) decision

rule. As a result, in general, the ML decision rule can be more easily realized. The

famous Viterbi algorithm [66], [18] uses the ML decision rule. In cases in which PU (u) is

uniformly distributed, the ML decision rule and the MAP decision rule are equivalent.

Also, from Figure 2.12, we know there is a one to one projection between the original

information sequence and the encoded output sequence x. As a result, Equation 2.29 and

Equation 2.30 can be derived. For a memoryless channel, Equation 2.31 and Equation 2.32

can be derived.

ũMAP (y) = max [P (u|y)] = max [P (x|y)] (2.29)

ũML(y) = max [P (y|u)] = max [P (y|x)] (2.30)

ũMAP (y) = max

[

n
∏

i=1

P (xi|yi))

]

(2.31)

ũML(y) = max

[

n
∏

i=1

P (yi|xi)

]

(2.32)

2.8.2 Block-Wise Decision and Bit-Wise Decision

Let us use u to mean the information sequence, uk to mean a certain information bit

and y to mean the received sequence as stated in Subsection 2.2.1 and let U to mean the

source codeword space composed by all the source codewords. Then, if Equation 2.29 or

2.30 is used to determine the information bits, it is called a block-wise decision, also known

as sequence estimation because it estimates the probability of the received sequence to

be a sequence in the trellis. The Viterbi algorithm uses the block-wise ML decision. For

example, using the probabilities shown in Table 2.1 and the trellis shown in Figure 2.8,

sequence 00000000 has the largest probability 0.49∗0.49∗0.49∗0.99∗0.99∗0.99∗0.99∗0.99

in the trellis so that it is chosen to be the decoded result.

Instead, if Equation 2.33 or Equation 2.34 is used to determine each bit of the

information bits, it is called a bit-wise decision because they sum over the probabilities of
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all the codewords that have the certain information bit uk = 0 and the probabilities of all

the codewords that have the certain information bit uk = 1 to get the probability of this

certain bit uk to be a ’0’ or ’1’ and then make the decision based on the probabilities of

this certain information bit. For a memoryless channel, Equation 2.35 and Equation 2.36

can be derived. For example, if we need to determine x5 that is also information bit u3

shown in Figure 2.11, we need to determine the probabilities of all valid trellis paths. If

the sum of the probabilities of all the valid trellis paths that have x5 equal ’0’ is larger

than the sum of the probabilities of all the valid trellis paths that have x5 equal ’1’, then

x5 is decided to be ’0’, otherwise it is decided to be ’1’.

ũkMAP (y) = maxuk
[P (uk|y)] = maxuk





∑

u∈U,ũk=uk

P (u|y)



 (2.33)

ũkML(y) = maxuk
[P (y|uk)] = maxuk





∑

u∈U,ũk=uk

P (y|u)



 (2.34)

ũkMAP (y) = maxuk





∑

u∈U,ũk=uk

n
∏

i=1

P (xi|yi)



 (2.35)

ũkML(y) = maxuk





∑

u∈U,ũk=uk

n
∏

i=1

P (yi|xi)



 (2.36)

Using bit-wise decision, the information bit is decided only by the channel information

and context without the need of forcing the received sequence to be a valid sequence.

As a result, bit-wise decision is superior to block-wise decision. However, from the

previous description, bit-wise decision is much more difficult to be implemented than

block decision.

2.8.3 Bit-Wise MAP Decision

The previous description indicates that the bit-wise MAP decision rule is the optimum.

This subsection discusses the method of using bit-wise MAP decision on trellis coding.

Let us define sr to mean the state at time r and sr+1 to mean the state at time

r + 1. In order to find maxuk
[P (uk|y)], we need to first find the probability shown in

Equation 2.37.
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P (sr = i, sr+1 = j|y) (2.37)

Since Equation 2.38 is true and the maximization of maxuk
[P (uk|y)] is independent

of P (y), we can evaluate the joint probabilities instead of the conditional probabilities.

P (sr = i, sr+1 = j|y) =
P (sr = i, sr+1 = j, y)

P (y)
(2.38)

Before we proceed, let us define αr(j) = P (sr = j, ỹ) to be the joint probability of

the partial sequence ỹ = (y−l, · · · , yr−1) up to and including time epoch r − 1 and state

sr = j, βr(j) = P ((yr, · · · , yl)|sr = j) to be the conditional probability of the remainder

of the received sequence y given that the state at time r is j and γr(i, j) to be the joint

conditional probability of yr and the state at time r + 1 equals j, given that the state at

time r is i. Then, using Bayes’ rule, the following equations can be derived.

P (sr = i, sr+1 = j, y) = P (sr = i, sr+1 = j, (y−l, · · · , yr−1), yr, (yr+1, · · · , yl))

= P (sr = i, (y−l, · · · , yr−1))P (sr+1 = j, yr|sr = i)

·P ((yr+1, · · · , yl)|sr+1 = j)

= αr(i)γr(i, j)βr+1(j) (2.39)

αr(j) =
∑

states i

P (sr−1 = i, sr = j, ỹ)

=
∑

states i

P (sr−1 = i, (y−l, · · · , yr−1))P (sr = j, yr|sr−1 = i)

=
∑

states i

αr−1(i)γr−1(i, j) (2.40)

βr(j) =
∑

states i

P (sr+1 = i, (yr, · · · , yl)|sr = j)

=
∑

states i

P (sr+1 = i, yr|sr = j)P ((yr+1, · · · , yl)|sr+1 = i)

=
∑

states i

βr+1(i)γr(j, i) (2.41)

For trellis codes starting in the zero state at time r = −l and end in the zero state at

time r = l + 1, the boundary condition is shown in Equation 2.42.
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α−l(0) = 1, α−l(j) = 0( j 6= 0)

βl+1(0) = 1, βl+1(j) = 0( j 6= 0) (2.42)

Using the boundary condition and Equation 2.40, we can process forward along the

trellis to get all the α values. Using the boundary condition and Equation 2.41, we can

process backward along the trellis to get all the β values. Then, by using Equation 2.39,

we can find the answer for the joint probabilities P (sr = i, sr+1 = j, y). As a result, this

algorithm is often called the forward-backward algorithm.

If we get the probability by summing over the probabilities shown in Equation 2.43

instead of the probabilities shown in Equation 2.39, we get the extrinsic information

without using the channel information for the current bit. The extrinsic information

provides the context information for the current bit and is often used in iterative decoding.

P (sr = i, (y−l, · · · , yr−1, yr+1, · · · , yl)|sr+1 = j) = P (sr = i, (y−l, · · · , yr−1))

P ((yr+1, · · · , yl)|sr+1 = j)

= αr(i)βr+1(j) (2.43)

2.9 Iterative Decoding

As the code complexity increases, the complexity of using the MAP decision rule

increases more than linearly, making it difficult to be implemented. A better idea is

to not decode the information all at once. Instead, we decode only using part of the

related information that has been received. Then, step by step, we use other parts of

the related information to generate a better result until all the related information is

used and the decode result has stabilized to a nearly optimum result. Iterative decoding

is the decoding strategy using this technique. For example, if we have received a larger

sequence y in which the information bits are related, we can use part of y to decode first

and get the decoded result. Then, we can gradually add the other parts of y into the

decoding process and finally find a near optimum result. In doing iterative decoding, for

every component decoder, we need to use both the channel information and the extrinsic

information generated by the previous step so that the context information provided by

other component decoders can be used. As a result, usually bit-wise MAP decision is

used for each component code so that it can give the extrinsic information. Iterative
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decoding is used in a large number of decoders such as Turbo decoders [9], [8], [7], [6]

LDPC decoders [19], [47], [41], [57], [46] and product decoders [25], [49], [72], [70] that

we discuss in the next section.

2.10 Product Codes

It is long known that even for the simple even parity-check, using a two-dimensional

code can gain a much better protection than using a one-dimensional code. Figure 2.13

shows the structure of the two-dimensional even parity-check code. By using two-dimensional

even parity-check, a relationship is created in the k1∗k2 bits and the redundancy provided

by the even parity-check bits is more useful and more protection is gained compared with

the one-dimensional even parity-check.

By expanding this idea to general codes, product codes of multiple dimensions can

be built. Figure 2.14 shows the structure of a two-dimensional product code with com-

ponent codes C1 and C2. In theory, the component codes can be either block codes or

convolutional codes. Usually, the component codes are linear block codes. Also, if the

parity on parity is not provided, it is called a “punctured version.” If the parity on parity

is provided, it is called a “full version.” Since the product code creates a relationship

between n1 ∗n2 bits, it provides better performance than its component code. Simulation

has shown that the product code has an amazing performance despite its simple structure.

The decoder for a product code is realized by iterative decoding. From Figure 2.14,

we know that the row code and column code intersect each other and share the same

Parity
Parity
on
Parity

Information
Block

Parity

k1 k1 + 1

k2

k2 + 1

Figure 2.13. Two-dimensional even parity-check.
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Figure 2.14. Two-dimensional product code.

information bit. Thus, they have a relationship. As a result, there is extrinsic information

exchanges between the row code and the column code. Actually the relationship and the

decoding of the information bit can be realized by an equal gate shown in Figure 2.15.

For an equal gate that has connections with n nodes 1, 2, · · · , n, the function of the equal

gate is expressed by Equation 2.44 in which pi(0) means the probability of node i to be 0

and pi(1) means the probability of node i to be 1 and p′i(0) and p′i(1) represent the new

probability of node i. For the equal gate shown in Figure 2.15, the channel information γ

is only provided as input and no output for it is needed. As a result, the function of the

equal gate shown in Figure 2.15 can be expressed by Equation 2.45 to Equation 2.47. In

most cases, the a prior probability pu has a unity distribution pu(0) = pu(1). As a result,

Equation 2.45 and Equation 2.46 can be simplified to not include pu.

p′j(0) =

∑n
i=1,i6=j pi(0)

∑n
i=1,i6=j pi(0) +

∑n
i=1,i6=j pi(1)

p′j(1) =

∑n
i=1,i6=j pi(1)

∑n
i=1,i6=j pi(0) +

∑n
i=1,i6=j pi(1)

(j = 1, · · · , n) (2.44)

p′r(0) =
pu(0)pγ(0)pc(0)

pu(0)pγ(0)pc(0) + pu(1)pγ(1)pc(1)
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Figure 2.15. The equal gate connecting a row decoder and a column decoder.

p′r(1) =
pu(1)pγ(1)pc(1)

pu(0)pγ(0)pc(0) + pu(1)pγ(1)pc(1)
(2.45)

p′c(0) =
pu(0)pγ(0)pr(0)

pu(0)pγ(0)pr(0) + pu(1)pγ(1)pr(1)

p′c(1) =
pu(1)pγ(1)pr(1)

pu(0)pγ(0)pr(0) + pu(1)pγ(1)pr(1)
(2.46)

p′u(0) =
pγ(0)pr(0)pc(0)

pγ(0)pr(0)pc(0) + pγ(1)pr(1)pc(1)

p′u(1) =
pγ(1)pr(1)pc(1)

pγ(0)pr(0)pc(0) + pγ(1)pr(1)pc(1)
(2.47)

As a result, the row decoder and column decoder exchange extrinsic information. For

every iteration, the row and column decoder use not only the a prior probability pu and the

channel information, but also the extrinsic information from another component decoder

(Notice that for the simple extended Hamming (8,4) decoder, only the a priori probability

and the channel information are used). As a result, for every iteration, the component

decoder uses not only the context information provided by the the current component

decoder, but also the context information provided by other component decoders that

is generated in the previous step. Thus, more redundancy is used by the component

decoder and the result of the component decoder is improved gradually until it stabilizes

and reaches a near optimum result. In the decoding, the channel information and the

extrinsic information provided by the row decoder and column decoder are both used to

generate a good result.



CHAPTER 3

FACTOR GRAPH SIMULATION

As stated in Chapter 1, researchers have observed that a number of important al-

gorithms in error-control coding can be interpreted as operations of the sum-product

algorithm on probability propagation networks that is a kind of factor graph [17] [35] [2].

This chapter discusses factor graphs, how to apply the sum-product algorithm to factor

graphs, and how to use a factor graph to model a coding system. Finally, this chapter

discusses how to do high-level simulation of an error control decoder from its factor graph

model and how to automate the high-level simulation.

3.1 Factor Graph

Factor graphs can be used to model coding systems. This section introduces the

concept of a factor graph. Then, it discusses how to use factor graphs to construct the

behavioral model and probabilistic model of a coding system.

3.1.1 Definition of Factor Graph

According to the definition in [35], a factor graph is a bipartite graph that expresses

the structure of the factorization shown in Equation 3.1 in which a “global” function

of many variables is factored into a product of “local” functions. In Equation 3.1, J is

a discrete index set, Xj is a subset of x1, · · · , xn and fj(Xj) is a function having the

elements of Xj as arguments. A factor graph has a variable node for each variable xi,

a function node for each local function fj and an edge connecting variable node xi to

function node fj if and only if xi is an argument of fj. For example, the function g

defined by g(x, y) = xy − x can be factored into g(x, y) = f1(x)f2(y) where f1(x) = x

and f2(y) = y − 1. The factor graph depicting this factorization is shown in Figure 3.1.

g(x1, · · · xn) =
∏

j∈J

fj(Xj) (3.1)
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1 2
f yx f

Figure 3.1. Factor graph example 1.

In Figure 3.1, the circles represent the variables and the squares represent the func-

tions. A line, or edge, is drawn between a circle (variable) and a square (function) if the

variable for the circle is an argument of the function for the square. Thus, the circle,

edge, and square on the left represent f1(x) and the circle, edge, and square on the

right represent f2(y). The “global” function is the product of the local functions, i.e.,

g(x, y) = f1(x)f2(y).

As another example, consider the factor graph in Figure 3.2. The three circles

represent the 3 variables x, y, z and the three squares represent the three functions

f1, f2, f3. The edges connecting the circles and squares tell us that this graph represents

a function g that factors as g(x, y, z) = f1(x, y)f2(y, z)f3(x, z).

3.1.2 Configuration and Behavioral Modeling

In many applications, the function is defined by a configuration space. For example,

for a binary linear (n, k) block code, there is a code space that is constructed by 2k

codewords. If a length n codeword is a codeword in the code space, it is a valid codeword,

otherwise it is not a valid codeword. In this way, we can define a function based on the

code space. The function has the domain of length n codewords. If a codeword is a

valid codeword, the function has value 1, which means true, otherwise the function has

value 0, which means false. In general, let x1, x2, · · · , xn be a collection of variables with

x f
1 2

fy

f
3

z

Figure 3.2. Factor graph example 2.
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configuration space S = A1 ∗ A2 ∗ · · · ∗ An. Let B be a subset of S that means valid

behavior. The elements of B are the valid configurations. Let us define a function g

with parameters x1, x2, · · · , xn. If the parameter’s value is an element of B, g has value 1,

indicating its a valid configuration. Otherwise g has value 0. Because g indicates whether

the configuration is valid or not, we call g an indicator function. Because the indicator

function is defined by the behavior B, this approach is known as behavioral modeling

[68].

For a “global” indicator function, it may be factored into the product of “local”

indicator functions. Each “local” function has its variables and configuration space. If all

the “local” indicator functions have value 1, then the “global” indicator function has value

1. Otherwise the “global” indicator function has value 0. As a result, we can use a factor

graph to show the factorization of the “global” indicator function. For a linear (n, k)

block code, it is defined by a (n − k, n) parity-check matrix in which n − k parity-check

equations are defined. For a length n codeword, if all the n − k parity-check equations

are satisfied, then the codeword is a valid codeword in the code space. Of course, the

“global” indicator function can be factored into the product of n − k “local” functions

whose configuration spaces are defined by the n−k parity-check equations. For example,

if we use C to show the code space of the extended Hamming (8,4) code, which is defined

by the parity-check matrix shown in Equation 2.17, the factorization of the “global”

indicator function of the extended Hamming (8,4) code is shown in Equation 3.2 in which

“+” means XOR operation in the binary field. The corresponding factor graph is shown

in Figure 3.3 in which a square with a “+” sign is used to represent the parity-checks. A

factor graph obtained in this way is often called a Tanner graph [63].

g(x1, x2, · · · x8) = [(x1, x2, · · · x8) ∈ C]

= [x1 + x2 + x3 + x4 = 0] [x3 + x4 + x6 + x7 = 0]

[x5 + x6 + x7 + x8 = 0] [x2 + x3 + x7 + x8 = 0] (3.2)

3.1.3 Probabilistic Modeling

Since conditional and unconditional independence of random variables is expressed

in terms of a factorization of their joint probability mass or density function, factor

graphs for probability distributions can be used in many situations. Because the “global”
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f1 f2 f3 f4

x8x7x5 x6x4x3x2x1

Figure 3.3. The Tanner graph of the extended Hamming (8,4) code shown in Equa-
tion 2.17.

function defines the joint probability mass or density function, this approach is known

as probabilistic modeling. Also, the values that are passed between nodes are always

probabilities, this kind of factor graph is known as probability propagation network. These

are commonly used in decoding field. In decoding, MAP decision and ML decision can be

used to decide the result. Probabilities are used in making the decision. Thus, instead of

making a decision of whether the codeword is a valid codeword or not, we need to decide

the probability of each of the valid codewords based on the received information and

then make a decision according to the MAP or ML decision rule. If the block-wise MAP

decision rule is used, then the probability of each of the valid codewords is based on the

received information as shown in Equation 3.3 in which f(x|y) denotes the conditional

probability of knowing x has been sent based on the received value y. If the channel is

memoryless, then Equation 3.4 can be derived. The corresponding factor graph is shown

in Figure 3.4.

g(x1, x2, · · · x8) = [x1 + x2 + x3 + x4 = 0] [x3 + x4 + x6 + x7 = 0]

[x5 + x6 + x7 + x8 = 0] [x2 + x3 + x7 + x8 = 0] f(x|y) (3.3)

g(x1, x2, · · · x8) = [x1 + x2 + x3 + x4 = 0] [x3 + x4 + x6 + x7 = 0]

[x5 + x6 + x7 + x8 = 0] [x2 + x3 + x7 + x8 = 0]

8
∏

i=1

f(xi|yi)(3.4)
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f(x3|y3)

f2 f3 f4f1

x1 x3x2 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7 y8

f(x5|y5) f(x8|y8)f(x7|y7)

x8

f(x1|y1) f(x2|y2) f(x6|y6)f(x4|y4)

Figure 3.4. Factor graph for the conditional probability density function of the extended
Hamming (8,4) decoder based on Equation 2.17.

3.2 The Sum Product Algorithm

In this section, we discuss the sum product algorithm. We begin with the introduction

of marginal function and then introduce the sum-product operation. Then we discuss

the sum product update rules and use some examples of the sum product algorithm

applications to explain the sum product algorithm.

3.2.1 Marginal Function

In many situations (for example, when the “global” function g(x1, · · · , xn) represents

a joint probability mass function), we are interested in computing the marginal function

gi(xi) as shown in Equation 3.5 in which ∼ {xi} denotes the sum over all values of

x1, ..., xN except xi. For the bit-wise MAP decision shown in Equation 2.33, it sums

all the probabilities of the valid codewords corresponding to a certain information bit

ui based on the received information y. If we write the equation in a different form as

shown in Equation 3.6 in which the function [u ∈ U ] is an indicator function indicating

whether the information sequence u is a valid information sequence or not, then it is clear

that the operations beside the max operation is implemented by a marginal function. If

the “global” function can be factored into the product of “local” functions as shown in
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Equation 3.1, then Equation 3.7 can be derived from Equation 3.5. In Equation 3.7, the

first operation is generating the product and the next operation is summing the product

terms.

gi(xi) =
∑

∼{xi}
(g(x1, ..., xN )) (3.5)

ũiMAP (y) = maxui





∑

∼{ui}
[u ∈ U ]P (u|y)



 (3.6)

gi(xi) =
∑

∼{xi}
(
∏

j∈J

fj(Xj)) (3.7)

Also, by ordering the operations, we can do the sum-product operation recursively.

The factor graph for an even parity-check code with length 4 shown in Figure 3.5 is used as

an example. For this example, the “global” indicator function g = (x1 +x2 +x3 +x4 = 0)

is a function that indicates whether x1 + x2 + x3 + x4 = 0 is true.1 This “global”

indicator function can be factored into the product of two “local” indicator functions,

f1 = (x1+x2+s = 0) that indicates whether x1+x2+s = 0 is true and f2 = (s+x3+x4 =

0) that indicates whether s + x3 + x4 = 0 is true. If both f1 and f2 are true, then g is

true, otherwise g is false. Thus, g is factored into the product of f1 and f2. Note that s is

a new internal state variable that communicates information between the two functions.

For example, if x1 = x2 = 1 then this implies that s must be 0 to make f1 true. The fact

that s must be 0 means that x3 and x4 must be equal to make f2 true. In other words,

g is true if and only if a consistent value for s can be found that makes both f1 and f2

true.

To determine the probability of x3 shown in Figure 3.5 to be ’0’ and to be ’1’ (i.e.,

p(x3 = 0), p(x3 = 1)) after decoding, probabilistic modeling is used. Using bit-wise MAP

decision rule, the decoded result should be derived using Equation 3.8 that is a marginal

function. In Equation 3.8, the functions f(xi|yi)(i = 1, . . . , 4) are channel functions

expressed by Equation 2.25.

11 is used to mean true and 0 is used to mean false.
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Figure 3.5. Factor graph for the even parity-check code with length 4.

g3(x3) =
∑

∼{x3}

(

g(x1 + x2 + x3 + x4 = 0)
4
∏

i=1

f(xi|yi)

)

(3.8)

By factoring the “global” indicator function into the product of “local” indicator

functions and then ordering the operations, Equation 3.9 can be derived.

g3(x3) =

(

∑

x4,s

f2(x3 + x4 + s = 0)f(x4|y4)

(

∑

x1,x2

f1(x1 + x2 + s = 0)f(x1|y1)f(x2|y2)

))

f(x3|y3) (3.9)

When doing the computation recursively expressed by Equation 3.9, the process is

just like calculating the result on an expression tree. Actually, we can draw the factor

graph as a tree structure as shown in Figure 3.6. In Figure 3.6, the calculation begins

from the leaf node. When the values y1, y2, y3, and y4 are received, these values are sent

to the channel functions respectively. When the channel functions receive the messages

containing the yi(i = 1, . . . , 4), it can calculate the conditional probabilities according

to Equation 2.252 and then send these probabilities as messages to the corresponding

variable nodes xi(i = 1, . . . , 4). Then, these messages are passed to function nodes f1

and f2 from variable nodes xi(i = 1, . . . , 4) as shown in Equation 3.10. When all the

messages from the child nodes of f1, px1→f1(x1 = 0), px1→f1(x1 = 1), px2→f1(x2 = 0),

px2→f1(x2 = 1), have arrived, it can compute the result based on the valid configurations

of f1 according to Equation 3.11 and send the result as a message to variable node s,

which passes this message to function node f2. When all the messages from the child

nodes of f2, px4→f2(x4 = 0), px4→f2(x4 = 1), ps→f2(s = 0), ps→f2(s = 1), have arrived, it

2The conditional probability p(x = 0|y) = 1 − p(x = 1|y).
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Figure 3.6. A tree representation for the factor graph shown in Figure 3.5.
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can compute the result based on the valid configurations of f2 according to Equation 3.12

and send the result, extrinsic information, as a message to variable node x3. Finally,

when all the messages from the child nodes of x3 have arrived, the decoded probabilities

of x3 to be ’0’ and ’1’ that is the result of the marginal function can be calculated using

Equation 3.13 by combining the channel information and extrinsic information for x3.

px1→f1(x1 = 0) = p(x1 = 0|y1)

px1→f1(x1 = 1) = p(x1 = 1|y1)

px2→f1(x2 = 0) = p(x2 = 0|y2)

px2→f1(x2 = 1) = p(x2 = 1|y2)

px3→f2(x3 = 0) = p(x3 = 0|y3)

px3→f2(x3 = 1) = p(x3 = 1|y3)

px4→f2(x4 = 0) = p(x4 = 0|y4)

px4→f2(x4 = 1) = p(x4 = 1|y4) (3.10)

pf1→s(s = 0) = px1→f1(x1 = 0) ∗ px2→f1(x2 = 0) +

px1→f1(x1 = 1) ∗ px2→f1(x2 = 1)

pf1→s(s = 1) = px1→f1(x1 = 0) ∗ px2→f1(x2 = 1) +

px1→f1(x1 = 1) ∗ px2→f1(x2 = 0) (3.11)

pf2→x3(x3 = 0) = ps→f2(s = 0) ∗ px4→f2(x4 = 0) +

ps→f2(s = 1) ∗ px4→f2(x4 = 1)

= pf1→s(s = 0) ∗ px4→f2(x4 = 0) +

pf1→s(s = 1) ∗ px4→f2(x4 = 1)

pf2→x3(x3 = 1) = ps→f2(s = 0) ∗ px4→f2(x4 = 1) +

ps→f2(s = 1) ∗ px4→f2(x4 = 0)

= pf1→s(s = 0) ∗ px4→f2(x4 = 1) +
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pf1→s(s = 1) ∗ px4→f2(x4 = 0) (3.12)

p(x3 = 0) = pf2→x3(x3 = 0) ∗ p(x3 = 0|y3)

p(x3 = 1) = pf2→x3(x3 = 1) ∗ p(x3 = 1|y3) (3.13)

If we need to know p(x4 = 0) and p(x4 = 1), a similar process is used and even the

intermediate result pf1→s(s = 0) and pf1→s(s = 1) can be reused. If we need to calculate

p(x1 = 0) and p(x1 = 1), a similar process is again used. However, this time, the messages

passed from and to node s are different. In general, there are messages passed in both

directions of an edge. In the process, there are two kinds of operations, one is multiply to

get the product terms and the other is sum and this is why it is called the sum-product

algorithm.

3.2.2 The Sum Product Update Rules

The previous subsection discusses how to compute a marginal function. However, in

many cases, we are interested in computing multiple marginal functions. Of course, we can

compute them one by one using the method mentioned in the previous subsection. Since

many intermediate results in computing one marginal function can be reused by other

marginal functions as shown in the example used in the previous subsection, this method

is not a good one because we can compute all of the marginal functions at the same time

on the factor graph. In this case, there are no parent and child nodes. Each node v waits

on the messages from all but one of its neighbor nodes. Then, it computes a message to

be sent to the remaining neighbor node (temporarily regarded as a parent node). Just

as described before, if v is a variable node, it simply computes the product of all the

received messages. If v is a function node, it needs to form the product of the received

message according to the specified function. As a result, the sum-product update rules

can be expressed by Figure 3.7, Equation 3.14, and Equation 3.15. When variable node x

has received all the messages from the function nodes h1, . . . , hm, it simply computes the

product of these messages and then passes the result to its remaining neighbor function

node f just as shown in Equation 3.14. When function node f has received all the

messages from the variable nodes y1, . . . , yn, besides computing the product of these

messages, it also need to marginalize on variable x according to the function f before the

result is passed to its remaining neighbor function node x just as shown in Equation 3.14.
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Figure 3.7. Sum product algorithm.

For probability propagation networks, all the messages are probabilities and the functions

are indicator functions. As a result, the variable node x just generates the products

of the incoming probabilities while the function node f generates the products of the

incoming probabilities and then sums up the valid products defined by the indicator

function according to variable x. Noticing from Equation 3.14, we know that for a variable

node with degree 2, the message is just passed on. The messages for a leaf variable node

x are defined by Equation 3.16 and the messages for a function node f are defined by

Equation 3.17. Also, the marginal function for a variable node x is calculated in the

same way as the previous subsection by the product of all the incoming messages to the

variable node. From Equation 3.14, we know the product of all the incoming messages

equals the product of the two messages of opposite directions on any edge adjacent to

the variable node. Thus the marginal function for variable node x, which is adjacent to

a function node f , can be calculated by Equation 3.18.

µx→f (x) =
m
∏

i=1

µhi→x(x) (3.14)

µf→x(x) =
∑

∼{x}



f(x, y1, · · · , yn)

n
∏

j=1

µyj→f (yj)



 (3.15)

µx→f (x) = 1 (3.16)
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µf→x(x) = f(x) (3.17)

g(x) = µf→x(x)

m
∏

i=1

µhi→x(x) (Using Equation 3.14)

= µf→x(x)µx→f (x) (3.18)

3.2.3 Message Passing Schedule

The previous subsection discusses how to calculate the messages. However, we have

not discussed how to initiate the updates and how to pass the messages. According to

the update rules shown in Equation 3.14 and Equation 3.15, a message depends on the

messages that have been sent before and we need to initialize the messages on the graph.

A good solution is to assume unit messages on every edge just as the messages being sent

out by leaf nodes as shown in Equation 3.16 and Equation 3.17. Another assumption

is the synchronized message passing schedule in which we assume that message passing

is synchronized with a global clock. Since we need to do the sum product operation

step by step in the high-level model, this is a reasonable assumption and it gives us a

good model for the structure. However, finding the optimal message passing schedule

that uses minimum message transmissions is still not a trivial problem. For circuit

speed consideration and the analog implementation that uses a parallel structure, flooding

schedule is the best. In this schedule, once a new message is generated, it is then passed

to its destination and once the result on an edge changes, a new message is generated

on that edge. If multiple messages are generated at the same time on the graph, then

they are all passed out at the same time. Also, the flooding schedule is a simple message

passing schedule for simulation software since there is no order to the update.

For a factor graph with no cycles, it can be viewed as a tree. As a result, it has leaf

nodes with degree 1. Since leaf nodes absorb messages, it is certain that when using the

flooding schedule, the messages are all absorbed in a finite time and the graph reaches

a final stable state. At this state, we can calculate the marginal functions. However, for

a graph with cycles, since a node v in a cycle can send out a message and messages can

form a message sequence along the cycle and generate a message sending to v to repeat

this process again, there might always be messages passing on the graph. As a result,

we need to terminate the calculations at some step. For a good factor graph, after some

steps, the new message generated on an edge has a value quite near to the value of the

old message on the edge and we say that the sum product algorithm converges. When
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the sum product algorithm converges and whether it can converge to the desired result

is still a hot topic being researched [9], [12], [19], [34], [47], [64], [46].

3.2.4 Using the Sum Product Algorithm on a Decoder

Actually, the bit-wise MAP decision uses the sum-product operation. From Equa-

tion 2.35, we know that we are summing the probabilities of valid codewords. Suppose

that all the valid codewords construct a valid code space C, then Equation 2.35 can be

rewritten as Equation 3.19 in which [x ∈ C] is a indicator function indicating whether x

is a valid codeword or not.

ũkMAP (y) = maxuk





∑

∼{uk}
[x ∈ C]P (xi|yi))



 (3.19)

For trellis coding, all the valid trellis paths T construct the valid code space. As a

result, the MAP decision can be further rewritten as Equation 3.20. For trellis coding,

trellis paths are constructed by the trellis sections. Each trellis section has four variables,

state si at time i, state si+1 at time i +1, the information bit ui and the encoded output

xi. As a result, usually the factor graph for a trellis code is shown as Figure 3.8. The

factor graph for a conventional trellis shown in Figure 3.8 can be dissected as n identical

sections as shown in Figure 3.9. The messages are also shown in Figure 3.9. Also,

notice that the state variable node si is not visible, it is an auxiliary variable used to

construct the factor graph. As a result, it is shown in a double circle to differentiate

it from visible variable nodes. Node variable ui is a leaf variable node. It provides a

unity distribution message. As a result, the outgoing message from ui can be ignored

when doing calculations and the marginal function result of ui is simply the incoming

message to ui. Also, we do not concern the down going messages to variable nodes

xi, yi and variable node xi only pass messages. Thus, the channel function nodes

and variable nodes yi can be omitted for simplicity in analysis. According to the sum

product algorithm, Equation 3.21, Equation 3.22, and Equation 3.23 can be derived.

Compared with Equation 2.40, Equation 2.41, and Equation 2.39, we know that the

forward-backward algorithm is an application of using the sum product algorithm on

probability propagation networks. For a conventional trellis, s0 and sn only has one state

that we can use 0 to represent it. As a result, the outgoing messages of s0 and sn are

shown in Equation 3.24.
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Figure 3.8. Factor graph representation of a conventional trellis.
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Figure 3.9. One section of the factor graph representation for trellis coding.
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ũkMAP (y) = maxuk





∑

∼{uk}
[x ∈ T ]P (xi|yi))



 (3.20)

α(si+1) =
∑

si

∑

ui

∑

xi

[(si, ui, xi, si+1) ∈ Ti]α(si)γ(xi) (3.21)

β(si) =
∑

si+1

∑

ui

∑

xi

[(si, ui, xi, si+1) ∈ Ti]β(si+1)γ(xi) (3.22)

δ(ui) =
∑

si

∑

si+1

∑

xi

[(si, ui, xi, si+1) ∈ Ti]α(si)β(si+1)γ(xi) (3.23)

s0(0) = 1; sn(0) = 1 (3.24)

For a tail-biting trellis, the corresponding factor graph is shown in Figure 3.10.

According to the sum product algorithm, the initial messages on each edge have uniform

probability distributions. Beginning with this initial condition, it is proven that the sum

product algorithm for the tail-biting trellis converges to the optimum result [1][3]. Using

the compact tail-biting trellis of the extend Hamming (8,4) code shown in Figure 2.11 as

an example, the factor graph of the Hamming (8,4) decoder can be derived as shown in

Figure 3.11 (The channel function nodes and variable nodes yi, (i = 0, . . . , 7) are omitted

for simplicity.). Because for variable nodes xi, (i = 0, . . . , 7), only the messages going

out are what we concerned. As a result, we can combine the messages going out of two

adjacent variable nodes x2i, x2i+1 and use only one variable node γi to substitute the

two variable nodes x2i, x2i+1 and use a simplified factor graph shown in Figure 3.12.

For example, the message coming out of γ0 is γ0(00) = f(x0 = 0|y0)f(x1 = 0|y1),

γ0(01) = f(x0 = 0|y0)f(x1 = 1|y1), γ0(10) = f(x0 = 1|y0)f(x1 = 0|y1), γ0(11) =

f(x0 = 1|y0)f(x1 = 1|y1) in which f(xi = 1|yi) and f(xi = 0|yi) are calculated according

to Equation 2.25. Then, begining with the initial uniform distribution of the α, β values

and the γ values provided above, we can calculate the α, β values along the cycle for the

next step using Equation 3.21 and Equation 3.22 until the α, β values have converged.
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Figure 3.11. Factor graph representation of the Hamming (8,4) decoder.
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Figure 3.12. Another factor graph representation of the Hamming (8,4) decoder.

Then, we can make the decision on the information bit ui using Equation 3.23. For exam-

ple, for the trellis function node between variable node s0 and s1 that corresponds to the

first trellis section shown in Figure 2.11, the calculation corresponding to Equation 3.21,

3.22 and 3.23 are shown in Equation 3.25, 3.26 and 3.27, which are based on the valid

configuration defined by the corresponding trellis section.

α(s1 = 0) = α(s0 = 0) ∗ γ0(00)

α(s1 = 1) = α(s0 = 0) ∗ γ0(11)

α(s1 = 2) = α(s0 = 1) ∗ γ0(01)

α(s1 = 3) = α(s0 = 1) ∗ γ0(10) (3.25)

β(s0 = 0) = β(s1 = 0) ∗ γ0(00) + β(s1 = 1) ∗ γ0(11)

β(s0 = 1) = β(s1 = 2) ∗ γ0(01) + β(s1 = 3) ∗ γ0(10) (3.26)

δ(u0 = 0) = α(s0 = 0) ∗ γ0(00) ∗ β(s1 = 0) + α(s0 = 1) ∗ γ0(01) ∗ β(s1 = 2)
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δ(u0 = 1) = α(s0 = 0) ∗ γ0(11) ∗ β(s1 = 1) + α(s0 = 1) ∗ γ0(10) ∗ β(s1 = 3) (3.27)

For iterative decoding, we use the example shown in Figure 3.4. Actually, each parity-

check function and its corresponding variables construct a component decoder. In the

previous chapter, we have discussed that the essence of iterative decoding is decoding step

by step. In each step, the component uses the channel information for the corresponding

variables and extrinsic probabilities provided by other component decoders and finally

the result is decided by using the channel information for the current bit and all the

extrinsic probabilities provided by the component decoders. Let us look at Figure 3.4.

The messages provided from a function node to a variable node are generated by the

function using the information provided by all the adjacent variable nodes except this

variable node. As a result, this message is the extrinsic probability. Thus, the message

from a variable node to a function node are the product of the channel information and all

the extrinsic information provided by other component decoders, which is just what we

need. Also, the marginal function is constructed by the product of the channel information

for the current bit and all the extrinsic probabilities provided by the component decoders.

This clearly shows that the factor graph model is the exact model for iterative decoding.

The structure of an LDPC decoder is similar to the structure shown in Figure 3.4 except

an LDPC decoder is deliberately designed so that the sum product algorithm converges

to a near optimum result. Interested readers can also verify that other iterative decoders

such as Turbo codes and product codes can also be modeled by using sum product

algorithms on a factor graph [9], [57], [46].

3.3 Factor Graph Simulation

The previous section discusses that all decoders can be modeled by using the sum

product algorithm on factor graphs. This section discusses how to do high-level VHDL

simulation of a decoder. Also, since every decoder can be represented by its factor graph

representation, we only need its factor graph description for simulation purposes. As a

result, an automatic tool is built. Using this tool, only the factor graph representation of

the decoder is needed. The tool can generate the VHDL simulation file from the decoder’s

factor graph representation, which is quite simple.
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3.3.1 High Level VHDL Simulation

The simulation of error control decoders has always been a problem due to the large

number of simulation cycles required. For example, if the bit error rate is 10−5 and 100

errors need to be discovered before the bit error rate is calculated, then 107 simulations

are needed. Even for a digital circuit, using Verilog or VHDL to simulate the circuit at the

register transfer level takes a long time. For an analog circuit, the situation is worse. Spice

is an accurate circuit simulation tool. However, one simulation of the extended Hamming

(8,4) decoder shown in Figure 2.11 takes 73 second on a Sun Sparc60 workstation. Thus,

107 simulations of the extended Hamming(8,4) decoder by using Spice requires about 23

years. As a result, a high level simulation method that can do simulation more efficiently

is needed.

For high-level simulation, some researchers use MATLAB to do an exhaustive search

over all the valid codewords to find the bit error rate. This method is quite time

consuming. The simulation of the extended Hamming (8,4) decoder shown in Figure 2.11

takes 7 days for SNR=7. Also, a main purpose of the high level simulation is to verify

whether the structure of the circuit is correct while this method cannot verify this.

From the previous description, we know that a decoder can be modeled by using the

sum product algorithm on a factor graph. Also, for the sum product algorithm, we can

use a synchronized flooding message passing schedule. As a result, we can use a global

clock and a VHDL behavioral module to model each function node and variable node.

The initial messages are all set to a unity probability distribution according to the rule.

For every clock cycle, if any message coming into the module has changed, then all the

output messages of the module are calculated and sent out. Using this method, the sum

product algorithm is modeled exactly and the structure of the circuit can be verified. For

decoders, the ratio between the probabilities is what we need. As a result, the output

messages for each module can be normalized to avoid small probability calculations.

In the simulation, all the probabilities passing between modules are real numbers.

One might think to use Verilog-A or VHDL-AMS to do the simulation. However, they

are too complicated to be simulated efficiently. Standard VHDL allows the use of real

numbers and it is enough to do behavioral level simulation. As a result, standard VHDL

is chosen to do simulation accurately and efficiently. For the simulation of the extended

Hamming (8,4) decoder shown in Figure 2.11, it takes no more than 1 hour for SNR=7

using this method.
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3.3.2 Normal Graph

From the previous description, we know that leaf nodes absorb messages, variable

nodes with degree 2 pass messages from one function node to another function node,

variable nodes with degree n (n > 2) generate the product of n − 1 incoming messages

and send it out on the remaining edge. Thus, a variable node with degree n (n > 2)

performs as an equal gate. The function of an equal gate for a variable with two states 0

and 1 is shown in Equation 2.44 and the function of equal gates for variables with more

than two states can be derived similarly (In Equation 2.44, the result is normalized.). As

a result, variable nodes with degree n (n > 2) can be split into n variable nodes with

degree 2 and an equal gate function node that is connected to these n variable nodes

as shown in Figure 3.13. For variable nodes with degree 2, it can be omitted since it

only passes messages. This allows direct connections between function nodes, changing a

factor graph to a normal graph defined by Forney [30][31]. After doing these two steps,

there are only variable nodes with degree 1. For variable nodes with degree 1, they only

provide a constant message and absorb messages. Thus, there is no calculation needed for

a variable node with degree 1. As a result, all calculations are implemented by function

nodes. Therefore, for the high-level VHDL simulation, we need to provide modules only

for the function nodes.

fA fB fC fA fB fC

y3 zx y z x y1 y2

Figure 3.13. Variable node splitting for a variable node with degree more than 2.
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3.3.3 Factor Graph Description

The previous section states that a decoder can be represented by its factor graph

description. Also, the decoder can also be represented by a normal graph using the

method mentioned in the previous subsection. For a normal graph, if all the function

nodes are implemented by circuits, then by connecting the circuits representing the

function nodes according to the normal graph connections, the decoder can be realized.

As a result, the function node is the center for both implementation and simulation.

For a function node, it can always be described by an indication function. For

example, an equal gate function node with connection to three variable nodes x, y, z

can be described by Equation 3.28 while an XOR function node with connection to three

variable nodes x, y, z can be described by Equation 3.29 in which every string separated

with a semicolon shows a valid configuration. The factor graph view is the same and the

structure of the graph is shown in Figure 3.14. Notice that the factor graph is defined not

only by the structure, but also by the local functions. Thus, even though their structures

are the same, the indicator function shown in Equation 3.28 and Equation 3.29 differ for

the equal gate and the soft XOR gate.

[x, y, z] = [0, 0, 0; 1, 1, 1] (3.28)

[x, y, z] = [0, 0, 0; 0, 1, 1; 1, 0, 1; 1, 1, 0] (3.29)

f

y

xi

xo

yiyo

zi

zo

x z

Figure 3.14. Factor graph structure of the equal gate and XOR gate.
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Notice that the messages passed in each edge are bidirectional, in order to describe the

operation of the function node, messages in each direction need to be defined as shown

in Figure 3.14. Also, notice that in each message, there are actually two probabilities,

one to represent the probability of being 0 and the other to represent the probability of

being 1. As a result, the high-level VHDL description of the operations of the equal gate

function node and the XOR function node in every clock cycle according to the factor

graph and the sum-product algorithm definition are shown in the following in which xi(0)

represents the probability of being 0 in message xi while xo(0) represents the probability

of being 0 in message xo, etc. temp xo, temp x, etc. are temporary variables used to

simplify the descriptions and operations. In the description, normalization is used to

ensure that the sum of the output probabilities equals 1 and the normalization does not

change the ratio between the probabilities. A complete high-level VHDL description of

the equal gate function node and XOR function node can be found in Appendix C.

Equal gate:

temp xo(0):=yi(0)*zi(0);

temp xo(1):=yi(1)*zi(1);

temp x:=temp xo(0)+temp xo(1);

xo(0)<=temp xo(0)/temp x;

xo(1)<=temp xo(1)/temp x;

temp yo(0):=xi(0)*zi(0);

temp yo(1):=xi(1)*zi(1);

temp yo:=temp yo(0)+temp yo(1);

yo(0)<=temp yo(0)/temp y;

yo(1)<=temp yo(1)/temp y;

temp zo(0):=xi(0)*yi(0);

temp zo(1):=xi(1)*yi(1);

temp z:=temp zo(0)+temp zo(1);

zo(0)<=temp zo(0)/temp z;

zo(1)<=temp zo(1)/temp z;

XOR function node:

temp xo(0):=yi(0)*zi(0)+yi(1)*zi(1);

temp xo(1):=yi(0)*zi(1)+yi(1)*zi(0);

temp x:=temp xo(0)+temp xo(1);

xo(0)<=temp xo(0)/temp x;

xo(1)<=temp xo(1)/temp x;

temp yo(0):=xi(0)*zi(0)+xi(1)*zi(1);

temp yo(1):=xi(0)*zi(1)+xi(1)*zi(0);

temp yo:=temp yo(0)+temp yo(1);

yo(0)<=temp yo(0)/temp y;

yo(1)<=temp yo(1)/temp y;

temp zo(0):=xi(0)*yi(0)+xi(1)*yi(1);

temp zo(1):=xi(0)*yi(1)+xi(1)*yi(0);

temp z:=temp zo(0)+temp zo(1);

zo(0)<=temp zo(0)/temp z;

zo(1)<=temp zo(1)/temp z;
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Actually, the equal gate function node and the XOR function node discussed above

can be regarded as simple codes with length 3. The code defined by the equal gate

function node has only two valid codewords 000 and 111. The code defined by the XOR

function node has four valid codewords 000,011,101,110 that are defined by the function

x + y + z = 0 in which ’+’ represents the XOR operation in the binary field. The input

probabilities to the function node, xi(0), xi(1), yi(0), yi(1), zi(0), and zi(1) are provided

by the received value and the channel characteristics using Equation 2.25. The outputs

of the soft decision decoder are given by xo(0), xo(1), yo(0), yo(1), zo(0), and zo(1) using

the operations provided above. xo(0) means the probability of bit x to be ’0’ given by

the decoder and xo(1) means the probability of bit x to be ’1’ given by the decoder.

Compared with the operations provided above, the factor graph descriptions of the equal

gate function node and the XOR function node shown in Equation 3.28 and Equation 3.29

are much simpler.

For variable nodes with degree 1, its value (the marginal function for this variable)

is described by the incoming message for this variable and we do not need to describe

it. For the connections, we need to define signals to connect the function nodes. In

order to connect a signal to a function module, we need to define the ports that are the

interface of a function module. Of course, all the ports and signals have types to show

which kind of message it can carry. For decoders, all the probabilities passed between

the function modules are real numbers between 0 and 1. Thus, for the types of messages,

we only need to define how many probabilities are included in the message. Also, in the

factor graph, messages can be passed in two opposite directions on the edge. As a result,

the ports and signals should be bi-directional. However, from Figure 3.8, we know that

for some nodes such as xi, we do not need to know the value of the incoming message

toward xi and for the leaf variable nodes such as ui, they provide a uniform distribution

probability so that the message coming out of ui can be omitted. As a result, for the

description of a decoder, we provide an optional direction “in” and “out” for port and

signal descriptions to simplify the simulation process and minimize the derived circuit.

Also, for the description of a complex factor graph, it is better to describe the connection

hierarchically. As a result, we can define some function module by a structural description

of how it is implemented by connecting some low level function modules. Just as many

programming languages, if the low level function modules are described in different files,

these files should be described as “include FileName” in the description of the high-level
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function modules. For a detailed description of the language that we designed to describe

a factor graph, please see Appendix A.

3.3.4 Automatic Simulation from a Factor
Graph Description

The previous subsections describe how to use a VHDL file to do high level simulation.

Also, the decoder can be described by its normal graph description and there is a quite

direct relationship between the normal graph description and the VHDL behavioral level

description. As a result, we can develop an automatic tool to translate the factor graph

description into the VHDL behavioral level description.

However, in order to do simulation, only having the description of the decoder is not

enough. We also need to provide the simulation environment. The encoder is needed to

be described and we need to connect the encoder and decoder as shown in Figure 3.15. In

many conditions, the encoder is not described by a factor graph and we need to provide

some operations and special functions needed for the description of the encoder. Also,

in order to describe some large decoders that have duplicate structures and conditional

structures. Loop control and conditional control statements should be provided.

All in all, our goal is that the factor graph description of the decoder and the

description of the simulation environment should be as simple as possible to make the

design process easy. As a result, the automatic simulation of the decoder is not easy and

many problems must be solved. The language used for the description of both the factor

graph and the encoder are shown in Appendix A and the extended Hamming (8,4,4)

decoder is used as an example.

decoder
u(decoded)

encoder

y(encoded)

Figure 3.15. Using an encoder as the simulation environment.



CHAPTER 4

AUTOMATIC SYNTHESIS

The previous chapter describes factor graphs and the sum-product algorithm. We

also show that error control coding can be interpreted as operations of the sum-product

algorithm on probability propagation networks that is a kind of factor graph [17], [35],

[2]. As a result, we can use high-level VHDL simulation based on a decoder’s factor

graph description to verify the structure of the decoder. Moreover, a tool has been built

that can generate the VHDL simulation file automatically from a decoder’s factor graph

representation that is quite simple. This chapter describes how an analog decoder is

realized by using basic building blocks, how these basic building blocks are realized by

circuit implementation, and how to connect these building blocks. We also show that all

the basic building blocks can be constructed by a few basic cells. As a result, a cell library

composed of these cells is built. Moreover, an automatic synthesis tool is produced. Using

this tool, one can build the circuit for an analog decoder by only providing the factor

graph description of the decoder with little or no analog circuit design knowledge.

4.1 Basic Building Block

The previous chapter shows that error control coding systems can be implemented

by using the sum-product algorithm on probability propagation networks in which all

the messages passing from one node to another have the meaning of probabilities or

probability density functions. As a result, the basic building block has the form shown

in Figure 4.1. In Figure 4.1, the building block computes a discrete probability mass

function pz from the discrete probability mass functions px and py as follows. Let X , Y,

and Z be finite sets. Let px and py be the input probability mass functions defined on the

sets (alphabets) X and Y, respectively. Let pz be the output probability mass function

on Z defined by Equation 4.1.
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Figure 4.1. The building block of the probability propagation network.

pz(z) = γ
∑

x∈X

∑

y∈Y
px(x)py(y)f(x, y, z),∀z ∈ Z, (4.1)

where f is a function from X × Y × Z into {0,1} and where γ is an appropriate scale

factor that does not depend on z. The scale factor γ is required to yield a probability

distribution pz(z) at the output whose sum is
∑k

i=1 pz(zi) = 1. As a result, this building

block implements a marginalization function.

For example, for a function node that has connections with three variable nodes as

shown in Figure 3.14, three building blocks are used to implement it. One building block

has xi, and yi as inputs and zo as output. One building block has yi, and zi as inputs

and xo as output. The other building block has xi, and zi as inputs and yo as output.

For a hidden function f that has more than three variables, it is partitioned into a

series of sum-products of two variables so that the building block of Figure 4.1 can still

be used. For example, for hidden function g(xa, xb, xc, xd), we can use the following

equations to calculate the marginal functions.

g1(xd) =
∑

xa,xb,xc

g(xa, xb, xc, xd) =
∑

xc

∑

xa,xb

g(xa, xb, xc, xd) (4.2)

g1(xc) =
∑

xa,xb,xd

g(xa, xb, xc, xd) =
∑

xd

∑

xa,xb

g(xa, xb, xc, xd) (4.3)

As a result, the implementation is shown in Figure 4.2. The form of the basic building

block is still the same. Also, the intermediate result can be used by several other blocks

as input to decrease the circuit complexity.
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Figure 4.2. Using several building blocks to implement the hidden function with more
than three variables.

4.2 Circuit Implementation of the
Basic Building Block

The basic building block performs two operations. It needs to generate the product

terms and then sum the product terms according to the hidden function f . Let us consider

the product operation first.

It has been revealed that for MOS transistors working under the weak inversion region,

the following equations exist where I0n and I0p are process-dependent constants for NMOS

transistors and PMOS transistors respectively.

I0n =
2µnC ′

oxU2
T

κ
e

−κVT0n
UT

IDS = I0n
W

L
e

κVG−VS
UT for VDS > 4UT (saturation) (4.4)

I0p =
2µpC

′
oxU2

T

κ
e

κVT0p

UT

IDS = I0p
W

L
e

κ(VW −VG)−(VW −VS )

UT for VDS > 4UT (saturation) (4.5)

For the circuit shown in Figure 4.3 that is composed of N identical NMOS transistors,

according to the translinear theory [21], [60], [23], we can form a loop as shown in
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Figure 4.3 by the dotted line of the gate-source voltages of the N NMOS transistors,

N/2 of the transistors in clock-wise (CW) direction and the others in counter-clock-wise

(CCW) direction. Using Kirchnoff’s voltage law, Equation 4.6 is true.

∑

CW

VGSi
=
∑

CCW

VGSi
(4.6)

Combining Equation 4.4 and Equation 4.6, we obtain Equation 4.7. Actually, Equa-

tion 4.7 is the result of using translinear theory on the circuit shown in Figure 4.3. Similar

analysis on PMOS transistors generates a similar result.

e
P

CW VGSi = e
P

CCW VGSi

∏

CW

eVGSi =
∏

CCW

eVGSi

∏

CW

IDSi
=

∏

CCW

IDSi
(4.7)

The circuit shown in Figure 4.4 is the fundamental circuit used in probability propa-

gation networks. Let us define Ix =
∑m

i=1 Ix,i, Iy =
∑n

j=1 Iy,j , and Iz =
∑m

i=1

∑n
j=1 Ii,j .

Let Vx,i and Vy,j denote the potentials at the input terminal for Ix,i and Iy,j , respectively.

Then, we have the following equations.

Ii,j/Ix,i = Ii,j/

n
∑

l=1

Ii,l

= I0n
W

L
e

κVy,j−Vx,i

UT /

n
∑

l=1

I0n
W

L
e

κVy,l−Vx,i

UT

...

I I I I IDS DS DS DS DSI
iDS1 2 3 4 i−1

Figure 4.3. A simple translinear loop using NMOS transistors working under subthresh-
old region.
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+
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Figure 4.4. Fundamental circuit.

= e
κVy,j

UT /

n
∑

l=1

e
κVy,l
UT (4.8)

Iy,j/Iy = Iy,j/

n
∑

l=1

Iy,l

= I0n
W

L
e

κVy,j−Vref

UT /

n
∑

l=1

I0n
W

L
e

κVy,l−Vref

UT

= e
κVy,j

UT /

n
∑

l=1

e
κVy,l

UT (4.9)

Combining Equation 4.8 and Equation 4.9 yields Equation 4.10. Noticing that in prob-

ability propagation networks, currents are used to represent probabilities. The ratio of

Iy,j to Iy represents the probability of information from the Y direction to be equal to

the jth signal and Py(j) is used to represent this probability as shown in Equation 4.11.

Ii,j/Ix,i = Iy,j/Iy (4.10)

Ii,j = Ix,i
Iy,j

Iy
= Ix,iPy(j) (4.11)

If Iz = Ix, we have the result shown in Equation 4.12. As a result, the circuit shown in

Figure 4.4 can implement the product of probabilities. Actually, by forming all (n− 1)m
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translinear loops in the circuit, writing corresponding equations according to Equation 4.7

and summing all these equations together, we obtain Equation 4.12. Thus, the circuit

shown in Figure 4.4 can also be explained using tranlinear theory.

Ii,j/Iz = (Ix,i/Ix)Py(j) = Px(i)Py(j) (4.12)

Now, current is used to represent the probabilities. The sum of probabilities can be easily

implemented by connecting wires together and using KCL.

For the circuit shown in Figure 4.4, we can observe it in a different view. Instead of

observing it in current view, we can observe it in a voltage view. Since Iy,j = IyPy(j)

and Iy is the total current for all the y input and it is a constant current that represent

probability 1, using Equation 4.4 and noticing that the source voltage for the transistor

Vref shown in Figure 4.4 is a constant, Vy,j = UT

κ
lnPy(j) + const can be derived and

the voltage difference is expressed by Equation 4.13. Now, instead of calculating the

probabilities directly, we can consider the log-domain probability ratios, which sometimes

makes analysis easier. Also, notice that UT is temperature dependent. As a result, the

thermal effect may exist if voltage connection is used and we discuss this in Section 4.4.

Vy,j − Vy,i =
UT

κ
(lnPy(j) − lnPy(i)) =

UT

κ
ln

Py(j)

Py(i)
(4.13)

4.3 Connecting Building Blocks

In building analog decoders, a large number of the building blocks are needed. Of

course, these building blocks need to be connected and we discuss this in this section.

4.3.1 Connecting Building Blocks Using
Current Mirrors

Notice that in Figure 4.4, the circuit uses current input and current output. A simple

approach to the connection problem is to use current mirrors. Also, using current mirrors,

we can duplicate the current many times so that the output of one building block can

be used by many other building blocks as input. As a result, the connection of building

blocks can be accomplished as shown in Figure 4.5.

4.3.2 Stacking and Folding Building Blocks

Besides using current mirrors to connect building blocks, there are two other schemes,

stacking and folding building blocks. By directly using the output of one building block
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Current Mirrors

Current Mirrors Current Mirrors

Current Mirrors

multiply multiply

sum sum

Iz2

Iy1

Ix1

Iy2

Figure 4.5. Using current mirrors to connect building blocks.

as the input of another building block, we can stack the circuit modules as shown in

Figure 4.6. Using this method, the current mirrors between the building blocks can be

saved. However, this technique is not possible for low-voltage applications using state-of-

the-art silicon technologies.

Another technique is connecting adjacent building blocks by using folded building

blocks as shown in Figure 4.7. Using this technique, part of the current mirrors between

adjacent building blocks can be saved. However, this technique needs heavy use of PMOS

transistors that must be larger than NMOS transistors due to slow mobility of holes,

making this technique not a good choice.

4.3.3 Scaling

Another problem that needs to be considered is scaling. Since some of the unused

product terms are discarded, the total output current of a building block may be smaller

than the total input current if no scaling is used. As the current representing the

probability passing between the building blocks may be smaller than the nonideal factors

of the circuit, the circuit may not work. As a result, a scaling circuit needs to be used.

Gilbert [22] has presented an array-normalize circuit shown in Figure 4.8 that implements

the needed function. Actually, the circuit shown in Figure 4.8 is similar to the circuit

shown in Figure 4.4 except the circuit shown in Figure 4.8 uses PMOS transistors while

the circuit shown in Figure 4.4 uses NMOS transistors. Let us define Iin =
∑k

j=1 Iin,j .

Then, Equation 4.14, which is similar to Equation 4.10, can be derived in which Iin,j
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Current Mirrors

Current Mirrors

multiply

sum

multiply

sum

Iy2

Ix

Iz

Iy1

Figure 4.6. Stacking core circuit to connect building blocks.

Current Mirrors

Current Mirrors Current Mirrors

sumsum

multiply (NMOS) multiply (PMOS)Iy1

Ix1

Iy2

Iz2

Figure 4.7. Using adjacent n-type and p-type building blocks to construct circuit.
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Figure 4.8. A current in, current out normalization circuit.

corresponds to Iy,j , Iin corresponds to Iy, Iout,j corresponds to Ii,j , Iu corresponds to Ix,i

in Equation 4.10. Notice that the input probability Iin,j/Iin and the output probability

Iout,j/Iu are equal and the sum of the output currents is normalized to Iu.

Iin,j/Iin = Iout,j/Iu (4.14)

One problem that needs to be considered is scaling at the output or input. Scaling

at the output has the advantage that the small current is immediately normalized to a

nominal level after the operation that causes the current loss and therefore speeds up the

circuit. As a result, scaling at the output is chosen.

Of course, scaling at every stage is not necessary because one building block can not

make the output current too low. Scaling after every two or three building blocks is

possible. However, it is highly application specific and has to be investigated for every

code. Also, scaling at every stage speeds up the circuit and makes the circuit more robust

against noise and leakage current, which is quite important for a circuit working in the

subthreshold region. As a result, scaling at every stage is generally used.

Based on the above discussion, scaling at every stage and using current mirrors to do

connection between building blocks is a good method for cicuit performance and silicon

technology consideration. By implementing the scaling circuit and the current mirrors all

in the building blocks. The building blocks have the general form shown in Figure 4.9.

This kind of building block is used by Lustenberger [43][44][42] and Loeliger [38][40][39],

and we call it the canonical design.
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Figure 4.9. Typical cell used in canonical design.

4.4 Cell Library

From the general circuit for the building blocks shown in Figure 4.9, we know that

there are a huge number of different building blocks depending on the different f(x, y, z)

shown in Figure 4.1. This makes automatic synthesis nearly impossible. This section

shows that actually different building blocks can be built by using circuit cells from a cell

library that has a limited number of circuit cells, making automatic synthesis practical.

4.4.1 Basic Cell

For the canonical basic building block shown in Figure 4.9, the values of m,n, k are

allowed to vary. There are also many possible functions f(x, y, z), making the number

of such building blocks nearly infinite. Suppose that each z term is the sum of l = xy/z

product terms, there are
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l
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xy − l
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(
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different combinations, each requires a unique cell. For example, if m = n = k = 4, and

each z term is the sum of 4 xy product terms, there are 63,063,000 different cells. Of

course, we must find some small basic cells so that the number of basic cells can be kept

under control.

In Figure 4.9, the circuit below the wire network is used to generate product terms and

the circuit above the wire network is used to do normalization so that the current of all the

outputs added together equal Iu where Iu is the current designated as representation of

probability 1. Breaking the circuit shown in Figure 4.9 into two cells results in a product

cell and a normalization cell as shown in Figure 4.10 and Figure 4.8, respectively.

In communication, the signal used always belongs to a signal set that have signal

number of 2’s power such as BPSK, QPSK, 8-PSK, and 16-QAM. Thus, m,n, k in

Figure 4.1 are all powers of 2. Now, it seems that we could build a limited number

of basic cells. However, if the output of a normalization cell needs to be distributed to

the input of many product cells, then the current output of the normalization cell needs to

be duplicated. Since the number of product cells to which the normalization cell’s output

I I I I I

I

I

I1,1 1,n 2,1 2,n m,1 m,n

y,1

y,n

... ... ...

...

.

.

. Vref
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T T T T T T1,1 1,n 2,1 2,n m,1 m,n

Ty,1

Ty,n

V

V

y,1

y,n

Ix,1 I x,mI

...

y,1I + ...+Iy,n

I + ...+Ix,mx,1

uI=

uI=

x,2

Figure 4.10. A current in, current out product cell.
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must be distributed varies, there are a lot of different normalization cells if current mode

connection is used between product cell and normalization cell. Therefore, it is better for

us to move the diode connected transistors from the input of the product cell to the output

of the normalization cell. As a result, the product cell accepts voltage input and provides

current output where the normalization cell accepts current input and provides voltage

output. Figure 4.11 shows a product-m-n cell and Figure 4.12 shows a normalization-k

cell. Figure 4.13 shows the structure of building blocks and the connection of the building

blocks using the proposed product cell and normalization cell. It is clear that half of the

current mirror is in the normalization cell while the other half is in the product cell and

thus voltage connection is used.

Note that Vref in the normalization cell must be different based on whether its output

is connected to the x input or y input of a product cell because the x input and y

input of a product cell need different voltage potential. As a result, the output of a

normalization cell must only be connected to either x inputs or y inputs of product cells.

In the case when the output of a normalization cell needs to be connected to both the

y inputs of product cells and x inputs of product cells, normalization cells that we call

dnormalization-k cells shown in Figure 4.14 are needed.

From the above analysis, if m ≤ 2r, n ≤ 2s, and k ≤ 2t, then a cell library needs rs

I I I I I I1,1 1,n 2,1 2,n m,1 m,n... ... ...

.

.

.

T T T T T T1,1 1,n 2,1 2,n m,1 m,n

Vy,1

Vy,n

V V Vx,2T T Tx,2 x,m

Product core

...

x,1
x,1 x,m

Figure 4.11. Product cell.
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Figure 4.13. Building blocks using the proposed cell.
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Figure 4.14. Double normalization cell.

product-m-n cells, t normalization-k cells and t dnormalization-k cells. Our current cell

library has 80 cells: product-2-2, . . . , product-2-256, . . . , product-256-256, normalization-

2, normalization-4, . . . , normalization-256, dnormalization-2, dnormalization-4, . . . ,

dnormalization-256, and it enables construction of current analog error control decoders.

This is more than sufficient for current analog error control decoders in which typical

values of m,n, k are not larger than 16. As a result, a cell library with 24 cells is enough

for current analog error control decoders. Figure 4.15 and 4.16 are two examples of how

to build larger blocks using these cells. The circuit shown in Figure 4.15 calculates the

joint probabilities of two independent variables. The circuit shown in Figure 4.16 is the

butterfly trellis (also called soft XOR). It performs the following operation and it is often

used when Z is a parity check variable of X and Y .
[

pZ(0)
pZ(1)

]

=

[

pX(0)pY (0) + pX(1)pY (1)
pX(0)pY (1) + pX(1)pY (0)

]

4.4.2 Thermal effect

A potential problem of using these basic cells to build a circuit is cross-chip tempera-

ture difference. The voltage-current relation has dependence on temperature. As a result,

using this approach, this thermal effect may be greater than the canonical design because

the temperature between different blocks may be different. As a result, this thermal

effect is analyzed by using the equations described in [65] and choosing typical values for

k3 = 1.5 and k4 = 2mV/K. For the circuit shown in Figure 4.17, corresponding Matlab
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simulation shows that even if I0,b and I1,b are changed significantly compared with I0,a

and I1,a, the probability p0,b = I0,b/(I0,b + I1,b) does not change significantly compared

with p0,a = I0,a/(I0,a + I1,a) because the currents are magnified by nearly the same scale.

Figure 4.18 shows the relationship between p0,b and p0,a if Ta = 300K, Tb = 310K, and

I0,a + I1,a = 1nA. It is clear that even 10K variation does not change the probability

much. Figure 4.19 and Figure 4.20 shows the relationship between p0,b and p0,a when Tb

is changed to 320K and 330K respectively. It shows that even 20K and 30K variation

only change the probability slightly. For analog error control decoders, the circuit blocks

are uniformly distributed in the chip so that the power consumed is also nearly uniformly

distributed. Also, for a CMOS circuit working under weak inversion, the consumed power

is very small. As a result, the temperature difference between different blocks should be

small and thermal effect should not be a serious problem.

4.4.3 Decreasing the Circuit Complexity

Note from Figure 4.11 that in the product core, there are always n transistors even if

only k products are useful and the other n − k products are discarded by shorting their

outputs to some voltage soure V dummy. These dummy transistors are needed to make

the following equation hold for the current shown in Figure 4.9.

Ii,j = Ix,i ∗ Iy,j/(Iy,1 + ... + Iy,n) = Ix,i ∗ Iy,j/Iu

We can minimize the transistor count by substituting the n − k transistors with 1

transistor, if the circuit shown in Figure 4.21 is used to generate the gate voltage of this

transistor. Figure 4.21 contains k + 2 transistors (1 PMOS transistor and k + 1 NMOS
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transistors). As a result, we can replace the original n−k transistors with k+3 transistors.

In cases in which n is much larger than k, using this technique can save a large quantity

of transistors. The disadvantage of using this technique is that the circuit may be a

little slow compared with the original design. Also, notice that if this technique is used,

voltages Vy,1, Vy,2, ...Vy,k are provided by a normalization cell while the voltage Vout shown

in Figure 4.21 is provided by a reference cell. These voltages are provided by different

cells. However, they are provided as the input to a product cell. As a result, thermal

effect may cause problems in this case.

In order to use this technique, we need to build another family of basic cells that we

call reference cells. This kind of cell always contains k+1 NMOS transistors and 1 PMOS

transistor. Since k is always a power of 2, building 7 cells ref-2, ref-3, ref-5, . . . , ref-129

are enough for most analog error control decoders.1 We also need to build corresponding

product cells, product-2-3, product-2-5, . . . , product-2-129.

4.4.4 Comparison with Canonical Design

The circuit cell shown in Figure 4.9 are used in canonical design. In Figure 4.9, the

product cell and normalization cell are combined together, and they all use current input

and current output. The advantages are that the thermal problem is reduced and the

wires between the product cell and the normalization cell are short because the two cells

are combined in one cell. However, the thermal problem is likely not a serious problem

for our approach from the previous analysis. Also, the wire network does not significantly

affect the performance. As a result, the circuit performance using our approach should

still be comparable with the canonical design. We have verified the performance to be

nearly the same with Spice simulation of the extended Hamming (8,4) decoder [69] using

this approach and the canonical design.

For the circuit complexity, when the outputs of a cell shown in Figure 4.9 are needed

to be given to several cell’s input, then the output current needs to be duplicated by using

more transistors. For the extended Hamming (8,4) decoder [69], the core of the decoder

uses 292 transistors using this approach. If the canonical design shown in Figure 4.9 is

used, then the core of the decoder requires 36 more transistors.

This approach is also lower power because current duplication is saved in some cases.

For the extended Hamming (8,4) decoder [69], the power used by the core of the decoder

1We use the number of NMOS transistors in the cell to discriminate different cells.
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using this approach is 32 ∗ Iu ∗ V dd while the power used by the corresponding canonical

design is 40 ∗ Iu ∗ V dd because eight current duplications are saved while each current

duplication consumes Iu ∗ V dd.

4.4.5 The Other Two Choices

There are still two other choices in breaking the canonical block into product cell

and normalization cell. In both of these two choices, the product cell and normalization

cell shown in Figure 4.10 and Figure 4.8 that accept current input and provide current

output are used. For the first choice, if the output of a normalization cell needs to be

provided to m product cells. Then the current is mirrored by m current mirrors to provide

the outputs needed. Fortunately, the number m is usually not large. For general cases,

m = 4 is enough. As a result, normalization-2-1, normalization-2-2, . . . normalization-2-4,

normalization-4-1, . . . , normalization-256-1, . . . , normalization-256-4 need to be pro-

vided. Using this approach, there is no thermal effect problem. However, the number of

normalization cells is doubled even for m = 4 compared with the cell library that we have

just described. The disadvantage is that more transistors are used. Also, more power is

consumed compared with the previous cell library, especially when m is large for many

normalization cells.

Another solution is to provide only one set of currents by the normalization cell. If

the output of the normalization needs to be provided to m product cells. Then all the

m product cell’s inputs are connected to the output of the normalization cell and the

output current of the normalization cell is equally distributed to the m product cells so

that the input probability distribution is still what is required. Of course, if the output

of a normalization cell needs to be connected to both the y input of product cells and x

input of product cells, normalization cells that can provide two sets of current outputs

shown in Figure 4.22 are needed. Using this approach, there is no thermal effect problem

and we still get the same benefit of transistor and power savings as the previous cell

library. However, since the current output of the normalization cell is connected to the

m product cell’s input, the current input of the m product cells is small compared with

the previous cell library, especially when m is large, degrading the speed.

All in all, because the thermal effect is quite small, especially for such low power

designs, we think that the previous cell library is the best and we choose this kind of cell

library to do automatic synthesis.



81

Iin,k

Iin,1
. . .

.

.

.

out1,1

out1,k

..

.

I

I

refp refpV V

Iout2,1

out2,kI

Iu
Iu

Figure 4.22. A normalization cell that provides two set of current output.

4.5 Circuit Structure

The previous sections discuss how to connect building blocks and how to construct the

building blocks by using cells from a cell library. However, how to construct the building

blocks to make a good structure has not been discussed. This section discusses this topic

and also provides some novel circuits that can generate a better result in some cases.

4.5.1 Speed Consideration

Figure 4.23 is the typical core structure for an analog trellis decoder. The F0, F1, . . .,

Fk−1 blocks construct the forward path of the trellis while the B0, B1, . . ., Bk−1 blocks

construct the backward path of the trellis and the R0, R1, . . ., Rk−1 blocks are used to

compute the result u0, u1, . . ., uk−1. For a tail-biting trellis, α0 = αk and β0 = βk. This

figure shows that during the computation of one code, γ0, γ1, . . ., γk−1 are stable while

α1, α2, . . ., αk and β0, β1, . . ., βk−1 change at least once. Looking at Figure 4.11, it

is easy to see that the Vy-output current response is faster than the Vx-output current

response. As a result, it is better to use γ0, γ1, . . ., γk−1 as the X input of a product

cell to do computation along the forward and backward paths. For the R0, R1, . . ., Rk−1

blocks, it is better to calculate the product of αi−1(i = 1, · · · , k) and βi(i = 1, · · · , k) first

because the number of states is usually larger than the number of branches.

4.5.2 Complexity Consideration

The following four equations are needed for a MAP decoder.

Pr(sr−1 = i, sr = j, y) = αr−1(i)γr−1(i, j)βr(j) (4.15)
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Figure 4.23. System structure for a typical trellis decoder.

αr(j) =
∑

states i

αr−1(i)γr−1(i, j) (4.16)

βr−1(i) =
∑

states j

βr(j)γr−1(i, j) (4.17)

Pr−1(ur−1 = u) =
∑

(i,j)∈A(u)

Pr−1(sr−1 = i, sr = j|y) (4.18)

Since Pr−1(sr−1 = i, sr = j|y) can be reconstructed easily by dividing Pr−1(sr−1 =

i, sr = j, y) by Pr−1(y), which can be accomplished simply by normalizing Equation 4.15

to sum to unity. As a result, what is important is Equation 4.16, 4.17, and the following

equation.

Pr−1(ur−1 = u) ∗ Pr−1(y) =
∑

(i,j)∈A(u)

αr−1(i)γr−1(i, j)βr(j)

=
∑

(i,j)∈A(u)

γr−1(i, j)αr−1(i)βr(j) (4.19)

Let us assume that there are m states at time r− 1, k states at time r and n different

branches between time r− 1 and time r and assume that the number of branches leaving
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from a state at time r− 1 is a and the number of branches entering a state at time r is b.

It is apparent that ma=kb. Now, if we would like to calculate the α values at time r − 1,

β values at time r, and
∑

(i,j)∈A(u) γr−1(i, j)αr−1(i)βr(j), from the discussion above, we

know that the complexity for calculating α values at time r − 1 is mn + n + 3k (mn + n

transistors are used for the product cell and 3k transistors are used for the normalization

cell). The complexity for calculating β values at time r is nk + n + 3m. The complexity

for calculating all possible combinations of αr−1(i)βr(j) is mk + min(m, k) + 3ma. The

complexity for calculating
∑

(i,j)∈A(u) γr−1(i, j)αr−1(i)βr(j) is nma + n + 3 ∗ 2 (assume u

is binary). Usually the number of states is greater than the number of different branches.

As a result, the complexity is mainly dominated by the product of the two numbers of

states at adjacent times. If a is smaller than m and k, we can use the technique described

in Section 4.4.3 so that the complexity for calculating all the possible combinations of

αr−1(i)βr(j) is decreased to min(m ∗ min(2a + 3, k) + m, k ∗ min(2b + 3,m) + k) + 3ma.

As a result, the complexity is dominated by the product of the number of states with the

number of branches.

If a γ value is always connected to a certain u value in the trellis section (We call

this condition 1 for later reference), then Equation 4.19 can be simplified to Equa-

tion 4.20. As a result, the complexity of calculating
∑

(γ) αr−1(i)βr(j) is min(m ∗
min(2a + 3, k) + m, k ∗ min(2b + 3,m) + k) + 3n and the complexity of calculating
∑

γ∈A(u) γr−1(i, j)
∑

(γ) αr−1(i)βr(j) is n∗min(n, 4)+n+3∗2. It is apparent that n < ma.

Thus, the complexity is decreased. For example, Figure 4.24 shows the butterfly trellis,

which is often used in many decoders. In order to get the result of u that is also the

encoded output x,
∑

βγ can be calculated first as shown in Figure 4.25. The calculation

of
∑

βγ needs a product-4-2 and a norm-2 cell and the calculation using
∑

βγ and α

needs a product-4-2 and norm-2 cell. However, noticing that there is a 1 to 1 relation

between γ and u, we can calculate
∑

αβ first and then calculate the result of u just as

shown in Figure 4.26. Using this method, only a product-2-2 cell and a norm-2 cell are

needed to calculate
∑

αβ and a product-2-2 and a norm-2 cell are needed to get the

result of u, resulting in a decrease in circuit complexity.

Pr(ur = u) ∗ Pr(y) =
∑

(i,j)∈A(u)

αr−1(i)γr−1(i, j)βr(j)

=
∑

γ∈A(u)

γr−1(i, j)
∑

(γ)

αr−1(i)βr(j) (4.20)
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If the branches that enter a state always belong to some A(u) (We call this condition

2 for later reference), then Equation 4.19 could be simplified to Equation 4.21. As a

result, the complexity for implementing such kind of code is decreased more because the

complexity for calculating
∑

(j)∈A(u) αr(j)βr(j) is only k ∗ min(k, 4) + k + 3 ∗ 2. For

example, for the extended Hamming (8,4) code shown in Figure 2.11, the calculation of

u0 can be expressed by Equation 4.22.

Pr(ur = u) ∗ Pr(y) =
∑

(i,j)∈A(u)

αr−1(i)γr−1(i, j)βr(j)

=
∑

(j)∈A(u)

βr(j)
∑

i

αr−1(i)γr−1(i, j)

=
∑

(j)∈A(u)

αr(j)βr(j) (4.21)

pu0(0) =
pα0(0)pγ0(00)pβ1(0) + pα0(1)pγ0(01)pβ1(2)

pα0(0)pγ0(00)pβ1(0) + pα0(1)pγ0(01)pβ1(2) + pα0(0)pγ0(11)pβ1(1) + pα0(1)pγ0(10)pβ1(3)

=
pα1(0)pβ1(0) + pα1(2)pβ1(2)

pα1(0)pβ1(0) + pα1(1)pβ1(1) + pα1(2)pβ1(2) + pα1(3)pβ1(3)

pu0(1) =
pα0(0)pγ0(11)pβ1(1) + pα0(1)pγ0(10)pβ1(3)

pα0(0)pγ0(00)pβ1(0) + pα0(1)pγ0(01)pβ1(2) + pα0(0)pγ0(11)pβ1(1) + pα0(1)pγ0(10)pβ1(3)

=
pα1(1)pβ1(1) + pα1(3)pβ1(3)

pα1(0)pβ1(0) + pα1(1)pβ1(1) + pα1(2)pβ1(2) + pα1(3)pβ1(3)
(4.22)

When doing automatic synthesis, we should check whether condition 1 or condition 2

exists. If condition 2 exists, we should use Equation 4.21. If condition 1 exists, we should

use Equation 4.20. In other cases, we should use Equation 4.19.
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4.5.3 Using Reset Circuits for Decoders with Cycles

Tail-biting trellis decoding is guaranteed to converge for the binary case [1][3]. In

most case, the codeword is different from the previous codeword thus its trellis path also

differs with the trellis path of the previous codeword. However, the initial condition

for a codeword decoding is the end condition for the previous code word decoding

for analog decoders because analog decoders work constantly. For conventional trellis

decoders with no cycles as shown in Figure 4.23, a(0) and b(k) are always uniform

ditributed probabilities and after k time units, all the probabilities along the forward

path, a(1), . . . , a(k) and backward path, b(0), . . . , b(k − 1) are decided only by the inputs

c(1), . . . , c(k). Thus, the initial condition of a(1), . . . , a(k), b(0), . . . , b(k−1) does not have

any affect to the decoding process. However, for decoders with cycles such as tail-biting

trellis decoder in which a(0) = a(k) and b(0) = b(k), the probabilities along the cycles

have feedback. As a result, the initial condition of the probabilities along the cycle can

affect the decoding process through the feedback. This is very harmful, especially for high

SNR applications, because the probabilities along the current codeword trellis path may

be very small. In extreme cases, the probabilities along the current codeword trellis are

so small that the decoder does not work. Let us use the tail-biting trellis of the extended

(8,4) Hamming code shown in Figure 2.11 as an example. If there is no channel noise and

the codeword is 0000000000, then after decoding, the decoder chooses a path represented

by the state number 0-0-0-0 and the probability of these states are all 1. Then, if the

next codeword is 10101010. The decoder cannot work because all the state probabilities

along the path represented by the state number 1-3-1-3 have 0 probability. If we reset

the probabilities of a(1), a(2), ..., a(k) and b(0), b(2), ..., b(k − 1) shown in Figure 4.23 to

unity distributions after one codeword is decoded, then the decoder could converge much

faster. The simulation of the Hamming (8,4) decoder shown in Figure 4.27 shows that

the speed can be nearly doubled for high SNR application (SNR > 7) if the reset circuit

is used. In Figure 4.27, the flooding message passing schedule and a global synchronous

clock is used. Four time units means that four clock cycles has passed since the arrival of

the input probabilities. In many cases, simulation shows that the currents provided by

the product cell are quite small such as 1.0−20A when a new codeword arrives if no reset

circuit is used. For the simulation, it is fine but for the real circuit, it may cause problems.

Let us use the circuit shown in Figure 4.28 as an example (The currents connected to

Vdummy are discarded and not used by the normalization cell.). Suppose that the channel
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information is provided as X input and Y input is in a cycle. If the previous codeword

chooses the path of Vx,0, Vy,0, and I0,0, then Vy,1 is small compared with Vy,0. Now, if for

the current codeword, Vx,0 is small compared with Vx,1, then the useful currents I0,0 and

I1,1 are both very small while the large current I1,0 is discarded. The small currents make

the circuit slower than expected. Also, if the useful currents provided by the product cell

are all small, nonideal effects of the circuit causes more problems. As a result, a reset

circuit is highly recommended, especially for high SNR applications.

For the reset circuit, we just add a transistor between the voltage outputs of the

normalization cell as shown in Figure 4.29 so that when reset is high, the voltage outputs

of the normalization cell are equal. Because Vref is a low voltage and the circuit works

in the subthreshold region, the output voltage of the normalization cell is a much lower

voltage than V dd. As a result, using only NMOS transistors to do the connection is

enough.

However, using the reset circuit has the disadvantage that additional drain-bulk

capacitance is added to the output of the normalization cell. As a result, the load

capacitance of the normalization cell is increased, making the delay along the trellis

path increased. Of course, we would like to add the smallest drain-bulk capacitances to

the normalization cell. We would also like to make the load balanced for every output

node of the normalization cell so that the worst case delay is not large. On the other
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hand, we also need the resistances between the output nodes of the normalization cell

when reset is high to be not large. As a result, the following connection scheme is used.

For a normalization-k cell, Vout,1 is connected to Vout,2 by a NMOS transistor, Vout,2 is

connected to Vout,3 by a NMOS transistor and so on until Vout,k−1 is connected to Vout,k

and Vout,k is connected to Vout,1 to form a cycle. Also, notice that k is an even number,

so a NMOS transistor is also used to connect Vout,l and Vout,l+ k
2

in which the value of l

is between 1 and k
2 inclusive. Using this method, only 3k

2 NMOS transistors are used to

form the reset circuit for a normalization-k cell. The circuit is balanced. For every output

node of the normaize-k cell, at most three additional drain-bulk capacitances are added

to the load. Also, the resistance between any two output nodes is not large even for a

large normalization-k cell when reset is high so that the circuit can be reset to generate

unity distribution probabilities quickly.

Still, one needs to decide whether using this technique can improve the performance

of the decoders with cycles or not. On the one hand, using a reset circuit can give a

better initial condition for the circuit to start with, on the other hand, the additional

drain-bulk capacitance adds additional delay to the circuit.

4.5.4 Power Consumption

For trellis codes, we know that the circuit used to realize Equation 4.19 is the most

complex one. It uses a large number of transistors and consumes much power. However,

we only need to use Equation 4.19 to find the final result when the probabilities along the

trellis have stabilized. This means that we do not need the circuit realizing Equation 4.19
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to be active all the time to consume power. As a result, we can make this part of the

circuit inactive most of the time. This can be implemented by a simple circuit to control

the power provided to the normalization cells of this part of the circuit as shown in

Figure 4.30. Using this circuit, when control is low, there is no power provided to the

normalization cell and power is saved.

4.6 From Factor Graphs to Basic Cells

The previous sections describe a cell library and how an analog decoder is built using

the cells specified in the cell library. Also, Chapter 3 shows that every decoder can be

described by its normal graph description. If every function node of the normal graph

is implemented by some circuit block, then by connecting all blocks according to the

normal graph connection, a circuit can be built. For analog implementation of a decoder,

a function node can always be implemented by basic building blocks shown in Figure 4.1

while each basic building block can be implemented by a product cell and a normalization

cell described in the cell library. Now, what we need to discuss is how to partition a

function node into basic building blocks and how to partition the basic building blocks

Vdd
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Figure 4.30. The normalization cell with power control.
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into cells.

There are two kind of analog decoders. One kind uses a trellis to do decode and the

other kind directly uses the parity-check functions. For trellis decoders, one section of

the trellis is shown in Figure 3.9. The channel information is provided by a probability

density function and for binary applications it can be implemented by the circuit shown

in Figure 4.31 in which the drain-source current represents the probability provided by

the channel information and the voltage input δV = UT

κ
−4y
N0

(This can be verified by

using Equation 2.25 and Equation 4.4.). For the function describing the trellis section,

there are four variable nodes si, si+1, xi, ui. However, ui is a leaf node so that when

we calculate the α and β values, we are only concerned with si, si+1, xi as shown in

Equation 3.21 and Equation 3.22. As a result, only one basic building block is needed to

implement Equation 3.21 and Equation 3.22 each. As described in the previous section,

the γ messages shown in Figure 3.9 should be provided as X direction input for a building

block shown in Figure 4.9 for speed consideration. Let us assume that in Figure 3.9, si

has m states, si+1 has k states, and xi has n states. Then a product-n-m cell and a

normalization-k cell are needed to implement Equation 3.21 and a product-n-k cell and

a normalization-m cell are needed to implement Equation 3.22. For the implementation

of Equation 3.21 and Equation 3.22, the normalization cell should generate outputs that

can be connected to the Y direction input of a product cell so that they can be used

for the next stage. For the implementation of Equation 3.23, if Equation 4.21 can be

used, then only one building block is needed and it is composed of a product-n-n cell

and a normalization-2 cell. In other cases, all the product items of two of α, β, γ need

to be generated first before the result can be calculated. If Equation 4.20 can be used,

then all the products of αr−1(i)βr(j) need to be generated first. When the product of

αβ is needed, we need to provide one of them as the X direction input of a product

cell. As a result, in this case, instead of using normalization cells to generate the output,

dnormalization cells need to be used for the implementation of either Equation 3.21 or

Equation 3.22.

For decoders that are implemented directly on the parity-check equations as shown

in Figure 3.4. There are only two building blocks needed, the equal gate and XOR gate.

(The variable nodes with degree larger than 2 can be regarded as equal gates.) The circuit

for an equal gate using two inputs to generate one output is shown in Figure 4.32. (The

currents connected to Vdummy are discarded and not used by the normalization cell.) The
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Figure 4.31. Transistor level implementation of conditional probability distribution
based on channel information.
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Figure 4.32. Transistor level implementation of the building block of an equal gate.
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circuit for an XOR gate using two inputs to generate one output is shown in Figure 4.33.

To generate one output of an equal gate function node with n connections, n− 2 circuits

shown in Figure 4.32 need to be used because n−1 inputs are used to generate the output.

The first instance of the circuit shown in Figure 4.32 uses two inputs while additional

instances of the circuit shown in Figure 4.32 use one of the remaining n − 3 inputs each

time. As a result, k(n − 2) instances of the circuit shown in Figure 4.32 are needed to

implement an equal gate function node that needs to provide outputs to k of its adjacent

nodes. A similar analysis shows that for an XOR gate function node with connections

to n variable nodes, k(n − 2) instances of the circuit shown in Figure 4.33 are needed to

implement an XOR gate function node that needs to provide outputs to k of its adjacent

variable nodes.

For iterative decoding, instead of only using the channel information as the γ mes-

sage shown in Figure 3.9, we need to combine the extrinsic probabilities provided by

other component decoders with the channel information and provide the result as the

γ information. Also, the decoder result should be generated by using all the extrinsic

probabilities and the channel information. All these things are implemented by an equal

gate as shown in Figure 3.4 (Actually, directly using parity-check equations to decode is a

kind of iterative decoding) while the implementation of an equal gate is provided above.

Vref Vref

I0,0 I0,1
I

Iz,1
Iz,0

1,1

Vx,0 Vx,1

normalize
cell

connection

product cell

V
V

refp

Vy,1

u

y,0V
I1,0

Figure 4.33. Transistor level implementation of the building block of an XOR gate.
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Also, we can use other techniques to improve the performance of decoders with cycles

and lower the power consumption. Using these techniques, the structure of the circuit

are the same while different normalization cells are used.

Using the method mentioned above, we can convert the VHDL behavioral description

of a function node to a VHDL structural description by describing how a function node

is constructed by using the cells in the cell library. The previous chapter described that

from a simple factor graph description of a decoder, the automatic tool can generate the

VHDL behavioral description of a function node. As a result, an automatic synthesis

tool is built. From the factor graph description of a decoder, the tool can generate the

VHDL structural description of its analog implementation. Also, by using a commercial

tool such as Silicon Ensemble, the schematic and layout of the analog decoder can be

automatically generated. Thus the design process of an analog decoder is greatly sped

up. The automatically generated circuit for some decoders and their performances are

shown in Chapter 6.



CHAPTER 5

CIRCUIT LEVEL MODELING AND

SIMULATION

Chapter 3 describes the behavioral level simulation of a decoder from its factor graph

description. Chapter 4 describes how to implement decoders using analog circuits. For

analog implementations, nonideal effects can affect the performance. In principal, all

such nonideal effects can be studied by SPICE-level Monte-Carlo simulations. However,

just as described in Chapter 3, SPICE level simulation is too time consuming to get the

bit error rate curve and is even more time consuming for nonideal effects simulation.

This chapter describes the circuit level modeling and simulation issues including all the

major nonideal effects. Simple methods to model these nonidealities are provided and

techniques to minimize these nonideal effects are developed. Since a large number of

the nonideal effects can be represented by variables with Gaussian distribution, we first

discuss the operations on variables with Gaussian distribution to give the basis for the

following description.

5.1 Operations on Variables with
Gaussian Distribution

If X is a random variable with Gaussian distribution and its mean is zero and its

standard deviation is σ, then its probability density function is expressed by the following

function.

f(x) =
1√
2πσ

e−
x2

2σ2 (−∞ < x < ∞) (5.1)

If Y is the linear combination of n independent Gaussian distribution variables Xi, (i =

1, . . . , n) all with mean 0 and standard deviation σxi
, i.e. Y = a1X1 +a2X2 + · · ·+anXn,

it is proven that the following equation is true.

standarddeviation of Y is σy =
√

a2
1σ

2
x1

+ a2
2σ

2
x2

+ · · · + a2
nσ2

xn
(5.2)



96

If σx1 = σx2 = · · · = σxn = σ, then Y is a Gaussian distribution variable with mean

0 and standard deviation
√

a2
1 + a2

2 + · · · + a2
nσ and we can write Equation 5.3 to mean

that Y is a Gaussian distribution variable with mean 0 and standard deviation that is
√

a2
1 + a2

2 + · · · + a2
n times of X1’s standard deviation for simplicity.

Y = a1X1 + a2X2 + · · · + anXn

=
√

a2
1 + a2

2 + · · · + a2
nX1 (5.3)

Also, if X is a Gaussian distribution variable with mean 0 and standard deviation σ,

then 1 + X and 1 − X are all Gaussian distribution variables with mean 1 and standard

deviation σ. Also, if Y = 1
1−X

, then the probability density function for variable Y is

shown in Equation 5.4.

fY (y) = (1 +
1

y2
)

1√
2πσ

e−
(1− 1

y )2

2σ2 (−∞ < y < ∞ y 6= 0) (5.4)

From Equation 5.4, we can see that Y is approximately a Gaussian distribution

variable with mean 1 and standard deviation σ if σ ≪ 1. As a result, we have the

approximations shown in Equation 5.5 and Equation 5.6. These two equations are used

in both the forward direction and backward direction later.

Y =
1

1 − X

≈ 1 + X (σ ≪ 1) (5.5)

Y =
1

a − bX

=
1

a

1

1 − b
a
X

≈ 1

a
(1 +

b

a
X) (a ≫ bσ)

=
a + bX

a2
(5.6)

If X and Y are both Gaussian distribution variables with mean 0 and standard

deviation σ and Z = XY , then the the probability density function of variable Z is

shown in Equation 5.7.

fZ(z) =
1√
2πσ

∫ ∞

−∞

1

|y|e
−

( z
y )2+y2

2σ2 dy (−∞ < z < ∞) (5.7)

From Equation 5.7, we can see that Z is approximately a Gaussian distribution

variable with mean 0 and standard deviation σz ≈ σxσy = σ2 ≪ σ if σ ≪ 1. Even if the
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standard deviation of X, σx, and the standard deviation of Y , σy, are not equivalent, we

can have Z = XY = X(aY1) = aXY1 in which a is a constant and the standard deviation

of Y1, σy1 = σx. Thus, the standard deviation of Z is σz ≈ aσ2
x = σxσy. As a result, the

approximations shown in Equation 5.8 and Equation 5.9 are true as long as the standard

deviation of X and Y , σx, σy ≪ 1.

Z = X(1 + Y ) = X + XY ≈ X (σ ≪ 1) (5.8)

Z = (1 + X)(1 + Y ) = 1 + X + Y + XY ≈ 1 + X + Y = 1 +
√

2X (σ ≪ 1) (5.9)

Also, using Taylor expansion, Equation 5.10 and Equation 5.11 are true.

eX = 1 + X +
X2

2!
+ · · · + Xn

n!
(5.10)

ln (1 + X) = X − X2

2
+

X3

3
− X4

4
· · · (5.11)

From the previous approximations, we have the following approximations.

eX = 1 + X +
X2

2!
+ · · · + Xn

n!
≈ 1 + X (σ ≪ 1) (5.12)

ln (1 + X) = X − X2

2
+

X3

3
− X4

4
· · · ≈ X (σ ≪ 1) (5.13)

5.2 Mismatch

The parameters of two identically designed devices on an integrated circuit show a

random variation after fabrication, which is called device mismatch. Due to device mis-

match, the fabricated circuit may not perform as designed. In general, device mismatch

has much more impact on analog circuits than digital circuits. Several researchers have

investigated the transistor mismatch effect [36] [55] [24] [53] [32] [5]. In general, transistor

mismatch can be approximated by the mismatch in µn(NMOS), µp(PMOS), C ′
ox, W , L,

VT0n(NMOS), and VT0p(PMOS), each of which can be approximated by multiplying the

designed value with (1+ǫ) in which ǫ is a gaussian distribution variable with zero mean and

a small standard deviation. For example, the width of the transistor can be approximated

by W ′ = W (1 + ǫw). Also, all these mismatch effects are inversely proportional to the

transistor area and this is one reason for using large transistors in an analog circuit.
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By using Equation 4.4, Equation 4.5, and the equations from the previous section, we

can approximate the drain-source current due to transistor mismatch also by multiplying

the designed value with (1 + ǫ) in which ǫ is a gaussian distribution variable with zero

mean and a small standard deviation and this is shown in the derivation of Equation 5.14

using an NMOS transistor as an example. From Equation 4.4 and Equation 4.5, we

know that drain-source current depend on gate-source voltage exponentially and UT is

small compared with κVT0n so that the mismatch effect can be more serious for those

analog circuits working in the weak inversion region than those working in the strong

inversion region. Suppose that VT0n = 0.7V , κ = 0.7 and UT = 26mV , then a 0.4 percent

mismatch (standard deviation σvt0n
of the gaussian distribution variable ǫvt0n

shown in

Equation 5.14) of VT0n can generate a 7.5 percent mismatch (standard deviation σ of the

gaussian distribution variable ǫ shown in Equation 5.14) in the drain-source current. Table

5.1 shows the drain-source current mismatch of NMOS transistors using MOSIS 0.5um

technology and transistor width and length 3um [73]. Of course, transistor mismatch

is enough to cause problems, especially when the transistors are working in the weak

inversion region.

IDS =
2µnC ′

oxU2
T

κ
e

−κVT0n
UT

W

L
e

κVG−VS
UT (Using Equation 4.4)

I ′DS = IDS(1 + ǫµn)(1 + ǫox)
1 + ǫw

1 + ǫl
e

−κVT0nǫvt0n
UT (Considering mismatch)

≈ IDS(1 + ǫµn)(1 + ǫox)(1 + ǫw)(1 − ǫl)e
−κVT0nǫvt0n

UT (Using Equation 5.5)

≈ IDS(1 + ǫµn)(1 + ǫox)(1 + ǫw)(1 − ǫl)(1 − κVT0n

UT
ǫvt0n

) (Using Equation 5.12)

≈ IDS(1 + ǫµn + ǫox + ǫw − ǫl −
κVT0n

UT
ǫvt0n

) (Using Equation 5.9 several times)

≈ IDS(1 + ǫ) (Using Equation 5.2)

σ =

√

σ2
µn

+ σ2
ox + σ2

w + σ2
l + (

κVT0n

UT
)2σ2

vt0n
(σ is the standard deviation of ǫ)(5.14)

As a result, Lustenbeger investigated the effect of mismatch on an analog decoder’s

performance [42]. Using some analysis, they obtained a high-level model for the basic cell

of their analog decoder. Then, using the high-level model, they did the simulation for a

Table 5.1. Drain-source current mismatch.

Desired drain-source current 10nA 100nA 400nA 1uA 10uA

Drain-source current mismatch 9.37% 7.37% 5.49% 4.14% 1.78%
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(44,22,8) low-density parity-check code. The simulation result shows that the performance

degradation due to 10 percent drain-source current mismatch is not significant.

For the circuit shown in Figure 4.9 that is the basic building block for an analog

decoder, we can analyze first the product part that is below the wire network because

the analysis of the normalization part that is above the wire network is similar. For the

product part, we analyze the Y input first. For simplicity, let us assume all the transistors

have the same amount of drain-source current mismatch shown in Equation 5.14 where

the standard deviation of ǫ for every transistor has the same value. The corresponding

mismatch terms ǫ are denoted ǫj, j = 1, · · · , n for the diode-connected transistors of the

Y direction input and ǫi,j , i = 1, · · · ,m, j = 1, · · · , n for the transistors in the product

core as shown in Figure 5.1.

In Figure 5.2, probabilities are represented by corresponding currents and
∑n

l=1 Iy,l

I I...

Vref

Vref

V

V

y,1

y,n

Ix,i
I

I I

x,m

1,n m,n

Product core

.

.

.

Iy,n

y,1I

T T T T

y,1

y,n

1,n m,n

1,1

1,1

1,n

1,n

T

T

ǫn

ǫ1

ǫ1,n ǫm,nǫm,1ǫ1,1

Figure 5.1. Circuit mismatch.
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transistors
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core

diode
connected
transistors

product core

behavior
ideal

ǫj
p̂(yj)

p(xi)

ǫi,j

∏p(yj) p′(yj) ˜p(zi,j)

Figure 5.2. Propagation of the mismatch errors.

represent the probability 1 and Equation 5.15 is true. Following Lustenberger’s approach,

from Figure 5.2, which shows the calculation process of mismatch errors, we can see that

due to the mismatch of the diode-connected transistors, the equivalent probability input

distribution can be expressed by Equation 5.16. Since Equation 5.17 is true, the mismatch

of the transistor Ti,j can be viewed as an error of
UT ln (1+ǫi,j)

κ
in its gate voltage Vy,j . Using

Equation 5.17 again, we can propagate the mismatch of transistor Ti,j to a factor of 1+ǫi,j

to the input current Iy,j . As a result, for some fixed i, the total mismatch error can be

expressed by modifying the input distribution from p(yj) to p′(yj), which is shown in

Equation 5.18. Using Equation 5.18, Lustenberger did a high level simulation for the

(44,22,8) low-density parity-check code. However, the high level simulation is still too

time consuming. Now, we proceed further to reach a much more simple result.

p(yj) =
Iy,j

∑n
l=1 Iy,l

=
p(yj)

∑n
l=1 p(yl)

(5.15)

p̂(yj) =
(1 + ǫj)Iy,j

∑n
l=1(1 + ǫl)Iy,l

=
(1 + ǫj)p(yj)

∑n
l=1(1 + ǫl)p(yl)

(5.16)



101

IDS(1 + X) = I0ne
κVG−VS

UT (1 + X)

= I0ne
κ(VG+

UT ln (1+X)
κ )−VS

UT (5.17)

p′(yj) =
(1 + ǫi,j)p̂(yj)

∑n
k=1(1 + ǫi,k)p̂(yk)

=
(1 + ǫi,j)(1 + ǫj)p(yj)

∑n
k=1(1 + ǫi,k)(1 + ǫk)p(yk)

(5.18)

From Equation 5.18, we have the ratio of the probability p′(yj) to p(yj) as shown in

Equation 5.19.

p′(yj)

p(yj)
=

(1 + ǫi,j)(1 + ǫj)
∑n

k=1(1 + ǫi,k)(1 + ǫk)p(yk)
(5.19)

From Table 5.1, we know the standard deviation of the drain-source current mismatch,

σ, is usually much smaller than 1 (σ ≪ 1). By using Equation 5.9 on Equation 5.19, we

obtain Equation 5.20.

p′(yj)

p(yj)
≈ (1 +

√
2ǫj)

∑n
k=1(1 +

√
2ǫk)p(yk)

=
(1 +

√
2ǫj)

∑n
k=1,k 6=j(1 +

√
2ǫk)p(yk) + (1 +

√
2ǫj)p(yj)

=
(1 +

√
2ǫj)

∑n
k=1,k 6=j p(yk) +

∑n
k=1,k 6=j p(yk)

√
2ǫk + (1 +

√
2ǫj)p(yj)

(5.20)

Since the sum of all the input probabilities equals 1, Equation 5.21 exists.

n
∑

k=1

p(yk) = 1

n
∑

k=1,k 6=j

p(yk) = 1 − p(yj) (5.21)

By substituting Equation 5.21 into Equation 5.20, Equation 5.22 is derived.

p′(yj)

p(yj)
=

(1 +
√

2ǫj)

1 − p(yj) +
∑n

k=1,k 6=j p(yk)
√

2ǫk + (1 +
√

2ǫj)p(yj)
(5.22)

Using Equation 5.3, Equation 5.23 is derived. As a result, when all the p(yk)(k 6= j)

equal
1−p(yj)

n−1 ,
∑n

k=1,k 6=j p(yk)
√

2ǫk has the minimum value and when one of the p(yk)
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equal 1− p(yj) and all the other p(yk) equal zero,
∑n

k=1,k 6=j p(yk)
√

2ǫk has the maximum

value just as shown in Equations 5.24 and 5.25. By combining Equations 5.24 and 5.25

Equation 5.26 is derived. The value of m is between
√

1
n−1 and 1 and the value of m does

not depend on p(yj). It only depends on how the other p(yk)(k = 1, · · · , n, k 6= j) are

distributed. Also, it shows that if the cell becomes large, mismatch effects may become

small. In the following analysis, we choose the worst case m = 1 to do the analysis.

n
∑

k=1,k 6=j

p(yk)
√

2ǫk =

√

√

√

√

n
∑

k=1,k 6=j

p2(yk)
√

2ǫl (5.23)

n
∑

k=1,k 6=j

p(yk)
√

2ǫk =

√

√

√

√

n
∑

k=1,k 6=j

(
1 − p(yj)

n − 1
)2
√

2ǫl

= (1 − p(yj))

√

1

n − 1

√
2ǫl

(when p(yk) =
1 − p(yj)

n − 1
(k = 1, · · · , n; k 6= j)) (5.24)

n
∑

k=1,k 6=j

p(yk)
√

2ǫk = (1 − p(yj))
√

2ǫl

(when p(yl) = 1 − p(yj) p(yk) = 0 (k = 1, · · · , n; k 6= j; k 6= l)) (5.25)

(1 − p(yj))

√

1

n − 1

√
2ǫl ≤

n
∑

k=1,k 6=j

p(yk)
√

2ǫk ≤ (1 − p(yj))
√

2ǫl

n
∑

k=1,k 6=j

p(yk)
√

2ǫk = (1 − p(yj))m
√

2ǫl (

√

1

n − 1
≤ m ≤ 1) (5.26)

If we choose m = 1 and substitute Equation 5.26 into Equation 5.22, we have

Equation 5.27.

p′(yj)

p(yj)
=

(1 +
√

2ǫj)

1 − p(yj) +
√

2ǫl(1 − p(yj)) + (1 +
√

2ǫj)p(yj)

=
(1 +

√
2ǫj)

(1 +
√

2ǫl)(1 − p(yj)) + (1 +
√

2ǫj)p(yj)

= 1 +
(1 +

√
2ǫj)(1 − p(yj)) − (1 +

√
2ǫl)(1 − p(yj))

(1 +
√

2ǫl)(1 − p(yj)) + (1 +
√

2ǫj)p(yj)
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= 1 +
(
√

2ǫj −
√

2ǫl)(1 − p(yj))

1 +
√

2ǫl(1 − p(yj)) +
√

2ǫjp(yj)
(5.27)

By using Equation 5.5 in the forward direction on Equation 5.27 and regarding

−(
√

2ǫl(1 − p(yj)) +
√

2ǫjp(yj)) as the X in Equation 5.5, Equation 5.28 is derived.

p′(yj)

p(yj)
≈ 1 + (1 − p(yj))(

√
2ǫj −

√
2ǫl)(1 −

√
2ǫl(1 − p(yj)) −

√
2ǫjp(yj)) (5.28)

By using Equation 5.8 in the forward direction on Equation 5.28 and regarding (1 −
p(yj))(

√
2ǫj −

√
2ǫl) as the X and regarding −

√
2ǫl(1 − p(yj)) −

√
2ǫjp(yj) as the Y in

Equation 5.8, Equation 5.29 is derived.

p′(yj)

p(yj)
≈ 1 + (1 − p(yj))(

√
2ǫj −

√
2ǫl) (5.29)

Finally, by using Equation 5.3 on Equation 5.29, Equation 5.30 is derived.

p′(yj)

p(yj)
= 1 + (1 − p(yj))2ǫj (5.30)

From Equation 5.30, we can see that the larger p(yj) is, the less it is affected by

mismatch. For the X direction input, similar analysis generates a similar result shown in

Equation 5.31.

p′(xj)

p(xj)
= 1 + (1 − p(xj))2ǫj (5.31)

From Figure 4.23, we can see that usually the channel information comes from the

X input. Now, let us analyze the X direction first. From Chapter 2, we know that the

probability of sending a 1 and receiving y is the channel information that is expressed by

Equation 2.25 (shown again for convenience as Equation 5.32.) in which y = x + ǫe (x =

±1), ǫe is the channel noise and its standard deviation is σe. Using the probability of

sending a 0 and receiving y to do analysis is similar.

p(xj) =
1

1 + e
−4y

N0

(5.32)

By substituting Equation 5.32 into Equation 5.31, the equivalent channel information

after considering mismatch effect can be expressed by Equation 5.33.

p′(xj) = p(xj)(1 + (1 − p(xj))2ǫj)

=
1

1 + e
−4y

N0

(

1 +

(

1 − 1

1 + e
−4y

N0

)

2ǫj

)
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=
1

1 + e
−4y

N0



1 +
e

−4y

N0

1 + e
−4y

N0

2ǫj





=
1

1 + e
−4y
N0





1 + e
−4y

N0 (1 + 2ǫj)

1 + e
−4y
N0





=
1 + e

−4y

N0 + e
−4y

N0 2ǫj

(1 + e
−4y

N0 )2
(5.33)

Because 1 + e
−4y

N0 > e
−4y

N0 , we can use Equation 5.6 in the backward direction on

Equation 5.33 by regarding 1 + e
−4y

N0 as a and e
−4y

N0 as b in Equation 5.6. As a result,

Equation 5.34 can be derived.

p′(xj) ≈ 1

1 + e
−4y

N0 − e
−4y

N0 2ǫj

=
1

1 + e
−4y

N0 (1 − 2ǫj)

(5.34)

Using Equation 5.12 in backward direction on Equation 5.34 by regarding −2ǫj as the

X in Equation 5.12, Equation 5.35 is derived.

p′(xj) ≈ 1

1 + e
−4y

N0 e−2ǫj

=
1

1 + e
−4(y+

N0
2 ǫj )

N0

=
1

1 + e
−4(±1+ǫe+σ2

eǫj )

N0

(σ2
e =

N0

2
from Equation 2.23) (5.35)

From Equation 5.35, we can see that the mismatch effect can be considered as a kind

of noise. Notice that for a certain noise, σe and N0 are constant. As a result, we can

see that the standard deviation of the new noise is
√

σ2
e + σ4

eσ
2
j where σj is the standard

deviation of the drain-source current mismatch for one transistor. Now, we see that the

performance loss in dB due to mismatch for X input can be expressed by Equation 5.36.

10 log
σ2

e + σ4
eσ

2
j

σ2
e

= 10 log (1 + σ2
eσ

2
j ) (5.36)

Actually, we can observe the mismatch from the voltage (log-domain) perspective and

get the same result. When we choose m = 1 and use Equation 5.27, the situation is just
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the same as having only two inputs, as shown in Figure 5.3. By using Equation 2.25 and

Equation 4.13, we have the voltage difference shown in Equation 5.37 without considering

mismatch.

δV =
UT

κ
ln

p1

p0

=
UT

κ

4y

N0
(5.37)

If mismatch is considered, the voltage difference is then expressed by Equation 5.38. By

using Equation 5.5, Equation 5.9, and Equation 5.13 on Equation 5.38, Equation 5.39 can

be derived. From Equation 5.39, the same result shown in Equation 5.36 can be derived.

δV =
UT

κ
ln

p′1
p′0

=
UT

κ
ln

p1(1 +
√

2ǫ1)

p0(1 +
√

2ǫ0)

=
UT

κ
(
4y

N0
+ ln

1 +
√

2ǫ1

1 +
√

2ǫ0
) (5.38)

δV =
UT

κ
(
4y

N0
+ ln

1 +
√

2ǫ1

1 +
√

2ǫ0
)

≈ UT

κ
(
4y

N0
+ ln (1 +

√
2ǫ1)(1 −

√
2ǫ0)) (Using Equation 5.5)

≈ UT

κ
(
4y

N0
+ ln (1 + 2ǫ1)) (Using Equation 5.9)

≈ UT

κ
(
4y

N0
+ 2ǫ1) (Using Equation 5.13)

I

Vref
Vref

I’ I’10

0 I1

Figure 5.3. Mismatch of two pair of transistors.
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=
UT

κ

4(±1 + ǫe + σ2
eǫ1)

N0
(N0 = 2σ2

e ) (5.39)

Now, we discuss the total performance loss due to transistor mismatch. From Equa-

tion 5.35 and Equation 5.39, we know that the mismatch effect is not large. As a result,

when the decision is quite clear if mismatch is not considered, then the decision cannot

be changed even if mismatch is considered. Only when the decision is not quite clear is

there a concern about the mismatch effect. From Figure 4.23, we know that the channel

information is typically provided from the X direction where the context information is

provided from the Y direction. When the decision is not clear, the context information

is nearly uniformly distributed, especially when SNR is high. As a result, the context

information provided to the next trellis section is nearly equal to the channel information

provided by the current stage. By propagating the mismatch effect that is generated by

the context information to the next trellis section back to the current X direction channel

information, the mismatch effect is doubled. Also, notice that each building block uses

not only a product cell, but also a normalization cell. The analysis of the normalization

cell is similar to the analysis of the product cell and the normalization cell is also affected

by mismatch. Considering all these mismatch effects, the final mismatch effect is shown

in Equation 5.40 (Notice that the equivalent noise is
√

3σ2
eǫ because of the Gaussian

operation).

10 log
σ2

e + 3σ4
eσ

2
j

σ2
e

= 10 log (1 + 3σ2
eσ

2
j ) (5.40)

A better way of analyzing the total mismatch effect is observing it from the log-

domain (voltage operation). What two kind of decoders are widely used? One uses

block-wise ML decision rule. Another uses bit-wise MAP decision rule. For high SNR,

the two kinds of decoders generate nearly the same result. From the previous analysis,

we know that for each trellis stage, from the log-domain view, the received information

is 4yi

N0
(see Equation 5.37) in which yi is the received value for the ith symbol and yi =

xi + ǫe = ±1 + ǫe. (We ignore the constant UT

κ
for simplicity.) Also, the mismatch

effect for each trellis section is the same. For both the X and Y direction, the mismatch

effect is 2ǫ. For the log-domain, the mismatch from the X and Y direction should be

added together. Also, the mismatch effect caused by the normalization cell is also 2ǫ

and this mismatch effect should also be added. As a result, each trellis section has

a mismatch effect of 2
√

3ǫ. Thus, the equivalent information provided by each trellis
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section is 4yi

N0
+ 2

√
3ǫ = 4(±1+ǫe+

√
3σ2

e ǫ)
N0

. As a result, we can again get the performance

loss due to mismatch shown in Equation 5.40.

For iterative decoding such as the low-density parity-check code shown in Figure 5.4,

we know that the channel information needs to pass through both the variable node

(equal gate) and the function node before it is used. The variable node is implemented

by an equal gate and the function node is implemented by an XOR gate. Each gate

gives a 2
√

3ǫ mismatch to the channel information. Adding the mismatch together,

the total equivalent mismatch effect to the channel information is 2
√

6ǫ. As a result,

for low-density parity-check code, the performance loss due to mismatch is shown in

Equation 5.41. Actually, for a iterative decoders, the information 4yi

N0
(see Equation 5.37)

needs to pass through two building blocks before it is used. As a result, the nonlinear

effect needs to be doubled for iterative decoders.

10 log
σ2

e + 6σ4
eσ

2
j

σ2
e

= 10 log (1 + 6σ2
eσ

2
j ) (5.41)

Notice that Equation 5.40 and Equation 5.41 only show the average performance loss

due to mismatch. Because mismatch is fixed for every chip, the mismatch effect for every

1 2 n

f f2 fn−k

...

...
channel information

1

x x x

Figure 5.4. The structure of a low-density parity-check code.
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chip can be different. Simulation has shown that for some chips, mismatch effect can

even improve the performance.

Also, from Equation 5.40 and Equation 5.41, we know the performance loss due to the

mismatch effect is not large. Suppose the variance of the channel noise is σ2
e = 0.2, and

the standard deviation of the drain-source current mismatch of one transistor, σj = 0.1,

then the performance loss using Equation 5.40 is 0.025dB and the performance loss using

Equation 5.41 is 0.052dB. Also, when SNR increases, σ2
e decreases. The performance

loss in dB due to mismatch also decreases. As a result, the average bit-error rate curve

after including the mismatch effect is a curve nearly parallel to the ideal bit-error rate

curve. Figure 5.5 shows the ideal bit-error rate curve, the simulation result of bit-error

rate curve including mismatch effect by using Equation 5.18 and the fitting curve by using

Equation 5.41 of the Hamming (8,4) decoder. They match very well, especially at high

SNR.

5.3 Internal Noise

There are two kind of noise for MOS transistors, thermal noise and flicker noise. In

the following, we discuss them separately.

5.3.1 Thermal Noise

The variance of the thermal noise of MOS transistors is usually expressed by the

drain-source current in the frequency domain by Equation 5.42 [29] [56].

I2
n(f) = 4kT (

2

3
)gm (5.42)

For MOS transistors working in the weak inversion region, gm = κ
UT

Ids. Assuming

that the noise bandwidth is fx, then Equation 5.43 is true in which q is the electrical

quantity of one electron and q = 1.603 ∗ 10−19C.

I2
n = 4kT (

2

3
)gmfx

= 4kT (
2

3
)fx

κ

UT
Ids

=
8

3
κfxqIds (UT =

kT

q
)

In =

√

8

3
κfxq

√

Ids (5.43)
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Figure 5.5. The mismatch effect of the tail-biting extended Hamming (8,4) decoder.
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Now, the drain-source current for one transistor after considering thermal noise can

be expressed by Equation 5.44 in which the standard deviation of ǫ is σ =
√

8
3κfxq.

I ′ds = Ids +
√

Ids ǫ (5.44)

Now, following the approach of the mismatch analysis, Equation 5.45 can be derived

for the X direction in which Ii is the drain-source current of transistor Ti before mis-

match is considered and I ′i is the drain-source current of transistor Ti after mismatch is

considered.

I ′i = Ii +
√

Ii

√
2ǫi

= Ii +
√

2Iiǫi(i = 1, ...,m) (5.45)

As a result, the probability distribution after considering thermal noise can be ex-

pressed by Equation 5.46.

p′j =
Ij +

√

2Ijǫj
∑m

i=1 Ii +
√

2Iiǫi

=
Ij +

√

2Ijǫj

Iu +
√

2Ijǫj +
∑m

i=1,i6=j

√
2Iiǫi

=
pj +

√
2Ij

Iu
ǫj

1 +

√
2Ij

Iu
ǫj + 1

Iu

∑m
i=1,i6=j

√
2Iiǫi

(pj =
Ij

Iu
and

m
∑

i=1

Ii = Iu) (5.46)

By using Equation 5.5 on Equation 5.46 and regarding −(

√
2Ij

Iu
ǫj + 1

Iu

∑m
i=1,i6=j

√
2Iiǫi)

as the X in Equation 5.5, Equation 5.47 can be derived.

p′j ≈ (pj +

√

2Ij

Iu
ǫj)(1 −

√

2Ij

Iu
ǫj −

1

Iu

m
∑

i=1,i6=j

√

2Iiǫi)

= pj(1 −
√

2Ij

Iu
ǫj −

1

Iu

m
∑

i=1,i6=j

√

2Iiǫi)

+

√

2Ij

Iu
ǫj(1 −

√

2Ij

Iu
ǫj −

1

Iu

m
∑

i=1,i6=j

√

2Iiǫi) (5.47)

By using Equation 5.8 on Equation 5.47 and regarding

√
2Ij

Iu
as the X, −

√
2Ij

Iu
ǫj −

1
Iu

∑m
i=1,i6=j

√
2Iiǫi as the Y in Equation 5.8, Equation 5.48 can be derived.

p′j ≈ pj(1 −
√

2Ij

Iu
ǫj −

1

Iu

m
∑

i=1,i6=j

√

2Iiǫi) +

√

2Ij

Iu
ǫj
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= pj(1 − 1

Iu

m
∑

i=1,i6=j

√

2Iiǫi) +

√

2Ijǫj

Iu
(1 − pj)

= pj(1 −
√

2√
Iu

m
∑

i=1,i6=j

√
piǫi) +

√
2ǫj√
Iu

√
pj(1 − pj) (5.48)

Using Equation 5.3 on Equation 5.48, Equation 5.49 can be derived.

p′j = pj(1 −
√

2ǫk√
Iu

√

√

√

√

m
∑

i=1,i6=j

(
√

pi)2) +

√
2ǫj√
Iu

√
pj(1 − pj)

= pj(1 −
√

2ǫk√
Iu

√

√

√

√

m
∑

i=1,i6=j

pi) +

√
2ǫj√
Iu

√
pj(1 − pj)

= pj(1 −
√

2ǫk√
Iu

√

1 − pj) +

√
2ǫj√
Iu

√
pj(1 − pj)

= pj(1 − k1

√

1 − pj) + k2
√

pj(1 − pj) (k1 =

√
2ǫk√
Iu

; k2 =

√
2ǫj√
Iu

) (5.49)

By substituting Equation 5.32 into Equation 5.49, Equation 5.50 can be derived.

p′(j) = pj(1 − k1

√

1 − pj) + k2
√

pj(1 − pj)

=
1

1 + e
−4y
N0

(

1 − k1

√

1 − 1

1 + e
−4y
N0

)

+ k2
1

√

1 + e
−4y
N0

(1 − 1

1 + e
−4y
N0

)

=
1

1 + e
−4y

N0

(1 − k1e
−2y

N0

√

1 + e
−4y

N0

) + k2
1

√

1 + e
−4y

N0

e
−4y

N0

1 + e
−4y

N0

=
1

1 + e
−4y

N0

(1 − k1e
−2y

N0

√

1 + e
−4y

N0

+
k2e

−4y

N0

√

1 + e
−4y

N0

) (5.50)

By using Equation 5.5 in the backward direction on Equation 5.50 and regarding

− k1e
−2y
N0q

1+e
−4y
N0

+ k2e
−4y
N0q

1+e
−4y
N0

as the X in Equation 5.5, Equation 5.51 can be derived.

p′(j) ≈ 1

1 + e
−4y

N0

1

1 + k1e
−2y
N0q

1+e
−4y
N0

− k2e
−4y
N0q

1+e
−4y
N0

=
1

1 + e
−4y

N0 + k1e
−2y

N0

√

1 + e
−4y

N0 − k2e
−4y

N0

√

1 + e
−4y

N0

(5.51)

In Equation 5.51, k1 =
√

2ǫk

Iu
, k2 =

√
2ǫj

Iu
and the standard deviation of ǫk and ǫj are

both
√

8
3κfxq. Thus, the standard deviation of k1 and k2 are both

√
2
q

8
3
κfxq

√
Iu

. Usually, this
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standard deviation is very small. For example, for κ = 0.6, noise bandwidth fx = 10MHZ

and Iu = 100nA, the standard deviation is only 6.02 ∗ 10−3. As a result, the performance

loss due to thermal noise is negligible compared with the mismatch effect.

5.3.2 Flicker Noise

The variance of flicker noise of MOS transistors is usually expressed by the gate-source

voltage in the frequency domain shown in Equation 5.52 [29] [56] in which K is a process

dependent constant and usually has a magnitude around 10−25V 2F .

V 2
n (f) =

K

WLCoxf
(5.52)

Assuming the noise bandwidth is fx and the flicker noise exists between 1 and fx, the

total flicker noise can be expressed by Equation 5.53.

V 2
n =

∫ fx

0

K

WLCoxf
df

V 2
n =

K

WLCox
ln fx

Vn =

√

K

WLCox
ln fx (5.53)

As a result, the corresponding drain-source current flicker noise can be expressed by

Equation 5.54.

In = gm

√

K

WLCox
ln fx

=
κ

UT

√

K

WLCox
ln fxIds (gm =

κ

UT
Ids) (5.54)

The total drain-source current after considering flicker noise can be expressed as the

following equation in which the standard deviation of ǫ equals κ
UT

√

K
WLCox

ln fx that is

independent of Ids.

I ′ds = (1 + ǫ)Ids (5.55)

Following the approach of mismatch, it is easy to know that the flicker noise effect is

equal to an additional noise of 3σ2
eǫ to 6σ2

eǫ to the channel where σe is the standard

deviation of the channel noise. For typical applications, the standard deviation of ǫ

is quite small. For example, if κ = 0.6, UT = 0.0258V , K = 10−24V 2F , W = L =

2um, Cox = 1.9 ∗ 10−3pF/(um)2, and fx = 10MHz, the standard deviation of ǫ is only

1.07∗10−3. This value is also quite small compared with the mismatch effect. As a result,

the performance due to flicker noise is also negligible.
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5.4 Channel Length Modulation

Another effect that needs to be discussed is channel length modulation. From Fig-

ure 4.9, we can see that for circuits working under weak inversion, the drain-source

voltage of the transistors in the product core are nearly the same. However, Table 5.2

shows the Early voltage of MOS transistors using MOSIS 0.5um technology and using

width and length 3um [73]. It shows that the Early voltage is not constant. The larger the

drain-source current, the larger the early voltage. For product core transistors working in

strong inversion or the moderate region, from Figure 4.9, we can see that the larger the

drain-source current, the smaller the drain-source voltage because the PMOS transistor

that provides the current needs more gate-source voltage to provide the current. As a

result, no matter which region the transistor works, the larger the drain-source current,

the smaller it is scaled up by channel length modulation. Assuming that the channel

length modulation coefficient λ is proportional to Iα
ds where α is a negative number larger

than -1 and the drain-source current after considering the channel length modulation

effect is I′ds = Ids(1 + λ), the channel length modulation coefficient can be expressed by

Equation 5.56 in which Iu is the reference current that represents probability 1 and ku is

a small constant around 0.01 making λ = 0.01 when Ids = Iu.

λ = k1I
α
ds (k1 = kuI−α

u ) (5.56)

From Figure 4.9, we know the channel length modulation effect is much smaller for

the current mirrors in the bottom of the figure compared with the product core circuit.

When only the channel length modulation effect for the product core is considered, the

probability distribution can be expressed by Equation 5.57.

Table 5.2. Early effect.

NMOS PMOS

Drain-source current Early voltage Drain-source current Early voltage

62nA 86V 23.7nA 154V

2.4uA 123V 1.15uA 157V

4.89uA 181V

11.2uA 153V 11.2uA 183V
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p′j =
Ij(1 + k1I

α
j )

∑n
i=1 Ii(1 + k1Iα

i )

=
Ij + k1I

α+1
j

Iu + k1I
α+1
j +

∑n
i=1,i6=j k1I

α+1
i

=
pj + k1I

α
u pα+1

j

1 + k1Iα
u

∑n
i=1,i6=j pα+1

i + k1Iα
u pα+1

j

(pj =
Ij

Iu
and

n
∑

i=1

Ii = Iu)

=
pj + kupα+1

j

1 + ku

∑n
i=1,i6=j pα+1

i + kupα+1
j

(ku = k1I
α
u ) (5.57)

By using Equation 5.5 on Equation 5.57 and regarding −(ku

∑n
i=1,i6=j pα+1

i + kupα+1
j )

as the X in Equation 5.5, Equation 5.58 can be derived.

p′j ≈ (pj + kupα+1
j )(1 − ku

n
∑

i=1,i6=j

pα+1
i − kupα+1

j )

= pj(1 − ku

n
∑

i=1,i6=j

pα+1
i − kupα+1

j )

+kupα+1
j (1 − ku

n
∑

i=1,i6=j

pα+1
i − kupα+1

j ) (5.58)

By using Equation 5.8 on Equation 5.58 and regarding kupα+1
j as the X, −ku

∑n
i=1,i6=j pα+1

i −
kupα+1

j as the Y in Equation 5.8, Equation 5.59 can be derived.

p′j ≈ pj(1 − ku

n
∑

i=1,i6=j

pα+1
i − kupα+1

j ) + kupα+1
j

= pj(1 − ku

n
∑

i=1,i6=j

pα+1
i ) + kupα+1

j (1 − pj) (5.59)

Because α is a negative number larger than -1, α + 1 > 0 and Equation 5.21 is true.

When all the pi(i = 1, i 6= j) all equal
1−pj

n−1 ,
∑n

i=1,i6=j pi has the maximum value and when

one of the pi equals 1 − pj and all the other pi equal zero,
∑n

k=1,k 6=j pi has the minimum

value. This is shown in Equation 5.60. Thus, using Equation 5.60 on Equation 5.59,

Equation 5.59 can be simplified to Equation 5.61
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(1 − pj)
α+1 ≤

n
∑

i=1,i6=j

pα+1
i ≤ (n − 1)−α(1 − pj)

α+1 (5.60)

p′j = pj(1 − k2(1 − pj)
α+1) + kupα+1

j (1 − pj)

(k2 = mku and 1 ≤ m ≤ (n − 1)−α) (5.61)

By substituting Equation 5.32 into Equation 5.61, Equation 5.62 can be derived.

p′j =
1

1 + e
−4y

N0

(1 − k2(1 − 1

1 + e
−4y

N0

)α+1) +
ku

(1 + e
−4y

N0 )α+1
(1 − 1

1 + e
−4y

N0

)

=
1

1 + e
−4y
N0

(1 − k2
e

−4(α+1)y
N0

(1 + e
−4y
N0 )α+1

) +
ku

(1 + e
−4y
N0 )α+1

e
−4y

N0

1 + e
−4y
N0

=
1

1 + e
−4y

N0

(1 − k2
e

−4(α+1)y
N0

(1 + e
−4y

N0 )α+1
+ ku

e
−4y

N0

(1 + e
−4y

N0 )α+1
) (5.62)

By using Equation 5.5 in the backward direction on Equation 5.62 and regarding

−k2
e
−4(α+1)y

N0

(1+e
−4y
N0 )α+1

+ ku
e
−4y
N0

(1+e
−4y
N0 )α+1

as the X in Equation 5.5, Equation 5.63 can be derived.

p′j ≈ 1

1 + e
−4y

N0

1

1 + k2
e
−4(α+1)y

N0

(1+e
−4y
N0 )α+1

− ku
e
−4y
N0

(1+e
−4y
N0 )α+1

=
1

1 + e
−4y
N0 + k2e

−4(α+1)y
N0 (1 + e

−4y
N0 )−α − kue

−4y
N0 (1 + e

−4y
N0 )−α

(5.63)

From Equation 5.59, we know k2 is a constant and it may increase as m increases. As

a result, the performance loss due to channel length modulation may increase for large

decoders. Usually k2 and ku have very small values such as 0.01. The performance loss

due to channel length modulation is again small compared with the performance loss due

to mismatch.

5.5 Strong Inversion

Could the “sum-product algorithm” be implemented by transistors not working under

weak inversion? If the transistors of Figure 5.6 are working under strong inversion, then

the following equations exist.
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Figure 5.6. Fundamental circuit.

Ii,j/Ix,i = (Vy,j − Vx,i − Vth1)
2/

n
∑

l=1

(Vy,l − Vx,i − Vth1)
2 (5.64)

Iy,j/Iy = (Vy,j − Vref − Vth2)
2/

n
∑

l=1

(Vy,l − Vref − Vth2)
2 (5.65)

Let us define V1 = Vx,i + Vth1 and V2 = Vref + Vth2 . Then Equation 5.64 and

Equation 5.65 are changed to Equation 5.66 and 5.67.

Ii,j/Ix,i = (Vy,j − V1)
2/

n
∑

l=1

(Vy,l − V1)
2 (5.66)

Iy,j/Iy = (Vy,j − V2)
2/

n
∑

l=1

(Vy,l − V2)
2 (5.67)

From the equations above, we know that usually Ii,j/Ix,i does not equal Iy,j/Iy. Could

they be nearly equal? Of course, if V2 nearly equals V1, this happens. If the total Iy equals

the total Ix, every Ix,i is smaller than the total Iy. As a result, V1 is always higher than

V2. However, if there exists an Ix,i that nearly equals the total Ix, (This usually happens

when the probability difference is large for the input), V1 is nearly equal to V2 and Ii,j/Ix,i
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nearly equals Iy,j/Iy. Of course, the largest Ix,i contributes the most to the output. Thus,

the “sum-product” circuit could work correctly.

From Equation 5.64 and 5.65, we know that usually Ii,j/Ix,i does not equal Iy,j/Iy. For

simplicity, we analyze the equation with only two Vy,l first. Let us define (Vy1 −V1)
2 = a,

(Vy2−V1)
2 = b, (Vy1−V2)

2 = c, and (Vy2−V2)
2 = d. If a/b < c/d then a/(a+b) < c/(c+d).

Analysis shows the following result:

If V1 < V2 and Vy1 > Vy2 or V1 > V2 and Vy1 < Vy2 then

(Vy1 − V1)
2/((Vy1 − V1)

2 + (Vy2 − V1)
2) < (Vy1 − V2)

2/((Vy1 − V2)
2 + (Vy2 − V2)

2)

else

(Vy1 − V1)
2/((Vy1 − V1)

2 + (Vy2 − V1)
2) > (Vy1 − V2)

2/((Vy1 − V2)
2 + (Vy2 − V2)

2)

Now, let us consider more than two Vy,j . We know that if a1/b1 < a2/b2 and a1/c1 <

a2/c2, then a1/(a1 + b1 + c1) < a2/(a2 + b2 + c2). As a result, for multiple Iy,j inputs,

the biggest current Ii,j is magnified while the smallest Ii,j is decreased if V1 > V2. If

we choose Ix = Iy = Iu, then of course V1 > V2. As a result, the currents with larger

probabilities in the product cell are scaled up.

However, if we choose Ix = Iy = Iz = Iu, in the case that some of the products are

discarded, the total input for the normalization cell is smaller than the total output of

the normalization cell, which is Iu. As a result, in this case, the currents with larger

probabilities in the normalization cell are scaled down. In conclusion, the quadratic

behavior in the product cell and normalization cell can compensate each other to some

degree. The quadratic behavior in the normalization cell is more harmful than the

quadratic behavior in the product cell because it scales down the large probabilities.

Now, let us analyze the circuit working under strong inversion. For the product cell

working under strong inversion, the following equations are true.

(Vy1 − V2)
2 + · + (Vyn − V2)

2 = px[(Vy1 − V2)
2 + · + (Vyn − V2)

2] (5.68)

V2 =
1

n
[(Vy1 + · + Vyn)

−
√

(Vy1 + · + Vyn)2 − n(V 2
y1 + · + V 2

yn − px[(Vy1 − V2)2 + · + (Vyn − V2)2])] (5.69)

It is very difficult to analyze the circuit working under strong inversion. The
p′yi

pyi
scale

depends not only on px, but also on all the Vy1, · · · , Vyn, and V1. Even if px, py1, · · · , pyn are
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the same, if different voltages are used, a different result is obtained. For the normalization

cell, the situation is much more complex because the ratio of total input/total output

is not a simple value such as px. Instead, the ratio depends not only on the structure

of how the product items are summed, but also on the value of the product items that

varies. Only in some cases where no product items are discarded and the total input

to a normalization cell equals Iu, no quadratic behavior needs to be considered for the

normalization cell.

What is more, the quadratic behavior is more complex than what we have discussed.

Although the reference current Iu is very large, a large number of transistors are not

working under strong inversion, instead they may be working in the moderate region or in

the weak inversion region. For example, if Iu = 10uA, px1 = 0.01, Ix1 = px1∗Iu = 100nA,

some transistors are working in the moderate region or in the weak inversion region.

In conclusion, quadratic behavior is difficult to analyze. It may vary considerably for

different analog decoders and different structures. The task is left for simulation to solve.

In order to simulate circuits working under strong inversion and moderate region, the

transistor model shown in Equation 5.70 is used to model each transistor. The model

shown in Equation 5.70 is proposed by Enz, Krummenacher, and Vittoz [15] and this

model is adaptable for transistors working under any region. As a result, using this

transistor model, an accurate simulation result can be obtained.

IDS = IS

[

ln

(

1 + e
κ(VG−VT )−VS

2UT

)]2

IS =
2µC ′

oxU2
T

κ

W

L
(5.70)

However, the model shown in Equation 5.70 is quite complex and using it to do

simulation is too time consuming. It is true that even if the reference current Iu is quite

large, some transistors work in the moderate or weak inversion region if the corresponding

probabilities for these transistors are small. However, in these cases, the decisions are

clear and the largest probabilities are nearly unchanged so that we can treat the cell as

an ideal behavioral cell. What we care about is the case that no probability is dominant

and in this case the dominant transistors all work in the strong inversion region if Iu is

large enough. As a result, a simple model shown in Equation 5.71 is used for transistors

working in the strong inversion region. If the decision is clear for a cell, an ideal behavioral

model is used to model it. If the decision is not clear, then Equation 5.71 is used for the
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dominant transistors. Using this method, the simulation process is sped up significantly

while the simulation result is still quite accurate.

IDS =
µC ′

ox

2

W

L
(VG − VS − VT )2 (5.71)

The simulation result of the extended Hamming (8,4) decoder using Equation 5.70 is

shown in Figure 5.7. It shows that it is more harmful than the mismatch effect, especially

at high SNR.

5.6 Transistor Size

From the previous discussion, we know that mismatch and the quadratic behavior

are the main nonideal reasons for performance loss. Also, simulation has shown that
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Figure 5.7. The quadratic behavior effect of the tail-biting extended Hamming (8,4)
decoder.
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the quadratic behavior is much larger than the mismatch effect, especially at high SNR.

As a result, we would like to minimize the quadratic behavior first and then minimize

the mismatch effect. Also, analysis has shown that the quadratic behavior is mainly

dependent on the normalization cell (unless no product term is discarded). As a result,

it is better to make the transistors in the current mirror for the X input large and have a

small width/length ratio to make it work in the strong inversion region. In contrast, it is

better for the transistors of the normalization cell to have a large width/length ratio to

make it work in the weak inversion region. The following ratio is recommended: current

mirror for the X input W/L=1/4, product core W/L=2, and normalization cell W/L=4.

5.7 One Pole System Simulation

Chapter 3 describes a behavioral level VHDL model for simulation to verify the circuit

structure. However, in the behavioral level simulation, a synchronized message passing

schedule is assumed. This means that every function node uses one clock cycle to calculate

the results. However, a function node may need to use several building blocks to calculate

one of its outputs and this number varies for different function nodes. Also, from Chapter

4, we know that a building block is constructed by a product cell and a normalization

cell. However, the construction of each building block may use different product cells and

normalization cells and the delays of different product cells and normalization cells are

different. As a result, for circuit level consideration, the assumption is not true.

For conventional trellis decoding, the message update happens in a forward path and

backward path, and in each path the messages are updated sequentially. As a result,

if enough time is provided, the circuit stabilizes to the state just as if a synchronized

message passing schedule is used. Thus, the circuit level simulation result should be the

same as the behavioral level simulation result if the circuit cells are assumed to perform

ideally.

For tail-biting trellis decoders and iterative decoding, there are cycles in their factor

graph representation. As a result, the circuit delay can affect the performance 1. Thus,

for a more accurate simulation, circuit delay should be considered. Of course, using Spice

simulation, the circuit delay is considered. However, it is too time consuming just as

1For low-density parity-check codes in which every function node has the same degree and every
variable node has the same degree, the circuit delay cannot affect the performance and the behavioral
level simulation result is accurate.
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mentioned in Chapter 3. To include the circuit delay into the simulation, a good method

is to use the one pole system model shown in Equation 5.72 to calculate the output for

the product cells and normalization cells. In Equation 5.72, A(∞) is the calculated result

that we call stimulation, A(0) is the value of the current output, τ is the transportation

delay of the circuit cell provided by a Spice simulation result and t is the time passed

since the stimulation is given. Figure 5.8 shows how to use the one pole system model

to do simulation. As a result, we need to provide an ideal behavioral model and a delay

model for each product cell and normalization cell that are used. When the input is

provided to a circuit cell, the stimulation that is needed to be provided to the delay

model is calculated first according to the ideal behavioral model. Then, after some delay

t, the result of the delay model is passed to another circuit cell. However, the problem

is how to choose the delay t. A good method is still using a synchronous schedule and

the delay t is chosen as the global clock cycle. Then, if the frequency of the global clock

is very high, t is very small. As a result, the messages are updated constantly just as in

the analog circuit. Thus, an accurate simulation result can be observed. However, the

higher the frequency of the global clock, the more time the simulation uses. As a result,

a balance between simulation accuracy and simulation time must be chosen.

A(∞)(1 − e
−t
τ ) + A(0)e

−t
τ (5.72)

Also, for different A(∞) and A(0) shown in Equation 5.72, τ may be a little bit

different due to the second order effects of a transistor. However, overall the model

shown in Equation 5.72 is still accurate enough to provide an accurate simulation result.

A more serious impact is the mismatch effect. Due to the mismatch effect, the transistors

may not be the ideal desired transistors and the τ provided by the Spice simulation result

Input
Ideal Behavior

OutputOne Pole
System

stimulation

Figure 5.8. One pole system model.
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may not be accurate enough. However, to do simulation using the one pole system model

and also including the mismatch effect as a gaussian variable is quite complex and too

time consuming. Actually, Spice simulation also does not include the mismatch effect.

As a result, this method is quite good for both efficiency and accuracy compared with

Spice.

The simulation result of the extended Hamming (8,4) decoder shown in Figure 2.11

using this method is shown in Figure 5.9. It shows that the performance is not degraded

significantly even if the delay model is used instead of an ideal behavioral model.

5.8 Automatic Circuit Level Simulation

The previous section describes circuit level simulations by using some circuit level

models for the circuit cells. Chapter 4 describes that from the factor graph description

of a decoder, the automatic synthesis tool can generate the VHDL structural description
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Figure 5.9. Simulation result of the extended Hamming(8,4) decoder using the one pole
system model.



123

of the analog implementation by using the analog circuit cells. Now, if there are circuit

level simulation models for the cells in the cell library, then by using these models in the

VHDL structural description of the analog decoder, we can do circuit level simulation to

obtain circuit level simulation results. As a result, if the one pole system model for the

circuit cells are provided, then the circuit level simulation is automated. If the quadratic

behavior needs to be simulated, then the transistor level model shown in Equation 5.70 or

Equation 5.71 must be provided. If both the one pole system and quadratic behavior need

to be simulated, then instead of using the model shown in Figure 5.8, the ideal behavioral

model shown in Figure 5.8 should be substituted by the model shown in Equation 5.70

or Equation 5.71.



CHAPTER 6

CASE STUDIES

In this chapter, the extended Hamming (8,4) decoder and the (16, 11)2 product

decoder are used to show the result of automatic simulation and synthesis. Also, the

advantages and disadvantages of using automatic simulation and synthesis are discussed.

6.1 Hamming (8,4) Decoder

This section uses the Hamming (8,4) decoder as an example. A brief description of

the Hamming (8,4) decoder is given first. Then, the high level simulation of the Hamming

(8,4) decoder is discussed. The high level simulation result using the automatically

generated VHDL file is presented. Also, the Spice simulation result of the automatically

generated schematic and layout of the core circuit of the Hamming decoder is presented.

6.1.1 Description

Chapter 2 describes the parity-check matrix and the trellis of the Hamming (8,4)

code. Its parity-check matrix is shown in Equation 6.1, and its minimal tail-biting trellis

is shown in Figure 6.1. The parity-check matrix H for the Hamming (8,4) code shown in

Equation 6.1 has the property that H ·HT = 04∗4 so that the parity-check matrix shown

in Equation 6.1 is also the generator matrix G for the code.

G = H =









1 1 1 1 0 0 0 0
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1
0 1 1 0 0 0 1 1









(6.1)

In order to do the automatic simulation and synthesis of the Hamming decoder. The

factor graph description of the Hamming (8,4) code is needed. For the Hamming (8,4)

code, there are four trellis sections. Each trellis section describes the valid configurations

between the variables, i.e. the current state sr, the next state s(r+1)mod4 (mod is used

because the trellis shown in Figure 6.1 is a tail-biting trellis), the information bit ur,
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Figure 6.1. Trellis representation for the extended Hamming (8,4,4) code.

and the encoded outputs x2r, x2r+1. As a result, each trellis section can be viewed as

a function node connected with five adjacent variables sr, s(r+1)mod4, ur, x2r, x2r+1 in

the factor graph in which the function node is an indication function defined by the valid

configurations shown in the trellis section. Although there are four trellis sections, there

are only two types of trellis sections. As a result, there are only two types of function

nodes, as shown in the factor graph representation in Figure 6.2. In the factor graph,

the state variable node sr is not visible and it is shown in a double circle. When doing

decoding, the information bit ur only provides a unity probability distribution to its

adjacent function node. As a result, the output of ur can be ignored in doing simulation

and synthesis. Also, we do not need to know the value of the message going to variable

node xr. Thus, only the messages going out of variable node xr need to be calculated. For

convenience, we can combine the messages coming out of variable nodes x2r and x2r+1.

Now, the factor graph shown in Figure 6.2 is simplified to Figure 6.3. The function node

now only has four adjacent variables and the messages coming out of node x2r and x2r+1

is provided by the combined message coming out of node γr.
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Figure 6.2. Factor graph representation of the Hamming (8,4) decoder.
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Figure 6.3. Another factor graph representation of the Hamming (8,4) decoder.
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6.1.2 High-Level Simulation

The structure of the Hamming (8,4) decoder is represented by its factor graph shown

in Figure 6.3. The messages passed on one section of the factor graph are shown in

Figure 6.4. For the state variable node sr, there are messages passing in both the forward

and backward direction. The messages passed in the forward direction are represented

by αr while the messages passed in the backward direction are represented by βr. In

order to calculate message αr+1, αr and γr need to be used as shown in Equation 6.2.

In order to calculate βr, βr+1 and γr need to be used as shown in Equation 6.3. In

order to calculate the messages going to variable node ur, αr, γr, and βr+1 all need to

be used as shown in Equation 6.4. However, notice that the branches that enter state

r + 1 always correspond to a certain u. In function fa, the branches that enter next

state 0 and 2 always correspond to u = 0 while the branches that enter next state 1

and 3 always correspond to u = 1. In function fa, the branches that enter next state 0

always correspond to u = 0 while the branches that enter next state 1 always correspond

to u = 1. As a result, Equation 6.4 can be simplified to Equation 6.5. As a result,

the structure of the Hamming (8,4) decoder that we used in [69] is shown in Figure 6.5.

The bit − pair combines the messages provided by x2r and x2r+1 shown in Figure 6.2 to

provide the messages of γr shown in Figure 6.4. The core of the structure is derived from

the factor graph shown in Figure 6.3. For the core of the structure shown in Figure 6.5,

each block has two message input and one message output. As a result, each block can

be built by using a product cell and a normalization cell. The circuit for the first B2

block is shown in Figure 6.6.

αr+1(j) =
∑

states i

αr(i)γr(i, j) (6.2)

βr(i) =
∑

states j

βr+1(j)γr(i, j) (6.3)

ur(u) =
∑

(i,j)∈A(u)

αr(i)γr(i, j)βr+1(j) (6.4)
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ur(u) =
∑

(i,j)∈A(u)

αr(i)γr(i, j)βr+1(j)

=
∑

(j)∈A(u)

βr+1(i + 1)
∑

i

αr(i)γr(i, j)

=
∑

(j)∈A(u)

αr+1(j)βr+1(j) (6.5)

In order to verify whether the structure shown in Figure 6.5 is correct or not, high-

level VHDL simulation is used to get the bit error rate curve shown in Figure 4.27.

The simulation verifies that the structure is correct. Moreover, in doing the high-level

simulation, it is found that for the tail-biting trellis decoder, the initial condition when a

new codeword arrives is the end condition when the previous codeword is decoded. For

the factor graph simulation, the initial condition is often assumed to be unit messages

on every edge, and it is proven that factor graphs with a single cycle are guaranteed to

converge with a reasonable initial condition such as unit message distribution. If the

initial condition when a new codeword arrives is the end condition when the previous

codeword is decoded, then a long time may be needed for the decoder to converge to

the correct result in a high SNR condition. In extreme cases such as no noise, the initial

condition when a new codeword arrives may be so unreasonable that the decoder may not

work. As a result, a reset circuit is proposed. When a codeword has been decoded, the

messages along the cycle are reset to a unit distribution. Using this method, the decoder

is guaranteed to work for any SNR condition, and it is sped up by the reset method in

high SNR conditions as shown in Figure 6.7. In Figure 6.7, the flooding message passing

schedule and a global synchronous clock are used. Four time units means that four clock

cycle have passed since the arrival of the input probabilities.

6.1.3 Automatic High-Level Simulation

From the discussion above, we can see that the Hamming (8,4) decoder is completely

described by its factor graph representation. Also, the factor graph description is quite

powerful. For example, the indication function for function node fa can be expressed

as (sr, ur, γr, sr+1) = (0, 0, 00, 0; 0, 1, 11, 1; 1, 0, 01, 2; 1, 1, 10, 3) in which every string sep-

arated with the semi-colon shows a valid configuration. This simple description describes
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all the operations for the function node, which is much more complex using VHDL to

describe. Using automatic simulation, the VHDL simulation file is generated by the tool

using the factor graph as input. The high-level VHDL simulation result for the Hamming

(8,4) decoder using the automatically generated VHDL file is shown in Figure 6.8. The

simulation result using the automatically generated VHDL file is the same as using the

hand written VHDL file. However, writing the VHDL file by hand may take 1 day while

writing the factor graph description takes only 1 hour and does not require the knowledge

of VHDL, which is advantageous for a digital communication expert. Of course, the

simulation process is sped up.
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Figure 6.8. Simulation result of the extended Hamming(8,4) decoder using the auto-
matically generated VHDL file.
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6.1.4 Automatically Generated Circuit

The previous section describes how to derive the circuit for the Hamming (8,4) decoder

from its factor graph representation. Drawing the circuit by hand is time consuming and

error prone. It takes about 1 month for a person to draw the schematic and layout

for the core of the Hamming (8,4) decoder from its factor graph representation, and we

even made a mistake when drawing the circuit for our first Hamming (8,4) decoder chip

[69]. Actually, all the work can be simplified using the automatic synthesis tool and cell

library presented in this thesis. The automatic synthesis tool also uses the factor graph

description of the decoder, which is quite simple. With the aid of other commercial

tools, the schematic and layout of the core of the Hamming (8,4) decoder are generated

automatically. The layout of the automatically generated core circuit of the Hamming

(8,4) decoder is show in Figure 6.9. The structure of the automatically generated circuit

is similar to the structure of the hand derived circuit shown in Figure 6.5 except that the

function nodes fa and fb are directly constructed by the product cells and normalization

cells without partitioning it into the forward path cell, backward path cell, and two-state

or four-state cells. The Spectre simulation result of the automatically generated schematic

and layout is shown in Figure 6.10. In the simulation, the voltage sources for the product

cells and normalization cell is chosen as follows: V dd = 5V , V u = 4.1V , V refp = 3.9V ,

V refn = 0.5V , and V dummy = 3V . V u is chosen to be 4.1V to give the reference current

Iu = 10nA for the circuit to work in the subthreshold region. V refp is chosen to be a little

lower than V u so that the normalization cell can work properly. V dummy is the voltage to

be connected to the drain of the dummy transistors used in the product cells. Since 0.9V

is needed for the gate-source voltage of the PMOS transistors to provide the drain current

of 10nA that equals Iu, the drain voltage for the NMOS transistor that is on the correct

path is likely to be V refp− 0.9 = 3V . Thus, choosing V dummy = 3V can minimize the

channel length modulation effect. The input to the circuit is chosen to correspond to the

probabilities of all the xi = 0, i = 0, · · · , 7 to vary between 0.4 and 0.6 periodically with a

2ms period. Corresponding to this input, the decoded codeword should change between

0000 and 1010 periodically. The simulation results for the probability of u0 to be 0,

u 0 0, and to be 1, u 0 1, are shown in Figure 6.10. It shows that both the automatically

generated schematic and layout work correctly. Using the automatic synthesis tool, it

only takes about 1 to 2 hours to generate the schematic and layout for the core of the

Hamming (8,4) decoder including writing the factor graph description files and using the
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Figure 6.9. Layout of the core of the Hamming (8,4) decoder.
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Figure 6.10. Spectre simulation result of the automatically generated schematic and
layout of the Hamming (8,4) decoder.
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tools. Compared with the hand design, substantial time is saved.

However, there are also disadvantages of the automatically generated circuit. For the

cell library we used, the product cells use voltage input. Thus, the connections between

blocks are voltage connections as shown in Figure 4.13. The product cell needs both X

and Y direction inputs, which have different voltage potentials. Sometimes the output of

one normalization cell needs to be provided to the X input of a product cell and Y input

of another product cell. In this circumstance, the normalization cell needs to provide two

sets of outputs, one for the X input of the product cells and another set for the Y input

of the product cells. However, it is quite difficult to decide in advance which product cells

use the output of one particular instance of a normalization cell and whether the product

cells need X or Y output from this normalization cell, especially for a larger decoder.

As a result, in the current tool, for the intermediate result provided by a block, both

the X and Y outputs are generated. Thus, sometimes a little bit of redundant circuitry

is generated. For example, for the Hamming (8,4) decoder shown in Figure 6.5, the γ

value is always provided as an X direction input to the blocks. α and β values are always

provided as Y direction input to the next stage along the forward path and backward

path for the speed consideration discussed in Section 4.5.1. However, the two-state and

four-state block need one X input and one Y input. Thus, one of the α and β values

should provide X input to the two-state or four-state block. For the hand design, we

choose the forward path to provide α as both X output and Y output for other blocks

to use while only providing β as Y output along the backward path. However, for the

automatically generated circuit, X and Y outputs are provided for both the α and β

values, making the core of the Hamming (8,4) decoder uses 16 more transistors than the

hand design. Another disadvantage is that the automatically generated layout is much

larger than the hand design. The automatically generated circuit for the Hamming (8,4)

decoder is about 600um ∗ 600um, which is much larger than the hand design that is only

about 200um ∗ 300um. Even if the automatically generated layout can be made more

tight compared with the current design, the automatically generated layout will likely

still be larger than the hand design.

6.2 (16, 11)2 Product Decoder

This section use the (16, 11)2 product decoder as an example [70]. A brief descrip-

tion of the (16, 11)2 product decoder is given first. Then, the high level simulation of
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the (16, 11)2 product decoder is discussed. The high level simulation result using the

automatically generated VHDL file is presented. Also, the Spice simulation result of the

automatically generated schematic and layout of the core circuit of the (16, 11)2 product

decoder is also presented.

6.2.1 Description

The structure of a product decoder has been described briefly in Section 2.10. The

product decoder that is discussed here is a (16, 11)2 product decoder constructed by the

Hamming (16,11) trellis decoder as its component decoder. The generator matrix for the

Hamming (16,11) decoder that we are using is shown in Equation 6.6.

G =






















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0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0
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0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
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0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
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



















(6.6)

The compact trellis for this code may be built using the “squaring construction.” The

squaring construction begins with simple trellises for partitions of the Hamming (16,11)

code, and then attaches them to create the completed code trellis. The simple trellis

used for the partition of the Hamming (16,11) code is shown in Figure 6.11 and it can be

viewed as the disjoint subsets shown in Equation 6.7. Using these subsets, the compact

trellis for the Hamming (16,11) code is shown as Figure 6.12. Then, 16 Hamming (16,11)

decoders are used to construct 16 row decoders and 16 Hamming (16,11) decoders are also

used to construct 16 column decoders and the full version product decoder is constructed

by using 256 equal gates shown in Figure 2.15 to connect the 16 row decoders and column

decoders shown in Figure 6.13. If no parity-on-parity bits are used and the parity bits are

not checked by other component decoders, only 11 row decoders and 11 column decoders

are needed as shown in Figure 6.14. Now, only the information bits are checked by both a

row decoder and a column decoder and an equal gate is only needed for every information

bit. The parity bits are only used by one component decoder and the channel information
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for the parity bits are passed directly to the component decoder. This kind of product

decoder is called a “punctured version” as shown in Figure 6.14 while the product decoder

shown in Figure 6.13 is called a “full version.”

a =

[

0 0 0 0
1 1 1 1

]

b =

[

1 0 0 1
0 1 1 0

]

c =

[

0 0 1 1
1 1 0 0

]

d =

[

0 1 0 1
1 0 1 0

]

ua =

[

0 0 0 1
1 1 1 0

]

ub =

[

1 0 0 0
0 1 1 1

]

uc =

[

0 0 1 0
1 1 0 1

]

ud =

[

0 1 0 0
1 0 1 1

]

(6.7)

6.2.2 High-Level Simulation

Initially, we believed that the performance of the “punctured version” should be good

enough and the “full version” would not improve the performance. Therefore, we chose

the “punctured version” product decoder. A high-level VHDL simulation is used to

verify the structure of the “punctured version” and its bit error rate curve is shown in

Figure 6.15. However, its performance is not as good as expected. High-level VHDL

simulation of the “full version” shows that the “full version” product code has a much

better performance than the “punctured version”, especially at high SNR, as shown in

Figure 6.15. A theoretical analysis also verifies that the “full version” should have a much

better performance than the “punctured version.” Therefore, we decided to build a “full

version” product decoder instead of a “punctured version.” The high-level simulation

of both the “punctured version” and the “full version” product decoder also shows that

as the number of iterations increases, the bit error rate decreases. However, after six

iterations, there is no significant bit error rate decrease with the increase of iterations.

For the product decoder, there are many cycles. As a result, if no reset circuit is
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Figure 6.15. Simulation result of the (16, 11)2 product decoder.
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used, the initial condition for codeword decoding is the end condition for the previous

codeword decoding. Thus, when a new codeword arrives, the component decoder is

provided with extrinsic information generated by the previous codeword. This is very

harmful. Simulation result of the “punctured version” (16, 11)2 product decoder shown

in Figure 6.16 shows that the bit error rate is lower if reset is used compared with the

case no reset is used. In Figure 6.16, the flooding message passing schedule and a global

synchronous clock is used, and 40 clock cycles are used to do the simulation. Forty clock

cycles is the time needed for four iterations of the component decoder. If 58 clock cycles

that corresponds to six iterations, are used to do the simulation, the simulation result

shown in Figure 6.17 shows that there are no significant performance increase if reset is

used. However, simulation of the “full version” (16, 11)2 product decoder shows that even

if SNR is as small as 0, the decoder cannot work if no reset is used. Even when SNR=0,

for the “full version” (16, 11)2 product decoder, the extrinsic information provided to the

equal gate can reach an absolute value such as the probability of being ’0’ is 1 while the

probability of being ’1’ is 0 after a codeword is decoded. Then, when the next codeword

arrives, the decoder may not make a correct decision because the probabilities along the

cycles are already fixed to absolute 0’s and 1’s. Actually, all the data points shown in

Figure 6.15 are obtained by using reset in the decoder.

Also, in doing high level simulation, it is found that for the analog iterative decoders,

a component decoder constantly provides extrinsic information to other component de-

coders even when the component decoder that provides the extrinsic information has

not stabilized and finished decoding. However, even if the component decoder has not

stablized and finished decoding, the generated extrinsic information is based on part

of the component decoder’s codewords. We can call this extrinsic information “partial

extrinsic information” and it also helps the whole decoder to converge to the final result.

Thus, providing the extrinsic information constantly should not degrade the performance.

Also, if the extrinsic information is provided to other component decoders only when the

component decoder has finished decoding, then the extrinsic information generated by

the previous iteration needs to be stored and there are no efficient analog circuits that

can store the probabilities represented by currents. Actually, simulation of both the

“punctured version” and “full version” (16, 11)2 decoder shown in Figure 6.18 shows that

providing the extrinsic information constantly improves the performance slightly. All in

all, simulation verifies the utility of the factor graph simulation methodology that uses
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flooding message passing schedule and uniform initial probability distribution. For the

implementation of the (16, 11)2 product decoder, we do not need to do reset on all the

circuits that are in some cycles. Actually, we can reset only the extrinsic information

provided by the component decoders to uniform distribution for a time long enough so

that the component decoders are not affected by the extrinsic information generated

with the previous codeword in the first iteration. Thus, the end condition of the previous

codeword cannot affect the decoding of the current codeword.

Also, even if a high-level VHDL simulation is used to get the bit error rate curve,

the simulation for the product decoder is quite time consuming, especially at high SNR.

The simulation of the “punctured version” product decoder at SNR=3 takes about 10

hours on a Pentium 4 machine and about 1 week is needed for the simulation at SNR=4.

Fortunately, there is an importance sampling method recently proposed by Ferrari and

Bellini [16]. The importance sampling method is quite efficient for high SNR simulations

compared with the traditional Monte-Carlo simulation method. Our simulations of the

product decoder show that importance sampling is not as efficient as Monte-Carlo simula-

tion for SNR<=3. However, when SNR>3, importance sampling becomes more efficient

compared with Monte-Carlo simulations as SNR increases. Actually, the simulation result

for SNR>3 shown in Figure 6.15 is obtained using importance sampling and it takes about

18 hours for importance sampling to get all the data points of the “full version” product

decoder for SNR>3 shown in Figure 6.15 on a Pentium 4 machine.

6.2.3 Automatic High Level Simulation

It takes about 1 week to write the VHDL simulation file for the product decoder.

Using the automatic simulation tool, it takes only about 1 hour to write the factor graph

description file and then no more than 1 minute for the automatic simulation tool to

generate the VHDL file. The simulation result for the “full version” product decoder

using the automatically generated VHDL file is shown in Figure 6.19. It shows that the

VHDL file is generated correctly and the simulation result is correct.

However, for the importance sampling method, the simulation environment should

provide codewords according to the error centers. However, the error centers are decided

by the code and it is quite difficult to generate the error centers automatically. At

the current time, the automatic high level simulation can provide only the simulation

environment for Monte-Carlo simulation. Automatic simulation for importance sampling

is left for future work.
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6.2.4 Automatically Generated Circuit

The circuit for the product decoder is quite large. Even drawing the schematic of

the product decoder takes about 1 week. Using the automatic synthesis tool, only about

1 hour is needed to write the factor graph description files and use the tools to get the

schematic. There is a little bit of redundant circuit compared with the hand design as

stated in Section 6.1.4. The Spectre simulation result for the automatically generated

circuit is shown in Figure 6.20 using the same input condition as the simulation of the

Hamming (8,4) decoder. The simulation result of probabilities of the upper left corner

bit to be 0, u 1 1 0 and to be 1, u 1 1 1 shown in Figure 6.20 shows that the generated

circuit is correct.

However, automatic generation of the layout is quite difficult. Even using an area of

1.0cm ∗ 1.4cm, it is still quite difficult for Silicon Ensemble to do the routing between

the cells, resulting in a large number of geometry violations and then generating a large

number of DRC errors. Also, the wire connections between cells are usually quite long,

Figure 6.20. Spectre simulation result of the automatically generated schematic and
layout of the product decoder.
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possibly degrading performance. Actually, there are some disadvantages of our cell library.

The cell library is formed by partitioning the basic building blocks into two parts, product

cell and normalization cell, making the cell library require only a limited number of

cells. However, there are a large number of connections between the product cell and

normalization cell within one block, especially for a large building block. For example,

from the trellis of the function node t of the product decoder shown in Figure 6.12,

we know that in order to generate one of the outputs of function node t, one building

block needs 16 inputs and 8 outputs in addition to the voltage sources. However, using

our cell library, the building block is divided into a product-8-8 cell and a dnorm-8 cell.

The product-8-8 cell needs 16 inputs and generates 64 outputs (all the combinations of

the X input and Y input) in addition to the voltage sources. Thus there are a large

number of pins needed for the product-8-8 cell, requiring huge number of connections

between the cells and making automatic layout generation difficult. A possible solution

is to automatically generate the layout hierarchically such as generating the layout of the

basic building blocks needed for a decoder first based on the cell library and then using

the layout of these building blocks to construct the layout of the decoder. However, there

is not yet any commercial tool support for this.



CHAPTER 7

CONCLUSIONS

In this chapter, some conclusions are provided. Also, some future work are discussed.

7.1 Summary

Analog error control decoders are becoming more attractive because of their per-

formance compared with their digital counterparts. However, simulation, synthesis, and

circuit performance analysis of analog error control decoders have not been systematically

investigated. This dissertation provides a complete design methodology for analog imple-

mentation of error control decoders including high level simulation, automatic simulation,

automatic synthesis, and circuit level modeling and implementation.

For error control decoders, a large amount simulation time is required to get a bit error

rate curve. Spice is an accurate simulation tool for analog circuit. However, it is too time

consuming. The high-level VHDL simulation method presented in this thesis provides a

good balance between accuracy and efficiency. Also, using high-level VHDL simulation,

we find that using a reset circuit to reset the initial conditions for decoders with cycles

can improve the performance of these decoders and this phenomenon is explained at the

factor graph view of the decoder.

An automatic simulation method is provided in this dissertation. The user only needs

to write the factor graph description of the decoder and a simple description of the

simulation environment. Then, the tool can generate the needed VHDL simulation file.

This greatly facilitates the simulation process, especially for large decoders.

Also, the dissertation provides a cell library and an automatic synthesis method.

From the simple factor graph description of a decoder, its schematic and layout can be

automatically generated by using the tool provided by this thesis and other commercial

tools. The cell library and the automatic synthesis tool greatly speed up the design

process of analog decoders.
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Also, this thesis presents a number of circuit level design considerations such as speed,

area, and power, and some novel circuits are provided. Circuit level modeling issues such

as mismatch, internal noise, channel length modulation, quadratic behavior when working

at moderate and strong inversion regions are analyzed in Chapter 5. The analysis shows

that the performance degradation due to mismatch is not as serious as what people usually

thought and a simple equation is given for the performance degradation due to mismatch.

The analysis of the nonideal effects shows that performance of the analog error control

decoder is degraded only slightly, making analog error control decoders more attractive

considering its substantial potential for power savings.

7.2 Future Work

High level simulation, automatic simulation and synthesis, and circuit modeling and

implementation are important issues for analog error control decoders. Although the

work presented in this dissertation has presented some research results in these fields,

there is much work that needs to be done to make analog decoders practical. Also, there

are many interesting topics that need to be researched for analog circuit applications in

the coding field. This section describes the areas that we believe to be important research

problems that should be addressed.

7.2.1 Automatic High-Level Simulation

Even if high level simulation is used, the simulation of large analog decoders takes

much time, especially at high SNR when the bit error rate is quite low. Importance

sampling is a very efficient simulation method for high SNR applications. However, the

method needs to use the error centers of the code. The automatic generation of the error

centers of a code needs to be investigated to make automatic high-level simulation using

importance sampling method possible.

7.2.2 Automatic Synthesis

Using the presented cell library, a method is needed to determine whether the nor-

malization cell must provide two sets of outputs, one for the X input of product cells and

one for the Y input of product cells, or only one set of them. However, this problem can

only be settled when the instances of product cells have decided which input should be

accepted as X input and which input should be accepted as Y input and the problem is

made even more complex for hierarchical design. A possible solution is let the product cell
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make this decision based on speed and area consideration and also let the normalization

cell provide both X and Y outputs. Then, the wire connections of the instances of product

cells and normalization cells should be extracted. If only one set of outputs of an instance

of a normalization cell is used, then this instance is substituted by a normalization cell

that only provides one set of outputs and redundant circuits are removed.

Also, the automatically generated circuit has longer wire connections than hand

design. An automatically generated circuit needs to be fabricated and tested to do per-

formance comparison with the corresponding hand design to see how much performance

loss may be induced by the automatically generated circuit.

7.2.3 Circuit Considerations

As discussed in Chapter 5, mismatch is not a serious problem. The performance

degradation due to mismatch is not large. Meanwhile, the performance degradation due

to the quadratic behavior when the circuit works in strong inversion region is larger than

the mismatch effect. Scaling the transistors to smaller size pushes the transistors to work

more toward the subthreshold region. Thus, if the transistor size is scaled to a smaller

size, the effect due to mismatch increases while the quadratic behavior decreases. Because

the performance degradation due to 10 percent mismatch is still very small, using smaller

transistor size, a lower power supply requirement may be possible. These problems need

to be researched.

7.2.4 Space Time Coding

In this dissertation, AWGN channel is used to model the noise channel. In reality,

especially in the wireless communications in which the the presented analog error control

decoders is most likely to be used due to its low power, this is not true. Instead, the

channel may be a constantly changing channel and space time coding theory [59], [58],

[11] is used for these applications. In order to make an analog error control decoder

practical, the analog implementation of space time decoding needs to be researched.



APPENDIX A

FACTOR GRAPH DESCRIPTION

LANGUAGE AND SOME FACTOR

GRAPH EXAMPLES

For both automatic simulation and synthesis of error-control decoders, the factor

graph description of the decoder is needed as the input. This appendix describes the

factor graph language using the extended Hamming (8,4,4) decoder as an example.

A.1 Compatible Language with dot

Of course, the factor graph is a graph. The initial concern in defining the language is

choosing a graph description language that describes the nodes, edges, and the connec-

tions. However, for a large factor graph, such kind of description is too time consuming

and error prone. We would like the factor graph description to be simple. Meanwhile, it

can be helpful for the designer to see the graph of the factor graph and even do changes on

the graph. dot is a powerful graph style description and drawing tool developed by Bell

Laboratories. It is chosen to draw the factor graph and used to do interactive changes

on the graph. The idea of showing the graph and do interactive graph editing is shown

in Figure A.1 though the idea is still not implemented. In order to make the compiler

easy, the language is chosen to be compatible with the dot style. As a result, each

module always has the form shown below. Also, for each statement except the instance

description statement, it always begins with special symbols “{ and ends with special

symbols }” so that it is compatible with the dot language and also can be recognized

by the compiler that it is not a graph style description. Also, every statement should be

written in one line so that when the statement is too long, the symbol \ needs to be used.

graph module name {
statement;

statement;

...

statement;

}
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Compiler
(.fg files)
Graph
Factor Dot format

Description
(.neato file)

(Display and
Interactive Change)

Dotty

Figure A.1. Make the language compatible with dot.

A.2 Definition of Decoder

The decoder is described by its factor graph description. Hierarchical description is

used to describe the factor graph and this is very helpful when describing a large factor

graph. For the hierarchy description, the leaf node describes the trellis sections while the

non-leaf nodes describe how these trellis sections are used to construct the whole factor

graph. In order to distinguish these two kinds of modules, the trellis section module name

always begins with the characters “function ”. In the following subsections, we describe

how the trellis section and the whole factor graph are provided.

A.2.1 Definition of a Trellis Section

In probability propagation networks, all the messages passed between nodes are real

number probabilities. What we need to describe is how many real number probabilities

are passed along an edge and we need to distinguish these probabilities. This can be

accomplished by using a type statement. The following are some examples of type

statements. The “bin” type means that there are two probabilities represented by the

name “0” and “1” respectively.

‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{type= state4(0:3) }’’;

Also, we need to describe the interface of the trellis section so that it can be used by

the high level module in the hierarchy. This is done by describing the interface as port

and giving the ports a name. Then the trellis connection can be described as a valid

configuration space just as we have described in Chapter 3. The description of one trellis

section of the extended Hamming (8,4,4) decoder is shown below. Also, notice that for

the port description, the direction “in”,”out”, and “inout” can be specified like “cs: in

bin” while the default direction is “inout”.
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graph function fa{
‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{type= state4(0:3) }’’;
‘‘{function = fa{port=cs:bin,u:bin,x:quat,ns:state4;\
relation=(0,0,00,0;0,1,11,1;1,0,01,2;1,1,10,3);} }’’;
}

A.2.2 Hierarchy Description

For hierarchy descriptions, low level modules are required to construct a large graph.

A low level module needs to be described before its usage so that the correct usage

can be checked. If the low level module description is in the same file of its usage, the

description should be before the usage. If the low level module is described in another

file, an include statement is needed to tell the compiler where the low level module is

described. An example is shown below in which “fa.fg” is the file name. Also, notice

that the type statement described in the included file is inherited. As a result, a good

method of describing the type statement is describing the type statement in one file and

including the file when the type statement is needed.

‘‘{include=fa.fg}’’;

Also, each module should have ports as its interface, the port interface for a trellis

section is already described in the function description statement. In the other modules,

the ports are described clearly using the format “port=port name:dir type,port name:dir

type,. . . ”. A port description example is shown below.

‘‘{port=x : quat,u : bin }’’;

Meanwhile, to connect the low level modules, a signal is needed, a signal description

is similar to the port description except no direction description is needed. It has the

format “signal=signal name: type,signal name:type,. . . ”. An example is shown below.

‘‘{signal=s0 : bin,s1 : state4,s2 : bin,s3 : state4}’’;

Also, for the control flow and the encoder description, a variable is needed and the

definition of a variable has a similar description format with the signal description format

except that in the description, “signal” is substituted by “variable.”

For large factor graphs, sometimes it is needed to describe a bunch of ports, signals,

or variables of the same type. As a result, an array description is needed. As a result,

ports, signals, and variables that we introduce later can be described by using arrays and

the array is defined using the format “name[int][int]. . . ” while “name[int]” means a one

dimensional array with low subscript 1 and high subscript “int”. An example of using an

array is shown below.
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‘‘{port=x[4] : quat,u[4] : bin }’’;

In order to describe the hierarchy construction, a function call statement is needed.

The format for a function call statement is “instance name [function={̈module name(port interface)}̈]”.

An example is shown below.

f0 [function=‘‘{ fa(port=s0,u[1],x[1],s1) }’’];

A hierarchy construction example is shown below.

graph CodeGraph {
‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{type= state4(0,1,2,3) }’’;
‘‘{port=x[4] : quat,u[4] : bin }’’;
‘‘{include=fa.fg}’’;
‘‘{include=fb.fg}’’;
‘‘{signal=s0 : bin,s1 : state4,s2 : bin,s3 : state4}’’;
f0 [function=‘‘{ fa(port=s0,u[1],x[1],s1) }’’];
f1 [function=‘‘{ fb(port=s1,u[2],x[2],s2) }’’];
f2 [function=‘‘{ fa(port=s2,u[3],x[3],s3) }’’];
f3 [function=‘‘{ fb(port=s3,u[4],x[4],s0) }’’];
}

A.2.3 Operations

For the description of control flow and the description of the encoder as the simulation

environment. Both algorithm operations and logical operations are needed. As a result,

the following algorithm operations “+”, “-”, “*”, “/”, “**”, “%” are defined. “+”, “-”,

“*”, “/” have the same meaning as any language. “**” means power. “%” means mod.

Also, the following logical operations “<”, “=”, “>”, “<=”, “>=”, “not”, “and”, “or”

are defined and they have the same meaning as any language.

A.2.4 Control Flow

For large decoders, there might be some duplicate structures and also some conditional

structures. In order to describe such kinds of structures, loop control statements and

conditional control statements should be provided. For the loop control, the for statement

is provided. The for statement has the following format in which the iterative variable

always begins with the initial value and increases 1 in each iteration until it reaches the

stop value.

‘‘{for iterative variable=initial value:stop value}’’;
statements;

‘‘{end for}’’;

The conditional control statement is provided by the if statement that has the follow-

ing format in which the condition is generated by the logical operations.
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‘‘{if condition}’’;
statements;

‘‘{end if}’’;

A.3 Description of the Environment Encoder

Just as described in Chapter 3, the enviroment encoder is needed to do the simulation.

As a result, the encoder also needs to be described. Because the encoder may not be

able to be described as a factor graph, the encoder needs to be described differently.

Thus, using the same description language, we would like to use a special module name

“function encoder” for the encoder so that the encoder can be realized by the compiler.

Also, many linear block encoders are described by the generator matrix. In order to

provide the generator matrix, a special module name “function gen” is used. Finally, the

decoder and the encoder should be connected together and a module with special name

“top” should be provided.

A.4 Special Functions

In order to provide the environment, some special functions are needed just like the C

library functions. These special functions are described in the following. exp(parameter),

sqrt(parameter) are predefined VHDL functions and the compiler can use them directly.

rand(), rand(int), rand(int1, int2) are provided by predefined library. rand() returns a

random distributed 0 or 1. rand(int) returns a length int vector of random distributed

0 or 1. rand(int1, int2) returns a int1 ∗ int2 matrix of random distributed 0 or 1.

randn(real), randn(real, int), randn(real, int1, int2) are provided by predefined library.

randn(real) returns a gaussian noise with variance real. randn(real, int) returns a length

int vector of gaussian noise with variance real. randn(real, int1, int2) returns a int1∗int2

matrix of gaussian noise with variance real. convert(array) is used to convert the result

of the decoder (usually a binary array) into a real array so that we can compare it with

the source information that the encoder uses. compare(source, result) is used to compare

the source with the result so that we know the error rate.

Also, some special functions can be used on arrays with real elements: row(array name, int)

means the int row of array name is used. column(array name, int) means the int

column of array name is used. row equal(array name, vector, int) means we build a

new array that has all the elements equal the elements of array name except the int row

is substituted by vector. column equal(array name, vector, int) means we build a new
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array that has all the elements equal the elements of array name except the int column is

substituted by a vector. row swap(array name, int1, int2) means we build a new array

that has all the elements equal the elements of array name except the int1 row and int2

row are exchanged. column swap(array name, int1, int2) means we build a new array

that has all the elements equal the elements of array name except the int1 column and

int2 column are exchanged. row move(array name, int1, int2) means we build a new

array that has all the elements equal the elements of array name and then the element

of int1 row is moved to int2 row. column move(array name, int1, int2) means we build

a new array that has all the elements equal the elements of array name and then the

element of int1 column is moved to int2 column.

A.5 Description of the Extended
Hamming (8,4) Decoder

graph function fa{
‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{type= state4(0:3) }’’;
‘‘{function = fa{port=cs:bin,u: out bin,x: in quat,ns:state4;\
relation=(0,0,00,0;0,1,11,1;1,0,01,2;1,1,10,3);} }’’;
}
graph function fb{
‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{type= state4(0:3) }’’;
‘‘{function = fb{port=cs:state4,u: out bin,x: in quat,ns:bin;\
relation=(0,0,00,0;0,1,11,1;1,0,11,0;1,1,00,1; \
2,0,10,0;2,1,01,1;3,0,01,0;3,1,10,1);}}’’;
}
graph CodeGraph {
‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{type= state4(0,1,2,3) }’’;
‘‘{port=x[4] : in quat,u[4] : out bin }’’;
‘‘{include=fa.fg}’’;
‘‘{include=fb.fg}’’;
‘‘{signal=s0 : bin,s1 : state4,s2 : bin,s3 : state4}’’;
f0 [function=‘‘{ fa(port=s0,u[1],x[1],s1) }’’];
f1 [function=‘‘{ fb(port=s1,u[2],x[2],s2) }’’];
f2 [function=‘‘{ fa(port=s2,u[3],x[3],s3) }’’];
f3 [function=‘‘{ fb(port=s3,u[4],x[4],s0) }’’];
}
graph function pdf{
‘‘{type= quat(00,01,10,11) }’’;
‘‘{function = pdf{parameter=n0 : real; \
port=y[2]: in real,x: out quat;\
variable=p0:real,p1:real; \
p0 =1.0 / (1.0 + exp(-4.0 * y[1] / n0)); \
p1 =1.0 / (1.0 + exp(-4.0 * y[2] / n0)); \
x[00] =(1.0 - p0) * ( 1.0 - p1); \
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x[01] =(1.0 - p0) * p1; \
x[10] =p0 * (1.0-p1); \
x[11] =p0 * p1; } }’’;
}
graph decoder {
‘‘{type= bin(0,1) }’’
‘‘{type= quat(00,01,10,11) }’’
‘‘{parameter=n0 : real}’’;
‘‘{port=y[8] : in real,u[4] : out bin }’’;
‘‘{include=CodeGraph.fg}’’;
‘‘{include=pdf.fg}’’;
‘‘{signal=x[4] : quat}’’;
‘‘{ for i=1:4 }’’;
pdfi[function=’’{pdf(parameter=n0;port=y[2*i-1:2*i],x[i]) }’’];
‘‘{ end for }’’;
TheCodeGraph[function=’’{CodeGraph(port=x[1:4],u[1:4])}’’];
}
graph function gen{
‘‘{function= gen{port=s[4] : in real,x[8] : out real; \
variable=genarray[4][8] : real; \
genarray={{1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0},{0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0},\
{0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0},{0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0}}; \
x=s * genarray % 2.0; \
} }’’;
}
graph function encoder{
‘‘{type= bin(0,1) }’’;
‘‘{include=gen.fg}’’;
‘‘{function = encoder{parameter=n0 : real; \
port=u[4] : in bin,y[8]: out real; \
variable=s[4] : real; \
variable=olds[4] : real; \
olds=s; \
s=rand(4); \
y=2.0*gen(s)-1.0+randn(sqrt(n0/2.0),8); \
compare(convert(u),olds); }}’’;
}
graph top{
‘‘{type= bin(0,1) }’’;
‘‘{type= quat(00,01,10,11) }’’;
‘‘{signal= n0 : real}’’;
‘‘{include=decoder.fg}’’;
‘‘{include=encoder.fg}’’;
‘‘{signal=u[4] : bin,y[8] : real}’’;
en [ function=‘‘{ encoder(generic=7.0,4.0,0.5,20.0;parameter=n0;port=u,y) }’’ ];

de [ function=‘‘{ decoder(parameter=n0;port=y,u) }’’ ];

}



APPENDIX B

DESIGN FLOW FOR AUTOMATIC

SYNTHESIS AND AUTOMATIC

SIMULATION

Chapter 1 describes the design flow for automatic synthesis and simulation. This

appendix provides a detailed description of how to use the compiler and cell library in

this thesis along with Cadence and Synopsys to generate the high level simulation result

and the schematic and layout of a decoder is presented. This appendix is described in a

tutorial style to explain the detailed design flow shown in Figure B.1. The user can use

this appendix as a tutorial for doing automatic synthesis and simulation of analog error

control decoders.

B.1 Generating VHDL Files by
Using the Compiler

The first step is to generate VHDL files using the compiler, analog sim or analog syn,

provided by this thesis. The user should provide the factor graph description of the

decoder. Also, the user should also provide the description of the simulation environment

if he or she is doing simulation. For the factor graph description of the decoder and the

description of the simulation environment, please see Appendix A.

For simulation, there should be a top level description, such as top.fg, descripting how

to connect the decoder and the encoder. Also, all the description files of the decoder and

the encoder should be in the same directory of the top level description file. Then, the

user should type analog sim top.fg for the compiler to generate all the VHDL simulation

files. All the resulting VHDL files are generated in the same directory as the top level

description file top.fg.

For synthesis, the user should notice that the simulation environment is not able to

be synthesized. Only the decoder part can be synthesized. The user can synthesis the

whole decoder as well as any part of the decoder. Also, the description of the analog
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Figure B.1. Detailed design flow for automatic synthesis and simulation.
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cells as component are provided in file analog cell.vhd and this file should be in the same

directory as the .fg files. The user should type analog syn input.fg for the compiler to

generate the resulting VHDL file. The resulting VHDL file is generated in the same

directory as the input file.

B.2 Simulation

For simulation, besides the VHDL file generated by the compiler, the user still needs

to use three VHDL files, nondeterminism.vhd and gaussian.vhd and myarray.vhd. These

three files are library files, and they provide the functions that are used to do simulation.

After compiling all these VHDL files using Mentor Graphics, the user can do the high

level simulation for the decoder. The result is stored in the file ber.dat. The first column

of ber.dat is the Eb/N0 data, the second column is the bit error rate. The user can use

Matlab to show the simulation result.

B.3 Synthesis

The synthesis flow is much more complex than the simulation flow. There are sev-

eral steps as shown in Figure B.1, including generating the Verilog file, generating the

schematic, using Silicon Ensemble to do place and route and use ICFB to finish the

layout. Also, the user can do Spice simulation on the generated circuit. All these works

are described in the following corrsponding subsections.

B.3.1 Convert VHDL Files to Verilog Files

Because Silicon Ensemble uses Verilog struct file as input. The first step is VHDL

to Verilog conversion. This can be easily accomplished using Synopsys. The user can

start up design analyzer. Then, select the File→Read option from the menu. This

brings up a dialog box to read in the design file. Choose the generated VHDL file of the

decoder. Then click OK to read in the VHDL code. Notice that if there are multiplie

VHDL files for the decoder, all of them should be read in. After all of the files are read,

there should be a yellow box for each entity with its name in the corresponding box.

Then, click on the entity that needs to be synthesized. The outline of the entity should

be changed to dotted. Now, select the File→Save as option from the menu. This brings

up a dialog box to save the design file. Choose the File Format as Verilog, type the

name such as decoder.v, make sure to check the Save as a whole file box and then choose

OK. Now, a structural Verilog description of the decoder should be generated. Another
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benefit of using Synopsys is that all the low level Verilog modules (corresponding to the

entities of VHDL) are all saved in one file so that the resulting Verilog file is a complete

description of the decoder.

B.3.2 Generating the Schematic

Get to a point where icfb is running with the CIW. Select the File→Import→ Verilog

command in the CIW. This brings up a dialog box. In the “Target Library Name” slot,

put the name of the library that will be used to hold the decoder. In the “Reference

Library” slot, add analog cell to the front of the list. The user can get rid of the sample

library if he or she want, or leave it in, it doesn’t matter, but make sure to leave the basic

library in the list. In the “Verilog Files to Import” slot put the name of your structural

Verilog file such as decoder.v that came from Synopsys. Also, in the “-v Options” slot

put analog cell.v, which is a file that has interface descriptions of the analog cell library

provided by this thesis. Leave other options unchanged and click OK. After several

seconds, the schematic of the decoder should be generated.

B.3.3 Generating Layout

To generate the layout, Silicon Ensemble need to be used first to generate the placed

and routed circuit. Then, Virturoso is used to read in the placed and routed circuit and

do some simple revise to generate the layout.

B.3.3.1 Place and Route with Silicon Ensemble

1. Before starting up Silicon Ensemble, it is better to make a directory named dbs in

your work directory. Silicon Ensemble needs this directory and it is not very good

at making it itself. Then, start up Silicon Ensemble by typing sedsm.

2. The first step in using Silicon Ensemble is to load the information about the analog

cell library. This information is in the analog cell.lef file provided by this thesis.

Select File→Import→LEF to get the right dialog box. Select analog cell.lef and

also click the “clear existing design data” button. Then Click OK.

3. The next step is to load a Verilog file analog cell.v provided by the thesis that has

interface descriptions of all the analog cells in Verilog. Select File→Import-Verilog

to get the dialog box. Fill in the box with analog cell.v in the Verilog Source Files

slot. Leave the Top Module blank. Leave other things the same, and click OK.
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4. Now, load the structural Verilog file that describes the circuit that you want to

place and route. Choose File→Import→Verilog, but this time put decoder.v as the

file and the name of the top-level module decoder at the Top Level Module before

clicking OK. By the way, if a dialog box comes up asking if it is all right to overwrite

or augment the existing cds vbin library, say OK.

5. Now, the floorplan need to be initialized for the placed and routed circuit. Select

Floorplan→Initialize Floorplan form the menu that brings up a large dialog box.

Choose an appropriate I/O to Core Distance such as 40.00 each. Because the cells in

the cell library have many pins (The product 8 8 cell has 81 pins besides vdd! and

gnd!), the Row Spacing and Row Utilization should not be high to avoid routing

trouble. Generally, the Row Spacing should not be smaller than 10 microns and the

Row Utilization should not be larger than 70. Depending on how large your design

is, choose the appropriate value and then click OK.

6. Now, select Place→IOs from the menu. The user can select Random or give

constraint.

7. Now, the user needs to plan for the power lines. Select Route→PlanPower from the

menu. A box should pop up. Selcet the Add Rings selection in the box. Things

should be set up with gnd! and vdd! as the Nets, and M1 as the horizontal layer and

M2 as the vertical layer. Change them if they are not. Then, select a multiplier of

the λ for the Core Ring Width on both M1 and M2 (For example, if the technology

the user are using has λ = 0.3 micron, the user can choose 4.5 micron.) and on the

Block Ring Width. Keep the Core Ring as Center for both and then click OK.

8. Now, select Place→Cells from the menu. The user can leave all the boxes unchecked

and just say OK or choose some options to generate a better result.

9. Now, the user needs to add filler cells. Select Place→FillerCells→AddCells to get

the dialog box. Fill in the model as FILL and the prefix as fill. Uncheck all the

Placement boxes except North and then click OK.

10. Now, the user needs to connect the vdd! and gnd! lines in the standard cell rows

to the bus lines around the cells. Select Route→Connect Ring. Leave all the boxes

as default and click OK. This routes all the vdd! and gnd! lines in the cell rows to

the power buses around the edge.
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11. Now, the user can route the circuit. Select Route→WRoute to perform global and

final routing in one step. Make sure the Global and Final Route is selected, and

the Auto Search and Repair is also selected. Click OK. This can take a long time.

After routing, make sure there is no geometry violations.

12. If there are geometry violations, check whether the route has being performed

correctly. If there are no geometry violations, export the design to a DEF file

by choosing File→Export→DEF and type the selected name such as decoder.def.

Now, the work of Silicon Ensemble has been done and the user should have a placed

and routed circuit.

B.3.3.2 Reading the Placed and Routed Layout
into Virtuoso

Now, the user has the placed and routed circuit. However, you still need to import

the .def file into Virtuoso to get a real layout.

1. First start up icfb again and fire up the library manager. Select File→Import→DEF.

In the dialog box fill in the library name as the library that the user is reading the

design into. The cell name should be chosen to have the same cell name as the

schematic for further usage. The view name must be autoRouted. Click the Use

Ref. Library Names box and fill in analog cell as the ref library. Fill in the name of

the user’s def file such as decoder.def. Make sure the Silicon Ensemble is selected

as the Target P&R engine and then click OK.

2. Now, go to the library manager and click on the cell that the user has imported.

The user should see an autoRouted view. Open the autoRouted view and then save

it as layout view. Close the autoRouted view and open the layout view.

3. Then choose Floorplan→Replace View menu. A dialog box should pop up. Choose

Replace to as layout and check the all box and then click Apply. Close the dialog

box. Choose Tools→Layout menu. This changes the tool from abstract-editing

mode to layout-editing mode.

4. Now, choose Create→Pin menu to put M1PIN input pins with vdd! and gnd! names

on the vdd! and gnd! rings. (The vdd! ring should be the outside ring and gnd!

ring should be the inside ring).
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Now, the layout is finished and the user should save it. Also, the user can do DRC check

of the layout to verify there is no DRC errors. The user can also generate an extract view

for further use.

B.3.4 Simulation of the Generated Circuit

Now, the user should have a schematic view and layout view of the decoder. The

user can create a symbol from the schematic of the decoder and then create a test bench

circuit to do Spice simulation of the decoder. For the Spice simulation of the layout. The

user can do an LVS check of the layout first to verify that the layout is correct. Then,

the user can build an analog extracted view of the decoder. With this view, the user can

create a config view of the test bench circuit and select analog extracted view for the

decoder symbol in the config view. Then, the user can do Spice simulation of the circuit

based on its layout. Using this method, the user can even compare the Spice simulation

result of the schematic and layout.

B.4 Miscellaneous Things

The previous sections have described the whole flow for automatic synthesis and

simulation of error control decoders. However, the .lef file is already provided by the

author. Actually, generating this .lef file is not easy. If the user would like to create the

layout of the cell library themselves, there are a large number of factors to be considered.

The user should take careful considerations when drawing the layout of the cell library

and then generating the abstract of the cell library. Fortunately, there is a good guideline

for a standard cell library:

http : //www.ece.msstate.edu/EE8273/lectures/stdcellroute/stdcellroute.pdf

and how to generate the abstract of the cell library:

http : //www.erc.msstate.edu/mpl/education/cadence/standardcell/downloads.html

Also, there is also a good tutorial provided by Professor Erik Brunvand and you can look

at it to get a better understanding of using Silicon Ensemble.

http : //www.cs.utah.edu/classes/cs5710/labs/synopsys.htm



APPENDIX C

SCHEMATIC, LAYOUT, INTERFACE OF

CELL LIBRARY AND VHDL EXAMPLE

In this appendix, the schematic, layout, interface of the cell library is given. Also,

the automatically generated VHDL files for the Hamming (8,4) decoder is given as an

example.

C.1 Schematic of Cell Library

The schematic of the current cell library is shown in Figure C.1 to Figure C.11.

C.2 Layout of Cell Library

The layout of the current cell library is shown in Figure C.12 to Figure C.18.
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Figure C.1. Schematic of the product 2 2 cell.
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Figure C.2. Schematic of the product 2 4 cell.
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Figure C.3. Schematic of the product 2 8 cell.
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Figure C.4. Schematic of the product 4 2 cell.
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Figure C.5. Schematic of the product 4 4 cell.
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Figure C.6. Schematic of the product 4 8 cell.
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Figure C.7. Schematic of the product 8 8 cell.
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Figure C.8. Schematic of the norm2 cell.
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Figure C.9. Schematic of the dnorm2 cell.
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Figure C.10. Schematic of the dnorm4 cell.



179

Figure C.11. Schematic of the dnorm8 cell.
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C.3 Interface of Cell Library

In order to do synthesis, two files decribing the interface of the cell library is needed

as shown in Figure B.1. The description of analog cell.vhd is shown below.

component PRODUCT 2 2

port(X0 : in real;

X1 : in real;

Y0 : in real;

Y1 : in real;

O00 : inout real;

O01 : inout real;

O10 : inout real;

O11 : inout real

);

end component;

component PRODUCT 2 4

port(X0 : in real;

X1 : in real;

Y0 : in real;

Y1 : in real;

Y2 : in real;

Y3 : in real;

O00 : inout real;

O01 : inout real;

O02 : inout real;

O03 : inout real;

O10 : inout real;

O11 : inout real;

O12 : inout real;

O13 : inout real

);

end component;

component PRODUCT 2 8

port(X0 : in real;

X1 : in real;

Y0 : in real;

Y1 : in real;

Y2 : in real;

Y3 : in real;

Y4 : in real;

Y5 : in real;

Y6 : in real;

Y7 : in real;

O00 : inout real;

O01 : inout real;

O02 : inout real;

O03 : inout real;

O04 : inout real;

O05 : inout real;

O06 : inout real;

O07 : inout real;

O10 : inout real;

O11 : inout real;

O12 : inout real;

O13 : inout real;

O14 : inout real;

O15 : inout real;
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O16 : inout real;

O17 : inout real

);

end component;

component PRODUCT 4 2

port(X0 : in real;

X1 : in real;

X2 : in real;

X3 : in real;

Y0 : in real;

Y1 : in real;

O00 : inout real;

O01 : inout real;

O10 : inout real;

O11 : inout real;

O20 : inout real;

O21 : inout real;

O30 : inout real;

O31 : inout real

);

end component;

component PRODUCT 4 4

port(X0 : in real;

X1 : in real;

X2 : in real;

X3 : in real;

Y0 : in real;

Y1 : in real;

Y2 : in real;

Y3 : in real;

O00 : inout real;

O01 : inout real;

O02 : inout real;

O03 : inout real;

O10 : inout real;

O11 : inout real;

O12 : inout real;

O13 : inout real;

O20 : inout real;

O21 : inout real;

O22 : inout real;

O23 : inout real;

O30 : inout real;

O31 : inout real;

O32 : inout real;

O33 : inout real

);

end component;

component PRODUCT 4 8

port(X0 : in real;

X1 : in real;

X2 : in real;

X3 : in real;

Y0 : in real;

Y1 : in real;

Y2 : in real;

Y3 : in real;

Y4 : in real;
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Y5 : in real;

Y6 : in real;

Y7 : in real;

O00 : inout real;

O01 : inout real;

O02 : inout real;

O03 : inout real;

O04 : inout real;

O05 : inout real;

O06 : inout real;

O07 : inout real;

O10 : inout real;

O11 : inout real;

O12 : inout real;

O13 : inout real;

O14 : inout real;

O15 : inout real;

O16 : inout real;

O17 : inout real;

O20 : inout real;

O21 : inout real;

O22 : inout real;

O23 : inout real;

O24 : inout real;

O25 : inout real;

O26 : inout real;

O27 : inout real;

O30 : inout real;

O31 : inout real;

O32 : inout real;

O33 : inout real;

O34 : inout real;

O35 : inout real;

O36 : inout real;

O37 : inout real

);

end component;

component PRODUCT 8 8

port(X0 : in real;

X1 : in real;

X2 : in real;

X3 : in real;

X4 : in real;

X5 : in real;

X6 : in real;

X7 : in real;

Y0 : in real;

Y1 : in real;

Y2 : in real;

Y3 : in real;

Y4 : in real;

Y5 : in real;

Y6 : in real;

Y7 : in real;

O00 : inout real;

O01 : inout real;

O02 : inout real;

O03 : inout real;
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O04 : inout real;

O05 : inout real;

O06 : inout real;

O07 : inout real;

O10 : inout real;

O11 : inout real;

O12 : inout real;

O13 : inout real;

O14 : inout real;

O15 : inout real;

O16 : inout real;

O17 : inout real;

O20 : inout real;

O21 : inout real;

O22 : inout real;

O23 : inout real;

O24 : inout real;

O25 : inout real;

O26 : inout real;

O27 : inout real;

O30 : inout real;

O31 : inout real;

O32 : inout real;

O33 : inout real;

O34 : inout real;

O35 : inout real;

O36 : inout real;

O37 : inout real;

O40 : inout real;

O41 : inout real;

O42 : inout real;

O43 : inout real;

O44 : inout real;

O45 : inout real;

O46 : inout real;

O47 : inout real;

O50 : inout real;

O51 : inout real;

O52 : inout real;

O53 : inout real;

O54 : inout real;

O55 : inout real;

O56 : inout real;

O57 : inout real;

O60 : inout real;

O61 : inout real;

O62 : inout real;

O63 : inout real;

O64 : inout real;

O65 : inout real;

O66 : inout real;

O67 : inout real;

O70 : inout real;

O71 : inout real;

O72 : inout real;

O73 : inout real;

O74 : inout real;

O75 : inout real;
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O76 : inout real;

O77 : inout real

);

end component;

component NORM2

port(Vu : in real;

Vp : in real;

Vn : in real;

P0 : in real;

P1 : in real;

O0 : inout real;

O1 : inout real

);

end component;

component NORM4

port(Vu : in real;

Vp : in real;

Vn : in real;

P0 : in real;

P1 : in real;

P2 : in real;

P3 : in real;

O0 : inout real;

O1 : inout real;

O2 : inout real;

O3 : inout real

);

end component;

component NORM8

port(Vu : in real;

Vp : in real;

Vn : in real;

P0 : in real;

P1 : in real;

P2 : in real;

P3 : in real;

P4 : in real;

P5 : in real;

P6 : in real;

P7 : in real;

X0 : inout real;

X1 : inout real;

X2 : inout real;

X3 : inout real;

X4 : inout real;

X5 : inout real;

X6 : inout real;

X7 : inout real

);

end component;

component DNORM2

port(Vu : in real;

Vp : in real;

Vn : in real;

P0 : in real;

P1 : in real;

A0 : inout real;

A1 : inout real;
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B0 : inout real;

B1 : inout real

);

end component;

component DNORM4

port(Vu : in real;

Vp : in real;

Vn : in real;

P0 : in real;

P1 : in real;

P2 : in real;

P3 : in real;

A0 : inout real;

A1 : inout real;

A2 : inout real;

A3 : inout real;

B0 : inout real;

B1 : inout real;

B2 : inout real;

B3 : inout real

);

end component;

component DNORM8

port(Vu : in real;

Vp : in real;

Vn : in real;

P0 : in real;

P1 : in real;

P2 : in real;

P3 : in real;

P4 : in real;

P5 : in real;

P6 : in real;

P7 : in real;

A0 : inout real;

A1 : inout real;

A2 : inout real;

A3 : inout real;

A4 : inout real;

A5 : inout real;

A6 : inout real;

A7 : inout real;

B0 : inout real;

B1 : inout real;

B2 : inout real;

B3 : inout real;

B4 : inout real;

B5 : inout real;

B6 : inout real;

B7 : inout real

);

end component;

The description of analog cell.v is shown below.

//

// This file has interface descriptions for the analog

// cells. Note that the cells have vdd! and gnd! as inputs to every

// symbol. However, these power supply connections are treated as
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// "special nets" in sedsm so they are NOT listed in the interface of

// the cells. Note that in the LEF files the power supply ports are

// listed as "USE POWER" or "USE GROUND" to note this special usage.

//

// This file should be loaded into sedsm after loading the LEF file

// that describes the analog cell library.

// Use the "import verilog" command. Only after this file is imported

// should you import the Verilog that has the description of your cell

// that you want to place and route.

//

// Jie Dai 03/14/02

//

module PRODUCT 2 2 (X0,X1,Y0,Y1,O00,O01,O10,O11);

input X0,X1,Y0,Y1;

inout O00,O01,O10,O11;

endmodule

module PRODUCT 2 4 (X0,X1,Y0,Y1,Y2,Y3,O00,O01,O02,O03,O10,O11,O12,O13);

input X0,X1,Y0,Y1,Y2,Y3;

inout O00,O01,O02,O03,O10,O11,O12,O13;

endmodule

module PRODUCT 2 8 (X0,X1,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,

O00,O01,O02,O03,O04,O05,O06,O07,O10,O11,O12,O13,O14,O15,O16,O17);

input X0,X1,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7;

inout O00,O01,O02,O03,O04,O05,O06,O07,O10,O11,O12,O13,O14,O15,O16,O17;

endmodule

module PRODUCT 4 2 (X0,X1,X2,X3,Y0,Y1,O00,O01,O10,O11,O20,O21,O30,O31);

input X0,X1,X2,X3,Y0,Y1;

inout O00,O01,O10,O11,O20,O21,O30,O31;

endmodule

module PRODUCT 4 4 (X0,X1,X2,X3,Y0,Y1,Y2,Y3,

O00,O01,O02,O03,O10,O11,O12,O13,O20,O21,O22,O23,O30,O31,O32,O33);

input X0,X1,X2,X3,Y0,Y1,Y2,Y3;

inout O00,O01,O02,O03,O10,O11,O12,O13,O20,O21,O22,O23,O30,O31,O32,O33;

endmodule

module PRODUCT 4 8 (X0,X1,X2,X3,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,

O00,O01,O02,O03,O04,O05,O06,O07,O10,O11,O12,O13,O14,O15,O16,O17,

O20,O21,O22,O23,O24,O25,O26,O27,O30,O31,O32,O33,O34,O35,O36,O37);

input X0,X1,X2,X3,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7;

inout O00,O01,O02,O03,O04,O05,O06,O07,O10,O11,O12,O13,O14,O15,O16,O17,

O20,O21,O22,O23,O24,O25,O26,O27,O30,O31,O32,O33,O34,O35,O36,O37;

endmodule

module PRODUCT 8 8 (X0,X1,X2,X3,X4,X5,X6,X7,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,

O00,O01,O02,O03,O04,O05,O06,O07,O10,O11,O12,O13,O14,O15,O16,O17,

O20,O21,O22,O23,O24,O25,O26,O27,O30,O31,O32,O33,O34,O35,O36,O37,

O40,O41,O42,O43,O44,O45,O46,O47,O50,O51,O52,O53,O54,O55,O56,O57,

O60,O61,O62,O63,O64,O65,O66,O67,O70,O71,O72,O73,O74,O75,O76,O77);

input X0,X1,X2,X3,X4,X5,X6,X7,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7;

inout O00,O01,O02,O03,O04,O05,O06,O07,O10,O11,O12,O13,O14,O15,O16,O17,

O20,O21,O22,O23,O24,O25,O26,O27,O30,O31,O32,O33,O34,O35,O36,O37,

O40,O41,O42,O43,O44,O45,O46,O47,O50,O51,O52,O53,O54,O55,O56,O57,

O60,O61,O62,O63,O64,O65,O66,O67,O70,O71,O72,O73,O74,O75,O76,O77;

endmodule

module NORM2 (Vu,Vp,Vn,P0,P1,O0,O1);

input Vu,Vp,Vn,P0,P1;

output O0,O1;

endmodule

module NORM4 (Vu,Vp,Vn,P0,P1,P2,P3,O0,O1,O2,O3);

input Vu,Vp,Vn,P0,P1,P2,P3;
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output O0,O1,O2,O3;

endmodule

module NORM8 (Vu,Vp,Vn,P0,P1,P2,P3,P4,P5,P6,P7,O0,O1,O2,O3,O4,O5,O6,O7);

input Vu,Vp,Vn,P0,P1,P2,P3,P4,P5,P6,P7;

output O0,O1,O2,O3,O4,O5,O6,O7;

endmodule

module DNORM2 (Vu,Vp,Vn,P0,P1,A0,A1,B0,B1);

input Vu,Vp,Vn,P0,P1;

output A0,A1,B0,B1;

endmodule

module DNORM4 (Vu,Vp,Vn,P0,P1,P2,P3,A0,A1,A2,A3,B0,B1,B2,B3);

input Vu,Vp,Vn,P0,P1,P2,P3;

output A0,A1,A2,A3,B0,B1,B2,B3;

endmodule

module DNORM8 (Vu,Vp,Vn,P0,P1,P2,P3,P4,P5,P6,P7,A0,A1,A2,A3,A4,A5,A6,A7,

B0,B1,B2,B3,B4,B5,B6,B7);

input Vu,Vp,Vn,P0,P1,P2,P3,P4,P5,P6,P7;

output A0,A1,A2,A3,A4,A5,A6,A7,B0,B1,B2,B3,B4,B5,B6,B7;

endmodule

C.4 VHDL Description Examples

In this section, some VHDL description examples are provided.

C.4.1 VHDL Description of the Equal Gate
Function Node and XOR Function Node

In this subsection, the high-level behavioral description of the equal gate function

node and XOR function node with connection to three variable nodes x, y and z shown

in Figure 3.14 is provided below.
Equal gate:

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;

use ieee.std logic unsigned.all;

use ieee.math real.all;

type real array 1d is array ( natural range <> )

of real;

entity xor3 is

port(clk : in std logic;

xi : in real array 1d(0 to 1);

yi : in real array 1d(0 to 1);

zi : in real array 1d(0 to 1);

xo : out real array 1d(0 to 1) :=(0.5,0.5);

yo : out real array 1d(0 to 1) :=(0.5,0.5);

zo : out real array 1d(0 to 1) :=(0.5,0.5)

);

end xor3;

architecture behavior of xor3 is

begin

xor3:process(clk)

variable temp xo : real array 1d(0 to 1);

variable temp x : real;
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variable temp yo : real array 1d(0 to 1);

variable temp y : real;

variable temp zo : real array 1d(0 to 1);

variable temp z : real;

if(clk=’1’) then

temp xo(0):=yi(0)*zi(0);

temp xo(1):=yi(1)*zi(1);

temp x:=temp xo(0)+temp xo(1);

xo(0)<=temp xo(0)/temp x;

xo(1)<=temp xo(1)/temp x;

temp yo(0):=xi(0)*zi(0);

temp yo(1):=xi(1)*zi(1);

temp y:=temp yo(0)+temp yo(1);

yo(0)<=temp yo(0)/temp y;

yo(1)<=temp yo(1)/temp y;

temp zo(0):=xi(0)*yi(0);

temp zo(1):=xi(1)*yi(1);

temp z:=temp zo(0)+temp zo(1);

zo(0)<=temp zo(0)/temp z;

zo(1)<=temp zo(1)/temp z;

end if;

end process;

end behavior;

XOR function node:

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;

use ieee.std logic unsigned.all;

use ieee.math real.all;

type real array 1d is array ( natural range <> )

of real;

entity xor3 is

port(clk : in std logic;

xi : in real array 1d(0 to 1);

yi : in real array 1d(0 to 1);

zi : in real array 1d(0 to 1);

xo : out real array 1d(0 to 1) :=(0.5,0.5);

yo : out real array 1d(0 to 1) :=(0.5,0.5);

zo : out real array 1d(0 to 1) :=(0.5,0.5)

);

end xor3;

architecture behavior of xor3 is

begin

xor3:process(clk)

variable temp xo : real array 1d(0 to 1);

variable temp x : real;

variable temp yo : real array 1d(0 to 1);

variable temp y : real;

variable temp zo : real array 1d(0 to 1);

variable temp z : real;

if(clk=’1’) then

temp xo(0):=yi(0)*zi(0)+yi(1)*zi(1);

temp xo(1):=yi(0)*zi(1)+yi(1)*zi(0);

temp x:=temp xo(0)+temp xo(1);

xo(0)<=temp xo(0)/temp x;

xo(1)<=temp xo(1)/temp x;
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temp yo(0):=xi(0)*zi(0)+xi(1)*zi(1);

temp yo(1):=xi(0)*zi(1)+xi(1)*zi(0);

temp y:=temp yo(0)+temp yo(1);

yo(0)<=temp yo(0)/temp y;

yo(1)<=temp yo(1)/temp y;

temp zo(0):=xi(0)*yi(0)+xi(1)*yi(1);

temp zo(1):=xi(0)*yi(1)+xi(1)*yi(0);

temp z:=temp zo(0)+temp zo(1);

zo(0)<=temp zo(0)/temp z;

zo(1)<=temp zo(1)/temp z;

end if;

end process;

end behavior;

C.4.2 Automatically Generated VHDL Files
for the Hamming (8,4) Decoder

In this subsection, the automatically generated VHDL files for the high-level simulation
of the Hamming (8,4) decoder using the factor graph description provided in Appendix
A.5 are provided below.

package types is

type bin enum is (e 0,e 1);

type bin is array (bin enum) of real;

type bin array 1d is array (natural range <>) of bin;

type bin array 2d is array (natural range <>,natural range<>) of bin;

type quat enum is (e 00,e 01,e 10,e 11);

type quat is array (quat enum) of real;

type quat array 1d is array (natural range <>) of quat;

type quat array 2d is array (natural range <>,natural range<>) of quat;

type state4 enum is (e 0,e 1,e 2,e 3);

type state4 is array (state4 enum) of real;

type state4 array 1d is array (natural range <>) of state4;

type state4 array 2d is array (natural range <>,natural range<>) of state4;

end types;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

entity fa is

port(clk : in std logic := ’0’;

cs : in bin := (others=>0.5);

cs out : out bin := (others=>0.5);

u out : out bin := (others=>0.5);

x : in quat := (others=>0.25);

ns : in state4 := (others=>0.25);

ns out : out state4 := (others=>0.25));

end fa;

architecture structure of fa is

begin

fa:process(clk)

variable temp cs out : bin;
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variable temp cs : real;

variable temp u out : bin;

variable temp u : real;

variable temp ns out : state4;

variable temp ns : real;

begin

if(clk = ’1’) then

temp cs out(e 0) := x(e 00) * ns(e 0) + x(e 11) * ns(e 1);

temp cs out(e 1) := x(e 01) * ns(e 2) + x(e 10) * ns(e 3);

temp cs := temp cs out(e 0) + temp cs out(e 1);

cs out(e 0) <= temp cs out(e 0) / temp cs;

cs out(e 1) <= temp cs out(e 1) / temp cs;

temp u out(e 0) := cs(e 0) * x(e 00) * ns(e 0) + cs(e 1) * x(e 01) * ns(e 2);

temp u out(e 1) := cs(e 0) * x(e 11) * ns(e 1) + cs(e 1) * x(e 10) * ns(e 3);

temp u := temp u out(e 0) + temp u out(e 1);

u out(e 0) <= temp u out(e 0) / temp u;

u out(e 1) <= temp u out(e 1) / temp u;

temp ns out(e 0) := cs(e 0) * x(e 00);

temp ns out(e 1) := cs(e 0) * x(e 11);

temp ns out(e 2) := cs(e 1) * x(e 01);

temp ns out(e 3) := cs(e 1) * x(e 10);

temp ns := temp ns out(e 0) + temp ns out(e 1) + temp ns out(e 2) + temp ns out(e 3);

ns out(e 0) <= temp ns out(e 0) / temp ns;

ns out(e 1) <= temp ns out(e 1) / temp ns;

ns out(e 2) <= temp ns out(e 2) / temp ns;

ns out(e 3) <= temp ns out(e 3) / temp ns;

end if;

end process;

end structure;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

entity fb is

port(clk : in std logic := ’0’;

cs : in state4 := (others=>0.25);

cs out : out state4 := (others=>0.25);

u out : out bin := (others=>0.5);

x : in quat := (others=>0.25);

ns : in bin := (others=>0.5);

ns out : out bin := (others=>0.5));

end fb;

architecture structure of fb is

begin

fb:process(clk)

variable temp cs out : state4;

variable temp cs : real;

variable temp u out : bin;

variable temp u : real;

variable temp ns out : bin;

variable temp ns : real;

begin

if(clk = ’1’) then

temp cs out(e 0) := x(e 00) * ns(e 0) + x(e 11) * ns(e 1);

temp cs out(e 1) := x(e 11) * ns(e 0) + x(e 00) * ns(e 1);
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temp cs out(e 2) := x(e 10) * ns(e 0) + x(e 01) * ns(e 1);

temp cs out(e 3) := x(e 01) * ns(e 0) + x(e 10) * ns(e 1);

temp cs := temp cs out(e 0) + temp cs out(e 1) + temp cs out(e 2) + temp cs out(e 3);

cs out(e 0) <= temp cs out(e 0) / temp cs;

cs out(e 1) <= temp cs out(e 1) / temp cs;

cs out(e 2) <= temp cs out(e 2) / temp cs;

cs out(e 3) <= temp cs out(e 3) / temp cs;

temp u out(e 0) := cs(e 0) * x(e 00) * ns(e 0) + cs(e 1) * x(e 11) * ns(e 0)

+ cs(e 2) * x(e 10) * ns(e 0) + cs(e 3) * x(e 01) * ns(e 0);

temp u out(e 1) := cs(e 0) * x(e 11) * ns(e 1) + cs(e 1) * x(e 00) * ns(e 1)

+ cs(e 2) * x(e 01) * ns(e 1) + cs(e 3) * x(e 10) * ns(e 1);

temp u := temp u out(e 0) + temp u out(e 1);

u out(e 0) <= temp u out(e 0) / temp u;

u out(e 1) <= temp u out(e 1) / temp u;

temp ns out(e 0) := cs(e 0) * x(e 00) + cs(e 1) * x(e 11)

+ cs(e 2) * x(e 10) + cs(e 3) * x(e 01);

temp ns out(e 1) := cs(e 0) * x(e 11) + cs(e 1) * x(e 00)

+ cs(e 2) * x(e 01) + cs(e 3) * x(e 10);

temp ns := temp ns out(e 0) + temp ns out(e 1);

ns out(e 0) <= temp ns out(e 0) / temp ns;

ns out(e 1) <= temp ns out(e 1) / temp ns;

end if;

end process;

end structure;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

entity pdf is

port(clk : in std logic := ’0’;

n0 : in real := 0.0;

y : in real array 1d(1 to 2) := (others=>0.0);

x out : out quat := (others=>0.25));

end pdf;

architecture structure of pdf is

begin

pdf:process(clk)

variable p0 : real := 0.0;

variable p1 : real := 0.0;

begin

if(clk = ’1’) then

p0:=1.0/(1.0+exp(-4.0*y(1)/n0));

p1:=1.0/(1.0+exp(-4.0*y(2)/n0));

x out(e 00)<=(1.0-p0)*(1.0-p1);

x out(e 01)<=(1.0-p0)*p1;

x out(e 10)<=p0*(1.0-p1);

x out(e 11)<=p0*p1;

end if;

end process;

end structure;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;
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use work.nondeterminism.all;

use work.gaussian.all;

entity CodeGraph is

port(clk : in std logic := ’0’;

x : in quat array 1d(1 to 4) := (others=>(others=>0.25));

u out : out bin array 1d(1 to 4) := (others=>(others=>0.5)));

end CodeGraph;

architecture structure of CodeGraph is

signal s0 : bin;

signal s0 out : bin;

signal s1 : state4;

signal s1 out : state4;

signal s2 : bin;

signal s2 out : bin;

signal s3 : state4;

signal s3 out : state4;

begin

f0 : entity work.fa(structure) port map(clk=>clk, cs=>s0, cs out=>s0 out,

u out=>u out(1), x=>x(1),

ns=>s1, ns out=>s1 out);

f1 : entity work.fb(structure) port map(clk=>clk, cs=>s1 out, cs out=>s1,

u out=>u out(2), x=>x(2),

ns=>s2, ns out=>s2 out);

f2 : entity work.fa(structure) port map(clk=>clk, cs=>s2 out, cs out=>s2,

u out=>u out(3), x=>x(3),

ns=>s3, ns out=>s3 out);

f3 : entity work.fb(structure) port map(clk=>clk, cs=>s3 out, cs out=>s3,

u out=>u out(4), x=>x(4),

ns=>s0 out, ns out=>s0);

end structure;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

entity decoder is

port(clk : in std logic := ’0’;

n0 : in real := 0.0;

y : in real array 1d(1 to 8) := (others=>0.0);

u out : out bin array 1d(1 to 4) := (others=>(others=>0.5)));

end decoder;

architecture structure of decoder is

signal x : quat array 1d(1 to 4);

signal x out : quat array 1d(1 to 4);

begin

g0: for i in 1 to 4 generate

begin

pdfi : entity work.pdf(structure) port map(clk=>clk,

n0=>n0,

y=>y(2*i-1 to 2*i),

x out=>x out(i));

end generate g0;

TheCodeGraph : entity work.CodeGraph(structure) port map(clk=>clk,

x=>x out(1 to 4),

u out=>u out(1 to 4));

end structure;
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library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

package genfunction is

function gen(s : real array 1d) return real array 1d;

end genfunction;

package body genfunction is

function gen(s : real array 1d) return real array 1d is

variable x : real array 1d(1 to 8);

variable p0 : real;

variable p1 : real;

variable genarray : real array 2d(1 to 4,1 to 8);

begin

genarray:=((1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0),

(0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0),

(0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0),

(0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0));

x:=s*genarray mod 2.0;

return x;

end gen;

end genfunction;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

package comp is

function convert(u : bin array 1d) return real array 1d;

function compare(l : real array 1d; r : real array 1d) return real;

end comp;

package body comp is

function convert(u : bin array 1d) return real array 1d is

variable result : real array 1d(1 to 4);

begin

for i in u’range loop

if (u(i)(e 0) >= u(i)(e 1)) then

result(i) := 0.0;

else

result(i) := 1.0;

end if;

end loop;

return result;

end convert;

function compare(l : real array 1d; r : real array 1d) return real is

variable result : real := 0.0;

begin

for i in l’range loop

if(l(i) /= r(i)) then

result := result + 1.0;

end if;

end loop;

return result;
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end compare;

end comp;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

use work.genfunction.all;

use work.comp.all;

use std.textio.all;

entity encoder is

generic(MaxSNR: real; frame length : real;rate : real; cycles : real);

port(clk : in std logic := ’0’;

n0 : inout real := 1.0/rate;

u : in bin array 1d(1 to 4) := (others=>(others=>0.5));

y out : out real array 1d(1 to 8) := (others=>0.0));

end encoder;

architecture structure of encoder is

file ber file: text open write mode is "ber.dat";

begin

encoder:process

variable snr : real := 0.0;

variable error number : real := 0.0;

variable clk count : real := 0.0;

variable frame count : real := -1.0;

variable frame error : real := 0.0;

variable e : real;

variable li : line;

variable p0 : real := 0.0;

variable p1 : real := 0.0;

variable genarray : real array 2d(1 to 4,1 to 8) := (others=>(others=>0.0));

variable s : real array 1d(1 to 4) := (others=>0.0);

variable olds : real array 1d(1 to 4) := (others=>0.0);

begin

wait on clk;

if(clk = ’1’) then

if(clk count=0.0) then

olds:=s;

s:=rand(4);

y out<=2.0*gen(s)-1.0+randn(sqrt(n0/2.0),8);

frame count := frame count + 1.0;

if(frame count/=0.0) then

e := compare(convert(u),olds);

error number := error number + e;

if(e /= 0.0) then

frame error := frame error + 1.0;

end if;

end if;

if(frame error >= 150.0) then

write(li,snr);

write(li,’,’);

write(li,error number/(frame count*real(frame length)));

write(li,CR);

writeline(ber file,li);

snr := snr + 1.0;

if(snr > MaxSNR) then
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wait;

end if;

frame count := -1.0;

error number := 0.0;

frame error := 0.0;

n0<= 1.0 / (rate*10.0**(snr/10.0));

end if;

end if;

clk count := clk count + 1.0;

if(clk count = cycles) then

clk count := 0.0;

end if;

end if;

end process;

end structure;

library ieee;

use ieee.std logic 1164.all;

use ieee.math real.all;

use work.types.all;

use work.myarray.all;

use work.nondeterminism.all;

use work.gaussian.all;

entity top is

end top;

architecture structure of top is

signal clk : std logic;

signal n0 : real;

signal n0 out : real;

signal u : bin array 1d(1 to 4);

signal u out : bin array 1d(1 to 4);

signal y : real array 1d(1 to 8);

signal y out : real array 1d(1 to 8);

begin

en : entity work.encoder(structure) generic map(7.0, 4.0, 0.5, 20.0)

port map(clk=>clk, n0=>n0, u=>u, y out=>y);

de : entity work.decoder(structure) port map(clk=>clk, n0=>n0, y=>y, u out=>u);

TheClk : entity work.clk gen(structure) port map(clk=>clk);

end structure;
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Moschytz, G. S. An analog vlsi decoding technique for digital codes. In
Proceedings of the IEEE International Symposium on Circuits and Systems (May
/ June 1999), vol. 2, pp. 424–427.

[45] Lustenberger, F., and Loeliger, H. A. On mismatch errors in analog-vlsi error
correcting decoders. In Proceedings of ISCAS (May 2001).

[46] MacKay, D. J. C. Good error-correcting codes based on very sparse matrices.
IEEE Transactions on Information Theory 45, 2 (Mar. 1999), 399–431.

[47] Mackay, D. J. C., and Neal, R. M. Good codes based on very sparse matrices.
In Cryptography and Coding. Fifth IMA Conference (1995), pp. 100–111.

[48] MacWilliams, F. J., and Sloane, N. J. A. The Theory of Error Correcting
Codes. North-Holland, 1977.

[49] Martin, P. A., and Taylor, D. P. On adaptive reduced-complexity iterative
decoding. In Globecom ’00 - IEEE. Global Telecommunications Conference (San
Francison, CA, Nov. / Dec. 2000), vol. 2, pp. 732–737.

[50] Massey, J. L. Foundations and methods of channel coding. In Proceedings of
International Conference on Information Theory Systems (1978), vol. 65, pp. 148–
157.

[51] Maulik, P., Carley, L. R., and Rutenbar, R. Simultaneous topology selection
and sizing of cell-level analog circuits. IEEE Transactions on Computer-Aided
Design 14 (Apr. 1995), 401–412.

[52] Mead, C. A. Analog VLSI and Neural Systems. Addison Wesley Computation and
Neural Systems Series. Addison Wesley, MA, 1989.

[53] Michael, C., and M.Ismail. Statistical modeling of device mismatch for analog
mos integrated circuits. IEEE Jouranl of Solid-State Circuits 27 (Feb. 1992), 154–
166.

[54] Moerz, M., Gabara, T., Yan, R., and Hagenauer, J. An analog 0.25um
bicmos tailbiting map decoder. In IEEE Proc. International Solid-State Circuits
Conference (Feb. 2000), pp. 356–357.

[55] Pelgrom, M. J., Duinmaijer, A. C. J., and Welbers, A. P. G. Matching
properties of mos transistors. IEEE Journal of Solid-State Circuits 24, 5 (Oct. 1989),
1433–1439.

[56] Razavi, B. Design of Analog CMOS Integrated Circuits. McGraw Hill, 2001.

[57] Richardson, T., Shokrollahi, A., and Urbanke, R. Design of provable good
low-density parity check codes. IEEE Transactions on Information Theory (Apr.
1999).

[58] Schlegel, C., and Grant, A. Concatenated space-time coding. In Proc.
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2001
(Sept./Oct. 2001), pp. 139–143.



207

[59] Schlegel, C., and Grant, A. Differential turbo space-time coding. In Proceed-
ings of 2001 IEEE Information Theory Workshop (Sept. 2001), pp. 120–122.

[60] Seevinck, E. Analysis and Synthesis of Translinear Integrated Circuits. Amster-
dam, 1988.

[61] Shannon, C. E. A mathematical theory of communication. Bell Systems Technical
Journal 27 (July 1948), 379–423.

[62] Sweeney, P. Error Control Coding: An Introduction. Prentice Hall, 1991.

[63] Tanner, R. M. A recursive approach to low complexity codes. IEEE Transactions
on Information Theory 27, 5 (1981), 533–547.

[64] ten Brink, S. Convergence of iterative decoding. Electronics Letters 35, 13 (June
1999), 1117–1119.

[65] Tsividis, Y. Operation and modeling of the MOS transistor. 1999.

[66] Viterbi, A. J. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory 13 (Apr.
1967), 260–269.

[67] Wiberg, N., Loeliger, H. A., and Kotter, R. Codes and iterative decoding on
general graphs. European Transactions on Telecommunications (Sept./Oct. 1995),
513–525.

[68] Willems, J. C. Models for dynamics. In Dynamics Reported, U. Kirchgraber and
H. O. Walther, Eds. John Wiley and Sons, 1989, pp. 171–269.

[69] Winstead, C., Dai, J., Kim, W. J., Little, S., Kim, Y. B., Myers, C., and

Schlegel, C. Analog map decoder for (8,4) hamming code in subthreshold cmos.
In Advanced Research in VLSI (Mar. 2001), pp. 132–147.

[70] Winstead, C., Dai, J., Yu, S., Harrison, R., Myers, C., and Schlegel,

C. Analog decoding of product codes. In International Symposium on Information
Technology (June/July 2002).

[71] Wolf, J. K. Efficient maximum-likelihood decoding of linear block codes using a
trellis. IEEE Transactions on Information Theory 24, 1 (1978), 76–80.

[72] Yu, N. Y., Kim, Y., and Lee, P. J. Iterativ decoding of product codes
composed of extended hamming codes. In IEEE Symopsium on Computers and
Communications (Antibes, France, July 2000), pp. 732–737.

[73] Yu, S. Private Communications, Fall 2001. Shuhuan Yu is a Ph.D. student at
University of Utah.


