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Synthetic biology resides at the nexus of engineering and biology, employing diverse ap-

proaches to engineer biological systems. These systems can be as simple as DNA sequences, bio-

chemical reactions, or more abstracted through control theory or digital logic, among other ways.

Similar to other engineering disciplines, for real-world applications, the designed systems must ex-

hibit robustness and adaptability to environmental changes beyond controlled laboratory settings.

This dissertation focuses on genetic constructs viewed specifically as digital logic genetic circuits,

examining their implementation and failure behavior. It aims to elucidate and analyze various

failure modes and proposes analytical methods to enhance genetic circuit robustness. This work

defines genetic circuit failure, where deviations from expected output are deemed as unexpected

and faulty. Such deviations may stem from failures at the cellular level or from flaws in the circuit’s

logic implementation or Boolean function. Subsequently, this dissertation develops computational

methods to predict circuit behavior, employing diverse analysis techniques such as ordinary differ-

ential equation analysis, stochastic simulation algorithms, and stochastic model verification. These

methodologies enable the prediction of the likelihood of failure occurrence. Furthermore, this dis-

sertation compares different computational modeling techniques to assess the effort required for

genetic circuit analysis. Finally, experimental validation is provided for a predicted circuit failure,

demonstrating the practical application of the proposed methodologies.
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”It’s the job that’s never started

as takes longest to finish, as my

old gaffer used to say.”

- Samwise Gamgee

1
Introduction

Synthetic biology offers potential solutions to a wide range of contemporary challenges. These

challenges span from pressing environmental issues, such as climate change and pollution, to incur-

able diseases and pathogenic viruses, to everyday concerns like corrosion [34] (see Figure 1.1). This

potential is harnessed by applying engineering principles to create innovative biological systems

capable of responding to environmental signals, such as changes in temperature, the presence of

pathogens, or exposure to toxic substances [40, 117, 229]. In one illustrative example, researchers

have engineered the bacterium Escherichia coli (E. coli) to emit an optical signal when it detects

the presence of a landmine in the nearby soil [22], showcasing the practical application of synthetic

biology in addressing real-world challenges.

1
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Figure 1.1: Practical applications of synthetic biology. Syn-

thetic biology holds promise for addressing urgent chal-

lenges, such as pathogen destruction, pharmaceutical pro-

duction, pollution reduction, and greenhouse gas capture.

Synthetic biology is commonly

characterized as engineering biology.

Benner et al. categorize synthetic

biology into two main approaches:

(1) the reproduction of behaviors

from natural biology using unnatu-

ral molecules and (2) the assembly

of components from natural biology

into artificial systems [23]. According

to Heinemann et al., synthetic biol-

ogy involves the “engineering-driven

building of increasingly complex bi-

ological entities for novel applica-

tions” [100]. Khalil et al. offer a

similar definition, describing it as the

collaborative effort between engineers

and biologists to conceive and construct innovative biomolecular components, networks, and path-

ways for rewiring and reprogramming organisms [117]. Finally, in a more recent definition from

2016, Tsuda adds engineering principles like standardization to define synthetic biology as “the de-

sign and construction of biological components (e.g., enzymes, gene circuits, and whole cells) from

scratch or from standardized parts” [218].

Breaking it down further, synthetic biology fuses the term “synthetic,” which refers to the

creation of substances through synthesis, to mimic natural products, with “biology,” the study of

living organisms. In essence, synthetic biology is the exploration of the synthetic creation of living

organisms. This interdisciplinary field unites biologists and engineers to devise scientific approaches

for the purposeful design and construction of novel synthetic biological systems tailored for specific

applications. The innovative and purposeful design from the ground up distinguishes synthetic
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biology from disciplines such as systems biology and genetic engineering.

While often perceived as an emerging field, “synthetic biology” as a term, was first coined in

1980 by Barbara Hobom to describe genetically engineered bacteria [218]. A little over two decades

ago, a new era of synthetic biology dawned with the introduction of two genetically engineered

constructs, the genetic toggle switch [85] and a genetic oscillator named the repressilator [71]. These

synthesized constructs have the capacity to regulate cellular functions and the cell’s behavior.

Today, synthetic biology has found applications in diverse domains, including protein en-

gineering, metabolic engineering, artificial cell engineering [132], vaccine development, molecular

diagnostics, cell-based therapeutics [214], and the bio-manufacturing of various products [202]. In

this new wave of the field, it can be imagined that plants can be employed as sensors for pollu-

tion detection, bacteria can be used in the treatment of conditions like cancer or diabetes or for

the synthesis of pharmaceuticals or biofuels. Moreover, utilizing cells for computing not only en-

hances our comprehension of biological processes, but also broadens the horizons of biotechnology’s

capabilities [16].

1.1 Synthetic Biology’s Promise

A significant aspect of the field is devoted to designing innovative engineered genetic con-

structs in cells, commonly referred to as genetic circuits. In the early 2000s, the process of genetic

circuit design primarily relied on manual and experimental methods conducted in laboratory set-

tings [85, 71]. However, given the field’s interdisciplinary nature, synthetic biology aims for a

more systematic, model-based approach to designing genetic circuits, with a focus on automated

construction [5, 166, 133, 207, 192]. For example, similar to electronic design, researchers have

aimed to develop well-defined, characterized, standardized, and reusable biological components

(parts) [222, 103, 197, 131]. Nevertheless, synthetic biology encounters unique challenges within the

realm of engineering disciplines. Synthetic biology holds the promise of adapting and leveraging

engineering principles, such as the reuse of parts and design information (standards), the analy-

sis of behavior at a higher level (abstraction), and the separation of the design process from the
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construction process (decoupling) [117], as illustrated in Figure 1.2.

Figure 1.2: Engineering principles in synthetic biology. Reuse of

parts and design information (standards), analysis of behavior at

a higher level (abstraction), and separation of the design process

from the construction process (decoupling).

The introduction of engi-

neering principles is essential for

the bottom-up construction of

genetic circuits. Standards play

an indispensable role in technol-

ogy and engineering, and they

are equally vital in synthetic bi-

ology. They serve as the bedrock

of every engineering discipline,

with applications spanning ar-

chitecture, electronics, mechani-

cal design, and chemical synthe-

sis [19]. In synthetic biology, standards become essential for precise property descriptions, repro-

ducibility, and predictability. These are achieved through the establishment of clear definitions,

descriptions, and characterizations of modular and reusable genetic parts [76, 121]. Moreover,

standards foster effective communication among diverse research groups and streamline the com-

patibility of various software tools. Abstraction within the design process empowers researchers to

work with higher-level descriptions, focusing on parts rather than intricate sequences. In the realm

of modeling, abstraction simplifies mathematical models, thus expanding the scope of systems that

can be effectively analyzed and simulated [192]. Finally, decoupling refers to the process of breaking

down a complex problem into smaller, modular components that can be addressed independently.

In the realm of synthetic biology, this entails separating the design and modeling aspects from the

intricacies of the construction process. Designers can articulate specifications using high-level for-

malisms or languages, which are then translated into physical realizations. Essentially, this means

that designers do not require detailed knowledge of the physical layer involved in the construction

process.
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1.2 Synthetic Biology’s Workflow

Synthetic biology adheres to an iterative design-build-test-learn (DBTL) cycle, illustrated in

Figure 1.3 (a). The cycle commences with an initial user-specified genetic circuit design, which

is then taken to the laboratory for building. Following this, the genetic circuit undergoes testing

within the specified environment. Typically, the initial attempt does not yield the desired results,

prompting users to draw conclusions, learn from errors, and subsequently refine the design. Drawing

inspiration from the field of electronic design automation (EDA), genetic design automation (GDA)

methods have been developed to enhance the DBTL workflow [169]. Software tools have been

created to support researchers in the in silico design, modeling, and analysis of genetic circuits.

GDA encompasses the aforementioned key engineering principles, including standardization for

part reuse and design information sharing, abstraction for higher-level analysis, and decoupling

to separate the design phase from the construction process [117]. The primary aim of GDA is

to streamline the iterative process by automating specific steps and guiding users in transitioning

from functional descriptions to genetic design descriptions [172, 173, 175, 52], and eventually to

mathematical models [80] for detailed analysis. Additional software tools have been developed to

emulate the construction process, assist in testing, and facilitate data analysis during the learning

phase.

Currently, a gap persists between computational and laboratory-based synthetic biology prac-

tices, impeding the advancement of the field. Although synthetic biology software tools are advanc-

ing, their integration into laboratory workflows remains limited. As a result, the field primarily

attracts researchers with expertise in related disciplines. Given the increasing complexity and criti-

cal nature of genetic circuits, the long-term goal of this work is to encourage researchers, including

those without computational backgrounds, to integrate GDA into their workflows. This work pro-

poses a modification to the conventional DBTL cycle, emphasizing modeling and analysis following

the design phase, as illustrated in Figure 1.3 (b), transforming the cycle into a model-based GDA

workflow. This revised cycle entails the identification of potential failure modes in genetic designs,

followed by computational analysis and evaluation, leveraging this insight to explore alternative
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designs of the genetic circuit. Furthermore, to validate its findings, this work compares computa-

tional outcomes with real-world experimental implementations, thus underscoring and evaluating

the efficacy of model-based GDA.

(a) Design-Build-Test-Learn cycle (b) Design-Model-Analyze-Build-Test-Learn cycle

Figure 1.3: The iterative synthetic biology workflow. The traditional process (a), begins with the
design of a genetic circuit, followed by building in the laboratory, testing, and utilizing any issues or
undesired behaviors for learning and circuit redesign. In contrast, the updated, proposed workflow
(b) introduces an additional phase involving modeling and computational analysis after the initial
design step. This phase aims to enhance the circuit’s design before progressing to construction,
testing, and further learning, with the goal of reducing the total iterations required to achieve a
robust design.

However, introducing modeling and analysis into the workflow also brings forth new chal-

lenges. Like engineers in all disciplines, synthetic biologists must prioritize robustness when design-

ing genetic circuits. Robustness refers to a system’s ability to function effectively despite external

and internal disturbances. Nevertheless, modeling and analysis remains a challenge, primarily due

to the inherent noisy and unpredictable nature of biological systems [72]. Closely linked to this

issue is the accurate predictability of genetic circuits. Predictability refers to a model’s capacity

to accurately predict the likelihood of erroneous behavior through computational analysis. In the

context of computational analysis, enhancing the predictability of a model becomes essential to

precisely anticipate the likelihood of circuit failure.
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Incorporating model-based GDA into the workflow facilitates the scaling up of genetic de-

signs, their application, and their ability to control cellular behavior. Consequently, this expedites

the design process and bolsters the predictability and robustness of designs, thereby increasing con-

fidence in the final product. Enhancing computational modeling and analysis through model-based

GDA conserves resources by enabling the prediction of a circuit’s behavior in silico before physical

construction in the lab.

The objective of this dissertation is to foster trust in synthetic biology software tools by

enhancing the predictability of genetic designs using model-based GDA tools. The central hypoth-

esis asserts that by emphasizing the advantages of fully utilizing model-based GDA tools, more

researchers will adopt them, thus broadening the field’s accessibility to a diverse, interdisciplinary,

and non-expert community.

1.3 Contributions

The contributions of this work center on genetic circuit design, modeling, and analysis. In

particular, this work focuses on three main aspects: the computational prediction of genetic circuit

behavior, identifying the appropriate level of abstraction that balances accuracy and computational

cost, and experimentally validating predicted erroneous behavior. The primary contributions are

as follows:

• Specification of mathematical properties to describe erroneous behavior of genetic circuits

• Framework for computational analysis of genetic circuits using different analysis methods

• Evaluation of various modeling techniques of genetic circuits, considering intrinsic and ex-

trinsic noise as well as characterized and default parameters

• Experimental validation of genetic circuit’s erroneous behavior

As part of this work, properties for the effective testing of genetic circuits have been devel-

oped, allowing the computational analysis of their stochastic behavior. Testing defined properties
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constitutes a fundamental component in various engineering disciplines. For instance, mechanical

engineers rely on computational analysis for material testing [237]. In electrical engineering, asyn-

chronous circuits undergo testing for delay faults due to their lack of clock control, unlike their

synchronous counterparts [118]. Additionally, they are also tested for manufacturing faults com-

monly found in transistor-based circuits [187]. Similarly, in the realm of synthetic biology, analysis

methods are applied to examine various properties, enabling the identification of unexpected be-

haviors. By enabling effective testing, these developed properties facilitate a more comprehensive

analysis of genetic circuits, leading to more reliable computational assessments. They form the basis

for precise computational predictions of a genetic circuit’s robustness.

Reviewing software tools developed for synthetic biology reveals that most applications rely on

ordinary differential equation (ODE) and stochastic simulation algorithms (SSAs) for computational

analysis. In this work, to utilize the developed properties, an automatic model converter that

includes an extensive collection of case studies has been implemented to translate ODE models

into stochastic models. The stochastic models, together with the properties, can be analyzed using

stochastic model checking. Stochastic model checking does not simulate the model and estimate the

probability of the state of interest but calculates its actual true probability. Furthermore, stochastic

model checking allows to return information on how the failure was reached. The included case

studies aid the community in developing and improving software tools for model analysis.

Delving into the design phase, various modeling techniques were developed to compare dif-

ferent influences on the genetic circuit as well as the effect of different levels of abstraction. The

same genetic circuit was modeled under varying conditions, including intrinsic and extrinsic noise

effects, the utilization of laboratory-characterized parameters, and the use of default parameters

obtained from literature. The comparison of results from these different models serves to assess the

level of effort required to achieve accurate predictions. For instance, it helps determine whether

extensive laboratory-based part characterization is necessary or whether using default parameters

from existing literature sources is acceptable. Additionally, this analysis illuminates the influence

of different sources of noise on a genetic circuit’s behavior. Finally, the results indicate the level
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of abstraction that can be used to compromise between the needed accuracy and computational

feasibility.

Finally, it is essential to validate computational results with experimental findings to under-

score the importance of in silico analysis. As previously mentioned, ensuring robustness is crucial

to guarantee proper circuit functionality. Experimental results revealed that dynamic failures could

impact steady-state behavior. Through in silico analysis, erroneous behavior was identified, and

the underlying causes of failure were pinpointed. Subsequent computational analysis identified a

dynamic failure, which was later confirmed through experimental validation via a modified experi-

ment.

Overall, this work deepened the understanding of circuit failure modes and improved their

analysis. Circuit failure has not yet been in the spotlight of the synthetic biology community.

Given the increasing complexity of genetic designs and the progression towards more vital systems

such as applications in human medicine, the necessity for robust and reliable circuits becomes

paramount. Achieving this level of design integrity is contingent upon employing model-based

GDA methodologies. Ultimately, this dissertation aims to bridge the gap between computational

and laboratory synthetic biology and highlight the advantage of utilizing the full extent of genetic

design, modeling, and analysis software in a laboratory workflow.

1.4 Dissertation Outline

This dissertation comprises seven chapters, each building upon the foundation established in

the preceding ones. Chapter 2 lays the groundwork for the subsequent chapters by introducing

essential context and key concepts. It begins with an exploration of fundamental biological princi-

ples, before diving deeper into the definition of genetic circuits. It is followed by attention to the

computational aspects of this work, encompassing standards, part libraries, and the software tools

used. By the end of the chapter, readers will possess a solid understanding of the foundational

principles essential for this dissertation.

Chapter 3 outlines failure modes observed in genetic circuits. It begins by defining incorrect
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genetic circuit behavior and proceeds to identify potential failures at the cellular level, as well as

those arising from the logic implementation or the function of the circuit. This chapter further

elaborates on various properties that characterize these failures. Finally, it concludes by elucidating

the selection of parameters utilized for specifying these properties.

Chapter 4 explains the modeling and computational analysis of genetic circuits. The chapter

first lays the groundwork by explaining the difference between ODE, SSA, and continuous time

Markov chain analysis. Next, it introduces circuit 0x8E, first published by Nielsen et al. [175], that

was used as a case-study throughout the presented work in this chapter. The main contribution is

the multifaceted analysis of circuit 0x8E and two of its deviations, analyzing the probability of failing

behavior for input transitions with function hazards, input transitions without function hazards,

and its steady-state behavior. Finally, the chapter scores the three different implementations to see

if one of the designs outperforms the others.

Chapter 5 extends the analysis conducted in Chapter 4 by repeating the analysis on circuit

0x8E model. This time, four additional computational models are employed, each utilizing different

techniques. The results from Chapter 4 are then compared to the outcomes of the analysis con-

ducted using these four additional computational models, each distinct from the others. The five

models used are: an intrinsic noise model, an extrinsic noise model, a default parameter model, a

characterized parameter model, and a stoichiometry amplified abstracted model. After comparison

of the analysis results, the chapters contribution is the argument that even if different modeling

techniques are used, the overall trend of the behavior remains, increasing the confidence in the

obtained results.

Chapter 6 demonstrates the practical application of the analysis methodology discussed in

previous chapters. It introduces a new circuit, circuit 0xF6 by Nielsen et al. [175], and outlines

the laboratory-based analysis conducted on this circuit. The chapter then compares the results

of this experimental analysis with the computational analysis performed using the methodologies

presented earlier. Based on the findings from both laboratory and computational analyses, the

chapter proposes a hypothesis suggesting that a circuit’s steady-state behavior may be influenced by
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its dynamic behavior over time. Finally, this chapter aims to experimentally validate this hypothesis

by presenting the outcomes of additional experimental analysis conducted on circuit 0xF6.

In Chapter 7, the work is summarized, discussing the results in detail and presenting po-

tential future research directions. These directions include refining failure definitions, advancing

computational progress for model-based GDA by updating standards and model fitting techniques,

enhancing methods for part characterization, and furthering laboratory automation.



”But do not despise the lore

that has come down from dis-

tant years; for oft it may chance

that old wives keep in memory

word of things that once were

needful for the wise to know”

- Celeborn, Lord of Lothlórien

2
Background

This chapter explains relevant concepts to provide a better understanding of the topics covered

in this dissertation. Section 2.1 establishes the necessary background in biochemistry. Section 2.1.1

introduces the central dogma of biology [59], while Section 2.1.2 acquaints readers with genetic

parts, their applications, and setup. Based off genetic parts, Section 2.2 delves into the engineering

of genetic circuits, exploring various design paradigms for their implementation. This section also

covers asynchronous digital logic, which serves as an abstraction to simplify DNA sequence design.

Section 2.3 connects the biological foundation to computational aspects, introducing mathemat-

ical modeling techniques for genetic circuits. This includes the classical chemical kinetic (CCK)

model [167] in Section 2.3.1, the stochastic chemical kinetic (SCK) model [167] in Section 2.3.2, and

12
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seady-state and dynamic modeling in Sections 2.3.3 and 2.3.4.

Transitioning to the computational background, Section 2.4 delves into various standards

employed throughout this work, encompassing Sections 2.4.1 to 2.4.4. Section 2.5 introduces part

libraries that house a registry of genetic components, including those used in this work. Lastly,

Section 2.6 presents the software tools used or developed as part of this research, which includes

iBioSim [226] (Section 2.6.1), Cello [175] (Section 2.6.2), and STAMINA [188] (Section 2.6.3).

2.1 Fundamentals of Biochemistry

While many concepts in this work originate from engineering and have applications in both

electrical/computer and biological engineering contexts, a foundational knowledge of biochemistry

is necessary for understanding this research. This section serves as an introduction to the central

dogma of biology and the concept of genetic parts, which are the building blocks used in the

construction of genetic circuits.

2.1.1 Central Dogma of Biology

Cells can be categorized into two types based on the presence or absence of a nucleus. Eu-

karyotic cells contain nuclei, which are membrane-enclosed organelles that store genetic information

in the form of deoxyribonucleic acid (DNA). While prokaryotic cells also utilize DNA, it is freely

distributed within the cell and not enclosed by a membrane.

The central dogma of biology outlines the flow of genetic information in both eukaryotic

and prokaryotic cells. According to this principle, genetic information is initially transcribed into

messenger RNA (mRNA) and subsequently translated into proteins that play a vital role in con-

structing and maintaining the organism’s life functions. The central dogma is visually represented

in Figure 2.1.

The central dogma involves other key actors, including RNA polymerase (RNAP) and ri-

bosomes. RNAP, an enzyme, facilitates the transcription process by binding to DNA, separating

its strands, and transcribing one of them into mRNA. During translation, mRNA associates with
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Figure 2.1: The central dogma of biology. A cell’s DNA is transcribed into mRNA and subsequently
translated into proteins. DNA is characterized by its double-stranded structure, while mRNA is
most commonly single-stranded.

an available ribosome, which reads the information on the mRNA and assembles amino acids to

construct a protein, following the provided instructions.

Segments of the DNA sequence that carry instructions for protein synthesis are commonly

referred to as genes. The entire collection of genes within a cell is known as the genome. Cells

regulate their gene expression in response to signals and environmental cues, enabling them to

communicate with other cells and adapt to changing conditions. Researchers have the capability

to manipulate a cell’s DNA, harnessing its capabilities for computational purposes [94]. These

modified DNA sequences, manipulating the central dogma, can be engineered to express specific

proteins or to guide the cell’s behavior in line with the designer’s objectives, leading to the creation

of constructs known as genetic circuits.

2.1.2 Genetic Parts

Inspired by engineering principles, genetic circuit components in synthetic biology are ab-

stracted to enable the creation and modification of desired functions without direct DNA sequence

manipulation. Synthetic biology achieves this by creating and reusing well-defined genetic parts,

serving as modular building blocks [227], such as BioBricks [227, 145, 201]. These genetic parts com-

monly include components like operators, promoters, ribosome binding sites (RBS), coding sequences

(CDS), and terminators.
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Promoters define the DNA sequences where transcription begins, while operators provide

sites for proteins to bind. Following the promoter, RBSs serve as binding sites for ribosomes on

the mRNA, initiating translation from mRNA to the final protein. The CDS represents the DNA

section encoding a protein using the genetic code, while terminators signal the end of transcription,

acting as roadblocks for RNAP.

Figure 2.2 shows a visualization of the genetic parts mentioned. Often, the combination of

these parts, as shown in the figure, is referred to as a transcriptional unit (TU). TUs are typically

integrated into a plasmid vector, also known as a backbone, which is a small, circular DNA fragment

often containing antibiotic resistance genes. This inclusion in the backbone ensures the stability of

the entire DNA sequence. The interactions between the components in the figure are indicated by

arrows. An arrow connecting the CDS to the protein represents the process of protein production.

In Figure 2.2 (a), the red, flat-headed arrow denotes repression, indicating that the protein binds to

the operator, thereby inhibiting transcription. This results in a negative feedback loop, where the

protein counteracts its own production. In many cases, operators lie within the promoter. Therefore,

instead of depicting operators and promoters separately, interactions are directly connected to the

promoter, as shown in the example in Figure 2.2 (b). Here, the green arrow represents activation

of the promoter, ultimately causing a positive feedback loop.

The proteins depicted in Figure 2.2, responsible for regulating transcription, are known as

transcription factors (TFs). These factors play a pivotal role in controlling gene expression through

activation or repression mechanisms by binding to operators situated either adjacent to or within

promoters [35]. Their binding can either activate DNA transcription by facilitating the recruitment

of RNAP or repress transcription by obstructing RNAP from binding to the DNA. Notably, tran-

scriptionally regulated genetic circuits were employed in the original genetic toggle switch [85] and

the repressilator [71].

Genetic parts exhibit varying behaviors within different genetic contexts [173, 219, 35, 42].

Combining multiple genetic parts can result in undesired interactions at the intersection of parts [231].

Nevertheless, standardization and a clear understanding of the expected behavior of genetic parts
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(a) Repression (b) Activation

Figure 2.2: Common genetic parts. In (a), the DNA strand is represented as a horizontal line linking
various genetic parts. Moving from left to right, these parts include: operator, promoter, ribosome
binding site, coding sequence, and terminator. The oval shape represents a protein, with an arrow
indicating protein production from the coding sequence. A red, flat-headed arrow denotes protein
binding to the operator, inhibiting RNA polymerase attachment to the promoter, leading to the
repression of protein production and creating a negative feedback loop. In (b), the genetic parts
are depicted without the operator site, since the operator is often considered part of the promoter.
The green arrow represents activation pointing from the protein directly to the promoter, resulting
in a positive feedback loop. This abstracted view remains independent of activation or repression
mechanisms.

are essential for accurate modeling and analysis of their function. The field has made substantial

efforts in characterizing and standardizing parts [74], building techniques, gate conformation, and

gate parametrization [121, 122, 163, 182, 201, 53].

To address the challenge of different genetic contexts, the inclusion of insulator sequences

proves effective in preserving the performance of genetic parts in a wide range of genetic applica-

tions [175]. For characterization, one method involves the use of relative promoter units (RPUs) to

measure promoter activity [116]. Promoters are characterized by comparing them to in vivo refer-

ence standard promoters, and the results are quantified in RPUs. The availability of a standardized

kit for experiments simplifies the measurement of RPUs and encourages their adoption by various

laboratories. Nevertheless, it’s important to note that, despite the availability of these test kits,

their effective use still requires expertise and effort.
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2.2 Genetic Circuits

Genetic circuits, also known as genetic regulatory networks (GRNs) [110], involve multiple

molecular regulators interacting to collectively control a cell’s gene expression and shape its behav-

ior. Genetic circuits are purposefully designed synthetic GRNs. Over time, a multitude of genetic

circuits have been created for diverse applications, across various organisms, including bacteria,

yeast, and fungi [68].

In synthetic biology, genetic circuits are built in a bottom-up approach. This process entails

the selection and combination of different genetic parts to engineer desired functions. In contrast,

genetic engineering primarily revolves around the modification or inactivation of existing genes

within an organism’s genome. This distinction, along with the engineering principles of standards,

abstraction, and decoupling, highlights the fundamental difference between synthetic biology’s ap-

proach to circuit construction and genetic engineering’s practice of altering pre-existing genetic

systems [66].

2.2.1 Genetic Circuit Design Paradigms

Different methods can be employed to implement genetic circuits within cells. Among these

methods, cells can be programmed at the transcriptional level through gene expression regulation, at

the post-transcriptional level using metabolic perceptrons [176], or protein interactions [155]. In the

context of this work, the focus is on designing genetic circuits at the transcriptional level, involving

the activation and repression of gene expression. However, a brief overview of three additional

design paradigms is provided.

Apart from transcriptional circuit design based on DNA-binding proteins, these paradigms

encompass adapted RNA-IN/RNA-OUT systems, clustered regularly interspaced short palindromic

repeats interference (CRISPRi) regulators, and recombinase systems [35]. For a more comprehen-

sive understanding of both transcriptional and post-transcriptional circuits, readers can refer to

[75]. Ultimately, irrespective of the chosen design paradigm for genetic circuits, the growing com-

plexity of larger designs mandates a model-driven approach, as manual consideration of all potential
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interactions becomes impractical for researchers.

For completion it is noteworthy that synthetic biology circuits can extend beyond cellular

implementation, with a specialized field known as cell-free synthetic biology [102]. A review of

current cell-free synthetic biology platforms can be found in[108].

The genetic circuits in this work are constructed using TFs, as previously introduced. Fig-

ure 2.3 (a) provides a visual representation of how TF regulated genetic circuits operate. In the

left TU, a protein is produced, as indicated by the arrow going from the CDS to the protein. This

same protein then represses the promoter of the second TU, as shown by the arrow with the flat

top. The protein binds to an operator within the promoter, preventing RNAP from accessing it

and thus inhibiting transcription.

Flipping specific DNA sequences, such as promoters or terminators, provides an alternative

method for controlling gene expression [205]. This process involves the use of recombinases, which

are specialized proteins capable of flipping DNA sequences between predetermined binding sites [35].

For instance, recombinases can be employed to activate or deactivate terminators, thereby regulating

the transcription of downstream coding sequences. Moreover, they can also be used to invert

promoters, coding sequences, or any other sequence situated between these specified binding sites.

Figure 2.1 (b) illustrates this system. The recombinase binding sites are indicated by the two

arrow heads on the DNA strand surrounding the terminator of the right TU. The left TU produces

a recombinase protein responsible for flipping the direction of a terminator associated with the right

TU. If the terminator is deactivated or flipped, as depicted in the figure, transcription of the protein

of interest can proceed. Conversely, when the terminator is activated by flipping it in the opposite

direction, RNAP will be unable to continue transcribing the protein of interest.

Gene expression can also be regulated using short RNAs, referred to as non-coding RNAs,

which do not encode proteins like mRNAs [35]. This system was initially adapted from E. coli,

where short RNA sequences bind to mRNA, impeding translation [134]. However, Liu et al. further

modified this system to repress transcription [129]. In this system, the mRNA of the gene of interest

(RNA-IN) is equipped with an additional binding site for a protein called rho-factor. When a specific
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(a) Transcription Factors (b) Recombinases

(c) RNA-IN/OUT (d) CRISPRi

Figure 2.3: Illustration of four different genetic circuit design paradigms. (a) Shows a TF binding
to a promoter of a downstream gene (right), preventing RNAP from binding and initiating tran-
scription. In (b), a TU produces a recombinase that flips a terminator in the downstream gene,
enabling RNAP to bind to its promoter and transcribe the CDS. (c) Illustrates the RNA-IN/OUT
system, where an upstream (left) TU produces a short non-coding RNA that binds to an actively
transcribed mRNA of a downstream gene. Through this binding, a rho-factor binding site is ex-
posed, allowing the rho-factor protein to bind to the mRNA and halt the ongoing transcription.
Finally, (d) demonstrates the CRISPRi system, in which a deactivated Cas protein is guided by a
guide RNA encoded by an upstream TU to a downstream TU, where it binds to a target sequence,
preventing RNAP from transcribing the unit.
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short non-coding RNA (RNA-OUT) is transcribed, it leads to the binding of the rho-factor to the

mRNA of interest, displacing the RNAP, and consequently repressing transcription elongation.

Figure 2.3 (c) provides a visual representation of the RNA-IN/RNA-OUT system. In this

diagram, the left TU produces a short non-coding RNA, while the right TU transcribes its DNA

into mRNA. The short non-coding RNA subsequently binds to the mRNA of the protein of interest,

facilitating the binding of the rho-factor to the mRNA. This interaction displaces the RNAP and

effectively terminates the transcription of the respective TU.

A fourth system to regulate gene expression is CRISPRi system based on modified Cas pro-

teins [35]. Cas proteins are part of the CRISPR system, which functions as an adaptive immune

system in bacteria [210]. CRISPR/Cas9 serves as a genetic scissor by guiding Cas (CRISPR-

associated) nucleases to specific DNA sequences using guide RNAs [195]. The nuclease then cleaves

the DNA at the specified location. Building upon CRISPR, CRISPRi employs guide RNAs and

deactivated Cas (dCas) nucleases to obstruct specific DNA locations, impeding transcription by

RNAP [104, 194, 29]. This system can also function as an activator by fusing an RNAP recruiting

domain to the dCas protein, facilitating transcription instead [29].

Figure 2.3 (d) illustrates the CRISPRi system. The left TU encodes a guide RNA that binds

to a dCAS protein and guides it to the TU of interest. There, it attaches to the promoter of the

target TU, preventing RNAP from binding to the promoter and initiating transcription.

2.2.2 Asynchronous Digital Logic

Designing genetic circuits at the sequence level by manipulating individual base pairs quickly

becomes unfeasible when dealing with larger circuits. Therefore, to assist researchers, various

abstractions can be applied to conceptualize the behavior of genetic circuits. One such abstraction

involves the application of digital logic theory to DNA. By employing digital logic abstraction

commonly used in electronic circuit design, genetic circuits can be visualized as combinations of

well-known logic elements, such as NOT, AND, or OR gates [233, 60, 219, 31].

Logic gates determine their output based on input signals. Digital logic theory is a funda-
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mental discipline in electrical engineering, foundational in the design of digital electronic systems,

including computers and smartphones. Digital logic circuits rely on binary states, with each signal

wire being in either a high (on) or low (off ) state. These circuits calculate the states of their outputs

based on the states of their inputs, employing different logic gates to perform various mathematical

logic operations. For example, a NOT gate inverts the input signal, meaning that if the input is

high, the output is low, and vice versa. An AND gate yields a high output only when both input

signals are high, while an OR gate produces a high output when either or both of its input signals

are high.

Figure 2.4 depicts the genetic implementation of a NOT gate (i.e., inverter) and an OR gate.

The NOT gate in Figure 2.4 (a) comprises a single TU with a repressible promoter. When the input

molecule is available, the signal is considered high or on. This high signal represses the promoter,

preventing transcription and thereby inhibiting the production of the output, resulting in a low or

off output signal. Thus, when the input signal is high, the output is low, and vice versa, which is

characteristic of a NOT gate.

Figure 2.4 (b) illustrates a genetic OR gate. An OR gate is characterized by producing a

high output signal if one or both of the input signals are high. The gate consists of a TU with

two activatable promoters. When the upper input molecule is available, the right promoter is

activated, leading to output production. Similarly, when the lower input molecule is available, the

left promoter is activated, resulting in transcription and production of the output molecule. If both

inputs are available, both promoters are active, leading to output production. However, if no input

molecule is available, no promoter is active, and no output production occurs.

Similar to logic design in electrical engineering, digital circuits can follow the synchronous or

asynchronous design paradigm. The synchronous design principle utilizes a global clock to update

the states of the system. It remains difficult to implement a precise clock in biological systems.

However, researchers put effort and progress towards successfully designing synchronous genetic

circuits [141]. The asynchronous design paradigm does not rely on a clock to update its states and

is, therefore, more applicable for genetic circuit design [173]. Asynchronous circuits can further



22

(a) Genetic NOT gate

(b) Genetic OR gate

Figure 2.4: Genetic logic gates. a) Illustrates a
genetic NOT gate (i.e. inverter). When the input
molecule is present (i.e. high or on), it represses
the production of the output protein, thus the sig-
nal is considered low or off. b) Demonstrates a
genetic OR gate. The TU producing the output
is controlled by two activatable promoters. One
promoter is activated by one input, and the other
promoter is activated by the other input. There-
fore, if either of the inputs or both are available,
the TU is activated, resulting in the production of
the output.
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be divided into sequential or combinational circuits. The output of combinational circuits is state-

independent, meaning the sequence of their inputs does not influence the output of the circuit.

Sequential circuits, however, have feedback loops or a memory unit, making the output dependent

on previous states and therefore depending on the sequence of their input changes [3]. Furthermore,

it is important to note that genetic circuits can alternatively to digital abstraction be viewed as

control systems as shown in [181, 65] or as analog circuits [62].

2.3 Genetic Circuit Modeling

For computational analysis, which is a key aspect of this work, genetic circuits must be

effectively modeled to enable in silico analysis. These models provide researchers with the ability

to predict the system’s behavior, potentially uncover unknown or unintended properties, and even

guide the overall design process. Mathematically, models empower researchers to construct the

circuit in the laboratory based on existing knowledge of the system, replacing the trial-and-error

approach [46].

While various modeling techniques have been developed, this work primarily utilizes dynamic

modeling, a well-established approach in the field [199]. Dynamic models are particularly useful for

describing the behavior of the various species within a genetic circuit, taking into account transient

states and responses to changing external stimuli or inputs. The dynamic modeling of the genetic

circuits in this work is accomplished using the law of mass action. GRNs, including genetic circuits,

comprise chemical reactions that describe the interactions among various molecular species and

DNA binding events [46, 146]. By applying the law of mass action, these chemical reactions can be

transformed into a set of ODEs, providing a mathematical representation of the system’s behavior.

The aggregation of these ODE models is collectively referred to as a kinetic-based model.

2.3.1 Classical Chemical Kinetic Model

The law of mass action is used to model the chemical reactions within biochemical systems as

CCK models. These models track chemical species’ concentrations within cells over time, with each
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model consisting of individual ODEs known as reaction rate equations. For a more in-depth under-

standing of CCK models, including mathematical definitions, reference to [167] is recommended.

Consider the chemical reactions shown in Equation 2.1 as an example.

pLac ko−−→ np · LacI + pLac

pLac + nc · LacI Kr←−→ pLacLacI

LacI kd−−→ ∅

(2.1)

This simple network comprises three species: the promoter pLac, the protein LacI, and the

complex formed when the protein binds to the promoter, denoted as pLacLacI. These species

interact through three distinct chemical reactions. The first reaction in the system involves the

production of np LacI molecules through the promoter pLac. The second reaction describes the

binding of nc LacI molecules to the promoter pLac, forming the pLacLacI complex and thereby

repressing the production of LacI. The final reaction is the degradation of LacI. The rate constants

for these reactions are denoted as ko, Kr = kf

kr
, and kd, respectively, and are indicated above the

arrows representing the direction of each reaction. According to the law of mass action, the rate

of a reaction, which signifies the change in species concentration over time, is determined by the

rate constant and the concentrations of the reactants raised to the power of their stoichiometry. By

applying this law, the reaction system depicted in Equation 2.1 can be transformed into an ODE

model, as presented in Equation 2.2.

d[pLac]
dt = −kf [pLac][LacI]nc + kr[pLacLacI]

d[LacI]
dt = np · k0[pLac]− nc · kf [pLac][LacI]nc + nc · kr[pLacLacI]− kd[LacI]

d[pLacLacI]
dt = kf [pLac][LacI]nc − kr[pLacLacI]

(2.2)

Analyzing the ODEs, it becomes evident that the availability of pLac increases through the

reverse reaction when pLacLacI dissociates into pLac and LacI. Conversely, it decreases through

the forward reaction when these two species bind to form pLacLacI. The concentration of LacI

behaves similarly due to this reaction: it decreases when LacI and pLac bind and increases when
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they dissociate. Additionally, LacI increases proportionally with pLac due to its production and

decreases through degradation. Finally, the concentration of pLacLacI is solely dependent on the

binding of pLac and LacI through the second reaction.

CCK models offer valuable insights, even though their reaction rate equations are often chal-

lenging to solve. Researchers commonly turn to numerical simulations to analyze these models.

However, CCK models come with specific assumptions. Firstly, they assume that the entire system

is well-mixed, enabling the disregard of spatial considerations [146]. To account for spatial aspects,

one must employ partial differential equations (PDEs) instead of ODEs. Secondly, the CCK model

assumes that all reactions occur deterministically and continuously [167]. While this assumption is

valid when a large amount of each species is involved, it may not hold true for GRNs. In GRN reac-

tions, certain species, such as mRNAs, are not abundantly available, making noise and stochasticity

dominant factors [150, 6]. Consequently, a stochastic modeling approach is required to accurately

describe their behavior.

2.3.2 Stochastic Chemical Kinetic Models

The assumption that a GRN behaves deterministically and continuously is often violated,

primarily due to the low number of molecules, typically on the order of tens or hundreds [167].

Addressing this issue, alternatively, chemical reactions can be viewed as stochastic processes. One

way to address this stochastic behavior is by transitioning from CCK models to SCK models. In

this framework, the conventional reaction rate constant kµ is replaced by a specific probability rate

constant cµ, representing the probability of a reaction occurring through the collision of a randomly

chosen combination of reactant species.

This model also operates under the assumption that reactions occur within a well-stirred

medium to mitigate spatial effects. Moreover, while the system does not necessarily imply chemical

equilibrium (i.e. reactant and product concentrations do not change), it assumes thermal equilibrium

(i.e. no temperature change) to calculate the relative velocity of the involved species. For a more

detailed explanation, please refer to the “Engineering Genetic Circuit” textbook [167].
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Another method frequently employed in this dissertation to model stochastic processes are

continuous-time Markov chain (CTMC) models. CTMCs are mathematical models designed to

elucidate the dynamics of a stochastic system continuously over time [123]. Importantly, these

systems can transition between various states as time progresses. In the context of a GRN it is

represented by a finite or infinite set of states. Each transition carries a specific rate, signifying the

probability of transitioning from one state to another. Consider the example shown in Equations 2.3:

R1 : P
kp−→ P +M, R2 : M

kd−→ ∅ (2.3)

with

kp = 1 P(t0) = 1

kd = 0.025 M(t0) = 40

The system consists of two reactions R1 and R2 and a promoter P expressing the molecule M .

R1 is the production reaction, producing one molecule through the transcription of a TU including

the promoter. The second reaction, R2, specifies the degradation reaction of M . In the initial state,

there are 40 molecules and one promoter. The reaction constants for production and degradation

are given as kp and kd. An example of a CTMC state space is shown in Figure 2.5, illustrating the

reaction system based on the reactions in 2.3.

The states within the CTMC represent the current quantity of molecules in the system.

Subsequent states indicate whether reaction R1 or R2 has occurred, leading to an increase or

decrease in the count of M , respectively. The reaction rate is determined by the number of reactants

and reaction constants. Without a bounding condition (e.g., M cannot exceed 250), there is no

restriction on the number of molecules that can be produced. Consequently, the model’s state space

is infinite, encompassing an unbounded number of states.
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Figure 2.5: CTMC illustrating the reaction system described in Equations 2.3. The initial state of
the system includes one promoter (P = 1) and 40 molecules (M = 40). Reaction R1 involves the
production of molecule M , while reaction R2 represents the degradation of M .

2.3.3 Steady-State Modeling

The concept of steady state occurs when the production and degradation rates of a species

reach chemical equilibrium, leading to no net change in the species over time. In models describing

steady states, it is assumed that all chemical reactions have reached equilibrium. This assumption,

referred to as the steady-state assumption, allows for the creation of steady-state models. These

models are derived by solving the set of algebraic equations resulting from setting all the first

derivatives in a kinetic-based model to zero [30]. Steady-state models simplify the mathematical

description of a genetic regulatory network, focusing on its long-term behavior. Research has

demonstrated the efficacy of this technique in genetic regulatory network modeling [146].

2.3.4 Dynamic Modeling

A different approach is necessary when there is interest in capturing dynamic behavior and

the steady-state model fails. Instead of assuming that all reactions are at equilibrium, it is assumed

that only fast reactions reach equilibrium. This quasi-steady-state assumption is often applied to

protein and enzyme reactions since they proceed much more rapidly than transcription and transla-

tion processes [30, 183]. Protein dynamics reach equilibrium faster, enabling a more precise study

of species dynamics that are not at steady state. However, a considerable difference in timescales

between the dynamics of species that reach equilibrium rapidly and those that do not is required
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to safely make the quasi-steady-state assumption [183].

2.4 Standards

The effective utilization of the mathematical models presented relies significantly on the use of

standards. Standards are an essential component of technology and engineering and, consequently,

are vital in synthetic biology. They play a crucial role in ensuring the reproducibility of experi-

ments, connecting various GDA software tools, facilitating data sharing among collaborators, and

enabling the submission of research results for publications. It is worth noting that standardization

is not limited to laboratory procedures; it also encompasses computational file formats, information

storage, and, as demonstrated, mathematical models. Standardization is indispensable for fostering

seamless and efficient communication across diverse research workgroups due to the growing array

of computational tools, prompting the community to establish these standards [38].

While some standards have been adapted from related fields like systems biology, synthetic

biology has also established its own set of standards. Bioinformatics standards, such as Gen-

Bank [24] and FASTA [178], are often employed for representing DNA sequences. These formats

are text-based and display the DNA sequence of a given design, with GenBank providing limited

annotations regarding the functionality of parts within the sequence. In the laboratory, standards

like BioBricks [201] and MoClo [107] have been developed for DNA assembly and cloning protocols,

while SEVA [204] is used for representing basic components of plasmid vectors.

To represent hierarchical genetic designs that encompass DNA as well as other types of com-

ponents (such as RNA, proteins, small molecules, etc.), the synthetic biology community has in-

troduced the synthetic biology open language (SBOL) [37, 151, 138, 189, 83]. Additionally, the

community has developed SBOL Visual, which provides a standardized set of glyphs for visualiz-

ing genetic designs [11, 185]. For modeling purposes, the community relies on the systems biology

markup language (SBML) [115, 105]. To encode simulations conducted on these models, the simu-

lation experiment description markup language (SED-ML) [208] is used, while the COmputational

Modeling in BIology NEtwork (COMBINE) archives [25] are employed to package design and mod-
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eling information together.

For the research presented in this dissertation, four key standards are of importance: SBOL,

SBML, SED-ML, and the COMBINE archive. Their logos and role in the workflow are shown in

Figure 2.6.

2.4.1 Synthetic Biology Open Language (SBOL)

SBOL is a community-driven, open-source standard for exchanging data related to genetic

designs, based on a machine-readable xml-based format. Libraries for programming languages

are available for accessing SBOL in Python [159], Java [236], JavaScript [153], and C++ [15].

Additionally, software tools that utilize this data format are available and covered later in this

section. The SBOL community encompasses both academic and industrial groups. To ensure

standardization and interoperability, it relies on ontologies such as the sequence ontology (SO) and

the systems biology ontology [189]. Ontologies are like dictionaries, formally specifying terms and

their relationships to another.

A key aspect of SBOL is that, unlike DNA sequence standards in other fields such as FASTA

and GenBank, it goes beyond representing the DNA sequence alone. SBOL is primarily focused

on capturing the composition and abstraction of genetic designs [170]. This means it has the

capability to encode various components, including the biological chassis, proteins, metabolites,

and their interactions. This feature is particularly valuable because designers are not necessarily

required to have detailed knowledge of the specific design sequence; they can effectively represent

the interactions within the system. Additionally, SBOL supports hierarchical designs, enabling the

combination of separate designs into more complex systems. Lastly, SBOL offers the flexibility to

add attachments, which could include experimental data or images related to a design.

Another aspect of SBOL is SBOL Visual, a standard designed to facilitate the graphical visu-

alization of genetic designs. Currently, SBOL Visual includes a collection of glyphs that enable users

to visually represent their designs. Users can easily download svg files containing these glyphs for

use in graphic editors or can draw these glyphs manually. Alternatively, tools like DNAplotlib [67],
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a Python package, or SBOLCanvas [216], a cloud-based tool, can assist users in creating designs

more interactively. It is worth noting that the glyphs featured in Figures 2.2, 2.3, and 2.4 have been

sourced from the SBOL Visual standard. All designs and visualizations in this work adhere to the

SBOL or SBOL Visual standards.

2.4.2 Systems Biology Markup Language (SBML)

The SBOL standard is complemented by the SBML format. While SBOL stores design in-

formation related to genetic designs, including their sequence, structure, and interactions, SBML

encodes the mathematical models of such designs. Therefore, SBML plays a crucial role in modeling

genetic circuits. Models, such as CCK models as depicted in Equations 2.2, are typically stored

as SBML files. SBML is a machine-readable format used for representing networks of biochemi-

cal reactions, encompassing various processes, such as gene regulation within genetic circuits, cell

signaling pathways, metabolic pathways, and biochemical reactions.

SBML is encoded using xml, similar to SBOL, facilitating interoperability between different

software tools and enabling reproducible science and collaboration. To work with SBML, there

are tools and libraries available for various programming languages, such as libSBML [33] and

jSBML [70].

SBOL and SBML complement each other significantly: one describes the system qualitatively,

while the other provides a quantitative description. These standards are widely used within the

community, and converters between them have been developed [174, 191, 80]. In this work, the

mathematical models of all genetic circuits are stored in the SBML format.

2.4.3 Simulation Experiment Description Language (SED-ML)

The third standard used in this work, SED-ML, serves another crucial purpose in ensuring re-

producibility. Similar to SBOL and SBML, SED-ML is a machine-readable xml-formatted standard.

In a figurative sense, while the aforementioned standards provide the blueprints of a system, SED-

ML encodes the instructions on how to utilize it. SED-ML includes information about the analysis
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method, specifying the simulation algorithm and its parameters, which model is used, any modifi-

cations applied to the model, as well as the output and visualization of the results [224]. For this

work, the models and designs are published alongside a SED-ML file, ensuring the reproducibility

of results in the future and upholding good scientific practices.

2.4.4 Computational Modeling in Biology Network (COMBINE) Archive

COMBINE is a global community that coordinates the development of various standards

and formats for computational models [168]. SBOL, SBML, SED-ML, and others are part of the

initiatives led by this community. The COMBINE archive is often referred to as “the one file to

share them all” since it serves as a means to bundle all the necessary information for reproducing

a simulation study. This includes, but is not limited to, SBOL, SBML, and SED-ML files.

In order to enable future researchers to reproduce the studies conducted in this thesis, the

COMBINE archive is used to gather and share all the pertinent information. This sharing of results

is crucial for this thesis as well as for collaboration with others in the field. The wider success and

scalability of this research field rely on the adoption and acceptance of such standards within the

community [149]. The standards mentioned herein represent a significant step in the right direction.

Figure 2.6: GDA workflow. Part libraries, standards, and software tools play pivotal roles in
the GDA workflow. Part libraries contain comprehensive genetic part information, formatted in
standardized formats, which can be readily accessed and integrated into various software tools.
Within these tools, genetic components are assembled into designs, subjected to modeling and
analysis, and the outcomes are then uploaded to repositories using the same established standards.
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2.5 Part Libraries

Part libraries enable a reproducible and modular engineering approach to design. Community-

developed part repositories store characterized genetic parts, facilitating the exchange of genetic

design information. Accessing information about previously used parts allows researchers to effi-

ciently design and build new genetic circuits. These part libraries can then be shared using data

repositories, such as the International Genetically Engineered Machines (iGEM) registry of stan-

dard biological parts [221, 209] or the SynBioHub data repository [152]. Sequences can also be

found in public sequence databases, such as those available from the National Center for Biotech-

nology Information (NCBI) [196], or in plasmid repositories, such as Addgene [111]. Examples of

part libraries include the Standard European Vector Architecture (SEVA) database [204] for plasmid

vectors and the Joint Bio-Energy Institute Inventory of Composable Elements (JBEI-ICE) [96].

The iGEM part library is an important resource used by the iGEM competition [36], in which

interdisciplinary student teams design, build, and test genetic circuit designs. These teams use

existing and contribute new registry parts. iGEM parts have been used, for example, to build an

arsenic biosensor [14] and to control bacterial cellulose production [79]. However, curation of such

a database remains challenging [144, 145].

Another important repository is SynBioHub [152]. SynBioHub is a design repository that

allows users to upload their biological designs using standards like SBOL. SynBioHub enables the

creation of collections that can be private or public and offers the option to create share links

for sharing collections of designs with collaborators. Parts can be stored individually within the

collection, including their DNA sequence, or as entire constructs. SynBioHub also allows users to

visualize the design using SBOL Visual, highlighting the different components, sequence annota-

tions, and sequence constraints. Furthermore, SynBioHub facilitates the upload of attachments

such as experimental data or simulation results. Another aspect of SynBioHub is its database of

genetic parts that be queried for research designs. Finally, SynBioHub, based on standards, can

share the stored information with other software tools to seamlessly integrate it into the synthetic

biology workflow. Some of these software tools are highlighted in the next section. Both, the iGEM
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and SynBioHub logo and their role in the workflow are shown in Figure 2.6.

2.6 Software Tools

Software tools enable the design of genetic circuits through graphical user interfaces, making

the field accessible to researchers who may not have expertise in laboratory work or extensive

computational knowledge. These tools automate the design process by utilizing the aforementioned

standards to access part libraries containing characterized genetic parts. Similar to electronic design,

an in-depth understanding of the individual properties of each part is not required, as the software

guides the user in creating a genetic circuit by combining standardized genetic components.

As published by the author in [38], Table 2.1, provides a non-comprehensive overview of

software tools for GDA. In this context, GDA tools refer to those specifically developed for designing

and modeling genetic circuits and their sequences. The table includes information about their

application domains, support for standards and part libraries, and the availability of support and

documentation. The first group of tools is developed by academic researchers, while the second

group is developed by commercial vendors. Additionally, software tools can be categorized into

sequence editors, which require users to work directly on the DNA sequence, and high-level (HL)

design and modeling tools that introduce abstraction into the design process, allowing researchers

to work with genetic parts rather than focusing on the sequence itself.

There are two high-level design tools that support the entire workflow by utilizing standards

and connecting to part library repositories. First, iBioSim [226, 164, 190], is an actively developed,

open-source academic tool for the model-based design of genetic circuits. Researchers can create

and edit hierarchical genetic designs represented using SBOL and visualize them with SBOL Visual.

iBioSim can automatically generate computational models represented in SBML for simulation [81,

158], and it can fetch parts and store design information in SynBioHub. It is used in the community;

for example, Xiang et al. used it to design and analyze a genetic circuit for the detection of early

biological markers of Lung Cancer [228].

Second, Cello [109, 52, 175], specifies genetic circuit designs using the hardware description
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Table 2.1: Non-comprehensive list of software tools specifically developed for genetic circuit design.
The table is categorized into two groups: academic and industrial. The academic tools originate
from research institutions, while the industrial ones are developed by commercial entities.

Tool Application Standards Part Library
Repositories

Supported /
Documented

ApE [63] Sequence
Editor GenBank - Yes / Yes

Cello [109, 52, 175] HL Design SBOL SynBioHub Yes / Yes

Device Editor [50] Sequence
Editor

Genbank, FASTA
SBOL,

SBOL Visual
JBEI-ICE Yes / Yes

Eugene [86] Sequence
Editor

FASTA, GenBank,
SBOL - No / Yes

GeneTech [13] HL Design SBOL, SBOL Visual - Yes / Yes

GenoCAD [61] Sequence
Editor

GenBank, FASTA,
SBML - No / Yes

iBioSim [226, 164, 190] HL Design
& Modeling

SBOL, SBOL Visual,
SBML, SED-ML,

COMBINE Archive,
GenBank, FASTA

SynBioHub Yes / Yes

j5 [101] Sequence
Editor

SBOL, SBOL Visual,
FASTA, GenBank JBEI-ICE Yes / Yes

Mosec [156] Modeling SBML, CellML,
GenBank, SBOL - No / No

Proto BioCompiler [20] HL Design
& Modeling

SBOL,
SBML, CellML - No / No

SBOLCanvas [216] Sequence
Editor

SBOL,
SBOL Visual SynBioHub Yes/ Yes

SynBioSuite [200] Sequence
Editor

SBOL,
SBOL Visual SynBioHub Yes/ Yes

SBROME [106] HL Design - - No / Yes

Tellurium [154, 54] Modeling
COMBINE archive,

SBML, SED-ML,
CellML, SBOL

- Yes/ Yes

Tinkercell [48, 49, 47] HL Design
& Modeling

SBML, SBOL,
SBOL Visual - No / Yes

Benchling
https://www.benchling.com

Sequence
Editor GenBank, FASTA

AddGene,
iGEM, NCBI

JBEI-ICE
Yes / Yes

Doulix
https://getstarted.doulix.com

Sequence
Editor

SBOL, SBOL Visual
GenBank, FASTA Doulix Yes / Yes

Geneious
https://www.geneious.com

Sequence
Editor GenBank, FASTA NCBI Yes / Yes

Genetic Constructor [17] Sequence
Editor

SBOL,
SBOL Visual,

GenBank
iGEM, NCBI No / Yes

Visual GEC [234] HL Design
& Modeling SBML - No / Yes

Genome Compiler
https://designer.genomecompiler.com

Sequence
Editor GenBank, FASTA Addgene

iGEM, NCBI No / No

OpenVectorEditor
https://github.com/TeselaGen/openVectorEditor

Sequence
Editor GenBank, FASTA - Yes / Yes

Snapgene
https://www.snapgene.com

Sequence
Editor GenBank, FASTA NCBI Yes / Yes
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language (HDL) Verilog, and maps them to parts from the Cello gate library. The Cello tool has

been tested with 60 genetic circuits in E.Coli [175]. Example circuits designed using Cello include a

drug delivery circuit for Bacteroides thetaiotaomicron [213] and genetic logic gates for Pseudomonas

putida [215]. iBioSim and Cello are both important GDA tools used in this work. Their logos and

connection to the workflow can be seen in Figure 2.6.

2.6.1 Intelligent Biological Simulator (iBioSim)

iBioSim is an actively developed open-source tool for the modeling, analysis, and design of

genetic circuits. Its primary objective is to promote model-based design of genetic circuits using

community-developed data standards such as SBOL [83, 189, 151, 138], SBML [105], and SED-

ML [224]. Additionally, iBioSim facilitates the sharing of designs, models, and analysis results via

the SynBioHub data repository [152].

iBioSim offers a comprehensive suite of tools for genetic circuit design, including the integrated

SBOLDesigner software [235]. SBOLDesigner enables the creation and editing of hierarchical genetic

designs, represented in compliance with the SBOL data standard and visualized using the SBOL

Visual standard [185, 21, 11]. Genetic part information can be accessed directly from SynBioHub,

and designs can be exported in the SBOL format. Furthermore, iBioSim supports the automatic

generation of models from SBOL to SBML, leveraging the Virtual Parts Repository (VPR) model

generator [157, 56]. VPR enhances the SBOL representation with non-DNA components and their

interactions. This includes the addition of proteins produced by genetic circuits, specifying in-

teractions between these proteins and the promoters within the design, and incorporating small

molecules used as inputs and their interactions. The computational model is then created using

the integrated SBOL to SBML converter [191, 80]. This converter translates structural and func-

tional information in SBOL into a quantitative model expressed in SBML, using either generic or

user-defined parameters. As part of this work, iBioSim was enhanced with a converter allowing to

translate SBML models to CTMCs encoded in the PRISM language [124].

Finally, iBioSim includes various simulation methods for analyzing SBML models including,
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but not limited to, ODE and stochastic simulations. The simulations are encoded using SED-ML,

facilitating compatibility with other simulators. iBioSim was extensively utilized for numerous

analyses, circuit construction, and modeling in this work.

2.6.2 Cello

In 2016, Nielsen et al. introduced Cello [175], a GDA tool that applies principles from EDA

to genetic circuit design, streamlining and expediting the genetic design process. Users specify

their desired circuit function using the Verilog HDL, and Cello automatically translates this into a

corresponding DNA sequence. Cello was instrumental in automating the design of 60 combinational

genetic circuits, all of which were tested in E. coli.

A pivotal component of this project is the Cello library, which consists of 12 orthogonal

repressors. These repressors drive individual expression cassettes, each of which includes a stability

element, RBS, CDS, and terminator. Additionally, for each expression cassette, there exists a

corresponding repressible sensor unit, comprised of a spacer and a promoter. Figure 2.7 illustrates

the F1 AmeR expression cassette and its associated sensor unit. The stability element, positioned

upstream of the RBS, serves as an insulator for the expression cassette, preventing interference from

other parts, such as promoters, added upstream. The sensor unit also incorporates an isolator, built

out of a 15 DNA base pair spacer with a randomly generated DNA sequence.

The expression cassettes and sensor units within the Cello project are well-characterized and

fine-tuned to ensure predictable behavior. This predictability enables the seamless interconnection

of these components to construct genetic circuits with known and reliable outcomes. This work

leverages genetic circuits designed by Cello and assembled using components sourced from the

Cello library.

2.6.3 STochastic Approximate Model-Checker for INfinite-State Analysis (STAMINA)

Stochastic model checking has proven to be a highly effective method for studying biochemical

systems, including GRNs and genetic circuits [140, 39]. A genetic circuit’s stochastic model’s state
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Figure 2.7: Cello expression cassette and sensor unit. The F1 AmeR expression cassette comprises
a stability element (RiboJ54 ), a RBS (RBS-F1 ), a CDS (AmeR) encoding the AmeR protein, and a
terminator (L3S3P31 ). The incorporated stability element functions as an insulator, safeguarding
the cassette from upstream genetic parts. The sensor unit is composed of a 15 DNA base pair spacer
(PAmeR spacer) and a repressible promoter (PAmeR) that corresponds to the cassette.

space represents all possible states that the genetic circuit can reach. Stochastic model checking,

in turn, calculates the probability of a specific event occurring during the system’s execution. This

specific event, often referred to as property, is user-defined and encoded in probabilistic temporal

logic [125]. Probabilistic temporal logic defines the likelihood of events and their temporal relation-

ships with other events [123]. This approach differs from conventional model checking as it focuses

on the probability of failure rather than just its possibility. Instead of determining whether an event

can be reached, it quantifies the likelihood of that event being reached.

Numerous algorithms have been developed for stochastic model checking, with additional

information available in [123, 10, 9, 58, 97, 220]. Currently available tools include, but are not

limited to, PRISM [124], STORM [64], STAMINA [171, 188], INFAMY [95], and STAR [162].

Nevertheless, a challenge remains when applying these tools to GRNs.

PRISM and STORM are effective tools for analyzing stochastic models, but they are mostly

confined to models with finite state spaces. In contrast, synthetic genetic circuit models do not

have finite state spaces; they possess countably infinite state spaces. To overcome this limitation,

alternative approaches have been developed. Tools like STAMINA, INFAMY, and STAR offer
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methods to transform infinite state space models into finite representations, enabling their analysis

using tools such as PRISM or STORM.

In this study, STAMINA is used to obtain a finite representation of the infinite state spaces

of the genetic circuit models. Subsequently, PRISM and STORM, integrated in STAMINA, are

utilized for stochastic model checking throughout this research. The next chapter, in conjunction

with standards, part libraries, and tools, establishes properties of interest in genetic circuit design.

These properties serve as the basis for analyzing and predicting the behavior of various genetic

circuits, employing both simulation and model checking approaches.



”If we fail, we fall. If we suc-

ceed - then we will face the next

task.”

- Gandalf the White

3
Failures of Genetic Circuit Behavior

Chapter 2 introduced the concept of standardized and predictable genetic circuit parts. How-

ever, in reality, genetic parts are considerably less predictable and standardized than their electronic

counterparts [35, 42]. Despite ongoing efforts to develop perfectly predictable and reliable genetic

parts, ideally with data sheets akin to those in electronic design, it is highly improbable that they

will ever attain the level of predictability and standardization observed in electronic components [41].

Genetic circuits, owing to their biological nature, depend on protein-protein and protein-DNA/RNA

interactions rather than physical wiring. Consequently, unlike electronic circuits, genetic circuits

are much more susceptible to the influence of noise. Researchers frequently report faulty behavior

in their genetic designs at the transcriptional, translational, and cellular levels [35, 175, 120].

39
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This chapter initially outlines incorrect behavior in genetic circuits by introducing two circuits:

circuit 0xF6 and circuit 0x8E, both designed computationally using the software tool Cello [175]

(Section 3.1). These circuits were constructed using well-characterized Cello parts but are of par-

ticular interest due to the detection of faulty behaviors during laboratory testing. The examples

presented will guide the reader through the chapter.

Following the discussion of the empirical failures observed, the subsequent Section 3.2 sys-

tematically defines potential failure reasons. The section begins by addressing reasons for circuit

failure with a focus on biological aspects (Section 3.2.1). Commonly reported failure modes of this

nature include read-through [35, 53], roadblocking [173, 175], crosstalk [57, 173, 219], and signal

mismatch [173, 219, 35, 230]. Additionally, the low molecular count within the cell renders the

genetic design susceptible to stochastic and noisy behavior [193, 127, 186, 72, 217].

Despite the biological reasons of failure, abstractions such as digital logic and control theory

can provide researchers with a different perspective on understanding circuit failures. Section 3.2.2

delves into failures stemming from the logic implementation, referred to as logic hazards of a circuit.

The last failure mode elucidated in Section 3.2.3 pertains to failures resulting from the function of

the genetic circuit itself, referred to as function hazards.

Section 3.3 subsequently introduces the properties needed for the analysis of failures in the

context of abstractions. The section begins with the mathematical definition of these properties

(Section 3.3.1) and concludes by outlining the parameter evaluation, justifying the specific param-

eters used in the analysis of the circuit in the following chapters (Section 3.3.2).

3.1 Definition of Incorrect Genetic Circuit Behavior

To investigate genetic circuit failures, it is necessary to establish criteria for determining

when a circuit is malfunctioning rather than operating correctly. There are various ways in which a

circuit can exhibit incorrect behavior. One evident failure occurs when a circuit does not produce

the expected output, manifesting unexpected and sustained behavior that does not self-correct.

These failures pertain to the circuit’s steady-state behavior. The state of a circuit is defined by the
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configuration of its internal molecules, representing the status of signals governing the circuit as

either on or off. A steady-state failure signifies a situation in which the circuit’s output deviates

from the expected output for a given state. In other words, the output stays off when it should

be on, or vice versa. Such failures can occur when the circuit lacks the capability to effectively

discriminate between on and off signals.

Another failure arises when circuits manifest undesirable behavior during transitions between

states. When the circuit transitions from one state to another, the internal signals must adapt to

the new state. However, during this transition, the circuit may exhibit an unexpected output before

reaching the intended final state. Since this failure is observable only during the transition and not

at the final steady state, it is categorized as transient behavior.

The prevention of these failures is of paramount importance, especially when the circuit is

deployed in safety-critical applications. For example, in scenarios where a circuit is tasked with

producing pharmaceuticals within a biological system, it is crucial to ensure the correct operation

of the circuit. Failures in steady-state behavior can lead to issues such as the drug not being

released when needed or being dispensed in inadequate concentrations to achieve the desired effect.

Similarly, failures in transient behavior can have serious consequences, for instance, when the drug

is unintentionally released prematurely, contrary to the intended timing.

3.1.1 Steady-State Failure of Circuit 0xF6

As mentioned in Chapter 2, genetic circuits can be regarded as asynchronous digital circuits.

The behavior of a digital circuit is defined by its Boolean function. Boolean functions calculate an

output state of a system to be either on or off based on the input states of the circuit. Instead

of mathematical operators like addition, subtraction, and multiplication, Boolean functions rely on

logic operators such as NOT, OR, and AND gates. Genetic implementations of these logic operators

are illustrated in Chapter 2.

A Boolean function can be depicted as a truth table, illustrating columns for the input signals

and output signal. Typically, an on signal is denoted by a 1, and an off signal is represented by a 0.
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Figure 3.1 (a) displays the truth table of circuit 0xF6, originally introduced by Nielsen et al [175].

The circuit is named according to its outputs, 11110110, which corresponds to “F6” in hexadecimal

notation. This circuit is non-sequential as it lacks a memory unit or state-holding gate, rendering it

combinational. The circuit responds to the presence of three inducer molecules (i.e., input signals):

Arabinose (Ara, ChEBI=17535), Isopropyl-beta-D-thiogalactopyranoside (IPTG, ChEBI=61448),

and Acetylcholine (aTc, ChEBI=15355), producing yellow fluorescent protein (YFP) as an output.

YFP is a fluorescence protein absorbing light at 513 nm (green/blue light) and emitting yellow light

at 530 nm. For instance, in the absence of any inducer, as shown in the first row of the truth table,

the circuit yields a high output, indicated by YFP production. Conversely, when all inducers are

present, as demonstrated in the last row, no YFP is produced, and the output signal is off. For

this work, the output reporter YFP used by Cello was replaced with superfolder green fluorescence

protein (sfGFP) [180], which is more stable with visible fluorescence, making it easier to detect.

sfGFP absorbs light at 488 nm (green/blue light) and emits green light at 510 nm.

The combination of logic gates, often referred to as the circuit’s logic, is illustrated in Fig-

ure 3.1 (b). The circuit comprises three NOR gates, denoted by , three NOT gates ,

and one OR gate indicated by , all adhering to the IEEE Std 91/91a-1991 standard. In digital

logic, a NOT gate inverts the input, meaning a high input leads to a low output and vice versa.

OR gates produce a high output if either or both of the inputs are on. NOR gates are essentially

OR gates with an additional NOT gate, inverting the output. The color coding represents the

expression cassettes employed for gate implementation. For instance, the blue gate is based on the

pSrpR expression cassette, producing the SrpR protein. The two promoters steering this expression

cassette are repressed by the inducers IPTG and aTc.

Circuit 0xF6 is noteworthy for its steady-state behavior. In the context of this disserta-

tion, experimental flow cytometry analysis, as conducted in the Cello paper [175], was replicated

in a laboratory setting. For preparation, three cultures of bacteria, referred to as bacterial repli-

cates, containing the circuit were cultivated in Luria-Bertani (LB) broth—a nutrient-rich medium

conducive to optimal bacterial growth. Subsequently, these populations were transferred to three
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Inputs Output

IPTG aTc Ara YFP
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 0

(a) Truth table of circuit 0xF6 (b) Logic of circuit 0xF6

Figure 3.1: Circuit 0xF6, as presented by Nielsen et al. [175]. (a) The circuit’s function is illustrated
through a truth table. The original circuit comprises three inputs —IPTG, aTc, and Ara— and
one output, YFP. (b) Depicts the circuit’s logic, consisting of three NOT gates, three NOR gates,
and one OR gate.

distinct rows of a 96-well plate. Each well in a row held a different concentration of the three inducer

molecules, representing all eight possible input combinations as depicted in the Truth Table 3.1 (a).

After incubating the cells for three hours, their current state was arrested using a stop solution.

The stop solution comprises a mixture of approximately 2.5 mg/mL chloramphenicol solution and

phosphate-buffered saline (PBS). PBS is included to help maintain osmotic pressure in the cells.

The purpose of the stop solution is to rapidly and completely halt cell growth. Finally, the 96-well

plate was subjected to analysis through flow cytometry.

Flow cytometry uses a laser to assess the fluorescence of individual cells by pulling them

through a tube individually. Besides measuring the fluorescence, this method also enables cell

counting. The results of this analysis are depicted in Figure 3.2. This figure illustrates the outcomes

for the three biological replicates highlighted in different shadings, along with the results of three

sfGFP-expressing bacteria employed for normalization and calculating RPUs. Each column in the

plot represents the fluorescence of a state in logarithmic relative fluorescence units (RFU) against

the number of cells on the x-axis. For instance, the initial column of biological replicates one, two,

and three showcases the state IPTG, aTc, and Ara = (0, 0, 0), denoting an on state. The average

fluorescence for this state exceeds 103. The measurement forms a normal distribution, with over



44

500 cells contributing to the average fluorescence.

Figure 3.2: Flow cytometry analysis of circuit 0xF6. The analysis was conducted on three biological
replicates indicated in different shadings, along with three RFU expressing bacteria for normaliza-
tion. Each column in one biological replicate represents one of the eight possible states, such as
the first column indicating state IPTG, aTc, Ara = (0, 0, 0). The results are presented as a cell’s
fluorescence in RFU over the number of cells, resulting in a normal distribution. Six out of the
eight state reach a high output with two states remaining low.

The outcomes indicate variations in fluorescence among different states. Despite having six

distinct states with high output, each state does not exhibit equally high signals. While it is feasible

to distinguish the six on states from the two off states, it is evident that some on states do not

display the same level of activation as others. This undesired behavior constitutes a steady-state

failure.

3.1.2 Transient Failure Behavior of Circuit 0x8E

Similar to circuit 0xF6, circuit 0x8E also exhibited a failure in the laboratory, albeit of a

different nature. Failures do not only occur during steady state, but also during state transitions.
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These failures only occur during the transition phase and correct themselves over time when steady

state is reached. Therefore, they are called transient failures. Figure 3.3 (a) presents the truth

table for circuit 0x8E, as initially introduced by Nielsen et al. [175]. It is named after the hexadec-

imal conversion of the binary number 10001110, the circuit’s output, which corresponds to “8E”.

Similar to circuit 0xF6, this circuit is non-sequential, lacking a memory unit or state-holding gate.

It responds to the presence of the same three inducer molecules—IPTG, aTc, and Ara and also

generates YFP as its output.

Inputs Output
IPTG aTc Ara YFP

0 0 0 1
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 0

(a) Truth table of circuit 0x8E (b) Logic of circuit 0x8E

Figure 3.3: Circuit 0x8E as published by Nielsen et al. [175]. (a) Shows the function of the circuit
as a truth table. The circuit has three inputs, IPTG, aTc, and Ara, as well as one output YFP. (b)
Shows the logic of the circuit. The circuit consists of four NOR gates and one OR gate.

The circuit comprises four NOR gates, denoted by , and one OR gate, represented

by , adhering to the IEEE Std 91/91a-1991 standard. The color coding again corresponds

to the expression cassettes employed for gate implementation. For instance, the blue gate utilizes

the HlyIIR expression cassette, producing the HlyIIR protein. The two promoters steering this

expression cassette are repressed by the inducers aTc and Ara.

This circuit is particularly interesting due to an observed transient behavior failure in exper-

imental results [175]. In an experiment, the circuit was initially set to the states Ara, aTc, IPTG =

(0, 0, 0). After three hours, the different inputs were set to the other eight states. Figure 3.4 dis-

plays the results of a time course experiment for circuit 0x8E. The x-axis represents time in hours,
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and the y-axis, in a logarithmic scale, represents RPUs. During the experiment, flow cytometry

analysis was conducted every 30 minutes over a 5-hour period.

Figure 3.4: Time course analysis of circuit 0x8E using flow cytometry. The circuit was initially
incubated in state Ara, IPTG, aTc = (0, 0, 0). After reaching a steady state, inducers were added
to transition to all other states. Throughout the transition, flow cytometry was conducted every
30 minutes for 5 hours. At the five-hour mark, the states were grouped into their respective on
(shown in green) and off (shown in purple) states. While all states reach their expected steady
state, the transition from (0, 0, 0) to (1, 1, 0) (shown in red) briefly turns off instead of staying on
as expected. Courtesy of [81].

The circuit initially starts in an on state with inducers set to (0, 0, 0). The plot illustrates

eight transitions to all other states. On the right-hand side, the states are grouped based on whether

they end up in an on (green) or off (purple) state. Comparing these states with the truth table

reveals that the circuit correctly reaches the intended steady state, producing the expected output.

However, special attention is given to the transition from (0, 0, 0) to (1, 1, 0), highlighted in red.

Both the initial and final states produce a high output. However, during this transition, the circuit

briefly turns off before returning to its final on state, indicating a transient failure.



47

3.2 Genetic Circuit Failures

As illustrated, real-world failures have been observed, presenting as undesired or unpredictable

switching behavior in the circuit’s output. These manifestations of faulty behavior take different

forms in practice. Initially, during the transition from one state to another, the output briefly turns

off, contrary to the expected maintenance of the on state. This transient failure, observed in circuit

0x8E as mentioned earlier, is identified as a static 1→1 glitch and is depicted in Figure 3.5 (a).

The anticipated behavior, where the output remains high, is represented by the black dashed line.

However, it briefly turns off after the input transition (dashed blue line).

Figure 3.5: Potential failures of a genetic circuit’s output are illustrated in the graph depicting
the circuit’s fluorescence over time. Dashed blue lines signify input transitions. (a) Unexpected
switching occurs after the input transition, where the output is expected to stay high both before
and after the change. However, the signal briefly turns off before recovering and returning to the on
state. (b) A different unwanted switching behavior occurs after a second input transition, where the
circuit is intended to turn off. During the turn-off process, the circuit briefly turns on again before
ultimately switching off. The behaviors in both (a) and (b) self-correct over time, categorizing them
as transient. Lastly, (c) displays a steady-state failure. Despite being expected to turn on after the
final input change, it settles in the incorrect steady state, between on and off.

Another transient failure is a dynamic 1→0 glitch, illustrated in Figure 3.5 (b). Following

the second input transition, indicated by the blue dashed line, the circuit’s output is expected to

transition from on to off. However, during this transition, the output briefly switches back on before

ultimately settling in the off state.

The transient behavior depicted in Figure 3.5 (a) and (b) is attributed to hazards within

the circuit. A hazard denotes the potential occurrence of an undesirable effect, whether stemming

from the circuit design or external influences. While a hazard only signifies the possibility of such
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a failure, a glitch characterizes the actual occurrence of the failure. It is crucial to recognize that

glitches signify transient failures only, implying that the failure corrects itself over time. However,

if the output is irreversible, the circuit’s function can be compromised.

Finally, the steady-state failure observed in circuit 0xF6 is depicted in Figure 3.5 (c). Fol-

lowing the last input transition in this case, the output is expected to switch on. Nevertheless, it

remains in an incorrect steady state, staying below the expected on state but above the off state.

It is crucial to recognize that each failure has an opposite counterpart. A static 1→1 glitch

refers to a momentary turning off of the circuit when it should remain on. In contrast, a static

0→0 glitch involves the circuit, expected to stay off, briefly turning on. Similarly, for the dynamic

1→0 glitch, there is a dynamic 0→1 glitch. The former describes a transition from an on to an off

state with a brief relapse to output production, while the latter involves a transition from off to on,

with the output briefly turning off again. Ultimately, the circuit can also erroneously settle in an

incorrect steady state by remaining high when it is supposed to be off.

Various approaches can explain the occurrence of these failures. Firstly, they may arise from

cellular-level issues, as discussed in the next section. Secondly, failures can stem from the logic of

a circuit, similar to circuits in electronic design. Thirdly, failures can also be introduced due to the

function of the circuit itself. It is crucial to note that, unlike electronic circuits, glitching behavior

in genetic circuits can be reduced but not completely eliminated. Input transitions, even without

hazards, still have a low probability of glitching, primarily due to the underlying noisy behavior of

biological systems.

Hazards are crucial considerations in digital circuit design to ensure correct and reliable

operation. Techniques like hazard detection and hazard removal play a significant role, involving the

introduction of additional logic elements or changes in the circuit design to eliminate or mitigate the

effects of hazards. Proper handling of hazards is paramount in critical digital systems, particularly

in applications with safety-critical requirements and high-speed designs.
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3.2.1 Genetic Circuit Failures on the Cellular Level

Genetic circuits require fine-tuning of their regulation to initiate the desired response. The

placing of the circuit in the host genome, its genetic context, as well as the environment, and its

growing conditions all influence the circuit’s behavior. As mentioned in Chapter 2, genetic circuits

are built by connecting standardized genetic parts. However, the characterization of these parts

happens in isolation and a specified environment. Introducing those parts in a new environmental,

cellular, and genetic context results in variation of the parts performance [173, 219, 35, 42]. For

example, the behavior of a specified component varies depending on its adjacent components [77,

163, 131]. Additionally, combining parts can result in unintended functional sequences at the part-

junction creating new functional parts that interfere with gene expression [231]. Therefore, the

same circuit acts differently depending on the order of the genetic parts, the selected host, or the

used environment.

Furthermore, considering the unpredictability of biological interactions, additional problems

arise. Common failure modes include transcriptional read-through. Transcriptional read-through,

shown in Figure 3.6 (a), happens if a terminator is not strong enough to knock off the RNAP and

therefore fails to end transcription [35, 53]. In that case, downstream sequences that should be

regulated otherwise get transcribed and translated manipulating the behavior of the circuit.

Combining two promoters to a tandem promoter can result in another phenomenon called

roadblocking [173, 175] shown in Figure 3.6 (b). Roadblocking occurs when the downstream pro-

moter blocks the transcription of the upstream promoter decreasing the upstream promoter’s effi-

ciency.

Signal mismatch occurs if the selected genetic part does not produce the required output to

activate or repress the next genetic part [173, 219, 230]. Signal mismatch, indicated by the protein

with the dotted repression arrow in Figure 3.6 (c) can result in a decreased dynamic range of the

circuit or even in the loss of its functionality [35].

Designing circuits gets further complicated since genetic circuits contrary to electronic circuits

do not have physical wiring of the components allowing the signal carriers of genetic circuits to move
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Figure 3.6: Overview of genetic circuit failure modes. (a) Shows transcriptional read-through. If
a terminator is not strong enough to end transcription, the downstream TU is also transcript. (b)
Shows roadblocking of tandem promoters. Here, the second promoter can block the binding site of
the upstream promoter decreasing its efficiency. (c) Shows signal mismatch. Here, the output of
one CDS does not produce enough molecules to repress the activity of another promoter. (d) Shows
missing orthogonally. The expressed protein should not interact with the genetic sequence, yet it
activates another promoter. Finally, (e) Shows the expression of a protein that in large quantities
is toxic to the host.

freely within the cell or even diffuse out of the cell’s membrane. Therefore, the output of one genetic

part can have an unintended influence on other genetic parts or the host genome due to crosstalk,

if there is no orthogonality between parts [57, 173, 219]. Figure 3.6 (d) indicates an unwanted

activation of a downstream promoter by the dashed activation arrow. Crosstalk becomes a bigger

problem with increasing circuit size, limiting the scalability of genetic design leading to more effort

in characterizing unique signal carriers [219, 211, 160].

Finally, considering the circuit as part of a host cell, while single transcription factors can

be non-toxic, their combination can result in strong toxicity killing the host cell [35] as shown in

Figure 3.6 (e). Additionally, challenges arise due to the interaction of the circuit with the host

organism [43, 7]. The proper functioning of a genetic circuit requires the use of host resources,

for example, its transcription and translation machinery. Genetic circuits with increasing size

can quickly overload a host organism, resulting in a decreased growth rate or even apoptosis [35,

69]. The sharing of resources between the host and the circuit further results in a delay in the

circuit’s activity [148, 55]. Recent work presents laboratory procedures [93, 45] and computational
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models [92] to evaluate the burden on the cell. However, predicting the burden of a genetic circuit

on its host is difficult since it varies between different hosts and different environmental conditions.

Testing and measuring a circuit’s performance faces its own challenges since there is no standardized

procedure or protocol that allows a direct comparison between circuits. Lastly, the changes to the

genetic circuit due to homologous recombination and mutations caused by natural evolution [44] can

render a genetic circuit nonfunctional [35, 53]. Homologous recombination cuts out DNA between

repeated sequences and increases with the toxicity of the circuit [35, 206].

Transcriptional read through or unwanted interactions between molecules (orthogonal) and/or

functional parts at part junctions can all lead to such a behavior. Systems with wrong steady-state

behavior are unusable in real world applications and need improved robustness.

3.2.2 Genetic Circuit Logic-Related Failures

A Boolean function is implemented through a combination of various logic gates. However,

constructing a function can occur in multiple ways, employing alternative logic implementations

consisting of different gate combinations. The choice of logic gates, however, impacts the signal

path’s length before reaching the output. For instance, in circuit 0xF6 illustrated in Figure 3.1

(b), the Ara signal only needs to traverse one genetic NOT gate before reaching the final OR gate.

On the other hand, the IPTG signal must pass through both a NOT gate and a NOR gate before

reaching the final OR gate. This race condition introduces a potential hazard in the circuit. This

is particularly relevant for genetic circuits, where each gate comprises different genetic parts with

varying reaction speeds, further influencing the time it takes for a signal to traverse the various

logic levels.

These hazards are solely dependent on the logic and are therefore termed logic hazards.

However, adjusting the logic allows the avoidance of such hazards and, consequently, the failures

associated with them [165]. Designing a circuit without logic hazards necessitates initially employing

hazard-free logic synthesis to achieve a two-level logic design free from hazards. Subsequently, this

design can be refined to incorporate only multi-level logic transformations using hazard-free logic
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design methods [165]. Modifying the logic of a circuit does not alter its function; the circuit still

exhibits the same behavior. However, relying solely on these hazard-free logic design methods may

result in a final layout containing more logic gates and redundancy. Although the final circuit will

be free of logic hazards, it might respond more slowly or become too large to be managed by a

single cell without compromising its host. These aspects must be taken into account before opting

for a logic hazard-free design.

3.2.3 Genetic Circuit Function-Related Failures

Computational analysis [81] disclosed that the glitch observed in the laboratory for circuit

0x8E (see Figure 3.4) is attributed to a function hazard. Function hazard glitches occur when

multiple input changes happen simultaneously, leading to an incorrect temporary output. Unlike

logic hazards, function hazards are unavoidable as they arise from the circuit’s inherent function.

As mentioned earlier, a circuit’s Boolean function can be represented in a truth table. An

alternative method is a Karnaugh map [113]. Figure 3.7 displays the Karnaugh map of circuit

0x8E presented in Figure 3.3. In the Karnaugh map, the rows indicate the presence of Ara, and the

columns indicate the presence of IPTG and aTc, respectively. The glitch observed in the laboratory,

in this input configuration, occurred during the transition from (0, 0, 0) to (1, 1, 0). As shown in

the Karnaugh map, there are two ways the transition can occur. The circuit can either detect the

input change of Ara first, thus transitioning from (0, 0, 0) to (1, 0, 0) to (1, 1, 0), or it can detect

IPTG first. In that case, the circuit transitions from (0, 0, 0) to (0, 1, 0) to (1, 1, 0). If the circuit

follows the green arrow, detecting Ara first, the output stays high throughout the transition since

the transition state (1, 0, 0) is also high. However, if the circuit detects IPTG first, the red arrow,

the glitch occurs since the transition state (0, 1, 0) has a low output.

Since functions hazards are a property of the function being implemented and not the logic

implementing it, it is impossible to circumvent this function hazard for the specified input transition

without altering the function itself. Figure 3.8 illustrates the simulation results of an ODE model

corresponding to the observed input transition in the laboratory. The x-axis represents time, while
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Ara
IPTG aTc 0 0 1 0 0 1 1 1

0 1 0 0 0
1 1 1 1 0

Figure 3.7: Karnaugh map of circuit 0x8E. The rows indicate the presence of Ara, and the columns
indicate the presence of IPTG and aTc, respectively. The individual cells represent the output of
the circuit, with a high output denoted by 1 and a low output by 0. When the circuit transitions
from (0, 0, 0) to (1, 1, 0), it can follow two paths: either through state (1, 0, 0), responding to Ara
first (green arrow), or through state (0, 1, 0), responding to IPTG first (red arrow). State (1, 0, 0)
yields a high output, preventing a glitch, whereas state (0, 1, 0) results in a low output, causing a
glitch as the output briefly turns off.

the y-axis represents the output fluorescence. As depicted in the figure, the ODE model also

reproduces the occurrence of the glitch.

Figure 3.8: ODE simulation of circuit 0x8E’s glitch observed in the laboratory. The x-axis shows
the time and the y-axis the output fluorescence. The output of the circuit is shown as the orange
graph. The blue dashed line indicates the input change from Ara, IPTG, aTc = (0, 0, 0) to (1, 1,
0). As observed in the laboratory, output production briefly turns off before recovering to a high
state.

Although it is impossible to completely eliminate the hazards associated with such input

transitions, modifications to the circuit can alter the probability of the glitch manifasting. If the

circuit has an increased probability of detecting the correct transition state (as indicated by the green
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arrow in Figure 3.7), it becomes less prone to exhibiting the undesired behavior. Alternatively, users

can manually apply one of the inputs with a delay, compelling the circuit to follow the correct path.

However, to assess the likelihood of the circuit correctly detecting the right input first or whether

it requires manual intervention to ensure the correct direction, defined properties are essential for

standardizing the assessment of failures.

3.3 Properties for Genetic Circuit Analysis

Efficiently testing defined properties constitutes a fundamental aspect of workflows in various

engineering disciplines. Mechanical engineers, for instance, employ computational analysis for ma-

terial testing, as exemplified in studies such as Zohdi et al.’s work [237]. In electrical engineering,

asynchronous circuits undergo testing for delay faults, particularly since they lack synchronization

with a clock, unlike their synchronous counterparts [118]. Additionally, computational simulation

plays a pivotal role in anticipating design and manufacturing faults in transistor-based circuits

within the realm of electrical engineering [187].

3.3.1 Mathematical Definition of Properties

In the field of synthetic biology, various analysis methods are employed to assess the properties

of diverse biological species over time. Specifically, more intricate genetic circuits undergo scrutiny

to ensure their proper functionality, a matter of considerable real-world significance. Property 3.1

serves as an illustrative example, detailing the criterion for a genetic digital logic circuit to maintain a

low output during an input transition from one state to another, both characterized by a low output.

Any deviation from this behavior, such as the circuit turning on during the transition, signifies a

malfunction in its intended operation [175]. The property is written in continuous stochastic logic

(CSL), a formal language used for specifying temporal properties of continuous-time stochastic

systems [8]. CSL contains temporal operators like the future (F) operator indicating that a property

must eventually become true, the globally (G) operator specifying that a property must remain true

indefinitely, and the until (U) operator denoting that one property must remain true until another
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property becomes true. Additional insights into this topic can be found in works such as those by

Buecherl et al. [39] and Fontanarrosa et al. [81].

P = ? [true U [0, time] (species ≤ threshold)] (3.1)

The property denoted as “P” employs a probabilistic assessment, denoted by the “?” symbol,

to determine the likelihood of the property being true. The U operator establishes a condition where

the initial state must persist as true until the moment the second condition is met. The interval

notation [0, time] defines a time window during which the condition following the U operator must

remain true. Lastly, (species ≤ threshold) represents the condition that must eventually be fulfilled

within the specified time frame.

Analyzing dynamic glitches, as depicted in Figure 3.5 (b), requires a different approach. The

logical condition defined in Equation 3.2 evaluates whether the circuit achieves its expected output

(threshold) by a given time (t). Such conditions are employed in programming or mathematical

modeling to describe system behaviors. A transition without dynamic hazards reaches its steady

state more rapidly than one exhibiting a dynamic glitch.

(species ≤ threshold) || (time > t) (3.2)

Consequently, the constraint examines whether the species stays below or equal to the thresh-

old (or off) before the specified time. In the presence of a dynamic glitch, the circuit will take an

extended duration to turn off and will not dip below the threshold by the designated time.

3.3.2 Time and Threshold Parameter Evaluation

Following the definition of properties, the next step involves identifying the parameters used.

To determine the thresholds for on and off signals, ODE analysis was conducted on a NOT gate [39].

In genetic design, a NOT gate is implemented using a repressible promoter, a ribosome binding site,

a coding sequence, and a terminator. The choice of the NOT gate for analysis was made to determine

the threshold at which the input needs to be to repress the output of the downstream promoter,

and vice versa.
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Figure 3.9 illustrates the results of the ODE analysis of a genetic NOT gate. The x-axis rep-

resents the number of input molecules, while the y-axis represents the number of output molecules.

Figure 3.9: Input sweep of genetic NOT gate.
The graph depicts the molecular output of a log-
ical NOT gate against varying input molecule
counts. It illustrates that an input signal of ten
molecules causes the output to decrease by over
40 molecules. In contrast, a high input signal of
30 molecules and above leads to a low output of
under ten molecules. Consequently, a high signal
is defined as being above 30 molecules, while a low
signal is set to be below ten.

Figure 3.9 illustrates that an input of ten molecules leads to a reduction of over 40 molecules

in the output. This observation implies that if the output is expected to stay low, it becomes critical

if the molecular count briefly exceeds ten. Consequently, the threshold for a low signal was set to

ten, as a higher threshold would overly repress a downstream promoter.

Conversely, the threshold for a high signal was established at 30 molecules. Even with a high

signal of 30 molecules, the output remains low, with fewer than ten molecules, effectively repressing

the promoter. This approach, although simplified compared to the more sophisticated method

proposed by Baig et al. in [12], is grounded in the fundamental practice of clearly defining what

constitutes a failure.

To determine the necessary time, ODE analysis can be conducted to observe when a system

attains steady state. In Figure 3.10, the orange plot illustrates a genetic circuit transitioning to its

on state after receiving the input. While the simulation has a time limit set to 2100, the circuit

actually reaches steady state at around 1000 time units (indicated by the dashed blue line). This

time point is chosen to facilitate efficient simulation and prevent prolonged runtimes.

To analyze dynamic glitches, a non-dynamic hazard transition, illustrated in orange, must

be contrasted with a transition featuring a dynamic glitch, shown in purple. The green dashed
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Figure 3.10: Steady-state ODE analy-
sis. The graph depicts the output of
a genetic circuit transitioning from the
absence of inducers to two distinct on
states. The orange transition functions
correctly, while the purple transition ex-
hibits a dynamic glitch. The green line
represents the threshold for detecting
a dynamic glitch, as the correctly be-
having transition has already reached
60 molecules, whereas the glitch transi-
tion remains below 40 molecules due to
the introduced delay. The blue dashed
line signifies that the circuit reached its
steady state by time point 1000.

line indicates that after 260 time points, the properly functioning state has already reached 60

molecules, whereas the transition with the glitch has not surpassed 40 molecules yet. Therefore,

260 is considered a suitable cutoff for identifying dynamic glitches for this circuit. Since the response

time for genetic circuits varies, it needs to be defined for each circuit individually. For subsequent

analyses, however, the threshold for the signals is set to either ten or 30, the simulation time to

1000, and the threshold time for dynamic glitches is determined based on the speed of a correctly

functioning transition of the given circuit.

3.4 Summary

This chapter introduces an examination of steady-state failure using the genetic circuit 0xF6 [175]

as an example. The circuit is particularly intriguing due to an anomaly in one of its anticipated

high states, which exhibited a comparatively weaker on signal compared to its other high signals.

Subsequently, the discussion transitions to transient failures, highlighting circuit 0x8E [175], another

circuit realized in practical settings. These circuits assume significance throughout the dissertation

as their experimental failures provide valuable case studies for analysis. Following the delineation

of steady-state and transient failure behaviors, the chapter delves into potential explanations for

these anomalies, spanning cellular-level issues, circuit logic, and function inadequacies. Ultimately,
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the chapter concludes by defining mathematical properties that enable computational analysis of

genetic circuit models in the subsequent chapters, offering insights into observed failure behaviors

in real-life scenarios.



“Faithless is he that says

farewell when the road dark-

ens.”

- Gimli, son of Glóin

4
Genetic Circuit Modeling and Compuational Analysis

After identifying properties for simulating and verifying genetic circuit models, this chapter

delves into the computational methods used to analyze and simulate the identified failure modes,

predicting a genetic circuit’s behavior in silico. Previous studies have employed ODE analysis,

SSAs, and stochastic model checking [81, 39]. Each analysis method has its own advantages. ODE

analysis offers examination of a genetic circuit’s average behavior, while stochastic simulation can

encompass non-deterministic behavior. Verification through stochastic model checking provides the

accurate, true probability of failure but quickly becomes impractical for larger designs [39, 137, 139].

Additionally, in considering different analysis methods, the impact of varying levels of abstraction

must be taken into account, with more detailed models allowing for a more accurate prediction at

59
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the expense of increased computational complexity.

While synthetic biologists aspire to engineer genetic circuits analogous to electrical circuits,

the inherent unpredictability of biology poses a significant challenge [133, 126]. Computational

analysis of genetic circuit models empowers researchers to study their design and predict the be-

havior of a circuit in silico. This approach enables designers to leverage analysis results for circuit

debugging before committing to time-intensive laboratory experiments, akin to the process of de-

bugging software prior to application deployment. Undetected, unintentional circuit failures can

have drastic effects on the host organism, jeopardizing the overall desired function or purpose of

the system. Therefore, the modeling and analysis of highly complex genetic circuits are crucial for

designing robust genetic circuits [112, 46]. This analysis serves as a tool to uncover critical errors

in the design or model itself.

In Section 4.1, this chapter begins by exploring various analysis methods applied to a model

of circuit 0x8E [175]. The employed methods encompass ODE analysis (Section 4.1.1), SSA (Sec-

tion 4.1.2), and stochastic model verification (Section 4.1.3). Section 4.2 presents two additional

design implementations of the previously introduced circuit 0x8E. Coupled with the properties de-

fined in Chapter 3 and the introduced analysis methods, Section 4.3 scrutinizes the three different

models concerning their glitching behavior for static input transitions with function hazards (Sec-

tion 4.3.1), without function hazards (Section 4.3.3), and their probability of steady-state failure

(Section 4.3.4).

4.1 Model Analysis Methods

In this study, three different analysis methods have been employed. First, the traditional ODE

model analysis is introduced, detailing the Euler and Runge-Kutta simulation algorithms. Following

that, to simulate probability functions, Gillespie’s SSA is introduced. The final method described

is stochastic model verification, presented along with an overview of the STAMINA algorithm [188],

which enables the application of the analysis method in this work.
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4.1.1 Ordinary Differential Simulation Algorithms

A set of differential equations, as introduced in Chapter 2, is typically challenging to solve

and nearly impossible for large, complex models [167]. Therefore, numerical simulation methods

are employed to analyze a system’s behavior. The goal of simulation is to approximate the function

over time, given an initial state of the system. In this work, this initial state describes the number of

each different species in the system at time t = 0. Simulation then approximates the change in the

number of the different species over time. Problems of this kind are called initial value problems.

Simulation methods like Euler and Runge-Kutta can be employed to simulate the behavior

of a provided ODE system [167]. The forward Euler method determines the rate of change for each

species at the initial time step t0. The value of the species is then updated until the next time step

t1 is reached. At this point, the rate of change is recalculated, and the process is repeated until the

time limit is reached. Euler’s method only uses information from the current state and is therefore

an explicit method. In contrast, implicit methods do not determine the rate of change based on the

current state, but instead by calculating the rate that would have taken you to your current state

in a time step ∆t. One example of such a method is the backward Euler method.

Moving beyond Euler’s method, Runge-Kutta offers a more sophisticated approach to sim-

ulating a system’s behavior. Unlike Euler’s method, which assumes a constant rate of change

throughout each time step, Runge-Kutta calculates the rate of change at the midpoint of the time

interval ∆t between t0 and t1. Based on the rates at t0, the midpoint is calculated, and the rates

are then recalculated. The updated rates are used until t1 is reached. This method is also known as

the midpoint method or second-order Runge-Kutta. Further refinement can be achieved by adding

more points and fine-tuning the time interval ∆t.

ODEs are an effective method for promptly assessing a system’s behavior. However, ODE

analysis assumes the system to be deterministic, and values of molecules to be continuous. The

same simulation yields consistent results across multiple runs. Unfortunately, genetic circuits are not

deterministic, nor is the number of molecules continuous. Therefore, alternative analysis methods

can be required.
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4.1.2 Gillespie’s Stochastic Simulation Algorithm

As an alternative to ODEs, genetic systems can be analyzed using SSAs, given the inherent

stochasticity of genetic systems and the discrete nature of molecule counts. Chemical reactions

occur when two (or more) molecules collide. Rather than tracking the spatial location and velocity

of each molecule, reactions can be viewed as a stochastic process. This is particularly applicable to

systems with low molecular counts. Genetic circuits arguably fall into this category, given that, for

example, a single RNA typically codes, on average, for ten proteins [167].

The SCK models introduced in Chapter 2 are classified as jump Markov processes [167]. In

these models, the next state of the system depends solely on the current state and is independent

of past states. Additionally, state updates occur in discrete amounts. It is important to note that,

in such models, it is impossible to determine the specific next state the system will be in. Instead,

it is only possible to calculate the probability of reaching a given state from the current state.

Mathematically, the chemical master equation defines a function describing the evolution of the

state probabilities by considering which reactions can be fired [167].

Built upon an equivalent formulation of the chemical master equation, the SCK relies on

selecting a small time step, denoted as ∆t, during which the system is updated if a reaction oc-

curs [167]. It is crucial to emphasize that ∆t is chosen to ensure that at most one reaction can occur

within that time frame. However, opting for a small ∆t may lead to numerous time steps where

no reactions take place. The Gillespie SSA [88], employed in this study, navigates through these

inactive time steps during simulation, enhancing efficiency while computing the trajectory of the

system’s behavior. The algorithm is rooted in a joint probability density function for two random

variables, τ (time to the next reaction) and µ (the index of the next reaction), given the system’s

state x at time t. Commencing from the initial state and time, the algorithm utilizes two random

variables to determine τ and µ, identifying the reaction to be executed in the subsequent time step.

Following the update of the system, the process is iterated.

In contrast to ODE analysis, SSA incurs higher computational costs [167]. While a single

run of SSA is faster than an ODE run, the former necessitates multiple runs to obtain meaningful
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statistics for the system. The analyses conducted in this study involved running simulations up to

100,000 times. Conversely, ODE is deterministic and, as such, requires only a single run.

4.1.3 Stochastic Model Checking

Stochastic model checking is a formal verification technique that calculates the probability

of a specified event for a given stochastic system using CTMC analysis methods. Mathematically,

CTMCs are defined by a transition rate or Q matrix. In contrast to a transition probability matrix,

the entries of the Q matrix not only specify the likelihood of each next state but also the time the

system takes to transition to that state [167]. This matrix can then be employed to formulate rate

equations for steady-state and transient analyses.

As described in Chapter 2, the state space of CTMCs of genetic circuits is infinite and,

therefore, enumerating the entire state space is impossible with finite resources. However, the

software tool STAMINA, briefly introduced in Chapter 2, transforms the state space of an infinite

model into a finite state space. It does so by traversing the state space and pruning states where the

reachability value falls below a user-specified threshold κ. The method is illustrated in Figure 4.1,

with the threshold set to κ = 0.001. The illustrated example system comprises four reactions, as

depicted in Equations 4.1, with the initial state presented in Equations 4.2.

R1 : P
kp−→ P + S1, R2 : S1

kt−→ S2, R3 : S1
kd−→ ∅, R4 : S2

kd−→ ∅ (4.1)

S1(t0) = 40 S2(t0) = 0 P(t0) = 1 (4.2)

STAMINA begins its exploration from the initial state S1 = 40 and S2 = 0 (see Figure 4.1

(a)), identifying three reachable states from this initial condition (see Figure 4.1 (b)). These states

become accessible through the firing of either reaction R1, R2, or R3. Since all states possess

a reachability value greater than κ, they are included in the exploration process. Subsequently,
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STAMINA iterates over the newly discovered states, identifying those with a reachability value

exceeding κ (see Figure 4.1 (c)). Ultimately, additional states that do not meet the criteria of

having a reachability value greater than κ are truncated.

The resulting finite state space can now be used for stochastic model checking. After STAMINA

has completed the state space generation and truncation, it passes the finite state space to estab-

lished tools like PRISM [124] and STORM [64] for Markov chain analysis. However, because certain

parts of the state space have been removed, there is a probability leakage. As a result, the system’s

analysis yields an under-calculated probability. To address this, the probability of transitions from

truncated states is redirected to an absorbing state to capture the omitted probability (see Fig-

ure 4.1 (d)). Consequently, stochastic model checking is performed on both the state space without

and with the absorbing state, producing two probabilities. The true probability of the event lies

within the probability window provided by STAMINA.

Stochastic model checking has the advantage of providing the actual probability of an event

of interest occurring, unlike simulation results. However, given the size of the models, there is

a computational cost associated with running stochastic model checking. Especially larger, more

complex models require computational resources that are not always accessible.

4.2 Alternative Designs of Circuit 0x8E

Chapter 3 introduces circuit 0x8E [175]. This circuit lends itself as a great case study since it

is built out of well-defined parts and has been proven to exhibit glitching behavior in the laboratory,

as shown in Figure 3.4 and its ODE simulation in Figure 3.8. In previous work, Fontanarrosa et

al. investigated the cause of this glitching behavior and demonstrated that an in-depth analysis

of hazards is necessary to guide the design towards robust genetic circuits [81]. Using dynamic

ODE models, their work identified all input transitions that result in glitching behavior of the

genetic circuit. Additionally, they presented two modified implementations of the circuit’s function

to reduce the magnitude of the circuit’s typical glitching behavior. Following this work, this chapter

evaluates if these two modified versions of the circuit actually reduce the probability of the glitching
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(a) (b)

(c) (d)

Figure 4.1: STAMINA state space truncation example with a threshold set to κ = 0.001. (a)
STAMINA begins in the initial state S1 = 40 and S2 = 0. Since all outgoing reachability values
are greater than κ, it explores the reachable states from the initial state. (b) STAMINA iterates
over the newly discovered states, identifying those with a reachability value exceeding κ, continuing
to add states to the state space. (c) State space exploration is terminated, as all reachable states
not yet part of the state space exhibit reachability values below κ. (d) Probability of states with
truncated transitions is redirected to an absorbing state to prevent probability leakage.
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behavior occurring.

To answer the stated question, the analysis methods described are run on models of the

three implementations presented by Fontanarrosa et al. [81]. Figure 4.2 (a) shows the original

implementation of the circuit [175]. Figure 4.2 (b) and (c) show two additional implementations of

the circuit presented in [81]. All three circuits implement the same logic function represented by

the truth table shown in Figure 3.3 (a), but use different networks of logic gates. This is especially

noticeable when looking at the circuit diagram shown in Figure 4.2 (b). Here, the circuit has two

added NOT gates that add an extra delay to the IPTG pathway. Two NOT gates flip the signal

twice, therefore not altering the signal overall. The added delay is supposed to impact the glitching

behavior of the circuit positively, especially the transition that was observed to glitch experimentally.

The third iteration of the circuit, presented in Figure 4.2 (c), represents a logic-hazard-free

version. As explained in Section 3.2.2, logic hazards stem from the circuit’s logic rather than its

function. Unlike function hazards, logic hazards can be circumvented through hazard-free logic

synthesis and hazard-preserving optimizations while simplifying the circuit’s function.

Computational models of the original and modified versions were generated using the GDA

tool iBioSim [226]. Notably, to streamline the circuit’s complexity, the input molecules IPTG,

aTc, and Ara were replaced with their corresponding internal molecules and complexes. For in-

stance, instead of individually modeling Ara and its complex formation AraAraC, only the complex

AraAraC was considered. Furthermore, protein degradation, initially modeled in increments of one,

was adjusted to occur in increments of ten, with a tenfold reduction in reaction propensity.

For stochastic model verification, the designs were exported as SBML models [115] and then

translated into PRISM models [124] using PRISM’s SBML-to-PRISM translator. As mentioned

earlier, additional analysis was conducted using STAMINA [171].

4.3 Computational Analysis of Circuit 0x8E

Initially, the circuit underwent analysis using ODE simulation to pinpoint all twelve transi-

tions with function hazards [81]. The results are depicted in Figure 4.3. In the graph, the blue plot



67

(a) Original Version (b) Two-Inverter Version

(c) Logic-Hazard-Free Version

Figure 4.2: Three distinct logic configurations for circuit 0x8E. The inducer molecules—IPTG, aTc,
and Ara—act on the circuit, with the output being YFP. The OR gate is symbolized by ,
and the NOR gates by . In (a), the original layout is shown, as published in [175]. Version
(b) introduces two additional NOT gates to the IPTG pathway, creating an extra delay. The NOT
gates are denoted by . Version (c) represents a logic-hazard-free implementation of the circuit’s
function. Further information on versions (b) and (c) can be found in [81].
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illustrates the molecular count output of circuit 0x8E over time, while the lower section displays the

input transitions. The three colored lines represent IPTG, aTc, and Ara, with a thin line indicating

an off signal and a box denoting an on signal. The red shaded area highlights the observed glitch

in the output production. As per the insights from Chapter 3, the first five glitches are identified

as static 1→1 glitches, while the last four are static 0→0 glitches. It is evident that not all function

hazards result in glitching behavior. Some transitions, like the one marked with a green box, do

not exhibit glitches despite having a function hazard.

Figure 4.3: ODE simulation of circuit 0x8E, depicting molecular counts over time in blue. The red
shaded area highlights the glitch observed in the laboratory during the transition from IPTG, aTc,
Ara = (0, 0, 0) to (1, 0, 1). The bottom of the figure illustrates the alterations in various input
combinations. Notably, the green shaded input transition, representing the transition from (0, 1,
0) to (1, 1, 1), has a function hazard but does not display glitching behavior during simulation.

In the subsequent analysis, all three circuit models were scrutinized using both stochastic

simulation and stochastic model checking to ascertain the likelihood of glitching behavior of each

identified transition. This dual approach was employed not only for result validation but also to

demonstrate the feasibility of employing stochastic model checking for genetic circuits.

Initially, this section conducts a detailed analysis of the twelve input transitions with the
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identified function hazards. Furthering the analysis, two additional failure modes are explored.

Secondly, input transitions of the circuit without hazards are investigated, focusing on the proba-

bility of failure primarily attributed to noise. Lastly, the probability of steady-state failure of the

circuit is also calculated.

For the analysis, molecular counts are defined as follows: a high input signal equals 60

molecules. Consistent with the previous analysis in Chapter 3, the output constraint is set at

ten molecules for static 0→0 hazards. In other words, if the output is expected to remain low dur-

ing an input transition, the run is considered a glitch if YFP exceeds the threshold of ten molecules.

Conversely, for input transitions where the output is intended to stay high, the run is deemed a

glitch if YFP falls below a molecule count of 30.

The stochastic simulation is based on 100,000 runs of Gillespie’s algorithm [88]. The choice

of 100,000 runs aims to achieve a reasonable level of confidence in the results. In statistical terms,

the 95 percent confidence interval is defined by X̄ ± 1.96 σ√
n

, where X̄ represents the mean of the

random variable, σ is the standard deviation of the population, and n is the number of runs. As

a result, the confidence interval becomes more precise with an increasing number of runs. After

executing the stochastic simulations in iBioSim, the models were exported as an SBML file and then

converted to a PRISM model using the SBML-to-PRISM translator integrated into PRISM [124].

Finally, the PRISM model underwent stochastic model checking in STAMINA.

4.3.1 Probability of Glitching Behavior of Input Transitions with Function Hazards

Figure 4.4 presents the results of both stochastic simulation and model verification for the

original design. In Figure 4.4 (a), the probability of a glitch occurring over time is depicted. The

graph is constructed by conducting 100,000 Gillespie runs and terminating each run at the point of

violating the property defined in Chapter 3 Equation 3.1. For instance, examining the blue curve

reveals that for the input transition IPTG, aTc, Ara = (0, 0, 0) to (1, 0, 1), approximately 99

percent of the runs failed overall. This corresponds to the glitch observed in the laboratory, as

illustrated in Figure 3.4 [175]. Beyond 300 time units, over 95 percent of the transitions have failed,
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offering an explanation for the detection of the glitch during the time course experiment.

In contrast, for the input transition IPTG, aTc, Ara = (0, 1, 0) to (1, 1, 1), only 31 percent of

runs failed, as indicated by the orange graph in Figure 4.4. The identical transition is highlighted in

the green shaded area of Figure 4.3. Despite having a function hazard, the circuit does not manifest

any glitching behavior during simulation which is supported by the lower probability obtained by

stochastic simulation.

The table in Figure 4.4 (b) presents glitch probabilities for all input transitions with known

glitching behavior in the original circuit implementation. The three columns in the table represent

the input transition, the glitch probability simulated in iBioSim, and the glitch probability calculated

with STAMINA. For instance, in the case of the input transition IPTG, aTc, Ara = (0, 0, 0) to

(1, 0, 1), iBioSim predicts a 99 percent failure rate, aligning with the results from stochastic model

verification indicating a probability between 98 percent and 99 percent.

It should be noted that circuits can also experience failures over time unrelated to hazards.

This is primarily attributed to noise, where a random set of reactions induces an erroneous change

in the YFP level. For instance, consider the blue graph in Figure 4.4; the graph exhibits a sharp

increase to over 95 percent in the first 300 time steps, indicative of the glitching behavior of the

circuit. Subsequently, the probability increases linearly with a small slope, representing the influence

of noise. In contrast, when compared to the transition illustrated by the orange curve, there is no

steep increase in probability. Instead, it steadily rises linearly, suggesting that the circuit does

not manifest a glitch but rather fails due to noise. If the simulation were to run indefinitely,

the probability would eventually reach 100 percent due to the inherent noisy behavior, leading to a

system failure. To distinguish these types of failures from those attributable to hazards, the analysis

was restricted to the first 1000 seconds.

Figure 4.5 illustrates the probability of a glitch occurring over time through 100,000 Gillespie

runs for the two-inverter version of the circuit, as depicted in Figure 4.2 (b). The same input

transitions analyzed for the original implementation in Figure 4.4 were considered for this modified

circuit. The corresponding results from the stochastic analysis using STAMINA are presented in
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(a)

Input Transition iBioSim STAMINA

(0, 1, 0)→ (1, 1, 1) 0.30544 MIR

(0, 1, 0)→ (1, 0, 0) 0.72446 0.7134 - 0.7435

(1, 1, 1)→ (1, 0, 0) 0.92451 0.9108 - 0.9969

(1, 1, 1)→ (0, 1, 0) 0.90585 0.8969 - 0.9819

(1, 0, 0)→ (0, 1, 0) 0.76282 0.7673 - 0.7884

(1, 0, 0)→ (1, 1, 1) 0.30281 0.3033 - 0.3386

(0, 1, 1)→ (1, 0, 1) 0.98978 0.9882 - 0.9919

(0, 0, 0)→ (0, 1, 1) 0.82713 0.8226 - 0.8312

(0, 0, 0)→ (1, 0, 1) 0.99075 0.9882 - 0.9935

(1, 0, 1)→ (0, 1, 1) 0.98918 0.9876 - 0.9926

(0, 1, 1)→ (0, 0, 0) 0.86400 0.8566 - 0.8587

(1, 0, 1)→ (0, 0, 0) 0.86409 0.8607 - 0.8706

(b)

Figure 4.4: Glitch probabilities for input transitions of circuit 0x8E simulated using iBioSim [226]
and verified in STAMINA [171]. The input order is IPTG, aTc, Ara. (a) Depicts the probability of a
glitch occurring over time for input changes known to have function hazards. As selected examples,
the orange curve illustrates the input transition IPTG, aTc, Ara = (0, 1, 0) to (1, 1, 1), and the blue
curve represents the transition from (0, 0, 0) to (1, 0, 1). The table in (b) displays the results of
the analysis for all input transitions with a function hazard. The stochastic simulation in iBioSim
was based on 100,000 runs. STAMINA was run with a target probability window width of 0.1.
Max-Iterations-Reached (MIR) indicates that the maximum iterations (default ten) were reached,
indicating slow convergence.
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the table in Figure 4.5 (b). Specifically, the addition of two-inverters aimed to positively influence

the input transition IPTG, aTc, Ara = (0, 0, 0) to (1, 0, 1), represented by the blue curve in both

Figure 4.4 and Figure 4.5.

(a)

Input Transition iBioSim STAMINA

(0, 1, 0)→ (1, 1, 1) 0.75999 *†0.2770 - 1.0

(0, 1, 0)→ (1, 0, 0) 0.79609 0.7854 - 0.8534

(1, 1, 1)→ (1, 0, 0) 0.92703 0.9149 - 0.9834

(1, 1, 1)→ (0, 1, 0) 0.54285 0.5381 - 0.5710

(1, 0, 0)→ (0, 1, 0) 0.42337 0.4316 - 0.4529

(1, 0, 0)→ (1, 1, 1) 0.32885 OOM

(0, 1, 1)→ (1, 0, 1) 0.80690 *†0.3633 - 1.0

(0, 0, 0)→ (0, 1, 1) 0.82647 †0.6424 - 0.9695

(0, 0, 0)→ (1, 0, 1) 0.80761 *†0.4409 - 1.0

(1, 0, 1)→ (0, 1, 1) 0.99970 0.9159 - 1.0

(0, 1, 1)→ (0, 0, 0) 0.86894 0.8448 - 0.8766

(1, 0, 1)→ (0, 0, 0) 0.95759 0.8963 - 0.9927

(b)

Figure 4.5: Glitch probabilities for input transitions of the two-inverter circuit 0x8E, simulated with
iBioSim [226] and verified in STAMINA [171]. The order of inputs is IPTG, aTc, Ara. Panel (a)
displays the probability of glitches over time for input changes known to exhibit function hazards.
The orange curve represents the input transition IPTG, aTc, Ara = (0, 1, 0) to (1, 1, 1), while
the blue curve represents the transition from (0, 0, 0) to (1, 0, 1), selected as examples. Panel
(b) provides the results of the analysis for all input transitions with a function hazard. Stochastic
simulation in iBioSim involved 100,000 runs, and STAMINA was executed with a target probability
window width of 0.1 or 0.5 (†). Models marked with * failed to achieve their target probability bound
due to memory constraints. Out-of-Memory (OOM) denotes that STAMINA couldn’t achieve a
probability window width of less than 0.8 before the host machine ran out of memory.

Comparing the iBioSim simulation results of the original implementation in the table in

Figure 4.4 (b) with those of the modified design in Figure 4.5 (b), it is evident that the probability

for the input transition (0, 0, 0) to (1, 0, 1) was improved from 99 percent to 81 percent. This

improvement is visually represented by the blue curve in Figure 4.5 (a), where the initial steep

increase in glitch probability is less pronounced compared to the original design. Therefore, the

addition of the two-inverters to the circuit results in an improvement of 18 percent. However, it

is important to note that the larger size of the circuit also imposes additional stress on the host

cell [32].

In contrast, the input transition (0, 1, 0) to (1, 1, 1), represented by the orange curve in
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both Figure 4.4 and 4.5 (a), exhibits a probability of less than 31 percent for the original circuit,

compared to almost 76 percent for the two-inverter circuit—an increase of 45 percent. While the

addition of two-inverters leads to a reduction in glitching for the blue curve, there is a trade-off

with an increase for the orange curve. For other input transitions, such as (0, 1, 1) to (0, 0, 0) and

(1, 1, 1) to (1, 0, 0), the impact of the two-inverters on the probabilities is negligible.

Finally, Figure 4.6 (a) presents the analysis of the same two input transitions for the logic-

hazard-free version. Figure 4.6 (b) displays the results from iBioSim and STAMINA for the glitch

probability of all input transitions known to exhibit glitching behavior in the logic-hazard-free

implementation. It is crucial to note that the analysis presented here exclusively focuses on function

hazards. However, utilizing hazard-free logic synthesis may eliminate logic hazards, consequently

influencing the probability of function hazards as well.

(a)

Input Transition iBioSim STAMINA

(0, 1, 0)→ (1, 1, 1) 0.28909 0.2729 - 0.3677

(0, 1, 0)→ (1, 0, 0) 0.24651 0.2384 - 0.2570

(1, 1, 1)→ (1, 0, 0) 0.90566 0.8948 - 0.9757

(1, 1, 1)→ (0, 1, 0) 0.90247 0.9002 - 0.9430

(1, 0, 0)→ (0, 1, 0) 0.73500 0.7348 - 0.7540

(1, 0, 0)→ (1, 1, 1) 0.29970 0.2996 - 0.3598

(0, 1, 1)→ (1, 0, 1) 0.98935 0.9870 - 0.9938

(0, 0, 0)→ (0, 1, 1) 0.82057 0.8242 - 0.8289

(0, 0, 0)→ (1, 0, 1) 0.98961 0.9865 - 0.9953

(1, 0, 1)→ (0, 1, 1) 0.99035 *0.9817 - 0.9972

(0, 1, 1)→ (0, 0, 0) 0.77063 0.7653 - 0.7703

(1, 0, 1)→ (0, 0, 0) 0.73697 0.7345 - 0.7353

(b)

Figure 4.6: Glitch probabilities for input transitions of the logic-hazard-free circuit 0x8E, simulated
with iBioSim [226] and verified in STAMINA [171]. The order of the inputs is IPTG, aTc, Ara.
Panel (a) illustrates the probability of a glitch occurring over time for input changes known to
have function hazards. The orange curve visualizes the input transition IPTG, aTc, Ara = (0, 1,
0) to (1, 1, 1), and the blue curve represents the transition from (0, 0, 0) to (1, 0, 1), chosen as
examples. Panel (b) provides the results of the analysis for all input transitions with a function
hazard. Stochastic simulation in iBioSim involved 100,000 runs, and STAMINA was executed with
a target probability window width of 0.1. Models marked with * failed to achieve their target
probability bound due to memory constraints.

Analysis of the logic-hazard-free version of circuit 0x8E reveals that both input transitions (0,
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0, 0) to (1, 0, 1) and (0, 1, 0) to (1, 1, 1) exhibit similar behavior to the original implementation.

For the blue curve, both designs show the transition glitching in 99 percent of cases. Regarding the

orange curve, the logic-hazard-free version glitches in 29 percent of cases compared to 30 percent

for the original implementation, indicating a negligible difference. These results align with the

expectation that using hazard-free logic synthesis for circuit design eliminates only logic hazards,

while function hazards remain unavoidable. However, interestingly, for three input transitions, the

logic-hazard-free version outperforms the original implementation. Most notably, for the transition

from (0, 1, 0) to (1, 0, 0), the original design has a glitch probability of 72 percent, while the

logic-hazard-free version has a significantly reduced glitch probability of 25 percent. Similarly, for

two more input transitions, (0, 1, 1) to (0, 0, 0) and (1, 0, 1) to (0, 0, 0), the logic-hazard-free

version glitches in 77 percent and 74 percent, respectively, whereas the original design shows failure

during those transitions in 86 percent of cases for each.

4.3.2 Comparison between SSA and Stochastic Model Verification

Comparing the results from iBioSim with those from STAMINA reveals that, in some in-

stances, the estimated probability from iBioSim falls within or in close proximity to the bounds

provided by STAMINA. For instance, considering the results for the input transition IPTG, aTc,

Ara = (0, 0, 0) to (0, 1, 1) for the original circuit (Figure 4.4 (b)), iBioSim simulates a probability

of 82.713 percent. STAMINA calculates a probability window of 82.26 percent to 83.12 percent for

the same input transition. However, in a few cases, STAMINA fails to provide reasonably tight

bounds for the calculated probabilities. For the input transition IPTG, aTc, Ara = (0, 1, 0) to

(1, 1, 1) for the two-inverter circuit (Figure 4.5 (b)), STAMINA’s result ranges from 27 percent to

100 percent when it runs out of memory, offering no useful information to the designer. In other

instances, STAMINA provides large bounds, such as for the input transition IPTG, aTc, Ara = (1,

0, 1) to (0, 1, 1) for the two-inverter circuit (Figure 4.5 (b)), with a bound of 91.59 percent to 100

percent. Although the bound is not very tight, it still gives enough information to alert the designer

that the glitch probability is likely too high.
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Comparing the results from iBioSim’s stochastic simulation with those from STAMINA’s ver-

ification illustrates that stochastic model checking is suitable for analyzing genetic circuits and pro-

vides reliable probability bounds consistent with simulation. However, it is important to note that,

in comparison to running stochastic simulations, stochastic model checking is resource-intensive in

terms of both memory and runtime. All stochastic simulations and model checking tasks were exe-

cuted on a computer equipped with an AMD Ryzen Threadripper 12-Core 3.5 GHz Processor and

132 GB of RAM, running Ubuntu Linux (v18.04.3). The run-times for both stochastic simulation

and model verification for all input transitions and circuit versions are presented in Table 4.1.

Table 4.1: Comparison of run-times (hh:mm:ss) between stochastic simulations in iBioSim [226]
and model verification in STAMINA [171]. The first column displays the input transitions, with the
order of inputs being IPTG, aTc, and Ara. The stochastic simulation in iBioSim involved 100,000
Gillespie runs. The columns labeled iBioSim and STAMINA are further divided into three sub-
columns presenting run-times for the original layout (OG) (Figure 4.2(a)), the two-inverter layout
(TI) (Figure 4.2(b)), and the logic-hazard-free layout (LHF) (Figure 4.2(c)) of the circuit. All
stochastic simulations and model checking tasks were executed on a computer equipped with an
AMD Ryzen Threadripper 12-Core 3.5 GHz Processor and 132 GB of RAM, running Ubuntu Linux
(v18.04.3).

iBioSim STAMINA
Input Transition OG TI LHF OG TI LHF
(0, 1, 0)→ (1, 1, 1) 00:08:45 00:05:36 00:08:06 MIR 05:55:28 03:50:45
(0, 1, 0)→ (1, 0, 0) 00:01:43 00:02:00 00:03:08 00:00:12 00:24:42 00:01:06
(1, 1, 1)→ (1, 0, 0) 00:01:31 00:02:01 00:01:35 00:00:49 01:40:26 00:06:27
(1, 1, 1)→ (0, 1, 0) 00:01:48 00:03:43 00:01:44 00:01:43 03:21:48 00:38:27
(1, 0, 0)→ (0, 1, 0) 00:01:47 00:03:36 00:02:01 00:00:35 00:52:50 00:01:55
(1, 0, 0)→ (1, 1, 1) 00:08:54 00:10:12 00:08:01 00:23:13 OOM 02:53:42
(0, 1, 1)→ (1, 0, 1) 00:01:51 00:05:38 00:01:46 00:41:40 05:49:56 06:58:33
(0, 0, 0)→ (0, 1, 1) 00:04:51 00:05:51 00:04:35 00:26:32 06:17:22 06:30:08
(0, 0, 0)→ (1, 0, 1) 00:01:31 00:05:13 00:01:36 00:39:42 06:50:17 01:07:43
(1, 0, 1)→ (0, 1, 1) 00:01:56 00:02:05 00:01:50 00:40:47 02:44:57 06:01:4
(0, 1, 1)→ (0, 0, 0) 00:01:44 00:02:24 00:01:58 00:05:45 02:49:01 00:17:04
(1, 0, 1)→ (0, 0, 0) 00:01:43 00:02:01 00:02:13 00:02:13 01:03:09 00:13:57

The stochastic simulation for the transition IPTG, aTc, Ara = (1, 0, 0) to (1, 1, 1) in the two-

inverter circuit had the longest run-time, lasting 10 minutes and 12 seconds for 100,000 simulation

runs. STAMINA failed to compute an adequately tight probability window for the same input

transition. On the original circuit, the transitions IPTG, aTc, Ara = (1, 1, 1) to (1, 0, 0) and
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IPTG, aTc, Ara = (0, 0, 0) to (1, 0, 1) resulted in the fastest stochastic simulations, each taking

1 minute and 31 seconds. The same transition checked by STAMINA took only 49 seconds, which

is 54 percent of the time it took iBioSim. The longest run-time for stochastic model checking

(excluding MIR or OOM models) occurred for the input transition IPTG, aTc, Ara = (0, 1, 1) to

(1, 0, 1) of the logic-hazard-free circuit, lasting 6 hours, 58 minutes, and 33 seconds. State space

generation took 1 hour, 11 minutes, and 1 second, and the analysis took 5 hours, 47 minutes, and 32

seconds. All stochastic model checking runs marked with an asterisk in Figure 4.4 (b), 4.5 (b), and

4.6 (b) report the run-time to obtain the provided result and do not include the run-time between

obtaining this result and running out of memory in the next iteration, as this is not reported by

the tool.

4.3.3 Computational Analysis of Input Transitions without Function Hazards

Following the analysis of input transitions with known function hazards, the two-input change

transitions without function hazards were examined. These transitions are still categorized as either

static 0→0 or static 1→1, meaning the initial and final states are both either 0 or 1, but they lack

a function hazard. Despite this, they can still experience failure due to the noisy behavior of the

system. Similar to the function hazard transitions, these input transitions fail if the circuit cannot

maintain its state throughout the transition. The failure is also transient and corrects itself when

a steady state is reached. However, as these transitions lack a function hazard, a lower probability

of failure is anticipated. The probabilities of failure are presented in Table 4.2.

In comparison to the glitch probabilities presented in Figure 4.4 (b), 4.5 (b), and 4.6 (b),

transitions without function hazards are less prone to failure. The median probability among

all function hazard transitions for the original circuit is 86 percent, while the median for input

transitions without function hazards is 52 percent. Similarly, for the two-inverter design, function

hazard transitions have a median of 81 percent compared to 54 percent.

The logic-hazard-free circuit performs best, with a median of 80 percent for transitions with

function hazards, but only 36 percent for transitions without. This result aligns with expectations
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Input Transition OG TI LHF
(0, 1, 0) → (1, 1, 0) 0.195 0.255 0.071

(1, 0, 0) → (1, 1, 0) 0.234 0.247 0.122

(1, 1, 0) → (1, 1, 1) 0.284 0.317 0.265

(1, 1, 0) → (0, 1, 0) 0.325 0.393 0.211

(1, 1, 0) → (1, 0, 0) 0.719 0.719 0.209

(1, 1, 1) → (1, 1, 0) 0.263 0.276 0.207

(0, 0, 1) → (1, 0, 1) 0.741 0.551 0.751

(0, 1, 1) → (0, 0, 1) 0.524 0.534 0.526

(0, 0, 0) → (0, 0, 1) 0.666 0.537 0.532

(1, 0, 1) → (0, 0, 1) 0.519 0.711 0.522

(0, 0, 1) → (0, 1, 1) 0.741 0.753 0.742

(0, 0, 1) → (0, 0, 0) 0.712 0.735 0.463

Table 4.2: The table presents the glitch proba-
bility of circuit 0x8E for input transitions with-
out function hazards. It is divided into upper
and lower sections, where the upper section shows
static 0→0 transitions, and the lower half shows
static 1→1 transitions. The first column specifies
the input transitions, and each cell in the table
indicates the probability of failure for each of the
three circuit designs. The original circuit version
is labeled OG, the two-inverter version as TI, and
the logic-hazard-free version as LHF. The order
of the inputs is IPTG, aTc, Ara.

since the transitions of the original and two-inverter designs do not have a function hazard but

might still have a logic hazard, which the logic-hazard-free version eliminates.

The models employed here maintain the same abstraction, with the input molecules not

being explicitly modeled but represented by their internal states, and production and degradation

occurring in steps of ten. To obtain the results, iBioSim was utilized for stochastic simulation with

100,000 Gillespie runs [88], employing the same property as for the function hazard transitions, as

given in Equation 3.1.

4.3.4 Computational Analysis of Steady-State Failure

In Section 3.2, an additional potential failure mode of genetic circuits was introduced, known

as steady-state failures. These failures occur when the circuit is unable to attain its expected output.

In such cases, if the circuit is designed to maintain a high output under specific input conditions,

it falls short of achieving this goal and remains in a low steady state. This failure is particularly

consequential as it compromises the intended function of the circuit, potentially leading to the

absence of pharmaceutical production or the failure to release a necessary drug within a biological

system.

Once again, this failure can be attributed to the inherent noisy behavior of biological systems,
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introducing random variations in the circuit’s behavior. This section extends the analysis of the

three circuit 0x8E designs by assessing the likelihood of steady-state failures.

Steady-state failure encompasses scenarios where the circuit remains in a low output when

a high output is expected, and vice versa. To analyze this behavior, the property outlined in

Equation 3.2 is employed. This property checks whether the circuit achieves its expected output

after a specified time t. The value of t is determined through an ODE analysis of the circuit’s states

to identify the time it takes to settle into its steady state. Subsequently, SSA analysis is conducted

to estimate the probability of failure. The results are presented in Table 4.3.

Input State OG TI LHF
(0, 0, 0) 0.058 0.088 0.057

(0, 0, 1) 0.001 0.002 0.003

(0, 1, 0) 0.042 0.051 0.045

(0, 1, 1) 0.098 0.123 0.103

(1, 0, 0) 0.029 0.006 0.030

(1, 0, 1) 0.091 0.096 0.103

(1, 1, 0) 0.022 0.024 0.006

(1, 1, 1) 0.050 0.088 0.051

Table 4.3: Probability of steady-state failure for
circuit 0x8E. The first column presents the eight
distinct possible states of the circuit. The table
cells indicate the probability of the circuit failing
to attain its anticipated output state. The original
circuit version is denoted as OG, the two-inverter
version as TI, and the logic-hazard-free version as
LHF. The input order is IPTG, aTc, Ara.

The results presented in Table 4.3 indicate a lower probability of steady-state failure compared

to transition failures. For instance, the probability of the original circuit failing to reach its expected

state for IPTG, aTc, Ara = (0, 0, 1) is 0.1 percent. The median failure rate across all eight states of

the original version of circuit 0x8E is 4.6 percent, notably lower than its probability of glitching for

transitions with function hazards (86 percent) or those without function hazards (52 percent). A

similar trend is observed for the two-inverter circuit, with a probability of steady-state failure at 7

percent compared to 81 percent and 54 percent for transition failures, and for the logic-hazard-free

design (4.8 percent versus 80 percent and 36 percent). The simulation results are supported by

laboratory testing, as no steady state failure for the original circuit was reported. To verify whether

the circuit attains its anticipated steady state, the models were not intialized in the steady state

initially. Instead, the circuit was allotted 1000 seconds to stabilize before assessing whether the

constraint had been violated.
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In summary, this analysis indicates that circuit 0x8E is more prone to failure due to in-

put transitions than steady-state failures. Consequently, the results emphasize the importance of

ensuring correct transition behavior during the design process.

4.4 Conclusion

This chapter underscores the benefits of employing computational analysis in genetic circuit

design. ODE, SSA, and stochastic model verification analyses are all valuable tools during the design

phase to ensure the proper functioning of a genetic circuit. By leveraging these tools, designers can

enhance their workflow and design genetic circuits more rapidly without compromising robustness.

However, the next question that arises is the trustworthiness of the model results.

As mentioned in Section 4.2, the models used for the analysis are abstracted to allow analysis

using stochastic model verification. Abstracted models enable faster and more efficient analysis but

compromise on the detail of obtainable information. Therefore, how far can a model be abstracted

without losing critical information about the genetic circuit? The next chapter builds upon the

results presented here and compares them to the results of the same analysis using four additional,

different model techniques.



“He that breaks a thing to find

out what it is, has left the path

of wisdom.”

- Gandalf the Grey

5
Comparison of Different Genetic Circuit Models

Chapter 4 highlighted the significance of computational analysis in synthetic biology. Fol-

lowing this work, it becomes essential to inquire whether the existing computational models can

indeed ensure accurate predictability of GRNs. As genetic circuitry progresses towards real-world

applications, understanding and accommodating environmental and noise effects on circuit perfor-

mance—referred to as robustness—becomes imperative for ensuring the correct and safe behavior

of genetic circuits [198, 34]. To enable efficient analysis, it is necessary to have a predictive model

of genetic circuits, grounded in mathematical descriptions of genetic networks [179].

Properly parameterized ODE models can provide a good quantitative match and are easily

generalized [119, 223, 2, 51]. However, more detailed models entail a more challenging charac-

80
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terization effort. While re-parameterizing genetic parts through experiments yields more accurate

and precise behavior predictions, it necessitates extensive training in exploring multidimensional

design spaces and mapping simulations to experiments for model development. Therefore, the cur-

rent situation involves a trade-off between the model’s ability to quantitatively match experimental

data and the need for numerous kinetic parameters to parameterize the model [112, 99, 136, 90].

Furthermore, there is a simulation-time cost associated with these models: the more complex a

model is, the longer it takes for simulations to run, and the higher are the memory requirements

for model-checking [39, 171, 188].

Chapter 4 demonstrated the predictive capabilities of in silico analysis for circuit 0x8E. Ex-

panding upon this foundation, this chapter delves further into computational modeling and analysis.

Specifically, it compares the computational model used in Chapter 4 with four additional and dis-

tinct computational models for the same circuit. This chapter evaluates and compares the relative

predictability of robustness, along with its impact on design decisions, across diverse characteri-

zations and models. Distinctions are made among various interaction models, some incorporating

experimentally obtained parameters while others utilizing standard parameters derived from aver-

age values in the literature [226, 139]. Different noise sources are another distinction considered to

ascertain the anticipated robustness of three distinct circuit implementations of circuit 0x8E [175],

shown in Figure 4.2. The objective is to evaluate whether less complex models can yield the same

conclusions as more complex ones and whether certain models offer greater benefits in analysis.

The presented results focus on determining variations in predicted circuit failure percentages

across three distinct circuit layouts with identical expected functions. They are derived from utiliz-

ing ODE analysis and SSA, as discussed in the previous Chapter 4, and do not include stochastic

model checking due to its memory requirements and runtime. In Section 5.1, the analysis goals

are introduced, incorporating definitions for robustness and predictability, as well as extrinsic and

intrinsic noise. Following this, Section 5.2 provides an overview of the various computational models

employed. Finally, the outcomes of the analysis are detailed in Sections 5.3 and 5.4, covering both

transient and steady-state failures.
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5.1 Robustness, Predictability, and Noise in Genetic Circuit Design

When considering robustness and predictability, simulations involving noise can potentially

offer additional information. However, challenges associated with parameterizing noise factors and

the computational resources required for simulating stochastic models may discourage many scien-

tists.

This work assess the predictability of robustness and its impact on design choices across

various characterizations and models. The goal is to understand the effort required for parameter

determination and model development in order to qualitatively evaluate the relative robustness of

different design choices. This comparison involves different models, some parameterized and others

utilizing default parameters obtained from the literature, as well as different noise sources to predict

the robustness of three distinct circuit implementations of circuit 0x8E.

5.1.1 Robustness and Predictability

Engineered systems are expected to function correctly in diverse environments. Robustness

represents a system’s ability to withstand and operate under the effects of external disturbances.

Synthetic biologists, akin to other engineering disciplines, must consider robustness when designing

genetic circuits, especially for applications beyond the laboratory. The impact of noise on a circuit’s

behavior can lead to glitches, as analyzed in Chapter 4, with failure modes including static 0 → 0

and static 1 → 1 function-hazard transitions, static 0 → 0 and static 1 → 1 transitions without

function hazards, and steady-state failures.

Predictability involves the computational analysis of the likelihood of erroneous behavior oc-

curring. However, as with all engineering principles, a trade-off exists between the computational

and mathematical complexity of a model and its accurate predictability. A more detailed model

generally yields more accurate results, but heightened complexity necessitates more powerful com-

puting capabilities and extended analysis times. While precise models are valuable, they come at a

significant cost, demanding extensive resources, time, and expertise. Therefore, assessing whether

detailed models provide additional insight into the robustness of a genetic circuit is crucial. When
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the primary concern is the resilience and stability of a circuit, questioning the justification for

allocating substantial resources to exhaustive characterization experiments and computationally

demanding simulations becomes necessary.

5.1.2 Extrinsic and Intrinsic Noise

Chapter 4 demonstrated that ODE analysis, with its deterministic structure, captures the

average behavior of a system but lacks randomness or stochasticity, consistently yielding identical

results for the same initial conditions [82]. However, the intrinsic unpredictability of biochemical

reactions, even at the level of a single gene [72], coupled with variability in reaction rates due to

environmental differences [177, 18], introduces uncertainty into a genetic system [184, 212, 177, 127].

Extrinsic noise sources of transcriptional variability refer to cell-to-cell differences in transcrip-

tional inputs and outputs. Beal [18] demonstrated that this cell-cell variation might be accounted for

by the emergent properties of complex reaction networks, driving a log-normal distribution of gene

expression levels across a population. For comparison, this work utilizes measured parameter dis-

tributions from the Cello part library [175] and implements a folded normal-distributed parameter

value model to calculate the incidence of glitching behavior in a population.

Intrinsic noise represents the inherent stochasticity within the cell, influenced by factors

like spatial considerations, resource distribution, and stress. These elements profoundly impact

the cell’s likelihood or capacity to carry out reactions. Since the chemical reactions involved are

discrete events with probabilities dependent on the molecule count, they inherently reflect this

stress. Therefore, to effectively capture these fluctuations, Gillespie’s SSA [89, 88] was employed to

analyze these models.

5.2 Overview of Different Models

The models, parameterizations, and analysis methods utilized in this study are categorized

as follows: the terms extrinsic or intrinsic indicate whether the model was examined with extrinsic

or intrinsic noise. Subsequently, the models are classified as the Cello model, developed by Moser
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et al. [161, 203], the default model, generated in iBioSim [226], or the abstracted model based on

stoichiometry amplification of the default model.

The Cello model employs kinetic abstractions that yield a model comparable to Hill equa-

tions [28]. Despite its simplicity, the Cello model is a benchmark in synthetic biology for several

reasons: (1) it provides transparent and reproducible characterization experiments for transcrip-

tional regulatory gates, (2) it offers gate characterization results for researchers to use in their

models, and (3) the model provides simpler parameters to characterize by consolidating various

regulatory kinetics into experimentally-observable variables.

The default iBioSim model [164, 226] is the most intricate, modeling each protein’s transcrip-

tion initiation, production, dimerization, transcription factor binding, and degradation. Finally, the

abstracted model alters the default model by modifying the stoichiometry and rate of its degradation

reactions.

Additionally, a comparison between default (obtained from literature) model parameter values

and characterized gate parameter values was used to determine the effect on predicted circuit failure

percentages. The default parameter values were used for four models and part-characterized model

parameter values for each component obtained from experimentation [175] for one of the Cello

models. Therefore, the five different model types and their labels are as follows:

• Extrinsic/Cello model/Characterized parameters (E/C/C)

• Extrinsic/Cello model/Default parameters (E/C/D)

• Extrinsic/Default model/Default parameters (E/D/D)

• Intrinsic/Default model/Default parameters (I/D/D)

• Intrinsic/Abstracted model/Default parameters (I/A/D)

5.2.1 Extrinsic Noise Model

The extrinsic noise model introduces a basic instance of static external disturbances, char-

acterized as a random selection from a folded normal distribution for each parameter value at the
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onset of each simulation run. The distribution’s mean corresponds to the default parameter value

in iBioSim, obtained from the literature, while the standard deviation is set at 0.4 of the mean’s

absolute value to mimic extrinsic noise. The noise magnitude chosen for this study is 0.4, indicating

that in each simulation, a parameter value will equal |normal( v
v∗e)| with the function normal, the

default parameter value v, and the extrinsic noise e.

However, as this research primarily focuses on qualitative rather than quantitative compar-

isons, the precise extrinsic noise values are not crucial. Beal [18] suggests that these parameters

may follow a geometric distribution rather than a normal one, posing an area for future exploration.

5.2.2 Intrinsic Noise Model

The default intrinsic model utilizes iBioSim’s default settings. The assumption is made that

mRNA undergoes ten translations, leading to an average production of ten proteins per mRNA

overall. Each protein undergoes self-degradation, modeled in increments of one. Consequently,

when a production reaction occurs, ten molecules are produced, while a degradation reaction leads

to the degradation of only one protein.

In the abstracted intrinsic model, aiming to simplify the default model, both protein produc-

tion and degradation are set to increments of ten for their respective reactions. This adjustment,

termed stoichiometry amplification, entails that each time a production or degradation reaction

takes place, ten molecules are either produced or degraded. Given the modification in the degrada-

tion reaction, a tenfold reduction in reaction propensity is necessary to accommodate the alteration.

Additionally, to streamline both models and reduce species complexity, only internal molecules

and complexes are modeled, while input molecules such as IPTG, aTc, and Ara are omitted. For

example, LacI, serving as an internal regulator of the circuit, is modeled alone, and the input IPTG,

which binds to LacI and affects its function, is excluded from the model. This selective modeling

approach focuses on key internal components rather than including both species in the analysis.
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5.2.3 Model Considerations and Assumptions

This study compares different circuit layouts for each model, considering various modeling

alternatives and characterizations, to ascertain which circuit is predicted to be the most robust for

specific input transitions and steady-state behavior. However, this work does not aim to determine

the more accurate representation of the true behavior of GRNs or quantify the magnitude of each

noise source’s influence on the predicted output. The primary objective is to identify any differences

in robustness predictions when using abstracted models, considering different noise sources (extrinsic

or intrinsic), and/or utilizing characterized parameter values versus literature-obtained values. To

facilitate the analysis, certain assumptions were made, outlined as follows:

(1) The probability distribution for extrinsic noise is modeled as a truncated-normal distribu-

tion. Despite Beal’s [18] suggestion that a log-normal distribution may be a more fitting

description for this noise, a normal distribution for parameter values was chosen in this work

to simulate extrinsic noise, prioritizing simplicity and clarity in simulations. Future work

could explore the inclusion of log-normal distributions for a more nuanced representation.

(2) The chosen magnitude of noise level for the truncated-normal distribution is 0.4, derived

from initial testing. However, the absolute value of intrinsic or extrinsic noise may differ

for GRNs, and if the results indicate variations in robustness predictions, more precise

measurements should be obtained for accurate results.

(3) While the level of extrinsic noise could potentially differ for each reaction, affecting the

distribution of a parameter’s value, this work assumes a uniform magnitude of noise for

each reaction parameter.

(4) All simulation runs in this study assume that the change in input molecule concentrations

is instantaneous, rather than a gradual process.

(5) The Cello model can utilize τON and τOFF parameters to depict how quickly a gate turns

ON or OFF. However, for this work, all different parts share the same values of τON and
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τOFF due to the absence of experimental parameter values for individual components.

5.3 Analysis of Transition Failures

Table 5.1 presents a comprehensive overview of the study’s findings, showcasing the perfor-

mance of three circuit layouts: the original design (OG), the two-inverter design (TI), and the

logic hazard-free design (LHF). It highlights which layouts outperform (blue) or underperform (or-

ange) in comparison to the median failure rate for specific input transitions, models, and parameter

value sets. The determination of transitions as outperforming or underperforming was based on the

percent difference to the median. Let xi be the sample failure percentage and x̄ the median. The

percent difference was calculated using the following equation:

Percent Difference = xi − x̄
|xi+x̄|

2
× 100 (5.1)

A transition’s percent difference was classified as preferred if it fell below -10 percent, while

it was deemed worse if it exceeded 10 percent. For instance, consider the transition from (0, 1, 0)

to (1, 1, 1) in the (E/C/C) model. The failure percentages for each model are as follows: OG 11.3

percent, TI 12.7 percent, and LHF 11.5 percent, with the median being 11.5 percent for the LHF

model.

(1) Percent difference of OG:
11.3− 11.5
|11.3+11.5|

2
× 100 = −1.75%

(2) Percent difference of TI:
12.7− 11.5
|12.7+11.5|

2
× 100 ≈ 9.92%

In this example, the OG implementation shows a percent difference of -1.75 percent, which

does not fall below the -10 percent threshold, thus not qualifying as a preferred transition. Similarly,

the TI model exhibits a percent difference of 9.92 percent, which also does not exceed the 10 percent

threshold, thus not indicating a worse transition. Hence, the two cells of these transitions remain

uncolored in Table 5.1.



88

This presentation facilitates the comparison of the three different circuit layouts shown in

Figure 4.2 in terms of their predicted failure probabilities (better: blue or worse: orange) concerning

the given noise source, model, and parameter values. The table comprises five columns representing

the (E/C/C), (E/C/D), (E/D/D), (I/D/D), and (I/A/D) models, respectively. The (I/A/D) model

was previously introduced in Chapter 4.

The “Inputs” column showcases the input molecule concentrations. High and low concen-

trations are denoted as 1 and 0, respectively, for IPTG, aTc, and Ara. For instance, the input

transition (0, 1, 0)→ (1, 1, 1) signifies a shift from low, high, low to high, high, high for IPTG, aTc,

and Ara concentrations. Analyzing extrinsic noise modeling with the Cello model and characterized

parameter values (E/C/C, first column) reveals that during the transition from (0, 1, 0) to (1, 1,

1), TI exhibits a higher failure probability, while OG experiences glitches less frequently for that

transition. The values provided in the table indicate the deviation in failure percentage difference

from the median for the respective model and transition. The median is represented by a dash “-”.

For instance, in the same example, the failure percentage for the LHF model represents the median

for this transition. The TI model exhibits a percent difference of 9.92 percent, as calculated above,

while the OG model shows a percent difference of -1.75 percent.

Moreover, the rows in the table are divided into four groups based on different input transi-

tion types. The first two groups present the results of the circuit failure analysis for static 0 → 0

and static 1→ 1 function hazards, while the next two groups showcase the results for static 0→ 0

and static 1→ 1 transitions without function hazards. Static transitions without function hazards

do not inherently exhibit faulty behavior, unlike static transitions with function hazards, and are

expected to behave precisely as anticipated. However, due to noise, there remains a small proba-

bility of temporary deviation from the expected behavior. Therefore, analyzing input transitions

without function hazards remains crucial for comprehensive circuit analysis. Detailed tables with

the absolute failure probabilities, given in percent, can be found in Appendix A.
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5.3.1 Quantitative Model Prediction

The results facilitate several conclusions. The first aim is to compare the various modeling

techniques and their outcomes to derive insights. For this purpose, Figure 5.1 illustrates the analysis

results for all transitions of the OG implementation. On the y-axis, transitions are delineated into

the same four groups, presented in the same sequence as in Table 5.1. Meanwhile, the x-axis

represents the failure probability in percent. Each transition depicts five markers, with each marker

corresponding to one of the five models, as denoted in the legend.

Figure 5.1: Quantitative model prediction. The figure illustrates the predicted failure probability
for each transition and model concerning the OG layout. The transitions on the y-axis are grouped
into four sections. The first two sections correspond to static 0 → 0 and static 1 → 1 function
hazards, while the next two groups correspond to static 0→ 0 and static 1→ 1 transitions without
function hazards. On the x-axis, the failure probability is represented in percentages, with each
model indicated by a distinct marker.

The results demonstrate the challenge of comparing the magnitude of each failure probability

across different models. While certain transitions, such as the (0, 1, 0)→ (1, 1, 1) transition, exhibit

similar predictions among the various models, others, like the (0, 1, 1)→ (1, 0, 1) transition, display

significant differences. Consequently, the selection of the model becomes crucial when aiming to

determine the most accurate representation of the true behavior of the genetic circuit and achieve

precise quantification of each failure. If this level of precision is essential for the designer, and
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no characterized parts or experimental data are available, considerable laboratory work would be

required. Appendix A contains the corresponding visualizations for the TI and LHF design.

5.3.2 Qualitative Model Prediction

The analysis of the qualitative predictive power involves comparing the number of preferable

transitions for each circuit within a specified model. The number of preferable transitions for each

circuit and model can be obtained by counting the blue fields in Table 5.1. However, for easier

comparison Figure 5.2 shows the number of preferable transitions for each circuit design and model.

Figure 5.2: Qualitative model prediction. The y-axis denotes the number of preferred transitions,
while the x-axis represents the circuit implementation. The five distinct models are distinguished by
color coding, as specified in the legend. All models unanimously agree that the LHF design exhibits
the highest number of preferred transitions. However, it is worth noting that in the (E/C/C) model,
the OG design is rated better than the TI design, which contrasts with the conclusions drawn by
all other models.

The results reveal several distinctions. First, there is a discrepancy in predictions between the

model employing characterized parameters (E/C/C) and the other four models utilizing iBioSim’s
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default parameters. While all models unanimously agree that the LHF design exhibits the highest

number of preferred transitions, the (E/C/C) model identifies the OG design as having more

preferable transitions than the TI design. In contrast, the other four models agree that the TI

design possesses more preferred transitions than the OG design.

Secondly, the results highlight a greater variance in outcomes among models lacking charac-

terized parameters compared to those with characterized parameters. Specifically, the model with

characterized parameters exhibits the fewest preferred transitions overall, with only six identified

for the LHF design, in contrast to other models. For instance, the (I/A/D) LHF design reveals

twelve preferred transitions.

Further investigating the results, Figure 5.3 extends its analysis beyond solely the preferred

transitions, depicted in blue in the table, to also include the worse transitions, represented in orange.

This figure illustrates the five model types on the y-axis and their corresponding scores on the x-axis.

The score is determined as the difference between the number of preferred and worse transitions.

Each model exhibits three markers, symbolizing the three circuit implementations.

Figure 5.3 suggests that when both preferred and worse transitions are considered, all models

converge in their assessments. They unanimously conclude that the LHF design exhibits the best

performance, followed by OG, and then the TI design. Comparing the score with the number

of preferred transitions, it becomes evident that although the TI design boasts more preferred

transitions than the OG design, it also has more worse transitions, leading to a lower score across

all models. With the transitions evaluated, the subsequent section delves into analyzing the steady-

state behavior of the designs.

5.4 Analysis of Steady-State Failures

Table 5.2 examines the occurrence of steady-state failure, specifically the probability of a given

design reaching equilibrium in the wrong state. The table encompasses the five distinct models, each

evaluated against the three different circuit implementations. The values presented represent the

disparity in percent difference from the median, denoted by a dash “-”. Similarly, blue cells signify
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Figure 5.3: Qualitative model scoring. The figure illustrates the score of each circuit implementation
within a specific modeling method. The model is depicted on the y-axis, while the x-axis represents
the score. Each colored marker corresponds to one of the three circuit designs. The score is
calculated as the difference between the number of preferred and worse transitions.

the preference for the circuit design in that state, while orange cells indicate a worse outcome. The

identification method adheres to the previously described approach.
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Figure 5.4 compares the findings presented in the table by aggregating the preferred and

worse identified states into a score. The y-axis in the figure represents the five models, while the

x-axis denotes the score. Each colored marker corresponds to a circuit design, as indicated in the

provided legend.

Figure 5.4: Qualitative model scoring. The figure illustrates the score of each circuit implementation
within a specific modeling method. The model is depicted on the y-axis, while the x-axis represents
the score. Each colored marker corresponds to one of the three circuit designs. The score is
calculated as the difference between the number of preferred and worse steady-states.

Similar to the previous findings, when both preferred and worse steady-states are taken into

account, all models converge on the conclusion that the LHF design outperforms the other two

designs. The (I/D/D) model is the only exception, as it gives the OG design a higher score than

the LHF design. However, when considering both the scores of the transitions and the steady-states,

the LHF design is unanimously chosen as the most robust. However, further research is required

to contextualize the results experimentally and compare the actual observed failure magnitude to

the predicted failure of each model.

The predictions for the absolute percentage failure of the models, environmental conditions,
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and investigated variables are displayed in Appendix A. Tables A.1, A.2, and A.3 present the

likelihood of circuit failures for different input transitions in the circuit implementations depicted in

Figure 4.2. Table A.1 illustrates the failure percentages of the OG circuit, Table A.2 provides the

same information for the TI design, and Table A.3 presents the corresponding data for the LHF

design.

5.5 Concluding Remarks

Ultimately, variations exist among the five different modeling techniques in certain individual

cases. However, the results indicate that when the overall behavior of the circuit is the primary

concern and no characterized parameters are available, a designer can initially utilize a higher-

level abstract model, which is less complex, to develop an overall robust design. As the process

progresses, if critical transitions are identified as highly failure-prone, the user can then transition

to a lower-level abstraction model to refine the design for the specific use case.

These findings, along with further research, contribute to advancing the DMABTL pipeline.

This advancement facilitates the learning and design stages by filtering out circuit layouts with a

higher likelihood of glitches for input transitions that are deemed critical by the designer. Addi-

tionally, the implementation of a model generator in genetic design automation tools, which auto-

matically incorporates intrinsic or extrinsic noise sources, would assist genetic circuit designers in

applying and testing different noise levels to obtain failure predictions and assess circuit robustness.

This work demonstrates that more abstracted models yield similar results to expanded or charac-

terized models. Thus, computationally less complex models can still provide meaningful insights for

design space exploration. It would be beneficial to have a “knob” feature in the future that allows

easy adjustment of model abstraction or the level of noise exposure.



“There are other forces at work

in this world Frodo, besides the

will of evil.”

- Gandalf the Grey

6
Dynamic Influence on Steady-State Behavior

Chapters 4 and 5 delve into a comprehensive analysis of circuit 0x8E, exploring various design

choices by evaluating static glitches and steady-state behavior, while also considering different

mathematical modeling techniques. However, dynamic hazards, as illustrated in Figure 3.2 (b),

were overlooked in the preceding analysis. This omission was grounded in the argument that the

circuit eventually reaches the correct state, albeit with a delay.

To reassess this perspective, the current chapter shifts its focus to the dynamic hazards

associated with circuit 0xF6 and their impact on its steady-state behavior. It introduces the contrary

hypothesis that the dynamic behavior of the circuit is indeed significant, influencing the circuit’s

steady-state behavior.

97
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The chapter initiates with the presentation of experimental results of circuit 0xF6 in Sec-

tion 6.1, providing the motivation for exploring the hypothesis. Specifically, the experimental anal-

ysis focuses on the circuit’s output production over time (Section 6.1.1) and the growth of the cell

cultures hosting the circuit plasmids (Section 6.1.2).

Subsequently, the chapter shifts its attention to the computational analysis of the circuit in

Section 6.2, aiming to characterize the experimental results. The computational analysis employs

ODE (Section 6.2.1) and SSA (Section 6.2.2) simulations, both methods from previously presented

work, to elucidate the observed behavior. Section 6.3 identifies the cause of the observed behavior

to substantiate the hypothesis. Finally, Section 6.4 seeks to validate the central hypothesis of this

chapter by rerunning a modified version of the initial experiment.

6.1 Experimental Analysis of Circuit 0xF6

Circuit 0xF6, much like circuit 0x8E, is part of the collection of 60 genetic circuits documented

by Nielsen et al.[175]. Illustrated alongside its truth table in Figure 6.1, this circuit stands as one of

the more extensive designs within the Cello project, comprising seven distinct logic gates. The Cello

project primarily centers on the automated design of such genetic circuits through the utilization

of the Cello software tool. The validation of all circuits concentrated on ensuring correct steady-

state behavior, accomplished through flow cytometry. This method captures a snapshot of cells’

fluorescence at a specific point in time and is frequently employed to verify a circuit’s steady-state

behavior by measuring the fluorescence of the output after the circuit reached its steady state. While

considerations of the circuit’s dynamics were not taken into account during the design process, the

work does present a time series of two circuits’ behavior over time. One of them is circuit 0x8E,

as shown in Figure 3.4. The time series was obtained using flow cytometry to capture multiple

snapshots at different time intervals.

For the work presented in this chapter, the analysis focuses on the steady-state behavior of cir-

cuit 0xF6. Initially, to replicate and verify the results of the Cello publication [175], the steady-state

behavior was also confirmed using flow cytometry as shown in Figure 3.2 in Chapter 3. However,



99
Inputs Output

IPTG aTc Ara YFP
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 0

(a) Truth table of circuit 0xF6 (b) Logic of circuit 0xF6

Figure 6.1: Circuit 0xF6, as documented by Nielsen et al.[175]. (a) The circuit’s functionality is
presented via a truth table. The original configuration includes three inputs — IPTG, aTc, and
Ara — and one output, YFP. (b) The circuit’s logic is portrayed, featuring three NOT gates, three
NOR gates, and one OR gate.

an interesting observation emerged during the validation experiment. Upon visual inspection of the

deep 96-well plate, depicted in Figure 6.2, prepared for the experiment, it was noted that not all

states with an expected high output were equally active. Specifically, state IPTG, aTc, Ara = (0,

1, 1), highlighted in pink in the figure, appeared to be closer to being off than on. For compari-

son, all states anticipating a high output are highlighted in green, while the expected off states are

represented in blue, aligning with the truth table provided in Figure 6.8.

Revisiting the flow cytometry data, shown in Figure 3.2, confirmed this observation, with

the detected fluorescence for this state being magnitudes lower than those of the other on states,

given the logarithmic scale of the plot. As stated in Chapter 3, the circuit’s output, YFP, was

substituted with sfGFP, known for its enhanced stability and fluorescence, rendering detection

more straightforward.

To further investigate the circuit’s behavior and extend previous work, an additional analysis

method was employed to characterize the circuit’s behavior over time rather than just at its steady

state. A plate reader was used to measure the fluorescence of cells in a 96-well plate while the cells

are alive and growing. While flow cytometers count and measure each individual cell, a plate reader

measures an entire well of a 96-well plate containing a complete colony of cells. Furthermore, a
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Figure 6.2: 96-well plate showing steady state of circuit 0xF6. The first three rows of the 96-well
plate display three biological replicates of circuit 0xF6. Columns represent the eight different states,
with those anticipated to be in an on state highlighted in green, and states with an expected low
output highlighted in blue. The state marked in pink is IPTG, aTc, Ara = (0, 1, 1) - a state
anticipated to have a high output. However, visually discerning the fluorescence of this state proves
challenging.

plate reader offers the advantage of recording fluorescence and, consequently, the circuit’s output

over a long period, such as the 15-hour duration of this experiment, unlike flow cytometry.

The plate reader process begins with loading a plate containing the samples. Subsequently,

the plate reader employs a laser with a specified wavelength, in this case, an excitation at 485 nm,

to illuminate each well containing a sample. The laser’s light interacts with the sample, and the

emitted signals are measured by the plate reader, then sent for analysis to the associated software.

The emission of the samples was detected at 530 nm wavelength. The measurement of one sample

takes seconds, and after scanning the entire plate, the process is repeated for a user-specified time

window—15 hours in this analysis. The analysis of these measurements allows for plotting both the

fluorescence and the optical density (OD) over time. The former represents the signal emitted by

the cells, while the latter is used to quantify the growth of the colonies.
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6.1.1 Experimental Fluorescence Analysis of sfGFP Production

The results of the plate reader analysis quantitatively validate the visual inspection. Figure 6.3

illustrates the measured fluorescence over time for cell colonies containing circuit 0xF6 and its

corresponding output plasmid producing sfGFP. The x-axis displays time in hours, while the y-axis

represents fluorescence in relative fluorescence units (RFU). RFUs measure the fluorescence of a

sample relative to a reference fluorescence. The reference fluorescence is based on sfGFP expression

of cells regulated by an upstream constitutive promoter.

The first row shows the results of the measurement of biological replicate #1 highlighted in

blue, with each column representing one of the eight states. The middle two rows show the results

for biological replicate #2 and #3. Finally, the three measurements in the last row display the

three biological replicates just expressing sfGFP without the circuit for the reference fluorescence.

Figure 6.3: Plate reader fluorescence measurement of circuit 0xF6. The fluorescence is depicted in
RFU over time in hours. The first three rows present the measurement results for the three biological
replicate, with the results for biological replicate #1 highlighted in blue. The three measurements
highlighted in pink represent the three biological replicates of the reference fluorescence used to
calculate the RFU.

The results of the plate reader analysis align with the expected function of the circuit. Six
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out of the eight states exhibit a high output signal, while two show a low output signal. Notably, as

seen visually, there are variations in the strengths of the on signals among the states. Particularly,

state IPTG, aTc, Ara = (1, 0, 0) displays a very strong on signal, while state (0, 1, 1) highlighted

in orange, exhibits a notably weaker on signal.

Figure 6.4 illustrates the derivative of the fluorescence analysis, representing the sfGFP pro-

duction rate in RFU−1 Cell−1 over time in hours. The layout mirrors that of Figure 6.3, with the

first three rows displaying the three biological replicates and the last row presenting the reference

fluorescence.

Figure 6.4: GFP production rate of circuit 0xF6. The production rate is depicted in RFU−1 Cell−1

over time in hours. The first three rows display the measurement results for the three biological
replicates. The last row shows the three measurements of the reference fluorescence used to calculate
the RFU.

The sfGFP production rate exhibits a consistent pattern. Specifically, state (1, 0, 0) demon-

strates robust sfGFP production in comparison to the other on states. This state expresses a higher

concentration of sfGFP and therefore measures a higher fluorescence. Contrary, state (0, 1, 1) shows

limited sfGFP production, contributing directly to the observed difference in fluorescence.
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6.1.2 Experimental Monitoring of Cell Growth through OD Analysis

Differences in fluorescence levels may not necessarily correspond to distinct levels of circuit

activity. Instead of indicating lower circuit activity, variations in cell quantity can also influence

fluorescence levels. Therefore, alongside the fluorescence analysis, OD was measured as a reliable

method for monitoring cell growth. This measurement aims to determine whether the variances

observed in Figure 6.3 are attributed to fluctuations in cell concentration.

The typical bacterial growth in a pure culture is visualized in Figure 6.5. This growth is

characterized by several distinctive phases, namely the lag phase, the log (or exponential) phase,

the stationary phase, and the decline (or death) phase [142].

Figure 6.5: Typical bacterial growth
curve in a pure culture. The graph de-
picts the logarithmic plot of the number
of cells over time. Bacterial growth is
characterized by distinctive phases. It
begins with the lag phase, during which
bacterial growth is nearly zero as cells
adapt to the media. The subsequent log
phase represents exponential bacterial
growth, ultimately leading to the sta-
tionary phase marked by an equilibrium
between cell growth and death. In the
final decline, the number of cells dying
surpasses the number of cells growing.

The lag phase is characterized by a nearly zero growth rate [142]. During this phase, cells

adapt to the new media, involving the expression of specific mRNA and protein synthesis essential

for the cell’s survival. The duration of the lag phase can vary from minutes to hours, depending on

factors such as the bacterial strain, initial cell count, and the composition of the media. Once the

initial population has doubled, the lag phase transitions into the log phase [232]. The log phase is

marked by exponential growth of the cell culture, therefore also often referred to as the exponential

phase. Bacteria multiply rapidly, with the growth rate being proportional to the number of cells

present at any given time [142]. The end of the log phase leads to the stationary phase, characterized
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by a net growth rate of zero. During this phase, an equilibrium is reached between the growth and

death of bacteria. Factors contributing to zero net growth include the depletion of essential nutrients

in the media, hindering optimal growth and eventually leading to the decline phase [142]. The final

phase, known as the decline phase, involves a net loss of bacterial cells. While there may still be

some cell growth, the number of cells dying surpasses the number of new cells through division. This

phase is typically exponential but slower than the log phase with depletion of essential resources

being the driving factor [142].

Figure 6.6 illustrates the results of the measurement of the bacteria’s growth through OD

analysis. The figure layout remains consistent, with the first three rows presenting biological repli-

cates #1 to #3, and the columns displaying all eight states. As before, the last row depicts the

reference cultures. OD is measured by quantifying the light that passes through the sample and is

dimensionless. In this work, light with a wavelength of 700 nm was employed.

Figure 6.6: The OD is depicted at a wavelength of 700 nm over time in hours. The first three rows
display the measurement results for the three biological replicates #1 to #3. The last row represents
the three biological replicates of the reference cultures. The growth of the circuit containing cell
cultures is comparable for all eight states across the three biological replicates. Furthermore, the
cultures expressing the reference fluorescence also show comparable growth.

The OD analysis results suggest comparable growth of cell cultures for all eight states. There
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is no indication that one of the states had a higher concentration of cells than the others, reinforcing

the notion that the fluorescence difference is likely due to variations in sfGFP concentration rather

than cell concentration. To further confirm these results, the specific growth rate (µ) of the cells is

presented in Figure 6.7. The specific growth rate, derived from optical density, is depicted in the

same layout over time in hours.

Figure 6.7: Measurement of the specific growth rate for circuit 0xF6. The specific growth rate
is presented over time in hours at a wavelength of 700 nm. The first three rows showcase the
measurement results for the three biological replicates, with the outcomes for biological replicate
#1 depicted in the first row. The last row illustrates the three measurements corresponding to the
biological replicates used as reference.

Once again, the results confirm that there is no significant difference in the specific growth

rate among the various states. In all cell cultures, the growth rate initiates at a low level, the lag

phase, increases during the log phase, reaches its peak, slows down in the stationary phase, and

eventually drops below zero in the decline phase. Therefore, the conclusion drawn is that cell growth

does not contribute to the variation in the strength of the on state. The observed differences can

be attributed to the behavior of the circuit and sfGFP production itself.
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6.2 Computational Analysis of Circuit 0xF6

Following the experimental analysis of circuit 0xF6, a computational model was created and

examined to elucidate the observed behavior. Various types of computational analyses were em-

ployed. First, ODE analysis was conducted to identify potential glitching behavior. Second, SSA

analysis was carried out to assess the probabilities of the observed faulty behavior occurring.

6.2.1 ODE Analysis of Circuit 0xF6

The computational model of circuit 0xF6 conforms to the default iBioSim model with default

parameters, as introduced in Chapter 5. The ODE analysis unveiled distinct behaviors among the

states, leading to the identification of three states of particular interest. The first selected state is

IPTG, aTc, Ara = (0, 0, 0), illustrated in the first column of Figure 6.3. The second selected state

is (1, 0, 0), corresponding to the second column in Figure 6.3, and finally, the third state is (0, 1, 1),

corresponding to the seventh column in Figure 6.3. The results of the ODE analysis are depicted in

Figure 6.8. The analysis employed the Runge-Kutta method with a time limit of 2100 time points.

In this figure, the sfGFP production over time for the state (0, 0, 0) is depicted as the solid blue

line. The dashed blue line indicates when the circuit reaches an output of 60 molecules, occurring at

time step 260. As defined in previous chapters, a high signal is considered to be at 60 molecules and

above. Next, the purple line illustrates the sfGFP production over time for the input configuration

(1, 0, 0). Again, the purple dashed line indicates when the circuit reaches an output of 60 molecules,

achieved after 152 time units—faster than for state (0, 0, 0). It is noteworthy that the analysis

predicts the circuit to produce twice as much sfGFP for this state compared to the other states,

explaining the stronger on signal. Finally, the state with the weaker on signal (0, 1, 1) is depicted by

the orange graph. Similar to the other two states, the dashed orange line indicates when the circuit

reaches an output of 60 molecules for that transition, requiring 574 time steps. Consequently, this

state achieves a high signal much later than the other states. The delay is attributed to a dynamic

glitch, visible in the figure. While the simulation suggests eventual attainment of the high output

state, the extended duration results from non-monotonic production. Hence, the hypothesis posits
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Figure 6.8: ODE analysis of circuit 0xF6. The figure presents the ODE analysis results depicting
the number of output molecules over time for three states of circuit 0xF6. The circuit initiates
from its initial setup, not in its steady state (0, 0, 0), and transitions to the states IPTG, aTc, Ara
= (0, 0, 0), (0, 1, 1), and (1, 0, 0). Dashed lines indicate when the circuit reaches an output of
60 molecules for the respective state. The results highlight that the state with the observed lower
fluorescence exhibits a dynamic glitch, causing a delayed attainment of the output of 60 molecules
compared to the other two states.

that the dynamic failure influences steady-state behavior, introducing a race condition between the

bacteria reaching their proper steady state and their lifecycle.

6.2.2 SSA Analysis of Circuit 0xF6

Following the ODE analysis, stochastic simulation was employed to estimate the probability of

the circuit reaching its correct steady state within the time constraints imposed by the cell lifecycle.

For this purpose, 10,000 SSA runs were performed to simulate the behavior and determine whether

the circuit achieves 60 molecules within 260 time units. The choice of the 260-time-unit threshold

was based on the duration required for the transition (0, 0, 0) to reach 60 molecules. The results
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are presented in Figure 6.9. The bar graph depicts the six on states on the x-axis, illustrating the

probability of each state reaching 60 molecules within 260 time points as a percentage on the y-axis.

Figure 6.9: SSA analysis of circuit 0xF6. The figure illustrates the probability of each of the six
states with a high output reaching 60 output molecules within 260 time units. All states that
visually exhibited a high output state have a probability of reaching the expected output above 80
percent. In contrast, the states showing a dynamic glitch in the ODE analysis have a probability
of below 50 percent of reaching the expected high output in time.

The results reveal that for the four on states that are clearly visible, they consistently achieve

60 molecules in over 80 percent of the runs within the specified time frame. Conversely, the two

states that appear dimmer and exhibit a dynamic glitch in the ODE simulation only reach 60

molecules in less than 50 percent of the runs. It is important to note that the two off states are not

visualized, as they remain off throughout the transition. As anticipated, with more time, the states

stabilize, increasing the likelihood of all states reaching the correct on state. Figure 6.10 presents

the same analysis, this time illustrating the probability of each on state reaching 60 molecules of

output signal before 600 time units.

As depicted, the two states that previously exhibited faulty behavior and had a low probability

of reaching the correct state now demonstrate an increased likelihood, surpassing 50 percent, of
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Figure 6.10: SSA analysis of circuit 0xF6. This figure illustrates the probability of each of the six
states with a high output reaching 60 output molecules within 600 time units. States that visually
exhibited a high output have a probability exceeding 80 percent of reaching the expected output.
In contrast, states exhibiting a dynamic glitch in the ODE analysis have a probability below 50
percent of reaching the expected high output within the specified time.

achieving their on signal within the designated time. Therefore, given sufficient time, cells can

eventually reach the correct steady state. However, cells have a finite lifespan and cannot sustain

the exponential growth phase indefinitely. Extending the exponential growth phase by providing

additional nutrients throughout this period allows for more time for the circuit to reach its correct

steady state in a real-world application.

6.3 Identification of Circuit 0xF6’s Glitch Cause

Having identified the dynamic failure influencing the circuit’s steady state and analyzed its

probability, the next step involves investigating the failure’s root cause. A closer examination

reveals that all states with a low Ara input reach their high output signal on time. In contrast, the

two states that fail to reach a high output in time have a high Ara input. Figure 6.11 highlights

circuit 0xF6, specifically focusing on the last three gates, which are based on the PhIF and AmtR
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expression cassettes, as well as the sfGFP output OR gate.

(a) (b)

Figure 6.11: Identification of the glitch cause in circuit 0xF6. In (a), circuit 0xF6 and its associ-
ated logic gates are depicted, with emphasis on the three gates responsible for the circuit’s faulty
behavior. In panel (b), the temporal sequence and signal propagation through the circuit unfold,
providing insights into the underlying cause of the dynamic glitch observed in the circuit’s output.
The four states successfully achieving a timely high output exhibit a low Ara input signal. This
signal, traversing a single NOT gate, activates the output OR gate, leading to output production
independently of the IPTG and aTc pathways. In contrast, the two high-output states exhibiting
the dynamic glitch rely on the IPTG and aTc pathway to activate the final OR gate. The necessity
for signals to navigate multiple layers of logic introduces a delay in output production, giving rise
to the observed dynamic glitching behavior.

The sfGFP output is regulated by an OR gate, indicating that the output will be active if

either or both of the PhIF or AmtR cassettes are active. Figure 6.11 visually represents the signal

of the gates over time, using a red line to indicate a low signal and a green line to signify a high

signal. Cello components operate on repression, so initially, after cell transformation and induction,

all promoters are active since no repressors have been produced yet. As time progresses, the signal

propagates through various logic levels, stabilizing the circuit in its output. All states that achieve

their high output as expected follow the lower pathway depicted in the figure. In this pathway, the

circuit initiates with all signals on initially, and sfGFP production remains uninterrupted, given

that the lower pathway, the inverter Ara signal, never turns off, aligning with the observed behavior

both computationally and experimentally.
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For the two states exhibiting a dimmer on signal, the circuit also initiates with all signals

on. However, in these instances, the inverter turns off due to the high Ara signal, as illustrated in

the upper part of Figure 6.11 (b). Since the Ara pathway is shorter than the pathway through the

PhIF gate, the signal turns on before the PhIF NOR gate reactivates. Consequently, the circuit

experiences a brief interruption in sfGFP production, as indicated in the computational analysis,

offering a potential explanation for the circuit’s observed behavior in the laboratory.

6.4 Modified Experiment of Circuit 0xF6

Based on the hypothesis outlined earlier, the plate reader experiment was replicated using

the identical circuit 0xF6 and output plasmid, again with the output plasmid containing sfGFP

instead of YFP. Prior to the experiment, cells were cultured overnight in M9 media supplemented

with appropriate antibiotics and subsequently transferred to a 96-well plate. The cells were then

induced with inputs representing the eight possible states, and both fluorescence and OD were

measured over a span of 50 hours compared to the 15 hours of the initial experiment. A detailed

protocol is provided in the appendix for reference. The results, as illustrated in Figure 6.12, depict

normalized fluorescence relative to OD. For normalization, fluorescence values were divided by their

corresponding OD values. To mitigate the influence of small or negative OD values at the outset,

likely attributed to measurement noise, a threshold was implemented to filter out such data points.

As before, the data from three independent biological replicates are included in the figure.

The analysis results appear to confirm a dynamic glitch in the state where IPTG, aTc, and

Ara are in the on configuration (0, 1, 1) shown in panels A07, B07, C07, and D07, thus supporting

the hypothesis. However, it is noteworthy that most other on states, including (0, 0, 0), (1, 0, 0), (0,

1, 0), and (1, 1, 0), also exhibit a dynamic glitch. Nevertheless, these states demonstrate a quicker,

more pronounced initial output production, with the dynamic glitch occurring later compared to

the state of primary interest. Additionally, the results indicate that state (0, 0, 1), shown in panels

A05, B05, C05, D05, remains consistently low throughout the experiment, while the other off state,

(1, 1, 1), unexpectedly transitions to an on state instead of maintaining its anticipated low output.
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Figure 6.12: Fluorescence analysis of circuit 0xF6 over 50 hours. The figure displays fluorescence
data normalized to OD for three biological replicates and all eight states of circuit 0xF6. Notably,
the critical state (0, 1, 1), highlighted in orange, reveals a dynamic glitch, a phenomenon observed
in several other states as well. Intriguingly, the final state appears to turn on despite its intended
status to remain off.

Several factors could contribute to this phenomenon. State 8 relies on the presence of all

three inducers, whereas the other off state depends solely on the inducer Ara. Consequently, it

is plausible that degradation of either IPTG or aTc, the other two inducers, occurs more rapidly,

leading to a state transition. This hypothesis could similarly account for the behavior observed in

other states. Further experiments are warranted to validate this theory.

One potential approach involves conducting RNA-seq experiments to assess mRNA concen-

trations within the cell. Alternatively, microscopic analysis could enable tracking of molecule con-

centrations in real-time. Finally, employing different circuit functions and conducting multiple plate

reader experiments could help elucidate the lifespan of the inducers.
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6.5 Discussion

In the context of this dissertation, this chapter delves into the exploration of dynamic failure

behavior, a facet previously overlooked in earlier analyses, employing circuit 0xF6 as a case study.

Motivated by an unexpected observation during flow cytometry analysis, which prompted a more

comprehensive computational examination introduced in preceding chapters, the chapter formulated

its central hypothesis: The lower output observed in the state of interest can be attributed to a race

condition between the delayed output production caused by a dynamic glitch and the lifespan of the

cells. The computational analysis unearthed a dynamic glitch in the state of interest, prompting

a re-run of the plate reader analysis over an extended time course to experimentally capture this

dynamic glitch. Subsequent analysis revealed that other states also exhibit behavior divergent from

the expected output, leading to a novel hypothesis: variations in the life-span of the inducers may

precipitate state transitions, thereby inducing different output behaviors.



”Well, here at last, dear friends,

on the shores of the sea comes

the end of our fellowship in

middle-earth. Go in peace! I

will not say: do not weep for not

all tears are an evil.”

- Gandalf the White

7
Conclusion

Over the past two decades, synthetic biology has witnessed significant advancements [4, 73].

Efforts have been made to transition from using E. coli as the primary host organism to exploring

other organisms like fungi and plants [147, 130]. Additionally, there has been exploration into

dividing larger projects into multiple cells [91], although these endeavors remain challenging. Despite

progress, the complexity of genetic circuits continues to lag behind that of genetic engineering

technologies [114, 207]. As the field continues to evolve, new challenges and bottlenecks arise,

necessitating ongoing attention to ensure its sustained growth.

At the core of these challenges lies the imperative to design robust genetic circuits with

behavior predictable through in silico analysis. The ability to predict the behavior of genetic cir-

114
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cuits, regardless of their host organisms or construction methods, is essential for both laboratory

research and real-world applications. Achieving this goal requires thorough part characterization

and community-wide standardization efforts, alongside the development of software tools and au-

tomation methods to facilitate the design of larger genetic circuits.

This dissertation contributes to addressing these challenges by providing insights into genetic

circuit behavior and the relationship between computational and experimental analyses. Within

this work, critical aspects of genetic circuit design have been explored, paving the way for future

advancements in the field. Looking ahead, bridging the gap between computational and laboratory

synthetic biology stands as a crucial task for future progress. Future research directions will focus

on further integrating computational and experimental analyses, ultimately advancing our under-

standing of genetic circuits and their applications. This chapter serves as the conclusion to the

dissertation, summarizing the main contributions of the research in Section 7.1. It also outlines

future directions for this research in Section 7.2.

7.1 Summary

This dissertation introduces methodologies for deciphering genetic circuit failures in the field

of synthetic biology. To achieve real-world impact, robust and reliable genetic circuits are indispens-

able. This necessitates a comprehensive understanding of faulty behavior and the application of

reliable analysis methods. The presented work first establishes a definition for faulty genetic circuit

behavior to allow further reproducible analysis. This work continues by introducing various analy-

sis methods. These methods, including ODE analysis, stochastic simulations, and stochastic model

checking, serve to simulate and verify the expected genetic circuit behavior. Each method brings

distinct advantages, with ODE analysis providing quantitative insights, stochastic simulations cap-

turing non-deterministic behavior, and stochastic model checking offering accurate probabilities.

The consideration of abstraction levels emerges as a crucial factor in balancing accuracy and

computational complexity. Therefore, this research assesses the impact of different abstraction lev-

els on computational models. While investing effort in characterizing genetic parts enhances model
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predictions, resource constraints may limit the feasibility of comprehensive characterization. More

abstracted models, involving modifications to chemical reactions and parameters derived from liter-

ature, offer a practical compromise for users to understand their genetic design’s behavior. However,

it is essential to note that higher modeling precision corresponds to increased computational costs.

The application of these methodologies is demonstrated through sample studies on genetic

circuits. The initial analysis focuses on comparing different computational models by evaluating

failure probabilities in static transitions and steady-state failures. One critique of this analysis is the

exclusion of dynamic failures often deemed irrelevant under the assumption that the circuit eventu-

ally reaches the correct state with a delay. However, both experimental and computational analyses

presented at the end of this work suggest otherwise. The work evaluates the previously overlooked

dynamic hazards both experimentally and computationally. The results prompt a reevaluation of

the hypothesis, emphasizing the need to explore the significance of dynamic behavior in influencing

steady states.

The dissertation emphasizes the benefits of integrating engineering principles into synthetic

biology. Throughout this research, standards have played a crucial role in enabling the use of

software tools for predicting genetic circuit behavior and ensuring reproducibility in the future.

Moreover, a converter was developed, leveraging the SBOL standard, to facilitate translation to

the PRISM language, thereby enabling stochastic model analysis. Abstraction is integral in the

entire workflow and has been extensively covered in Chapter 5. Finally, the concept of decoupling

is used in Chapter 6 illustrating the separation of the analysis phase from laboratory work, further

underscoring the value of systematically engineering genetic designs.

7.2 Future Work

The narrative presented in this dissertation underscores the value of computational analysis

in understanding failure behavior in genetic circuits. Employing diverse analysis methods provides

insights into a GRN’s behavior from different perspectives. Even when information about a specific

design is limited, such as when utilizing novel genetic parts, default parameters and established
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methods can still furnish users with valuable results. Furthermore, experimental data allows for the

validation of model predictions, feeding back into the DMABTL cycle and resulting in better and

more predictive models for future applications.

However, challenges persist, and a gap remains between the computational and laboratory-

based aspects of the field. Many biologists currently avoid computational analysis methods, as

common designs are still simple enough to be manually created. Closing the gap between compu-

tational and laboratory synthetic biology necessitates the development of practical and enhanced

computational tools that streamline the design process, automate workflows, and optimize genetic

design. Updated laboratory procedures are needed to aid in model predictability and achieve faster

turnaround times for real-world applications. This includes the design and characterization of larger,

more complex constructs in a shorter timeframe using computational methods and automation. Ul-

timately, the goal is to make genetic design readily accessible and efficient for researchers in the

field.

7.2.1 Failure Definition

This dissertation initially defines incorrect genetic circuit behavior as the manifestation of

unwanted output behaviors. These failures encompass transient failures, which self-correct over

time, and steady-state failures. Furthermore, this work explains how these undesired behaviors can

arise, whether from failures on a cellular level or from a circuit’s logic implementation or Boolean

function.

However, the primary contention posited is that all these failures manifest through unwanted

outputs. Future research endeavors could explore more sophisticated observation methods beyond

output behavior to pinpoint failure causes with greater precision, whether stemming from crosstalk,

roadblocking, or toxicity. Enhanced understanding facilitates more precise adjustments and opens

up multiple new avenues for fine-tuning genetic circuits.
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7.2.2 Computational Progress

Continuous updates are essential for GDA tools to remain aligned with evolving analysis

methods, enabling designers to effectively leverage newly developed features. A valuable feature

could involve an automated, streamlined analysis process, akin to the method detailed in Chapter 5.

A user-friendly software tool could take a user-defined design, generate multiple versions based on

characterization data, and automatically conduct analysis to pinpoint designs with the highest

likelihood of success.

Moreover, this dissertation explores various analysis methods, including ODE, SSA, and

stochastic model verification. Driving this work further, available paths for exploration include

possibilities for hybrid approaches and utilization in different contexts, such as using stochastic

model checking to explore the design space and guide the user toward different, more robust imple-

mentations of the desired function.

Furthermore, as genetic designs grow in complexity, the integration of software assistance

becomes increasingly critical. Establishing a reliable analysis approach is imperative for the robust

design of multi-cellular systems. This entails refining the methods outlined in this dissertation to

effectively accommodate the intricacies of multi-cellular systems.

7.2.3 Future of Standards

The work in this dissertation relied on a variety of standards, which play a crucial role in

ensuring the reproducibility of results and facilitating data sharing. However, the adoption of stan-

dards can be hindered by personal interests and ad hoc practices within research groups, posing a

significant bottleneck to progress. Overcoming this challenge often requires new standards to add

value to research endeavors without imposing excessive implementation costs. Achieving widespread

acceptance of standards within the community is essential to enhance data sharing and ensure the

reproducibility of published results [149]. Standardization efforts should extend beyond labora-

tory procedures to encompass data sharing, visualization, and mathematical modeling, facilitating

seamless communication among diverse research groups [19].
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Community-developed standards, such as SBOL [37, 151, 138, 189, 83], SBOL Visual [11, 185],

and SBML [115, 105] utilized in this work, should take precedence over bioinformatic standards and

non-standard formats. This preference is critical for promoting the sharing of comprehensive de-

sign information among collaborators. Part libraries should adhere to these standards, and software

tools must offer support to enhance the capacity of laboratory-based scientists to share data and en-

able computational-based scientists to develop integrated software workflows. Additionally, existing

standards should continuously evolve, and new standards should be developed as necessary, through

open discourse involving both computational and laboratory-based researchers, as well as represen-

tatives from academia and industry. This collaborative approach ensures that standards remain

relevant and effective in addressing the evolving needs of the synthetic biology community [38].

7.2.4 Genetic Part Characterization and Screening Methods

Facilitating plug-and-play functionality for genetic designs requires the establishment of data

sheets akin to those used in electronic circuit designs. Enhancements in characterization methods

are pivotal in this regard, mandating the adoption of high-throughput screening techniques, as

demonstrated in [78, 93]. These innovative methods should streamline the collection and analysis

of extensive datasets, ultimately improving the accuracy of part characterization.

Additional parameters inferred from experimental data can enhance simulations by incorpo-

rating factors such as toxicity, media composition, environmental conditions, and the influence of

neighboring bacteria. Moreover, developing host-specific simulation methods can streamline the

modeling process and improve accuracy.

7.2.5 Fitting of Computational Models

Experimental data, as demonstrated in Chapter 6, serves a crucial role in validating and

verifying model results. Furthermore, this data can be integrated back into the iterative DMABTL

cycle to refine and improve models, ensuring they align closely with experimental observations. In

this dissertation, the values for high and low signals were chosen arbitrarily within the parameter
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range, facilitating predictions that could potentially be validated experimentally. To precisely esti-

mate the actual number of molecules in the cell, methods such as RNA sequencing can be utilized

to fine-tune the high and low values accordingly.

Fitting models to experimental data not only enhances the understanding of the model but

also sheds light on the underlying biological processes. However, this process comes with its own set

of challenges. First, to justify the effort, it is essential to have protocols and preferably automation

methods in place to obtain experimental data for model fitting in a timely manner. Furthermore,

challenges arise concerning parameter identifiability and overfitting. Lastly, the quality of the

experimental data must be of high caliber to ensure reliable model fitting outcomes.

In the context of this dissertation, conducting characterization experiments on circuit 0x8E

could offer valuable insights into exploring the differences in the models and abstractions discussed in

Chapter 5. This exploration would help determine whether each model yields the same conclusions

and can be effectively utilized. Additionally, characterizing this circuit would establish a ground

truth for comparing the models, providing a benchmark against which their predictive capabilities

can be assessed.

Furthermore, data obtained from these experiments would enable a deeper investigation into

the influence of intrinsic and extrinsic noise on circuit behavior. By highlighting which noise sources

have the most significant impact, researchers can gain a better understanding of the underlying

factors driving circuit performance. This heightened focus on noise sources would contribute to

refining modeling approaches and improving the accuracy of predictive models.

7.2.6 Laboratory Workflow Automation

Automation in the laboratory plays a crucial role in reducing barriers to entry in the field.

Notable automation tools include the OpenTrons 1 and Eppendorf 2 liquid handling robots. These

devices streamline experimental workflows by automating various steps, thereby accelerating both

the build and test processes. The benefits of automation are manifold.
1 https://opentrons.com
2 https://www.eppendorf.com/

https://opentrons.com
https://www.eppendorf.com/
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First, automation significantly increases workflow efficiency, as robots can conduct experi-

ments and execute protocols 24 hours a day, seven days a week. This continuous operation minimizes

downtime and expedites research progress.

Second, automated systems are less prone to errors compared to manual processes, ensuring

the reliability and reproducibility of experimental results. This reduction in errors contributes to

higher-quality data and enhances the overall integrity of scientific findings.

Moreover, automation enhances the scalability of experiments, enabling researchers to conduct

studies on a larger scale with minimal additional effort. This scalability is particularly advantageous

for high-throughput screening studies and large-scale experiments.

Finally, automated protocols offer consistent performance, maintaining uniformity across ex-

periments and eliminating variability between runs. Once set up and initialized, automated systems

require minimal training to operate effectively, further streamlining laboratory procedures and in-

creasing research productivity.



Bibliography

[1] Synthetic Biology: A Primer. Imperial College Press World Scientific Publishing Co. Pte.
Ltd, revised edition edition.

[2] Uri Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC
press, 2019.

[3] Lauren B Andrews, Alec A K Nielsen, and Christopher A Voigt. Cellular checkpoint control
using programmable sequential logic. SYNTHETIC BIOLOGY, page 12, 2018.

[4] Ernesto Andrianantoandro, Subhayu Basu, David K Karig, and Ron Weiss. Synthetic biology:
New engineering rules for an emerging discipline. Molecular Systems Biology, 2(1):2006.0028,
January 2006.

[5] Evan Appleton, Curtis Madsen, Nicholas Roehner, and Douglas Densmore. Design Automa-
tion in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 9(4):a023978, April
2017.

[6] Adam Arkin, John Ross, and Harley H McAdams. Stochastic Kinetic Analysis of Develop-
mental Pathway Bifurcation in Phage λ-Infected Escherichia coli Cells. Genetics, 149(4):1633–
1648, August 1998.

[7] Adam Paul Arkin. A wise consistency: Engineering biology for conformity, reliability, pre-
dictability. Current Opinion in Chemical Biology, 17(6):893–901, December 2013.

[8] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying continuous
time Markov chains. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Rajeev Alur, and
Thomas A. Henzinger, editors, Computer Aided Verification, volume 1102, pages 269–276.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[9] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-checking
continuous-time Markov chains. ACM Transactions on Computational Logic, 1(1):162–170,
July 2000.

[10] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time markov chains. IEEE Transactions on Software Engineering, 29(6):524–541,
June 2003.

122



123

[11] Hasan Baig, Pedro Fontanarossa, Vishwesh Kulkarni, James McLaughlin, Prashant
Vaidyanathan, Bryan Bartley, Shyam Bhakta, Swapnil Bhatia, Mike Bissell, Kevin Clancy,
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Brown, James Alastair McLaughlin, Curtis Madsen, Benjamin Aleritsch, Bryan Bartley,
Shyam Bhakta, Mike Bissell, Sebastian Castillo Hair, Kevin Clancy, Augustin Luna, Nicolas
Le Novère, Zach Palchick, Matthew Pocock, Herbert Sauro, John T. Sexton, Jeffrey J. Tabor,



124

Christopher A. Voigt, Zach Zundel, Chris Myers, and Anil Wipat. Communicating Structure
and Function in Synthetic Biology Diagrams. ACS Synthetic Biology, 8(8):1818–1825, August
2019.

[22] Shimshon Belkin, Sharon Yagur-Kroll, Yossef Kabessa, Victor Korouma, Tali Septon, Yonatan
Anati, Cheinat Zohar-Perez, Zahi Rabinovitz, Amos Nussinovitch, and Aharon J Agranat. Re-
mote detection of buried landmines using a bacterial sensor. Nature Biotechnology, 35(4):308–
310, April 2017.

[23] Steven A. Benner and A. Michael Sismour. Synthetic biology. Nature Reviews Genetics,
6(7):533–543, July 2005.

[24] Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, James Ostell, Kim D
Pruitt, and Eric W Sayers. GenBank. Nucleic Acids Research, 46(D1):D41–D47, January
2018.

[25] Frank T Bergmann, Richard Adams, Stuart Moodie, Jonathan Cooper, Mihai Glont, Martin
Golebiewski, Michael Hucka, Camille Laibe, Andrew K Miller, David P Nickerson, Brett G
Olivier, Nicolas Rodriguez, Herbert M Sauro, Martin Scharm, Stian Soiland-Reyes, Dagmar
Waltemath, Florent Yvon, and Nicolas Le Novère. COMBINE archive and OMEX format:
One file to share all information to reproduce a modeling project. BMC Bioinformatics,
15(1):369, December 2014.

[26] Jonathan A. Bernstein, Arkady B. Khodursky, Pei-Hsun Lin, Sue Lin-Chao, and Stanley N.
Cohen. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene
resolution using two-color fluorescent DNA microarrays. Proceedings of the National Academy
of Sciences, 99(15):9697–9702, July 2002.

[27] G. Bertani. STUDIES ON LYSOGENESIS I: The Mode of Phage Liberation by Lysogenic
Escherichia coli. Journal of Bacteriology, 62(3):293–300, September 1951.

[28] Silpa Bhaskaran, Umesh P., and Achuthsankar S. Nair. Hill Equation in Modeling Tran-
scriptional Regulation. In Vikram Singh and Pawan K. Dhar, editors, Systems and
Synthetic Biology, pages 77–92. Springer Netherlands, Dordrecht, 2015.

[29] David Bikard, Wenyan Jiang, Poulami Samai, Ann Hochschild, Feng Zhang, and Luciano A.
Marraffini. Programmable repression and activation of bacterial gene expression using an
engineered CRISPR-Cas system. Nucleic Acids Research, 41(15):7429–7437, August 2013.

[30] Hamid Bolouri. Computational Modeling of Gene Regulatory Networks — A Primer. PUB-
LISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIEN-
TIFIC PUBLISHING CO., August 2008.

[31] J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, and D. Endy. Amplifying Genetic Logic
Gates. Science, 340(6132):599–603, May 2013.

[32] Olivier Borkowski, Francesca Ceroni, Guy-Bart Stan, and Tom Ellis. Overloaded and stressed:
Whole-cell considerations for bacterial synthetic biology. Current Opinion in Microbiology,
33:123–130, October 2016.

[33] Benjamin J. Bornstein, Sarah M. Keating, Akiya Jouraku, and Michael Hucka. LibSBML:
An API Library for SBML. Bioinformatics, 24(6):880–881, March 2008.



125

[34] Sierra M. Brooks and Hal S. Alper. Applications, challenges, and needs for employing synthetic
biology beyond the lab. Nature Communications, 12(1):1390, March 2021.

[35] Jennifer A N Brophy and Christopher A Voigt. Principles of genetic circuit design. Nature
Methods, 11(5):508–520, May 2014.

[36] J Brown. The iGEM competition: Building with biology. IET Synth. Biol., 1(1):4, 2007.

[37] Lukas Buecherl, Thomas Mitchell, James Scott-Brown, Prashant Vaidyanathan, Gonzalo Vi-
dal, Hasan Baig, Bryan Bartley, Jacob Beal, Matthew Crowther, Pedro Fontanarrosa, Thomas
Gorochowski, Raik Grünberg, Vishwesh Kulkarni, James McLaughlin, Göksel Mısırlı, Ernst
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[90] Emanuel Gonçalves, Joachim Bucher, Anke Ryll, Jens Niklas, Klaus Mauch, Steffen Klamt,
Miguel Rocha, and Julio Saez-Rodriguez. Bridging the layers: Towards integration of signal
transduction, regulation and metabolism into mathematical models. Molecular BioSystems,
9(7):1576, 2013.

[91] David T. Gonzales, Christoph Zechner, and T.-Y. Dora Tang. Building synthetic multicel-
lular systems using bottom–up approaches. Current Opinion in Systems Biology, 24:56–63,
December 2020.

[92] Thomas E. Gorochowski, Irem Avcilar-Kucukgoze, Roel A. L. Bovenberg, Johannes A. Rou-
bos, and Zoya Ignatova. A Minimal Model of Ribosome Allocation Dynamics Captures
Trade-offs in Expression between Endogenous and Synthetic Genes. ACS Synthetic Biology,
5(7):710–720, July 2016.



129

[93] Thomas E Gorochowski, Irina Chelysheva, Mette Eriksen, Priyanka Nair, Steen Pedersen, and
Zoya Ignatova. Absolute quantification of translational regulation and burden using combined
sequencing approaches. Molecular Systems Biology, 15(5), May 2019.

[94] F. Veronica Greco, Amir Pandi, Tobias J. Erb, Claire S. Grierson, and Thomas E. Goro-
chowski. Harnessing the central dogma for stringent multi-level control of gene expression.
Nature Communications, 12(1):1738, December 2021.

[95] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. INFAMY: An
Infinite-State Markov Model Checker. In Ahmed Bouajjani and Oded Maler, editors,
Computer Aided Verification, volume 5643, pages 641–647. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[96] T. S. Ham, Z. Dmytriv, H. Plahar, J. Chen, N. J. Hillson, and J. D. Keasling. Design,
implementation and practice of JBEI-ICE: An open source biological part registry platform
and tools. Nucleic Acids Research, 40(18):e141–e141, October 2012.

[97] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, September 1994.

[98] F. C. Hartman, G. M. LaMuraglia, Y. Tomozawa, and R. Wolfenden. The influence of pH on
the interaction of inhibitors with triosephosphate isomerase and determination of the pKa of
the active-site carboxyl group. Biochemistry, 14(24):5274–5279, December 1975.

[99] Allison P. Heath and Lydia E. Kavraki. Computational challenges in systems biology.
Computer Science Review, 3(1):1–17, February 2009.

[100] Matthias Heinemann and Sven Panke. Synthetic biology—putting engineering into biology.
Bioinformatics, 22(22):2790–2799, November 2006.

[101] Nathan J. Hillson, Rafael D. Rosengarten, and Jay D. Keasling. J5 DNA Assembly Design
Automation Software. ACS Synthetic Biology, 1(1):14–21, January 2012.

[102] C. Eric Hodgman and Michael C. Jewett. Cell-free synthetic biology: Thinking outside the
cell. Metabolic Engineering, 14(3):261–269, May 2012.

[103] Ayaan Hossain, Eriberto Lopez, Sean M. Halper, Daniel P. Cetnar, Alexander C. Reis, Devin
Strickland, Eric Klavins, and Howard M. Salis. Automated design of thousands of nonrepet-
itive parts for engineering stable genetic systems. Nature Biotechnology, 38(12):1466–1475,
December 2020.

[104] Hsin-Ho Huang, Massimo Bellato, Yili Qian, Pablo Cárdenas, Lorenzo Pasotti, Paolo Magni,
and Domitilla Del Vecchio. dCas9 regulator to neutralize competition in CRISPRi circuits.
Nature Communications, 12(1):1692, December 2021.

[105] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, and the rest of
the SBML Forum:, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar,
S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H.
Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novere,
L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nel-
son, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems biology markup



130

language (SBML): A medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4):524–531, March 2003.

[106] Linh Huynh, Athanasios Tsoukalas, Matthias Köppe, and Ilias Tagkopoulos. SBROME: A
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A
Failure Predictions of Circuit 0x8E

This appendix presents predictions regarding the percentage failure rates across various mod-

els, environmental conditions, and investigated variables as analyzed in Chapter 5. Tables A.1, A.2,

and A.3 provide insights into the likelihood of circuit failures during different input transitions for

the circuit implementations depicted in Figure 4.2. Specifically, Table A.1 presents the percent-

ages of circuit failures in the original design circuit transitions, while Table A.2 offers analogous

information for the two-inverter design. Additionally, Table A.3 offers corresponding data for the

logic-hazard-free design. Furthermore, this section encompasses quantitative model predictions for

the two-inverter (Figure A.1) and logic-hazard-free implementation (Figure A.2). The final table,

Table A.4, showcases the absolute failure percentages of each model and circuit in achieving their

141
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expected steady state. Subsequently, Figures A.3, A.4, and A.5 depict the quantitative predictions

for each model regarding their attainment of steady state.
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Figure A.1: Quantitative model prediction. The figure illustrates the predicted failure probability
for each transition and model concerning the two-inverter layout. The transitions on the y-axis
are grouped into four sections. The first two sections correspond to static 0 → 0 and static 1 → 1
function hazards, while the next two groups correspond to static 0→ 0 and static 1→ 1 transitions
without function hazards. On the x-axis, the failure probability is represented in percentages, with
each model indicated by a distinct marker.
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Figure A.2: Quantitative model prediction. The figure illustrates the predicted failure probability
for each transition and model concerning the logic-hazard-free layout. The transitions on the y-axis
are grouped into four sections. The first two sections correspond to static 0 → 0 and static 1 → 1
function hazards, while the next two groups correspond to static 0→ 0 and static 1→ 1 transitions
without function hazards. On the x-axis, the failure probability is represented in percentages, with
each model indicated by a distinct marker.
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Figure A.3: Quantitative model prediction. The figure illustrates the predicted failure probability
for each state and model concerning the original layout. The states are shown on the y-axis. On the
x-axis, the failure probability is represented in percentages, with each model indicated by a distinct
marker.

Figure A.4: Quantitative model prediction. The figure illustrates the predicted failure probability
for each state and model concerning the two-inverter layout. The states are shown on the y-axis.
On the x-axis, the failure probability is represented in percentages, with each model indicated by a
distinct marker.
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Figure A.5: Quantitative model prediction. The figure illustrates the predicted failure probability
for each state and model concerning the logic-hazard-free layout. The states are shown on the y-
axis. On the x-axis, the failure probability is represented in percentages, with each model indicated
by a distinct marker.



B
Laboratory Protocols

This appendix offers the laboratory protocols utilized in this dissertation. The protocols

assume the availability of two bacterial cultures, each harboring one of the two plasmids. One

culture contains the circuit 0xF6, while the other contains the output plasmid. The two plasmids

are pAN3938 1 (circuit plasmid) and pAN4036 2 (output plasmid). These bacterial strains can be

obtained from Addgene [111].
1 https://www.addgene.org/74697/
2 https://www.addgene.org/74698/
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Lysogeny Broth

Lysogeny broth [27] (LB), a nutrient-rich medium, serves as a cornerstone for bacterial growth.

Since the 1950s, LB media formulations have stood as an industry standard for cultivating E. coli.

Widely employed in molecular microbiology, these media facilitate the preparation of plasmid DNA

and recombinant proteins. LB media remains a prevalent choice for maintaining and nurturing

recombinant strains of E. coli.

Equipment:

• Duran bottle (250 mL)

Reagents:

• Autoclaved distilled water

• LB broth powder (Invitrogen Cat No. 12780-052)

Procedure:

(1) Add 200 mL of autoclaved distilled water to a 250 mL Duran bottle

(2) Consult the manufacturer’s instructions for LB agar concentration and calculate the re-

quired mass of powder accordingly

(3) Dissolve the calculated mass of LB broth powder in 200 mL of autoclaved distilled water

(4) Shake the bottle until the powder is completely dissolved with no clumps remaining

(5) Loosen the lid of the Duran bottle until there is no resistance

(6) Autoclave for 30 minutes at 121°C

(7) Store at room temperature
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M9 Media

M9 media is a commonly used synthetic growth medium in microbiology. It contains a min-

imal set of nutrients necessary for bacterial growth, typically including salts, a carbon source, and

sometimes additional amino acids or vitamins depending on the specific experimental requirements.

Equipment:

• Duran bottle (1 L)

• Duran bottle (500 mL)

• Duran bottle (250 mL)

• Falcon tube (50 mL)

• Filter (0.22 µm)

• Syringe

Reagents:

• 1X M9 salts (Sigma-Aldrich Cat No. M6030-1KG)

• 1 mM thiamine hydrochloride (Sigma-Aldrich Cat No. T4625-10G)

• 0.4% D-(+)-glucose (Sigma-Aldrich Cat No. G8270-100G)

• 0.2% casamino acids (Sigma-Aldrich Cat No. 2240-500GM)

• 2 mM MgSO4 (Sigma-Aldrich Cat No. 230391-500G)

• 0.1 mM CaCl2 (Sigma-Aldrich Cat No. C3306-250G)

• Autoclaved distilled water

Procedure:

(1) Dissolve 56.4 g of M9 salts in 1 L of distilled water in Duran bottle
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(2) Dissolve 100 mg of thiamine hydrochloride in 10 mL of distilled water in Falcon tube

(3) Dissolve 50 g of casamino acids in 500 mL of distilled water in Duran bottle

(4) Dissolve 24.65 g of MgSO4 in 100 mL of distilled water

(5) Dissolve 14.7 g of CaCl2 in 100 mL of distilled water

(6) Dissolve 20 g of glucose in 100 mL of distilled water

(7) Autoclave M9 salts, casamino acids, MgSO4, and CaCl2 for 30 minutes at 121°C

(8) Filter sterilize thiamine hydrochloride using a 0.22 µm filter

(9) Filter sterilize glucose using a 0.22 µm filter

(10) Add 50 mL of 5x concentrated M9 to a 250 mL Duran bottle

(11) Add 8.5 mL of filtered 1 mM thiamine hydrochloride

(12) Add 5 mL of 0.2% casamino acids

(13) Add 0.5 mL of 2 mM MgSO4

(14) Add 25 µL of 0.1 mM CaCl2

(15) Add 2.5 mL of 20% glucose

(16) Add 183.475 mL of distilled water

(17) Store at 4°C

Antibiotic Stocks(1000x)

Antibiotics serve a crucial role in selection processes. In synthetic biology, plasmids bestow

selective antibiotic resistance upon their target bacteria when successfully transformed. The use

of liquid or solid growth media supplemented with antibiotics offers a means of selecting bacteria
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that have integrated the plasmid. It is noteworthy that various antibiotics are available in different

concentrations. Below is the information for the antibiotics employed in this study.

Equipment:

• Falcon tube (50 mL)

• Eppendorf tube (1.5 mL)

Reagents:

• Autoclaved distilled Water

• Antibiotic powder

Procedure:

(1) Label the Falcon tube with initials, date, and content

(2) According to Table B.1, add the final volume of distilled water to a 50 mL Falcon tube

(3) Suspend the specified mass of antibiotic as indicated in Table B.1

(4) Create 1mL aliquots of the stock solution in the Eppendorf tubes

(5) Store the stock solutions in a -20°C freezer

Antibiotic Stock[mg/mL] Final Volume[mL] Mass[g]
Kanamycin 50 50 2.5

Spectinomycin 60 50 3
Streptomycin 100 50 5

Table B.1: Antibiotic concentrations for stock solutions (1000x)

LB Agar Plates

LB agar plates are essential for cultivating and selecting cell cultures. They come in both

selective variants, containing antibiotics, and non-selective variants, without antibiotics.

Equipment:
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• Duran bottle (250 mL)

• Petri dishes

• Bunsen burner

Reagents:

• LB broth with agar powder (Invitrogen Cat No. 22700-025)

• Antibiotic stock solution (1000x)

Procedure:

(1) Pour 200 mL of distilled water into a 250 mL Duran bottle

(2) Refer to the manufacturer’s instructions for LB agar concentration and calculate the re-

quired mass of powder

(3) Mix the calculated mass of LB broth powder with agar into the 200 mL of distilled water

(4) Vigorously shake the bottle until the powder completely dissolves, ensuring no clumps

remain

(5) Loosen the lid of the Duran bottle until there is no resistance

(6) Autoclave for 15 minutes at 121°C

(7) Label the bottom of the petri dish with the following information: date, initials, antibiotic,

plasmid, and stain

(8) Allow the LB agar to cool to approximately 60°C

(9) Light a Bunsen burner and work close to it

(10) Add 20 µL of antibiotic (1000x concentration) to 20 mL of LB agar

(11) Carefully pour approximately 20 mL of LB agar with antibiotic into each petri dish
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(12) Gently swirl each petri dish on the table to ensure the agar coats the sides evenly

(13) Cover half of each petri dish with its lid and leave them near the Bunsen burner to allow

condensation to evaporate for 30 to 60 minutes

(14) Stack the petri dishes, tape around them, and store them at 4°C

Streaking Out Bacteria

Streaking out bacteria is the process of transferring bacteria from a glycerol stock solution

onto a petri dish for growing cell cultures.

Equipment:

• Petri dish with LB agar and antibiotic

• Bunsen burner

• Inoculating loops

• Bacteria glycerol stock (stored at -80ºC)

Procedure:

(1) Ignite the Bunsen burner

(2) Uncover the petri dish

(3) Dip the inoculation loop into the bacterial glycerol stock

(4) Streak the inoculation loop in the pattern shown in Figure B.1

(5) Seal the petri dish

(6) Incubate the petri dishes overnight at 37°C

Streaking out:

(1) Begin by streaking out a wide area at the top of the petri dish



158

Figure B.1: Pattern for streaking out bacteria.

(2) Rotate the petri dish 90 degrees and draw four straight lines from your initial deposit across

the dish’s new top

(3) Rotate the petri dish 90 degrees again and draw three lines at the top, starting from the

four lines drawn previously

(4) Rotate the petri dish 90 degrees once more and draw two lines at the top, starting from the

three lines drawn before

(5) Conclude by drawing a squiggly line to the center of the petri dish

Overnight Culture

The overnight culture can be utilized directly, reinoculated into a larger volume of LB broth,

or plated to cultivate either a lawn of bacterial growth or single isolated colonies.

Equipment:

• Bunsen burner

• Falcon tube (50 mL)

• Inoculating loops
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Reagents:

• Growth media

• Antibiotic stock solution

• Bacterial glycerol stock (stored at -80°C) or petri dish with bacterial cultures

Procedure:

(1) Ignite the Bunsen burner and work closely with it

(2) Pour 5 mL of media into a 50 mL Falcon Tube

(3) Add 5 µL of each antibiotic from the 1000x stock solution

(4) Using an inoculation loop, pick up a colony from the petri dish or glycerol stock

(5) Stir the inoculation loop in the media to disperse the bacterial colony

(6) Tighten the lid until you feel resistance to allow limited airflow

(7) Incubate the Falcon tube overnight (12-16 hours) at 37°C

Plasmid Preparation

Plasmid preparation involves the extraction and purification of plasmid DNA. In this study,

the QIAprep Spin Miniprep Kit 3 (cat. nos. 27104 and 27106) was utilized.

Golden Gate Assembly

Golden Gate assembly is a molecular cloning technique that enables researchers to simulta-

neously and directionally assemble multiple DNA fragments into a single construct using Type IIS

restriction enzymes and T4 DNA ligase. This process is performed in vitro.

Equipment:
3 https://www.qiagen.com/

https://www.qiagen.com/
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• Thermocycler

• NanoDrop spectrophotometer

• PCR tubes

Reagents:

• Miniprepped DNA part plasmids

• Type IIS restriction enzyme (NEB Cat No. R3733S)

• Autoclaved distilled water

• T4 DNA ligase buffer (NEB Cat No. B0202S)

Procedure:

(1) Calibrate the NanoDrop spectrophotometer using 1.2 µL of distilled water

(2) Measure the concentration of each DNA part by analyzing 1.2 µL of each sample on the

NanoDrop spectrophotometer

(3) Calculate the volume (in microliters) needed for the selected backbone using the formula:

40 fmol(
(DNA concentration×10−9)×1015

(Part Size in bp×607.4)+157.9

)
(4) Calculate the volume (in microliters) needed for the selected DNA part using the formula:

80 fmol(
(DNA concentration×10−9)×1015

(Part Size in bp×607.4)+157.9

)
(5) Add autoclaved distilled water to a total volume of 26 µL

(6) Add 2 µL of T4 DNA ligase buffer

(7) Add 1 µL of Type IIS restriction enzyme

(8) Add 1 µL of T4 DNA ligase to a total volume of 30 µL
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(9) Place the PCR tube into the thermocycler

(10) Run the following thermocycler program:

• 37°C for 5 minutes

• 37°C for 5 minutes

• 16°C for 5 minutes

(11) Repeat steps 6 to 7 for 80 cycles

(12) Run the following thermocycler program:

• 37°C for 20 minutes

• 80°C for 20 minutes

(13) Keep the reaction at 12°C until samples are removed and stored at 4°C

Transformation

Transformation is the pivotal process of introducing a desired plasmid into a cell by traversing

the cell membrane. The following protocol outlines transformation using the heat shock method.

Equipment:

• Petri dishes with antibiotic

• Bunsen burner

• Cell spreader

• Water bath

• Ice

Reagents:

• Chemical competent cells (NEB Cat No. C3019H)
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• Outgrowth media (NEB Cat No. C3019H)

• Miniprepped DNA

Procedure:

(1) Thaw chemical competent cells on ice

(2) Use the NanoDrop to measure the plasmid concentration of miniprep

(3) Calculate the volume of miniprep in microliters needed to obtain 100 ng of plasmid

(4) Light the Bunsen burner and work close to it

(5) Add the determined microliters of plasmid to 0.05 mL competent cells

(6) Incubate for 30 minutes

(7) Heat shock at 42°C in a water bath for 45 seconds

(8) Quickly transfer to ice (-20°C) and incubate for 2 minutes

(9) Add 200 mL of outgrowth media (included with cells)

(10) Incubate at 37°C for one hour with a rotation speed of 250 rpm

(11) Spread the cells onto petri dishes and allow them to grow overnight at 37°C

Flow Cytometry

Flow cytometry is a technique used to analyze characteristics of cells as they flow in a fluid

stream through a beam of light. This method allows for the simultaneous measurement of multiple

parameters, such as cell size, count, and fluorescence intensity, providing valuable insights into

cellular properties and functions. The flow cytometry analysis in this study followed the protocol

provided in the supplemental materials of the work by Nielsen et al. [175].
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Induction

The induction protocol was employed to drive the circuit into its eight possible states before

transferring it into a 96-well plate for analysis in the plate reader to measure fluorescence and cell

growth.

Equipment:

• Bunsen burner

• Eppendorf tubes (1.5 mL)

• 96-well plate

Reagents:

• Inducers

• Growth media

• Antibiotic

• Double-transformed cells containing the circuit

• Single-transformed cells containing the reporter unit (RPU)

Procedure:

(1) Prepare eleven Eppendorf tubes

(2) Ignite the Bunsen burner and work nearby

(3) Add 1 mL of growth media to each Eppendorf tube

(4) Add 1 µL of antibiotic to each tube

(5) Add 10 µL of inducer to each tube

(6) Add 10 µL of overnight culture containing bacteria to each tube

(7) Transfer 200 µL of media containing induced cells per well to the 96-well plate
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Plate Reader

The plate reader was utilized to monitor cell growth over time by measuring OD and fluores-

cence intensity as cells grew and remained viable

Equipment:

• Plate reader

• 96-well plate containing induced cells

Procedure:

(1) Set the excitation wavelength

(2) Set the emission wavelength

(3) Set the OD measurement wavelength

(4) Set the shaking speed

(5) Set the averaging parameters

(6) Select samples, standards, and blanks for measurement

(7) Run the plate reader for the specified duration (e.g., 15 or 50 hours)
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